Hatch, George L.; Brummond, William A.; Barrus, Donald M.
1986-01-01
A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.
Evaluations of carbon nanotube field emitters for electron microscopy
NASA Astrophysics Data System (ADS)
Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi
2009-11-01
Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.
Record Efficiency on Large Area P-Type Czochralski Silicon Substrates
NASA Astrophysics Data System (ADS)
Hallam, Brett; Wenham, Stuart; Lee, Haeseok; Lee, Eunjoo; Lee, Hyunwoo; Kim, Jisun; Shin, Jeongeun; Cho, Kyeongyeon; Kim, Jisoo
2012-10-01
In this work we report a world record independently confirmed efficiency of 19.4% for a large area p-type Czochralski grown solar cell fabricated with a full area aluminium back surface field. This is achieved using the laser doped selective emitter solar cell technology on an industrial screen print production line with the addition of laser doping and light induced plating equipment. The use of a modified diffusion process is explored in which the emitter is diffused to a sheet resistance of 90 Ω/square and subsequent etch back of the emitter to 120 Ω/square. This results in a lower surface concentration of phosphorus compared to that of emitters diffused directly to 120 Ω/square. This modified diffusion process subsequently reduces the conductivity of the surface in relation to that of the heavily diffused laser doped contacts and avoids parasitic plating, resulting an average absolute increase in efficiency of 0.4% compared to cells fabricated without an emitter etch back process.
Hatch, G.L.; Brummond, W.A.; Barrus, D.M.
1984-04-05
The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.
Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.
2011-01-01
An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter enables highly stable electrosprays at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography. PMID:21657269
Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.
Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo
2017-10-02
GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.
Lu, Yu-Wei; Li, Ling-Yan; Liu, Jing-Feng
2018-05-08
We investigate the quantum optical properties of strong light-matter interaction between a quantum emitter and a metallic nanoparticle beyond idealized structures with a smooth surface. Based on the local coupling strength and macroscopic Green's function, we derived an exact quantum optics approach to obtain the field enhancement and light-emission spectrum of a quantum emitter. Numerical simulations show that the surface roughness has a greater effect on the near-field than on the far-field, and slightly increases the vacuum Rabi splitting on average. Further, we verified that the near-field enhancement is mainly determined by the surface features of hot-spot area.
Solar energy apparatus with apertured shield
NASA Technical Reports Server (NTRS)
Collings, Roger J. (Inventor); Bannon, David G. (Inventor)
1989-01-01
A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.
Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing
2018-03-14
Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.
Calculation of day and night emittance values
NASA Technical Reports Server (NTRS)
Kahle, Anne B.
1986-01-01
In July 1983, the Thermal Infrared Multispectral Scanner (TIMS) was flown over Death Valley, California on both a midday and predawn flight within a two-day period. The availability of calibrated digital data permitted the calculation of day and night surface temperature and surface spectral emittance. Image processing of the data included panorama correction and calibration to radiance using the on-board black bodies and the measured spectral response of each channel. Scene-dependent isolated-point noise due to bit drops, was located by its relatively discontinuous values and replaced by the average of the surrounding data values. A method was developed in order to separate the spectral and temperature information contained in the TIMS data. Night and day data sets were processed. The TIMS is unique in allowing collection of both spectral emittance and thermal information in digital format with the same airborne scanner. For the first time it was possible to produce day and night emittance images of the same area, coregistered. These data add to an understanding of the physical basis for the discrimination of difference in surface materials afforded by TIMS.
Fowler Nordheim theory of carbon nanotube based field emitters
NASA Astrophysics Data System (ADS)
Parveen, Shama; Kumar, Avshish; Husain, Samina; Husain, Mushahid
2017-01-01
Field emission (FE) phenomena are generally explained in the frame-work of Fowler Nordheim (FN) theory which was given for flat metal surfaces. In this work, an effort has been made to present the field emission mechanism in carbon nanotubes (CNTs) which have tip type geometry at nanoscale. High aspect ratio of CNTs leads to large field enhancement factor and lower operating voltages because the electric field strength in the vicinity of the nanotubes tip can be enhanced by thousand times. The work function of nanostructure by using FN plot has been calculated with reverse engineering. With the help of modified FN equation, an important formula for effective emitting area (active area for emission of electrons) has been derived and employed to calculate the active emitting area for CNT field emitters. Therefore, it is of great interest to present a state of art study on the complete solution of FN equation for CNTs based field emitter displays. This manuscript will also provide a better understanding of calculation of different FE parameters of CNTs field emitters using FN equation.
Electrohydrodynamically driven large-area liquid ion sources
Pregenzer, Arian L.
1988-01-01
A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.
Bias-free lateral terahertz emitters—A simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granzner, R., E-mail: ralf.granzner@tu-ilmenau.de; Schwierz, F.; Polyakov, V. M.
2015-07-28
The design and performance of bias-free InN-based THz emitters that exploit lateral photocurrents is studied by means of numerical simulations. We use a drift-diffusion model with adjusted carrier temperatures and mobilities. The applicability of this approach is demonstrated by a comparison with results from Monte-Carlo simulations. We consider a simple but robust lateral emitter concept using metal stripes with two different thicknesses with one of them being thin enough to be transparent for THz radiation. This arrangement can be easily multiplexed and the efficiency of this concept has already been demonstrated by experiment for GaAs substrates. In the present study,more » we consider InN, which is known to be an efficient photo-Dember emitter because of its superior transport properties. Our main focus is on the impact of the emitter design on the emission efficiency assuming different operation principles. Both the lateral photo-Dember (LPD) effect and built-in lateral field effects are considered. The appropriate choice of the metal stripe and window geometry as well as the impact of surface Fermi level pinning are investigated in detail, and design guidelines for efficient large area emitters using multiplexed structures are provided. We find that InN LPD emitters do not suffer from Fermi level pinning at the InN surface. The optimum emission efficiency is found for LPD emitter structures having 200 nm wide illumination windows and mask stripes. Emitter structures in which lateral electric fields are induced by the metal mask contacts can have a considerably higher efficiency than pure LPD emitters. In the best case, the THz emission of such structures is increased by one order of magnitude. Their optimum window size is 1 μm without the necessity of a partially transparent set of mask stripes.« less
1983-08-01
particular fabrication concerns, both the emitter and collector region were made of Al„ -Ga0 5As wide gap material. Devices with emitter area of 10 x 60...im and collector area of 50 x 60 (im exhi- bited current gains of 500 for a base doping of 10 cm and thickness of 500 A, and 1700 for a base...spreading over a large enough distance, it is usually necessary to heat the surface to a temperature at which not just diffusion, but also
An accurate two-dimensional LBIC solution for bipolar transistors
NASA Astrophysics Data System (ADS)
Benarab, A.; Baudrand, H.; Lescure, M.; Boucher, J.
1988-05-01
A complete solution of the diffusion problem of carriers generated by a located light beam in the emitter and base region of a bipolar structure is presented. Green's function method and moment method are used to solve the 2-D diffusion equation in these regions. From the Green's functions solution of these equations, the light beam induced currents (LBIC) in the different junctions of the structure due to an extended generation represented by a rectangular light spot; are thus decided. The equations of these currents depend both on the parameters which characterise the structure, surface states, dimensions of the emitter and the base region, and the characteristics of the light spot, that is to say, the width and the wavelength. Curves illustrating the variation of the various LBIC in the base region junctions as a function of the impact point of the light beam ( x0) for different values of these parameters are discussed. In particular, the study of the base-emitter currents when the light beam is swept right across the sample illustrates clearly a good geometrical definition of the emitter region up to base end of the emitter-base space-charge areas and a "whirl" lateral diffusion beneath this region, (i.e. the diffusion of the generated carriers near the surface towards the horizontal base-emitter junction and those created beneath this junction towards the lateral (B-E) junctions).
Processing of materials for uniform field emission
Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.
1999-01-12
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.
Processing of materials for uniform field emission
Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung
1999-01-01
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.
Method of Making Large Area Nanostructures
NASA Technical Reports Server (NTRS)
Marks, Alvin M.
1995-01-01
A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
Chemical regeneration of emitter surface increases thermionic diode life
NASA Technical Reports Server (NTRS)
Breiteieser, R.
1966-01-01
Chemical regeneration of sublimated emitter electrode increases the operating efficiency and life of thermionic diodes. A gas which forms chemical compounds with the sublimated emitter material is introduced into the space between the emitter and the collector. The compounds migrate to the emitter where they decompose and redeposit the emitter material.
Measurement and evaluation of the radiative properties of a thin solid fuel
NASA Technical Reports Server (NTRS)
Pettegrew, Richard; Street, Kenneth; Pitch, Nancy; Tien, James; Morrison, Phillip
2003-01-01
Accurate modeling of combustion systems requires knowledge of the radiative properties of the system. Gas phase properties are well known, but detailed knowledge of surface properties is limited. Recent work has provided spectrally resolved data for some solid fuels, but only for the unburned material at room temperature, and for limited sets of previously burned and quenched samples. Due to lack of knowledge of the spectrally resolved properties at elevated temperatures, as well as processing limitations in the modeling effort, graybody values are typically used for the fuels surface radiative properties. However, the spectrally resolved properties for the fuels at room temperature can be used to give a first-order correction for temperature effects on the graybody values. Figure 1 shows a sample of the spectrally resolved emittance/absorptance for a thin solid fuel of the type commonly used in combustion studies, from approximately 2 to 20 microns. This plot clearly shows a strong spectral dependence across the entire range. By definition, the emittance is the ratio of the emitted energy to that of a blackbody at the same temperature. Therefore, to determine a graybody emittance for this material, the spectrally resolved data must be applied to a blackbody curve. The total area under the resulting curve is ratioed to the total area under the blackbody curve to yield the answer. Due to the asymmetry of the spectrally resolved emittance and the changing shape of the blackbody curve as the temperature increases, the relative importance of the emittance value at any given wavelength will change as a function of temperature. Therefore, the graybody emittance value for a given material will change as a function of temperature even if the spectral dependence of the radiative properties remains unchanged. This is demonstrated in Figures 2 and 3, which are plots of the spectrally resolved emittance for KimWipes (shown in Figure 1) multiplied by the blackbody curves for 300 K (Figure 2) and 800 K (Figure 3). Each figure also shows the blackbody curve for that temperature. Ratioing the areas under the curve for each of these figures give a graybody emittance of 0.64 at 300 K, and 0.46 at 800 K. It is recognized that materials undergoing pyrolysis will change in composition as they heat up, and that the radiative properties of the materials may have inherent temperature dependence. Both of these effects will contribute to changes in the radiative characteristics of a given material, and are not accounted for here. However, this paper demonstrates the temperature dependence of graybody radiative properties, and provides a method for a first-order correction (for temperature) to the graybody values if the spectrally resolved properties are known.
Wetting Properties of EMIIm & its Relevance to Electrospray Design
2012-03-12
apparent surface area S Distance separating two grid apertures T Absolute temperature of the test liquid TC Critical temperature of the test liquid V...include the choice of solid materials being used as insulators, emitters or electrodes, thin film surface coatings that have a de- sired high or low...wettability, and changing the solid component surface roughness or temperature during operation.678 An electrospray thruster has been developed by
Field ion microscopic studies of the CO oxidation on platinum: Bistability and oscillations
NASA Astrophysics Data System (ADS)
Gorodetskii, V.; Drachsel, W.; Ehsasi, M.; Block, J. H.
1994-05-01
The oscillating CO oxidation is investigated on a Pt-field emitter tip by using the field ion mode of surface imaging of Oad sites with O2 as imaging gas. Based on data of the titration reactions [V. Gorodetskii, W. Drachsel, and J. H. Block, J. Chem. Phys. 100, C. E. UPDATE (1994)], external control parameters for the regions of bistability and of self-sustained isothermal oscillations could be found. On a field emitter tip, oscillations can be generated in a rather large parameter space. The anticlockwise hysteresis of O+2 ion currents in temperature cycles occurs in agreement with results on single crystal planes. Unexpected regular oscillation sequences could occasionally be obtained on the small surface areas of a field emitter tip and measured as function of the CO partial pressure and of the temperature. Different stages within oscillating cycles were documented by field ion images. Oscillations of total ion currents are correlated with variations in the spatial brightness of field ion images. In the manifold of single crystal planes of a field emitter {331} planes around the {011} regions are starting points for oscillations which mainly proceed along [100] vicinals. This excludes the {111} regions from autonomous oscillations. With slightly increased CO partial pressures fast local oscillations at a few hundred surface sites of the Pt(001) plane display short-living CO islands of 40 to 50 Å diameter. Temporal oscillations of the total O+2 ion current are mainly caused by surface plane specific spatial oscillations. The synchronization is achieved by diffusion reaction fronts rather than by gas phase synchronization.
Process for reducing beta activity in uranium
Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward
1986-10-07
This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.
Process for reducing beta activity in uranium
Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward
1986-01-01
This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.
Process for reducing beta activity in uranium
Briggs, G.G.; Kato, T.R.; Schonegg, E.
1985-04-11
This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.
Fused Silica Surface Coating for a Flexible Silica Mat Insulation System
NASA Technical Reports Server (NTRS)
Rhodes, W. H.
1973-01-01
Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.
The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Hotes, Deborah L.; Paulsen, Phillip E.
1989-01-01
Radiator surfaces on high temperature space power systems such as SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. One of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less than approximately 600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.
A retractable electron emitter for the creation of unperturbed pure electron plasmas.
Berkery, John W; Pedersen, Thomas Sunn; Sampedro, Luis
2007-01-01
A retractable electron emitter has been constructed for the creation of unperturbed pure electron plasmas on magnetic surfaces in the Columbia Non-neutral Torus stellarator. The previous method of electron emission using emitters mounted on stationary rods limited the confinement time to 20 ms. A pneumatically driven system that can retract from the magnetic axis to the last closed flux surface in less than 20 ms while filling the surfaces with electrons was designed. The motion of the retractable emitter was modeled with a system of dynamical equations. The measured position versus time of the emitter agrees well with the model and the fastest axis-to-edge retraction was measured to be 20 ms with 40 psig helium gas driving the pneumatic piston.
NASA Astrophysics Data System (ADS)
Simayi, Shalamujiang; Mochizuki, Toshimitsu; Kida, Yasuhiro; Shirasawa, Katsuhiko; Takato, Hidetaka
2017-10-01
This paper presents a large-area (239-cm2) high-efficiency n-type bifacial solar cell that is processed using tube-furnace thermal diffusion employing liquid sources BBr3 for the front-side boron emitter and POCl3 for the rear-side phosphorus back surface field (BSF). The SiN x /Al2O3 stack was applied to the front-side boron emitter as a passivation layer. Both the front and rear-side electrodes are obtained using screen-printed contacts with H-patterns. The resulting highest-efficiency solar cell has front- and rear-side efficiencies of 20.3 and 18.7%, respectively, while the corresponding bifaciality is up to 92%. Finally, the passivation quality of the SiN x /Al2O3 stack on the front-side boron emitter and rear-side phosphorus BSF is investigated and visualized by measuring the internal quantum efficiency mapping of the bifacial solar cell.
NASA Technical Reports Server (NTRS)
Compton, E. C.
1986-01-01
Emittance tests were made on samples of Rene' 41, Haynes 188, and Inconel 625 superalloy metals in an evaluation of a standard test method for determining total hemispherical emittances of surfaces from 293 K to 1673 K. The intent of this evaluation was to address any problems encountered, check repeatability of measured emittances, and gain experience in use of the test procedure. Five test specimens were fabricated to prescribe test dimensions and surfaces cleaned of oil and residue. Three of these specimens were without oxidized surfaces and two with oxidized surfaces. The oxidized specimens were Rene' 41 and Haynes 188. The tests were conducted in a vacuum where the samples were resistance-heated to various temperature levels ranging from 503 K to 1293 K. The calculated results for emittance, in the worst case, were repeatable to a maximum spread to + or - 4% from the mean of five sets of plotted data for each specimen.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Forkapa, Mark J.; Cooper, Jill M.
1991-01-01
Graphite-copper composites are candidate materials for space based radiators. The thermal emittance of this material, however, is a factor of two lower than the desired emittance for these systems of greater than or equal to 0.85. Arc texturing was investigated as a surface modification technique for enhancing the emittance of the composite. Since the outer surface of the composite is copper, and samples of the composite could not be readily obtained for testing, copper was used for optimization testing. Samples were exposed to various frequencies and currents of arcs during texturing. Emittances near the desired goal were achieved at frequencies less than 500 Hz. Arc current did not appear to play a major role under 15 amps. Particulate carbon was observed on the surface, and was easily removed by vibration and handling. In order to determine morphology adherence, ultrasonic cleaning was used to remove the loosely adherent material. This reduced the emittance significantly. Emittance was found to increase with increasing frequency for the cleaned samples up to 500 Hz. The highest emittance achieved on these samples over the temperature range of interest was 0.5 to 0.6, which is approximately a factor of 25 increase over the untextured copper emittance.
Arc-textured high emittance radiator surfaces
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1991-01-01
High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.
Electrochemical formation of field emitters
Bernhardt, Anthony F.
1999-01-01
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.
1983-05-20
an impurity-mobility reduction factor of about 100. We finally note that there is no indication of an emitter-base noise source due to oxide surface...in N2 + 1% 02, at 11000C, for 3 hrs. Different phosphorus surface concentrations have been realized using different in situ oxidation times (prior to...depletion change per unit area at the surface potential Ts = 1.5 OF , Cox and C are the oxide and the depletion capacitances per unit area
Determining Directional Emittance With An Infrared Imager
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E., Jr.; Puram, Chith K.
1994-01-01
Directional emittances of flat specimen of smooth-surfaced, electrically nonconductive material at various temperatures computed from measurements taken by infrared radiometric imager operating in conjunction with simple ancillary equipment. Directional emittances useful in extracting detailed variations of surface temperatures from infrared images of curved, complexly shaped other specimens of same material. Advantages: simplification of measurement procedure and reduction of cost.
Electrochemical formation of field emitters
Bernhardt, A.F.
1999-03-16
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.
Directional emittance surface measurement system and process
NASA Technical Reports Server (NTRS)
Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)
1994-01-01
Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.
NASA Astrophysics Data System (ADS)
Xia, Zije; Williams, Evan R.
2018-01-01
Theta glass electrospray emitters can rapidly mix solutions to investigate fast reactions that occur as quickly as 1 μs, but emitters with submicron tips have the unusual properties of desalting protein ions and affecting the observed abundances of some proteins as a result of protein-surface interactions. The role of protein physical properties on ion signal was investigated using 1.7 ± 0.1 μm and 269 ± 7 nm emitters and 100 mM aqueous ammonium acetate or ammonium bicarbonate solutions. Protein ion desalting occurs for both positive and negative ions. The signal of a mixture of proteins with the 269 nm tips is time-dependent and the order in which ions of each protein is observed is related to the expected strengths of the protein-surface interactions. These results indicate that it is not just the high surface-to-volume ratio that plays a role in protein adsorption and reduction or absence of initial ion signal, but the small diffusion distance and extremely low flow rates of the smaller emitters can lead to complete adsorption of some proteins and loss of signal until the adsorption sites are filled and the zeta potential is significantly reduced. After about 30 min, signals for a protein mixture from the two different size capillaries are similar. These results show the advantages of submicron emitters but also indicate that surface effects must be taken into account in experiments using such small tips or that coating the emitter surface to prevent adsorption should be considered. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Hoebing, T.; Bergner, A.; Hermanns, P.; Mentel, J.; Awakowicz, P.
2016-04-01
The admixture of a small amount of emitter oxides, e.g. \\text{Th}{{\\text{O}}2} , \\text{L}{{\\text{a}}2}{{\\text{O}}3} or \\text{C}{{\\text{e}}2}{{\\text{O}}3} to tungsten generates the so-called emitter effect. It reduces the work function of tungsten cathodes, that are applied in high intensity discharge (HID) lamps. After leaving the electrode bulk and moving to the surface, a monolayer of Th, La, or Ce atoms is formed on the surface, which reduces the effective work function ϕ. Depending on the coverage of the electrode, the effective reduction in ϕ is subjected to the thermal desorption of the monolayer from the hot electrode surface. The thermal desorption of emitter atoms from the cathode is compensated not only by the supply from the interior of the electrode and by surface diffusion of the emitter material to its tip, but also to a large extent by a repatriation of the emitter ions from the plasma by the strong electric field in front of the cathode. Yet, an emitter ion current from the arc discharge to the anode may only be present, if the anode is cold enough to refrain from thermionic emission. Therefore, the ability of emitter oxides to reduce the temperature of tungsten anodes is only given for a moderate temperature so that the thermal desorption is low and an additional ion current is present in front of the anode. A higher electrode temperature leads to their evaporation and to an inversion of the emitter effect, which increases the temperature of the respective anodes in comparison with pure tungsten anodes. Within this article, the emitter effect of doped tungsten anodes and the transition to its inversion is investigated for thoriated, lanthanated, and ceriated tungsten electrodes by measurements of the electrode temperature in dependence on the discharge current. It is shown for a lanthanated and a ceriated anode that the emitter effect is sustained by an ion current at anode temperatures at which the thermal evaporation of emitter material is completed.
Strong coupling of collection of emitters on hyperbolic meta-material
NASA Astrophysics Data System (ADS)
Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.
2018-04-01
Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.
Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning
NASA Astrophysics Data System (ADS)
Polk, James E.; Capece, Angela M.
2015-05-01
Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.
Surface atoms in Sc-O/W(1 0 0) system as Schottky emitter at high temperature
NASA Astrophysics Data System (ADS)
Tsujita, T.; Iida, S.; Nagatomi, T.; Takai, Y.
2003-12-01
The chemical bonding state of surface atoms in the Sc-O/W(1 0 0) system as a Schottky emitter was investigated at high temperature using a profile of Auger electron peaks to elucidate the mechanism of the marked reduction of the work function of the Sc-O/W(1 0 0) Schottky emitter. For this, Sc-deposited W(1 0 0), oxygen-exposed W(1 0 0) and Sc surfaces were prepared as reference surfaces. A comparison of the profiles of the Auger electron peaks from the Sc-O/W(1 0 0) surface with those from the reference surfaces has revealed that oxygen and Sc atoms on the Sc-O/W(1 0 0) surface form the Sc-O complexes at the operating temperature of the Sc-O/W(1 0 0) emitter of 1400 K. In addition, the ratio of the number of Sc atoms to that of oxygen atoms is estimated as 1:1 by the quantitative analysis of the AES peaks. The present results strongly suggest that the work function of the Sc-O/W(1 0 0) emitter is caused by the formation of Sc-O electric dipoles aligning into the p(2 × 1)-p(1 × 2) double-domain structure [Surf. Sci. 523 (2003) L37] on the Sc-O/W(1 0 0) surface at the operating temperature.
Optical properties of sputtered aluminum on graphite/epoxy composite material
NASA Technical Reports Server (NTRS)
Witte, William G., Jr.; Teichman, Louis A.
1989-01-01
Solar absorptance, emittance, and coating thickness were measured for a range of coating thicknesses from about 400 A to 2500 A. The coatings were sputtered from an aluminum target onto 1-inch-diameter substrates of T300/5209 graphite/epoxy composite material with two different surface textures. Solar absorptance and emittance values for the specimens with the smooth surface finish were lower than those for the specimens with the rough surface finish. The ratio of solar absorptance to emittance was higher for the smooth specimens, increasing from 2 to 4 over the coating thickness range, than for the rough ones, which had a constant ratio of about 1. The solar absorptance and emittance values were dependent on the thickness of the sputtered coating.
Aeolian removal of dust from radiator surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah
1990-01-01
Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.
NASA Astrophysics Data System (ADS)
Charles, T. K.; Paganin, D. M.; Dowd, R. T.
2016-08-01
Intrinsic emittance is often the limiting factor for brightness in fourth generation light sources and as such, a good understanding of the factors affecting intrinsic emittance is essential in order to be able to decrease it. Here we present a parameterization model describing the proportional increase in emittance induced by cathode surface roughness. One major benefit behind the parameterization approach presented here is that it takes the complexity of a Monte Carlo model and reduces the results to a straight-forward empirical model. The resulting models describe the proportional increase in transverse momentum introduced by surface roughness, and are applicable to various metal types, photon wavelengths, applied electric fields, and cathode surface terrains. The analysis includes the increase in emittance due to changes in the electric field induced by roughness as well as the increase in transverse momentum resultant from the spatially varying surface normal. We also compare the results of the Parameterization Model to an Analytical Model which employs various approximations to produce a more compact expression with the cost of a reduction in accuracy.
Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%
NASA Astrophysics Data System (ADS)
Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun
2017-08-01
We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.
Development of high efficiency thin film polycrystalline silicon solar cells using VEST process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, T.; Arimoto, S.; Morikawa, H.
1998-12-31
Thin film Si solar cell has been developed using Via-hole Etching for the Separation of Thin films (VEST) process. The process is based on SOI technology of zone-melting recrystallization (ZMR) followed by chemical vapor deposition (CVD), separation of thin film, and screen printing. Key points for achieving high efficiency are (1) quality of Si films, (2) back surface emitter (BSE), (3) front surface emitter etch-back process, (4) back surface field (BSF) layer thickness and its resistivity, and (5) defect passivation by hydrogen implantation. As a result of experiments, the authors have achieved 16% efficiency (V{sub oc}:0.589V, J{sub sc}:35.6mA/cm{sup 2}, F,F:0.763)more » with a cell size of 95.8cm{sup 2} and the thickness of 77 {micro}m. It is the highest efficiency ever reported for large area thin film Si solar cells.« less
Secondary emission electron gun using external primaries
Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY
2009-10-13
An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.
Secondary emission electron gun using external primaries
Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY
2007-06-05
An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.
Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine
Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian
2013-01-01
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380
Fleming, J.G.; Smith, B.K.
1995-10-10
A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.
A method of treating the non-grey error in total emittance measurements
NASA Technical Reports Server (NTRS)
Heaney, J. B.; Henninger, J. H.
1971-01-01
In techniques for the rapid determination of total emittance, the sample is generally exposed to surroundings that are at a different temperature than the sample's surface. When the infrared spectral reflectance of the surface is spectrally selective, these techniques introduce an error into the total emittance values. Surfaces of aluminum overcoated with oxides of various thicknesses fall into this class. Because they are often used as temperature control coatings on satellites, their emittances must be accurately known. The magnitude of the error was calculated for Alzak and silicon oxide-coated aluminum and was shown to be dependent on the thickness of the oxide coating. The results demonstrate that, because the magnitude of the error is thickness-dependent, it is generally impossible or impractical to eliminate it by calibrating the measuring device.
NASA Astrophysics Data System (ADS)
Marcelino, Edgar; de Assis, Thiago A.; de Castilho, Caio M. C.
2018-03-01
It is well known that sufficiently strong electrostatic fields are able to change the morphology of Large Area Field Emitters (LAFEs). This phenomenon affects the electrostatic interactions between adjacent sites on a LAFE during field emission and may lead to several consequences, such as: the emitter's degradation, diffusion of absorbed particles on the emitter's surface, deflection due to electrostatic forces, and mechanical stress. These consequences are undesirable for technological applications, since they may significantly affect the macroscopic current density on the LAFE. Despite the technological importance, these processes are not completely understood yet. Moreover, the electrostatic effects due to the proximity between emitters on a LAFE may compete with the morphological ones. The balance between these effects may lead to a non trivial behavior in the apex-Field Enhancement Factor (FEF). The present work intends to study the interplay between proximity and morphological effects by studying a model amenable for an analytical treatment. In order to do that, a conducting system under an external electrostatic field, with a profile limited by two mirror-reflected triangular protrusions on an infinite line, is considered. The FEF near the apex of each emitter is obtained as a function of their shape and the distance between them via a Schwarz-Christoffel transformation. Our results suggest that a tradeoff between morphological and proximity effects on a LAFE may provide an explanation for the observed reduction of the local FEF and its variation at small distances between the emitter sites.
Laser-photofield emission from needle cathodes for low-emittance electron beams.
Ganter, R; Bakker, R; Gough, C; Leemann, S C; Paraliev, M; Pedrozzi, M; Le Pimpec, F; Schlott, V; Rivkin, L; Wrulich, A
2008-02-15
Illumination of a ZrC needle with short laser pulses (16 ps, 266 nm) while high voltage pulses (-60 kV, 2 ns, 30 Hz) are applied, produces photo-field emitted electron bunches. The electric field is high and varies rapidly over the needle surface so that quantum efficiency (QE) near the apex can be much higher than for a flat photocathode due to the Schottky effect. Up to 150 pC (2.9 A peak current) have been extracted by photo-field emission from a ZrC needle. The effective emitting area has an estimated radius below 50 microm leading to a theoretical intrinsic emittance below 0.05 mm mrad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Dauksher, Bill; Bowden, Stuart
We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less
Oh, Jaewon; Dauksher, Bill; Bowden, Stuart; ...
2017-01-11
We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less
Thrust and Performance Study of Micro Pulsed Plasma Thrusters
2010-03-01
Due to the high- voltage potential, numerous electrons are able to collect in a small area. As the collection of the electrons grows, the ...quasi- neutral plasma removes the need to have a second emitter of free electrons to neutralize the plasma like in the Hall thrusters. PPTs and µPPTs...surface of the cathode. The micro-protrusions
Hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2016-04-12
An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.
Silicon microelectronic field-emissive devices for advanced display technology
NASA Astrophysics Data System (ADS)
Morse, J. D.
1993-03-01
Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.
The Effect of Martian Dust on Radiator Performance
NASA Technical Reports Server (NTRS)
Hollingsworth, D. Keith; Witte, Larry C.; Hinke, Jaime; Hulbert, Kathryn
2004-01-01
Experiments were performed in which the effective emittance of three types of radiator Coatings was measured as Martian dust simulant was added to the radiator face. The apparatus consisted of multiple radiator coupons on which Carbondale Red Clay dust was deposited. The coupons were powered by electric heaters, using a guard-heating configuration to achieve the accuracy required for acceptable emittance calculations. The apparatus was containing in a vacuum chamber that featured a liquid-nitrogen cooled shroud that simulated the Martian sky temperature. Radiator temperatures ranged from 250 to 350 K with sky temperatures from 185 to 248 K. Results show that as dust was added to the radiator surfaces, the effective emittance of the high - emittance coatings decreased from near 0.9 to a value of about 0.5. A low-emittance control surface, polished aluminum, demonstrated a rise in effective emittance for thin dust layers, and then a decline as the dust layer thickened. This behavior is attributed to the conductive resistance caused by the dust layer.
Emittance measurements of Space Shuttle orbiter reinforced carbon-carbon
NASA Technical Reports Server (NTRS)
Caram, Jose M.; Bouslog, Stanley A.; Cunnington, George R., Jr.
1992-01-01
The spectral and total normal emittance of the Reinforced Carbon-Carbon (RCC) used on Space Shuttle nose cap and wing leading edges has been measured at room temperature and at surface temperatures of 1200 to 2100 K. These measurements were made on virgin and two flown RCC samples. Room temperature directional emittance data were also obtained and were used to determine the total hemispherical emittance of RCC as a function of temperature. Results of the total normal emittance for the virgin samples showed good agreement with the current RCC emittance design curve; however, the data from the flown samples showed an increase in the emittance at high temperature possibly due to exposure from flight environments.
NASA Technical Reports Server (NTRS)
Luke, K. L.; Cheng, L.-J.
1986-01-01
Heavily doped emitter and junction regions of silicon solar cells are investigated by means of the electron-beam-induced-current (EBIC) technique. Although the experimental EBIC data are collected under three-dimensional conditions, it is analytically demonstrated with two numerical examples that the solutions obtained with one-dimensional numerical modeling are adequate. EBIC data for bare and oxide-covered emitter surfaces are compared with theory. The improvement in collection efficiency when an emitter surface is covered with a 100-A SiO2 film varies with beam energy; for a cell with a junction depth of 0.35 microns, the improvement is about 54 percent at 2 keV.
Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings
NASA Technical Reports Server (NTRS)
Henninger, J. H.
1984-01-01
Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2000-01-01
The optical properties of materials play a key role in spacecraft thermal control. In space, radiant heat transfer is the only mode of heat transfer that can reject heat from a spacecraft. One of the key properties for defining radiant heat transfer is emittance, a measure of how efficiently a surface can reject heat in comparison to a perfect black body emitter. Heat rejection occurs in the infrared region of the spectrum, nominally in the range of 2 to 25 mm. To calculate emittance, one obtains the reflectance over this spectral range, calculates spectral absorptance by difference, and then uses Kirchhoff s Law and the Stefan-Boltzmann equation to calculate emittance. A new portable infrared reflectometer, the SOC 400t, was designed and manufactured to evaluate the emittance of surfaces and coatings in the laboratory or in the field. It was developed by Surface Optics Corporation under a contract with the NASA Glenn Research Center at Lewis Field to replace the Center s aging Gier-Dunkle DB-100 infrared reflectometer. The specifications for the new instrument include a wavelength range of 2 to 25 mm; reflectance repeatability of +/-1 percent; self-calibrating, near-normal spectral reflectance measurements; a full scan measurement time of 3.5 min, a sample size of 1.27 cm (0.5 in.); a spectral resolution selectable from 4, 8, 16, or 32/cm; and optical property characterization utilizing an automatic integration to calculate total emittance in a selectable temperature range.
Use of probabilistic neural networks for emitter correlation
NASA Astrophysics Data System (ADS)
Maloney, P. S.
1990-08-01
The Probabilistic Neural Network (PNN) as described by Specht''3 has been successfully applied to a number of emitter correlation problems involving operational data for training and testing of the neural net work. The PNN has been found to be a reliable classification tool for determining emitter type or even identifying specific emitter platforms given appropriate representative data sets for training con sisting only of parametric data from electronic intelligence (ELINT) reports. Four separate feasibility studies have been conducted to prove the usefulness of PNN in this application area: . Hull-to-emitter correlation (HULTEC) for identification of seagoing emitter platforms . Identification of landbased emitters from airborne sensors . Pulse sorting according to emitter of origin . Emitter typing based on a dynamically learning neural network. 1 .
NASA Technical Reports Server (NTRS)
Olsen, L. C.; Addis, F. W.; Miller, W. A.
1985-01-01
The MINP solar cell concept refers to a cell structure designed to be a base region dominated device. Thus, it is desirable that recombination losses are reduced to the point that they occur only in the base region. The most unique feature of the MINP cell design is that a tunneling contact is utilized for the metallic contact on the front surface. The areas under the collector grid and bus bar are passivated by a thin oxide of tunneling thickness. Efforts must also be taken to minimize recombination at the surface between grid lines, at the junction periphery and within the emitter. Results of both theoretical and experimental studies of silicon MINP cells are given. Performance calculations are described which give expected efficiencies as a function of base resistivity and junction depth. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 microns deep, and with Mg MIS collector grids. A total area AM 1 efficiency of 16.8% was achieved. Detailed analyses of photocurrent and current loss mechanisms are presented and utilized to discuss future directions of research. Finally, results reported by other workers are discussed.
Soil moisture and evapotranspiration predictions using Skylab data
NASA Technical Reports Server (NTRS)
Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.
1975-01-01
The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.
Thermal management of microwave power heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Bozada, C.; Cerny, C.; De Salvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Havasy, C.; Jenkins, T.; Ito, C.; Nakano, K.; Pettiford, C.; Quach, T.; Sewell, J.; Via, G. D.; Anholt, R.
1997-10-01
A comprehensive study of the device layout effects on thermal resistance in thermally-shunted heterojunction bipolar transistors (HBTs) was completed. The thermal resistance scales linearly with emitter dot diameter for single element HBTs. For multiple emitter element devices, the thermal resistance scales with area. HBTs with dot geometrics have lower thermal impedance than bar HBTs with equivalent emitter area. The thermal resistance of a 200 μm 2 emitter area device was reduced from 266°C/W to 146°C/W by increasing the shunt thickness from 3 μm to 20 μm and placing a thermal shunt landing between the fingers. Also, power-added efficiencies at 10 GHz were improved from 30% to 68% by this thermal resistance reduction.
Studies of silicon p-n junction solar cells
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Lindholm, F. A.
1979-01-01
To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J.; Beutler, G.
1978-01-01
The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave.
Spectrally-engineered solar thermal photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenert, Andrej; Bierman, David; Chan, Walker
A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies belowmore » the bandgap.« less
Method of manufacturing a hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2017-02-07
A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.
Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings
NASA Technical Reports Server (NTRS)
Chandrasekhar, Prasanna
2011-01-01
One of the last remaining technical hurdles with variable emittance devices or skins based on conducting polymer electrochromics is the high solar absorptance of their top surfaces. This high solar absorptance causes overheating of the skin when facing the Sun in space. Existing technologies such as mechanical louvers or loop heat pipes are virtually inapplicable to micro (< 20 kg) and nano (< 5 kg) spacecraft. Novel coatings lower the solar absorption to Alpha(s) of between 0.30 and 0.46. Coupled with the emittance properties of the variable emittance skins, this lowers the surface temperature of the skins facing the Sun to between 30 and 60 C, which is much lower than previous results of 100 C, and is well within acceptable satellite operations ranges. The performance of this technology is better than that of current new technologies such as microelectromechanical systems (MEMS), electrostatics, and electrophoretics, especially in applications involving micro and nano spacecraft. The coatings are deposited inside a high vacuum, layering multiple coatings onto the top surfaces of variable emittance skins. They are completely transparent in the entire relevant infrared region (about 2 to 45 microns), but highly reflective in the visible-NIR (near infrared) region of relevance to solar absorptance.
Metal Photocathodes for Free Electron Laser Applications
NASA Astrophysics Data System (ADS)
Greaves, Corin Michael Ricardo
Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high quantum efficiency (QE), small emittance, fast temporal response, long lifetime, and minimal complexity. High QE of cathodes require less power for driving laser and also reduce the risk of damaging the cathode materials. Small emittance reduce the scale of the accelerator, therefore, the cost. Metal photocathodes such as copper exhibit long lifetime and fast response, but have quite low quantum efficiency ( < 10-4). The aim in this work was to understand the quantum yield of the metal, and the transverse momentum spectrum, as the product of the latter and the cathode beam spot size gives the transverse emittance. Initial x-ray diffraction work provided evidence that the LCLS photocathode consisted of large low index single crystal grains, and so work focused on the study of single crystals that could be produced with atomically ordered surfaces, rather than a polycrystalline material. Present theories of quantum yield and transverse emittance assume the basic premise that the metal is entirely disordered, and work here shows that this is fundamentally incorrect, and that the order of the surface plays a critical role in determining the characteristics of emission. In order to investigate these surfaces, I constructed a laser-based ultra-low energy angle resolved photoemission system, capable of measuring the momentum spectrum of the emission and wavelength and angle dependent electron yield. This system has been commissioned, and data taken on low index surfaces of copper. Results from this work on single crystal copper demonstrates that emitted electrons from the band structure of a material can exhibit small emittance and high quantum efficiency. We show that the emission from the Cu(111) surface state is highly correlated between angle of incidence and excitation energy. This manifests itself in the form of a truncated emission cone, rather than the isotropic emission predicted from the normal model. This clearly then reduces the emittance from the normal values. It also results in extremely strong polarization dependence, with p-s asymmetry of up to 16 at low photon energy. It also directly suggests ways through changing materials, or by material design to significantly reduce emittance, at the same time increasing electron yield. These results show the benefits that could be gained from electronic engineering of cathodes and should have direct impact in the design of future FEL photoinjectors. (Abstract shortened by UMI.)
Viability of Using Diamond Field Emitter Array Cathodes in Free Electron Lasers
2010-06-01
essential component of a field emitter array is the shape of the electric field lines and equipotential lines at the surface of the array. The...BARRIER AND QUANTUM TUNNELING ...........25 B. FIELD ENHANCEMENT AND SURFACE PROTRUSIONS .........26 C. ELECTRIC FIELDS AND ELECTRON TRAVEL...26 Figure 4. Diagram of a protrusion (triangular in shape) from the surface of a cathode. The protrusion is of height h, with a
Near atomically smooth alkali antimonide photocathode thin films
Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...
2017-01-24
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Near atomically smooth alkali antimonide photocathode thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jun; Karkare, Siddharth; Nasiatka, James
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Distributed proximity sensor system having embedded light emitters and detectors
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1990-01-01
A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Determination and error analysis of emittance and spectral emittance measurements by remote sensing
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Kumar, R.
1977-01-01
The author has identified the following significant results. From the theory of remote sensing of surface temperatures, an equation of the upper bound of absolute error of emittance was determined. It showed that the absolute error decreased with an increase in contact temperature, whereas, it increased with an increase in environmental integrated radiant flux density. Change in emittance had little effect on the absolute error. A plot of the difference between temperature and band radiance temperature vs. emittance was provided for the wavelength intervals: 4.5 to 5.5 microns, 8 to 13.5 microns, and 10.2 to 12.5 microns.
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
NASA Astrophysics Data System (ADS)
Ponce de Leon, Philip J.; Hill, Frances A.; Heubel, Eric V.; Velásquez-García, Luis F.
2015-06-01
We report the design, fabrication, and characterization of planar arrays of externally-fed silicon electrospinning emitters for high-throughput generation of polymer nanofibers. Arrays with as many as 225 emitters and with emitter density as large as 100 emitters cm-2 were characterized using a solution of dissolved PEO in water and ethanol. Devices with emitter density as high as 25 emitters cm-2 deposit uniform imprints comprising fibers with diameters on the order of a few hundred nanometers. Mass flux rates as high as 417 g hr-1 m-2 were measured, i.e., four times the reported production rate of the leading commercial free-surface electrospinning sources. Throughput increases with increasing array size at constant emitter density, suggesting the design can be scaled up with no loss of productivity. Devices with emitter density equal to 100 emitters cm-2 fail to generate fibers but uniformly generate electrosprayed droplets. For the arrays tested, the largest measured mass flux resulted from arrays with larger emitter separation operating at larger bias voltages, indicating the strong influence of electrical field enhancement on the performance of the devices. Incorporation of a ground electrode surrounding the array tips helps equalize the emitter field enhancement across the array as well as control the spread of the imprints over larger distances.
NASA Astrophysics Data System (ADS)
Ye, Hong; Trippel, Sebastian; Di Fraia, Michele; Fallahi, Arya; Mücke, Oliver D.; Kärtner, Franz X.; Küpper, Jochen
2018-04-01
A velocity-map-imaging spectrometer is demonstrated to characterize the normalized emittance (root-mean-square, rms) of photoemitted electron bunches. Both the two-dimensional spatial distribution and the projected velocity distribution images of photoemitted electrons are recorded by the detection system and analyzed to obtain the normalized emittance (rms). With the presented distribution function of the electron photoemission angles, a mathematical method is implemented to reconstruct the three-dimensional velocity distribution. As a first example, multiphoton emission from a planar Au surface is studied via irradiation at a glancing angle by intense 45-fs laser pulses at a central wavelength of 800 nm. The reconstructed energy distribution agrees very well with the Berglund-Spicer theory of photoemission. The normalized emittance (rms) of the intrinsic electron bunch is characterized to be 128 and 14 nm rad in the X and Y directions, respectively. The demonstrated imaging spectrometer has the ability to characterize the normalized emittance (rms) in a few minutes with a fine energy resolution of 0.2 meV in the image center and will, thereby, foster the further development of x-ray free-electron-laser injectors and ultrafast electron diffraction, and it opens up opportunities for studying correlated electron emission from surfaces and vacuum nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Biswas, Debabrata
2018-04-01
Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.
Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Andreeva, M. A.
2018-01-01
Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.
Emittance Measurements Relevant to a 250 W(sub t) Class RTPV Generator for Space Exploration
NASA Technical Reports Server (NTRS)
Wolford, Dave; Chubb, Donald; Clark, Eric; Pal, Anna Maria; Scheiman, Dave; Colon, Jack
2009-01-01
A proposed 250 Wt Radioisotope Thermophotovoltaic (RTPV) power system for utilization in lunar exploration and the subsequent exploration of Mars is described. Details of emitter selection are outlined for use in a maintenance free power supply that is productive over a 14-year mission life. Thorough knowledge of a material s spectral emittance is essential for accurate modeling of the RTPV system. While sometimes treated as a surface effect, emittance involves radiation from within a material. This creates a complex thermal gradient which is a combination of conductive and radiative heat transfer mechanisms. Emittance data available in the literature is a valuable resource but it is particular to the test sample s physical characteristics and the test environment. Considerations for making spectral emittance measurements relevant to RTPV development are discussed. Measured spectral emittance data of refractory emitter materials is given. Planned measurement system modifications to improve relevance to the current project are presented.
Fabricating solar cells with silicon nanoparticles
Loscutoff, Paul; Molesa, Steve; Kim, Taeseok
2014-09-02
A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-09-01
Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.
Sampayan, Stephen E.
1998-01-01
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Sampayan, S.E.
1998-03-03
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, J.A.
1979-06-15
Magnetron sputtering technology, which permits coatings to be deposited over large areas with significantly increased deposition rates, is reviewed with particular emphasis on cylindrical magnetrons and their application to reactive sputtering. Work is reported in which cylindrical-post magnetron sputtering sources have been used to deposit both graded and multi-layered cermet-type coatings by sputtering chromium and type 304 stainless steel in Ar and O/sub 2/ and Ar and CO gas mixtures under various conditions of reactive gas injection. The substrates are aluminum-coated glass and aluminum foil. The coatings are of an interference type, typically about 100 nm thick, with a metal-rich,more » highly absorbing layer adjacent to the substrate and a dielectric material at the surface. In some cases a reactively sputtered aluminum oxide anti-reflective surface layer has also been used. No advantages have been found for using chromium as opposed to the more readily available stainless steel. The reactive sputtering with CO is attractive because under many conditions the sputtering rates are relatively large compared to oxygen. Hemispherical absorptance and emittance data are reported. Typical absorptances are about 0.90 with emittances of 0.10.« less
A compact time reversal emitter-receiver based on a leaky random cavity
Luong, Trung-Dung; Hies, Thomas; Ohl, Claus-Dieter
2016-01-01
Time reversal acoustics (TRA) has gained widespread applications for communication and measurements. In general, a scattering medium in combination with multiple transducers is needed to achieve a sufficiently large acoustical aperture. In this paper, we report an implementation for a cost-effective and compact time reversal emitter-receiver driven by a single piezoelectric element. It is based on a leaky cavity with random 3-dimensional printed surfaces. The random surfaces greatly increase the spatio-temporal focusing quality as compared to flat surfaces and allow the focus of an acoustic beam to be steered over an angle of 41°. We also demonstrate its potential use as a scanner by embedding a receiver to detect an object from its backscatter without moving the TRA emitter. PMID:27811957
Electrically-inactive phosphorus re-distribution during low temperature annealing
NASA Astrophysics Data System (ADS)
Peral, Ana; Youssef, Amanda; Dastgheib-Shirazi, Amir; Akey, Austin; Peters, Ian Marius; Hahn, Giso; Buonassisi, Tonio; del Cañizo, Carlos
2018-04-01
An increased total dose of phosphorus (P dose) in the first 40 nm of a phosphorus diffused emitter has been measured after Low Temperature Annealing (LTA) at 700 °C using the Glow Discharge Optical Emission Spectrometry technique. This evidence has been observed in three versions of the same emitter containing different amounts of initial phosphorus. A stepwise chemical etching of a diffused phosphorus emitter has been carried out to prepare the three types of samples. The total P dose in the first 40 nm increases during annealing by 1.4 × 1015 cm-2 for the sample with the highly doped emitter, by 0.8 × 1015 cm-2 in the middle-doped emitter, and by 0.5 × 1015 cm-2 in the lowest-doped emitter. The presence of surface dislocations in the first few nanometers of the phosphorus emitter might play a role as preferential sites of local phosphorus gettering in phosphorus re-distribution, because the phosphorus gettering to the first 40 nm is lower when this region is etched stepwise. This total increase in phosphorus takes place even though the calculated electrically active phosphorus concentration shows a reduction, and the measured sheet resistance shows an increase after annealing at a low temperature. The reduced electrically active P dose is around 0.6 × 1015 cm-2 for all the emitters. This can be explained with phosphorus-atoms diffusing towards the surface during annealing, occupying electrically inactive configurations. An atomic-scale visual local analysis is carried out with needle-shaped samples of tens of nm in diameter containing a region of the highly doped emitter before and after LTA using Atom Probe Tomography, showing phosphorus precipitates of 10 nm and less before annealing and an increased density of larger precipitates after annealing (25 nm and less).
A nanophotonic solar thermophotovoltaic device.
Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N
2014-02-01
The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.
NASA Astrophysics Data System (ADS)
Hilali, Mohamed M.
2005-11-01
A simple cost-effective approach was proposed and successfully employed to fabricate high-quality screen-printed (SP) contacts to high sheet-resistance emitters (100 O/sq) to improve the Si solar cell efficiency. Device modeling was used to quantify the performance enhancement possible from the high sheet-resistance emitter for various cell designs. It was found that for performance enhancement from the high sheet-resistance emitter, certain cell design criteria must be satisfied. Model calculations showed that in order to achieve any performance enhancement over the conventional ˜40 O/sq emitter, the high sheet resistance emitter solar cell must have a reasonably good (<120,000 cm/s) or low front-surface recombination velocity (FSRV). Model calculations were also performed to establish requirements for high fill factors (FFs). The results showed that the series resistance should be less than 0.8 O-cm2, the shunt resistance should be greater than 1000 O-cm2, and the junction leakage current should be less than 25 nA/cm2. Analytical microscopy and surface analysis techniques were used to study the Ag-Si contact interface of different SP Ag pastes. Physical and electrical properties of SP Ag thick-film contacts were studied and correlated to understand and achieve good-quality ohmic contacts to high sheet-resistance emitters for solar cells. This information was then used to define the criteria for high-quality screen-printed contacts. The role of paste constituents and firing scheme on contact quality were investigated to tailor the high-quality screen-printed contact interface structure that results in high performance solar cells. Results indicated that small particle size, high glass transition temperature, rapid firing and less aggressive glass frit help in producing high-quality contacts. Based on these results high-quality SP contacts with high FFs > 0.78 on high sheet-resistance emitters were achieved for the first time using a simple single-step firing process. This technology was applied to different substrates (monocrystalline and multicrystalline) and surfaces (textured and planar). Cell efficiencies of ˜16.2% on low-cost EFG ribbon substrates were achieved on high sheet-resistance emitters with SP contacts. A record high-efficiency SP solar cell of 19% with textured high sheet-resistance emitter was also fabricated and modeled.
Large area InN terahertz emitters based on the lateral photo-Dember effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallauer, Jan, E-mail: jan.wallauer@fmf.uni-freiburg.de; Grumber, Christian; Walther, Markus
2015-09-14
Large area terahertz emitters based on the lateral photo-Dember effect in InN (indium nitride) are presented. The formation of lateral photo-Dember currents is induced by laser-illumination through a microstructured metal cover processed onto the InN substrate, causing an asymmetry in the lateral photogenerated charge carrier distribution. Our design uses simple metal structures, which are produced by conventional two-dimensional micro-structuring techniques. Having favoring properties as a photo-Dember material InN is particularly well-suited as a substrate for our emitters. We demonstrate that the emission intensity of the emitters can be significantly influenced by the structure of the metal cover leaving room formore » improvement by optimizing the masking structures.« less
Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya
2017-10-01
We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.
DOE/JPL advanced thermionic technology program
NASA Technical Reports Server (NTRS)
1979-01-01
Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.
NASA Astrophysics Data System (ADS)
Gutschwager, B.; Driescher, H.; Herrmann, J.; Hirsch, H.; Hollandt, J.; Jahn, H.; Kuchling, P.; Monte, C.; Scheiding, M.
2011-08-01
The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) onboard the European-Japanese space mission BepiColombo to Mercury will be launched in 2014. The MERTIS scientific objective is to identify rock-forming minerals and measure surface temperatures by infrared spectroscopy (7 μm to 14 μm) and spectrally unresolved infrared radiometry (7 μm to 40 μm). To achieve this goal, MERTIS utilizes two onboard infrared calibration sources, the MERTIS blackbody at 700 K (MBB7) and the MERTIS blackbody at 300 K (MBB3), together with deep space observations corresponding to 3 K. All three sources can be observed one after the other using a rotating mirror system. The leaders of the project MERTIS are the Westfälische University of Münster, institute for planetary investigation, Mr. Prof. Dr. H. Hiesinger (PI) and the DLR, Institute of Planetary Research Berlin-Adlershof, Mr. Dr. J. Helbert (CoPI). Both blackbody radiators have to fulfill the severe mass, volume, and power restrictions of MERTIS. The radiating area of the MBB3 is based on a structured surface with a high-emissivity space qualified coating. The relatively high emissivity of the coating was further enhanced by a pyramidal surface structure to values over 0.99 in the wavelength range from 5 μm to 10 μm and over 0.95 in the wavelength range from 10 μm to 30 μm. The MBB7 is based on a small commercially available surface emitter in a standard housing. The windowless emitter is an electrically heated resistor, which consists of a platinum structure with a blackened surface on a ceramic body. The radiation of the emitter is expanded and collimated through use of a parabolic mirror. The design requirements and the radiometric and thermometric characterization of these two blackbodies are described in this paper.
NASA Astrophysics Data System (ADS)
Gorodetskii, V.; Drachsel, W.; Block, J. H.
1994-05-01
Elementary steps of the CO oxidation—which are important for understanding the oscillatory behavior of this catalytic reaction—are investigated simultaneously on different Pt-single crystal surfaces by field ion microscopy. Due to preferential ionization probabilities of oxygen as imaging gas on those surface sites, which are adsorbed with oxygen, these sites can be imaged in a lateral resolution on the atomic scale. In the titration reaction a COad-precovered field emitter surface reacts with gaseous oxygen adsorbed from the gas phase or, vice versa, the Oad-precovered surface with carbon monoxide adsorbed from the gas phase. The competition of the manifold of single crystal planes exposed to the titration reaction at the field emitter tip is studied. The surface specificity can be documented in the specific reaction delay times of the different planes and in the propagation rates of the reaction-diffusion wave fronts measured on these individual planes during the titration reaction with a time resolution of 40 ms. At 300 K the COad-precovered surfaces display the {011} regions, precisely the {331} planes as the most active, followed by {012}, {122}, {001}, and finally by {111}. Reaction wave fronts move with a velocity of 8 Å/s at {012}, with ≊0.8 Å/s at {111}, and have a very fast ``switch-on'' reaction at the (001) plane with 500 Å/s. At higher temperature, T=350 K, an acceleration of reaction rates is combined with shorter delay times. The titration reaction of a precovered Oad surface with COgas at T=373 K shows the formation of CO islands starting in the {011} regions with a quickly moving reaction front into the other surface areas without showing particular delay times for different surface symmetries. The two reverse titration reactions have a largely different character. The titration of COad with oxygen adsorbed from the gas phase consists of three different steps, (i) the induction times, (ii) the highly surface specific reaction, and (iii) different rates of wave front propagation. The reaction of COgas with a precovered Oad layer on the other hand starts with nucleating islands around the {011} planes from where the whole emitter surface is populated with COad without pronounced surface specifity.
Emittance of TD-NiCr after simulated reentry
NASA Technical Reports Server (NTRS)
Clark, R. K.; Dicus, D. L.; Lisagor, W. B.
1978-01-01
The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides.
Enhancement of time images for photointerpretation
NASA Technical Reports Server (NTRS)
Gillespie, A. R.
1986-01-01
The Thermal Infrared Multispectral Scanner (TIMS) images consist of six channels of data acquired in bands between 8 and 12 microns, thus they contain information about both temperature and emittance. Scene temperatures are controlled by reflectivity of the surface, but also by its geometry with respect to the Sun, time of day, and other factors unrelated to composition. Emittance is dependent upon composition alone. Thus the photointerpreter may wish to enhance emittance information selectively. Because thermal emittances in real scenes vary but little, image data tend to be highly correlated along channels. Special image processing is required to make this information available for the photointerpreter. Processing includes noise removal, construction of model emittance images, and construction of false-color pictures enhanced by decorrelation techniques.
Miyoshi, Yusuke; Fukazawa, Yusuke; Amasaka, Yuya; Reckmann, Robin; Yokoi, Tomoya; Ishida, Kazuki; Kawahara, Kenji; Ago, Hiroki; Maki, Hideyuki
2018-03-29
High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics, such as on-chip optical interconnects, and silicon photonics. However, conventional light sources based on compound semiconductors face major challenges for their integration with a silicon-based platform because of their difficulty of direct growth on a silicon substrate. Here we report ultra-high-speed (100-ps response time), highly integrated graphene-based on-silicon-chip blackbody emitters in the near-infrared region including telecommunication wavelength. Their emission responses are strongly affected by the graphene contact with the substrate depending on the number of graphene layers. The ultra-high-speed emission can be understood by remote quantum thermal transport via surface polar phonons of the substrates. We demonstrated real-time optical communications, integrated two-dimensional array emitters, capped emitters operable in air, and the direct coupling of optical fibers to the emitters. These emitters can open new routes to on-Si-chip, small footprint, and high-speed emitters for highly integrated optoelectronics and silicon photonics.
Sheathless interface for coupling capillary electrophoresis with mass spectrometry
Wang, Chenchen; Tang, Keqi; Smith, Richard D.
2014-06-17
A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.
Modulation characteristics of graphene-based thermal emitters
NASA Astrophysics Data System (ADS)
Mahlmeister, Nathan Howard; Lawton, Lorreta Maria; Luxmoore, Isaac John; Nash, Geoffrey Richard
2016-01-01
We have investigated the modulation characteristics of the emission from a graphene-based thermal emitter both experimentally and through simulations using finite element method modelling. Measurements were performed on devices containing square multilayer graphene emitting areas, with the devices driven by a pulsed DC drive current over a range of frequencies. Simulations show that the dominant heat path is from the emitter to the underlying substrate, and that the thermal resistance between the graphene and the substrate determines the modulation characteristics. This is confirmed by measurements made on devices in which the emitting area is encapsulated by hexagonal boron nitride.
Variable anodic thermal control coating
NASA Technical Reports Server (NTRS)
Gilliland, C. S.; Duckett, J. (Inventor)
1983-01-01
A process for providing a thermal control solar stable surface coating for aluminum surfaces adapted to be exposed to solar radiation wherein selected values within the range of 0.10 to 0.72 thermal emittance (epsilon sub tau) and 0.2 to 0.4 solar absorptance (alpha subs) are reproducibly obtained by anodizing the surface area in a chromic acid solution for a selected period of time. The rate voltage and time, along with the parameters of initial epsilon sub tau and alpha subs, temperature of the chromic acid solution, acid concentration of the solution and the material anodized determines the final values of epsilon/tau sub and alpha sub S. 9 Claims, 5 Drawing Figures.
Simple-to-prepare multipoint field emitter
NASA Astrophysics Data System (ADS)
Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.
2015-07-01
We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.
NASA Astrophysics Data System (ADS)
Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.
2015-12-01
Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.
High-absorptance high-emittance anodic coating
NASA Technical Reports Server (NTRS)
Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)
1998-01-01
A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.
High-absorptance high-emittance anodic coating
NASA Technical Reports Server (NTRS)
Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)
1999-01-01
A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (.alpha.) and a high infrared emittance (.epsilon.), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an .alpha./.epsilon. ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.
NASA Astrophysics Data System (ADS)
Rydzek, M.; Stark, T.; Arduini-Schuster, M.; Manara, J.
2012-11-01
An optimized apparatus for measuring the angular dependent surface emittance up to elevated temperatures has been designed. This emittance measurement apparatus (EMMA) is coupled to a Bruker Vertex 70v FTIR-spectrometer, so that a wavelength range from about 2 μm up to 25 μm is accessible. The central part of the new apparatus is a double walled, stainless steel vessel which can be evacuated or filled with various gases or with air. Inside the vessel a cylindrical tube furnace is pivot-mounted on a system of discs, for automatically rotating up to an angle of 180°. This allows both, the measurement at different detection angles (0° to 85°) and a consecutive measurement of sample and black-body reference without ventilating and opening the pot. The aim of this work is to present the newly designed emittance measurement apparatus which enables the determination of the angular dependent spectral emittance of opaque samples at temperatures up to 1400 °C. Next to the setup of the apparatus, the measurement results of various materials are presented at different detection angles.
Ultra-high Temperature Emittance Measurements for Space and Missile Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Crandall, David
2009-01-01
Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.
Emitter location errors in electronic recognition system
NASA Astrophysics Data System (ADS)
Matuszewski, Jan; Dikta, Anna
2017-04-01
The paper describes some of the problems associated with emitter location calculations. This aspect is the most important part of the series of tasks in the electronic recognition systems. The basic tasks include: detection of emission of electromagnetic signals, tracking (determining the direction of emitter sources), signal analysis in order to classify different emitter types and the identification of the sources of emission of the same type. The paper presents a brief description of the main methods of emitter localization and the basic mathematical formulae for calculating their location. The errors' estimation has been made to determine the emitter location for three different methods and different scenarios of emitters and direction finding (DF) sensors deployment in the electromagnetic environment. The emitter has been established using a special computer program. On the basis of extensive numerical calculations, the evaluation of precise emitter location in the recognition systems for different configuration alignment of bearing devices and emitter was conducted. The calculations which have been made based on the simulated data for different methods of location are presented in the figures and respective tables. The obtained results demonstrate that calculation of the precise emitter location depends on: the number of DF sensors, the distances between emitter and DF sensors, their mutual location in the reconnaissance area and bearing errors. The precise emitter location varies depending on the number of obtained bearings. The higher the number of bearings, the better the accuracy of calculated emitter location in spite of relatively high bearing errors for each DF sensor.
Plasmonic thermal IR emitters based on nanoamorphous carbon
NASA Astrophysics Data System (ADS)
Tay, Savaş; Kropachev, Aleksandr; Araci, Ismail Emre; Skotheim, Terje; Norwood, Robert A.; Peyghambarian, N.
2009-02-01
The development of plasmonic narrow-band thermal mid-IR emitters made from a conducting amorphous carbon composite is shown. These IR emitters have greatly improved thermal and mechanical stability compared to metallic emitters as they can be operated at 600 °C in air without any degradation in performance. The emitted thermal radiation has a bandwidth of 0.5 μm and can be set to the desired wavelength from 3 to 15 μm by changing the surface periodicity. The periodically patterned devices have in-band emissivities significantly exceeding that of the non-patterned devices, constituting simple yet efficient radiation sources at this important wavelength range.
Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin
2010-01-01
A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.
Heterojunction solar cell with passivated emitter surface
Olson, Jerry M.; Kurtz, Sarah R.
1994-01-01
A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.
Heterojunction solar cell with passivated emitter surface
Olson, J.M.; Kurtz, S.R.
1994-05-31
A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.
Theoretical and experimental emittance measurements for a thin liquid sheet flow
NASA Technical Reports Server (NTRS)
Englehart, Amy N.; Mcconley, Marc W.; Chubb, Donald L.
1995-01-01
Surface tension forces at the edges of a thin liquid (approximately 200 microns) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. Since the fluid must have very low vapor pressure, Dow Corning 705 silicone oil was used and the emittance of a flowing sheet of oil was determined by two methods. The emittance was derived as a function of the temperature drop between the top of the sheet and the coalescence point of the sheet, the sink temperature, the volumetric flow and the length of the sheet. the emittance for the oil was also calculated using an extinction coefficient determined from spectral transmittance data of the oil. The oil's emittance ranges from .67 to .87 depending on the sheet thickness and sheet temperature. The emittance derived from the temperature drop was slightly less than the emittance calculated from transmittance data. An investigation of temperature fluctuation upstream of the slit plate was also done. The fluctuations were determined to be negligible, not affecting the temperature drop which was due to radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A.
Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surfacemore » that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.« less
Effect of CO on the field emission properties of tetrapod zinc oxide cathode.
Wang, Jinchan; Zhang, Xiaobing; Lei, Wei; Mao, Fuming; Cui, Yunkang; Xiao, Mei
2012-08-01
Tetrapod zinc oxide (T-ZnO), being a kind of nano-material, has large specific surface area and surface binding energy, which will make it sensitive to the ambient gas condition. So the field emission properties will be influenced by the gas adsorption when being applied as the cathode materials of field emission devices. Carbon monoxide is the main residual gas in T-ZnO field emission devices. In this paper, carbon monoxide was introduced into a field emission device with T-ZnO emitters. The field emission currents of tetrapod ZnO were compared before and after exposure to CO.
Effects of surface diffusion on high temperature selective emitters
Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; ...
2015-01-01
Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structure’s curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented.
Compact multiwavelength transmitter module for multimode fiber optic ribbon cable
Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.
2002-01-01
A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.
Space environmental effects on silvered Teflon thermal control surfaces
NASA Technical Reports Server (NTRS)
Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.
1992-01-01
Cumulative space environmental effects on silver/fluorinated ethylene propylene (Ag/FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition, and chemistry were observed. We hypothesize that the FEP surfaces on the LDEF are degraded by UV radiation at all orientations, but that the damaged material has been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage in some areas on the trays flanking the trailing edge.
NASA Astrophysics Data System (ADS)
Boichenko, Stepan
2018-04-01
We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.
Heavy doping effects in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.
1986-01-01
The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhrmann, C.; Hoebing, T.; Bergner, A.
2015-08-07
The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emittermore » effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xuejiang; Fillmore, Thomas L.; Gao, Yuqian
A new sheathless CITP/CZE-MS interface, based on a commercially available capillary with an integrated metal coated ESI emitter, was developed in this study aiming at overcoming the reproducibility and ruggedness problems, suffered to a certain degree by almost all the available CE-MS interfaces, and pushing the CE-MS technology suitable for routine sample analysis with high sensitivity. The new CITP/CZE-MS interface allows the electric contact between ESI voltage power supply and the CE separation liquid by using a conductive liquid that comes in contact with the metal coated surface of the ESI emitter, making it a true sheathless CE-MS interface. Stablemore » electrospray was established by avoiding the formation of gas bubbles from electro chemical reaction at the emitter tip or inside of the CE capillary. Crucial operating parameters, such as sample loading volume, flow rate, and separation voltage, were systematically evaluated for their effects on both CITP/CZE separation efficiency and MS detection sensitivity. Around one hundred CITP/CZE-MS analyses can be easily achieved by using the new sheathless CITP/CZE interface without a noticeable loss of metal coating on the ESI emitter surface, or degrading of the ESI emitter performance. The reproducibility in analyte migration time and quantitative performance of the new interface was experimentally evaluated to demonstrate a LOQ bellow 5 attomole.« less
EMIIM Wetting Properties of & Their Effect on Electrospray Thruster Design
2012-03-21
materials can be characterized using the surface tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface...Illustration of the instantaneous dipole formed by electron motion in a hy- drogen atom(left) and how these instantaneous dipoles can attract each other...the extractor grid and of like charge to the emitter. A Taylor cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in
Towards graphane field emitters
Ding, Shuyi; Li, Chi; Zhou, Yanhuai; Collins, Clare M.; Kang, Moon H.; Parmee, Richard J.; Zhang, Xiaobing; Milne, William I.; Wang, Baoping
2015-01-01
We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V μm–1), with an increased maximum current density from 0.21 mA cm–2 (pristine) to 8.27 mA cm–2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function. PMID:28066543
Self-sensing of temperature rises on light emitting diode based optrodes
NASA Astrophysics Data System (ADS)
Dehkhoda, Fahimeh; Soltan, Ahmed; Ponon, Nikhil; Jackson, Andrew; O'Neill, Anthony; Degenaar, Patrick
2018-04-01
Objective. This work presents a method to determine the surface temperature of microphotonic medical implants like LEDs. Our inventive step is to use the photonic emitter (LED) employed in an implantable device as its own sensor and develop readout circuitry to accurately determine the surface temperature of the device. Approach. There are two primary classes of applications where microphotonics could be used in implantable devices; opto-electrophysiology and fluorescence sensing. In such scenarios, intense light needs to be delivered to the target. As blue wavelengths are scattered strongly in tissue, such delivery needs to be either via optic fibres, two-photon approaches or through local emitters. In the latter case, as light emitters generate heat, there is a potential for probe surfaces to exceed the 2 °C regulatory. However, currently, there are no convenient mechanisms to monitor this in situ. Main results. We present the electronic control circuit and calibration method to monitor the surface temperature change of implantable optrode. The efficacy is demonstrated in air, saline, and brain. Significance. This paper, therefore, presents a method to utilize the light emitting diode as its own temperature sensor.
Doppler Effect on Structure Period of Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Yavuz, Ozgun; Kara, Semih; Tokel, Onur; Pavlov, Ihor; Ilday, Fatih Omer
Recently, Nonlinear Laser Lithography (NLL) was developed for large-area, nanopatterning of surfaces. In NLL, nanopatterns emerge through coherent scattering of the laser from the surface, and its interference with the incident beam. The period of the structures is determined by the laser wavelength. It has been shown by Sipe that the period depends on the laser incidence angle (θ) as λ / (1 +/- sinθ). Here, we show that the period not only depends on this angle, but also on the polarisation angle. We update the Sipe equation as λ / (1 +/- sinθsinα) , where ' α' is the angle between scanning direction and polarisation. The physical reason behind this is found through a formal analogy to Doppler effect. In Doppler effect, the measured wavelength of a moving emitter is given as λ / (1 +/- c / vsinθ) , where ' θ'is the angle between observer and the direction of emitter, 'c' is the speed of observer, 'v' is speed of source. In NLL, velocity of source can be written as vsinθ , and the period equation can be shown to take its new form. We believe that this is the first application of Doppler effect in laser-processing of solid materials.
NCTM of liquids at high temperatures using polarization techniques
NASA Technical Reports Server (NTRS)
Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.
1990-01-01
Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.; Wheeler, Donald R.; MacLachlam, Brian J.
1998-01-01
Solar dynamic (SD) space power systems require durable, high emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. To enhance surface characteristics, an alumina-titania coating has been applied to 500 heat receiver thermal energy containment canisters and the PLR of NASA Lewis Research Center's (LeRC) 2 kW SD ground test demonstrator (GTD). The alumina-titania coating was chosen because it had been found to maintain its high emittance under vacuum (less than or equal to 10(exp -6) torr) at high temperatures (1457 F (827 C)) for an extended period (approximately 2,700 hours). However, preflight verification of SD systems components, such as the PLR require operation at ambient pressure and high temperatures. Therefore, the purpose of this research was to evaluate the durability of the alumina-titania coating at high temperature in air. Fifteen of sixteen alumina-titania coated Incoloy samples were exposed to high temperatures (600 F (316 C) to l500 F (816 C)) for various durations (2 to 32 hours). Samples, were characterized prior to and after heat treatment for reflectance, solar absorptance, room temperature emittance and emittance at 1,200 F (649 C). Samples were also examined to detect physical defects and to determine surface chemistry using optical microscopy, scanning electron microscopy operated with an energy dispersive spectroscopy (EDS) system, and x ray photoelectron spectroscopy (XPS). Visual examination of the heat-treated samples showed a whitening of samples exposed to temperatures of 1,000 F (538 C) and above. Correspondingly, the optical properties of these samples had degraded. A sample exposed to 1,500 F (816 C) for 24 hours had whitened and the thermal emittance at 1,200 F (649 C) had decreased from the non-heat treated value of 0.94 to 0.62. The coating on this sample had become embrittled with spalling off the substrate noticeable at several locations. Based on this research it is recommended that preflight testing of SD components with alumina-titania coatings be restricted to temperatures no greater than 600 F (316 C) in air to avoid optical degradation. Moreover, components with the alumina-titania coating are likely to experience optical property degradation with direct atomic oxygen exposure in space.
Comparison of Boron diffused emitters from BN, BSoD and H3BO3 dopants
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-12-01
In this work, we are comparing different limited boron dopant sources for the emitter formation in n-type c-Si solar cells. High purity boric acid solution, commercially available boron spin on dopant and boron nitride solid source are used for comparison of emitter doping profiles for the same time and temperature conditions of diffusion. The characterizations done for the similar sheet resistance values for all the dopant sources show different surface morphologies and different device parameters. The measured emitter saturation current densities (Joe) are more than 20 fA cm-2 for all the dopant sources. The bulk carrier lifetimes measured for different diffusion conditions and different solar cell parameters for the similar sheet resistance values show the best result for boric acid diffusion and the least for BN solid source. So, different dopant sources result in different emitter and cell performances.
Excitation enhancement and extraction enhancement with photonic crystals
Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John
2015-03-03
Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.
Bi-alkali antimonide photocathode growth: An X-ray diffraction study
Schubert, Susanne; Wong, Jared; Feng, Jun; ...
2016-07-21
Bi-alkali antimonide photocathodes are one of the best known sources of electrons for high current and/or high bunch charge applications like Energy Recovery Linacs or Free Electron Lasers. Despite their high quantum efficiency in visible light and low intrinsic emittance, the surface roughness of these photocathodes prohibits their use as low emittance cathodes in high accelerating gradient superconducting and normal conducting radio frequency photoguns and limits the minimum possible intrinsic emittance near the threshold. Also, the growth process for these materials is largely based on recipes obtained by trial and error and is very unreliable. In this paper, using X-raymore » diffraction, we investigate the different structural and chemical changes that take place during the growth process of the bi-alkali antimonide material K 2 CsSb. Our measurements give us a deeper understanding of the growth process of alkali-antimonide photocathodes allowing us to optimize it with the goal of minimizing the surface roughness to preserve the intrinsic emittance at high electric fields and increasing its reproducibility.« less
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-05
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
Plasmon-emitter interaction using integrated ring grating-nanoantenna structures
NASA Astrophysics Data System (ADS)
Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe
2017-05-01
Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.
NASA Technical Reports Server (NTRS)
Edwards, S. F.; Kantsios, A. G.; Voros, J. P.; Stewart, W. F.
1975-01-01
The development of a radiometric technique for determining the spectral and total normal emittance of materials heated to temperatures of 800, 1100, and 1300 K by direct comparison with National Bureau of Standards (NBS) reference specimens is discussed. Emittances are measured over the spectral range of 1 to 15 microns and are statistically compared with NBS reference specimens. Results are included for NBS reference specimens, Rene 41, alundum, zirconia, AISI type 321 stainless steel, nickel 201, and a space-shuttle reusable surface insulation.
Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M. Melvin David; Yi, Junsin; Anderson, Wayne A.; Kim, Dong-Wook
2015-01-01
Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell. PMID:25787933
Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M Melvin David; Yi, Junsin; Anderson, Wayne A; Kim, Dong-Wook
2015-03-19
Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.
New-type planar field emission display with superaligned carbon nanotube yarn emitter.
Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2012-05-09
With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.
Spectral Emittance of Uncoated and Ceramic-Coated Inconel and Type 321 Stainless Steel
NASA Technical Reports Server (NTRS)
Richmond, Joseph C.; Stewart, James E.
1959-01-01
The normal spectral emittance of Inconel and type 321 stainless steel with different surface treatments was measured at temperatures of 900, 1,200, 1,500, and 1,800 F over a wavelength range of 1.5 to 15 microns. The measurements involved comparison of the radiant energy emitted by the heated specimen with that emitted by a comparison standard at the same temperature by means of a recording double-beam infrared spectrophotometer. The silicon carbide comparison standard had previously been calibrated against a laboratory black-body furnace. Surface treatments included electropolishing, sandblasting, electro-polishing followed by oxidation in air for 1/2 hour at 1,800 F, sandblasting followed by oxidation in air for 1/2 hour at 1,800 F, application of National Bureau of Standards coating A-418, and application of NBS ceramic coating N-143. The normal spectral emittance of both alloys in the electropolished condition was low and decreased very slightly with increasing wavelength while in the sandblasted condition it was somewhat higher and did not vary appreciably with wavelength. The oxidation treatment greatly increased the normal spectral emittance of both the electropolished and sandblasted type 321 stainless steel specimens and of the electropolished Inconel specimens and introduced some spectral selectivity into the curves. The oxidation increased the normal spectral emittance of the sandblasted Inconel specimens only moderately. Of the specimens to which a coating about 0.002 inch thick was applied, those coated with A-418 had higher emittance at all wavelengths than did those coated with N-143, and the coated specimens of Inconel had higher spectral emittance at all wavelengths than did the corresponding specimens of type 321 stainless steel. Both coatings were found to be partially transparent to the emitted energy at this thickness but essentially opaque at a thickness of 0.005 inch. Coated specimens with 0.005 inch or more of coating did not show the effect of the underlying metal on spectral emittance, and there was no significant difference at wavelengths greater than about five microns in the normal spectral emittance of specimens having the two coatings. At shorter wavelengths the normal spectral emittance of specimens coated with A-418 was greater than that of specimens coated with N-143.
NASA Astrophysics Data System (ADS)
Forbes, Richard G.
2017-03-01
With a large-area field electron emitter, when an individual post-like emitter is sufficiently resistive, and current through it is sufficiently large, then voltage loss occurs along it. This letter provides a simple analytical and conceptual demonstration that this voltage loss is directly and inextricably linked to a reduction in the field enhancement factor (FEF) at the post apex. A formula relating apex-FEF reduction to this voltage loss was obtained in the paper by Minoux et al. [Nano Lett. 5, 2135 (2005)] by fitting to numerical results from a Laplace solver. This letter derives the same formula analytically, by using a "floating sphere" model. The analytical proof brings out the underlying physics more clearly and shows that the effect is a general phenomenon, related to reduction in the magnitude of the surface charge in the most protruding parts of an emitter. Voltage-dependent FEF-reduction is one cause of "saturation" in Fowler-Nordheim (FN) plots. Another is a voltage-divider effect, due to measurement-circuit resistance. An integrated theory of both effects is presented. Both together, or either by itself, can cause saturation. Experimentally, if saturation occurs but voltage loss is small (<20 V, say), then saturation is more probably due to FEF-reduction than voltage division. In this case, existing treatments of electrostatic interaction ("shielding") between closely spaced emitters may need modification. Other putative causes of saturation exist, so the present theory is a partial story. Its extension seems possible and could lead to a more general physical understanding of the causes of FN-plot saturation.
NASA Astrophysics Data System (ADS)
Rodríguez-Sinobas, L.; Gil-Rodríguez, M.; Sánchez, R.; Losada, A.; Castañón, G.; Juana, L.; Laguna, F. V.; Benítez, J.
2010-05-01
Conventional drip irrigation is considered one of the most efficient irrigation systems. Alternatively to traditional surface drip irrigation systems (DI), laterals are deployed underneath the soil surface, as in subsurface drip irrigation (SDI), leading to a higher potential efficiency, which is of especial interest in places where water is a limited source. The design and management of DI and SDI systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters and the inlet pressure and irrigation time for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. Likewise, water distribution is affected by soil hydraulic properties, initial water content, emitter discharge, irrigation frequency, evapotranspiration and root characteristics. However, complexity arousing of soil water properties and soil profile characteristics means that these are often not properly considered in the design and management of those systems. A better understanding of the infiltration process around the discharge point source should contribute to increase water use efficiency and thus to reduce the risk of environmental impact of irrigation. In this regard, numerical models have been proved to be a powerful tool to analyze the evolution of the wetting pattern during the distribution and redistribution processes, in order to explore irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. Also, irrigation design variables such as emitter spacing and discharge could also be assessed. In this study the suitability of the HYDRUS-2D to simulate infiltration process around an emitter during irrigation of a loamy soil with drip and SDI laterals has been addressed. The model was then applied in order to evaluate the main dimensions of the wetted soil volume surrounding the emitter during irrigation. Irrigation uniformity with DI and SDI laterals were determined by field evaluations at different inlet head pressures. Results were related with estimations made on water distribution within the soil that were simulated taking into account the emitter discharge at different lateral locations, initial soil water content, soil hydraulic properties and time of irrigation. Conclusions highlight the effect of emitter discharge, emitter spacing, and irrigation time on wetting patterns, and thus solute transport, in both drip and subsurface drip irrigation. The effect of emitter depth was also considered in SDI. Some recommendations for the design and management of these irrigation systems are also provided.
Analyses of Transistor Punchthrough Failures
NASA Technical Reports Server (NTRS)
Nicolas, David P.
1999-01-01
The failure of two transistors in the Altitude Switch Assembly for the Solid Rocket Booster followed by two additional failures a year later presented a challenge to failure analysts. These devices had successfully worked for many years on numerous missions. There was no history of failures with this type of device. Extensive checks of the test procedures gave no indication for a source of the cause. The devices were manufactured more than twenty years ago and failure information on this lot date code was not readily available. External visual exam, radiography, PEID, and leak testing were performed with nominal results Electrical testing indicated nearly identical base-emitter and base-collector characteristics (both forward and reverse) with a low resistance short emitter to collector. These characteristics are indicative of a classic failure mechanism called punchthrough. In failure analysis punchthrough refers to an condition where a relatively low voltage pulse causes the device to conduct very hard producing localized areas of thermal runaway or "hot spots". At one or more of these hot spots, the excessive currents melt the silicon. Heavily doped emitter material diffuses through the base region to the collector forming a diffusion pipe shorting the emitter to base to collector. Upon cooling, an alloy junction forms between the pipe and the base region. Generally, the hot spot (punch-through site) is under the bond and no surface artifact is visible. The devices were delidded and the internal structures were examined microscopically. The gold emitter lead was melted on one device, but others had anomalies in the metallization around the in-tact emitter bonds. The SEM examination confirmed some anomalies to be cosmetic defects while other anomalies were artifacts of the punchthrough site. Subsequent to these analyses, the contractor determined that some irregular testing procedures occurred at the time of the failures heretofore unreported. These testing irregularities involved the use of a breakout box and were the likely cause of the failures. There was no evidence to suggest a generic failure mechanism was responsible for the failure of these transistors.
Photoelectron linear accelerator for producing a low emittance polarized electron beam
Yu, David U.; Clendenin, James E.; Kirby, Robert E.
2004-06-01
A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.
Karalis, Aristeidis; Joannopoulos, J D
2016-07-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.
‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion
Karalis, Aristeidis; Joannopoulos, J. D.
2016-01-01
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm2 with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm2 with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm2 with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells. PMID:27363522
Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector
NASA Astrophysics Data System (ADS)
Olawole, Olukunle C.; De, Dilip Kumar
2018-01-01
Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.
NASA Astrophysics Data System (ADS)
King, C. A.; Johnson, R. W.; Pinto, M. R.; Luftman, H. S.; Munanka, J.
1996-01-01
A low thermal budget emitter contact with low specific contact resistivity (ρc) with the absence of transient enhanced diffusion (TED) effects is essential to fabricate integratable high performance Si/SiGe heterojunction bipolar transistors (HBTs). We report the use of in situ As-doped polycrystalline silicon (polysilicon) from a low base pressure rapid thermal episystem for this purpose and find that it meets all the requirements. We used secondary ion mass spectrometry to find that 18 nm, heavily B-doped layers remain intact after implantation into the surface polysilicon and annealing at 800 °C for 40 s. Similar samples without the surface polylayer displayed extreme broadening of B profile. Kelvin crossbridge resistors together with 2D device simulations revealed that ρc is an extremely low value of 1.2×10-8 Ω cm2 in as-deposited material. Fabrication of simple 30×30 μm2 mesa isolated HBT devices showed IC to be more than two decades higher in devices with only an in situ As-doped polyemitter compared with devices that incorporated a surface implant into the single crystal portion of the emitter before polysilicon deposition. These results demonstrate that this doped polycrystalline silicon material is an excellent choice for emitter contacts to HBT devices.
Work functions of hafnium nitride thin films as emitter material for field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotoh, Yasuhito, E-mail: gotoh.yasuhito.5w@kyoto-u.ac.jp; Fujiwara, Sho; Tsuji, Hiroshi
The work functions of hafnium nitride thin films prepared by radio-frequency magnetron sputtering were investigated in vacuum, before and after surface cleaning processes, with a view of improving the properties of as-fabricated field emitter arrays comprising hafnium nitride emitters. The measurement of the work function was first performed for the as-deposited films and then for films subjected to surface cleaning process, either thermal treatment or ion bombardment. Thermal treatment at a maximum temperature of 300 °C reduced the work function by 0.7 eV. Once the film was heated, the work function maintained the reduced value, even after cooling to room temperature. Amore » little change in the work function was observed for the second and third thermal treatments. The ion bombardment was conducted by exposing the sample to a thin plasma for different sample bias conditions and processing times. When the sample was biased at −10 V, the work function decreased by 0.6 eV. The work function reduction became saturated in the early stage of the ion bombardment. When the sample was biased at −50 V, the work function exhibited different behaviors, that is, first it decreased rapidly and then increased in response to the increase in processing time. The lowest attainable work function was found to be 4.00 eV. It should be noted that none of the work function values reported in this paper were obtained using surfaces that were demonstrated to be free from oxygen contamination. The present results suggest that the current–voltage characteristics of a field emitter array can be improved by a factor of 25–50 by the examined postprocesses.« less
High speed three-dimensional laser scanner with real time processing
NASA Technical Reports Server (NTRS)
Lavelle, Joseph P. (Inventor); Schuet, Stefan R. (Inventor)
2008-01-01
A laser scanner computes a range from a laser line to an imaging sensor. The laser line illuminates a detail within an area covered by the imaging sensor, the area having a first dimension and a second dimension. The detail has a dimension perpendicular to the area. A traverse moves a laser emitter coupled to the imaging sensor, at a height above the area. The laser emitter is positioned at an offset along the scan direction with respect to the imaging sensor, and is oriented at a depression angle with respect to the area. The laser emitter projects the laser line along the second dimension of the area at a position where a image frame is acquired. The imaging sensor is sensitive to laser reflections from the detail produced by the laser line. The imaging sensor images the laser reflections from the detail to generate the image frame. A computer having a pipeline structure is connected to the imaging sensor for reception of the image frame, and for computing the range to the detail using height, depression angle and/or offset. The computer displays the range to the area and detail thereon covered by the image frame.
On the wide-range bias dependence of transistor d.c. and small-signal current gain factors.
NASA Technical Reports Server (NTRS)
Schmidt, P.; Das, M. B.
1972-01-01
Critical reappraisal of the bias dependence of the dc and small-signal ac current gain factors of planar bipolar transistors over a wide range of currents. This is based on a straightforward consideration of the three basic components of the dc base current arising due to emitter-to-base injected minority carrier transport, base-to-emitter carrier injection, and emitter-base surface depletion layer recombination effects. Experimental results on representative n-p-n and p-n-p silicon devices are given which support most of the analytical findings.
Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan
2012-04-11
Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. © 2012 American Chemical Society
Oxidation and emittance of superalloys in heat shield applications
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Clark, R. K.; Unnam, J.
1986-01-01
Recently developed superalloys that form alumina coatings have a high potential for heat shield applications for advanced aerospace vehicles at temperatures above 1095C. Both INCOLOY alloy MA 956 (of the Inco Alloys International, Inc.), an iron-base oxide-dispersion-strengthened alloy, and CABOT alloy No. 214 (of the Cabot Corporation), an alumina-forming nickel-chromium alloy, have good oxidation resistance and good elevated temperature strength. The oxidation resistance of both alloys has been attributed to the formation of a thin alumina layer (alpha-Al2O3) at the surface. Emittance and oxidation data were obtained for simulated Space Shuttle reentry conditions using a hypersonic arc-heated wind tunnel. The surface oxides and substrate alloys were characterized using X-ray diffraction and scanning and transmission electron microscopy with an energy-dispersive X-ray analysis unit. The mass loss and emittance characteristics of the two alloys are discussed.
Electron emission from ferroelectrics - a review
NASA Astrophysics Data System (ADS)
Riege, H.
1994-02-01
The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.
Alahautala, Taito; Hernberg, Rolf
2004-02-01
Uniform illumination was generated by use of a large number of diode laser emitters and a single nonimaging paraboloid with a Lambertian scatterer in the truncation plane. Laser light traverses a path toward the Lambertian surface and back by total internal reflection. An overall efficiency of 69% was demonstrated. Improvements that would increase the efficiency to more than 85% are suggested. The illuminated area is circular, with 14-mm diameter. The spatial nonuniformity of the beam profile is less than +/- 2%.
Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen
NASA Technical Reports Server (NTRS)
Raack, Taylor
2004-01-01
Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.
High efficiency incandescent lighting
Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin
2014-09-02
Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.
Grossman, Leonard N.; Kaznoff, Alexis I.
1979-01-01
A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.
Silicon cells made by self-aligned selective-emitter plasma-etchback process
Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.
2000-01-01
Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos
2010-01-01
An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore themore » lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state.« less
Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.
Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang
2017-03-08
Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.
1999-01-01
Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.
Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching.
Reynard, Justin M; Van Gorder, Nathan S; Bright, Frank V
2017-09-01
We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.
Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry
2012-01-01
The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.
Song, Jinlin; Si, Mengting; Cheng, Qiang; Luo, Zixue
2016-02-20
A thermophotovoltaic system that converts thermal energy into electricity has considerable potential for applications in energy utilization fields. However, intensive emission in a wide spectral and angular range remains a challenge in improving system efficiency. This study proposes the use of a 2D trilayer grating with a tungsten/silica/tungsten (W/SiO2/W) structure on a tungsten substrate as a thermophotovoltaic emitter. The finite-difference time-domain method is employed to simulate the radiative properties of the proposed structure. A broadband high emittance with an average spectral emittance of 0.953 between 600 and 1800 nm can be obtained for both transverse magnetic and transverse electric polarized waves. On the basis of the inductance-capacitance circuit model and dispersion relation analyses, this phenomenon is mainly considered as the combined contribution of surface plasmon polaritons and magnetic polaritons. A parametric study is also conducted on the emittance spectrum of the proposed structure, considering geometric parameters, polar angles, and azimuthal angles for both TM and TE waves. The study demonstrates that the emitter has good wavelength selectivity and polarization insensitivity in a wide geometric and angular range.
NASA Astrophysics Data System (ADS)
Jeong, Hyo-Soo; Keller, Kris; Culkin, Brad
2017-03-01
Non-vacuum process technology was used to produce Cs3Sb photocathodes on substrates, and in-situ panel devices were fabricated. The performance of the devices was characterized by measuring the anode current as functions of the devices' operation times. An excitation light source with a 475-nm wavelength was used for the photocathodes. The device has a simple diode structure, providing unique characteristics such as a large gap, vertical electron beam directionality, and resistance to surface contamination from ion bombardment and poisoning by outgassing species. Accordingly, Cs3Sb photocathodes function as flat emitters, and the emission properties of the photocathode emitters depend on the vacuum level of the devices. An improved current stability has been observed after conducting an electrical conditioning process to remove possible adsorbates on the Cs3Sb flat emitters.
Lee, Woo-Jung; Ma, Jin Won; Bae, Jung Min; Jeong, Kwang-Sik; Cho, Mann-Ho; Kang, Chul; Wi, Jung-Sub
2013-01-01
A principal cause of THz emission in semiconductor nanostructures is deeply involved with geometry, which stimulates the utilization of indirect bandgap semiconductors for THz applications. To date, applications for optoelectronic devices, such as emitters and detectors, using THz radiation have focused only on direct bandgap materials. This paper reports the first observation of strongly enhanced THz emission from Germanium nanowires (Ge NWs). The origin of THz generation from Ge NWs can be interpreted using two terms: high photoexcited electron-hole carriers (Δn) and strong built-in electric field (Eb) at the wire surface based on the relation . The first is related to the extensive surface area needed to trigger an irradiated photon due to high aspect ratio. The second corresponds to the variation of Fermi-level determined by confined surface charges. Moreover, the carrier dynamics of optically excited electrons and holes give rise to phonon emission according to the THz region. PMID:23760467
NASA Astrophysics Data System (ADS)
Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo
2018-04-01
We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.
Illumination-redistribution lenses for non-circular spots
NASA Astrophysics Data System (ADS)
Parkyn, William A.; Pelka, David G.
2005-08-01
The design of illumination lenses is far easier under the regime of the small-source approximation, whereby central rays are taken as representative of the entire source. This implies that the lens is much larger than the source's active emitter, and its entire interior surface is nowhere close to the source. Also, a given source luminance requires a minimum lens area to achieve the candlepower necessary for target illumination. We introduce two-surface aspheric lenses for specific illuminations tasks involving ceiling-mounted downlights, lenses that achieve uniform illuminance at the output aperture as well as at the target. This means that squared-off lenses will produce square spots. In particular, a semicircular lens and a vertical mirror will produce a semicircular spot suitable for gambling tables.
Solar absorption surface panel
Santala, Teuvo J.
1978-01-01
A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.
Interdigitated photovoltaic power conversion device
Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur
1999-01-01
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.
Interdigitated photovoltaic power conversion device
Ward, J.S.; Wanlass, M.W.; Gessert, T.A.
1999-04-27
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.
Surface triads with optical properties
NASA Astrophysics Data System (ADS)
Panchuk, K. L.; Lyubchinov, E. V.; Krysova, I. V.
2018-01-01
A geometric model of formation of surfaces comprising an interconnected triple of emitter, reflector and receiver is presented in the paper. The model is based on cyclographic mapping of a spatial curve to the plane. In such map any given point (x, y, z) of the curve corresponds to a cycle with center (x, y) and radius equal to z applicate. The entire curve corresponds to a directed envelope of cycles consisting, in the general case, of two branches. It is shown that the triad of curves consisting of two branches of the envelope and the orthogonal projection of the original curve within the plane (xy) corresponds to a triad of developable surfaces. The triad of curves in the plane (xy) and the original curve together form a triad of ruled surfaces. Both triads have an optical property. Any ray of light emerging from the point of the emitter surface along the normal to it and falling on the surface of the reflector afterwards is directed along the normal vector to the surface of the receiver. The direct and inverse problems of formation of the triad of surfaces are solved. In the first case, a one-parameter set of triads of surfaces is defined from a given spatial curve. In the second case, a single triad of surfaces is defined from a pair of curves "emitter-receiver" defined on the plane (xy). Numerical examples of solutions of the direct and inverse problems are considered and the corresponding visualizations are given. The results of the work can be used in the design of reflector antennas in radar systems and systems for converting solar energy into electric and thermal energy.
Feasibility study of oxygen-dispensing emitters for thermionic converters, phase 1
NASA Technical Reports Server (NTRS)
Desteese, J. G.
1972-01-01
A metal/ceramic Marchuk tube was used to measure work functions of oxygen-doped tantalum, to determine applicability of the material to plasma-mode thermionic converters. Oxygen-doped tantalum was shown to increase in work function monotonically with oxygen doping in the range 0.1 to 0.3 atomic percent. Oxygenated test emitters were run at an average temperature of 2165 K and a T/T sub Cs ratio -5.8 to observe the influence of oxygen depletion. Bare work function decreased with outgassing of oxygen. Projections were made based on outgassing kinetics and area/volume ratios to calculate the longevity of oxygen doping in a practical converter. Calculations indicated that the program goal of 10,000 hr could be achieved at 1800 K with an initial oxygen doping of 1 atomic percent and a practical emitter area/volume ratio.
The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes
NASA Astrophysics Data System (ADS)
Mentel, Juergen
2018-01-01
A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.
Combustor design tool for a gas fired thermophotovoltaic energy converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindler, K.W.; Harper, M.J.
1995-12-31
Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The U. S. Naval Academy has been taskedmore » with the development of a small emitter (with a high emissivity) that can be maintained at 1756 K (2700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.« less
Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter
NASA Technical Reports Server (NTRS)
Kovaleski, S. D.; Burke, Tom (Technical Monitor)
2001-01-01
Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.
Emittance and absorptance of NASA ceramic thermal barrier coating system. [for turbine cooling
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1978-01-01
Spectral emittance measurements were made on a two-layer ceramic thermal barrier coating system consisting of a metal substrate, a NiCrAly bond coating and a yttria-stabilized zirconia ceramic coating. Spectral emittance data were obtained for the coating system at temperatures of 300 to 1590 K, ceramic thickness of zero to 0.076 centimeter, and wavelengths of 0.4 to 14.6 micrometers. The data were transformed into total hemispherical emittance values and correlated with respect to ceramic coating thickness and temperature using multiple regression curve fitting techniques. The results show that the ceramic thermal barrier coating system is highly reflective and significantly reduces radiation heat loads on cooled gas turbine engine components. Calculation of the radiant heat transfer within the nonisothermal, translucent ceramic coating material shows that the gas-side ceramic coating surface temperature can be used in heat transfer analysis of radiation heat loads on the coating system.
NASA Astrophysics Data System (ADS)
Jayakumar, Harishankar; Shotan, Zav; Considine, Christopher; Mazkoit, Mažena; Fedder, Helmut; Wrachtrup, Joerg; Alkauskas, Audrius; Doherty, Marcus; Menon, Vinod; Meriles, Carlos
Fluorescent defects recently observed under ambient conditions in hexagonal boron nitride (h-BN) promise to open novel opportunities for the implementation of on-chip photonic devices that rely on identical photons from single emitters. Here we report on the room temperature photo-luminescence dynamics of individual emitters in multilayer h-BN flakes exposed to blue laser light. Comparison of optical spectra recorded at successive times reveals considerable spectral diffusion, possibly the result of slowly fluctuating, trapped-carrier-induced stark shifts. Large spectral jumps - reaching up to 100 nm - followed by bleaching are observed in most cases upon prolonged exposure to blue light, an indication of one-directional, photo-chemical changes likely taking place on the flake surface. Remarkably, only a fraction of the observed emitters also fluoresces on green illumination suggesting a more complex optical excitation dynamics than previously anticipated and raising questions on the physical nature of the atomic defect at play.
Recent progress of 638-nm high-power broad area laser diodes in Mitsubishi Electric
NASA Astrophysics Data System (ADS)
Kuramoto, Kyosuke; Abe, Shinji; Miyashita, Motoharu; Nishida, Takehiro; Yagi, Tetsuya
2018-02-01
Laser based displays have gathered much attention because only the displays can express full color gamut of Ultra-HDTV, ITU-R BT.2020. One of the displays uses the lasers under pulse such as a single spatial light modulator (SLM) projector, and the other does ones under CW such as a multiple SLM projector and a liquid crystal display. Both types require high-power lasers because brightness is the most important factor in the market. We developed two types of 638-nm multi-emitter high-power BA-LDs assembled on Φ9.0-TO, that is, triple emitter for pulse and dual emitter for CW. The triple emitter LD emitted exceeding 6.0 W peak power under 25°C, frequency of 120 Hz, and duty of 30%. At high temperature, 55°C, the peak power was approximately 2.9W. The dual emitter emitted exceeding 3.0W under 25°C, CW. It emitted up to 1.7 W at 55°C. WPE of the dual emitter reached 40.5% at Tc of 25°C, which is the world highest in 638-nm LD under CW to the best of our knowledge, although that of the triple emitter was 38.1%. Both LDs may be suitable for laser based display applications.
Variable Emittance Electrochromic Devices for Satellite Thermal Control
NASA Astrophysics Data System (ADS)
Demiryont, Hulya; Shannon, Kenneth C.
2007-01-01
An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.
Rec.2100 color gamut revelation using spectrally ultranarrow emitters
NASA Astrophysics Data System (ADS)
Genc, Sinan; Uguz, Mustafa; Yilmaz, Osman; Mutlugun, Evren
2017-11-01
We theoretically simulate the performance of ultranarrow emitters for the first time to achieve record high coverage for the International Telecommunication Union Radiocommunication Sector BT.2100 (Rec.2100) and National Television System Committee (NTSC) color gamut. Our results, employing more than 130-m parameter sets, include the investigation into peak emission wavelength and full width at half maximum (FWHM) values for three primaries that show ultranarrow emitters, i.e., nanoplatelets are potentially promising materials to fully cover the Rec.2100 color gamut. Using ultranarrow emitters having FWHM as low as 6 nm can provide the ability to attain 99.7% coverage area of the Rec.2100 color gamut as well as increasing the NTSC triangle to 133.7% with full coverage. The parameter set that provides possibility to fully reach Rec.2100 also has been shown to match with D65 white light by making use of the correct combination of those three primaries. Furthermore, we investigate the effect of the fourth color component on the CIE 1931 color space without sacrificing the achieved coverage percentages. The investigation into the fourth color component, cyan, is shown for the first time to enhance the Rec.2100 gamut area to 127.7% with 99.9% coverage. The fourth color component also provides an NTSC coverage ratio of 171.5%. The investigation into the potential of emitters with ultranarrow emission bandwidth holds great promise for future display applications.
20-mN Variable Specific Impulse (Isp) Colloid Thruster
NASA Technical Reports Server (NTRS)
Demmons, Nathaniel
2015-01-01
Busek Company, Inc., has designed and manufactured an electrospray emitter capable of generating 20 mN in a compact package (7x7x1.7 in). The thruster consists of nine porous-surface emitters operating in parallel from a common propellant supply. Each emitter is capable of supporting over 70,000 electrospray emission sites with the plume from each emitter being accelerated through a single aperture, eliminating the need for individual emission site alignment to an extraction grid. The total number of emission sites during operation is expected to approach 700,000. This Phase II project optimized and characterized the thruster fabricated during the Phase I effort. Additional porous emitters also were fabricated for full-scale testing. Propellant is supplied to the thruster via existing feed-system and microvalve technology previously developed by Busek, under the NASA Space Technology 7's Disturbance Reduction System (ST7-DRS) mission and via follow-on electric propulsion programs. This project investigated methods for extending thruster life beyond the previously demonstrated 450 hours. The life-extending capabilities will be demonstrated on a subscale version of the thruster.
Multi-ball and one-ball geolocation and location verification
NASA Astrophysics Data System (ADS)
Nelson, D. J.; Townsend, J. L.
2017-05-01
We present analysis methods that may be used to geolocate emitters using one or more moving receivers. While some of the methods we present may apply to a broader class of signals, our primary interest is locating and tracking ships from short pulsed transmissions, such as the maritime Automatic Identification System (AIS.) The AIS signal is difficult to process and track since the pulse duration is only 25 milliseconds, and the pulses may only be transmitted every six to ten seconds. Several fundamental problems are addressed, including demodulation of AIS/GMSK signals, verification of the emitter location, accurate frequency and delay estimation and identification of pulse trains from the same emitter. In particular, we present several new correlation methods, including cross-cross correlation that greatly improves correlation accuracy over conventional methods and cross- TDOA and cross-FDOA functions that make it possible to estimate time and frequency delay without the need of computing a two dimensional cross-ambiguity surface. By isolating pulses from the same emitter and accurately tracking the received signal frequency, we are able to accurately estimate the emitter location from the received Doppler characteristics.
The Next Generation Photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.
2005-09-12
This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinalmore » laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.« less
Stability of field emission current from porous n-GaAs(110)
NASA Astrophysics Data System (ADS)
Tondare, V. N.; Naddaf, M.; Bhise, A. B.; Bhoraskar, S. V.; Joag, D. S.; Mandale, A. B.; Sainkar, S. R.
2002-02-01
Field electron emission from porous GaAs has been investigated. The emitter was prepared by anodic etching of n-GaAs (110) in 0.1 M HCl solution. The as-etched porous GaAs shows nonlinear Fowler-Nordheim (FN) characteristics, with a low onset voltage. The emitter, after operating for 6 h at the residual gas pressure of 1×10-8 mbar, shows a linear FN characteristics with a relatively high onset voltage and poor field emission current stability as compared to the as-etched emitter. The change in the behavior was attributed to the residual gas ion bombardment during field electron emission. X-ray photoelectron spectroscopic investigations were carried out on as-etched sample and the one which was studied for field emission. The studies indicate that the as-etched surface contains As2O3 and the surface after field electron emission for about 6 h becomes gallium rich. The presence of As2O3 seems to be a desirable feature for the stable field emission current.
Theoretical analysis of field emission from a metal diamond cold cathode emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerner, P.; Cutler, P.H.; Miskovsky, N.M.
Recently, Geis {ital et al.} [J. Vac. Sci. Technol. B {bold 14}, 2060 (1996)] proposed a cold cathode emitter based on a Spindt-type design using a diamond film doped by substitutional nitrogen. The device is characterized by high field emission currents at very low power. Two properties, the rough surface of the metallic injector and the negative electron affinity of the (111) surface of the diamond are essential for its operation. We present a first consistent quantitative theory of the operation of a Geis{endash}Spindt diamond field emitter. Its essential features are predicated on nearly {ital zero-field conditions} in the diamondmore » beyond the depletion layer, {ital quasiballistic transport} in the conduction band, and applicability of a modified {ital Fowler{endash}Nordheim equation} to the transmission of electrons through the Schottky barrier at the metal-diamond interface. Calculated results are in good qualitative and quantitative agreement with the experimental results of Geis {ital et al.} {copyright} {ital 1997 American Vacuum Society.}« less
Optical modeling of agricultural fields and rough-textured rock and mineral surfaces
NASA Technical Reports Server (NTRS)
Suits, G. H.; Vincent, R. K.; Horwitz, H. M.; Erickson, J. D.
1973-01-01
Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces.
NASA Astrophysics Data System (ADS)
Li, Hang; Lu, Songtao; Qin, Wei; Wu, Xiaohong
2017-07-01
Intense solar radiation and internal heat generation determine the equilibrium temperature of an in-orbit spacecraft. Thermal control coatings with low solar absorptance and high thermal emittance effectively maintain the thermal equilibrium within safe operating limits for exposed, miniaturized and highly integrated components. A novel ceramic coating with high thermal emittance and good adhesion was directly prepared on the Mg substrate using an economical process of controlled plasma electrolytic oxidation (PEO) in the electrolyte containing ZnSO4. XRD and XPS results showed that this coating was mainly composed of the MgO phase as well as an unusual ZnO crystalline phase. The adhesive strength between the coating and substrate determined by a pull-off test revealed an excellent adhesion. Thermal and optical properties test revealed that the coating exhibited a high infrared emittance of 0.88 (2-16 μm) and low solar absorptance of 0.35 (200-2500 nm). The result indicated that the formation of ZnO during the PEO process played an important role in the improvement of the coating emittance. The process developed provides a simple surface method for improving the thermal emittance of Mg alloy, which presents a promising application prospect in the thermal management of the spacecraft.
NASA Astrophysics Data System (ADS)
LeVesque, R. J.; DeJesus, R. R.; Jones, C. A.; Babel, H. W.
1996-03-01
Low emittance coatings were required on the inner side of micro-meteoroid shielding and other structures to minimize heat transfer from the sun illuminated side to the underlying structure. A program was undertaken to evaluate conversion coatings for long term use in space. The conversion coatings evaluated were Alodine 1200 with three different bath chemistries, Iridite 14-2, and Alodine 600. Although the primary emphasis was on evaluating how processing conditions influenced the infrared emittance, corrosion resistance and electrical bonding characteristics were also evaluated. All of the conversion coatings were able to provide the target emittance value of less than 0.10, although baths with ferricyanide accelerators required shorter immersion times than typical of standard shop practices. The balance between emittance, corrosion resistance, and electrical bonding were defined. Space environmental stability tests were conducted on conversion coated 2219 and 7075 aluminum. The emittance and the electrical bonding characteristics were not affected by the space exposure even though the coating dehydrated and mud cracking is evident under a microscope. The dehydration resulted in a loss of corrosion resistance which is a consideration for hardware returned to Earth. It was concluded that conversion coatings are acceptable thermal control coatings for long life spacecraft although additional work is recommended for solar exposed surfaces.
Use of low energy hydrogen ion implants in high efficiency crystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Fonash, S. J.; Singh, R.
1985-01-01
This program is a study of the use of low energy hydrogen ion implantation for high efficiency crystalline silicon solar cells. The first quarterly report focuses on two tasks of this program: (1) an examination of the effects of low energy hydrogen implants on surface recombination speed; and (2) an examination of the effects of hydrogen on silicon regrowth and diffusion in silicon. The first part of the project focussed on the measurement of surface properties of hydrogen implanted silicon. Low energy hydrogen ions when bombarded on the silicon surface will create structural damage at the surface, deactivate dopants and introduce recombination centers. At the same time the electrically active centers such as dangling bonds will be passivated by these hydrogen ions. Thus hydrogen is expected to alter properties such as the surface recombination velocity, dopant profiles on the emitter, etc. In this report the surface recombination velocity of a hydrogen emplanted emitter was measured.
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
1993-01-01
A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.
Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter
NASA Astrophysics Data System (ADS)
Kihara, Takashi; Harada, Toshihiro; Kato, Masahiro; Nakano, Kiyoshi; Murakami, Osamu; Kikusui, Takefumi; Koshida, Nobuyoshi
2006-01-01
As one of the functional properties of ultrasound generator based on efficient thermal transfer at the nanocrystalline silicon (nc-Si) layer surface, its potential as an ultrasonic simulator of vocalization signals is demonstrated by using the acoustic data of mouse-pup calls. The device composed of a surface-heating thin-film electrode, an nc-Si layer, and a single-crystalline silicon (c-Si) wafer, exhibits an almost completely flat frequency response over a wide range without any mechanical surface vibration systems. It is shown that the fabricated emitter can reproduce digitally recorded ultrasonic mouse-pups vocalizations very accurately in terms of the call duration, frequency dispersion, and sound pressure level. The thermoacoustic nc-Si device provides a powerful physical means for the understanding of ultrasonic communication mechanisms in various living animals.
Emission enhancement, light extraction and carrier dynamics in InGaAs/GaAs nanowire arrays
NASA Astrophysics Data System (ADS)
Kivisaari, Pyry; Chen, Yang; Anttu, Nicklas
2018-03-01
Nanowires (NWs) have the potential for a wide range of new optoelectronic applications. For example, light-emitting diodes that span over the whole visible spectrum are currently being developed from NWs to overcome the well known green gap problem. However, due to their small size, NW devices exhibit special properties that complicate their analysis, characterization, and further development. In this paper, we develop a full optoelectronic simulation tool for NW array light emitters accounting for carrier transport and wave-optical emission enhancement (EE), and we use the model to simulate InGaAs/GaAs NW array light emitters with different geometries and temperatures. Our results show that NW arrays emit light preferentially to certain angles depending on the NW diameter and temperature, encouraging temperature- and angle-resolved measurements of NW array light emission. On the other hand, based on our results both the EE and light extraction efficiency can easily change by at least a factor of two between room temperature and 77 K, complicating the characterization of NW light emitters if conventional methods are used. Finally, simulations accounting for surface recombination emphasize its major effect on the device performance. For example, a surface recombination velocity of 104 cm s-1 reported earlier for bare InGaAs surfaces results in internal quantum efficiencies less than 30% for small-diameter NWs even at the temperature of 30 K. This highlights that core-shell structures or high-quality passivation techniques are eventually needed to achieve efficient NW-based light emitters.
Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters
NASA Astrophysics Data System (ADS)
Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis
2018-03-01
We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.
Target tracking and pointing for arrays of phase-locked lasers
NASA Astrophysics Data System (ADS)
Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis
2016-09-01
Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.
Low Emittance Tuning Studies for SuperB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liuzzo, Simone; /INFN, Pisa; Biagini, Maria
2012-07-06
SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specifymore » the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.« less
Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition
Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin
2017-01-01
Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964
Treatment planning for internal emitter therapy: Methods, applications and clinical implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sgouros, G.
1999-01-01
Treatment planning involves three basic steps: (1) a procedure must be devised that will provide the most relevant information, (2) the procedure must be applied and (3) the resulting information must be translated into a definition of the optimum implementation. There are varying degrees of treatment planning that may be implemented in internal emitter therapy. As in chemotherapy, the information from a Phase 1 study may be used to treat patients based upon body surface area. If treatment planning is included on a patient-specific basis, a pretherapy, trace-labeled, administration of the radiopharmaceutical is generally required. The data collected following themore » tracer dose may range from time-activity curves of blood and whole-body for use in blood, marrow or total body absorbed dose estimation to patient imaging for three-dimensional internal emitter dosimetry. The most ambitious approach requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of images representing anatomy (CT or MRI). The absorbed dose (or dose-rate) distribution may be obtained by convolution of a point kernel with the radioactivity distribution or by direct Monte Carlo calculation. A critical requirement for both techniques is the development of an overall structure that makes it possible, in a routine manner, to input the images, to identify the structures of interest and to display the results of the dose calculations in a clinically relevant manner. 52 refs., 4 figs., 1 tab.« less
1973 environmental monitoring report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, A.P.; Ash, J.A.
1974-03-01
>Results from radiation monitoring during 1973 in the environment of the Brookhaven National Laboratory are presented. Data are included on: the gross alpha and BETA activity and content of tritium and gamma-emitting radionuclides in surface air; gross BETA activity and gamma and tritium content in atmospheric precipitation; activities and concentration of gamma emitters in liquid effiuents and ground water; gross BETA , tritium and /sup 90/Sr in effluents; gross BETA and tritl um in surface waters; /sup 90/Sr and gamma- emitting radionuclides in river ecosystem; gross alpha , gross BETA , tritium, / sup 90/Sr, and /sup 137/Cs in groundmore » and well water; /sup 137/Cs, K, /sup 131/I, and /sup 90/Sr content in area milk; and gamma-emitting radionuclides in soils and grasses. (LCL)« less
The SPES surface ionization source
NASA Astrophysics Data System (ADS)
Manzolaro, M.; D'Agostini, F.; Monetti, A.; Andrighetto, A.
2017-09-01
Ion sources and target systems play a crucial role in isotope separation on line facilities, determining the main characteristics of the radioactive ion beams available for experiments. In the context of the selective production of exotic species (SPES) facility, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced by the 238U fissions are delivered to the 1+ ion source by means of a tubular transfer line. Here they can be ionized and subsequently accelerated toward the experimental areas. In this work, the characterization of the surface ionization source currently adopted for the SPES facility is presented, taking as a reference ionization efficiency and transversal emittance measurements. The effects of long term operation at high temperature are also illustrated and discussed.
A fast high-precision six-degree-of-freedom relative position sensor
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan
2016-03-01
Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.
Space-based detection of spoofing AIS signals using Doppler frequency
NASA Astrophysics Data System (ADS)
Guo, Shanzeng
2014-05-01
The Automatic Identification System (AIS) is a self-reporting system based on VHF radio to transmit a vessel's identity, position, speed, heading and other parameters to improve maritime domain awareness. However, AIS information can be programmatically spoofed by terrorists or other criminals, who often choose to masquerade as innocent civilians and exploit the vulnerabilities of military and civilian infrastructures for their purposes. Therefore, detecting and localizing a spoofing AIS ship become a critical and challenging issue for maritime security. This paper presents an algorithm to detect and geolocalize a spoofing AIS emitter using space-based AIS signals with its Doppler frequency. With an AIS signal sensor on a fast orbiting satellite, the measured AIS Doppler frequency of an AIS emitter can be used to define a double-napped cone of which the satellite is at its vertex and satellite velocity coincides with its axis, such that the theoretical Doppler frequency derived from the radial velocity to the AIS emitter matches the measured Doppler frequency. All such matches can only lie on either cone extending out from the satellite, which cuts the Earth's surface in two curves, so we know that the AIS emitter must lie somewhere on these curves. Two such AIS Doppler frequency measurements for the same stationary AIS emitter produce two valid curves which intersect at the position of the AIS emitter. Multiple Doppler frequency measurements can be used to better estimate the position fix of an AIS emitter, hence determine the spoofing AIS ship if the estimated position fix unreasonably differs from the position carried in its AIS message. A set of formulas are derived which relate an AIS emitter position to its Doppler frequency measurements.
NASA Astrophysics Data System (ADS)
Rauch, Michael; Haehnelt, Martin; Bunker, Andrew; Becker, George; Marleau, Francine; Graham, James; Cristiani, Stefano; Jarvis, Matt; Lacey, Cedric; Morris, Simon; Peroux, Celine; Röttgering, Huub; Theuns, Tom
2008-07-01
We have conducted a long-slit search for low surface brightness Lyα emitters at redshift 2.67 < z < 3.75. A 92 hr long exposure with the ESO VLT FORS2 instrument down to a 1 σ surface brightness detection limit of 8 × 10-20 erg cm-2 s-1 arcsec-2 per arcsec2 aperture yielded a sample of 27 single line emitters with fluxes of a few × 10-18 erg s-1 cm-2. We present arguments that most objects are indeed Lyα. The large comoving number density, 3 × 10-2 h370 Mpc-3, the large covering factor, dN/dz ~ 0.2-1, and the often extended Lyα emission suggest that the emitters can be identified with the elusive host population of damped Lyα systems (DLAS) and high column density Lyman limit systems (LLS). A small inferred star formation rate, perhaps supplemented by cooling radiation, appears to energetically dominate the Lyα emission, and is consistent with the low metallicity, low dust content, and theoretically inferred low masses of DLAS, and with the relative lack of success of earlier searches for their optical counterparts. Some of the line profiles show evidence for radiative transfer in galactic outflows. Stacking surface brightness profiles, we find emission out to at least 4''. The centrally concentrated emission of most objects appears to light up the outskirts of the emitters (where LLS arise) down to a column density where the conversion from UV to Lyα photon becomes inefficient. DLAS, high column density LLS, and the emitter population discovered in this survey appear to be different observational manifestations of the same low-mass, protogalactic building blocks of present-day L* galaxies. Based partly on observations made with ESO Telescopes at the Paranal Observatories under Program ID LP173.A-0440, and partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).
NASA Technical Reports Server (NTRS)
Birkebak, R. C.
1974-01-01
The successful landings on the moon of the Apollo flights and the return of samples of lunar surface material has permitted the measurement of the thermophysical properties necessary for heat transfer calculations. The characteristics of the Apollo samples are discussed along with remote sensing results which made it possible to deduce many of the thermophysical properties of the lunar surface. Definitions considered in connection with thermal radiation measurements include the bond albedo, the geometric albedo, the normal albedo, the directional reflectance, the bidirectional reflectance, and the directional emittance. The measurement techniques make use of a directional reflectance apparatus, a bidirectional reflectance apparatus, and a spectral emittance apparatus.
Influence of non-line of sight luminescent emitters in visible light communication systems
NASA Astrophysics Data System (ADS)
Ghorai, Anaranya; Walvekar, Pratik; Nayak, Shreyas; Narayan, K. S.
2018-01-01
We introduce and demonstrate concepts which utilize the non-line of sight fraction of light incident on a detector assembly in a visible-light communication (VLC) system. In addition to ambient light, realistic enclosures where VLC is implemented consist of a sizable fraction of scattered and reflected light. We present results of VLC systems with detectors responding to contributions from the light source scattered off a surface embedded with fluorescent and phosphorescent emitters besides the direct line of sight signal. Contribution from the emitters takes a form of discernible fluctuations in the detector signal. The implication of our results from noise analysis of these fluctuations indicates the possibility of utilizing smart coatings to further tailor VLC capabilities.
Front contact solar cell with formed emitter
Cousins, Peter John
2014-11-04
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
Front contact solar cell with formed emitter
Cousins, Peter John [Menlo Park, CA
2012-07-17
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
EMIIM Wetting Properties & Their Effect on Electrospray Thruster Design
2012-03-01
tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface. Ideally this angle is a function of the...3 3 Picture of a Taylor cone formed at AFRL, note bubbles present. . . . . . . 3 4 Titanium electrode grids in use at AFRL...cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in Figure 3.[7] Emitters are precisely aligned with openings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxson, Jared; Bazarov, Ivan; Dunham, Bruce
2014-09-15
A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. Thesemore » results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.« less
Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji
2017-02-08
The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m -2 , most likely because of the long delayed fluorescent lifetime (τ d ). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τ d . We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (E S ) and triplet state (E T ) energies. Among them, Ac-3MHPM, with a high E T of 2.95 eV, exhibited a high external quantum efficiency (η ext,max ) of 18% and an η ext of 10% at 100 cd m -2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.
Bandgap narrowing and emitter efficiency in heavily doped emitter structures revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vliet, C.M.
The developments of heavy doping effects and of bandgap narrowing concepts (BGN) during the last two decades are critically discussed. The differences between the real bandgap reduction [Delta]E[sub g] and the apparent electrical bandgap reduction [Delta]G are once more set forth, showing the precise meaning of the density-of-states and degeneracy contributions to [Delta]G. From these concepts, previously elaborated by Marshak and Van Vilet and by Lundstrom et al., the authors indicated before that for negligible recombination the minority-carrier emitter current (J[sub pe]) is given by a Merten-type result. In this paper they show that in the presence of surface andmore » (or) bulk recombination (Auger and SRH) the result of Selvakumar and Roulston is recovered; however, the electrical field in the emitter and the effective intrinsic density of carriers are not those used by these authors but, on the contrary, these quantities are given by the detailed expressions of their previous work.« less
Recent progress in nanostructured next-generation field emission devices
NASA Astrophysics Data System (ADS)
Mittal, Gaurav; Lahiri, Indranil
2014-08-01
Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.
NASA Astrophysics Data System (ADS)
Shi, Xiangyang; Wu, Yuanyuan; Wang, Ding; Su, Juan; Liu, Jie; Yang, Wenxian; Xiao, Meng; Tan, Wei; Lu, Shulong; Zhang, Jian
2017-12-01
We demonstrate both theoretically and experimentally that the power density of resonant tunneling diode (RTD) can be enhanced by optimizing emitter spacer layer thickness, in addition to reducing barrier thickness. Compared to the widely used epitaxial structure with ultrathin emitter spacer layer thickness, appropriate increasing the thickness will increase the voltage drop in accumulation region, leading to larger voltage widths of negative differential resistance region. By measuring J-V characteristics, the specific contact resistivity, and the self-capacitance, we theoretically analyze the maximum output power of the fabricated RTDs. It shows that the optimized In0.8Ga0.2As/AlAs RTD with 20 nm emitter spacer thickness and 5 μm2 mesa area theoretically possesses the capability to reach 3.1 mW at 300 GHz and 1.8 mW at 600 GHz.
Status and Progress of High-efficiency Silicon Solar Cells
NASA Astrophysics Data System (ADS)
Xiao, Shaoqing; Xu, Shuyan
High-efficiency Si solar cells have attracted more and more attention from researchers, scientists, engineers of photovoltaic (PV) industry for the past few decades. Many high-quality researchers and engineers in both academia and industry seek solutions to improve the cell efficiency and reduce the cost. This desire has stimulated a growing number of major research and research infrastructure programmes, and a rapidly increasing number of publications in this filed. This chapter reviews materials, devices and physics of high-efficiency Si solar cells developed over the last 20 years. In this chapter there is a fair number of topics, not only from the material viewpoint, introducing various materials that are required for high-efficiency Si solar cells, such as base materials (FZ-Si, CZ-Si, MCZ-Si and multi-Si), emitter materials (diffused emitter and deposited emitter), passivation materials (Al-back surface field, high-low junction, SiO2, SiO x , SiN x , Al2O3 and a-Si:H), and other functional materials (antireflective layer, TCO and metal electrode), but also from the device and physics point of view, elaborating on physics, cell concept, development and status of all kinds of high-efficiency Si solar cells, such as passivated emitter and rear contact (PERC), passivated emitter and rear locally diffused (PERL), passivated emitter and rear totally diffused (PERT), Pluto, interdigitated back-contacted (IBC), emitter-wrap-through (EWT), metallization-wrap-through (MWT), Heterojunction with intrinsic thin-layer (HIT) and so on. Some representative examples of high-efficiency Si solar cell materials and devices with excellent performance and competitive advantages are presented.
Discrete space charge affected field emission: Flat and hemisphere emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil; Shiffler, Donald A.; Tang, Wilkin
Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surfacemore » roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.« less
A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications
NASA Astrophysics Data System (ADS)
Li, Xiaoyi; Tao, Juan; Zhu, Jing; Pan, Caofeng
2017-07-01
The ocean wave energy is one of the most promising renewable and clean energy sources for human life, which is the so-called "Blue energy." In this work, a nanowire based triboelectric nanogenerator was designed for harvesting wave energy. The nanowires on the surface of FEP largely raise the contacting area with water and also make the polymer film hydrophobic. The output can reach 10 μ A and 200 V. When combined with a capacitor, an infrared emitter, and a receiver, a self-powered wireless infrared system is fabricated, which can be used in the fields of communication and detecting.
Measurement of surface physical properties and radiation balance for KUREX-91 study
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.
1992-01-01
Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.
ALMA deep field in SSA22: Blindly detected CO emitters and [C II] emitter candidates
NASA Astrophysics Data System (ADS)
Hayatsu, Natsuki H.; Matsuda, Yuichi; Umehata, Hideki; Yoshida, Naoki; Smail, Ian; Swinbank, A. Mark; Ivison, Rob; Kohno, Kotaro; Tamura, Yoichi; Kubo, Mariko; Iono, Daisuke; Hatsukade, Bunyo; Nakanishi, Kouichiro; Kawabe, Ryohei; Nagao, Tohru; Inoue, Akio K.; Takeuchi, Tsutomu T.; Lee, Minju; Ao, Yiping; Fujimoto, Seiji; Izumi, Takuma; Yamaguchi, Yuki; Ikarashi, Soh; Yamada, Toru
2017-06-01
We report the identification of four millimeter line-emitting galaxies with the Atacama Large Milli/submillimeter Array (ALMA) in SSA22 Field (ADF22). We analyze the ALMA 1.1-mm survey data, with an effective survey area of 5 arcmin2, frequency ranges of 253.1-256.8 and 269.1-272.8 GHz, angular resolution of 0{^''.}7 and rms noise of 0.8 mJy beam-1 at 36 km s-1 velocity resolution. We detect four line-emitter candidates with significance levels above 6σ. We identify one of the four sources as a CO(9-8) emitter at z = 3.1 in a member of the proto-cluster known in this field. Another line emitter with an optical counterpart is likely a CO(4-3) emitter at z = 0.7. The other two sources without any millimeter continuum or optical/near-infrared counterpart are likely to be [C II] emitter candidates at z = 6.0 and 6.5. The equivalent widths of the [C II] candidates are consistent with those of confirmed high-redshift [C II] emitters and candidates, and are a factor of 10 times larger than that of the CO(9-8) emitter detected in this search. The [C II] luminosity of the candidates are 4-7 × 108 L⊙. The star formation rates (SFRs) of these sources are estimated to be 10-20 M⊙ yr-1 if we adopt an empirical [C II] luminosity-SFR relation. One of them has a relatively low S/N ratio, but shows features characteristic of emission lines. Assuming that at least one of the two candidates is a [C II] emitter, we derive a lower limit of [C II]-based star formation rate density (SFRD) at z ˜ 6. The resulting value of >10-2 M⊙ yr-1 Mpc-3 is consistent with the dust-uncorrected UV-based SFRD. Future millimeter/submillimeter surveys can be used to detect a number of high-redshift line emitters, with which to study the star formation history in the early universe.
Double opposite-end tubesheet design for a thermovoltaic energy converter
Ashcroft, John M.; Campbell, Brian C.; Depoy, David M.
2000-01-01
A method and apparatus for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.
Pustovit, Vitaliy N; Shahbazyan, Tigran V
2009-02-20
We identify a new mechanism for cooperative emission of light by an ensemble of N dipoles near a metal nanostructure supporting a surface plasmon. The cross talk between emitters due to the virtual plasmon exchange leads to the formation of three plasmonic superradiant modes whose radiative decay rates scale with N, while the total radiated energy is thrice that of a single emitter. Our numerical simulations indicate that the plasmonic Dicke effect survives nonradiative losses in the metal.
Entropy emission properties of near-extremal Reissner-Nordström black holes
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-05-01
Bekenstein and Mayo have revealed an interesting property of evaporating (3 +1 )-dimensional Schwarzschild black holes: their entropy emission rates S˙Sch are related to their energy emission rates P by the simple relation S˙Sch=CSch×(P /ℏ)1/2, where CSch is a numerically computed dimensionless coefficient. Remembering that (1 +1 )-dimensional perfect black-body emitters are characterized by the same functional relation, S˙1 +1=C1 +1×(P /ℏ)1/2 [with C1 +1=(π /3 )1/2], Bekenstein and Mayo have concluded that, in their entropy emission properties, (3 +1 )-dimensional Schwarzschild black holes behave effectively as (1 +1 )-dimensional entropy emitters. Later studies have shown that this intriguing property is actually a generic feature of all radiating (D +1 )-dimensional Schwarzschild black holes. One naturally wonders whether all black holes behave as simple (1 +1 )-dimensional entropy emitters? In order to address this interesting question, we shall study in this paper the entropy emission properties of Reissner-Nordström black holes. We shall show, in particular, that the physical properties which characterize the neutral sector of the Hawking emission spectra of these black holes can be studied analytically in the near-extremal TBH→0 regime (here TBH is the Bekenstein-Hawking temperature of the black hole). We find that the Hawking radiation spectra of massless neutral scalar fields and coupled electromagnetic-gravitational fields are characterized by the nontrivial entropy-energy relations S˙RNScalar=-CRNScalar×(A P3/ℏ3)1/4ln (A P /ℏ) and S˙RN Elec -Grav=-CRNElec -Grav×(A4P9/ℏ9)1 /10ln (A P /ℏ) in the near-extremal TBH→0 limit (here {CRNScalar,CRNElec -Grav} are analytically calculated dimensionless coefficients and A is the surface area of the Reissner-Nordström black hole). Our analytical results therefore indicate that not all black holes behave as simple (1 +1 )-dimensional entropy emitters.
NASA Astrophysics Data System (ADS)
Cortie, D. L.; Lewis, R. A.
2011-10-01
The discovery that short pulses of near-infrared radiation striking a semiconductor may lead to emission of radiation at terahertz frequencies paved the way for terahertz time-domain spectroscopy. Previous modeling has allowed the physical mechanisms to be understood in general terms but it has not fully explored the role of key physical parameters of the emitter material nor has it fully revealed the competing nature of the surface-field and photo-Dember effects. In this context, our purpose has been to more fully explicate the mechanisms of terahertz emission from transient currents at semiconductor surfaces and to determine the criteria for efficient emission. To achieve this purpose we employ an ensemble Monte Carlo simulation in three dimensions. To ground the calculations, we focus on a specific emitter, InAs. We separately vary distinct physical parameters to determine their specific contribution. We find that scattering as a whole has relatively little impact on the terahertz emission. The emission is found to be remarkably resistant to alterations of the dark surface potential. Decreasing the band gap leads to a strong increase in terahertz emission, as does decreasing the electron mass. Increasing the absorption dramatically influences the peak-peak intensity and peak shape. We conclude that increasing absorption is the most direct path to improve surface-current semiconductor terahertz emitters. We find for longer pump pulses that the emission is limited by a newly identified vanguard counter-potential mechanism: Electrons at the leading edge of longer laser pulses repel subsequent electrons. This discovery is the main result of our work.
Mars Radiator Characterization Experimental Program
NASA Technical Reports Server (NTRS)
Witte, Larry C.; Hollingsworth, D. Keith
2004-01-01
Radiators are an enabling technology for the human exploration and development of the moon and Mars. As standard components of the heat rejection subsystem of space vehicles, radiators are used to reject waste heat to space and/or a planetary environment. They are typically large components of the thermal control system for a space vehicle or human habitation facility, and in some cases safety factors are used to oversize them when the operating environment cannot be fully characterized. Over-sizing can impose significant weight and size penalties that might be prohibitive for future missions. Radiator performance depends on the size of the radiator surface, its emittance and absorptance, the radiator temperature, the effective sky temperature surrounding the radiator, solar radiation and atmospheric irradiation levels, convection to or from the atmosphere (on Mars), and other conditions that could affect the nature of the radiator surface, such as dust accumulation. Most particularly, dust is expected to be a major contributor to the local environmental conditions on either the lunar or Martian surface. This conclusion regarding Mars is supported by measurements of dust accumulation on the Mars Sojourner Rover solar array during the Pathfinder mission. This Final Report describes a study of the effect of Martian dust accumulation on radiator performance. It is comprised of quantitative measurements of effective emittance for a range of dust accumulation levels on surfaces of known emittance under clean conditions. The test radiator coatings were Z-93P, NS-43G, and Silver Teflon (10 mil) film. The Martian dust simulant was Carbondale Red Clay. Results were obtained under vacuum conditions sufficient to reduce convection effects virtually to zero. The experiments required the development of a calorimetric apparatus that allows simultaneous measurements of the effective emittance for all the coatings at each set of experimental conditions. A method of adding dust to multiple radiator coupons was developed and shown to be capable of depositing dust on the surfaces with acceptable uniformity. In these experiments, the dust layer accumulates under earth gravity and in the presence of an earth atmosphere. An invention disclosure for the dust deposition apparatus is being filed through NASA and University of Houston.
Progress in p(+)n InP solar cells fabricated by thermal diffusion
NASA Technical Reports Server (NTRS)
Flood, D. J.; Brinker, D. J.; Weinberg, I.; Vargas, C.; Faur, Mircea; Faur, Maria; Goradia, C.; Goradia, M.; Fatemi, N. S.
1993-01-01
The performance results of our most recently thermally diffused InP solar cells using the p(+)n (Cd,S) structures are presented. We have succeeded in fabricating cells with measured AMO, 25 C V(sub oc) exceeding 880 mV (bare cells) which to the best of our knowledge is higher than previously reported V(sub oc) values for any InP homojunction solar cells. The cells were fabricated by thinning the emitter, after Au-Zn front contacting, from its initial thickness of about 4.5 microns to about 0.6 microns. After thinning, the exposed surface of the emitter was passivated by a thin (approximately 50A) P-rich oxide. Based on the measured EQY and J(sub sc)-V(sub oc) characteristics of our experimental high V(sub oc) p(+)n InP solar cells, we project that reducing the emitter thickness to 0.3 microns, using an optimized AR coating, maintaining the surface hole concentration of 3 x 10(exp 18)cm(sup -3), reducing the grid shadowing from actual 10.55 percent to 6 percent and reducing the contact resistance will increase the actual measured 12.57 percent AMO 25 C efficiency to about 20.1 percent. By using our state-of-the-art p(+)n structures which have a surface hole concentration of 4 x 10(exp 18)cm(sup -3) and slightly improving the front surface passivation, an even higher practically achievable AMO, 25 C efficiency of 21.3 percent is projected.
Effects of Thermal Exposure on the Optical Properties of LORD Aeroglaze A276
NASA Technical Reports Server (NTRS)
Ellis, David L.; Jaworske, Donald A.
2009-01-01
A lunar outpost will require electrical energy. One potential source is fission surface power where heat from a reactor is converted into electricity utilizing an energy conversion system, and waste heat will need to be rejected from the system. The Second Generation Radiator Demonstration Unit is a technology demonstration unit leading towards operational radiators. To approximate the infrared emittance of the lunar outpost radiators, a low-cost coating compatible with the test conditions was sought. LORD Aeroglaze A276 has a similar emittance, but its performance in air and vacuum at the desired operating temperatures was unknown. This study determined that the emittance remained above 0.86 for all conditions tested and that LORD Aeroglaze A276 is a suitable surrogate coating for the Second Generation Radiator Demonstration Unit.
Plasma treatment for producing electron emitters
Coates, Don Mayo; Walter, Kevin Carl
2001-01-01
Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.
Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air
Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos
2013-01-01
The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104
Graphene surface plasmons mediated thermal radiation
NASA Astrophysics Data System (ADS)
Li, Jiayu; Liu, Baoan; Shen, Sheng
2018-02-01
A graphene nanostructure can simultaneously serve as a plasmonic optical resonator and a thermal emitter when thermally heated up. The unique electronic and optical properties of graphene have rendered tremendous potential in the active manipulation of light and the microscopic energy transport in nanostructures. Here we show that the thermally pumped surface plasmonic modes along graphene nanoribbons could dramatically modulate their thermal emission spectra in both near- and far-fields. Based on the fluctuating surface current method implemented by the resistive boundary method, we directly calculate the thermal emission spectrum from single graphene ribbons and vertically paired graphene ribbons. Furthermore, we demonstrate that both the near- and far-field thermal emission from graphene nanostructures can be optimized by tuning the chemical potential of doped graphene. The general guideline to maximize the thermal emission is illustrated by the our recently developed theory on resonant thermal emitters modulated by quasi-normal modes.
NASA Technical Reports Server (NTRS)
Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Jain, Raj K.; Murray, Christopher S.; Riley, David R.
1997-01-01
There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74-eV InGaAs, have demonstrated V(sub oc) = 3.2 volts, J(sub sc) = 70 mA/sq cm, and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (greater than 2 micron) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55-eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.
Thermophotovoltaic Energy Conversion Development Program
NASA Technical Reports Server (NTRS)
Shukla, Kailash; Doyle, Edward; Becker, Frederick
1998-01-01
Completely integrated thermophotovoltaic (TPV) power sources in the range of 100 to 500 watts are being developed. The technical approach taken in this project focuses on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a narrow band fibrous emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the prototype system, fibrous ytterbia emitters radiating in a narrow band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The prototype TPV system uses a rapid mix distributed fuel delivery system with controlled feeding of the fuel and heated air into a flame at the surface of the emitter. This makes it possible to operate at air preheat temperatures well above the auto-ignition temperature of the fuel thereby substantially increasing the system efficiency. The system has been operated with air preheat temperatures up to 1367 K and has produced a uniform narrow band radiation over the surface of the emitter with this approach. The design of the system is described and test data for the system and some of the key components are presented. The results from a system model, which show the impact of various parameters on system performance, are also discussed.
InGaAs/InP Monolithic Interconnected Modules (MIM) for Thermophotovoltaic Applications
NASA Technical Reports Server (NTRS)
Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Scheiman, David A.; Murray, Christopher S.; Riley, David R.
2004-01-01
There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between systems efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) devices series -connected on a single semi-insulating indium phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight series interconnected cells. MIM devices, produced from 0,74 eV InGAAs, have demonstrated V(sub infinity) = 3.23 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurement (less than 2 microns) of these devices indicate a reflectivity of less than 82%. MIM devices produced from 0.55 eV InGaAs have also been den=monstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM1) have been demonstrated.
Montanini, R; Freni, F; Rossi, G L
2012-09-01
This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanini, R.; Freni, F.; Rossi, G. L.
This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phasemore » image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.« less
Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications
NASA Astrophysics Data System (ADS)
Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.
2017-03-01
We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.
Modelling of hydrogen transport in silicon solar cell structures under equilibrium conditions
NASA Astrophysics Data System (ADS)
Hamer, P.; Hallam, B.; Bonilla, R. S.; Altermatt, P. P.; Wilshaw, P.; Wenham, S.
2018-01-01
This paper presents a model for the introduction and redistribution of hydrogen in silicon solar cells at temperatures between 300 and 700 °C based on a second order backwards difference formula evaluated using a single Newton-Raphson iteration. It includes the transport of hydrogen and interactions with impurities such as ionised dopants. The simulations lead to three primary conclusions: (1) hydrogen transport across an n-type emitter is heavily temperature dependent; (2) under equilibrium conditions, hydrogen is largely driven by its charged species, with the switch from a dominance of negatively charged hydrogen (H-) to positively charged hydrogen (H+) within the emitter region critical to significant transport across the junction; and (3) hydrogen transport across n-type emitters is critically dependent upon the doping profile within the emitter, and, in particular, the peak doping concentration. It is also observed that during thermal processes after an initial high temperature step, hydrogen preferentially migrates to the surface of a phosphorous doped emitter, drawing hydrogen out of the p-type bulk. This may play a role in several effects observed during post-firing anneals in relation to the passivation of recombination active defects and even the elimination of hydrogen-related defects in the bulk of silicon solar cells.
NASA Astrophysics Data System (ADS)
Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae
2018-05-01
The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.
Identification and characterization of high methane-emitting abandoned oil and gas wells
Kang, Mary; Christian, Shanna; Celia, Michael A.; Mauzerall, Denise L.; Bill, Markus; Miller, Alana R.; Chen, Yuheng; Conrad, Mark E.; Darrah, Thomas H.; Jackson, Robert B.
2016-01-01
Recent measurements of methane emissions from abandoned oil/gas wells show that these wells can be a substantial source of methane to the atmosphere, particularly from a small proportion of high-emitting wells. However, identifying high emitters remains a challenge. We couple 163 well measurements of methane flow rates; ethane, propane, and n-butane concentrations; isotopes of methane; and noble gas concentrations from 88 wells in Pennsylvania with synthesized data from historical documents, field investigations, and state databases. Using our databases, we (i) improve estimates of the number of abandoned wells in Pennsylvania; (ii) characterize key attributes that accompany high emitters, including depth, type, plugging status, and coal area designation; and (iii) estimate attribute-specific and overall methane emissions from abandoned wells. High emitters are best predicted as unplugged gas wells and plugged/vented gas wells in coal areas and appear to be unrelated to the presence of underground natural gas storage areas or unconventional oil/gas production. Repeat measurements over 2 years show that flow rates of high emitters are sustained through time. Our attribute-based methane emission data and our comprehensive estimate of 470,000–750,000 abandoned wells in Pennsylvania result in estimated state-wide emissions of 0.04–0.07 Mt (1012 g) CH4 per year. This estimate represents 5–8% of annual anthropogenic methane emissions in Pennsylvania. Our methodology combining new field measurements with data mining of previously unavailable well attributes and numbers of wells can be used to improve methane emission estimates and prioritize cost-effective mitigation strategies for Pennsylvania and beyond. PMID:27849603
InGaAs monolithic interconnected modules (MIM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1997-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs withmore » an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.« less
Omnidirectional structured light in a flexible configuration.
Paniagua, Carmen; Puig, Luis; Guerrero, José J
2013-10-14
Structured light is a perception method that allows us to obtain 3D information from images of the scene by projecting synthetic features with a light emitter. Traditionally, this method considers a rigid configuration, where the position and orientation of the light emitter with respect to the camera are known and calibrated beforehand. In this paper we propose a new omnidirectional structured light system in flexible configuration, which overcomes the rigidness of the traditional structured light systems. We propose the use of an omnidirectional camera combined with a conic pattern light emitter. Since the light emitter is visible in the omnidirectional image, the computation of its location is possible. With this information and the projected conic in the omnidirectional image, we are able to compute the conic reconstruction, i.e., the 3D information of the conic in the space. This reconstruction considers the recovery of the depth and orientation of the scene surface where the conic pattern is projected. One application of our proposed structured light system in flexible configuration consists of a wearable omnicamera with a low-cost laser in hand for visual impaired personal assistance.
Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James
2017-02-01
Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.
Coupling of individual quantum emitters to channel plasmons.
Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain
2015-08-07
Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.
Thermionic energy converter investigations
NASA Technical Reports Server (NTRS)
Goodale, D. B.; Lee, C.; Lieb, D.; Oettinger, P. E.
1979-01-01
This paper presents evaluation of a variety of thermionic converter configurations to obtain improved efficiency. A variable-spacing diode using an iridium emitter gave emission properties comparable to platinum, but the power output from a sintered LaB6 collector diode was not consistent with its work function. Reflectivities above 0.5 were measured at thermal energies on oxygenated-cesiated surfaces using a field emission retarding potential gun. Performance of converters with structured electrodes and the characteristics of a pulsed triode were studied as a function of emitter, collector, cesium reservoir, interelectrode spacing, xenon pressure, and pulsing parameters.
NASA Astrophysics Data System (ADS)
Altsybeyev, V. V.
2016-12-01
The implementation of numerical methods for studying the dynamics of particle flows produced by pulsed sources is discussed. A particle tracking method with so-called gun iteration for simulations of beam dynamics is used. For the space charge limited emission problem, we suggest a Gauss law emission model for precise current-density calculation in the case of a curvilinear emitter. The results of numerical simulations of particle-flow formation for cylindrical bipolar diode and for diode with elliptical emitter are presented.
NASA Astrophysics Data System (ADS)
Zavadil, Kevin R.; Ruffner, Judith H.; King, Donald B.
1999-01-01
We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc2O3 matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.
Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.
Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan
2018-04-30
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
Novel planar field emission of ultra-thin individual carbon nanotubes.
Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng
2009-10-07
In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.
PECASE: Resonantly-Enhanced Lanthanide Emitters for Subwavelength-Scale, Active Photonics
2015-03-19
2013), 191109, DOI:10.1063/1.4829142. [12] Dongfang Li, Nabil M. Lawandy, and Rashid Zia, “Surface phonon- polariton enhanced optical forces in...10.1063/1.4829142. [12] Dongfang Li, Nabil M. Lawandy, and Rashid Zia, “Surface phonon- polariton enhanced optical forces in silicon carbide
A THz Tomography System for Arbitrarily Shaped Samples
NASA Astrophysics Data System (ADS)
Stübling, E.; Bauckhage, Y.; Jelli, E.; Fischer, B.; Globisch, B.; Schell, M.; Heinrich, A.; Balzer, J. C.; Koch, M.
2017-10-01
We combine a THz time-domain spectroscopy system with a robotic arm. With this scheme, the THz emitter and receiver can be positioned perpendicular and at defined distance to the sample surface. Our system allows the acquisition of reflection THz tomographic images of samples with an arbitrarily shaped surface.
Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millsap, William J.; Brush, Daniel J.
This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methodsmore » included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using "background makers"; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.« less
Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma
NASA Astrophysics Data System (ADS)
Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko
2014-02-01
A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.
Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma.
Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko
2014-02-01
A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.
Developments toward an 18% efficient silicon solar cell
NASA Technical Reports Server (NTRS)
Meulenberg, A., Jr.
1983-01-01
Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.
Method of sputter etching a surface
Henager, Jr., Charles H.
1984-01-01
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.
Method of sputter etching a surface
Henager, C.H. Jr.
1984-02-14
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.
Öztürk, Buket Canbaz; Çam, N Füsun; Yaprak, Günseli
2013-01-01
The aim of the study was to conduct a systematic investigation on the natural gamma emitting radionuclides ((226)Ra, (232)Th and (40)K) as well as (137)Cs in the surface soils from Kestanbol/Ezine plutonic area in Çanakkale province as part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters in the surface soil samples collected from 52 sites distributed all over the region has been carried out, by means of HPGe gamma-ray spectrometry system. The activity concentrations of the relevant radionuclides in the soil samples appeared in the ranges as follows: (226)Ra was 20-521 Bq kg(-1); (232)Th, 11-499 Bq kg(-1)and; (40)K, 126-3181 Bq kg(-1), yet the (137)Cs was much lower than 20 Bq kg(-1)at most. Furthermore, based on the available data, the radiation hazard parameters associated with the surveyed soils were calculated. The present data also allowed evaluation of some correlations that may exist in the investigated natural radionuclides of the soil samples from the plutonic area in Çanakkale province. It is concluded from the above that the concerned region did not lead to any significant radiological exposure to the environment.
Fabrication system, method and apparatus for microelectromechanical devices
NASA Technical Reports Server (NTRS)
Johnson, A. David (Inventor); Busta, Heinz H. (Inventor); Nowicki, Ronald S. (Inventor)
1999-01-01
A fabrication system and method of fabrication for producing microelectromechanical devices such as field-effect displays using thin-film technology. A spacer is carried at its proximal end on the surface of a substrate having field-effect emitters with the spacer being enabled for tilting movement from a nested position to a deployed position which is orthogonal to the plane of the substrate. An actuator is formed with one end connected with the substrate and another end connected with spacer. The actuator is made of a shape memory alloy material which contracts when heated through the material's phase-change transition temperature. Contraction of the actuator exerts a pulling force on the spacer which is tilted to the deployed position. A plurality of the spacers are distributed over the area of the display. A glass plate having a phosphor-coated surface is fitted over the distal ends of the deployed spacer.
Progress in p(+)n InP solar cells fabricated by thermal diffusion
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Weinberg, I.; Fatemi, N. S.; Vargas-Aburto, Carlos; Goradia, C.; Goradia, Manju
1992-01-01
In SPRAT XI, we proposed that p(sup +)n diffused junction InP solar cells should exhibit a higher conversion efficiency than their n(sup +)p counterparts. This was mainly due to the fact that our p(sup +)n (Cd,S) cell structures consistently showed higher V (sub OC) values than our n(sup +)p (S,Cd) structures. The highest V(sub OC) obtained with the p(sup +)n (Cd,S) cell configuration was 860 mV, as compared to the highest V(sub OC) 840 mV obtained with the n(sup +)p (S,Cd) configuration (AMO, 25 C). In this work, we present the performance results of our most recent thermally diffused cells using the p(sup +)n (Cd,S) structure. We have been able to fabricate cells with V(sub OC) values approaching 880 mV. Our best cell with an unoptimized front contact grid design (GS greater than or equal to 10%) showed a conversion efficiency of 13.4% (AMO, 25 C) without an AR coating layer. The emitter surface was passivated by a -50A P rich oxide. Achievement of such high V(sub OC) values was primarily due to the fabrication of emitter surfaces, having EPD densities as low as 2E2 cm(sup -2) and N(sub a)N(sub d) of about 3E18 cm (sup -3). In addition, our preliminary investigation of p(sup +)n structures seem to suggest that Cd-doped emitter cells are more radiation resistant than Zn-doped emitter cells against both high energy electron and proton irradiation.
NASA Astrophysics Data System (ADS)
Galisteo-López, Juan F.
2017-02-01
Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.
Tuning the Magnetic Transport of an Induction LINAC using Emittance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houck, T L; Brown, C G; Ong, M M
2006-08-11
The Lawrence Livermore National Laboratory Flash X-Ray (FXR) machine is a linear induction accelerator used to produce a nominal 18 MeV, 3 kA, 65 ns pulse width electron beam for hydrodynamic radiographs. A common figure of merit for this type of radiographic machine is the x-ray dose divided by the spot area on the bremsstrahlung converter where a higher FOM is desired. Several characteristics of the beam affect the minimum attainable x-ray spot size. The most significant are emittance (chaotic transverse energy), chromatic aberration (energy variation), and beam motion (transverse instabilities and corkscrew motion). FXR is in the midst ofmore » a multi-year optimization project to reduce the spot size. This paper describes the effort to reduce beam emittance by adjusting the fields of the transport solenoids and position of the cathode. If the magnetic transport is not correct, the beam will be mismatched and undergo envelope oscillations increasing the emittance. We measure the divergence and radius of the beam in a drift section after the accelerator by imaging the optical transition radiation (OTR) and beam envelope on a foil. These measurements are used to determine an emittance. Relative changes in the emittance can be quickly estimated from the foil measurements allowing for an efficient, real-time study. Once an optimized transport field is determined, the final focus can be adjusted and the new x-ray spot measured. A description of the diagnostics and analysis is presented.« less
Method of depositing multi-layer carbon-based coatings for field emission
Sullivan, John P.; Friedmann, Thomas A.
1999-01-01
A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.
Method of depositing multi-layer carbon-based coatings for field emission
Sullivan, J.P.; Friedmann, T.A.
1999-08-10
A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riise, Heine Nygard, E-mail: h.n.riise@fys.uio.no; Azarov, Alexander; Svensson, Bengt G.
2015-07-13
Shallow, Boron (B)-doped p{sup +} emitters have been realized using spin-on deposition and Flash Lamp Annealing (FLA) to diffuse B into monocrystalline float zone Silicon (Si). The emitters extend between 50 and 140 nm in depth below the surface, have peak concentrations between 9 × 10{sup 19 }cm{sup –3} and 3 × 10{sup 20 }cm{sup –3}, and exhibit sheet resistances between 70 and 3000 Ω/□. An exceptionally large increase in B diffusion occurs for FLA energy densities exceeding ∼93 J/cm{sup 2} irrespective of 10 or 20 ms pulse duration. The effect is attributed to enhanced diffusion of B caused by Si interstitial injection following a thermally activated reaction betweenmore » the spin-on diffusant film and the silicon wafer.« less
Chemical detection system and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caffrey, Augustine J.; Chichester, David L.; Egger, Ann E.
2017-06-27
A chemical detection system includes a frame, an emitter coupled to the frame, and a detector coupled to the frame proximate the emitter. The system also includes a shielding system coupled to the frame and positioned at least partially between the emitter and the detector, wherein the frame positions a sensing surface of the detector in a direction substantially parallel to a plane extending along a front portion of the frame. A method of analyzing composition of a suspect object includes directing neutrons at the object, detecting gamma rays emitted from the object, and communicating spectrometer information regarding the gammamore » rays. The method also includes presenting a GUI to a user with a dynamic status of an ongoing neutron spectroscopy process. The dynamic status includes a present confidence for a plurality of compounds being present in the suspect object responsive to changes in the spectrometer information during the ongoing process.« less
NASA Astrophysics Data System (ADS)
Zhang, Z.; Giesselmann, M.; Mankowski, J.; Dickens, J.; Neuber, A.; Joshi, R. P.
2017-05-01
A molecular dynamics (MD) model is used to study the potential for mass ejection from a metal nanoprotrusion, driven by high fields and temperature increases. Three-dimensional calculations of the electric fields surrounding the metal emitter are used to obtain the Maxwell stress on the metal. This surface loading is coupled into MD simulations. Our results show that mass ejection from the nanotip is possible and indicate that both larger aspect ratios and higher local temperatures will drive the instability. Hence it is predicted that in a nonuniform distribution of emitters, the longer and thinner sites will suffer the most damage, which is generally in keeping with the trends of a recent experimental report (Parson et al 2014 IEEE Trans. Plasma Sci. 42 3982). A possible hypothesis for mass ejection in the absence of a distinct nanoprotrusion is also discussed.
High-power VCSELs for smart munitions
NASA Astrophysics Data System (ADS)
Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald
2006-08-01
The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.
Improvement of reusable surface insulation material
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of a program to improve the reusable surface insulation (RSI) system through the improvement of the LI-1500 material properties and the simplification of the RSI system. The improvements made include: 2500 F-capability RSI systems, water-impervious surface coatings, establishment of a high-emittance coating constituent, development of a secondary water-reduction system, and achievement of a lower density (9 pcf) RSI material.
Controls on the methane released through ebullition affected by permafrost degradation
S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington
2014-01-01
Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...
Selective coating for solar panels. [using black chrome and black nickel
NASA Technical Reports Server (NTRS)
Mcdonald, G. E. (Inventor)
1977-01-01
The energy absorbing properties of solar heating panels are improved by depositing a black chrome coating of controlled thickness on a specially prepared surface of a metal substrate. The surface is prepared by depositing a dull nickel on the substrate, and the black chrome is plated on this low emittance surface to a thickness between 0.5 micron and 2.5 microns.
Optical and electrical properties of ion beam textured Kapton and Teflon
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1977-01-01
An electron bombardment argon ion source was used to ion etch polyimide (Kapton) and fluorinated ethylene, FEP (Teflon). Samples of polyimide and FEP were exposed to (0.5-1.0) keV Ar ions at ion current densities of (1.0-1/8) mA/sq cm for various exposure times. Changes in the optical and electrical properties of the samples were used to characterize the exposure. Spectral reflectance and transmittance measurements were made between 0.33 and 2.16 micron m using an integrating sphere after each exposure. From these measurements, values of solar absorptance were obtained. Total emittance measurements were also recorded for some samples. Surface resistivity was used to determine changes in the electrical conductivity of the etched samples. A scanning electron microscope recorded surface structure after exposure. Spectral optical data, resistivity measurements, calculated absorptance and emittance measurements are presented along with photomicrographs of the surface structure for the various exposures to Ar ions.
AlGaAs phased array laser for optical communications
NASA Technical Reports Server (NTRS)
Carlson, N. W.
1989-01-01
Phased locked arrays of multiple AlGaAs diode laser emitters were investigated both in edge emitting and surface emitting configurations. CSP edge emitter structures, coupled by either evanescent waves or Y-guides, could not achieve the required powers (greater than or similar to 500 mW) while maintaining a diffraction limited, single lobed output beam. Indeed, although the diffraction limit was achieved in this type of device, it was at low powers and in the double lobed radiation pattern characteristic of out-of-phase coupling. Grating surface emitting (GSE) arrays were, therefore, investigated with more promising results. The incorporation of second order gratings in distribute Bragg reflector (DBR) structures allows surface emission, and can be configured to allow injection locking and lateral coupling to populate 2-D arrays that should be able to reach power levels commensurate with the needs of high performance, free space optical communications levels. Also, a new amplitude modulation scheme was developed for GSE array operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yuguo; Upadhyaya, Vijaykumar; Chen, Chia-Wei
This paper reports on the implementation of carrier-selective tunnel oxide passivated rear contact for high-efficiency screen-printed large area n-type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open-circuit voltage iVoc of 714mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back-end high temperature process. In combination with an ion-implanted Al2O3-passivated boron emitter and screen-printed front metal grids,more » this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n-type Czochralski wafers.« less
Multi-ball and one-ball geolocation
NASA Astrophysics Data System (ADS)
Nelson, D. J.; Townsend, J. L.
2017-05-01
We present analysis methods that may be used to geolocate emitters using one or more moving receivers. While some of the methods we present may apply to a broader class of signals, our primary interest is locating and tracking ships from short pulsed transmissions, such as the maritime Automatic Identification System (AIS.) The AIS signal is difficult to process and track since the pulse duration is only 25 milliseconds, and the pulses may only be transmitted every six to ten seconds. In this article, we address several problems including accurate TDOA and FDOA estimation methods that do not require searching a two dimensional surface such as the cross-ambiguity surface. As an example, we apply these methods to identify and process AIS pulses from a single emitter, making it possible to geolocate the AIS signal using a single moving receiver.
Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor); Hofer, Richard R. (Inventor)
2012-01-01
An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.
Semiconductor lasers vs LEDs in diagnostic and therapeutic medicine
NASA Astrophysics Data System (ADS)
Gryko, Lukasz; Zajac, Andrzej; Szymanska, Justyna; Blaszczak, Urszula; Palkowska, Anna; Kulesza, Ewa
2016-12-01
Semiconductor emitters are used in many areas of medicine, allowing for new methods of diagnosis, treatment and effective prevention of many diseases. The article presents selected areas of application of semiconductor sources in UVVIS- NIR range, where in recent years competition in semiconductor lasers and LEDs applications has been observed. Examples of applications of analyzed sources are indicated for LLLT, PDT and optical diagnostics using the procedure of color contrast. Selected results of LLLT research of the authors are presented that were obtained by means of the developed optoelectronic system for objectified irradiation and studies on the impact of low-energy laser and LED on lines of endothelial cells of umbilical vein. Usefulness of the spectrally tunable LED lighting system for diagnostic purposes is also demonstrated, also as an illuminator for surface applications - in procedure of variable color contrast of the illuminated object.
Near-field optical model for directed energy-propelled spacecrafts
NASA Astrophysics Data System (ADS)
Sucich, Amber; Snyder, Tomas; Hughes, Gary B.; Srinivasan, Prashant; Lubin, Philip; Zhang, Qicheng; Cohen, Alexander; Madajian, Jonathan; Brashears, Travis; Rupert, Nic
2017-09-01
Directed energy is envisioned to drive wafer-scale spacecraft to relativistic speeds. Spacecraft propulsion is provided by a large array of lasers, either in Earth orbit or stationed on the ground. The directed-energy beam is focused on the spacecraft sail, and momentum from photons in the laser beam is transferred to the spacecraft as the beam reflects off of the sail. In order for the beam to be concentrated on the spacecraft, precise phase control of all the elements across the laser array will be required. Any phase misalignments within the array will give rise to pointing fluctuations and flux asymmetry in the beam, necessitating creative approaches to spacecraft stability and beam following. In order to simulate spacecraft acceleration using an array of phase-locked lasers, a near field intensity model of the laser array is required. This paper describes a light propagation model that can be used to calculate intensity patterns for the near-field diffraction of a phased array. The model is based on the combination of complex frequencies from an array of emitters as the beams from each emitter strike a target surface. Ray-tracing geometry is used to determine the distance from each point on an emitter optical surface to each point on the target surface, and the distance is used to determine the phase contribution. Simulations are presented that explore the effects of fixed and time-varying phase mis-alignments on beam pointing, beam intensity and focusing characteristics.
Surface etching technologies for monocrystalline silicon wafer solar cells
NASA Astrophysics Data System (ADS)
Tang, Muzhi
With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.
Development of the 2-MV Injector for HIF
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Kwan, J. W.; Henestroza, E.; Kim, C.
2001-05-01
The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated.
Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors
NASA Technical Reports Server (NTRS)
Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab
2003-01-01
Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.
Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation.
Polking, Mark J; Dibos, Alan M; de Leon, Nathalie P; Park, Hongkun
2018-01-01
Defect-based color centers in wide-bandgap crystalline solids are actively being explored for quantum information science, sensing, and imaging. Unfortunately, the luminescent properties of these emitters are frequently degraded by blinking and photobleaching that arise from poorly passivated host crystal surfaces. Here, a new method for stabilizing the photoluminescence and charge state of color centers based on epitaxial growth of an inorganic passivation layer is presented. Specifically, carbon antisite-vacancy pairs (CAV centers) in 4H-SiC, which serve as single-photon emitters at visible wavelengths, are used as a model system to demonstrate the power of this inorganic passivation scheme. Analysis of CAV centers with scanning confocal microscopy indicates a dramatic improvement in photostability and an enhancement in emission after growth of an epitaxial AlN passivation layer. Permanent, spatially selective control of the defect charge state can also be achieved by exploiting the mismatch in spontaneous polarization at the AlN/SiC interface. These results demonstrate that epitaxial inorganic passivation of defect-based quantum emitters provides a new method for enhancing photostability, emission, and charge state stability of these color centers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography
NASA Astrophysics Data System (ADS)
Kirley, Matthew P.; Aloui, Tanouir; Glass, Jeffrey T.
2017-06-01
The rapid adoption of nanotechnology in fields as varied as semiconductors, energy, and medicine requires the continual improvement of nanopatterning tools. Lithography is central to this evolving nanotechnology landscape, but current production systems are subject to high costs, low throughput, or low resolution. Herein, we present a solution to these problems with the use of monolayer graphene in a graphene-insulator-semiconductor (GIS) electron emitter device for large-area electron lithography. Our GIS device displayed high emission efficiency (up to 13%) and transferred large patterns (500 × 500 μm) with high fidelity (<50% spread). The performance of our device demonstrates a feasible path to dramatic improvements in lithographic patterning systems, enabling continued progress in existing industries and opening opportunities in nanomanufacturing.
Low Earth Orbit Environmental Durability of Recently Developed Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2015-01-01
The Materials International Space Station Experiment provided a means to expose materials and devices to the low Earth orbit environment on the exterior of the International Space Station. By returning the specimens to Earth after flight, the specimens could be evaluated by comparison with pre-flight measurements. One area of continuing interest is thermal control paints and coatings that are applied to exterior surfaces of spacecraft. Though traditional radiator coatings have been available for decades, recent work has focused on new coatings that offer custom deposition or custom optical properties. The custom deposition of interest is plasma spraying and one type of coating recently developed as part of a Small Business Innovative Research effort was designed to be plasma sprayed onto radiator surfaces. The custom optical properties of interest are opposite to those of a typical radiator coating, having a combination of high solar absorptance and low infrared emittance for solar absorber applications, and achieved in practice via a cermet coating. Selected specimens of the plasma sprayed coatings and the solar absorber coating were flown on Materials International Space Station Experiment 7, and were recently returned to Earth for post-flight analyses. For the plasma sprayed coatings in the ram direction, one specimen increased in solar absorptance and one specimen decreased in solar absorptance, while the plasma sprayed coatings in the wake direction changed very little in solar absorptance. For the cermet coating deployed in both the ram and wake directions, the solar absorptance increased. Interestingly, all coatings showed little change in infrared emittance.
Development of a theory of the spectral reflectance of minerals, part 4
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Emslie, A. G.; Smith, E. M.
1972-01-01
A theory of the spectral reflectance or emittance of particulate minerals was developed. The theory is expected to prove invaluable in the interpretation of the remote infrared spectra of planetary surfaces.
Accelerators for Discovery Science and Security applications
NASA Astrophysics Data System (ADS)
Todd, A. M. M.; Bluem, H. P.; Jarvis, J. D.; Park, J. H.; Rathke, J. W.; Schultheiss, T. J.
2015-05-01
Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15-50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug-cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.
Work function and surface stability of tungsten-based thermionic electron emission cathodes
NASA Astrophysics Data System (ADS)
Jacobs, Ryan; Morgan, Dane; Booske, John
2017-11-01
Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.
Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona
2013-07-08
In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).
Emittance Measurements for a Thin Liquid Sheet Flow
NASA Technical Reports Server (NTRS)
Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.
1996-01-01
The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.
Enhanced blue responses in nanostructured Si solar cells by shallow doping
NASA Astrophysics Data System (ADS)
Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho
2018-03-01
Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.
NASA Astrophysics Data System (ADS)
Mantino, Alberto; Marchina, Chiara; Bonari, Enrico; Fabbrizzi, Alessandro; Rossetto, Rudy
2017-04-01
During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 - 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the suitability of SDI for globe artichoke cultivation, reducing the water consumption, while maintaining (or even increasing) crop production and (ii) assess the crop water use efficiency respect to surface drip-irrigation. The field test is located in Venturina (Italy) and it covers a surface of 4 ha. The soil is characterized by sandy-loam texture, 1.72% of organic matter at 7.81 pH. Groundwater is the main source of supply for irrigation. By the chemical point of view, a monitoring campaign in spring 2016 showed a neutral pH of 7.2, electrical conductivity of 1363 μS/cm, 373 and 243 mg/l of total sulphate and carbonate, respectively, thus demonstrating the suitability of groundwater for SDI application. The SDI system was implemented at the beginning of September 2016. The sub-surface buried pipelines, were placed at 0.25 m depth, with emitters spaced 0.5 m. The distance between pipelines was 1.5 m, according to globe artichoke layout (1.5 m between rows, 1 m in-row spacing). Surface-buried tubes were placed in an area about 0.75 ha wide for the comparison with SDI. Artichoke var. Terom were transplanted after the SDI operation test. In the next 3 years, both crop productivity and water use will be assessed. Results will be presented and discussed with the whole farmer's community. Acknowledgement This paper is presented within the framework of the project LIFE REWAT, which has received funding from the LIFE Programme of the European Union Grant Agreement LIFE14 ENV/IT/001290.
NASA Astrophysics Data System (ADS)
Ghazouani, Hiba; Autovino, Dario; Douh, Boutheina; Boujelben, Abdel Hamid; Provenznao, Giuseppe; Rallo, Giovanni
2014-05-01
The main objective of the work is to assess the emitters optimal position for Eggplant crop (Solanum melongena L.) in a sandy loam soil irrigated with surface or subsurface drip irrigation systems, by means of field measurements and simulations carried out with Hydrus-2D model. Initially, the performance of the model is evaluated on the basis of the comparison between simulated soil water contents (SWC) and the corresponding measured in two plots, in which laterals with coextruded emitters are laid on the soil surface (T0) and at 20 cm depth (T20), respectively. In order to choose the best position of the lateral, the results of different simulation runs, carried out by changing the installation depth of the lateral (5 cm, 15 cm and 45 cm) were compared in terms of ratio between actual transpiration and total amount of water provided during the entire growing season (WUE). Experiments were carried out, from April to June 2007, at Institut Supérieur Agronomique de Chott Mériem (Sousse, Tunisia). In the two plots, plants were spaced 0.40 m along the row and 1.2 m between the rows. Each plot was irrigated by means of laterals with coextruded emitters spaced 0.40 m and discharging a flow rate equal to 4.0 l h-1 at a nominal pressure of 100 kPa. In each plot, spatial and temporal variability of SWCs were acquired with a Time Domain Reflectometry probe (Trime-FM3), on a total of four 70 cm long access tubes, installed along the direction perpendicular to the plant row, at distances of 0, 20, 40 and 60 cm from the emitter. Irrigation water was supplied, accounting for the rainfall, every 7-10 days at the beginning of the crop cycle (March-April) and approximately once a week during the following stages till the harvesting (May-June), for a total of 15 one-hour watering. To run the model, soil evaporation, Ep, and crop transpiration, Tp were determined according to the modified FAO Penman-Monteith equation and the dual crop coefficient approach, whereas soil hydraulics and rooting system parameters were experimentally determined. Simulated SWCs resulted fairly close to the corresponding measured at different distances from the emitter and therefore the model was able to predict SWCs in the root zone with values of the Root Mean Square Error generally lower than 4%. This result is consequent to the appropriate schematization of the root distribution, as well as of the root water uptake. Simulations also evidenced the contribute of soil evaporation losses when laterals are installed from the soil surface to a 20 cm depth, whereas significant water losses by deep percolation occured at the highest installation depth. The values of WUE associated to the different examined installation depths tend to a very slight increase when the position of the lateral rises from 0 to 15 cm and start to decrease for the higher depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, N.; Fiore, A.; Nedel, P.
2009-07-15
We demonstrate the coupling of a single InAs/InP quantum, emitting around 1.55 {mu}m, to a slow-light mode in a two-dimensional photonic crystal on Bragg reflector. These surface addressable 2.5D photonic crystal band-edge modes present the advantages of a vertical emission and the mode area and localization may be controlled, leading to a less critical spatial alignment with the emitter. An increase in the spontaneous emission rate by a factor of 1.5-2 is measured at low temperature and is compared to the Purcell factor predicted by three-dimensional time-domain electromagnetic simulations.
NASA Astrophysics Data System (ADS)
Popov, E. O.; Kolosko, A. G.; Filippov, S. V.; Romanov, P. A.; Terukov, E. I.; Shchegolkov, A. V.; Tkachev, A. G.
2017-12-01
We received and compared the current-voltage characteristics of large-area field emitters based on nanocomposites with graphene and nanotubes. The characteristics were measured in two high voltage scanning modes: the "slow" and the "fast". Correlation between two types of hysteresis observed in these regimes was determined. Conditions for transition from "reverse" hysteresis to the "direct" one were experimentally defined. Analysis of the eight-shaped hysteresis was provided with calculation of the effective emission parameters. The phenomenological model of adsorption-desorption processes in the field emission system was proposed.
Low damage dry etch for III-nitride light emitters
NASA Astrophysics Data System (ADS)
Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.
2015-08-01
We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.
Foam Core Shielding for Spacecraft
NASA Technical Reports Server (NTRS)
Adams, Marc
2007-01-01
A foam core shield (FCS) system is now being developed to supplant multilayer insulation (MLI) systems heretofore installed on spacecraft for thermal management and protection against meteoroid impacts. A typical FCS system consists of a core sandwiched between a face sheet and a back sheet. The core can consist of any of a variety of low-to-medium-density polymeric or inorganic foams chosen to satisfy application-specific requirements regarding heat transfer and temperature. The face sheet serves to shock and thereby shatter incident meteoroids, and is coated on its outer surface to optimize its absorptance and emittance for regulation of temperature. The back sheet can be dimpled to minimize undesired thermal contact with the underlying spacecraft component and can be metallized on the surface facing the component to optimize its absorptance and emittance. The FCS systems can perform better than do MLI systems, at lower mass and lower cost and with greater volumetric efficiency.
Jamaludin, Nur Fadilah; Yantara, Natalia; Ng, Yan Fong; Li, Mingjie; Goh, Teck Wee; Thirumal, Krishnamoorthy; Sum, Tze Chien; Mathews, Nripan; Soci, Cesare; Mhaisalkar, Subodh
2018-05-07
Metal halide perovskites have demonstrated breakthrough performances as absorber and emitter materials for photovoltaic and display applications respectively. However, despite the low manufacturing cost associated with solution-based processing, the propensity for defect formation with this technique has led to an increasing need for defect passivation. Here, we present an inexpensive and facile method to remedy surface defects through a postdeposition treatment process using branched alkylammonium cation species. The simultaneous realignment of interfacial energy levels upon incorporation of tetraethylammonium bromide onto the surface of CH 3 NH 3 PbBr 3 films contributes favorably toward the enhancement in overall light-emitting diode characteristics, achieving maximum luminance, current efficiency, and external quantum efficiency values of 11 000 cd m -2 , 0.68 cd A -1 , and 0.16 %, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relation between L-band soil emittance and soil water content
NASA Technical Reports Server (NTRS)
Stroosnijder, L.; Lascano, R. J.; Van Bavel, C. H. M.; Newton, R. W.
1986-01-01
An experimental relation between soil emittance (E) at L-band and soil surface moisture content (M) is compared with a theoretical one. The latter depends on the soil dielectric constant, which is a function of both soil moisture content and of soil texture. It appears that a difference of 10 percent in the surface clay content causes a change in the estimate of M on the order of 0.02 cu m/cu m. This is based on calculations with a model that simulates the flow of water and energy, in combination with a radiative transfer model. It is concluded that an experimental determination of the E-M relation for each soil type is not required, and that a rough estimate of the soil texture will lead to a sufficiently accurate estimate of soil moisture from a general, theoretical relationship obtained by numerical simulation.
Delmore, James E.
1987-01-01
A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.
Efficient, deep-blue TADF-emitters for OLED display applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Volz, Daniel; Baumann, Thomas
2016-09-01
Currently, the mobile display market is strongly shifting towards AMOLED technology, in order to enable curved and flexible displays. This leads to a growing demand for highly efficient OLED emitters to reduce the power consumption and increase display resolution at the same time. While highly efficient green and red OLEDs already found their place in commercial OLED-displays, the lack of efficient blue emitters is still an issue. Consequently, the active area for blue is considerably larger than for green and red pixels, to make up for the lower efficiency. We intend to close this efficiency-gap with novel emitters based on thermally activated delayed fluorescence (TADF) technology. Compared to state-of-the-art fluorescent dopants, the efficiency of TADF-emitters is up to four times higher. At the same time, it is possible to design them in a way to maintain deep blue emission, i.e. CIE y < 0.2. These aspects are relevant to produce efficient high resolution AMOLED displays. Apart from these direct customer benefits, our TADF technology does not contain any rare elements, which allows for the fabrication of sustainable OLED technology. In this work, we highlight one of our recently developed blue TADF materials. Basic material properties as well as first device results are discussed. In a bottom-emitting device, a CIEx/CIEy coordinate of (0.16/0.17) was achieved with efficiency values close to 20% EQE.
Piezoresistance and solar cell efficiency
NASA Technical Reports Server (NTRS)
Weizer, Victor G.
1987-01-01
Diffusion-induced stresses in silicon are shown to result in large localized changes in the minority-carrier mobility which in turn can have a significant effect on cell output. Evidence is given that both compressive and tensile stresses can be generated in either the emitter or the base region. Tensile stresses in the base appear to be much more effective in altering cell performance than do compressive stresses. While most stress-related effects appear to degrade cell efficiency, this is not always the case. Evidence is presented showing that arsenic-induced stresses can result in emitter characteristics comparable to those found in the MINP cell without requiring a high degree of surface passivation.
Liquid-phase deposition of thin Si films by ballistic electro-reduction
NASA Astrophysics Data System (ADS)
Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.
2013-01-01
It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.
The effect of internal stresses on solar cell efficiency
NASA Technical Reports Server (NTRS)
Weizer, Victor G.
1987-01-01
Diffusion induced stresses in silicon are shown to result in large localized changes in the minority carrier mobility which in turn have a significant effect on cell output. Evidence is given that both compressive and tensile stresses can be generated in either the emitter or the base region. Tensile stresses appear to be much more effective in altering cell performance. While most stress related effects appear to degrade cell efficiency, this is not always the case. Evidence is presented showing that arsenic induced stresses can result in emitter characteristics comparable to those found in the MINP cell without requiring a high degree of surface passivation.
The BetaCage, an ultra-sensitive screener for surface contamination
NASA Astrophysics Data System (ADS)
Bunker, R.; Ahmed, Z.; Bowles, M. A.; Golwala, S. R.; Grant, D. R.; Kos, M.; Nelson, R. H.; Schnee, R. W.; Rider, A.; Wang, B.; Zahn, A.
2013-08-01
Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocon-tamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha-and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas keV-1 m-2 day-1 and 0.1 alphas m-2 day-1, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expected to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95 × 95 cm2 sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.
Long-wavelength VCSELs: Power-efficient answer
NASA Astrophysics Data System (ADS)
Kapon, Eli; Sirbu, Alexei
2009-01-01
The commercialization of long-wavelength vertical-cavity surface-emitting lasers (VCSELs) is gaining new momentum as the telecoms market shifts from long-haul applications to local and access networks. These small, power-efficient devices offer several advantages over traditional edge-emitters.
Compact representations of partially coherent undulator radiation suitable for wave propagation
Lindberg, Ryan R.; Kim, Kwang -Je
2015-09-28
Undulator radiation is partially coherent in the transverse plane, with the degree of coherence depending on the ratio of the electron beam phase space area (emittance) to the characteristic radiation wavelength λ. Numerical codes used to predict x-ray beam line performance can typically only propagate coherent fields from the source to the image plane. We investigate methods for representing partially coherent undulator radiation using a suitably chosen set of coherent fields that can be used in standard wave propagation codes, and discuss such “coherent mode expansions” for arbitrary degrees of coherence. In the limit when the electron beam emittance alongmore » at least one direction is much larger than λ the coherent modes are orthogonal and therefore compact; when the emittance approaches λ in both planes we discuss an economical method of defining the relevant coherent fields that samples the electron beam phase space using low-discrepancy sequences.« less
Photovoltaic cell and production thereof
Narayanan, Srinivasamohan [Gaithersburg, MD; Kumar, Bikash [Bangalore, IN
2008-07-22
An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.
Cryogenic thermal emittance measurements on small-diameter stainless steel tubing
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.
2017-12-01
The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of ~2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Thermionic converter performance with oxide collectors
NASA Technical Reports Server (NTRS)
Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.
1977-01-01
Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.
2017-01-01
The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing
NASA Technical Reports Server (NTRS)
Jahromi, A. E.; Tuttle, J. G.; Canavan, E. R.
2017-01-01
The Mid Infrared Instrument aboard the James Webb Space Telescoep includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of approximately 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by a running a warm gas through the lines to sublimate the water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the abosprtance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 300 K. This value leads to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.
Nanoscale probing of image-dipole interactions in a metallic nanostructure
Ropp, Chad; Cummins, Zachary; Nah, Sanghee; Fourkas, John T.; Shapiro, Benjamin; Waks, Edo
2015-01-01
An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. PMID:25790228
Jia, Hongwei; Liu, Haitao; Zhong, Ying
2015-01-01
The radiation of an electric dipole emitter can be drastically enhanced if the emitter is placed in the nano-gap of a metallic dipole antenna. By assuming that only surface plasmon polaritons (SPPs) are excited on the antenna, we build up an intuitive pure-SPP model that is able to comprehensively predict the electromagnetic features of the antenna radiation, such as the total or radiative emission rate and the far-field radiation pattern. With the model we can distinguish the respective contributions from SPPs and from other surface waves to the antenna radiation. It is found that for antennas with long arms that support higher-order resonances, SPPs provide a dominant contribution to the antenna radiation, while for other cases, the contribution of surface waves other than SPPs should be considered. The model reveals an intuitive picture that the enhancement of the antenna radiation is due to surface waves that are resonantly excited on the two antenna arms and that are further coupled into the nano-gap or scattered into free space. From the model we can derive a phase-matching condition that predicts the antenna resonance and the resultant enhanced radiation. The model is helpful for a physical understanding and intuitive design of antenna devices. PMID:25678191
NASA Technical Reports Server (NTRS)
MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III
2010-01-01
Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources
NASA Astrophysics Data System (ADS)
Montt de Garcia, Kristina; Patel, Jignasha; Perry, Radford, III
2010-08-01
Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources.
RERANKING OF AREA SOURCES IN LIGHT OF SEASONAL/ REGIONAL EMISSION FACTORS AND STATE/LOCAL NEEDS
The report gives results of an effort to provide a better understanding of air pollution area sources and their emissions, to prioritize their importance as emitters of volatile organic compounds (VOCs), and to identify sources for which better emission estimation methodologies a...
NASA Technical Reports Server (NTRS)
Neugroschel, A.
1981-01-01
New methods are presented and illustrated that enable the accurate determination of the diffusion length of minority carriers in the narrow regions of a solar cell or a diode. Other methods now available are inaccurate for the desired case in which the width of the region is less than the diffusion length. Once the diffusion length is determined by the new methods, this result can be combined with measured dark I-V characteristics and with small-signal admittance characteristics to enable determination of the recombination currents in each quasi-neutral region of the cell - for example, in the emitter, low-doped base, and high-doped base regions of the BSF (back-surface-field) cell. This approach leads to values for the effective surface recombination velocity of the high-low junction forming the back-surface field of BSF cells or the high-low emitter junction of HLE cells. These methods are also applicable for measuring the minority-carrier lifetime in thin epitaxial layers grown on substrates with opposite conductivity type.
Process for producing a high emittance coating and resulting article
NASA Technical Reports Server (NTRS)
Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)
1993-01-01
Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail
2010-05-15
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beammore » distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.« less
Off-axis beam dynamics in rf-gun-based electron photoinjectors
Huang, R.; Mitchell, Chad; Papadopoulos, C.; ...
2016-11-22
The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less
Thermo-electronic solar power conversion with a parabolic concentrator
NASA Astrophysics Data System (ADS)
Olukunle, Olawole C.; De, Dilip K.
2016-02-01
We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.
Off-axis beam dynamics in rf-gun-based electron photoinjectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, R.; Mitchell, Chad; Papadopoulos, C.
The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less
NASA Astrophysics Data System (ADS)
Forbes, Richard G.
2008-10-01
This paper reports (a) a simple dimensionless equation relating to field-emitted vacuum space charge (FEVSC) in parallel-plane geometry, namely 9ζ2θ2-3θ-4ζ+3=0, where ζ is the FEVSC "strength" and θ is the reduction in emitter surface field (θ =field-with/field-without FEVSC), and (b) the formula j =9θ2ζ/4, where j is the ratio of emitted current density JP to that predicted by Child's law. These equations apply to any charged particle, positive or negative, emitted with near-zero kinetic energy. They yield existing and additional basic formulas in planar FEVSC theory. The first equation also yields the well-known cubic equation describing the relationship between JP and applied voltage; a method of analytical solution is described. Illustrative FEVSC effects in a liquid metal ion source and in field electron emission are discussed. For Fowler-Nordheim plots, a "turn-over" effect is predicted in the high FEVSC limit. The higher the voltage-to-local-field conversion factor for the emitter concerned, then the higher is the field at which turn over occurs. Past experiments have not found complete turn over; possible reasons are noted. For real field emitters, planar theory is a worst-case limit; however, adjusting ζ on the basis of Monte Carlo calculations might yield formulae adequate for real situations.
Development of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy
Schulte, Kevin L.; Simon, John; Mangum, John; ...
2017-04-30
We demonstrate the growth of homojunction GaInP solar cells by dynamic hydride vapor phase epitaxy for the first time. Simple unpassivated n-on-p structures grown in an inverted configuration with gold back reflectors were analyzed. Short wavelength performance varied strongly with emitter thickness, since collection in the emitter was limited by the lack of surface passivation. Collection in the base increased strongly with decreasing doping density, in the range 1 x 10 16 - 5 x 10 17 cm -3. Optical modeling indicated that, in our best device, doped ~1 x 10 16 cm -3, almost 94% of photons that passedmore » through the emitter were collected. Modeling also indicated that the majority of collection occurs in the depletion region with this design, suggesting that nonradiative recombination there might limit device performance. In agreement with this observation, the experimental dark J-V curve exhibited an ideality factor near n = 2. Thus, limitation of deep level carrier traps in the material is a path to improved performance. Preliminary experiments indicate that a reduced V/III ratio, which potentially affects the density of these presumed traps, improves cell performance. With reduced V/III ratio, we demonstrate a ~13% efficient GaInP cell measured under the 1-sun AM1.5G spectrum. In conclusion, this cell had an antireflective coating, but no front surface passivation.« less
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
NASA Astrophysics Data System (ADS)
Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.
2017-10-01
We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.
Electronic Warfare and Radar Systems Engineering Handbook
1999-04-01
EWRL Electronic Warfare Reprogrammable ELNOT Emitter Library Notation Library (USN) EM Electromagnetic EWSI EW Systems Integration E-Mail Electronic...ram air turbine (RAT) propellers used to power aircraft pods, helicopter rotor blades, and protruding surfaces of automobile hubcaps will all provide
22.7% efficient PERL silicon solar cell module with a textured front surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J.; Wang, A.; Campbell, P.
1997-12-31
This paper describes a solar cell module efficiency of 22.7% independently measured at Sandia National Laboratories. This is the highest ever confirmed efficiency for a photovoltaic module of this size achieved by cells made from any material. This 778-cm{sup 2} module used 40 large-area double layer antireflection coated PERL (passivated emitter, rear locally-diffused) silicon cells of average efficiency of 23.1%. A textured front module surface considerably improve the module efficiency. Also reported is an independently confirmed efficiency of 23.7% for a 21.6 cm{sup 2} cell of the type used in the module. Using these PERL cells in the 1996 Worldmore » Solar Challenge solar car race from Darwin to Adelaide across Australia, Honda`s Dream and Aisin Seiki`s Aisol III were placed first and third, respectively. Honda also set a new record by reaching Adelaide in four days with an average speed of 90km/h over the 3010 km course.« less
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.
Liquid droplet radiator performance studies
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1984-01-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
1984-10-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubenko, Oksana; Baturin, Stanislav S.; Kovi, Kiran K.
One of the common problems in case of field emission from polycrystalline diamond films, which typically have uniform surface morphology, is uncertainty in determining exact location of electron emission sites across the surface. Although several studies have suggested that grain boundaries are the main electron emission source, it is not particularly clear what makes some sites emit more than the others. It is also practically unclear how one could quantify the actual electron emission area and therefore field emission current per unit area. In this paper we study the effect of actual, locally resolved, field emission (FE) area on electronmore » emission characteristics of uniform planar highly conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. It was routinely found that field emission from as-grown planar (N)UNCD films is always confined to a counted number of discrete emitting centers across the surface which varied in size and electron emissivity. It was established that the actual FE area critically depends on the applied electric field, as well as that the actual FE area and the overall electron emissivity improve with sp2 fraction present in the film irrespectively of the original substrate roughness and morphology. To quantify the actual FE area and its dependence on the applied electric field, imaging experiments were carried out in a vacuum system in a parallel-plate configuration with a specialty anode phosphor screen. Electron emission micrographs were taken concurrently with I-V characteristics measurements. In addition, a novel automated image processing algorithm was developed to process extensive imaging datasets and calculate emission area per image. By doing so, it was determined that the emitting area was always significantly smaller than the FE cathode surface area. Namely, the actual FE area would change from 5×10-3 % to 1.5 % of the total cathode area with the applied electric field increased. Finally and most importantly, it was shown that when I-E curves as measured in the experiment were normalized by the field-dependent emission area, the resulting j-E curves demonstrated a strong kink and significant deviation from Fowler-Nordheim (FN) law, and eventually saturated at a current density of ~100 mA/cm2 . This value was nearly identical for all (N)UNCD films measured in this study, regardless of the substrate.« less
Monolithic multinozzle emitters for nanoelectrospray mass spectrometry
Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA
2011-09-20
Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.
Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator.
Cowan, T E; Fuchs, J; Ruhl, H; Kemp, A; Audebert, P; Roth, M; Stephens, R; Barton, I; Blazevic, A; Brambrink, E; Cobble, J; Fernández, J; Gauthier, J-C; Geissel, M; Hegelich, M; Kaae, J; Karsch, S; Le Sage, G P; Letzring, S; Manclossi, M; Meyroneinc, S; Newkirk, A; Pépin, H; Renard-LeGalloudec, N
2004-05-21
The laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.e., at least 100-fold and may be as much as 10(4)-fold better than conventional accelerator beams. The fast acceleration being electrostatic from an initially cold surface, only collisions with the accelerating fast electrons appear to limit the beam laminarity. The ion beam source size is measured to be <15 microm (FWHM) for proton energies >10 MeV.
NASA Technical Reports Server (NTRS)
Werrett, Stephen; Seivold, Alfred L.
1990-01-01
A detailed nodal computer model was developed to thermally represent the hardware, and sensitivity studies were performed to evaluate design parameters and orbital environmental effects of an instrument cooling system for IR detectors. Thermal-vacuum testing showed excellent performance of the system and a correspondence with math model predictions to within 3 K. Results show cold stage temperature sensitivity to cold patch backload, outer stage external surface emittance degradation, and cold stage emittance degradation, respectively. The increase in backload on the cold patch over the mission lifetime is anticipated to be less than 3.0 watts, which translates to less than a 3-degree increase in detector temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Edstrom Jr., D.
Canonical-angular-momentum (CAM) dominated beams can be formed in photoinjectors by applying an axial magnetic field on the photocathode surface. Such a beam possess asymmetric eigenemittances and is characterized by the measure of its magnetization. CAM removal with a set of skew-quadrupole magnets maps the beam eigenemittances to the conventional emittances along each transverse degree of freedom, thereby yielding a flat beam with asymmetric transverse emittance. In this paper, we report on the ex- perimental generation of CAM dominated beam and their subsequent transformation into flat beams at the Fermilab Accelerator Science and Technology (FAST) facility 1. Our results are comparedmore » with numerical simulations and possible applications of the produced beams are discussed.« less
Highly directional thermal emitter
Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W
2015-03-24
A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.
Solar cell with silicon oxynitride dielectric layer
Shepherd, Michael; Smith, David D
2015-04-28
Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0
NASA Astrophysics Data System (ADS)
Schmithausen, Alexander J.; Trimborn, Manfred; Büscher, Wolfgang
2018-04-01
Livestock production systems in agriculture are one of the major emitters of greenhouse gases. So far, the focus of research in the dairy farm sector was primarily on ruminal methane (CH4) emissions. Emissions of nitrous oxide (N2O) usually arise from solid manure or in deep litter free stall barns. Release of N2O occurs as a result of interactions between organic material, nitrogen and moisture. Data of N2O emissions from modern dairy barns and liquid manure management systems are rare. Thus, the goal of this research was to determine the main sources of trace gas emissions at the dairy farm level, including N2O. Areas such as the scraped surface area where dry and wet conditions alternate are interesting. Possible sources of trace gases within and outside the barn were localised by measuring trace gas concentration rates from different dairy farm areas (e.g., areas covered with urine and excrement or slurry storage system) via the closed chamber technique. The results indicate typical emission ratios of carbon dioxide (CO2), CH4 and N2O in the various areas to generate comparable equivalent values. Calculated on the basis of nitrogen excretion from dairy cows, total emissions of N2O were much lower from barns than typically measured in fields. However, there were also areas within the barn with individual events and unexpected release factors of N2O concentrations such as urine patches, polluted areas and cubicles. Emission factors of N2O ranged from 1.1 to 5.0 mg m-2 d-1, respectively, for cleaned areas and urine patches. By considering the release factors of these areas and their proportion of the entire barn, total emission rates of 371 CO2-eq. LU-1 a-1, 36 CO2-eq. LU-1 a-1, and 1.7 kg CO2-eq. LU-1 a-1 for CO2, CH4 and N2O, respectively, were measured for the whole barn surface area. The CH4 emissions from surface area were stronger climate relevant comparing to N2O emissions, but compared to CH4 emissions from slurry storage or ruminal fermentation (not measured) even insignificant.
NASA Astrophysics Data System (ADS)
Janietz, S.; Krueger, H.; Thesen, M.; Salert, B.; Wedel, A.
2014-10-01
One example of organic electronics is the application of polymer based light emitting devices (PLEDs). PLEDs are very attractive for large area and fine-pixel displays, lighting and signage. The polymers are more amenable to solution processing by printing techniques which are favourable for low cost production in large areas. With phosphorescent emitters like Ir-complexes higher quantum efficiencies were obtained than with fluorescent systems, especially if multilayer stack systems with separated charge transport and emitting layers were applied in the case of small molecules. Polymers exhibit the ability to integrate all the active components like the hole-, electron-transport and phosphorescent molecules in only one layer. Here, the active components of a phosphorescent system - triplet emitter, hole- and electron transport molecules - can be linked as a side group to a polystyrene main chain. By varying the molecular structures of the side groups as well as the composition of the side chains with respect to the triplet emitter, hole- and electron transport structure, and by blending with suitable glass-forming, so-called small molecules, brightness, efficiency and lifetime of the produced OLEDs can be optimized. By choosing the triplet emitter, such as iridium complexes, different emission colors can be specially set. Different substituted triazine molecules were introduced as side chain into a polystyrene backbone and applied as electron transport material in PLED blend systems. The influence of alkyl chain lengths of the performance will be discussed. For an optimized blend system with a green emitting phosphorescent Ir-complex efficiencies of 60 cd/A and an lifetime improvement of 66.000 h @ 1000 cd/m2 were achieved.
Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array
NASA Astrophysics Data System (ADS)
Kintz, Andrew L.
This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering geolocates multiple simultaneous and co-frequency emitters in spite of highly erratic DOA estimates. We also mitigate manifold mismatch by applying the Direct Mapping Method (DMM). DMM averages DOA spectra on the earth(apostrophe)s surface and estimates the emitter locations directly from the composite spectrum. In the example results presented, our goal is to geolocate four diversely polarized emitters with a seven-element antenna array. This is too challenging for MAAE and DMM. We fuse Nullspace MUSIC and DMM into the novel Nullspace DMM algorithm and demonstrate that Nullspace DMM locates all emitters. Finally, we apply the proposed geolocation algorithms to real-world experimental data. A six-element antenna array and Data Collection System (DCS) were installed on a small aircraft. The DCS recorded signals from four live transmitters during a three-hour flight over Columbus, Ohio. The four emitters were geolocated from various segments of the flight. As expected, individual DOA estimates were erratic and widespread due to the airplane(apostrophe)s perturbations of the measured array manifold. MAAE and DMM locate at most three of the four emitters. On the other hand, Nullspace DMM yields unambiguous estimates for every emitter in every flight segment. The successful experimental trials show that Nullspace DMM could significantly enhance airborne emitter geolocation in missions such as RF spectrum enforcement, locating unknown transmitters for defense, and search and rescue operations.
Reappraisal of solid selective emitters
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1990-01-01
New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.
NASA Astrophysics Data System (ADS)
Stroe, Andra; Sobral, David; Matthee, Jorryt; Calhau, João; Oteo, Ivan
2017-11-01
While traditionally associated with active galactic nuclei (AGN), the properties of the C II] (λ = 2326 Å), C III] (λ, λ = 1907, 1909 Å) and C IV (λ, λ = 1549, 1551 Å) emission lines are still uncertain as large, unbiased samples of sources are scarce. We present the first blind, statistical study of C II], C III] and C IV emitters at z ˜ 0.68, 1.05, 1.53, respectively, uniformly selected down to a flux limit of ˜4 × 10-17 erg s-1 cm-1 through a narrow-band survey covering an area of ˜1.4 deg2 over COSMOS and UDS. We detect 16 C II], 35 C III] and 17 C IV emitters, whose nature we investigate using optical colours as well as Hubble Space Telescope (HST), X-ray, radio and far-infrared data. We find that z ˜ 0.7 C II] emitters are consistent with a mixture of blue (UV slope β = -2.0 ± 0.4) star-forming (SF) galaxies with discy HST structure and AGN with Seyfert-like morphologies. Bright C II] emitters have individual X-ray detections as well as high average black hole accretion rates (BHARs) of ˜0.1 M⊙ yr-1. C III] emitters at z ˜ 1.05 trace a general population of SF galaxies, with β = -0.8 ± 1.1, a variety of optical morphologies, including isolated and interacting galaxies and low BHAR (<0.02 M⊙ yr-1). Our C IV emitters at z ˜ 1.5 are consistent with young, blue quasars (β ˜ -1.9) with point-like optical morphologies, bright X-ray counterparts and large BHAR (0.8 M⊙ yr-1). We also find some surprising C II], C III] and C IV emitters with rest-frame equivalent widths (EWs) that could be as large as 50-100 Å. AGN or spatial offsets between the UV continuum stellar disc and the line-emitting regions may explain the large EW. These bright C II], C III] and C IV emitters are ideal candidates for spectroscopic follow-up to fully unveil their nature.
Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.
1991-01-01
Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.
Development of sensors for ceramic components in advanced propulsion systems
NASA Technical Reports Server (NTRS)
Atkinson, William H.; Cyr, M. A.; Strange, R. R.
1994-01-01
The 'Development of Sensors for Ceramics Components in Advanced Propulsion Systems' program was divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objectives of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. A summary report of the Phase 2 effort, together with conclusions and recommendations for each of the categories evaluated, has been submitted to NASA. Emittance tests were performed on six materials furnished by NASA Lewis Research Center. Measurements were made of various surfaces at high temperature using a Thermogage emissometer. This report describes the emittance test program and presents a summary of the results.
Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.
1991-01-01
Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.
Delmore, J.E.
1984-05-01
A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.
Rare Earth Garnet Selective Emitter
NASA Technical Reports Server (NTRS)
Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.
1994-01-01
Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional impurities, in the development of solid state laser crystals. Doping, dependent on the particular ion and crystal structure, may be as high as 100 at. % (complete substitution of yttrium ion with the rare earth ion). These materials have high melting points, 1940 C for YAG (Yttrium Aluminum Garnet), and low emissivity in the near infrared making them excellent candidates for a thin film selective emitter. As previously stated, the spectral emittance of a rare earth emitter is characterized by one or more well defined emission bands. Outside the emission band the emittance(absorptance) is much lower. Therefore, it is expected that emission outside the band for a thin film selective emitter will be dominated by the emitter substrate. For an efficient emitter (power in the emission band/total emitted power) the substrate must have low emittance, epsilon(sub S). This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium(Ho) and erbium (Er) doped YAG thin film selective emitters at (1500 K), and compares those results with the theoretical spectral emittance.
NASA Astrophysics Data System (ADS)
Benaron, David A.; Lennox, M.; Stevenson, David K.
1992-05-01
Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac assessment. The technique may lead to real-time optical imaging and quantitation of tissues oxygen delivery.
Shielding in ungated field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Jensen, K. L.; Shiffler, D. A.
Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less
NASA Astrophysics Data System (ADS)
Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun
2018-04-01
Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.
High-Power Broad-Area Diode Lasers and Laser Bars
NASA Astrophysics Data System (ADS)
Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens
This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-07-29
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-01-01
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode. PMID:28773237
Type-II GaAsSb/InP heterojunction bipolar light-emitting transistor
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Chu-Kung, B.; Walter, G.; Chan, R.
2004-06-01
We report radiative recombination in the base layer of Type-II InP/GaAsSb/InP double heterojunction bipolar light-emitting transistors (HBLET) operating in the common-emitter configuration. The typical current gain, β, for a 120×120 μm2 emitter area of the HBLET is 38. The optical emission wavelength from a 30 nm GaAs0.51Sb0.49 base is centered at λpeak=1600 nm. Three-port operation of the Type-II HBLET with simultaneously an amplified electrical output and an optical output with signal modulation is demonstrated at 10 kHz.
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)
1983-01-01
A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.
NASA Astrophysics Data System (ADS)
Stockman, S. A.; Fresina, M. T.; Hartmann, Q. J.; Hanson, A. W.; Gardner, N. F.; Baker, J. E.; Stillman, G. E.
1994-04-01
The incorporation of residual carbon has been studied for InP grown at low temperatures using TMIn and PH3 by low-pressure metalorganic chemical vapor deposition. n-type conduction is observed with electron concentrations as high as 1×1018 cm-3, and the electrical activation efficiency is 5%-15%. Carbon incorporation is found to be highly dependent on substrate temperature, suggesting that the rate-limiting step is desorption of CHy (0≤y≤3) from the surface during growth. Hydrogen is also incorporated in the layers during growth. The electron mobilities are lower for C-doped InP than for Si-doped InP. InP/InGaAs heterojunction bipolar transistors with C as the p-type base dopant and either Si or C as the n-type emitter dopant have been fabricated and compared. Devices with a carbon-doped base and emitter showed degraded performance, likely as a result of deep levels incorporated during growth of the emitter.
NASA Astrophysics Data System (ADS)
Karedla, Narain; Chizhik, Anna M.; Stein, Simon C.; Ruhlandt, Daja; Gregor, Ingo; Chizhik, Alexey I.; Enderlein, Jörg
2018-05-01
Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.
Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load
NASA Technical Reports Server (NTRS)
Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan
2008-01-01
NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.
Hollow Cathode Assembly Development for the HERMeS Hall Thruster
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.
2016-01-01
To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.
Transport property correlations for the niobium-1% zirconium alloy
NASA Astrophysics Data System (ADS)
Senor, David J.; Thomas, J. Kelly; Peddicord, K. L.
1990-10-01
Correlations were developed for the electrical resistivity (ρ), thermal conductivity ( k), and hemispherical total emittance (ɛ) of niobium-1% zirconium as functions of temperature. All three correlations were developed as empirical fits to experimental data. ρ = 5.571 + 4.160 × 10 -2(T) - 4.192 × 10 -6(T) 2 μΩcm , k = 13.16( T) 0.2149W/ mK, ɛ = 6.39 × 10 -2 + 4.98 × 10 -5( T) + 3.62 × 10 -8( T) 2 - 7.28 × 10 -12( T) 3. The relative standard deviation of the electrical resistivity correlation is 1.72% and it is valid over the temperature range 273 to 2700 K. The thermal conductivity correlation has a relative standard deviation of 3.24% and is valid over the temperature range 379 to 1421 K. The hemispherical total emittance correlation was developed for smooth surface materials only and represents a conservative estimate of the emittance of the alloy for space reactor fuel element modeling applications. It has a relative standard deviation of 9.50% and is valid over the temperature range 755 to 2670 K.
Reliability study on high power 638-nm triple emitter broad area laser diode
NASA Astrophysics Data System (ADS)
Yagi, T.; Kuramoto, K.; Kadoiwa, K.; Wakamatsu, R.; Miyashita, M.
2016-03-01
Reliabilities of the 638-nm triple emitter broad area laser diode (BA-LD) with the window-mirror structure were studied. Methodology to estimate mean time to failure (MTTF) due to catastrophic optical mirror degradation (COMD) in reasonable aging duration was newly proposed. Power at which the LD failed due to COMD (PCOMD) was measured for the aged LDs under the several aging conditions. It was revealed that the PCOMD was proportional to logarithm of aging duration, and MTTF due to COMD (MTTF(COMD)) could be estimated by using this relation. MTTF(COMD) estimated by the methodology with the aging duration of approximately 2,000 hours was consistent with that estimated by the long term aging. By using this methodology, the MTTF of the BA-LD was estimated exceeding 100,000 hours under the output of 2.5 W, duty cycles of 30% .
High brightness diode lasers controlled by volume Bragg gratings
NASA Astrophysics Data System (ADS)
Glebov, Leonid
2017-02-01
Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.
Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow
NASA Astrophysics Data System (ADS)
Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.
1989-10-01
The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.
NASA Astrophysics Data System (ADS)
Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi
2015-04-01
To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.
Diffusion-Driven Charge Transport in Light Emitting Devices
Oksanen, Jani; Suihkonen, Sami
2017-01-01
Almost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active region (AR) inside a pn-junction. This has hindered the development of emitters utilizing nanostructured ARs located close to device surfaces such as nanowires or surface quantum wells. Modern DHJ III-N LEDs also exhibit resistive losses that arise from the DHJ device geometry. The recently introduced diffusion-driven charge transport (DDCT) emitter design offers a novel way to transport charge carriers to unconventionally placed ARs. In a DDCT device, the AR is located apart from the pn-junction and the charge carriers are injected into the AR by bipolar diffusion. This device design allows the integration of surface ARs to semiconductor LEDs and offers a promising method to reduce resistive losses in high power devices. In this work, we present a review of the recent progress in gallium nitride (GaN) based DDCT devices, and an outlook of potential DDCT has for opto- and microelectronics. PMID:29231900
A study on metallic thermal protection system panel for Reusable Launch Vehicle
NASA Astrophysics Data System (ADS)
Caogen, Yao; Hongjun, Lü; Zhonghua, Jia; Xinchao, Jia; Yan, Lu; Haigang, Li
2008-07-01
A Ni-based superalloy honeycomb thermal protection system (TPS) panel has been fabricated. And a curved Ni-based superalloy honeycomb sandwich has also been fabricated. The preliminary thermal insulation results of a fabricated Ni-based superalloy honeycomb TPS panel (the areal density of this panel is 6.7 kg /m2 and total height is 32 mm) indicate that the maximum temperature of the lower surfaces of the panel is lower than 150∘ C when the temperature of outer surface is held at 650∘ C for 30 min. The flatwise tensile strength and compressive properties of a fabricated Ni-based superalloy honeycomb sandwich coupon was studied at room temperature. A multilayered coating has been developed on the surface of the superalloy honeycomb TPS panel for environmental protection and thermal control. The oxidation weight-change results show that the weight change of the Ni-based superalloy honeycomb sandwich with the oxidation resistant coating is extremely small at 1100∘ C in air for 10 h. The emittance layer of the multilayered coating imparts an emittance in excess of 0.85 during exposure at 850∘ C, which was at least 14% greater than that of the substrate with oxidation resistant alone.
Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells.
Perkins, Craig L; Beall, Carolyn; Reese, Matthew O; Barnes, Teresa M
2017-06-21
In this study we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO 2 /emitter interface. An unexpectedly high concentration of chlorine at this interface, ∼20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third of a unit cell of pure CdCl 2 , a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl 2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.
Pynn, Christopher D; Chan, Lesley; Lora Gonzalez, Federico; Berry, Alex; Hwang, David; Wu, Haoyang; Margalith, Tal; Morse, Daniel E; DenBaars, Steven P; Gordon, Michael J
2017-07-10
Light extraction from InGaN/GaN-based multiple-quantum-well (MQW) light emitters is enhanced using a simple, scalable, and reproducible method to create hexagonally close-packed conical nano- and micro-scale features on the backside outcoupling surface. Colloidal lithography via Langmuir-Blodgett dip-coating using silica masks (d = 170-2530 nm) and Cl 2 /N 2 -based plasma etching produced features with aspect ratios of 3:1 on devices grown on semipolar GaN substrates. InGaN/GaN MQW structures were optically pumped at 266 nm and light extraction enhancement was quantified using angle-resolved photoluminescence. A 4.8-fold overall enhancement in light extraction (9-fold at normal incidence) relative to a flat outcoupling surface was achieved using a feature pitch of 2530 nm. This performance is on par with current photoelectrochemical (PEC) nitrogen-face roughening methods, which positions the technique as a strong alternative for backside structuring of c-plane devices. Also, because colloidal lithography functions independently of GaN crystal orientation, it is applicable to semipolar and nonpolar GaN devices, for which PEC roughening is ineffective.
NASA Astrophysics Data System (ADS)
Bishop, J. L.; Hamilton, V. E.
2001-12-01
Martian meteorites provide direct information about crustal rocks on Mars. In this study we are measuring reflectance and emittance spectra of multiple Martian meteorites in order to characterize the spectral properties of the minerals present and to develop comprehensive criteria for remote detection of rocks and minerals. Previous studies have evaluated mid-IR emittance spectra [Hamilton et al., 1997] and visible/IR reflectance spectra [Bishop et al., 1998a,b] of Martian meteorites independently. The current study includes comparisons of the visible/NIR and mid-IR spectral regions and also involves comparison of mid-IR spectra measured using biconical reflectance and thermal emission techniques. Combining spectral analyses of Martian meteorite chips and powders enables characterization of spectral bands for remote detection of potential source regions for meteorite-like rocks on the surface of Mars using both Thermal Emission Spectrometer (TES) datasets and visible/NIR datasets from past and future missions. Identification of alteration minerals in these meteorites also provides insights into the alteration processes taking place on Mars. Analysis of TES data on Mars has identified global regions of basaltic and andesitic surface material [e.g. Bandfield et al., 2000; Christensen et al., 2000]; however neither of these spectral endmembers corresponds well to the spectra of Martian meteorites. Some preliminary findings suggest that small regions on the surface of Mars may relate to meteorite compositions [e.g. Hoefen et al., 2000; Hamilton et al., 2001]. Part of the difficulty in identifying meteorite compositions on Mars may be due to surface alteration. We hope to apply the results of our spectroscopic analyses of Martian meteorites, as well as fresh and altered basaltic material, toward analysis of composition on Mars using multiple spectral datasets. References: Bandfield J. et al., Science 287, 1626, 2000. Bishop J. et al., MAPS 33, 699, 1998a. Bishop J. et al., MAPS 33, 693, 1998b. Christensen P., et al., JGR 105, 9609, 2000. Hamilton V. et al., JGR 102, 25593, 1997. Hamilton V. et al., LPSC XXXII, #2184, 2001. Hoefen T. et al., Bull. Am. Astron. Soc. 32, 1118, 2000.
de Assis, T. A.
2015-01-01
This work considers the effects of the Hurst exponent (H) on the local electric field distribution and the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 0.1 ≤ H < 0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a scaling between the macroscopic current density () and the characteristic kernel current density (), , with an H-dependent exponent , has been found. This feature, which is less pronounced (but not absent) in the range where more smooth surfaces have been found (), is a consequence of the dependency between the area efficiency of emission of a LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field electron emission experiments. Considering the recent developments in orthodox field emission theory, we show that the exponent must be considered when calculating the slope characterization parameter (SCP) and thus provides a relevant method of more precisely extracting the characteristic field enhancement factor from the slope of the FN plot. PMID:26035290
Household use of insecticide consumer products in a dengue-endemic area in México.
Loroño-Pino, María Alba; Chan-Dzul, Yamili N; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E; Keefe, Thomas J; Beaty, Barry J; Eisen, Lars
2014-10-01
To evaluate the household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue-endemic area of México. A questionnaire was administered to 441 households in Mérida City and other communities in Yucatán to assess household use of insecticide consumer products. A total of 86.6% of surveyed households took action to kill insect pests with consumer products. The most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%) and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. Products were used daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%) and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to approximately 31 $US. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $US) for Mérida City alone. Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. © 2014 John Wiley & Sons Ltd.
Molecular dynamics simulations of field emission from a planar nanodiode
NASA Astrophysics Data System (ADS)
Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei
2015-03-01
High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.
NASA Astrophysics Data System (ADS)
Shinde, Onkar S.; Funde, Adinath M.; Jadkar, Sandesh R.; Dusane, Rajiv O.; Dhere, Neelkanth G.; Ghaisas, Subhash V.
2016-09-01
Oleylamine is used as a passivating layer instead of commercial high temperature SiNx. Oleylamine coating applied on the n-type emitter side with p-type base polycrystalline silicon solar cells at room temperature using a simple spin coating method. It has been observed that there is 16% increase in efficiency after Oleylamine coating. Further, the solar cell was subjected to standard characterization namely current-voltage measurement for electrical parameters and Fourier transform infrared spectroscopy to understand the interaction of emitter surface and passivating Oleylamine. However, the passivation layer is not stable due to the reaction between Oleylamine and ambient air content such as humidity and carbon dioxide. This degradation can be prevented with suitable overcoating.
Molecular dynamics simulations of field emission from a planar nanodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei
High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid likemore » model is also developed and its results are in qualitative agreement with the simulations.« less
2D/3D image charge for modeling field emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.
Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less
2D/3D image charge for modeling field emission
Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.; ...
2017-03-01
Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less
The BetaCage, an ultra-sensitive screener for surface contamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunker, R.; Bowles, M. A.; Schnee, R. W.
Material screening for identifying low-energy electron emitters and alpha-decaying isotopes is now a prerequisite for rare-event searches (e.g., dark-matter direct detection and neutrinoless double-beta decay) for which surface radiocon-tamination has become an increasingly important background. The BetaCage, a gaseous neon time-projection chamber, is a proposed ultra-sensitive (and nondestructive) screener for alpha-and beta-emitting surface contaminants to which existing screening facilities are insufficiently sensitive. Sensitivity goals are 0.1 betas keV{sup −1} m{sup −2} day{sup −1} and 0.1 alphas m{sup −2} day{sup −1}, with the former limited by Compton scattering of photons in the screening samples and (thanks to tracking) the latter expectedmore » to be signal-limited; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We report on details of the background simulations and detector design that provide the discrimination, shielding, and radiopurity necessary to reach our sensitivity goals for a chamber with a 95 × 95 cm{sup 2} sample area positioned below a 40 cm drift region and monitored by crisscrossed anode and cathode planes consisting of 151 wires each.« less
Ponce, Concepcion P; Araghi, Hessamaddin Younesi; Joshi, Neeraj K; Steer, Ronald P; Paige, Matthew F
2015-12-22
Controlling aggregation of the dual sensitizer-emitter (S-E) zinc tetraphenylporphyrin (ZnTPP) is an important consideration in solid state noncoherent photon upconversion (NCPU) applications. The Langmuir-Blodgett (LB) technique is a facile means of preparing ordered assemblies in thin films to study distance-dependent energy transfer processes in S-E systems and was used in this report to control the aggregation of a functionalized ZnTPP on solid substrates. This was achieved by synthetic addition of a short polar tail to one of the pendant phenyl rings in ZnTPP in order to make it surface active. The surface active ZnTPP derivative formed rigid films at the air-water interface and exhibited mean molecular areas consistent with approximately vertically oriented molecules under appropriate film compression. A red shift in the UV-vis spectra as well as unquenched fluorescence emission of the LB films indicated formation of well-ordered aggregates. However, NCPU, present in the solution phase, was not observed in the LB films, suggesting that NCPU from ZnTPP as a dual S-E required not just a controlled aggregation but a specific orientation of the molecules with respect to each other.
Group-III Nitride Field Emitters
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak; Berishev, Igor
2008-01-01
Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude greater than the areal density of tips in prior field-emission devices. The electric field necessary to turn on the emission current and the current per tip in this device are both lower than in prior field-emission devices, such that it becomes possible to achieve longer operational lifetime. Moreover, notwithstanding the lower current per tip, because of the greater areal density of tips, it becomes possible to achieve greater current density averaged over the cathode area. The thickness of the grown nitride film (equivalently, the length of the columns) could lie between about 0.5 microns and a few microns; in any event, a thickness of about 1 micron is sufficient and costs less than do greater thicknesses. It may be possible to grow nitride emitter columns on glass or other substrate materials that cost less than silicon does. What is important in the choice of substrate material is the difference between the substrate and nitride crystalline structures. Inasmuch as the deposition process is nondestructive, an ability to grow emitter columns on a variety of materials would be advantageous in that it would facilitate the integration of field-emitter structures onto previously processed integrated circuits.
Enhanced adhesion by high energy bombardment
NASA Technical Reports Server (NTRS)
Griffith, Joseph E. (Inventor); Qiu, Yuanxun (Inventor); Tombrello, Thomas A. (Inventor)
1984-01-01
Films (12) of gold, copper, silicon nitride, or other materials are firmly bonded to insulator substrates (12) such as silica, a ferrite, or Teflon (polytetrafluorethylene) by irradiating the interface with high energy ions. Apparently, track forming processes in the electronic stopping region cause intermixing in a thin surface layer resulting in improved adhesion without excessive doping. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters.
High temperature bias line stabilized current sources
Patterson, III, Raymond B.
1984-01-01
A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower.
High temperature bias line stabilized current sources
Patterson, R.B. III.
1984-09-11
A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower. 1 fig.
Scanned-probe field-emission studies of vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.
2001-02-01
Field emission properties of dense and sparse "forests" of randomly placed, vertically aligned carbon nanofibers (VACNFs) were studied using a scanned probe with a small tip diameter of ˜1 μm. The probe was scanned in directions perpendicular and parallel to the sample plane, which allowed for measuring not only the emission turn-on field at fixed locations but also the emission site density over large surface areas. The results show that dense forests of VACNFs are not good field emitters as they require high extracting (turn-on) fields. This is attributed to the screening of the local electric field by the neighboring VACNFs. In contrast, sparse forests of VACNFs exhibit moderate-to-low turn-on fields as well as high emission site and current densities, and long emission lifetime, which makes them very promising for various field emission applications.
NASA Technical Reports Server (NTRS)
Rose, P. W.; Rosendahl, P. C. (Principal Investigator)
1979-01-01
Multivariant hydrologic parameters over the Shark River Slough were investigated. Ground truth was established utilizing U-2 infrared photography and comprehensive field data to define a control network which represented all hydrobiological systems in the slough. These data were then applied to LANDSAT imagery utilizing an interactive multispectral processor which generated hydrographic maps through classification of the slough and defined the multispectral surface radiance characteristics of the wetlands areas in the park. The spectral response of each hydrobiological zone was determined and plotted to formulate multispectral relationships between the emittent energy from the slough in order to determine the best possible multispectral wavelength combinations to enhance classification results. The extent of each hydrobiological zone in slough was determined and flow vectors for water movement throughout the slough established.
Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; ...
2014-03-28
Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less
Rare earth garnet selective emitter
NASA Technical Reports Server (NTRS)
Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.
1994-01-01
Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.
Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less
Determination of the efficiency of commercially available dose calibrators for beta-emitters.
Valley, Jean-François; Bulling, Shelley; Leresche, Michel; Wastiel, Claude
2003-03-01
The goals of this investigation are to determine whether commercially available dose calibrators can be used to measure the activity of beta-emitting radionuclides used in pain palliation and to establish whether manufacturer-supplied calibration factors are appropriate for this purpose. Six types of commercially available dose calibrators were studied. Dose calibrator response was controlled for 5 gamma-emitters used for calibration or typically encountered in routine use. For the 4 most commonly used beta-emitters ((32)P, (90)Sr, (90)Y, and (169)Er) dose calibrator efficiency was determined in the syringe geometry used for clinical applications. Efficiency of the calibrators was also measured for (153)Sm and (186)Re, 2 beta-emitters with significant gamma-contributions. Source activities were traceable to national standards. All calibrators measured gamma-emitters with a precision of +/-10%, in compliance with Swiss regulatory requirements. For beta-emitters, dose calibrator intrinsic efficiency depends strongly on the maximal energy of the beta-spectrum and is notably low for (169)Er. Manufacturer-supplied calibration factors give accurate results for beta-emitters with maximal beta-energy in the middle-energy range (1 MeV) but are not appropriate for use with low-energy ((169)Er) or high-energy ((90)Y) beta-emitters. beta-emitters with significant gamma-contributions behave like gamma-emitters. Commercially available dose calibrators have an intrinsic efficiency that is sufficient for the measurement of beta-emitters, including beta-emitters with a low maximum beta-energy. Manufacturer-supplied calibration factors are reliable for gamma-emitters and beta-emitters in the middle-energy range. For low- and high-energy beta-emitters, the use of manufacturer-supplied calibration factors introduces significant measurement inaccuracy.
Multinozzle emitter arrays for ultrahigh-throughput nanoelectrospray mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Daojing; Mao, Pan; Wang, Hung-Ta
The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a siliconmore » chip before the electrospray mass spectrometry analysis.« less
Multibeam Laser Altimeter for Planetary Topographic Mapping
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Bufton, J. L.; Harding, D. J.
1993-01-01
Laser altimetry provides an active, high-resolution, high-accuracy method for measurement of planetary and asteroid surface topography. The basis of the measurement is the timing of the roundtrip propagation of short-duration pulses of laser radiation between a spacecraft and the surface. Vertical, or elevation, resolution of the altimetry measurement is determined primarily by laser pulse width, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and nanosecond resolution timing electronics, submeter vertical range resolution is possible anywhere from orbital altitudes of approximately 1 km to altitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition rate, laser transmitter beam configuration, and altimeter platform velocity determine the spacing between successive laser pulses. Multiple laser transmitters in a single laser altimeter instrument that is orbiting above a planetary or asteroid surface could provide across-track as well as along-track coverage that can be used to construct a range image (i.e., topographic map) of the surface. We are developing a pushbroom laser altimeter instrument concept that utilizes a linear array of laser transmitters to provide contiguous across-track and along-track data. The laser technology is based on the emerging monolithic combination of individual, 1-sq cm diode-pumped Nd:YAG laser pulse emitters. Details of the multi-emitter laser transmitter technology, the instrument configuration, and performance calculations for a realistic Discovery-class mission will be presented.
Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective
NASA Technical Reports Server (NTRS)
Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee
2012-01-01
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.
A combined emitter threat assessment method based on ICW-RCM
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wang, Hongwei; Guo, Xiaotao; Wang, Yubing
2017-08-01
Considering that the tradition al emitter threat assessment methods are difficult to intuitively reflect the degree of target threaten and the deficiency of real-time and complexity, on the basis of radar chart method(RCM), an algorithm of emitter combined threat assessment based on ICW-RCM (improved combination weighting method, ICW) is proposed. The coarse sorting is integrated with fine sorting in emitter combined threat assessment, sequencing the emitter threat level roughly accordance to radar operation mode, and reducing task priority of the low-threat emitter; On the basis of ICW-RCM, sequencing the same radar operation mode emitter roughly, finally, obtain the results of emitter threat assessment through coarse and fine sorting. Simulation analyses show the correctness and effectiveness of this algorithm. Comparing with classical method of emitter threat assessment based on CW-RCM, the algorithm is visual in image and can work quickly with lower complexity.
Axis-1 diode simulations I: standard 2-inch cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
2011-01-11
The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.
Rasor, Ned S.; Britt, Edward J.
1976-01-01
A gas-filled thermionic converter is provided with a collector and an emitter having a main emitter region and an auxiliary emitter region in electrical contact with the main emitter region. The main emitter region is so positioned with respect to the collector that a main gap is formed therebetween and the auxiliary emitter region is so positioned with respect to the collector that an auxiliary gap is formed therebetween partially separated from the main gap with access allowed between the gaps to allow ionizable gas in each gap to migrate therebetween. With heat applied to the emitter the work function of the auxiliary emitter region is sufficiently greater than the work function of the collector so that an ignited discharge occurs in the auxiliary gap and the work function of the main emitter region is so related to the work function of the collector that an unignited discharge occurs in the main gap sustained by the ions generated in the auxiliary gap. A current flows through a load coupled across the emitter and collector due to the unignited discharge in the main gap.
Field emission characteristics of a small number of carbon fiber emitters
NASA Astrophysics Data System (ADS)
Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim
2016-09-01
This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.
Homojunction GaAs solar cells grown by close space vapor transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.
2014-06-08
We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping,more » and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.« less
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing.
Raplee, J; Plotkowski, A; Kirka, M M; Dinwiddie, R; Okello, A; Dehoff, R R; Babu, S S
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.
Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
Li, Qiang; Wei, Hong; Xu, Hongxing
2015-12-09
The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.
Extinction Correction Significantly Influences the Estimate of the Lyα Escape Fraction
NASA Astrophysics Data System (ADS)
An, Fang Xia; Zheng, Xian Zhong; Hao, Cai-Na; Huang, Jia-Sheng; Xia, Xiao-Yang
2017-02-01
The Lyα escape fraction is a key measure to constrain the neutral state of the intergalactic medium and then to understand how the universe was fully reionized. We combine deep narrowband imaging data from the custom-made filter NB393 and the {{{H}}}2S1 filter centered at 2.14 μm to examine the Lyα emitters and Hα emitters at the same redshift z = 2.24. The combination of these two populations allows us to determine the Lyα escape fraction at z = 2.24. Over an area of 383 arcmin2 in the Extended Chandra Deep Field South (ECDFS), 124 Lyα emitters are detected down to NB393 = 26.4 mag at the 5σ level, and 56 Hα emitters come from An et al. Of these, four have both Lyα and Hα emissions (LAHAEs). We also collect the Lyα emitters and Hα emitters at z = 2.24 in the COSMOS field from the literature, and increase the number of LAHAEs to 15 in total. About one-third of them are AGNs. We measure the individual/volumetric Lyα escape fraction by comparing the observed Lyα luminosity/luminosity density to the extinction-corrected Hα luminosity/luminosity density. We revisit the extinction correction for Hα emitters using the Galactic extinction law with color excess for nebular emission. We also adopt the Calzetti extinction law together with an identical color excess for stellar and nebular regions to explore how the uncertainties in extinction correction affect the estimate of individual and global Lyα escape fractions. In both cases, an anti-correlation between the Lyα escape fraction and dust attenuation is found among the LAHAEs, suggesting that dust absorption is responsible for the suppression of the escaping Lyα photons. However, the estimated Lyα escape fraction of individual LAHAEs varies by up to ˜3 percentage points between the two methods of extinction correction. We find the global Lyα escape fraction at z = 2.24 to be (3.7 ± 1.4)% in the ECDFS. The variation in the color excess of the extinction causes a discrepancy of ˜1 percentage point in the global Lyα escape fraction.
Haider Taha; James Wilkinson; Robert Bornstein; Qingfu Xiao; E. Gregory McPherson; Jim Simpson; Charles Anderson; Steven Lau; Janice Lam; Cindy Blain
2015-01-01
Urban forest strategies of gradually replacing high emitters of biogenic volatile organic compounds (BVOC) with low-emitting species are being considered as voluntary or emerging control measures for maintenance of the 8-h ozone standard in the Sacramento Federal Non-Attainment Area (SFNA). We describe a regulatory modeling study demonstrating the air-quality impacts...
Emittance Theory for Thin Film Selective Emitter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.
1994-01-01
Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).
Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.
Wong, Michael Y; Zysman-Colman, Eli
2017-06-01
The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-power laser diodes with high polarization purity
NASA Astrophysics Data System (ADS)
Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady
2017-02-01
Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.
2016-09-01
Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.
Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters
NASA Technical Reports Server (NTRS)
Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish
2008-01-01
A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.
Household use of insecticide consumer products in a dengue endemic area in México
Loroño-Pino, María Alba; Chan-Dzul, Yamili N.; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E.; Keefe, Thomas J.; Beaty, Barry J.; Eisen, Lars
2014-01-01
Objectives To evaluate household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue endemic area in México. Methods A questionnaire was administered to 441 households in Mérida City or other communities in Yucatán State to assess household use of insecticide consumer products. Results Most (86.6%) households took action to kill insect pests with consumer products. Among those households, the most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%), and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. During the part of the year when a given product type was used, the frequency of use was daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%), and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to ∼31 $U.S. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $U.S.) for Mérida City alone. Conclusion Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. PMID:25040259
Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Zhou, Yu; Zhang, Xiaoming; Liu, Fucai; Li, Yan; Li, Ke; Liu, Zheng; Wang, Guanzhong; Gao, Weibo
2017-06-01
Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single-photon emission, good photostability, and long spin-coherence time even at room temperature. As compared to diamond, which is widely used for hosting nitrogen-vacancy centers, silicon carbide has an advantage in terms of large-scale, high-quality, and low-cost growth, as well as an advanced fabrication technique in optoelectronics, leading to prospects for large-scale quantum engineering. In this paper, we report an experimental demonstration of the generation of a single-photon-emitter array through ion implantation. VSi defects are generated in predetermined locations with high generation efficiency (approximately 19 % ±4 % ). The single emitter probability reaches approximately 34 % ±4 % when the ion-implantation dose is properly set. This method serves as a critical step in integrating single VSi defect emitters with photonic structures, which, in turn, can improve the emission and collection efficiency of VSi defects when they are used in a spin photonic quantum network. On the other hand, the defects are shallow, and they are generated about 40 nm below the surface which can serve as a critical resource in quantum-sensing applications.
A transistor based on 2D material and silicon junction
NASA Astrophysics Data System (ADS)
Kim, Sanghoek; Lee, Seunghyun
2017-07-01
A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene's stability. A transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.
Extension of the general thermal field equation for nanosized emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyritsakis, A., E-mail: akyritsos1@gmail.com; Xanthakis, J. P.
2016-01-28
During the previous decade, Jensen et al. developed a general analytical model that successfully describes electron emission from metals both in the field and thermionic regimes, as well as in the transition region. In that development, the standard image corrected triangular potential barrier was used. This barrier model is valid only for planar surfaces and therefore cannot be used in general for modern nanometric emitters. In a recent publication, the authors showed that the standard Fowler-Nordheim theory can be generalized for highly curved emitters if a quadratic term is included to the potential model. In this paper, we extend thismore » generalization for high temperatures and include both the thermal and intermediate regimes. This is achieved by applying the general method developed by Jensen to the quadratic barrier model of our previous publication. We obtain results that are in good agreement with fully numerical calculations for radii R > 4 nm, while our calculated current density differs by a factor up to 27 from the one predicted by the Jensen's standard General-Thermal-Field (GTF) equation. Our extended GTF equation has application to modern sharp electron sources, beam simulation models, and vacuum breakdown theory.« less
Arrays of Bundles of Carbon Nanotubes as Field Emitters
NASA Technical Reports Server (NTRS)
Manohara, Harish; Bronkowski, Michael
2007-01-01
Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.
Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Craig L.; Beall, Carolyn; Reese, Matthew O.
In this paper we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO 2/emitter interface. An unexpectedly high concentration of chlorine at this interface, ~20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third ofmore » a unit cell of pure CdCl 2, a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl 2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.« less
Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells
Perkins, Craig L.; Beall, Carolyn; Reese, Matthew O.; ...
2017-05-12
In this paper we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO 2/emitter interface. An unexpectedly high concentration of chlorine at this interface, ~20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third ofmore » a unit cell of pure CdCl 2, a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl 2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.« less
Evidence of low injection efficiency for implanted p-emitters in bipolar 4H-SiC high-voltage diodes
NASA Astrophysics Data System (ADS)
Matthus, Christian D.; Huerner, Andreas; Erlbacher, Tobias; Bauer, Anton J.; Frey, Lothar
2018-06-01
In this study, the influence of the emitter efficiency on the forward current-voltage characteristics, especially the conductivity modulation of bipolar SiC-diodes was analyzed. It was determined that the emitter efficiency of p-emitters formed by ion implantation is significantly lower compared to p-emitters formed by epitaxy. In contrast to comparable studies, experimental approach was arranged that the influence of the quality of the drift-layer or the thickness of the emitter on the conductivity modulation could be excluded for the fabricated bipolar SiC-diodes of this work. Thus, it can be established that the lower emitter injection efficiency is mainly caused by the reduced electron lifetime in p-emitters formed by ion implantation. Therefore, a significant enhancement of the electron lifetime in implanted p-emitters is mandatory for e.g. SiC-MPS-diodes where the functionality of the devices depends significantly on the injection efficiency.
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne
2016-01-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
NASA Astrophysics Data System (ADS)
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne
2016-12-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.
AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe
Van Berkel, Gary J.
2015-06-23
An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.
Can Satellite Remote Sensing be Applied in Geological Mapping in Tropics?
NASA Astrophysics Data System (ADS)
Magiera, Janusz
2018-03-01
Remote sensing (RS) techniques are based on spectral data registered by RS scanners as energy reflected from the Earth's surface or emitted by it. In "geological" RS the reflectance (or emittence) should come from rock or sediment. The problem in tropical and subtropical areas is a dense vegetation. Spectral response from the rocks and sediments is gathered only from the gaps among the trees and shrubs. Images of high resolution are appreciated here, therefore. New generation of satellites and scanners (Digital Globe WV2, WV3 and WV4) yield imagery of spatial resolution of 2 m and up to 16 spectral bands (WV3). Images acquired by Landsat (TM, ETM+, OLI) and Sentinel 2 have good spectral resolution too (6-12 bands in visible and infrared) and, despite lower spatial resolution (10-60 m of pixel size) are useful in extracting lithological information too. Lithological RS map may reveal good precision (down to a single rock or outcrop of a meter size). Supplemented with the analysis of Digital Elevation Model and high resolution ortophotomaps (Google Maps, Bing etc.) allows for quick and cheap mapping of unsurveyed areas.
Carbon emission from global hydroelectric reservoirs revisited.
Li, Siyue; Zhang, Quanfa
2014-12-01
Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.
Emittance Theory for Cylindrical Fiber Selective Emitter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1998-01-01
A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.
Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays
Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2010-10-19
Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.
Xenon-Ion Drilling of Tungsten Films
NASA Technical Reports Server (NTRS)
Garner, C. E.
1986-01-01
High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.
1990-12-01
Zerodur ,irror, 2" relfects light. 1OZ20BD.1; 20th wave zerodur mirror , 1" reflects light. LS-35; 3’ x 5’ optical breadboard; for mounting components...profile measurements using the diffuse screen were compared with measurements using a front surface mirror and a fluorescent screen. The 20 DISTRIBUTION...Beam current and profile measurements using the diffuse screen were compared with measurements using a front surface mirror and a fluorescent screen
Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors
2016-05-16
have investigated the surface plasmon enhancement of the GeSn p-i-n photodiode using gold metal nanostructures. We have conducted numerical...simulation of the plasmonic structure of 2D nano-hole array to tune the surface plasmon resonance into the absorption range of the GeSn active layer. Such a...diode can indeed be enhanced with the plasmonic structure on top. Within the time span of this project, we have completed one iteration of the process
Remote sensing measurements of real world high exhaust emitters
DOT National Transportation Integrated Search
1999-03-12
Remote Sensing measurements were taken at five primary sites in the Denver Area between April 1997 and March 1998 using an RS2000 unit capable of measuring HC, CO, and NO. The RD unit also measures vehicle speed and acceleration to permit determinati...
Natural gas availability and ambient air quality in the Baton Rouge/New Orleans industrial complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fieler, E.R.; Harrison, D.P.
1978-02-26
Three scenarios were modeled for the Baton Rouge/New Orleans area for 1985: one assumes the substitution of residual oil (0.7% sulfur) for gas to decrease gas-burning stationary sources from 80 to 8% and the use of properly designed stacks for large emitters; the second makes identical gas supply assumptions but adds proper stack dispersion for medium as well as large emitters; and the third is based on 16% gas-burning stationary sources. The Climatological Dispersion Model was used to translate (1974) emission rates into ambient air concentrations. Growth rates for residential, commercial, and transportation sources, but not industry, were considered. Themore » results show that proper policies, which would require not only tall stacks for large oil burning units (and for intermediate units also in the areas of high industrial concentration), but also the careful location of new plants would permit continued industrial expansion without severe air pollution problems.« less
Thermal emittance from ionization-induced trapping in plasma accelerators
Schroeder, C. B.; Vay, J. -L.; Esarey, E.; ...
2014-10-03
The minimum obtainable transverse emittance (thermal emittance) of electron beams generated and trapped in plasma-based accelerators using laser ionization injection is examined. The initial transverse phase space distribution following ionization and passage through the laser is derived, and expressions for the normalized transverse beam emittance, both along and orthogonal to the laser polarization, are presented. Results are compared to particle-in-cell simulations. Ultralow emittance beams can be generated using laser ionization injection into plasma accelerators, and examples are presented showing normalized emittances on the order of tens of nm.
Numerical analysis of the beam position monitor pickup for the Iranian light source facility
NASA Astrophysics Data System (ADS)
Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.
2017-03-01
In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.
Analysis of the charging of the SCATHA (P78-2) satellite
NASA Technical Reports Server (NTRS)
Stannard, P. R.; Katz, I.; Mandell, M. J.; Cassidy, J. J.; Parks, D. E.; Rotenberg, M.; Steen, P. G.
1980-01-01
The charging of a large object in polar Earth orbit was investigated in order to obtain a preliminary indication of the response of the shuttle orbiter to such an environment. Two NASCAP (NASA Charging Analyzer Program) models of SCATHA (Satellite Charging at High Altitudes) were used in simulations of charging events. The properties of the satellite's constituent materials were compiled and representations of the experimentally observed plasma spectra were constructed. Actual charging events, as well as those using test environments, were simulated. Numerical models for the simulation of particle emitters and detectors were used to analyze the operation of these devices onboard SCATHA. The effect of highly charged surface regions on the charging conductivity within a photosheath was used to interpret results from the onboard electric field experiment. Shadowing calculations were carried out for the satellite and a table of effective illuminated areas was compiled.
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.
Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram
2017-05-10
Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.
Grover, Ginni; DeLuca, Keith; Quirin, Sean; DeLuca, Jennifer; Piestun, Rafael
2012-01-01
Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm. PMID:23187521
A Computer Program for Drip Irrigation System Design for Small Plots
NASA Astrophysics Data System (ADS)
Philipova, Nina; Nicheva, Olga; Kazandjiev, Valentin; Chilikova-Lubomirova, Mila
2012-12-01
A computer programhas been developed for design of surface drip irrigation system. It could be applied for calculation of small scale fields with an area up to 10 ha. The program includes two main parts: crop water requirements and hydraulic calculations of the system. It has been developed in Graphical User Interface in MATLAB and gives opportunity for selecting some parameters from tables such as: agro- physical soil properties, characteristics of the corresponding crop, climatic data. It allows the user of the program to assume and set a definite value, for example the emitter discharge, plot parameters and etc. Eight cases of system layout according to the water source layout and the number of plots of the system operation are laid into hydraulic section of the program. It includes the design of lateral, manifold, main line and pump calculations. The program has been compiled to work in Windows.
Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles
NASA Technical Reports Server (NTRS)
Stewart, David A.
1997-01-01
Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.
A phased antenna array for surface plasmons
Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.
2016-01-01
Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099
Sumant, Anirudha V.; Divan, Ralu; Posada, Chrystian M.; Castano, Carlos H.; Grant, Edwin J.; Lee, Hyoung K.
2016-03-29
A source cold cathode field emission array (FEA) source based on ultra-nanocrystalline diamond (UNCD) field emitters. This system was constructed as an alternative for detection of obscured objects and material. Depending on the geometry of the given situation a flat-panel source can be used in tomography, radiography, or tomosynthesis. Furthermore, the unit can be used as a portable electron or X-ray scanner or an integral part of an existing detection system. UNCD field emitters show great field emission output and can be deposited over large areas as the case with carbon nanotube "forest" (CNT) cathodes. Furthermore, UNCDs have better mechanical and thermal properties as compared to CNT tips which further extend the lifetime of UNCD based FEA.
Investigation of fundamental limits to beam brightness available from photoinjectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazarov, Ivan
2015-07-09
The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces inmore » the immediate vicinity to the cathode via 3D laser pulse shaping.« less
Design of an external-fueled thermionic diode for in-pile testing.
NASA Technical Reports Server (NTRS)
Ernst, D. M.; Peelgren, M. L.
1971-01-01
Description of an external-fueled thermionic diode suitable for in-pile testing in a research reactor. The active electrode area is 94 sq cm. The 10-in. long, 1.5-in.-OD emitter body is tungsten 2% thoria. The fuel is contained in six 0.4-in.-diam holes equally spaced about the 0.5-in. central emitter hole. The collector is niobium-1% zirconium. The expected diode performance is 6 W/sq cm at 2000 K. In addition to following the constraints imposed by the in-pile testing and the electrically heated performance mapping prior to insertion in-pile, the diode will have end configurations prototypical of those anticipated for a flow-through, NaK-cooled, external-fuel thermionic reactor.
Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando
2012-12-07
This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; Treu, Tommaso; Nipoti, Carlo; Schmidt, Kasper B.; Dressler, Alan; Morshita, Takahiro; Poggianti, Bianca M.; Malkan, Matthew; Hoag, Austin; Bradač, Marusa; Abramson, Louis; Trenti, Michele; Pentericci, Laura; von der Linden, Anja; Morris, Glenn; Wang, Xin
2017-03-01
Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 highly active star-forming galaxies in 10 clusters at 0.3< z< 0.7. All of these galaxies are likely restricted to first infall. In a companion paper, we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of Hα emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Hα emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Hα emission is offset with respect to the peak of the UV continuum. We decompose these offsets into a radial and a tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations; that is, the Hα emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between Hα emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correlations between Hα morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.
High performance incandescent lighting using a selective emitter and nanophotonic filters
NASA Astrophysics Data System (ADS)
Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.
2017-09-01
Previous approaches for improving the efficiency of incandescent light bulbs (ILBs) have relied on tailoring the emitted spectrum using cold-side interference filters that reflect the infrared energy back to the emitter while transmitting the visible light. While this approach has, in theory, potential to surpass light-emitting diodes (LEDs) in terms of luminous efficiency while conserving the excellent color rendering index (CRI) inherent to ILBs, challenges such as low view factor between the emitter and filter, high emitter (>2800 K) and filter temperatures and emitter evaporation have significantly limited the maximum efficiency. In this work, we first analyze the effect of non-idealities in the cold-side filter, the emitter and the view factor on the luminous efficiency. Second, we theoretically and experimentally demonstrate that the loss in efficiency associated with low view factors can be minimized by using a selective emitter (e.g., high emissivity in the visible and low emissivity in the infrared) with a filter. Finally, we discuss the challenges in achieving a high performance and long-lasting incandescent light source including the emitter and filter thermal stability as well as emitter evaporation.
Close proximity electrostatic effect from small clusters of emitters
NASA Astrophysics Data System (ADS)
Dall'Agnol, Fernando F.; de Assis, Thiago A.
2017-10-01
Using a numerical simulation based on the finite-element technique, this work investigates the field emission properties from clusters of a few emitters at close proximity, by analyzing the properties of the maximum local field enhancement factor (γm ) and the corresponding emission current. At short distances between the emitters, we show the existence of a nonintuitive behavior, which consists of the increasing of γm as the distance c between the emitters decreases. Here we investigate this phenomenon for clusters with 2, 3, 4 and 7 identical emitters and study the influence of the proximity effect in the emission current, considering the role of the aspect ratio of the individual emitters. Importantly, our results show that peripheral emitters with high aspect-ratios in large clusters can, in principle, significantly increase the emitted current as a consequence only of the close proximity electrostatic effect (CPEE). This phenomenon can be seen as a physical mechanism to produce self-oscillations of individual emitters. We discuss new insights for understanding the nature of self-oscillations in emitters based on the CPEE, including applications to nanometric oscillators.
Sharpening of field emitter tips using high-energy ions
Musket, Ronald G.
1999-11-30
A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.
Lithography-free large-area metamaterials for stable thermophotovoltaic energy conversion
Coppens, Zachary J.; Kravchenko, Ivan I.; Valentine, Jason G.
2016-02-08
A large-area metamaterial thermal emitter is fabricated using facile, lithography-free techniques. The device is composed of conductive oxides, refractory ceramics, and noble metals and shows stable, selective emission after exposure to 1173 K for 22 h in oxidizing and inert atmospheres. Lastly, the results indicate that the metamaterial can be used to achieve high-performance thermophotovoltaic devices for applications such as portable power generation.
2.1 μm high-power laser diode beam combining(Conference Presentation)
NASA Astrophysics Data System (ADS)
Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel
2016-10-01
Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation lenses used in the experiment. We evaluated two broadband (1.8 - 3 µm) AR coated Geltech aspheric lenses with focal lengths of 1.87 mm and 4 mm, with numerical apertures of 0.85 and 0.56, respectively, as an initial collimation lens, followed by an additional cylindrical lens of focal length 100 mm for fully collimating the slow axis. Using D-shaped gold-coated mirrors, multiple single emitter beams are stacked in the fast axis direction with the objective that the combined beam has a beam propagation factor in the stacking direction close to the beam propagation factor of the slow axis of a single emitter, e.g. M2 of 20 to 25 in both axes. We further found that the output beam of a single emitter is highly linearly polarized along the slow axis, making it feasible to implement polarization beam combining techniques to increase the beam power by a factor two while maintaining the same beam quality. Along with full beam characterization, a power scaling strategy towards a multi-watt output power beam combining laser system will be presented.
Applying high-emittance and solar-absorptance coating to aluminum
NASA Technical Reports Server (NTRS)
Progar, D. J.
1973-01-01
Coated surface withstands space environment with negilgible change in radiation characteristics and physical properties. Process can be used with any porous substance, as long as pores are large enough to allow molecules of reacting solutions to enter and yet not so large as to allow nickel sulfide to be leached out of pores before sealing.
Strong Coupling of Single Emitters to Surface Plasmons
2007-07-01
however, we can make an eikonal approximation,39 assuming that the plas- mons are emitted completely into the end of the tip z=0 and that the propagative...restricts the re- gimes of validity to ki w, ki d1. An additional set of as- sumptions is made in using the eikonal approximation to arrive at Eq. 49
Optimization of manufacturing of emitter-coupled logic to decrease surface of chip
NASA Astrophysics Data System (ADS)
Pankratov, E. L.; Bulaeva, E. A.
2015-11-01
In this paper, we introduce an approach to increase integration rate of bipolar heterotransistors. The approach based on doping of required parts of heterostructure by diffusion or implantation and optimization of annealing of dopant and/or radiation defects. As simplification of the considered approach to increase integration rate we consider possibility to used common collector.
NASA Technical Reports Server (NTRS)
Gaier, James R.
2010-01-01
During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality
NASA Astrophysics Data System (ADS)
Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.
2010-11-01
Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.
Guo, Lixia; Wang, Xiaoju; Feng, Liheng
2018-08-05
A blue emitter, 3,3'-(2,2'-dimethoxy-[1,1'-binaphthalene]-6,6'-diyl)bis(9-benzyl-9H-carbazole), was synthesized by Suzuki coupling reaction. The photophysical properties of the emitter in solution were firstly investigated by UV-Vis absorption and fluorescence emission techniques. The results indicate that the emitter has excellent optical and electron transfer properties. The maximum absorption and emission peaks of the emitter are 302 nm and 406 nm with 67.4% fluorescence quantum yield in chloroform, respectively. Thermal stability study reveals that the emitter has a good thermal stability (Td > 330 °C, Tg > 160 °C). Electrochemical Redox properties of the emitters were measured by cyclic voltammetry, and the energy gaps of highest occupied molecular orbital and the lowest unoccupied molecular orbital levels are in good agreement with the results of theoretical calculation. Furthermore, the multilayer electrochemcial device with the emitter was fabricated and its properties were explored. The wavelength of electroluminescence for the device with this emitter locates at 428 nm. These results indicate the emitter as a deep blue-emitting material has promising application in organic light-emitting diode devices. Copyright © 2018 Elsevier B.V. All rights reserved.
Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review
NASA Astrophysics Data System (ADS)
Deen, M. Jamal; Pascal, Fabien
2003-05-01
For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
Review of End-of-Life Thermal Control Coating Performance
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Kline, Sara E.
2008-01-01
White thermal control coatings capable of long term performance are needed for Fission Surface Power (FSP) where heat from a nuclear reactor placed on the surface of the Moon must be rejected to the environment. The threats to thermal control coating durability on the lunar surface are electrons, protons, and ultraviolet radiation. The anticipated damage to the coating is a gradual darkening over time. The increase in solar absorptance would, in essence, add a cyclic heat load to the radiator. The greater the darkening, the greater the added heat load. The cyclic heat load could ultimately impart a cyclic influence on FSP system performance. No significant change in emittance is anticipated. Optical properties degradation data were found in the open literature for the Z-93 series of thermal control paints. Additional optical properties degradation data were found from the Lunar Orbiter V mission, the Optical Properties Monitor, and the Materials International Space Station Experiment. Anticipated end-of-life thermal control coating performance for a FSP installation is postulated. With the FSP installation located away from landing and launching areas, and out of line-of-sight, lunar dust from human activity may not be a threat. The benefits of investing in next generation thermal control paint chemistry are explored.
Development and Testing of a 212Pb/212Bi Peptide for Targeting Metastatic Melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Darrell R.
2012-10-25
The purpose of this project is to develop a new radiolabeled peptide for imaging and treating metastatic melanoma. The immunoconjugate consists of a receptor-specific peptide that targets melanoma cells. The beta-emitter lead-212 (half-life = 10.4 hours) is linked by coordination chemistry to the peptide. After injection, the peptide targets melanoma receptors on the surfaces of melanoma cells. Lead-212 decays to the alpha-emitter bismuth-212 (half-life = 60 minutes). Alpha-particles that hit melanoma cell nuclei are likely to kill the melanoma cell. For cancer cell imaging, the lead-212 is replaced by lead-203 (half-life = 52 hours). Lead-203 emits 279 keV photons (80.1%more » abundance) that can be imaged and measured for biodistribution analysis, cancer imaging, and quantitative dosimetry.« less
Importing super-resolution imaging into nanoscale puzzles of materials dynamics
NASA Astrophysics Data System (ADS)
King, John; Tsang, Chi Hang Boyce; Wilson, William; Granick, Steve
2014-03-01
A limitation of the exciting recent advances in sub-diffraction microscopy is that they focus on imaging rather than dynamical changes. We are engaged in extending this technique beyond the usual biological applications to address materials problems instead. To this end, we employ stimulated emission depletion (STED) microscopy, which relies on selectively turning off fluorescence emitters through stimulated emission, allowing only a small subset of emitters to be detected, such that the excitation spot size can be downsized to tens of nanometers. By coupling the STED excitation scheme to fluorescence correlation spectroscopy (FCS), diffusive processes are studied with nanoscale resolution. Here, we demonstrate the benefits of such experimental capabilities in a diverse range of complex systems, ranging from the diffusion of nano-objects in crowded 3D environments to the study of polymer diffusion on 2D surfaces.
Amorphous-diamond electron emitter
Falabella, Steven
2001-01-01
An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.
Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.
1999-01-01
As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.
Emittance Theory for Cylindrical Fiber Selective Emitter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1998-01-01
A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.
Method for photon activation positron annihilation analysis
Akers, Douglas W.
2006-06-06
A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1976-01-01
A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.
Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity.
Tang, Jianwei; Xia, Juan; Fang, Maodong; Bao, Fanglin; Cao, Guanjun; Shen, Jianqi; Evans, Julian; He, Sailing
2018-04-27
Plasmon-emitter hybrid nanocavity systems exhibit strong plasmon-exciton interactions at the single-emitter level, showing great potential as testbeds and building blocks for quantum optics and informatics. However, reported experiments involve only one addressable emitting site, which limits their relevance for many fundamental questions and devices involving interactions among emitters. Here we open up this critical degree of freedom by demonstrating selective far-field excitation and detection of two coupled quantum dot emitters in a U-shaped gold nanostructure. The gold nanostructure functions as a nanocavity to enhance emitter interactions and a nanoantenna to make the emitters selectively excitable and detectable. When we selectively excite or detect either emitter, we observe photon emission predominantly from the target emitter with up to 132-fold Purcell-enhanced emission rate, indicating individual addressability and strong plasmon-exciton interactions. Our work represents a step towards a broad class of plasmonic devices that will enable faster, more compact optics, communication and computation.
Benchmarking of measurement and simulation of transverse rms-emittance growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Dong-O
2008-01-01
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the measured 100%-rmsemittances behind themore » DTL exceed the simulated values. Comparing measured 90%-rms-emittances to the simulated 95%-rms-emittances gives fair to good agreement instead. The sum of horizontal and vertical emittances is even described well by the codes as long as experimental 90%-rmsemittances are compared to simulated 95%-rms-emittances. Finally, the successful reduction of transverse emittance growth by systematic beam matching is reported.« less
Emitter utilization in heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Quach, T.; Jenkins, T.; Barrette, J.; Bozada, C.; Cerny, C.; Desalvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Havasy, C.; Ito, C.; Nakano, K.; Pettiford, C.; Sewell, J.; Via, D.; Anholt, R.
1997-09-01
We compare measured collector current densities, cutoff frequencies ( ft), and transducer gains for thermally shunted heterojunction bipolar transistors with 2-16 μm emitter dot diameters or 2-8 μm emitter bar widths with models of the emitter utilization factors. Models that do not take emitter resistance into account predict that the d.c. utilization factors are below 0.7 for collector current densities greater than 6 × 10 4 A cm -2 and emitter diameters or widths greater than 8 μm. However, because the current gains are compressed by the emitter resistances at those current densities, the measured utilization factors are close to 1, which agrees with models that include emitter resistance. A.c. utilization factors are evident in the transistor Y parameters. For example, Re|Y 21z.sfnc drops off at high frequencies more steeply in HBTs with large emitter diameters or widths than in small ones. However, measured data shows that the HBT a.c. current gains h21 or ft values are not influenced by the a.c. utilization factor. A.c. utilization effects on HBT performance parameters such as small signal and power gains, output power, and power added efficiency are also examined.
Role of constant value of surface diffuseness in alpha decay half-lives of superheavy nuclei
NASA Astrophysics Data System (ADS)
Dehghani, V.; Alavi, S. A.; Benam, Kh.
2018-05-01
By using WKB method and considering deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential, the alpha decay half-lives of 68 superheavy alpha emitters have been calculated. The effect of the constant value of surface diffuseness parameter in the range of 0.1 ≤ a ≤ 0.9 (fm) on the potential barrier, tunneling probability, assault frequency, and alpha decay half-lives has been investigated. Significant differences were observed for alpha decay half-lives and decay quantities in this range of surface diffuseness. Good agreement between calculated half-lives with fitted surface diffuseness parameter a = 0.54 (fm) and experiment was observed.
Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P
2013-02-15
We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.
Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields.
An, Weiming; Lu, Wei; Huang, Chengkun; Xu, Xinlu; Hogan, Mark J; Joshi, Chan; Mori, Warren B
2017-06-16
Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of less than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. The underlying physics that leads to the lower than expected emittance growth is elucidated.
NASA Astrophysics Data System (ADS)
Souza, Wanderley De Jesus; Rodrigues Sinobas, Leonor; Sánchez, Raúl; Arriel Botrel, Tarlei; Duarte Coelho, Rubens
2013-04-01
Root and soil intrusion into the conventional emitters is one of the major disadvantages to obtain a good uniformity of water application in subsurface drip irrigation (SDI). In the last years, there have been different approaches to reduce these problems such as the impregnation of emitters with herbicide, and the search for an emitter geometry impairing the intrusion of small roots. Within the last this study, has developed and evaluated an emitter model which geometry shows specific physical features to prevent emitter clogging. This work was developed at the Biosystems Engineering Department at ESALQ-USP/Brazil, and it is a part of a research in which an innovated emitteŕs model for SDI has been developed to prevent root and soil particles intrusion. An emitter with a mechanical-hydraulic mechanism (opening and closing the water outlet) for SDI was developed and manufactured using a mechanical lathe process. It was composed by a silicon elastic membrane a polyethylene tube and a Vnyl Polychloride membrane protector system. In this study the performance of the developed prototype was assessed in the laboratory and in the field conditions. In the laboratory, uniformity of water application was calculated by the water emission uniformity coefficient (CUE), and the manufacturer's coefficient of variation (CVm). In addition, variation in the membrane diameter submitted to internal pressures; head losses along the membrane, using the energy equation; and, precision and accuracy of the equation model, analyzed by Pearson's correlation coefficient (r), and by Willmott's concordance index (d) were also calculated with samples of the developed emitters. In the field, the emitters were installed in pots with and without sugar cane culture from October 2010 to January 2012. During this time, flow rate in 20 emitters were measured periodically, and the aspects of them about clogging at the end of the experiment. Emitters flow rates were measured quarterly to calculate: relative flow rate (QR); flow disturbance (FD); CUE; and, variation coefficient of relative flow (CVQR). In the laboratory, both "CVm" and "CUE" were small since emitters were manufactured manually, the manufacturing variation was higher than in processed emitters. Variation in the membrane diameter decreased 1/4.5 from the central toward to the emitter end; and, the head loss increased. Estimated pressures were in good agreement to the observed ones with r and d values of 0.95, and 0.85, respectively. In the field tests, coefficients CVQR and QR were variable showing a poor classification according with ABNT (1986) and Solomon (1984). FD values were ranged between 11 and 24%and there was no observed clogging by roots and/or soil intrusion at the end of the experiment. On the other hand, emitter's flows were close to the average, indicating that water application kept according to the initial results. This study shows the suitability of this emitter model to prevent root and soil intrusion within the research conditions however further studies would be needed assessing the membrane performance, emitter physical characteristics, and control of emitter flow rate in order to develop the final prototype.
Fault location in optical networks
Stevens, Rick C [Apple Valley, MN; Kryzak, Charles J [Mendota Heights, MN; Keeler, Gordon A [Albuquerque, NM; Serkland, Darwin K [Albuquerque, NM; Geib, Kent M [Tijeras, NM; Kornrumpf, William P [Schenectady, NY
2008-07-01
One apparatus embodiment includes an optical emitter and a photodetector. At least a portion of the optical emitter extends a radial distance from a center point. The photodetector provided around at least a portion of the optical emitter and positioned outside the radial distance of the portion of the optical emitter.
Vacuum microelectronics for beam power and rectennas
NASA Technical Reports Server (NTRS)
Gray, Henry F.
1989-01-01
Vacuum Microelectronic devices can be described as vacuum transistors or micro-miniature vacuum tubes, as one chooses. The fundamental reason behind this new technology is the very large current densities available from field emitters, namely as high as 10(8) A/sq cm. Array current densities as high as 1000 A/sq cm have been measured. Total electron transit times from source to drain for 1 micron feature size devices have been predicted to be about 150fs. This very short transit time implies the possibility of submillimeter wave transmitters and rectennas in devices which can operate with reasonably high voltages and which are small in size and are lightweight. In addition, they are expected to be extremely radiation hard and very temperature insensitive. That is, they are expected to have radiation hardness characteristics similar to vacuum tubes, and both the high temperature and low temperature limits should be determined by the package. That is, there should be no practical intrinsic temperature or carrier freezeout problems for devices based on metals or composites. But the technology is difficult to implement at the present time because it is based on 300 to 500 angstrom radius field emitters which must be relatively uniform. There is also the need to understand the non-equilibrium transport physics in the near-surface regions of the field emitters.
Fiber-optical method of pyrometric measurement of melts temperature
NASA Astrophysics Data System (ADS)
Zakharenko, V. A.; Veprikova, Ya R.
2018-01-01
There is a scientific problem of non-contact measurement of the temperature of metal melts now. The problem is related to the need to achieve the specified measurement errors in conditions of uncertainty of the blackness coefficients of the radiating surfaces. The aim of this work is to substantiate the new method of measurement in which the influence of the blackness coefficient is eliminated. The task consisted in calculating the design and material of special crucible placed in the molten metal, which is an emitter in the form of blackbody (BB). The methods are based on the classical concepts of thermal radiation and calculations based on the Planck function. To solve the problem, the geometry of the crucible was calculated on the basis of the Goofy method which forms the emitter of a blackbody at the immersed in the melt. The paper describes the pyrometric device based on fiber optic pyrometer for temperature measurement of melts, which implements the proposed method of measurement using a special crucible. The emitter is formed by the melt in this crucible, the temperature within which is measured by means of fiber optic pyrometer. Based on the results of experimental studies, the radiation coefficient ε‧ > 0.999, which confirms the theoretical and computational justification is given in the article
Nonlinear optical effects in semi-polar GaN micro-cavity emitter
NASA Astrophysics Data System (ADS)
Butler, Sween; Jiang, Hongxing; Lin, Jingyu; Neogi, Arup
Nonlinear optical (NLO) response of low dimensional emitters is of current interest because of the need for active elements in photonic applications. NLO effects in a selectively grown array of semi-polar GaN microcavity structures offer a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. Localized spatial excitation of a single hexagonal GaN microcavity with semipolar facets formed by selective area growth was optimized for nonlinear optical light generation due to second harmonic generation (SHG) and multi-photon luminescence(MPL). Multi-photon transition induced by tightly focused femtosecond NIR incident field results in ultra-violet and yellow luminescence for excitations above and below half bandgap energy, whereas SHG was observed for below half bandgap energy. We show that color and coherence of the light generation from the emitter can be controlled by selective onset of the nonlinear process which depends not only on the incident laser energy and intensity but also on the geometry of the microcavity. Quasi-WGM like modes were observed for off-resonant excitations from the GaN microcavity resulting in enhanced SHG. The directionality of MPL and SHG will be presented as a function of the pump polarization.
NASA Astrophysics Data System (ADS)
Sweeney, C.; Kort, E. A.; Rella, C.; Conley, S. A.; Karion, A.; Lauvaux, T.; Frankenberg, C.
2015-12-01
Along with a boom in oil and natural gas production in the US, there has been a substantial effort to understand the true environmental impact of these operations on air and water quality, as well asnet radiation balance. This multi-institution effort funded by both governmental and non-governmental agencies has provided a case study for identification and verification of emissions using a multi-scale, top-down approach. This approach leverages a combination of remote sensing to identify areas that need specific focus and airborne in-situ measurements to quantify both regional and large- to mid-size single-point emitters. Ground-based networks of mobile and stationary measurements provide the bottom tier of measurements from which process-level information can be gathered to better understand the specific sources and temporal distribution of the emitters. The motivation for this type of approach is largely driven by recent work in the Barnett Shale region in Texas as well as the San Juan Basin in New Mexico and Colorado; these studies suggest that relatively few single-point emitters dominate the regional emissions of CH4.
NASA Astrophysics Data System (ADS)
Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar
2015-08-01
A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).
MEMS Micropropulsion Activities at JPL
NASA Technical Reports Server (NTRS)
Mueller, Juergen; Chakraborty, Indrani; Vargo, Stephen; Bame, David; Marrese, Colleen; Tang, William C.
1999-01-01
A status of MEMS-based micropropulsion activities conducted at JPL will be given. These activities include work conducted on the so called Vaporizing Liquid Micro-Thruster (VLM) which recently underwent proof-of-concept testing, demonstrating the ability to vaporize water propellant at 2 W and 2 V. Micro-ion engine technologies, such m field emitter arrays and micro-grids are being studied. Focus in the field emitter area is on arrays able to survive in thruster plumes and micro-ion engine plasmas to serve as neutralizers aW engine cathodes. Integrated, batch-fabricated Ion repeller grid structures are being studied as well as different emitter tip materials are being investigated to meet these goals. A micro-isolation valve is being studied to isolate microspacecraft feed system during long interplanetary cruises, avoiding leakage and prolonging lifetime and reliability of such systems. This concept relies on the melting of a thin silicon barrier. Burst pressure values as high as 2,900 psig were obtained for these valves and power requirements to melt barriers ranging between 10 - 50 microns in thickness, as determined through thermal finite element calculations, varied between 10 - 30 W to be applied over a duration of merely 0.5 ms.
PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process.
Kostov, P; Gaberl, W; Hofbauer, M; Zimmermann, H
2012-08-01
This work reports on three speed optimized pnp bipolar phototransistors build in a standard 180 nm CMOS process using a special starting wafer. The starting wafer consists of a low doped p epitaxial layer on top of the p substrate. This low doped p epitaxial layer leads to a thick space-charge region between base and collector and thus to a high -3 dB bandwidth at low collector-emitter voltages. For a further increase of the bandwidth the presented phototransistors were designed with small emitter areas resulting in a small base-emitter capacitance. The three presented phototransistors were implemented in sizes of 40 × 40 μm 2 and 100 × 100 μm 2 . Optical DC and AC measurements at 410 nm, 675 nm and 850 nm were done for phototransistor characterization. Due to the speed optimized design and the layer structure of the phototransistors, bandwidths up to 76.9 MHz and dynamic responsivities up to 2.89 A/W were achieved. Furthermore simulations of the electric field strength and space-charge regions were done.
Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.
Elleaume, P; Fortgang, C; Penel, C; Tarazona, E
1995-09-01
A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.
High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K
2014-11-25
Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.
NASA Astrophysics Data System (ADS)
Kashiwagi, Takanari; Tanaka, Taiga; Watanabe, Chiharu; Kubo, Hiroyuki; Komori, Yuki; Yuasa, Takumi; Tanabe, Yuki; Ota, Ryusei; Kuwano, Genki; Nakamura, Kento; Tsujimoto, Manabu; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo
2017-12-01
Joule heating is the central issue in order to develop high-power and high-performance terahertz (THz) emission from mesa devices employing the intrinsic Josephson junctions in a layered high transition-temperature Tc superconductor. Here, we describe a convenient local thermal measurement technique using charge-coupled-device-based thermoreflectance microscopy, with the highest spatial resolution to date. This technique clearly proves that the relative temperature changes of the mesa devices between different bias points on the current-voltage characteristics can be measured very sensitively. In addition, the heating characteristics on the surface of the mesa devices can be detected more directly without any special treatment of the mesa surface such as previous coatings with SiC micro-powders. The results shown here clearly indicate that the contact resistance strongly affects the formation of an inhomogeneous temperature distribution on the mesa structures. Since the temperature and sample dependencies of the Joule heating characteristics can be measured quickly, this simple thermal evaluation technique is a useful tool to check the quality of the electrical contacts, electrical wiring, and sample defects. Thus, this technique could help to reduce the heating problems and to improve the performance of superconducting THz emitter devices.
Effect of long-term exposure to Low Earth Orbit (LEO) space environment
NASA Technical Reports Server (NTRS)
Zimcik, D. G.
1987-01-01
Data obtained from components and materials from the Solar Maximum Mission satellite are presented and compared to data for similar materials obtained from the Advanced Composite Materials Exposure to Space Experiment (ACOMEX) flown on Shuttle mission STS-41G. In addition to evaluation of surface erosion and mass loss that may be of importance to very long-term missions, comparisons of solar absorptance and thermal emittance measurements for both long and short term exposures were made. Although the ratio of absorptance over emittance can be altered by proper choice of materials to ensure a proper operating environment for the spacecraft, once the thermal design is established, it is important that the material properties not change in order to maintain the operating environment for many payload and bus items such as electronics, batteries, fuel, etc. However, data presented show significant changes after short exposure in low Earth environment. Moreover, the measured changes are shown to differ according to the manner of exposure, i.e., normal or oblique, which also affects the resultant eroded surface morphology. These results identify constraints to be considered in development of flight experiments or laboratory testing.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.
2017-01-01
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control. PMID:28256595
Single Crystal Diamond Needle as Point Electron Source.
Kleshch, Victor I; Purcell, Stephen T; Obraztsov, Alexander N
2016-10-12
Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.
Single Crystal Diamond Needle as Point Electron Source
NASA Astrophysics Data System (ADS)
Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.
2016-10-01
Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.
Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2014-09-09
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2015-07-07
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Local bipolar-transistor gain measurement for VLSI devices
NASA Astrophysics Data System (ADS)
Bonnaud, O.; Chante, J. P.
1981-08-01
A method is proposed for measuring the gain of a bipolar transistor region as small as possible. The measurement then allows the evaluation particularly of the effect of the emitter-base junction edge and the technology-process influence of VLSI-technology devices. The technique consists in the generation of charge carriers in the transistor base layer by a focused laser beam in order to bias the device in as small a region as possible. To reduce the size of the conducting area, a transversal reverse base current is forced through the base layer resistance in order to pinch in the emitter current in the illuminated region. Transistor gain is deduced from small signal measurements. A model associated with this technique is developed, and this is in agreement with the first experimental results.
Single scattering solution for radiative transfer through Rayleigh and aerosol atmosphere
NASA Technical Reports Server (NTRS)
Otterman, J.
1977-01-01
A solution is presented to the radiative transfer of the solar irradiation through a turbid atmosphere, based on the single-scattering approximation, i.e., an assumption that a photon that underwent scattering either leaves the top of the atmosphere or strikes the surface. The solution depends on a special idealization of the scattering phase function of the aerosols. The equations developed are subsequently applied to analyze quantitatively the enhancement of the surface irradiation and the enhancement of the scattered radiant emittance as seen from above the atmosphere, caused by the surface reflectance and atmospheric back scattering. An order of magnitude error analysis is presented.
NASA Technical Reports Server (NTRS)
DelPapa, Steven V.
2005-01-01
Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.
Ion Motion Induced Emittance Growth of Matched Electron Beams in Plasma Wakefields
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Weiming; Lu, Wei; Huang, Chengkun
2017-06-14
Plasma-based acceleration is being considered as the basis for building a future linear collider. Nonlinear plasma wakefields have ideal properties for accelerating and focusing electron beams. Preservation of the emittance of nano-Coulomb beams with nanometer scale matched spot sizes in these wakefields remains a critical issue due to ion motion caused by their large space charge forces. We use fully resolved quasistatic particle-in-cell simulations of electron beams in hydrogen and lithium plasmas, including when the accelerated beam has different emittances in the two transverse planes. The projected emittance initially grows and rapidly saturates with a maximum emittance growth of lessmore » than 80% in hydrogen and 20% in lithium. The use of overfocused beams is found to dramatically reduce the emittance growth. In conclusion, the underlying physics that leads to the lower than expected emittance growth is elucidated.« less
NASA Astrophysics Data System (ADS)
Levinson, Katherine; Naka, Norihito; Pfiester, Nicole; Licht, Abigail; Vandervelde, Tom
2015-03-01
In thermophotovoltaics, the energy from a heated emitter is converted to electricity by a photovoltaic diode. A selective emitter can be used to emit a narrow band of wavelengths tailored to the bandgap of the photovoltaic diode. This spectral shaping improves the conversion efficiency of the diode and reduces undesirable diode heating. In our research, we study selective emitters based on metamaterials composed of repeating nanoscale structures. The emission characteristics of these materials vary based on the compositional structure, allowing the emitted spectrum to be tunable. Simulations were performed with CST Microwave Studio to design emitters with peak wavelengths ranging from 1-10 microns. The structures were then fabricated using physical vapor deposition and electron beam lithography on a sapphire substrate. Emitter materials studied include gold, platinum, and iridium. Here we report on the emission spectra of the selective emitters and the post-heating structural integrity.
Improvement of silicon solar cell performance through the use of thin film coatings.
Reynard, D L; Andrew, A
1966-01-01
Thin film coatings are used universally in solar cell power systems for spacecraft. Antireflective coatings are used to increase the amount of useful energy reaching the active surface of the cell. Multilayer interference filters are employed to reject unwanted portions of the solar spectrum in order to reduce equilibrium temperature and to prevent ultraviolet damage. Glass covers are used in conjunction with these coatings for the purpose of increasing the thermal emittance of the surface. Appreciable performance increases can be obtained through the uses of these filters and coatings.
Method of making tapered capillary tips with constant inner diameters
Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2009-02-17
Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.
NASA Astrophysics Data System (ADS)
Luo, Dongxiang; Xiao, Ye; Hao, Mingming; Zhao, Yu; Yang, Yibin; Gao, Yuan; Liu, Baiquan
2017-02-01
Doping-free white organic light-emitting diodes (DF-WOLEDs) are promising for the low-cost commercialization because of their simplified device structures. However, DF-WOLEDs reported thus far in the literature are based on the use of blue single molecular emitters, whose processing can represent a crucial point in device manufacture. Herein, DF-WOLEDs without the blue single molecular emitter have been demonstrated by managing a blue exciplex system. For the single-molecular-emitter (orange or yellow emitter) DF-WOLEDs, (i) a color rendering index (CRI) of 81 at 1000 cd/m2 can be obtained, which is one of the highest for the single-molecular-emitter WOLEDs, or (ii) a high efficiency of 35.4 lm/W can be yielded. For the dual-molecular-emitter (yellow/red emitters) DF-WOLED, a high CRI of 85 and low correlated color temperature of 2376 K at 1000 cd/m2 have been simultaneously achieved, which has not been reported by previous DF-WOLEDs. Such presented findings may unlock an alternative avenue to the simplified but high-performance WOLEDs.
Single photon emission from plasma treated 2D hexagonal boron nitride.
Xu, Zai-Quan; Elbadawi, Christopher; Tran, Toan Trong; Kianinia, Mehran; Li, Xiuling; Liu, Daobin; Hoffman, Timothy B; Nguyen, Minh; Kim, Sejeong; Edgar, James H; Wu, Xiaojun; Song, Li; Ali, Sajid; Ford, Mike; Toth, Milos; Aharonovich, Igor
2018-05-03
Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.
Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin
2015-03-12
Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.
Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie
2014-01-01
One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle. PMID:24921337