Science.gov

Sample records for empact electrons muons

  1. EMPACT: Electrons Muons Partons with Air Core Toroids

    SciTech Connect

    Marx, M.D. )

    1990-05-25

    The EMPACT experiment utilizes a broad approach to maximize its discovery potential for new phenomena accessible at the SSC. The high resolution detector has a balances emphasis on, and large acceptance for, electrons, muons, jets, and noninteracting particles, and is capable of utilizing the ultimate luminosity of the SSC. The detector emphasizes excellent calorimetry augmented by TRD tracking, and employs an innovative system of superconducting air core toroids for muon measurements. Significant engineering effort has established the feasibility of a baseline detector concept and has addressed the related issues of support facilities, assembly, and detector integration. The design has been tested against the challenges of predicted phenomena, with the expectation that this will optimize the capacity for observing the unexpected. EMPACT's international collaboration has unprecedented support from major aerospace industries who are providing tools and expertise for project design and integration, which will assure that a detector optimized for performance and cost will be available for the first collisions at the new laboratory.

  2. The muon and the electron

    NASA Astrophysics Data System (ADS)

    Hughes, V. W.

    Our present understanding of the muon and of its relationship to the electron is reviewed, with particular emphasis on the contributions of atomic physics to this topic. A large body of precise experimental data has been obtained, and all this evidence still indicates that the muon is a pointlike lepton which has the same electroweak interactions given by the standard theory as does the electron, and hence the muon differs from the electron only in its larger mass. There is as yet no understanding of the relationship of the muon (or tau particle) to the electron, or of a spectrum comprising these apparently independent lepton generations. Nous rappelons ce qui est actuellement compris du muon et de sa relation avec l'électron, en insistant sur les contributions de la Physique Atomique à ce sujet. Une large masse de données expérimentales est maintenant acquise, et tout concourt à indiquer que le muon est une particule ponctuelle qui a les mêmes interactions électrofaibles, données par la théorie standard, que l'électron, et ainsi que le muon ne diffère de l'électron que par une masse plus grande. Il n'y a jusqu'à présent aucune interprétation de cette relation du muon (ou de la particule tau) avec l'électron, ou d'un spectre comprenant ces générations de leptons apparemment indépendants.

  3. Electron-Muon Ranger: Performance in the MICE muon beam

    SciTech Connect

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c.

  4. Electron-Muon Ranger: Performance in the MICE muon beam

    DOE PAGES

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta inmore » the range 100–280 MeV/c.« less

  5. Muon-to-Electron Conversion with COMET

    NASA Astrophysics Data System (ADS)

    Uchida, Y.

    2014-09-01

    The Coherent Muon-to-Electron Transition (COMET) experiment is presented, focusing on the particle detection systems. COMET is currently under construction as the first of two phases at the J-PARC proton accelerator laboratory in Tokai, Japan. COMET will search for muon-to-electron conversion with a single-event sensitivity of 2.6 × 10-17, with Phase-I achieving a sensitivity of 3.1 × 10-15 and due to enter commissioning in 2016. Phase-I will also allow us to study the novel pion and muon beamline and the rates of background processes.

  6. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  7. Trigger electronics upgrade of PHENIX muon tracker

    NASA Astrophysics Data System (ADS)

    Adachi, S.; Akiyama, T.; Aoki, K.; Asano, H.; Ebesu, S.; Fukao, Y.; Haki, Y.; Hata, M.; Ichikawa, Y.; Iinuma, H.; Ikeda, Y.; Ikeno, M.; Imai, K.; Imazu, Y.; Karatsu, K.; Kasai, M.; Kawamura, H.; Kim, E.; Kurita, K.; Mibe, T.; Murakami, T.; Murata, J.; Nakagawa, I.; Nakamura, K. R.; Nakanishi, R.; Ninomiya, K.; Nitta, M.; Ogawa, N.; Onishi, J.; Park, S.; Sada, Y.; Saito, N.; Sameshima, R.; Sasaki, O.; Sato, A.; Seitaibashi, E.; Senzaka, K.; Shoji, K.; Taketani, A.; Tanida, K.; Toyoda, T.; Watanabe, K.

    2013-03-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) offers the unique capability to collide polarized protons at high energies. One of the highlights of the polarized proton program performed at √{s}=500 GeV is that it affords the direct measurement of sea quark contribution to the proton spin via W-boson production through the measurement of the parity violating single spin asymmetry. A new trigger electronics system for forward muons, which is especially capable of W-boson detection, was developed for the PHENIX experiment. The trigger was installed as an additional electronic circuit, and it was connected in parallel with the existing cathode readout electronics of the muon tracking chamber.

  8. EMPACT: THE LAS VEGAS INTERAGENCY PILOT PROGRAM

    EPA Science Inventory

    ENPACT: The Las Vegas Interagency Pilot Project

    The Las Vegas Interagency Pilot Project of the EMPACT program has involved eleven efforts. These efforts are described in brief on the poster presentation. They include: Las Vegas Environmental Monitoring Inventory, the Qual...

  9. Muon to electron conversion: how to find an electron in a muon haystack

    SciTech Connect

    Kurup, A.

    2010-07-05

    The standard model (SM) of particle physics describes how the Universe works at a fundamental level. Even though this theory has proven to be very successful over the past 50 years, we know it is incomplete. Many theories that go beyond the SM predict the occurrence of certain processes that are forbidden by the SM, such as muon to electron conversion. This paper will briefly review the history of muon to electron conversion and focus on the high-precision experiments currently being proposed, COMET (Coherent Muon to Electron Transition) and Mu2e, and a next-generation experiment, PRISM. The PRISM experiment intends to use a novel type of accelerator called a fixed-field alternating-gradient (FFAG) accelerator. There has recently been renewed interest in FFAGs for the Neutrino Factory and the Muon Collider, and because they have applications in many areas outside of particle physics, such as energy production and cancer therapy. The synergies between these particle physics experiments and other applications will also be discussed.

  10. Muon to electron conversion: how to find an electron in a muon haystack.

    PubMed

    Kurup, A

    2010-08-13

    The standard model (SM) of particle physics describes how the Universe works at a fundamental level. Even though this theory has proven to be very successful over the past 50 years, we know it is incomplete. Many theories that go beyond the SM predict the occurrence of certain processes that are forbidden by the SM, such as muon to electron conversion. This paper will briefly review the history of muon to electron conversion and focus on the high-precision experiments currently being proposed, COMET (Coherent Muon to Electron Transition) and Mu2e, and a next-generation experiment, PRISM. The PRISM experiment intends to use a novel type of accelerator called a fixed-field alternating-gradient (FFAG) accelerator. There has recently been renewed interest in FFAGs for the Neutrino Factory and the Muon Collider, and because they have applications in many areas outside of particle physics, such as energy production and cancer therapy. The synergies between these particle physics experiments and other applications will also be discussed.

  11. DEVELOPMENT OF TECHNOLOGY TRANSFER PRODUCTS FOR THE EPA EMPACT PROGRAM

    EPA Science Inventory

    A presentation was given for a National Satellite Broadcast on the development of technology transfer handbooks for the EMPACT program. These handbooks help spread the knowledge and experience developed from the EMPACT projects. Handbooks are being prepared for every fully implem...

  12. Upgrade of the ALICE muon trigger electronics

    NASA Astrophysics Data System (ADS)

    Dupieux, P.; Joly, B.; Jouve, F.; Manen, S.; Vandaële, R.

    2014-09-01

    The ALICE muon trigger is a large scale detector based on single gap bakelite RPCs. An upgrade of the electronics is needed in order to withstand the increase of luminosity after the LHC Long Shutdown-2 in 2018-2019. The detector will be read out at the minimum bias rate of 100 kHz in Pb-Pb collisions (including a safety factor of 2), two orders of magnitude above the present design. For the most exposed RPCs and in the present conditions of operation, the total integrated charge could be as high as 100 mC/cm2 with rates up to 100 Hz/cm2, which is above the present limit for safe operation. In order to overcome these limitations, upgrade projects of the Front-End (FE) and Readout Electronics are scheduled. The readout upgrade at high rate with low dead time requires changing most of the present electronics. It involves a new design for the 234 Local cards receiving the LVDS signals from the FE electronics and the 16 Regional concentrator cards. The readout chain is completed by a single Common Readout Unit developed for most ALICE sub-detectors. The new architecture of the muon trigger readout will be briefly presented. The present FE electronics, designed for the streamer mode, must be replaced to prevent ageing of the RPCs in the future operating conditions. The new FE called FEERIC (for Front-End Electronics Rapid Integrated Circuit) will have to perform amplification of the analog input signals. This will allow for RPC operation in a low-gain avalanche mode, with a much smaller charge deposit (factor 3-5) in the detector as compared to the present conditions. The purpose is to discriminate RPC signals with a charge threshold around 100 fC, in both polarities, and with a time jitter below 1 ns. We will describe the FE card and FEERIC ASIC features and first prototype performance, report on test results obtained on a cosmic test bench and discuss ongoing developments.

  13. The VME-based D0 muon trigger electronics

    SciTech Connect

    Fortner, M; Green, J; Hedin, D; Morphis, R; Repond, S; Willis, S; Zazula, R; Johns, K; Bazizi, K; Fahland, T; Hall, R E; Jerger, S; Lietzke, C; Smith, D; Butler, J M; Diehl, H T; Eartly, D; Fitzpatrick, T; Green, D; Haggerty, H; Hansen, S; Hawkins, J; Igarashi, S; Joestlein, H

    1990-11-01

    The trigger electronics for the muon system of the Fermilab D0 detector is described. The hardware trigger consists of VME-based cards designed to find probable tracks in individual chambers and then match these track segments. The fast trigger is highly parallel and able to discern probable tracks from about 15,000 trigger cells in under 200 ns from receipt of all bits in the counting house. There is a parallel confirmation trigger with a response time of 1--5 microseconds that provides a crude calculation of the momentum and charge of the muon. 6 refs., 7 figs.

  14. Front-end electronics for the Muon Portal project

    NASA Astrophysics Data System (ADS)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M. C.; Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D. G.; Fallica, G.; Valvo, G.

    2016-10-01

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  15. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    SciTech Connect

    Majewski, Ryan

    2013-01-01

    The Mu2e experiment at Fermi National Accelerator Laboratory is seeking a full conversion from muon to electron. The design for Mu2e is based off MECO, another proposed experiment that sought a full conversion from muon to electron at Brookhaven National Laboratory in the 1990s. Mu2e will provide sensitivity that is four times the sensitivity of the previous experiment, SINDRUM II. Discovering muon to electron conversions could help explain physics beyond the standard model of the particle physics.

  16. Kinematic distributions for electron pair production by muons

    NASA Technical Reports Server (NTRS)

    Linsker, R.

    1972-01-01

    Cross sections and kinematic distributions for the trident production process plus or negative muon plus charge yields plus or minus muon plus electron plus positron plus charge (with charge = dipion moment and Fe) are given for beam energies of 100 to 300 GeV at fixed (electron positron) masses from 5 to 15 GeV. This process is interesting as a test of quantum electrodynamics at high energies, and in particular as a test of the form of the photon propagator at large timelike (four-momentum) squared. For this purpose, it is desirable to impose kinematic cuts that favor those Bethe-Heitler graphs which contain a timelike photon propagator. It is found that there are substantial differences between the kinematic distributions for the full Bethe-Heitler matrix element and the distributions for the two timelike-photon graphs alone; these differences can be exploited in the selection of appropriate kinematic cuts.

  17. D{O} upgrade muon electronics design

    SciTech Connect

    Baldin, B.; Green, D.; Haggerty, H.; Hansen, S.

    1994-11-01

    The planned luminosity for the upgrade is ten times higher than at present (L {approximately} 10{sup 32}cm{sup {minus}2}s{sup {minus}1}) and involves a time between collisions as small as 132 ns. To operate in this environment, completely new electronics is required for the 17,500 proportional drift tubes of the system. These electronics include a deadtimeless readout, a digital TDC with about 1 ns binning for the wire signals, fast charge integrators and pipelined ADCs for digitizing the pad electrode signals, a new wire signal triggering scheme and its associated trigger logic, and high level DSP processing. Some test results of measurements performed on prototype channels and a comparison with the existing electronics are presented.

  18. Preliminary results from IMB3 muon/electron identification tests at KEK

    SciTech Connect

    Bratton, C.B.; Breault, J.; Conner, Z.

    1995-09-01

    A test has been conducted at KEK, Japan using beams of electrons and muons in a 1 kiloton water Cherenkov detector instrumented with IMB3 phototubes and electronics to evaluate IMB`s algorithms for identifying electrons and muons. This identification is important because the IMB3 detector`s results on the atmospheric neutrino anomaly depend on the proper identification of the electrons and muons produced in neutrino charged-current interactions. Preliminary results are presented.

  19. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  20. Balancing particle absorption with structural support of the muon beam stop in muons-to-electrons experimental chamber

    NASA Astrophysics Data System (ADS)

    Majewski, Ryan

    The Mu2e experiment at Fermi National Accelerator Laboratory is structured to discover a full conversion from muon to electron. This discovery could explain some of the most sought-out questions in high energy particle physics today. The experiment will utilize high energy protons to create a muon beam, by utilizing various boosters and accelerators. During the experiment, radioactive particles will be created. It is important that certain components inside the experiment and the outside world are shielded from particles such as neutrons, electrons, and photons. The muon beam stop (MBS) is one of the main components that is responsible for this type of shielding. The MBS is a cylindrical assembly of 316L stainless steel and high density polyethylene that sits atop a support structure on rolling bearing blocks that maintain alignment. The two main priorities are to improve the particle absorption of the currently designed MBS and ensure that it can be supported from a structural standpoint. For the particle physics, simulations were run using Muons, Inc.'s G4Beamline environment, where the geometry of the MBS was varied to see the impact on particle absorption. Subsequent structural and geometric analysis was done to confirm the new geometries are mechanically viable. In the end, a refined MBS was found that can be supported safely within the experimental constraints.

  1. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L. J.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-02-01

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm322 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm322|=2.4×10-3 eV2, sin2θ23=0.5, and Δm322>0 (Δm322<0), a best-fit value of sin22θ13=0.140-0.032+0.038 (0.170-0.037+0.045) is obtained at δCP=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ13 from reactor experiments, some values of δCP are disfavored at the 90% C.L.

  2. Observation of electron neutrino appearance in a muon neutrino beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L J; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-02-14

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm(32)(2) and a CP violating phase δ(CP). In this neutrino oscillation scenario, assuming |Δm(32)(2)|=2.4×10(-3)  eV(2), sin(2)θ(23)=0.5, and Δm322>0 (Δm(32)(2)<0), a best-fit value of sin(2)2θ(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at δ(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ(13) from reactor experiments, some values of δ(CP) are disfavored at the 90% C.L.

  3. Evidence of electron neutrino appearance in a muon neutrino beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Brailsford, D.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M. M.; Tanaka, M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-08-01

    The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, |Δm322|≈2.4×10-3eV2. An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam’s origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3±0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1σ), and a fit assuming νμ→νe oscillations with sin⁡22θ23=1, δCP=0 and |Δm322|=2.4×10-3eV2 yields sin⁡22θ13=0.088-0.039+0.049(stat+syst).

  4. The EMPACT Beaches Project Results from a Study on Microbiological Monitoring in Recreational Waters

    EPA Science Inventory

    The EMPACT (Environmental Monitoring for Public Access and Community Tracking) Beaches project has attempted to define which characteristics are most signifi cant with regard to monitoring approaches. This project examined five beach environments to determine the factors that mos...

  5. High-energy electrons from the muon decay in orbit: Radiative corrections

    SciTech Connect

    Szafron, Robert; Czarnecki, Andrzej

    2015-12-07

    We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  6. The design and construction of the MICE Electron-Muon Ranger

    NASA Astrophysics Data System (ADS)

    Asfandiyarov, R.; Bene, P.; Blondel, A.; Bolognini, D.; Cadoux, F.; Debieux, S.; Drielsma, F.; Giannini, G.; Graulich, J. S.; Husi, C.; Karadzhov, Y.; Lietti, D.; Masciocchi, F.; Nicola, L.; Noah Messomo, E.; Prest, M.; Rothenfusser, K.; Sandstrom, R.; Vallazza, E.; Verguilov, V.; Wisting, H.

    2016-10-01

    The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter installed in the beam line of the Muon Ionization Cooling Experiment (MICE). The experiment will demonstrate ionization cooling, an essential technology needed for the realization of a Neutrino Factory and/or a Muon Collider. The EMR is designed to measure the properties of low energy beams composed of muons, electrons and pions, and perform the identification particle-by-particle. The detector consists of 48 orthogonal layers of 59 triangular scintillator bars. The readout is implemented using FPGA custom made electronics and commercially available modules. This article describes the construction of the detector from its design up to its commissioning with cosmic data.

  7. Generation of Runaway Electrons Induced by Cosmic-Ray Muons in Thunderstorm Electric Fields

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishijima, T.; Sugita, T.; Kawasaki, Z.

    2004-05-01

    Gamma ray dose-rate increases associated with winter thunderstorm activities have been observed in the coastal areas facing the Sea of Japan [1]. In order to investigate the generation of energetic photons which originate in thunderstorm electric fields, we have calculated the behavior of secondary cosmic ray electrons and photons in electric fields with Monte Carlo method. In the calculation, the electron and photon fluxes have increased greatly in the region where the field strength exceeds about 280 P(z) kV/m-atm, and these energy spectra show a large increase in the energy region up to several MeV [2]. In addition to the analysis of the electromagnetic component of cosmic rays, we have carried out the Monte Carlo transport calculations of the cosmic-ray muons and associated particles (e.g. knock-on electrons and bremsstrahlung photons) in thunderstorm electric fields, using GEANT4 code [3]. Muons form a large part of the secondary cosmic-rays and directly reach the regions of strong electric fields owing to their high penetrability in the atmosphere. Therefore, they can serve as the source of a considerable amount of runaway electrons, through their ionization process with air molecules, and their decay into energetic electrons. The electron and photon fluxes show notable increases in the strong electric field, while the muon flux does not fluctuate significantly. These results indicate that the production of energetic electrons by cosmic ray muons plays an important role in the enhancement of electron and photon fluxes in thunderstorm electric fields. Finally, we discuss a feasibility of muon-triggered lightning deduced from the muon transport calculation inside thunderstorm electric fields. From the calculation results, we estimate that the irradiation of muon beams rapidly increases energy deposition in the region of strong electric fields, and produce numerous electron - ion pairs. These productions may induce the lightning discharge by the runaway

  8. Mu2e: a Muon to Electron Conversion Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Brown, David

    2014-03-01

    We present the status of Mu2e, a proposed experiment to measure the rate of muon to electron conversion in the field of a nucleus. The Mu2e experiment will be hosted by Fermilab at a new muon campus, using a new beamline to deliver protons to the muon generation target. Mu2e will use a series of three solenoids to collect, transport, stop, and analyze the muons produced when the 8 GeV pulsed proton beam from the booster hits the tungsten production target. The 200 nsec wide proton pulse is designed to have a ratio of out-of-time to in-time protons better than 10-10, insuring a measurement time window of approximately 1 microsecond essentially free from beam pion background. A precision, low-mass straw tube tracker will measure electron momenta with a precision of 1/1000, allowing clean separation of the conversion signal from Decay In Orbit electrons, the principle experimental background. Extensive coverage of multi-layer scintillation counters will detect 99.99% of the cosmic muons which could generate fake signals. A crystal calorimeter will provide particle ID to further reduce backgrounds. Detailed simulations show a 3-year run with 7.56×1017 stopped muons will allow a Single Event Sensitivity of 2×10-17, allowing an estimated 90% confidence level sensitivity to R of 6×10-17, a four-orders of magnitude improvement over existing limits. The Mu2e schedule is technically limited, with commissioning beginning in 2019. Mu2e may also run at Project X with 10× higher luminosity using either an aluminum or titanium target after minimal upgrades.

  9. Electron, Muon, and Tau Heavy Lepton--Are These the Truly Elementary Particles?

    ERIC Educational Resources Information Center

    Perl, Martin L.

    1980-01-01

    Discussed is the present concept of the ultimate nature of matter--the elementary particle. An explanation is given for why the lepton family of particles--the electron, muon, and tau--may be truly elementary. The tau lepton is described in more detail. (Author/DS)

  10. Muon colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  11. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  12. Comparisons of Electron and Muon Signals in the Atlas Liquid Argon Calorimeters with GEANT4 Simulations

    NASA Astrophysics Data System (ADS)

    Benchekroun, D.; Karpetian, G.; Mazini, R.; Kiryunin, A.; Salihagic, D.; Strizenec, P.; Kish, J.; Kordas, K.; Parrour, G.; Leltchouk, M.; Negroni, S.; Seligman, W.; Loch, P.; Soukharev, A.

    2002-01-01

    Signals from electrons and muons taken at testbeams with different modules of the ATLAS Liquid Argon Calorimeter have been compared to corresponding simulations using the GEANT4 toolkit. These simulations have also been compared in some detail with GEANT3 based predictions. Results for signal linearity, energy resolution, and shower shapes all generally indicate a good agreement between experiment and the two simulation packages, typically at the level of a few percent.

  13. I. Atomic Effects in Tritium Beta-Decay II. Muon to Electron Conversion in Atoms.

    NASA Astrophysics Data System (ADS)

    Wampler, Kevin Dean

    I. The final-state, atomic effects in the low energy end of the tritium beta decay spectrum are studied in detail. I treat the instantaneous, two-electron repulsion in the final state, effectively to all orders in perturbation theory, by solving the eigenvalue problem with a discretized and truncated form of the Hamiltonian. I find that these effects fail to explain the distortion in the spectrum observed by Simpson (Phys. Rev. Lett. 54, 649 (1985)). Simpson attributed this distortion to the admixture of a heavy mass antineutrino in the outgoing electron antineutrino state. In fact, the final-state Coulomb effects enhance the distortion. This calculation clears up some of the ambiguities of other theoretical analyses based on considerations of screening functions and perturbation theory. II. I present a phenomenological study of separate lepton number violating muon to electron conversion in atoms. Previous work on this process has concentrated on elastic transitions where the nucleus remains in the ground state. I present an analysis of the branching ratios of inelastic to elastic transitions. This analysis uses realistic muon wavefunctions and electron plane waves. A multipole analysis is used for the nuclear matrix elements. The particular case of ^{32}S is studied in detail. It is found that, if anomalous muon capture occurs, the coherent (ground-state to ground-state) transition dominates the rate, if this transition is allowed by the coupling constants. However, incoherent (excited state) transitions could be significant in some cases, particularly if coupling to the nuclear pseudo-scalar current occurs, and would permit one to obtain stringent limits on the corresponding couplings that mediate muon number violation.

  14. Electron spin resonance and muon spin relaxation studies of single molecule magnets

    NASA Astrophysics Data System (ADS)

    Blundell, Stephen

    2005-03-01

    We use a combination of electron spin resonance, muon-spin relaxation and SQUID magnetometry to study polycrystalline and single crystal samples of various novel single molecule magnets (SMMs). We also describe a theoretical framework which can be used to analyse the results from each technique. Electron spin resonance measurements are performed using a millimetre vector network analyser and data are presented on several SMM systems using microwave frequencies from 40-300 GHz. Muon-spin relaxation measurements have been performed on several SMM systems in applied longitudinal magnetic field and in temperatures down to 20 mK. The results suggest that dynamic local magnetic field fluctuations are responsible for the relaxation of the muon spin ensemble. We discuss what can be learned from these experiments concerning SMMs and suggest experiments which can probe the quantum nature of SMMs. (Work in collaboration with S Sharmin, T Lancaster, A Ardavan, F L Pratt, E J L McInnes and R E P Winpenny) References: S. J. Blundell and F. L. Pratt, J. Phys.: Condens. Matter 16, R771 (2004); T. Lancaster et al., J. Phys.: Condens. Matter 16, S4563 (2004); S. Sharmin et al., Appl. Phys. Lett. in press.

  15. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    SciTech Connect

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed.

  16. Expression of Interest: A Muon to Electron Conversion Experiment at Fermilab

    SciTech Connect

    Prebys, E.J.; Bogert, D.; Broemmelsiek, D.R.; Ankenbrandt, C.M.; Brice, S.J.; DeJongh, D.F.; Geer, S.; Johnson, D.E.; Martens, M.A.; Neuffer, D.V.; Popovic, M.; /Fermilab /Boston U. /Brookhaven /UC, Berkeley /Idaho State U. /Illinois U., Urbana /Moscow, INR /Massachusetts U., Amherst /MUONS Inc., Batavia /Syracuse U. /Virginia U.

    2007-08-01

    We are writing this letter to express our interest in pursuing an experiment at Fermilab to search for neutrinoless conversion of muons into electrons in the field of a nucleus, which is a lepton flavor-violating (LFV) reaction. The sensitivity goal of this experiment, improving on existing limits for this process by more than a factor of 10000, is very similar to that of previous experiments that have been proposed but never built. It would provide the most sensitive test of LFV, a unique and essential window on new physics unavailable at the high energy frontier. We present a conceptual scheme that would exploit the existing Accumulator and Debuncher rings to generate the required characteristics of the primary proton beam. The proposal requires only modest modifications to the accelerator complex after including those already planned for the NOvA experiment, with which this experiment would be fully compatible. The search for lepton flavor violation (LFV) has long played an important role in the evolution of our understanding of electroweak interactions. The neutrinoless conversion of a muon to an electron in the field of a nucleus is a particularly interesting example of an LFV process involving charged leptons. In the Standard Model, such conversions would take place via loop diagrams involving virtual neutrino mixing, at a rate far below the threshold of any currently conceivable experiment. Indeed, any detectable signal would be a definite indication, albeit indirect, of new dynamics at multi-TeV energy scales. Enhanced rate for this process is an almost universal feature of beyond the Standard Model physics, and the fact that such a process has not been observed has constrained or eliminated many models [1]. While it is widely believed that new physics will appear at LHC energies, the LHC is not well-equipped to study LFV directly. An often-quoted example is in the case of supersymmetry. The LHC will probe slepton masses, but it cannot compete with muon

  17. g factor of an electron or muon bound by an arbitrary central potential

    SciTech Connect

    Karshenboim, S.G.; Lee, R.N.; Milstein, A.I.

    2005-10-15

    We consider the g factor of a spin-1/2 particle (electron or muon) bound by an arbitrary central field. We present an approach that allows one to express the relativistic g factor in terms of the binding energy. We derive the general expression for the correction to the g factor caused by a deviation of the central potential from the Coulomb one. As the application of this method, we consider the corrections to the g factor due to the finite nuclear size, including vacuum polarization radiative correction. The effect of the anomalous magnetic moment is also taken into account.

  18. Beam-induced Electron Loading Effects in High Pressure Cavities for a Muon Collider

    SciTech Connect

    Chung, M.; Tollestrup, A.; Jansson, A.; Yonehara, K.; Insepov, Z.; /Argonne

    2010-05-01

    Ionization cooling is a critical building block for the realization of a muon collider. To suppress breakdown in the presence of the external magnetic field, an idea of using an RF cavity filled with high pressure hydrogen gas is being considered for the cooling channel design. One possible problem expected in the high pressure RF cavity is, however, the dissipation of significant RF power through the beam-induced electrons accumulated inside the cavity. To characterize this detrimental loading effect, we develop a simplified model that relates the electron density evolution and the observed pickup voltage signal in the cavity, with consideration of several key molecular processes such as the formation of the polyatomic molecules, recombination and attachment. This model is expected to be compared with the actual beam test of the cavity in the MuCool Test Area (MTA) of Fermilab.

  19. Muon Muon Collider: Feasibility Study

    SciTech Connect

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  20. Total Hadron Cross Section, New Particles, and Muon Electron Events in e{sup +}e{sup -} Annihilation at SPEAR

    DOE R&D Accomplishments Database

    Richter, B.

    1976-01-01

    The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)

  1. Electron lifetime measurement using cosmic ray muons at the MicroBooNE LArTPC

    NASA Astrophysics Data System (ADS)

    Meddage, Varuna Crishan; MicroBooNE Collaboration

    2017-01-01

    MicroBooNE, a 170 ton liquid argon time projection chamber (LArTPC) located on the Fermilab's Booster Neutrino Beamline (BNB), is designed to both probe neutrino physics phenomena and further develop the LArTPC detector technology. MicroBooNE is the largest currently operating LArTPC detector and began collecting data in Fall 2015. LArTPCs are imaging detectors that offer exceptional capabilities for studying neutrinos. A fundamental requirement for the performance of such detectors is to maintain electronegative contaminants such as oxygen and water at extremely low concentrations, which otherwise can absorb the ionization electrons. The impurity levels in liquid argon can be estimated from the drift electron lifetime as they are inversely proportional to each other. This talk presents a measurement of the drift electron lifetime using cosmic ray muon data collected by MicroBooNE. An interpretation of the observed drift electron lifetime as a function of time indicates that the electron attenuation due to impurities in the liquid argon is negligible during normal operations, implying that the argon purification and gas recirculation system in MicroBooNE is performing successfully.

  2. MiniBooNE: first results on the muon-to-electron neutrino oscillation search

    SciTech Connect

    Sorel, M.; /Columbia U.

    2007-10-01

    MiniBooNE's first results on a search for an electron neutrino excess in a muon neutrino beam are presented, together with an analysis of the data within a two neutrino {nu}{sub {mu}} {yields} {nu}{sub e} appearance-only oscillation context. MiniBooNE finds excellent agreement between data and Standard Model predictions in the oscillation analysis energy region. If neutrino and antineutrino oscillations are the same, MiniBooNE excludes at {approx} 98% confidence level the two neutrino {nu}{sub {mu}} {yields} {nu}{sub e} appearance-only oscillation interpretation of the LSND anomaly. MiniBooNE also finds a discrepancy at energies below the oscillation analysis range, which is currently not understood and under investigation.

  3. Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach

    SciTech Connect

    Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh

    2013-11-15

    Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

  4. Possible application of compact electronics for multilayer muon high-speed radiography to volcanic cones

    NASA Astrophysics Data System (ADS)

    Tanaka, H. K. M.; Yokoyama, I.

    2013-11-01

    Compact data-taking electronics were developed for high-speed multilayer muon radiography in order to minimize operation failure rates. By requiring a linear trajectory within the position sensitive detectors (PSDs), the background (BG) events produced by vertical electromagnetic (EM) showers are effectively reduced. In order to confirm the feasibility of this method, the system comprising four PSD layers was tested by imaging the internal structure of a parasitic cone and the adjacent craterlets formed in the 1910 eruption at the base of the Usu volcano, Hokkaido with a conventional (MURG08) readout system (Kusagaya et al., 2012; Uchida et al., 2009). The new mountain is believed to be a cryptodome since its formation. As knowledge on lava domes is accumulated at various volcanoes, the definition of "cryptodome" is now doubted in its validity. The results of the preliminary 290 h muon radiographic survey revealed that the "cryptodome" is not underlain by any lava mass and that a main craterlet is accompanied by magma intrusions at shallow depths. The former verifies that the new mountain is not a cryptodome but a volcanogenetic mound, and the latter interprets the phreatic explosions forming the craterlets as intrusions of magma into the aquifer. However, a higher data taking failure rate was observed with a software-based MURG08 system when the size of the active area of the detection system was enlarged to improve the detection ability of the system. The newly developed MURG12 is a complete electronics system that can simultaneously process signals from 192 scintillation counters with a data size of 600 kbps ch-1 without operation failure. We anticipate that the observation speed would be further improved by employing MURG12. At the base of the Usu volcano, in the 20th century, four eruptions occurred. Some of them demonstrated three characteristic stages of magma intrusions. First, a magma branch remained at a depth leaving an upheaval of the ground; second, it

  5. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    SciTech Connect

    Werley, Kenneth Alan; Mccown, Andrew William

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  6. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  7. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Georgios, Atreidis

    2017-03-01

    The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  8. Search for displaced supersymmetry in events with an electron and a muon with large impact parameters.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Aldá Júnior, W L; Alves, G A; Brito, L; Correa Martins Junior, M; Dos Reis Martins, T; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Heister, A; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garay Garcia, J; Geiser, A; Gunnellini, P; Hauk, J; Hempel, M; Horton, D; Jung, H; Kalogeropoulos, A; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Novgorodova, O; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Mozer, M U; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Kim, J Y; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Wolszczak, W; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Musella, P; Orsini, L; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Millan Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Searle, M; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Klein, D; Lebourgeois, M; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Krohn, M; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Cheng, T; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Pearson, T; Planer, M; Ruchti, R; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hebda, P; Hunt, A; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; De Mattia, M; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Khukhunaishvili, A; Petrillo, G; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Patel, R; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Verwilligen, P; Vuosalo, C; Woods, N

    2015-02-13

    A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at √[s]=8  TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7  fb(-1). Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-μ final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-μ final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to cτ=2  cm, excluding masses below 790 GeV at 95% confidence level.

  9. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  10. Muon collider design

    NASA Astrophysics Data System (ADS)

    Palmer, R.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A.; Caspi, S.; P., Chen; W-H., Cheng; Y., Cho; Cline, D.; Courant, E.; Fernow, R.; Gallardo, J.; Garren, A.; Gordon, H.; Green, M.; Gupta, R.; Hershcovitch, A.; Johnstone, C.; Kahn, S.; Kirk, H.; Kycia, T.; Y., Lee; Lissauer, D.; Luccio, A.; McInturff, A.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; K-Y., Ng; Noble, R.; Norem, J.; Norum, B.; Oide, K.; Parsa, Z.; Polychronakos, V.; Popovic, M.; Rehak, P.; Roser, T.; Rossmanith, R.; Scanlan, R.; Schachinger, L.; Silvestrov, G.; Stumer, I.; Summers, D.; Syphers, M.; Takahashi, H.; Torun, Y.; Trbojevic, D.; Turner, W.; van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Willis, W.; Winn, D.; Wurtele, J.; Zhao, Y.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \\mu^+ \\mu^- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  11. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  12. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  13. Precision muon tracking detectors and read-out electronics for operation at very high background rates at future colliders

    NASA Astrophysics Data System (ADS)

    Kortner, O.; Kroha, H.; Nowak, S.; Richter, R.; Schmidt-Sommerfeld, K.; Schwegler, Ph.

    2016-07-01

    The experience of the ATLAS MDT muon spectrometer shows that drift-tube chambers provide highly reliable precision muon tracking over large areas. The ATLAS muon chambers are exposed to unprecedentedly high background of photons and neutrons induced by the proton collisions. Still higher background rates are expected at future high-energy and high-luminosity colliders beyond HL-LHC. Therefore, drift-tube detectors with 15 mm tube diameter (30 mm in ATLAS), optimised for high rate operation, have been developed for such conditions. Several such full-scale sMDT chambers have been constructed with unprecedentedly high sense wire positioning accuracy of better than 10 μm. The chamber design and assembly methods have been optimised for large-scale production, reducing considerably cost and construction time while maintaining the high mechanical accuracy and reliability. Tests at the Gamma Irradiation Facility at CERN showed that the rate capability of sMDT chambers is improved by more than an order of magnitude compared to the MDT chambers. By using read-out electronics optimised for high counting rates, the rate capability can be further increased.

  14. Update on the Code Intercomparison and Benchmark for Muon Fluence and Absorbed Dose Induced by an 18 GeV Electron Beam After Massive Iron Shielding

    SciTech Connect

    Fasso, A.; Ferrari, A.; Ferrari, A.; Mokhov, N. V.; Mueller, S. E.; Nelson, W. R.; Roesler, S.; Sanami, t.; Striganov, S. I.; Versaci, R.

    2016-12-01

    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, and with the SLAC data.

  15. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    NASA Astrophysics Data System (ADS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  16. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    SciTech Connect

    Anastasi, A.; Basti, A.; Bedeschi, F.; Bartolini, M.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Sciascio, G.; Di Stefano, R.; Driutti, A.; Escalante, O.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Gioiosa, A.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Karuza, M.; Kaspar, J.; Liedl, A.; Lusiani, A.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Piacentino, G. M.; Raha, N.; Rossi, E.; Santi, L.; Venanzoni, G.

    2017-01-01

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  17. THE MEASUREMENT OF PM2.5, INCLUDING SEMI-VOLATILE COMPONENTS, IN THE EMPACT PROGRAM: RESULTS FROM THE SALT LAKE CITY STUDY. (R827993)

    EPA Science Inventory

    The Salt Lake City EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) project, initiated in October 1999, is designed to evaluate the usefulness of a newly developed real-time continuous monitor (RAMS) for total (non-volatile plus semi-volatile) PM<...

  18. About a peculiar extra U(1): Z{sup '} discovery limit, muon anomalous magnetic moment, and electron electric dipole moment

    SciTech Connect

    Heo, Jae Ho

    2009-08-01

    The model (Lagrangian) with a peculiar extra U(1)[S. M. Barr and I. Dorsner, Phys. Rev. D 72, 015011 (2005); S. M. Barr and A. Khan, Phys. Rev. D 74, 085023 (2006)] is clearly presented. The assigned extra U(1) gauge charges give a strong constraint to build Lagrangians. The Z{sup '} discovery limits are estimated and predicted at the Tevatron and the LHC. The new contributions of the muon anomalous magnetic moment are investigated at one and two loops, and we predict that the deviation from the standard model may be explained. The electron electric dipole moment could also be generated because of the explicit CP-violation effect in the Higgs sector, and a sizable contribution is expected for a moderately sized CP phase [argument of the CP-odd Higgs], 0.1{<=}sin{delta}{<=}1[6 deg. {<=}arg(A){<=}90 deg.].

  19. Using an intense laser beam in interaction with muon/electron beam to probe the noncommutative QED

    NASA Astrophysics Data System (ADS)

    Tizchang, S.; Batebi, S.; Haghighat, M.; Mohammadi, R.

    2017-02-01

    It is known that the linearly polarized photons can partly transform to circularly polarized ones via forward Compton scattering in a background such as the external magnetic field or noncommutative space time. Based on this fact we explore the effects of the NC-background on the scattering of a linearly polarized laser beam from an intense beam of charged leptons. We show that for a muon/electron beam flux {overline{ɛ}}_{μ, e}˜ 1{0}^{12}/{10}^{10} TeV cm-2 sec-1 and a linearly polarized laser beam with energy k 0 ˜1 eV and average power {overline{P}}_{laser}˜eq 1{0}^3 KW, the generation rate of circularly polarized photons is about R V ˜ 104 /sec for noncommutative energy scale ΛNC ˜ 10 TeV. This is fairly large and can grow for more intense beams in near future.

  20. A Highly intense DC muon source, MuSIC and muon CLFV search

    NASA Astrophysics Data System (ADS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N. H.; Hashim, I. H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-08-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 108 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  1. Measurements of the electron and muon inclusive cross-sections in proton-proton collisions at √{ s} = 7 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sibidanov, A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-02-01

    This Letter presents measurements of the differential cross-sections for inclusive electron and muon production in proton-proton collisions at a centre-of-mass energy of √{ s} = 7 TeV, using data collected by the ATLAS detector at the LHC. The muon cross-section is measured as a function of pT in the range 4 electron and muon cross-sections are measured in the range 7 electron and muon measurements, respectively. After subtraction of the W / Z /γ* contribution, the differential cross-sections are found to be in good agreement with theoretical predictions for heavy-flavour production obtained from Fixed Order NLO calculations with NLL high-pT resummation, and to be sensitive to the effects of NLL resummation.

  2. Muon muon collider: Feasibility study

    SciTech Connect

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  3. Formation of the muonic helium atom /alpha particle-muon-electron/ and observation of its Larmor precession

    NASA Technical Reports Server (NTRS)

    Souder, P. A.; Casperson, D. E.; Crane, T. W.; Hughes, V. W.; Lu, D. C.; Yam, M. H.; Orth, H.; Reist, H. W.; Zu Putlitz, G.

    1975-01-01

    Experiments are described in which it proved possible to form the muonic helium atom by stopping polarized negative muons in a helium gas with a 2% xenon admixture at a pressure of 14 atm. The observed Larmor precession amplitudes are plotted against the gyromagnetic ratio for both muons and antimuons stopped in He + 2% Xe. In addition, a non-zero residual polarization of 0.06 plus or minus 0.01 was measured for muons stopped in pure helium gas, which corresponds to a depolarization factor of 18 plus or minus 3.

  4. Precison Muon Physics

    NASA Astrophysics Data System (ADS)

    Hertzog, David

    2013-04-01

    The worldwide, vibrant experimental program involving precision measurements with muons will be presented. Recent achievements in this field have greatly improved our knowledge of fundamental parameters: Fermi constant (lifetime), weak-nucleon pseudoscalar coupling (μp capture), Michel decay parameters, and the proton charged radius (Lamb shift). The charged-lepton-violating decay μ->eγ sets new physics limits. Updated Standard Model theory evaluations of the muon anomalous magnetic moment has increased the significance beyond 3 σ for the deviation with respect to experiment. Next-generation experiments are mounting, with ambitious sensitivity goals for the muon-to-electron search approaching 10-17 sensitivity and for a 0.14 ppm determination of g-2. The broad physics reach of these efforts involves atomic, nuclear and particle physics communities. I will select from recent work and outline the most important efforts that are in preparation.

  5. Neutrino Factory and Muon Collider Fellow

    SciTech Connect

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  6. Andragogical Modeling and the Success of the "EMPACTS" project-based learning model in the STEM disciplines: A decade of growth and learner success in the 2Y College Learning Environment.

    NASA Astrophysics Data System (ADS)

    Phillips, C. D.; Thomason, R.; Galloway, M.; Sorey, N.; Stidham, L.; Torgerson, M.

    2014-12-01

    EMPACTS (Educationally Managed Projects Advancing Curriculum, Technology/Teamwork and Service) is a project-based, adult learning modelthat is designed to enhance learning of course content through real-world application and problem solving self directed and collaborative learning use of technology service to the community EMPACTS students are self-directed in their learning, often working in teams to develop, implement, report and present final project results. EMPACTS faculty use community based projects to increase deeper learning of course content through "real-world" service experiences. Learners develop personal and interpersonal work and communication skills as they plan, execute and complete project goals together. Technology is used as a tool to solve problems and to publish the products of their learning experiences. Courses across a broad STEM curriculum integrate the EMPACTS project experience into the overall learning outcomes as part of the learning college mission of preparing 2Y graduates for future academic and/or workforce success. Since the program began in 2005, there have been over 200 completed projects/year. Student driven successes have led to the establishment of an EMPACTS Technology Corp, which is funded through scholarship and allows EMPACTS learners the opportunity to serve and learn from one another as "peer instructors." Engineering and 3D graphic design teams have written technology proposals and received funding for 3D printing replication projects, which have benefited the college as a whole through grant opportunities tied to these small scale successes. EMPACTS students engage in a variety of outreachprojects with area schools as they share the successes and joys of self directed, inquiry, project based learning. The EMPACTS Program has successfully trained faculty and students in the implementation of the model and conduct semester to semester and once a year workshops for college and K-12 faculty, who are interested in

  7. ELECTRON–MUON IDENTIFICATION BY ATMOSPHERIC SHOWER AND ELECTRON BEAM IN A NEW EAS DETECTOR CONCEPT

    SciTech Connect

    Iori, M.; Denizli, H.; Yilmaz, A.; Ferrarotto, F.; Russ, J.

    2015-03-10

    We present results demonstrating the time resolution and μ/e separation capabilities of a new concept  for an EAS detector capable of measuring cosmic rays arriving with large zenith angles. This kind of detector has been designed to be part of a large area (several square kilometer) surface array designed to measure ultra high energy (10–200 PeV) τ neutrinos using the Earth-skimming technique. A criterion to identify electron-gammas is also shown and the particle identification capability is tested by measurements in coincidence with the KASKADE-GRANDE experiment in Karlsruhe, Germany.

  8. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect

    Ochoa Ricoux, Juan Pedro

    2009-01-01

    We perform a search for vμ → ve oscillations, a process which would manifest a nonzero value of the θ13 mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of ve charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in θ13. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  9. The first muon beam from a new highly-intense DC muon source, MuSIC

    NASA Astrophysics Data System (ADS)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  10. Cosmic muons, as messengers from the Universe

    SciTech Connect

    Brancus, I. M.; Rebel, H.

    2015-02-24

    Penetrating from the outer space into the Earth atmosphere, primary cosmic rays are producing secondary radiation by the collisions with the air target subsequently decaying in hadrons, pions, muons, electrons and photons, phenomenon called Extensive air Shower (EAS). The muons, considered as the “penetrating” component, survive the propagation to the Earth and even they are no direct messenger of the Universe, they reflect the features of the primary particles. The talk gives a description of the development of the extensive air showers generating the secondary particles, especially the muon component. Results of the muon flux and of the muon charge ratio, (the ratio between the positive and the negative muons), obtained in different laboratories and in WILLI experiment, are shown. At the end, the contribution of the muons measured in EAS to the investigation of the nature of the primary cosmic rays is emphasized in KASCADE and WILLI-EAS experiments.

  11. Calibration Hardware for the Muon Detectors at CDF

    NASA Astrophysics Data System (ADS)

    Vickey, Trevor

    2001-04-01

    The muon detector system at CDF consists of the following subsystems: Central Muon Detector (CMU), the Central Muon Upgrade (CMP), the Central Muon Extension (CMX), and the Intermediate Muon Detector (IMU). Each subsystem is a collection of drift chambers and all but the CMU also incorporate scintillation counters for trigger and timing purposes. We will describe the muon calibration system hardware, which performs diagnostics and calibrations on the above detectors. The muon calibration system injects charge into each channel of the CDF muon detectors to generate a signal similar to that of a muon traversing the chamber. Reading this pulse out with the data acquisition system allows us to spot problems with the muon system electronics as well as to calibrate detector timing and response to different amounts of charge.

  12. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    NASA Astrophysics Data System (ADS)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  13. Muon spin rotation in solids

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1983-01-01

    The muon spin rotation (MuSR) technique is used to probe the microscopic electron density in materials. High temperature MuSR and magnetization measurements in nickel are in progress to allow an unambiguous determination of the muon impurity interaction and the impurity induced change in local spin density. The first results on uniaxial stress induced frequency shifts in an Fe single crystal are also reported.

  14. Polarized muon beams for muon collider

    NASA Astrophysics Data System (ADS)

    Skrinsky, A. N.

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance.

  15. Measurement of the top-quark pair production cross-section using final states with an electron or a muon and a hadronically decaying τ-lepton

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuta

    2014-08-01

    A measurement of the top-quark pair production cross-section is reported using proton-proton collision data at √{ s} = 7 TeV recorded by ATLAS experiment at the Large Hadron Collider. Events are extracted from 2.05 fb-1 of data by requiring an isolated electron or muon, a large missing transverse momentum, two or more energetic jets and a hadronically decaying τ-lepton. The measured cross-section, σttbar = 186 ± 13 (stat.) ± 20 (syst.) ± 7 (lumi.) pb, is in good agreement with the Standard Model prediction.

  16. Dose from slow negative muons.

    PubMed

    Siiskonen, T

    2008-01-01

    Conversion coefficients from fluence to ambient dose equivalent, from fluence to maximum dose equivalent and quality factors for slow negative muons are examined in detail. Negative muons, when stopped, produce energetic photons, electrons and a variety of high-LET particles. Contribution from each particle type to the dose equivalent is calculated. The results show that for the high-LET particles the details of energy spectra and decay yields are important for accurate dose estimates. For slow negative muons the ambient dose equivalent does not always yield a conservative estimate for the protection quantities. Especially, the skin equivalent dose is strongly underestimated if the radiation-weighting factor of unity for slow muons is used. Comparisons to earlier studies are presented.

  17. Muon Observations

    NASA Astrophysics Data System (ADS)

    Duldig, Marc L.

    2000-07-01

    Muon observations are complementary to neutron monitor observations but there are some important differences in the two techniques. Unlike neutron monitors, muon telescope systems use coincidence techniques to obtain directional information about the arriving particle. Neutron monitor observations require simple corrections for pressure variations to compensate for the varying mass of atmospheric absorber over a site. In contrast, muon observations require additional corrections for the positive and negative temperature effects. Muon observations commenced many years before neutron monitors were constructed. Thus, muon data over a larger number of solar cycles is available to study solar modulation on anisotropies and other cosmic ray variations. The solar diurnal and semi-diurnal variations have been studied for many years. Using the techniques of Bieber and Chen it has been possible to derive the radial gradient, parallel mean-free path and symmetric latitude gradient of cosmic rays for rigidities <200 GV. The radial gradient varies with the 11-year solar activity cycle whereas the parallel mean-free path appears to vary with the 22-year solar magnetic cycle. The symmetric latitudinal gradient reverses at each solar polarity reversal. These results are in general agreement with predictions from modulation models. In undertaking these analyses the ratio of the parallel to perpendicular mean-free path must be assumed. There is strong contention in the literature about the correct value to employ but the results are sufficiently robust for this to be, at most, a minor problem. An asymmetric latitude gradient of highly variable nature has been found. These observations do not support current modulation models. Our view of the sidereal variation has undergone a revolution in recent times. Nagashima, Fujimoto and Jacklyn proposed a narrow Tail-In source anisotropy and separate Loss-Cone anisotropy as being responsible for the observed variations. A new analysis

  18. THE MEASUREMENT OF PM2.5, INCLUDING SEMI-VOLATILE COMPONENTS, IN THE EMPACT PROGRAM: RESULTS FROM THE SALT LAKE CITY STUDY AND IMPLICATIONS FOR PUBLIC AWARENESS, HEALTH EFFECTS, AND CONTROL STRATEGIES (R827993)

    EPA Science Inventory

    The Salt Lake City EPA Environmental

    Monitoring for Public Access and Community Tracking (EMPACT) project,

    initiated in October 1999, is designed to evaluate the usefulness of a

    newly developed real-time continuous monitor (RAMS) for total

    (non-volatil...

  19. LINACS FOR FUTURE MUON FACILITIES

    SciTech Connect

    Slawomir Bogacz, Rolland Johnson

    2008-10-01

    Future Muon Colliders (MC) and Neutrino Factories (NF) based on muon storage rings will require innovative linacs to: produce the muons, cool them, compress longi-tudinally and ‘shape’ them into a beam and finally to rap-idly accelerate them to multi-GeV (NF) and TeV (MC) energies. Each of these four linac applications has new requirements and opportunities that follow from the na-ture of the muon in that it has a short lifetime (τ = 2.2 μsec) in its own rest frame, it is produced in a tertiary process into a large emittance, and its electron, photon, and neutrino decay products can be more than an annoy-ance. As an example, for optimum performance, the linac repetition rates should scale inversely with the laboratory lifetime of the muon in its storage ring, something as high as 1 kHz for a 40 GeV Neutrino Factory or as low as 20 Hz for a 5 TeV Muon Collider. A superconducting 8 GeV Linac capable of CW operation is being studied as a ver-satile option for muon production [1] for colliders, facto-ries, and muon beams for diverse purposes. A linac filled with high pressure hydrogen gas and imbedded in strong magnetic fields has been proposed to rapidly cool muon beams [2]. Recirculating Linear Accelerators (RLA) are possible because muons do not generate significant syn-chrotron radiation even at extremely high energy and in strong magnetic fields. We will describe the present status of linacs for muon applications; in particular the longitu-dinal bunch compression in a single pass linac and multi-pass acceleration in the RLA, especially the optics and technical requirements for RLA designs, using supercon-ducting RF cavities capable of simultaneous acceleration of both μ+ and μ- species, with pulsed linac quadrupoles to allow the maximum number of passes. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

  20. Studies of a Large Odd‐Numbered Odd‐Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn

    PubMed Central

    Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J.; Barker, Claire; Carretta, Stefano; Collison, David; Güdel, Hans U.; Guidi, Tatiana; McInnes, Eric J. L.; Möller, Johannes S.; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L.; Santini, Paolo; Tuna, Floriana; Tregenna‐Piggott, Philip L. W.; Vitorica‐Yrezabal, Iñigo J.; Timco, Grigore A.

    2016-01-01

    Abstract The spin dynamics of Cr8Mn, a nine‐membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8Mn is a rare example of a large odd‐membered AF ring, and has an odd‐number of 3d‐electrons present. Odd‐membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated‐spin ground states. The chemical synthesis and structures of two Cr8Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground‐spin‐state crossing from S=1/2 to S=3/2 in Cr8Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin‐pair correlations and scalar‐spin chirality, shows a non‐collinear spin structure that fluctuates between non‐planar states of opposite chiralities. PMID:26748964

  1. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    PubMed

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

  2. Muons in gamma showers

    NASA Technical Reports Server (NTRS)

    Stanev, T.; Vankov, C. P.; Halzen, F.

    1985-01-01

    Muon production in gamma-induced air showers, accounting for all major processes. For muon energies in the GeV region the photoproduction is by far the most important process, while the contribution of micron + micron pair creation is not negligible for TeV muons. The total rate of muons in gamma showers is, however, very low.

  3. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  4. Search for heavy bottomlike quarks decaying to an electron or muon and jets in pp collisions at √s = 1.96  TeV.

    PubMed

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S

    2011-04-08

    We report the most sensitive direct search for pair production of fourth-generation bottomlike chiral quarks (b') each decaying promptly to tW. We search for an excess of events with an electron or muon, at least five jets (one identified as due to a b or c quark), and an imbalance of transverse momentum by using data from pp collisions collected by the CDF II detector at Fermilab with an integrated luminosity of 4.8  fb(-1). We observe events consistent with background expectation, calculate upper limits on the b' pair-production cross section (σ(bb')) ≲30  fb for m(b') > 375  GeV/c2), and exclude m(b') < 372  GeV/c2 at 95% confidence level assuming a 100% branching ratio of b' to tW.

  5. Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at s=8TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2015-03-18

    A search is performed for long-lived particles that decay into final states that include a pair of electrons or a pair of muons. The experimental signature is a distinctive topology consisting of a pair of charged leptons originating from a displaced secondary vertex. Events corresponding to an integrated luminosity of 19.6 (20.5)  fb⁻¹ in the electron (muon) channel were collected with the CMS detector at the CERN LHC in proton-proton collisions at √s = 8  TeV. No significant excess is observed above standard model expectations. Upper limits on the product of the cross section and branching fraction of such a signal are presentedmore » as a function of the long-lived particle’s mean proper decay length. The limits are presented in an approximately model-independent way, allowing them to be applied to a wide class of models yielding the above topology. Over much of the investigated parameter space, the limits obtained are the most stringent to date. In the specific case of a model in which a Higgs boson in the mass range 125–1000  GeV/c² decays into a pair of long-lived neutral bosons in the mass range 20–350  GeV/c², each of which can then decay to dileptons, the upper limits obtained are typically in the range 0.2–10 fb for mean proper decay lengths of the long-lived particles in the range 0.01–100 cm. In the case of the lowest Higgs mass considered (125  GeV/c²), the limits are in the range 2–50 fb. These limits are sensitive to Higgs boson branching fractions as low as 10⁻⁴.« less

  6. Law of Conservation of Muons

    DOE R&D Accomplishments Database

    Feinberg, G.; Weinberg, S.

    1961-02-01

    A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

  7. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-09

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction.

  8. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  9. Preparations for Muon Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; Popovic, M.; Prebys, E.; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  10. The Muon system of the run II D0 detector

    SciTech Connect

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov, V.A.; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Tata Inst. /Dubna, JINR /Moscow, ITEP /Moscow State U. /Serpukhov, IHEP /St. Petersburg, INP /Arizona U. /Florida State U. /Fermilab /Northern Illinois U. /Indiana U. /Boston U. /Northeastern U. /Brookhaven /Washington U., Seattle /Minsk, Inst. Nucl. Problems

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  11. Imaging a nuclear reactor using cosmic ray muons

    SciTech Connect

    Perry, John; Azzouz, Mara; Bacon, Jeffrey; Borozdin, Konstantin; Chen, Elliott; Fabritius, Joseph II; Milner, Edward; Miyadera, Haruo; Morris, Christopher; Roybal, Jonathan; Wang, Zhehui; Busch, Bob; Carpenter, Ken; Hecht, Adam A.; Masuda, Koji; Spore, Candace; Toleman, Nathan; Aberle, Derek; Lukic, Zarija

    2013-05-14

    The passage of muons through matter is dominated by the Coulomb interaction with electrons and nuclei. The muon interaction with electrons leads to continuous energy loss and stopping of the muons. The muon interaction with nuclei leads to angular diffusion. We present experimental images of a nuclear reactor, the AGN-201M reactor at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes. The data are compared with a geant4 model. In both the data and simulation, we identify specific regions corresponding to elements of the reactor structure, including its core, moderator, and shield.

  12. THE EMPACT COLLECTION

    EPA Science Inventory

    The TTSD of the USEPA's ORD/NRMRL has completed a series of technology transfer and risk communication handbooks, case studies, and summary reports for community-based environmental monitoring projects under EPA's Environmental Monitoring for Public Access and Community Tracking ...

  13. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  14. Muonic alchemy: Transmuting elements with the inclusion of negative muons

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Cruz, Daniel; Reyes, Andrés

    2012-06-01

    In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.

  15. Muon cooling: longitudinal compression.

    PubMed

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-06

    A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2  μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

  16. Development of a Portable Muon Witness System

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01

    associated electronics to measure energy depositions in coincidence in the two paddles. For this particular application of the prototype, the measurements performed concentrated on a broad investigation of the dependence of the muon flux on depth underground. These tests were conducted inside at Building 3420/1307 and underground at Building 3425 at the Pacific Northwest National Laboratory. The second half of this report analyzes modifications to the electronics of the BLCRD to make this detector portable. Among other modifications, a battery powered version of these electronics is proposed for the final Muon Witness design.

  17. Multiple muons in MACRO

    NASA Technical Reports Server (NTRS)

    Heinz, R.

    1985-01-01

    An analysis of the multiple muon events in the Monopole Astrophysics and Cosmic Ray Observatory detector was conducted to determine the cosmic ray composition. Particular emphasis is placed on the interesting primary cosmic ray energy region above 2000 TeV/nucleus. An extensive study of muon production in cosmic ray showers has been done. Results were used to parameterize the characteristics of muon penetration into the Earth to the location of a detector.

  18. SSC muon detector group report

    SciTech Connect

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4..pi.. detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC.

  19. Atmospheric Muon Lifetime, Standard Model of Particles and the Lead Stopping Power for Muons

    NASA Astrophysics Data System (ADS)

    Gutarra-Leon, Angel; Barazandeh, Cioli; Majewski, Walerian

    2017-01-01

    The muon is a fundamental particles of matter. It decays into three other leptons through an exchange of the weak vector bosons W +/W-. Muons are present in the atmosphere from cosmic ray showers. By detecting the time delay between arrival of the muon and an appearance of the decay electron in our detector, we'll measure muon's lifetime at rest. From the lifetime we should be able to find the ratio gw /MW of the weak coupling constant gw (a weak analog of the electric charge) to the mass of the W-boson MW. Vacuum expectation value v of the Higg's field, which determines the masses of all particles of the Standard Model (SM), could be then calculated from our muon experiment as v =2MWc2/gw =(τ m μc2/6 π3ĥ)1/4m μc2 in terms of muon mass mµand muon lifetime τ only. Using known experimental value for MWc2 = 80.4 GeV we'll find the weak coupling constant gw. Using the SM relation e =gwsin θ√ hc ɛ0 with the experimental value of the Z0-photon weak mixing angle θ = 29o we could find from our muon lifetime the value of the elementary electric charge e. We'll determine the sea-level fluxes of low-energy and high-energy cosmic muons, then we'll shield the detector with varying thicknesses of lead plates and find the energy-dependent muon stopping power in lead.

  20. Electrons, muons and hadrons in extensive air showers and how do they depend on nuclear interaction model, part 2

    NASA Technical Reports Server (NTRS)

    Wrotniak, J. A.; Yodh, G. B.

    1985-01-01

    Some of the results of Monte Carlo simulations of extensive air showers for nuclear interactions models are presented. The most significant part of scaling violation effect is generated by the inclusion of rising cross-section. Among the models considered the lowest value for Eo/N(max) is obtained when rapidly rising cross-section and charge exchange are both included (model R-F01). The value is still 1.38 GeV/electron. Except at the highest energies, the sensitivity to atomic mass of the primary is greater than to specific assumptions about multiple production.

  1. Thermally activated spin fluctuations in stoichiometric LiCoO2 clarified by electron paramagnetic resonance and muon-spin rotation and relaxation measurements

    NASA Astrophysics Data System (ADS)

    Mukai, Kazuhiko; Aoki, Yoshifumi; Andreica, Daniel; Amato, Alex; Watanabe, Isao; Giblin, Sean R.; Sugiyama, Jun

    2014-03-01

    Lithium cobalt dioxide (LiCoO2) belongs to a family of layered CoO2-based materials and has considerable interests in both fundamental physics and technological applications in lithium-ion batteries. We report the results of structural, electrochemical, magnetic susceptibility (χ), electron paramagnetic resonance (EPR), and muon-spin rotation and relaxation (μSR) measurements on powder Lix0CoO2 samples, where the nominal Li/Co ratios (x0) were 0.95, 1.00, 1.02, 1.05, and 1.10, respectively. Structural, electrochemical, and χ measurements suggested that the sample with x0 = 1.02 is very close to single stoichiometric LiCoO2 (ST-LCO) phase and that the Co ions in the x0 = 1.02 sample are in a nonmagnetic low-spin state with S = 0 (t2g6). However, both EPR and μSR revealed that the x0 = 1.02 (ST-LCO) sample includes a large amount of nonordered magnetic phase in the temperature (T) range between 100 and 500 K. The volume fraction of such magnetic phase was found to be ˜45 vol% at 300 K by μSR, indicating an intrinsic bulk feature for ST-LCO. In fact, structural and photoelectron spectroscopic analyses clearly excluded the possibility that the nonordered magnetism is caused by impurities, defects, or surfaces. Because EPR and μSR sense static and dynamic nature of local magnetic environments, we concluded that Co spins in ST-LCO are fluctuating in the EPR and μSR time-windows. We also proposed possible origins of such nonordered magnetism, that is, a spin-state transition and charge disproportionation.

  2. Muons probe magnetism and hydrogen interaction in graphene

    NASA Astrophysics Data System (ADS)

    Riccò, M.; Aramini, M.; Mazzani, M.; Pontiroli, D.; Gaboardi, M.; Yazyev, O. V.

    2013-12-01

    Muon spin resonance (μSR) is a powerful technique for investigating the local magnetic fields in materials through implanted muons. Here we report a μSR study of chemically produced thermally exfoliated graphene. Our results provide an experimental answer to the many theoretical investigations of magnetic properties of graphene. The observed muon spin precession is attributed to a localized muon-hydrogen nuclear dipolar interaction rather than to a hyperfine interaction with magnetic electrons. This proves the absence of magnetism in chemically produced thermally exfoliated graphene.

  3. The MEGA (Muon decays into an Electron and a GAmma ray) experiment: A search for. mu. -->. e. gamma

    SciTech Connect

    Cooper, M.D.

    1988-01-01

    The MEGA experiment is designed to search for the ..mu.. ..-->.. e..gamma.. process with a branching ratio sensitivity of 10/sup -13/. This decay violates the empirically established rule of lepton family number conservation and lies outside the Standard Model of electroweak interactions. In order for the experiment to make a factor of 500 improvement over the existing limit, a new design was adopted that employs highly modular, fast detectors and state-of-the-art electronic readout. The detectors are contained in a 15 kG solenoidal field produced by a superconducting magnet. The central region is a positron spectrometer, and the outer region is four layers of pair spectrometers. Data taking is expected to commence in 1989. 6 refs., 3 figs.

  4. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  5. Telecommunication using muon beams

    DOEpatents

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  6. Silicon meets cyclotron: muon spin resonance of organosilicon radicals.

    PubMed

    West, Robert; Samedov, Kerim; Percival, Paul W

    2014-07-21

    Muons, generated at a high-powered cyclotron, can capture electrons to form muonium atoms. Muon spin resonance spectra can be recorded for organosilyl radicals obtained by addition of muonium atoms to silylenes and silenes. We present a brief summary of progress in this new area since the first such experiments were reported in 2008.

  7. Underwater measurements of muon intensity

    NASA Technical Reports Server (NTRS)

    Fedorov, V. M.; Pustovetov, V. P.; Trubkin, Y. A.; Kirilenkov, A. V.

    1985-01-01

    Experimental measurements of cosmic ray muon intensity deep underwater aimed at determining a muon absorption curve are of considerable interest, as they allow to reproduce independently the muon energy spectrum at sea level. The comparison of the muon absorption curve in sea water with that in rock makes it possible to determine muon energy losses caused by nuclear interactions. The data available on muon absorption in water and that in rock are not equivalent. Underground measurements are numerous and have been carried out down to the depth of approx. 15km w.e., whereas underwater muon intensity have been measured twice and only down to approx. 3km deep.

  8. The Muon Collider

    SciTech Connect

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  9. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  10. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  11. The Level-1 Tile-Muon Trigger in the Tile Calorimeter upgrade program

    NASA Astrophysics Data System (ADS)

    Ryzhov, A.

    2016-12-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal's outermost radial layer can assist in muon tagging in the Level-1 Muon Trigger by rejecting fake muon triggers due to slow charged particles (typically protons) without degrading the efficiency of the trigger. The main activity of the Tile-Muon Trigger in the ATLAS Phase-0 upgrade program was to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This report describes the Tile-Muon Trigger, focusing on the new detector electronics such as the Tile Muon Digitizer Board (TMDB) that receives, digitizes and then provides the signal from eight TileCal modules to three Level-1 muon endcap Sector-Logic Boards.

  12. Radiative-recoil corrections to hyperfine splitting: Polarization insertions in the muon factor

    SciTech Connect

    Eides, Michael I.; Shelyuto, Valery A.

    2009-09-01

    We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium due to insertions of a one-loop polarization operator in the muon factor. The contribution produced by electron polarization insertions is enhanced by the large logarithm of the electron-muon mass ratio. We obtained all single-logarithmic and nonlogarithmic radiative-recoil corrections of order {alpha}{sup 3}(m/M)E{sub F} generated by the diagrams with electron and muon polarization insertions.

  13. Muon Neutrino Disappearance Measurement at MINOS+

    NASA Astrophysics Data System (ADS)

    Carroll, Thomas; Minos+ Collaboration

    2017-01-01

    The MINOS experiment ran from 2003 until 2012 and produced some of the best precision measurements of the atmospheric neutrino oscillation parameters Δm322 and θ23 using muon neutrino disappearance of beam and atmospheric neutrinos and electron neutrino appearance of beam neutrinos. The MINOS+ experiment succeeded MINOS in September 2013. For almost three years MINOS+ collected data from the Medium Energy NuMI neutrino beam at Fermilab. Results of the muon neutrino disappearance analysis from the first two years of MINOS+ data will be presented. These results will be compared to and combined with the MINOS measurement.

  14. Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at √s=7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-09-09

    This study presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp → Z/γ * →ℓ+ℓ-, with ℓ being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at \\( \\sqrt{s}=7 \\) TeV, corresponding to an integrated luminosity of 4.8 fb-1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing anglemore » of sin2 θefflept =0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.« less

  15. Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at √s=7 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-09-09

    This study presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp → Z/γ * →ℓ+-, with ℓ being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at \\( \\sqrt{s}=7 \\) TeV, corresponding to an integrated luminosity of 4.8 fb-1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing angle of sin2 θefflept =0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.

  16. Muon Fluence Measurements for Homeland Security Applications

    SciTech Connect

    Ankney, Austin S.; Berguson, Timothy J.; Borgardt, James D.; Kouzes, Richard T.

    2010-08-10

    This report focuses on work conducted at Pacific Northwest National Laboratory to better characterize aspects of backgrounds in RPMs deployed for homeland security purposes. Two polyvinyl toluene scintillators were utilized with supporting NIM electronics to measure the muon coincidence rate. Muon spallation is one mechanism by which background neutrons are produced. The measurements performed concentrated on a broad investigation of the dependence of the muon flux on a) variations in solid angle subtended by the detector; b) the detector inclination with the horizontal; c) depth underground; and d) diurnal effects. These tests were conducted inside at Building 318/133, outdoors at Building 331G, and underground at Building 3425 at Pacific Northwest National Laboratory.

  17. Study of photonuclear muon interactions at Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Dadykin, V. L.; Novoseltsev, Y. F.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    The method of pion-muon-electron decays recording was used to distinguish between purely electron-photon and hadronic cascades, induced by high energy muons underground. At energy approx. 1 Tev a ratio of the number of hadronic to electromagnetic cascades was found equal 0.11 + or - .03 in agreement with expectation. But, at an energy approx. 4 Tev a sharp increase of this ratio was indicated though not statistically sound (0.52 + or - .13).

  18. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  19. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    To a particle physicist a muon is a member of the lepton family, a heavy electron possessing a mass of about 1/9 that of a proton and a spin of 1/2, which interacts with surrounding atoms and molecules electromagnetically. Since its discovery in 1937, the muon has been put to many uses, from tests of special relativity to deep inelastic scattering, from studies of nuclei to tests of weak interactions and quantum electrodynamics, and most recently, as a radiographic tool to see inside heavy objects and volcanoes. In 1957 Richard Garwin and collaborators, while conducting experiments at the Columbia University cyclotron to search for parity violation, discovered that spin-polarized muons injected into materials might be useful to probe internal magnetic fields. This eventually gave birth to the modern field of muSR, which stands for muon spin rotation, relaxation or resonance, and is the subject of this special issue of Journal of Physics: Condensed Matter. Muons are produced in accelerators when high energy protons (generally >500 MeV) strike a target like graphite, producing pions which subsequently decay into muons. Most experiments carried out today use relatively low-energy (~4 MeV), positively-charged muons coming from pions decaying at rest in the skin of the production target. These muons have 100% spin polarization, a range in typical materials of about 180 mg cm-2, and are ideal for experiments in condensed matter physics and chemistry. Negatively-charged muons are also occasionally used to study such things as muonic atoms and muon-catalysed fusion. The muSR technique provides a local probe of internal magnetic fields and is highly complementary to inelastic neutron scattering and nuclear magnetic resonance, for example. There are four primary muSR facilities in the world today: ISIS (Didcot, UK), KEK (Tsukuba, Japan), PSI (Villigen, Switzerland) and TRIUMF (Vancouver, Canada), serving about 500 researchers world-wide. A new facility, JPARC (Tokai, Japan

  20. Muon implantation of metallocenes: ferrocene.

    PubMed

    Jayasooriya, Upali A; Grinter, Roger; Hubbard, Penny L; Aston, Georgina M; Stride, John A; Hopkins, Gareth A; Camus, Laure; Reid, Ivan D; Cottrell, Stephen P; Cox, Stephen F J

    2007-01-01

    Muon Spin Relaxation and Avoided Level Crossing (ALC) measurements of ferrocene are reported. The main features observed are five high field resonances in the ALC spectrum at about 3.26, 2.44, 2.04, 1.19 and 1.17 T, for the low-temperature phase at 18 K. The high-temperature phase at 295 K shows that only the last feature shifted down to about 0.49 T and a muon spin relaxation peak at about 0.106 T which approaches zero field when reaching the phase transition temperature of 164 K. A model involving three muoniated radicals, two with muonium addition to the cyclopentadienyl ring and the other to the metal atom, is postulated to rationalise these observations. A theoretical treatment involving spin-orbit coupling is found to be required to understand the Fe-Mu adduct, where an interesting interplay between the ferrocene ring dynamics and the spin-orbit coupling of the unpaired electron is shown to be important. The limiting temperature above which the full effect of spin-orbit interaction is observable in the muSR spectra of ferrocene was estimated to be 584 K. Correlation time for the ring rotation dynamics of the Fe-Mu radical at this temperature is 3.2 ps. Estimated electron g values and the changes in zero-field splittings for this temperature range are also reported.

  1. Fukushima Daiichi Muon Imaging

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo

    2015-10-01

    Japanese government announced cold-shutdown condition of the reactors at Fukushima Daiichi by the end of 2011, and mid- and long-term roadmap towards decommissioning has been drawn. However, little is known for the conditions of the cores because access to the reactors has been limited by the high radiation environment. The debris removal from the Unit 1 - 3 is planned to start as early as 2020, but the dismantlement is not easy without any realistic information of the damage to the cores, and the locations and amounts of the fuel debris. Soon after the disaster of Fukushima Daiichi, several teams in the US and Japan proposed to apply muon transmission or scattering imagings to provide information of the Fukushima Daiichi reactors without accessing inside the reactor building. GEANT4 modeling studies of Fukushima Daiichi Unit 1 and 2 showed clear superiority of the muon scattering method over conventional transmission method. The scattering method was demonstrated with a research reactor, Toshiba Nuclear Critical Assembly (NCA), where a fuel assembly was imaged with 3-cm resolution. The muon scattering imaging of Fukushima Daiichi was approved as a national project and is aiming at installing muon trackers to Unit 2. A proposed plan includes installation of muon trackers on the 2nd floor (operation floor) of turbine building, and in front of the reactor building. Two 7mx7m detectors were assembled at Toshiba and tested.

  2. High-energy pair production of muons in electron-positron annihilation at center of mass energies ranging from 130 to 183 GeV

    NASA Astrophysics Data System (ADS)

    Smith, Bryan R.

    For the process e+e/sp-/rightarrow μ+/mu/sp- (nγ), the cross section and forward-backward charge asymmetry are measured at the highest ever center of mass energies which ranged from 130 to 183GeV. The data originates from 85pb-1 of integrated luminosity collected with the L3 detector at LEP. The measured muon pair cross section and forward-backward asymmetry agree with the Standard Model prediction with a χ SM2/N =.61 with 10 degrees of freedom. A mass limit on an additional heavy, neutral gauge boson of M Z' > 315GeV is set using muon pair production alone, rising to M Z' > 805GeV when all final states are considered. A search for an excited lepton decaying via /mu*/rightarrow/mu/gamma excludes such objects with electromagnetic coupling up to 183GeV. (Copies available exclusively from MIT Libraries, RM. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  3. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  4. Toward the Computational Prediction of Muon Sites and Interaction Parameters

    NASA Astrophysics Data System (ADS)

    Bonfà, Pietro; De Renzi, Roberto

    2016-09-01

    The rapid developments of computational quantum chemistry methods and supercomputing facilities motivate the renewed interest in the analysis of the muon/electron interactions in μSR experiments with ab initio approaches. Modern simulation methods seem to be able to provide the answers to the frequently asked questions of many μSR experiments: where is the muon? Is it a passive probe? What are the interaction parameters governing the muon-sample interaction? In this review we describe some of the approaches used to provide quantitative estimations of the aforementioned quantities and we provide the reader with a short discussion on the current developments in this field.

  5. A three-dimensional code for muon propagation through the rock: MUSIC

    NASA Astrophysics Data System (ADS)

    Antonioli, P.; Ghetti, C.; Korolkova, E. V.; Kudryavtsev, V. A.; Sartorelli, G.

    1997-10-01

    We present a new three-dimensional Monte-Carlo code MUSIC (MUon SImulation Code) for muon propagation through the rock. All processes of muon interaction with matter with high energy loss (including the knock-on electron production) are treated as stochastic processes. The angular deviation and lateral displacement of muons due to multiple scattering, as well as bremsstrahlung, pair production and inelastic scattering are taken into account. The code has been applied to obtain the energy distribution and angular and lateral deviations of single muons at different depths underground. The muon multiplicity distributions obtained with MUSIC and CORSIKA (Extensive Air Shower simulation code) are also presented. We discuss the systematic uncertainties of the results due to different muon bremsstrahlung cross-sections.

  6. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    NASA Astrophysics Data System (ADS)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  7. Measurement of the top quark pair cross section with ATLAS in pp collisions at √{ s} = 7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, A. K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Goshaw, A. T.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gushchin, V. N.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Joram, C.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schneider, B.; Schnoor, U.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, Hs.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Sykora, I.; Sykora, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-10-01

    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb-1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σttbar = 186 ± 13 (stat .) ± 20 (syst .) ± 7 (lumi .) pb, is in good agreement with the Standard Model prediction.

  8. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  9. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  10. Muon spin spectroscopy of ferrocene: characterization of muoniated ferrocenyl radicals.

    PubMed

    McKenzie, Iain

    2014-06-14

    Radicals formed by the reaction of muonium (Mu), a light isotope of hydrogen, with ferrocene and ferrocene-d10 have been studied with the avoided level crossing muon spin resonance (ALC-μSR) and longitudinal field muon spin relaxation (LF-μSR) techniques between 10 and 100 K. A single type of radical was observed in each compound and the muon hyperfine coupling constants (hfcc) and the muon spin relaxation rates were measured as a function of temperature. A previous report concerning the observation of Mu adducts of ferrocene (U. A. Jayasooriya et al. Chem. - Eur. J., 2007, 13, 2266-2276) appears to be incorrect. DFT calculations were performed to aid in the assignment of the ALC-μSR spectra. A tentative assignment is that the observed radicals were formed by Mu addition to the exterior of the cyclopentadienyl rings and that the structures are distorted due to interactions with neighbouring molecules. The temperature dependence of the muon hfcc can be explained assuming the population of two levels with different muon hfccs separated by 1.4 ± 0.1 kJ mol(-1). The temperature dependence of the width and amplitude of the Δ1 resonance and the muon spin relaxation rate suggests that the electron spin relaxation rate increase with temperature, but the relaxation mechanism is unknown.

  11. The MUon Scattering Experiment (MUSE) at PSI

    NASA Astrophysics Data System (ADS)

    Kohl, Michael; MUSE Collaboration

    2016-09-01

    The proton is not an elementary particle but has a substructure governed by the interaction of quarks and gluons. The size of the proton is manifest in the spatial distributions of the electric charge and magnetization, which determine the response to electromagnetic interaction. Recently, contradictory measurements of the proton charge radius between muonic hydrogen and electronic probes have constituted the proton radius puzzle, which has been challenging our basic understanding of the proton. The MUon Scattering Experiment (MUSE) in preparation at the Paul-Scherrer Institute (PSI) has the potential to resolve the puzzle by measuring the proton charge radius with electron and muon scattering simultaneously and with high precision, including any possible difference between the two, and with both beam charges. The status of the MUSE experiment will be reported. Supported by NSF and DOE.

  12. On muon energy spectrum in muon groups underground

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Stenkin, Y. V.

    1985-01-01

    A method is described which was used to measure muon energy spectrum characteristics in muon groups underground using mu-e decays recording. The Baksan Telescope's experimental data on mu-e decays intensity in muon groups of various multiplicities are analyzed. The experimental data indicating very flat spectrum does not however represent the total spectrum in muon groups. Obviously the muon energy spectrum depends strongly on a distance from the group axis. The core attraction effect makes a significant distortion, making the spectrum flatter. After taking this into account and making corrections for this effect the integral total spectrum index in groups has a very small depencence on muon multiplicity and agrees well with expected one: beta=beta (sub expected) = 1.75.

  13. Advanced applications of cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Perry, John

    The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged

  14. Muon identification with Muon Telescope Detector at the STAR experiment

    SciTech Connect

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-07-15

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at $\\sqrt{s}$ = 500 GeV with various methods. Here, the result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ~ 90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J/ψ signal is improved by a factor of 2 compared to using the basic selection.

  15. Muon identification with Muon Telescope Detector at the STAR experiment

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  16. Muon Production Height from the Muon Tracking Detector in KASCADE

    NASA Astrophysics Data System (ADS)

    Büttner, C.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Feßler, F.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hörandel, J. R.; Iwan, A.; Kampert, K-H.; Klages, H. O.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Müller, M.; Obenland, R.; Oehschläger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; van Buren, J.; Vardanyan, A.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2003-07-01

    The Muon Tracking Detector (MTD; Eµh =0.8 GeV) [5] of the KASCADEt Grande experiment enables the analysis of the longitudinal shower development by means of the Muon production Height (MPH). The analysis employes radial and tangential angles of the muon track with respect to the shower direction, and the distance of the muon hit to the shower core. Comparing analysed MPH of distributions with Monte Carlo simulations (CORSIKA) [6] an increase of ln A d f the primary cosmic rays with lg(Nµr ) is observed. t

  17. Where to place the positive muon in the Periodic Table?

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2015-03-14

    In a recent study it was suggested that the positively charged muon is capable of forming its own "atoms in molecules" (AIM) in the muonic hydrogen-like molecules, composed of two electrons, a muon and one of the hydrogen's isotopes, thus deserves to be placed in the Periodic Table [Phys. Chem. Chem. Phys., 2014, 16, 6602]. In the present report, the capacity of the positively charged muon in forming its own AIM is considered in a large set of molecules replacing muons with all protons in the hydrides of the second and third rows of the Periodic Table. Accordingly, in a comparative study the wavefunctions of both sets of hydrides and their muonic congeners are first derived beyond the Born-Oppenheimer (BO) paradigm, assuming protons and muons as quantum waves instead of clamped particles. Then, the non-BO wavefunctions are used to derive the AIM structures of both hydrides and muonic congeners within the context of the multi-component quantum theory of atoms in molecules. The results of the analysis demonstrate that muons are generally capable of forming their own atomic basins and the properties of these basins are not fundamentally different from those AIM containing protons. Particularly, the bonding modes in the muonic species seem to be qualitatively similar to their congener hydrides and no new bonding model is required to describe the bonding of muons to a diverse set of neighboring atoms. All in all, the positively charged muon is similar to a proton from the structural and bonding viewpoint and deserves to be placed in the same box of hydrogen in the Periodic Table. This conclusion is in line with a large body of studies on the chemical kinetics of the muonic molecules portraying the positively charged muon as a lighter isotope of hydrogen.

  18. Decay of negative muons bound in {sup 27}Al

    SciTech Connect

    Grossheim, A.; Bayes, R.; Faszer, W.; Fujiwara, M. C.; Gill, D. R.; Gumplinger, P.; Henderson, R. S.; Hillairet, A.; Hu, J.; Marshall, G. M.; Mischke, R. E.; Olchanski, K.; Olin, A.; Openshaw, R.; Poutissou, J.-M.; Poutissou, R.; Sheffer, G.; Shin, B.; Bueno, J. F.; Hasinoff, M. D.

    2009-09-01

    We present the first measurement of the energy spectrum up to 70 MeV of electrons from the decay of negative muons after they become bound in {sup 27}Al atoms. The data were taken with the TWIST apparatus at TRIUMF. We find a muon lifetime of (864.6{+-}1.2) ns, in agreement with earlier measurements. The asymmetry of the decay spectrum is consistent with zero, indicating that the atomic capture has completely depolarized the muons. The measured momentum spectrum is in reasonable agreement with theoretical predictions at the higher energies, but differences around the peak of the spectrum indicate the need for O({alpha}) radiative corrections to the calculations. The present measurement is the most precise measurement of the decay spectrum of muons bound to any nucleus.

  19. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  20. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  1. The Atmospheric Muon Lifetime, with the Lead Absorption Potential for Muons and References to the Standard Model of Particle Physics

    NASA Astrophysics Data System (ADS)

    Barazandeh, Cioli; Gutarra-Leon, Angel; Majewski, Walerian

    2017-01-01

    Muon is one of twelve fundamental particles and has the longest free-particle lifetime. It decays into three leptons through an exchange of weak vector bosons W +/W-. Muons are present in atmospheric secondary cosmic rays and reach the sea level. By detecting the time delay between arrival of muons and appearance of decay electrons in a scintillation detector, we will measure muon's lifetime at rest. From the lifetime we can find the ratio gw /MW of the weak coupling constant gw (a weak analog of the electric charge) to mass of the W-boson MW. Vacuum expectation value v of the Higgs field, which determines masses Standard Model (SM) particles, can be calculated as v =2MWc2/gw =(τmμc2/6π3\\hcirc)1/4mμc2 regarding muon mass mμ and muon lifetime τ only. Using the experimental value for MWc2 = 80.4 GeV, we will find weak coupling constant gw. With the SM relation e =gwsin θ√ hcε0 and experimental value of the Z0-photon weak mixing angle θ = 29o we use our muon lifetime to find the elementary electric charge e value. In this experiment we will also determine the sea level fluxes of low-energy (<160 MeV) and high-energy cosmic muons, then will shield the detector with varying thicknesses of lead plates and from the new values of fluxes find the energy-dependent muon stopping power in lead.

  2. Optimization of the muon stopping target for the MU2E collaboration

    SciTech Connect

    Hodge, Zachary Donovan

    2013-01-01

    The Mu2e Experiment utilizes state of the art accelerators, superconducting magnets, detectors, electronics, and other equipment to maximize the sensitivity to such a rare process. Many of the components of the Mu2e hardware are critical to the overall physics capability of the experiment. The muon stopping target, where muons are stopped and may interact via this very rare process, is one such component where any improvements beyond the base design can have a significant impact on the experiment. This thesis explores possible modifications to the geometry of the muon stopping target. The goal is to determine if any modifications can improve the sensitivity of observing the muon conversion process.

  3. A cosmic Ray Muon Experiment: a Way to Teach Standard Model of Particles at Community Colleges

    NASA Astrophysics Data System (ADS)

    Barazandeh, C.; Gutarra-Leon, A.; Rivas, R.; Glaser, H.; Majewski, W.

    2016-11-01

    This experiment is an example of research for early undergraduate students and of its benefits and challenges as an accessible strategy for community colleges, in the spirit of the report on improving undergraduate STEM education from the US President's Council of Advisors on Science and Technology. The goals of this project include measuring average low- energy muon flux, day/night flux difference, time dilation, energy spectra of electrons and muons in arbitrary units, muon decay curve, average lifetime of muons. From the lifetime data we calculate the weak coupling constant gw, electric charge e and the Higgs energy density.

  4. Ionization Cooling for Muon Experiments

    SciTech Connect

    Alexahin, Y.; Neuffer, D.; Prebys, E.

    2014-09-18

    Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.

  5. COMET and PRISM - Search for Charged Lepton Flavor Violation with Muons

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshitaka

    2012-04-01

    The experiment (COMET) at J-PARC to search for a charged-lepton-flavor-violating process of muon to electron conversion in a muonic atom is described. Future prospects of an experiment (PRISM) with even higher sensitivity is mentioned. On-going R&D on a highly intense muon source (MuSIC) at Osaka University is presented.

  6. Next Generation Muon g-2 Experiments

    SciTech Connect

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  7. Research and Development of Future Muon Collider

    SciTech Connect

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  8. Characterization of muon and gamma radiations at the PTOLEMY site

    NASA Astrophysics Data System (ADS)

    Betts, Susannah; Gentile, Charles; Tully, Chris; Zapata, Sandra; Chris Tully Collaboration

    2013-10-01

    PTOLEMY is an experimental project at Princeton Plasma Physics Laboratory designed to determine the present day number density of relic neutrinos through measurement of electrons produced from neutrino capture on tritium. The weak interaction cross section for relic neutrino interactions necessitates high sensitivity measurements that could be influenced by high energy particles, like muons and gamma ray photons, which induce nuclear transitions and secondary electrons. Muons produced from the collision of cosmic rays with atmospheric nuclei are a significant source of background radiation at and below Earth's surface. The muon flux is measured by the coincidence of minimum ionization radiation loss in two plastic scintillator paddles. The spectrum of gamma ray photons is measured using sodium iodide based scintillators. These measurements will provide a characterization of the background and rates at the PTOLEMY site.

  9. Path-integral simulations of zero-point effects for implanted muons in benzene

    NASA Astrophysics Data System (ADS)

    Valladares, R. M.; Fisher, A. J.; Hayes, W.

    1995-08-01

    We describe a simulation method which is capable of treating the quantum fluctuations of an implanted muon and the electronic structure of the system simultaneously. The partition function for the muon is evaluated using a discretized imaginary-time path-integral technique, using electronic energies and forces evaluated from a semi-empirical quantum chemical treatment of the electronic structure. An application to the cyclohexadienyl radical (C 6H 7) and its muonated analogue (C 6H 6Mu) is presented.

  10. Muon Simulation at the Daya Bay SIte

    SciTech Connect

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  11. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  12. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  13. Delivering the world's most intense muon beam

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  14. Measurement of muon intensity by Cerenkov method

    NASA Technical Reports Server (NTRS)

    Liu, Z. H.; Li, G. J.; Bai, G. Z.; Liu, J. G.; Geng, Q. X.; Ling, J.

    1985-01-01

    Optical detection is an important technique in studies and observations of air showers, muons and relevant phenomena. The muon intensity is measured in a proper energy range and to study some problems about Cerenkov radiation of cosmic rays are studied, by a muon-telescope operated with Cerenkov detector. It is found that the measured muon intensity agrees with the integral energy spectrum of cosmic ray muons.

  15. Muon ID - taking care of lower momenta muons

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2005-12-01

    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta for low momenta single muons particles is described.

  16. Muon identification with Muon Telescope Detector at the STAR experiment

    DOE PAGES

    Huang, T. C.; Ma, R.; Huang, B.; ...

    2016-07-15

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions atmore » $$\\sqrt{s}$$ = 500 GeV with various methods. Here, the result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ~ 90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J/ψ signal is improved by a factor of 2 compared to using the basic selection.« less

  17. Simulation of Underground Muon Flux with Application to Muon Tomography

    NASA Astrophysics Data System (ADS)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  18. Muon capture in deuterium

    NASA Astrophysics Data System (ADS)

    Ricci, P.; Truhlík, E.; Mosconi, B.; Smejkal, J.

    2010-06-01

    Model dependence of the capture rates of the negative muon capture in deuterium is studied starting from potential models and the weak two-body meson exchange currents constructed in the tree approximation and also from an effective field theory. The tree one-boson exchange currents are derived from the hard pion chiral Lagrangians of the NΔπρωa system. If constructed in conjunction with the one-boson exchange potentials, the capture rates can be calculated consistently. On the other hand, the effective field theory currents, constructed within the heavy baryon chiral perturbation theory, contain a low energy constant d that cannot be extracted from data at the one-particle level nor determined from the first principles. Comparative analysis of the results for the doublet transition rate allows us to extract the constant d.

  19. Muon spin relaxation studies of interstitial and molecular motion.

    PubMed

    Cox, S F

    1998-03-01

    The unusual methods of preparation and analysis of spin polarization in muSR spectroscopy, which exploit the unique properties of the positive muon, are introduced in this article. Following a summary overview of applications, particular attention is paid to the problem of spin-lattice relaxation for a muon experiencing a hyperfine interaction with a single unpaired electron. The specific cases considered are the interstitial diffusion of muonium--the 1-electron atom which may be considered as a light isotope of hydrogen-and the molecular dynamics of organic radicals labelled by muonium. Rate equations for the evolution of population in the hyperfine-coupled spin states are solved numerically for various relaxation mechanisms. The formalism is equally valid for conventional ESR studies of paramagnetic states but is pursued specifically to simulate T1-relaxation in muSR. The simulations are compared with literature data. Also treated is the case of intermittent hyperfine coupling, appropriate to electron capture and loss in semiconductors or soliton motion in polymers; for this, a Monte Carlo approach is used to simulate the muon response. (For low-dimensional motion, the relaxation function is not exponential, so that a unique value of T1 cannot be defined.) Finally, a proposal is made to implement muon-T1 measurements in the rotating frame; this is designed for the selective study of electronically diamagnetic muonium states (i.e., those without hyperfine coupling) in the presence of a paramagnetic muonium or radical fraction.

  20. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2016-07-12

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  1. Heavy ion physics at LHC with the Compact Muon Solenoid

    SciTech Connect

    Bedjidian, M.; Contardo, D.; Haroutunian, R.

    1995-07-15

    The Compact Muon Solenoid (CMS), is one of the two detectors proposed to achieve the primary goal of the LHC: the discovery of the Higgs boson(s). For this purpose, the detector is optimized for the precise measurement of muons, photons, electrons and jets. It is a clear motivation to investigate its ability to measure the hard processes probing the formation of a Quark Gluon Plasma (QGP) in ion collisions. It is the case of the heavy quark bound states, long predicted to be suppressed in a QGP. In CMS they can be detected, via their muonic decay according to the principle adopted for the p-p physics.

  2. Quasi-isochronous muon collection channels

    SciTech Connect

    Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  3. Muon tomography: Plans for observations in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Gibert, D.; Beauducel, F.; Déclais, Y.; Lesparre, N.; Marteau, J.; Nicollin, F.; Tarantola, A.

    2010-02-01

    The application of muon tomography to monitor and image the internal structure of volcanoes in the Lesser Antilles is discussed. Particular focus is directed towards the three volcanoes that fall under the responsibility of the Institut de Physique du Globe of Paris, namely La Montagne Pelée in Martinique, La Soufriére in Guadeloupe, and the Soufriére Hills in Montserrat. The technological criteria for the design of portable muon telescopes are presented in detail for both their mechanical and electronic aspects. The detector matrices are constructed with scintillator strips, and their detection characteristics are discussed. The tomography inversion is presented, and its distinctive characteristics are briefly discussed. Details are given on the implementation of muon tomography experiments on La Soufriére in Guadeloupe.

  4. Discriminating cosmic muons and radioactivity using a liquid scintillation fiber detector

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Xu, J. L.; Lu, H. Q.; Zhang, P.; Zhang, C. C.; Yang, C. G.

    2017-03-01

    In the case of underground experiments for neutrino physics or rare event searches, the background caused by cosmic muons contributes significantly and therefore must be identified and rejected. We proposed and optimized a new detector using liquid scintillator with wavelenghth-shifting fibers which can be employed as a veto detector for cosmic muons background rejection. From the prototype study, it has been found that the detector has good performances and is capable of discriminating between muons induced signals and environmental radiation background. Its muons detection efficiency is greater than 98%, and on average, 58 photo-electrons (p.e.) are collected when a muon passes through the detector. To optimize the design and enhance the collection of light, the reflectivity of the coating materials has been studied in detail. A Monte Carlo simulation of the detector has been developed and compared to the performed measurements showing a good agreement between data and simulation results.

  5. Compact Muon Production and Collection Scheme for High-Energy Physics Experiments

    SciTech Connect

    Stratakis, Diktys; Neuffer, David V.

    2014-11-10

    The relative immunity of muons to synchrotron radiation suggests that they might be used in place of electrons as probes in fundamental high-energy physics experiments. Muons are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. However, the large angle and energy dispersion of the initial beams as well as the short muon lifetime limits many potential applications. Here, we describe a fast method for manipulating the longitudinal and transverse phase-space of a divergent pion-muon beam to enable efficient capture and downstream transport with minimum losses. We also discuss the design of a handling system for the removal of unwanted secondary particles from the target region and thus reduce activation of the machine. The compact muon source we describe can be used for fundamental physics research in neutrino experiments.

  6. Development and testing of fiber beam monitors for the Muon g-2 experiment

    NASA Astrophysics Data System (ADS)

    Bjorkquist, Robin; Diamond, Edward; Martinez, Benjamin; Sblendorio, Alec; Gray, Frederick; Muon g-2 Collaboration

    2017-01-01

    The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion. Careful characterization of the stored muon beam will be crucial for the experiment, because several beam-related systematic effects must be taken into account. The fiber beam monitors will provide a direct measurement of the spatial, temporal and momentum distributions and betatron oscillations of the stored muon beam. These detectors were originally built by KEK for the previous Muon g-2 experiment at Brookhaven National Lab, but have been repaired and refurbished for the upcoming experiment, including new scintillating fibers and upgraded SiPM-based readout electronics. We present the final design of the fiber beam monitor system and the results of a recent beam test performed at SLAC.

  7. Muon Tomography for Geological Repositories.

    NASA Astrophysics Data System (ADS)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  8. Using Muons to Image the Subsurface.

    SciTech Connect

    Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz; Dorsey, Daniel J.; Foris, Adam; Miller, Timothy J.; Roberts, Barry L; Su, Jiann-Cherng; Dreesen, Wendi; Green, J. Andrew; Schwellenbach, David

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous . Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  9. Detecting atmospheric cosmic ray induced muon showers with the NO νA Far Detector

    NASA Astrophysics Data System (ADS)

    Sultana, Mehreen

    2015-04-01

    The research goals of Fermilab's NuMi Off-Axis Electron Neutrino Appearance (NO νA) are to observe muon neutrino to electron neutrino oscillations, determine the ordering of neutrino masses, and explain violation of matter/anti-matter symmetry. However, NO νA can also be used to study cosmic ray induced high energy extensive air showers. This poster describes the initial characterization of NO νA as a cosmic ray detector. The detector has a combination of large size and high spatial resolution that will allow future studies of the hadronic cores of cosmic ray air showers. A large component of these showers are muons. Multiple parallel muon tracks seen in a single event with the NO νA detectors result from the same primary cosmic ray collision in the upper atmosphere. In order to use these muon bundles to probe the cosmic ray physics involved, we determine event characteristics such as the multiplicity of observed multiple muons, the effective area of the detector, the angular resolution of the detector, the scattering of individual muons, and the effectiveness of identifying and isolating these parallel muon shower events from background and noise. NuMi Off-Axis Electron Neutrino Appearance Experiment.

  10. Buried plastic scintillator muon telescope (BATATA)

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; de Donato, C.; D'Olivo, J. C.; Guzmán, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patiño Salazar, E.; Salazar Ibarguen, H.; Sánchez, F. A.; Supanitsky, A. D.; Valdés-Galicia, J. F.; Vargas Treviño, A. D.; Vergara Limón, S.; Villaseñor, L. M.; Auger Collaboration

    2010-05-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm2. Each layer is 4m2 and is composed by 49 rectangular strips of 4cm×2m, oriented at a 90∘ angle with respect to its companion layer, which gives an xy-coincidence pixel of 4×4cm2. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  11. Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency

    NASA Astrophysics Data System (ADS)

    Anderlini, L.; Anelli, M.; Archilli, F.; Auriemma, G.; Baldini, W.; Bencivenni, G.; Bizzeti, A.; Bocci, V.; Bondar, N.; Bonivento, W.; Bochin, B.; Bozzi, C.; Brundu, D.; Cadeddu, S.; Campana, P.; Carboni, G.; Cardini, A.; Carletti, M.; Casu, L.; Chubykin, A.; Ciambrone, P.; Dané, E.; De Simone, P.; Falabella, A.; Felici, G.; Fiore, M.; Fontana, M.; Fresch, P.; Furfaro, E.; Graziani, G.; Kashchuk, A.; Kotriakhova, S.; Lai, A.; Lanfranchi, G.; Loi, A.; Maev, O.; Manca, G.; Martellotti, G.; Neustroev, P.; Oldeman, R. G. C.; Palutan, M.; Passaleva, G.; Penso, G.; Pinci, D.; Polycarpo, E.; Saitta, B.; Santacesaria, R.; Santimaria, M.; Santovetti, E.; Saputi, A.; Sarti, A.; Satriano, C.; Satta, A.; Schmidt, B.; Schneider, T.; Sciascia, B.; Sciubba, A.; Siddi, B. G.; Tellarini, G.; Vacca, C.; Vazquez-Gomez, R.; Vecchi, S.; Veltri, M.; Vorobyev, A.

    2016-04-01

    A method is described which allows to deduce the dead-time of the front-end electronics of the LHCb muon detector from a series of measurements performed at different luminosities at a bunch-crossing rate of 20 MHz. The measured values of the dead-time range from ~ 70 ns to ~ 100 ns. These results allow to estimate the performance of the muon detector at the future bunch-crossing rate of 40 MHz and at higher luminosity.

  12. Muon-muon and other high energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization`s operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020.

  13. Muon motion in titanium hydride

    NASA Technical Reports Server (NTRS)

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.

    1988-01-01

    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  14. Perspectives for the radiography of Mt. Vesuvius by cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Buontempo, S.; D'Auria, L.; de Lellis, G.; Festa, G.; Gasparini, P.; Iacobucci, G.; Marotta, A.; Martini, M.; Miele, G.; Migliozzi, P.; Pisanti, O.; Strolin, P.; Vassallo, M.; Zollo, A.

    2010-02-01

    The measurements performed in Japan have shown that muon radiography is an "imaging technique" capable of providing information of the internal structure of volcanoes with a resolution and richness of details beyond the reach of conventional, non-imaging techniques. The measurements have been performed using electronic detectors or nuclear emulsions. The latter have shown excellent muon tracking capabilities and space resolution, but are lacking of the capability of electronic detectors to provide data in real time. In this paper, we examine the possibility of developing an electronic detector giving a resolution comparable to that of nuclear emulsions and with a larger area than used so far, in order to see deeper structures inside volcanoes in spite of the strong muon absorption in the rock. We specifically discuss the very challenging application of muon radiography to Mt. Vesuvius, driven by the strong social interest coming from the enormous potential danger which it represents. Applications to other volcanoes can be envisaged.

  15. A totally active scintillator calorimeter for the Muon Ionization Cooling Experiment (MICE). Design and construction

    NASA Astrophysics Data System (ADS)

    Asfandiyarov, Ruslan

    2013-12-01

    The Electron-Muon Ranger (EMR) is a totally active scintillator detector to be installed in the muon beam of the Muon Ionization Cooling Experiment (MICE) [1] - the main R&D project for the future neutrino factory. It is aimed at measuring the properties of the low energy beam composed of muons, electrons and pions, performing the identification particle by particle. The EMR is made of 48 stacked layers alternately measuring the X- and the Y-coordinate. Each layer consists of 59 triangular scintillator bars. It is shown that the granularity of the detector permits to identify tracks and to measure particle ranges and shower shapes. The read-out is based on FPGA custom made electronics and commercially available modules. Currently it is being built at the University of Geneva.

  16. Muon-pair production by atmospheric muons in CosmoALEPH.

    PubMed

    Maciuc, F; Grupen, C; Hashim, N-O; Luitz, S; Mailov, A; Müller, A-S; Putzer, A; Sander, H-G; Schmeling, S; Schmelling, M; Tcaciuc, R; Wachsmuth, H; Ziegler, Th; Zuber, K

    2006-01-20

    Data from a dedicated cosmic ray run of the ALEPH detector were used in a study of muon trident production, i.e., muon pairs produced by muons. Here the overburden and the calorimeters are the target materials while the ALEPH time projection chamber provides the momentum measurements. A theoretical estimate of the muon trident cross section is obtained by developing a Monte Carlo simulation for muon propagation in the overburden and the detector. Two muon trident candidates were found to match the expected theoretical pattern. The observed production rate implies that the nuclear form factor cannot be neglected for muon tridents.

  17. Muon-fluorine entanglement in fluoropolymers.

    PubMed

    Lancaster, T; Pratt, F L; Blundell, S J; McKenzie, I; Assender, H E

    2009-08-26

    We present the results of muon spin relaxation measurements on the fluoropolymers polytetrafluoroethylene (PTFE), poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF). Entanglement between the muon spin and the spins of the fluorine nuclei in the polymers allows us to identify the different muon stopping states that occur in each of these materials and provides a method of probing the local environment of the muon and the dynamics of the polymer chains.

  18. MUON COLLIDERS - IONIZATION COOLING AND SOLENOIDS.

    SciTech Connect

    PARSA,Z.

    1999-03-29

    For a muon collider, to obtain the needed luminosity, the phase space volume must be greatly reduced within the muon life time. The ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. Alternating solenoid lattices has been proposed for muon colliders, where the emittance are huge. We present an overview, discuss formalism, transfer maps for solenoid magnets and beam dynamics.

  19. The MICE Muon Beam Line

    SciTech Connect

    Apollonio, Marco

    2011-10-06

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  20. The MICE Muon Beam Line

    NASA Astrophysics Data System (ADS)

    Apollonio, Marco

    2011-10-01

    In the Muon Ionization Cooling Experiment (MICE) at RAL, muons are produced and transported in a dedicated beam line connecting the production point (target) to the cooling channel. We discuss the main features of the beamline, meant to provide muons with momenta between 140 MeV/c and 240 MeV/c and emittances up to 10 mm rad, which is accomplished by means of a diffuser. Matching procedures to the MICE cooling channel are also described. In summer 2010 we performed an intense data taking campaign to finalize the calibration of the MICE Particle Identification (PID) detectors and the understanding of the beam line, which completes the STEPI phase of MICE. We highlight the main results from these data.

  1. Muon problem in UHECR investigations

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.; Bogdanov, A. G.; Kokoulin, R. P.

    2013-02-01

    In many UHECR experiments, some excess of muons is observed, which cannot be explained in frame of the existing theoretical models of hadron interaction. Attempts of its explanation through a heavy mass composition of PCR contradict the results of Xmax measurements. Really, the excess of muons appears already at lower energies (1016 - 1017 eV), but in this domain it may be explained by the trend to a heavier mass composition, which is in a qualitative agreement with the galactic model of CR origin. The absence of heavy nuclei at energies of the order of 1018 eV requires to consider other possibilities of the appearance of muon excess, including changes of hadron interaction model. The actuality of the considered problem is connected with plans of future experiments in UHECR physics, in which the necessity of its solution must be taken into account.

  2. CDF Run 2 muon system

    SciTech Connect

    C. M. Ginsburg

    2004-02-05

    The CDF muon detection system for Run 2 of the Fermilab Tevatron is described. Muon stubs are detected for |{eta}| < 1.5, and are matched to tracks in the central drift chamber at trigger level 1 for |{eta}| < 1.25. Detectors in the |{eta}| < 1 central region, built for previous runs, have been enhanced to survive the higher rate environment and closer bunch spacing (3.5 {micro}sec to 396 nsec) of Run 2. Azimuthal gaps in the central region have been filled in. New detectors have been added to extend the coverage from |{eta}| < 1 to |{eta}| < 1.5, consisting of four layers of drift chambers covered with matching scintillators for triggering. The Level 1 Extremely Fast Tracker supplies matching tracks with measured p{sub T} for the muon trigger. The system has been in operation for over 18 months. Operating experience and reconstructed data are presented.

  3. Muon g - 2 and Tests of Relativity

    NASA Astrophysics Data System (ADS)

    Farley, Francis J. M.

    2015-07-01

    After a brief introduction to the muon anomalous moment a ≡ (g-2)/2, the pioneering measurements at CERN are described. This includes the CERN cyclotron experiment, the first Muon Storage Ring, the invention of the "magic energy", the second Muon Storage Ring and stringent tests of special relativity.

  4. High Precision Magnetic Field Scanning System for the New Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Hong, Ran; Muon g-2 collaboration Collaboration

    2017-01-01

    The New Muon g-2 Experiment (E989) at Fermilab will measure the anomalous magnetic moment of muon aμ aiming at a precision of 140 ppb. This new experiment will shed light on the long-standing 3.5 standard deviation between the previous muon g-2 measurement (E821) at Brookhaven National Laboratory and the Standard Model calculation, and potentially discover new physics. The New Muon g-2 Experiment measures the precession frequency of muon in a uniform magnetic field, and the magnetic field experienced by the muons needs to be measured with a precision better than 70 ppb. For the measurement of the magnetic field in the muon storage region, the former trolley system from E821 with 17 NMR probes was refurbished and upgraded with new electronics, probes and a modern motion control system. A test solenoid magnet was set up at Argonne National Laboratory for calibrating the NMR probes and the precision studies of systematic uncertainties. In this presentation, we will describe the trolley motion control scheme, the trolley position measurement methods, the electronic system for activating and reading the NMR probes and the test solenoid facility.

  5. Local magnetism in palladium bionanomaterials probed by muon spectroscopy.

    PubMed

    Creamer, Neil J; Mikheenko, Iryna P; Johnson, Clive; Cottrell, Stephen P; Macaskie, Lynne E

    2011-05-01

    Palladium bionanomaterial was manufactured using the sulfate-reducing bacterium, Desulfovibrio desulfuricansm, to reduce soluble Pd(II) ions to cell-bound Pd(0) in the presence of hydrogen. The biomaterial was examined using a Superconducting Quantum Interference Device (SQUID) to measure bulk magnetisation and by Muon Spin Rotation Spectroscopy (µSR) which is uniquely able to probe the local magnetic environment inside the sample. Results showed behaviour attributable to interaction of muons both with palladium electrons and the nuclei of hydrogen trapped in the particles during manufacture. Electronic magnetism, also suggested by SQUID, is not characteristic of bulk palladium and is consistent with the presence of nanoparticles previously seen in electron micrographs. We show the first use of μSR as a tool to probe the internal magnetic environment of a biologically-derived nanocatalyst material.

  6. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    SciTech Connect

    Schmitz, David W.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  7. Recirculating Linear Accelerators for Future Muon Facilities

    SciTech Connect

    S.A. Bogacz, K.B.Beard, R.P. Johnson

    2010-05-01

    Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness.

  8. Observation of a level crossing in a molecular nanomagnet using implanted muons.

    PubMed

    Lancaster, T; Möller, J S; Blundell, S J; Pratt, F L; Baker, P J; Guidi, T; Timco, G A; Winpenny, R E P

    2011-06-22

    We have observed an electronic energy level crossing in a molecular nanomagnet (MNM) using muon spin relaxation. This effect, not observed previously despite several muon studies of MNM systems, provides further evidence that the spin relaxation of the implanted muon is sensitive to the dynamics of the electronic spin. Our measurements on a broken ring MNM [H(2)N(t)Bu(is)Pr][Cr(8)CdF(9)(O(2)CC(CH(3))(3))(18)], which contains eight Cr ions, show clear evidence for the S = 0 --> S = 1 transition that takes place at B(c) = 2.3 T. The crossing is observed as a resonance-like dip in the average positron asymmetry and also in the muon spin relaxation rate, which shows a sharp increase in magnitude at the transition and a peak centred within the S = 1 regime.

  9. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  10. Muon g-2 Experiment Shimming

    SciTech Connect

    Kiburg, Brendan

    2016-06-28

    The Muon g-2 experiment at Fermilab will use as its primary instrument a 52-foot-wide electromagnet that creates a precise magnetic field. In this video, Fermilab's Brendan Kiburg explains the lengthy process of finely "shimming" that magnetic field into shape.

  11. Muon g-2 Experiment Shimming

    ScienceCinema

    Kiburg, Brendan

    2016-07-12

    The Muon g-2 experiment at Fermilab will use as its primary instrument a 52-foot-wide electromagnet that creates a precise magnetic field. In this video, Fermilab's Brendan Kiburg explains the lengthy process of finely "shimming" that magnetic field into shape.

  12. Pion contamination in the MICE muon beam

    SciTech Connect

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J. -B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  13. Pion contamination in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  14. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    SciTech Connect

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  15. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments Database

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  16. Investigation of the Muon Pseudorapidities in EAS with the Muon Tracking Detector of the KASCADE Experiment

    NASA Astrophysics Data System (ADS)

    Zabierowski, J.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Büttner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Feßler, F.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Hörandel, J. R.; Iwan, A.; Kampert, K-H.; Klages, H. O.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Müller, M.; Obenland, R.; Oehschläger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; van Buren, J.; Vardanyan, A.; Weindl, A.; Wochele, J.

    2003-07-01

    High angular accuracy of muon track measurements in KASCADE Muon Tracking Detector (MTD), together with the high precision in determination of the shower direction and shower core position, allow to investigate the pseudorapidity of muons in EAS using the concept of radial and tangential angles. Preliminary results of the pseudorapidity distribution of muons registered by the KASCADE experiment are presented. Mean muon pseudorapidity values at different stages of the longitudinal development of the EAS cascade are calculated using additionally the reconstructed muon production height provided by the MTD data. experimental results are compared with Monte Carlo simulations.

  17. Measuring the leading hadronic contribution to the muon g-2 via μ e scattering

    NASA Astrophysics Data System (ADS)

    Abbiendi, G.; Calame, C. M. Carloni; Marconi, U.; Matteuzzi, C.; Montagna, G.; Nicrosini, O.; Passera, M.; Piccinini, F.; Tenchini, R.; Trentadue, L.; Venanzoni, G.

    2017-03-01

    We propose a new experiment to measure the running of the electromagnetic coupling constant in the space-like region by scattering high-energy muons on atomic electrons of a low- Z target through the elastic process μ e → μ e. The differential cross section of this process, measured as a function of the squared momentum transfer t=q^2<0, provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly a^{HLO}_{μ }. By using a muon beam of 150 GeV, with an average rate of ˜ 1.3 × 10^7 muon/s, currently available at the CERN North Area, a statistical uncertainty of ˜ 0.3% can be achieved on a^{HLO}_{μ } after two years of data taking. The direct measurement of a^{HLO}_{μ } via μ e scattering will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon g-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon g-2 experiments at Fermilab and J-PARC.

  18. The MU-RAY detector for muon radiography of volcanoes

    NASA Astrophysics Data System (ADS)

    Anastasio, A.; Ambrosino, F.; Basta, D.; Bonechi, L.; Brianzi, M.; Bross, A.; Callier, S.; Caputo, A.; Ciaranfi, R.; Cimmino, L.; D'Alessandro, R.; D'Auria, L.; de La Taille, C.; Energico, S.; Garufi, F.; Giudicepietro, F.; Lauria, A.; Macedonio, G.; Martini, M.; Masone, V.; Mattone, C.; Montesi, M. C.; Noli, P.; Orazi, M.; Passeggio, G.; Peluso, R.; Pla-Dalmau, A.; Raux, L.; Rubinov, P.; Saracino, G.; Scarlini, E.; Scarpato, G.; Sekhniaidze, G.; Starodubtsev, O.; Strolin, P.; Taketa, A.; Tanaka, H. K. M.; Vanzanella, A.

    2013-12-01

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m2 prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented.

  19. Extending theories on muon-specific interactions

    SciTech Connect

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

  20. Extending theories on muon-specific interactions

    DOE PAGES

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  1. Development and validation of the Overlap Muon Track Finder for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Dobosz, J.; Mietki, P.; Zawistowski, K.; Żarnecki, G.

    2016-09-01

    Present article is a description of the authors contribution in upgrade and analysis of performance of the Level-1 Muon Trigger of the CMS experiment. The authors are students of University of Warsaw and Gdansk University of Technology. They are collaborating with the CMS Warsaw Group. This article summarises students' work presented during the Students session during the Workshop XXXVIII-th IEEE-SPIE Joint Symposium Wilga 2016. In the first section the CMS experiment is briefly described and the importance of the trigger system is explained. There is also shown basic difference between old muon trigger strategy and the upgraded one. The second section is devoted to Overlap Muon Track Finder (OMTF). This is one of the crucial components of the Level-1 Muon Trigger. The algorithm of OMTF is described. In the third section there is discussed one of the event selection aspects - cut on the muon transverse momentum pT . Sometimes physical muon with pT bigger than a certain threshold is unnecessarily cut and physical muon with lower pT survives. To improve pT selection modified algorithm was proposed and its performance was studied. One of the features of the OMTF is that one physical muon often results in several muon candidates. The Ghost-Buster algorithm is designed to eliminate surplus candidates. In the fourth section this algorithm and its performance on different data samples are discussed. In the fifth section Local Data Acquisition System (Local DAQ) is briefly described. It supports initial system commissioning. The test done with OMTF Local DAQ are described. In the sixth section there is described development of web application used for the control and monitoring of CMS electronics. The application provides access to graphical user interface for manual control and the connection to the CMS hierarchical Run Control.

  2. Muon correlated background at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Ahmad, Qazi Rushdy

    2002-10-01

    The Sudbury Neutrino Observatory (SNO) is a real time solar neutrino experiment. The detector utilizes 1,000 metric tons of heavy water to study the fundamental properties of neutrinos. The SNO detector has been designed to measure the flux and energy spectrum of electron-type solar neutrinos in addition to measuring the total flux of all active flavors of solar neutrinos. The primary objective of SNO is to resolve the Solar Neutrino Problem. The measurement of the neutron signal is critical to the success of SNO. Therefore, it is imperative that one thoroughly understands the various backgrounds to the neutron signal. Even though the rock overburden of 6,150 meter water equivalent provides a very good shield to cosmic muons, enough of them penetrate the detector to produce secondary particles, in particular neutrons. In this dissertation results from the study of through-going muons and neutron production due to muon spallation in the SNO detector has been presented. The following daily muon rate was found: RSNOm=68.9± 1.8(stat) day-1 The following muon-induced neutron rate was obtained, where Nmult is the neutron mutliplicity: Rmspn [1≤Nmult≤14] [SNO,AV] measured=(11.49±0.74) day-1kt-1 A primary component of the SNO detector is the data acquisition (DAQ) system. The author has been intricately involved in the design and implementation of the DAQ system and a detailed discussion of this system has been presented in this dissertation. The system was successfully deployed in late 1997 and acquisition of production data commenced in November of 1999. Although there have been minor changes to the DAQ system over the course of time, the system has been operating successfully since production data taking began in 1999.

  3. Introduction to Mini Muon Tracker

    SciTech Connect

    Borozdin, Konstantin N.

    2012-08-13

    Using a mini muon tracker developed at the Los Alamos National Laboratory we performed experiments of simple landscapes of various materials, including TNT, 9501, lead, tungsten, aluminium, and water. Most common scenes are four two inches thick step wedges of different dimensions: 12-inch x 12-inch, 12-inch x 9-inch, 12-inch x 6-inch, and 12-inch x 3-inch; and a one three inches thick hemisphere of lead with spherical hollow, and a similar full lead sphere.

  4. Muon ID at the ILC

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.; /Fermilab

    2006-09-01

    This paper describes a new way to reconstruct and identify muons with high efficiency and high pion rejection. Since muons at the ILC are often produced with or in jets, for many of the physics channels of interest [1], an efficient algorithm to deal with the identification and separation of particles within jets is important. The algorithm at the core of the method accounts for the effects of the magnetic field and for the loss of energy by charged particles due to ionization in the detector. We have chosen to develop the analysis within the setup of one of the Linear Collider Concept Detectors adopted by the US. Within b-pair production jets, particles cover a wide range in momenta; however {approx}80% of the particles have a momentum below 30 GeV[2]. Our study, focused on bbar-b jets, is preceded by a careful analysis of single energy particles between 2 and 50 GeV. As medium energy particles are a substantial component of the jets, many of the particles lose part of their energy in the calorimeters and the solenoid coil before reaching the muon detector where they may have energy below 2 GeV. To deal with this problem we have implemented a Runge-Kutta correction of the calculated trajectory to better handle these lower energy particles. The multiple scattering and other stochastic processes, more important at lower energy, is addressed by a Kalman-filter integrated into the reconstruction algorithm. The algorithm provides a unique and powerful separation of muons from pions. The 5 Tesla magnetic field from a solenoid surrounds the hadron calorimeter and allows the reconstruction and precision.

  5. Information extraction from muon radiography data

    SciTech Connect

    Borozdin, K. N.; Asaki, T. J.; Chartrand, R.; Hengartner, N. W.; Hogan, G. E.; Morris, C. L.; Priedhorsky, W. C.; Schirato, R.C.; Schultz, L. J.; Sottile, M. J.; Vixie, K. R.; Wohlberg, B. E.; Blanpied, G.

    2004-01-01

    Scattering muon radiography was proposed recently as a technique of detection and 3-d imaging for dense high-Z objects. High-energy cosmic ray muons are deflected in matter in the process of multiple Coulomb scattering. By measuring the deflection angles we are able to reconstruct the configuration of high-Z material in the object. We discuss the methods for information extraction from muon radiography data. Tomographic methods widely used in medical images have been applied to a specific muon radiography information source. Alternative simple technique based on the counting of high-scattered muons in the voxels seems to be efficient in many simulated scenes. SVM-based classifiers and clustering algorithms may allow detection of compact high-Z object without full image reconstruction. The efficiency of muon radiography can be increased using additional informational sources, such as momentum estimation, stopping power measurement, and detection of muonic atom emission.

  6. COMPUTATIONAL NEEDS FOR MUON ACCELERATORS.

    SciTech Connect

    BERG, J.S.

    2004-06-29

    Muon accelerators contain beam lines and components which are unlike any found in existing accelerators. Production of the muons requires targets for beams with powers which are at or beyond what has currently been achieved. Many subsystems use solenoid focusing systems where at any given point, several magnets have a significant influence. The beams that are transported can have energy spreads of {+-}30% or more. The required emittances necessitate accurate tracking of particles with angles of tenths of a radian and which are positioned almost at the edge of the beam pipe. Tracking must be done not only in vacuum, but also in materials; therefore, statistical fluctuations must also be included. Design and simulation of muon accelerators requires software which can: accurately simulate the dynamics of solid and liquid targets under proton bombardment; predict the production of particles from these targets; accurately compute magnetic fields based on either a real magnet design or a model which includes end fields; and accurately design and simulate a beam line where the transported beam satisfies the above specifications and the beam line contains non-standard, overlapping elements. The requirements for computational tools will be discussed, the capabilities of existing tools will be described and compared to what is required.

  7. The D0 muon system and early results on its performance

    SciTech Connect

    Hedin, D. . Dept. of Physics)

    1992-10-01

    The D0 detector is a large, general-purpose detector designed to take full advantage of the 2 TeV energy of the Fermilab collider. The design of the experiment emphasizes accurate identification, complete angular acceptance, and precise measurement of the decay products of W and Z bosons: charged leptons (both electrons and muons), quarks and gluons, which emerge as collimated jets of particles, and noninteracting particles, such as neutrinos. The primary physics goals of D0 include searching for new phenomena, such as the top quark or particles outside the standard model, and high-precision studies of the W and Z bosons. In addition, the excellent muon identification will allow the study of b-quark production and decay. This report will describe D0's muon system, give preliminary measurements of chamber and trigger rates, and discuss muon identification.

  8. Response of the Pierre Auger Observatory water Cherenkov detectors to muons

    SciTech Connect

    Aglietta, M.; Allison, P.; Andres, E.C.; Arneodo, F.; Bertou, Xavier; Bonifazi, C.; Busca, N.; Creusot, A.; Deligny, O.; Dornic, D.; Genolini, B.; Ghia, P.L.; Grunfeld, C.M.; Lhenry-Yvon, I.; Mazur, P.O.; Moreno, E.; Perez, G.; Salazar, H.; Suomijarvi, T.

    2005-07-01

    Two test detectors similar to the Pierre Auger Observatory Water Cherenkov Detectors have been installed at the Observatory site and at the Institut de Physique Nucleaire d'Orsay. The signals from the tanks are read out using three 9'' photomultipliers and analyzed by both a digital oscilloscope with high sampling frequency and the Auger surface detector electronics. Additionally, the detectors are equipped with plastic scintillators serving as muon telescopes. The trigger is provided either by the muon telescope or by the coincidence of the three PMTs. The scintillators are movable allowing the study of the detector response to atmospheric muons arriving with different incident angles. In this paper, the results of measurements for vertical and inclined background muons are presented. These results are compared to simulations and important calibration parameters are extracted. The influence of the direct light detected by the PMTs, particularly important for inclined showers, is discussed.

  9. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    SciTech Connect

    Aab, Alexander

    2016-02-17

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muon counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. As a result, the completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here.

  10. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; García-Gámez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Hervé, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tibolla, O.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.

    2016-02-01

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muon counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. The completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here.

  11. The US Muon Accelerator Program (MAP)

    SciTech Connect

    Bross, Alan D.; /Fermilab

    2010-12-01

    The US Department of Energy Office of High Energy Physics has recently approved a Muon Accelerator Program (MAP). The primary goal of this effort is to deliver a Design Feasibility Study for a Muon Collider after a 7 year R&D program. This paper presents a brief physics motivation for, and the description of, a Muon Collider facility and then gives an overview of the program. I will then describe in some detail the primary components of the effort.

  12. Compression and extraction of stopped muons.

    PubMed

    Taqqu, D

    2006-11-10

    Efficient conversion of a standard positive muon beam into a high-quality slow muon beam is shown to be achievable by compression of a muon swarm stopped in an extended gas volume. The stopped swarm can be squeezed into a mm-size swarm flow that can be extracted into vacuum through a small opening in the stop target walls. Novel techniques of swarm compression are considered. In particular, a density gradient in crossed electric and magnetic fields is used.

  13. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  14. Neutrino induced muons in Soudan 2.

    SciTech Connect

    DeMuth, D. M.; Soudan 2 Collaboration

    1999-06-23

    The neutrino-induced muon rate underground has been measured at Soudan 2. To discriminate from the intense background of atmospheric muons we consider only the through-going muons which originate from horizontal direction ({minus}0.14 < cos{theta} < 0.14). We calculate the horizontal, neutrino-induced muon rate at Soudan 2 from an exposure of 1.23 x 10{sup 8} s as {Phi}{sub {nu}{mu}} = (3.45 {+-} 0.52 {+-} 0.61) x 10{sup {minus}13} (cm{sup 2} sr s){sup {minus}1}.

  15. Magnets for Muon 6D Cooling Channels

    SciTech Connect

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  16. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  18. Muon radiolysis affected by density inhomogeneity in near-critical fluids.

    PubMed

    Cormier, P J; Alcorn, C; Legate, G; Ghandi, K

    2014-04-01

    In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.

  19. Coherent synchrotron radiation in the isochronous muon collider ring

    SciTech Connect

    Gallardo, J.C.

    1996-10-01

    To achieve the luminosity of L = 10{sup 35} cm{sup {minus}2}s{sup {minus}1} in a {mu}{sup +}{mu}{sup {minus}} collider, two bunches per sign of N = 2 {times} 10{sup 12} particles each and a betatron function of {beta}* = 3 mm at the interaction point (IP) are required. This small {beta}* at the IP constrains the size of the bunch to be {sigma}{sub z} {approximately} {beta}*. To maintain this rather short bunch without excessive rf power consumption, an isochronous lattice has been chosen for the final collider ring. One of the important advantages of muons as opposed to electrons is that at up to at least TeV energy it is possible to accelerate muons in circular machines as their synchrotron radiation is reduced by a factor of (m{sub e}/m{sub {mu}}){sup 2} {approximately} 23 {times} 10{sup {minus}6} with respect to electrons. Nevertheless, the large number of muons in a short bunch suggests the possibility of strong shielded coherent synchrotron radiation. First, the author uses the well known formulae to evaluate the power of shielded coherent synchrotron radiation in the isochronous muon collider ring. Finally, following the results obtained by Kheifets and Zotter for a bunch with a Gaussian longitudinal charge distribution the author shows that the coherent synchrotron radiation in the isochronous {mu}{sup +}{mu}{sup {minus}} collider ring is negligible if the rms bunch length is larger than {approx} 0.3 mm.

  20. Polarization Effects at a Muon Collider

    SciTech Connect

    Parsa, Z.

    1998-11-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC).

  1. Muon radiography for exploration of Mars geology

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Tanaka, H. K. M.; Naudet, C. J.; Jones, C. E.; Plaut, J. P.; Webb, F. H.

    2013-06-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  2. Muon radiography for exploration of Mars geology

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Tanaka, H. K. M.; Naudet, C. J.; Jones, C. E.; Plaut, J. P.; Webb, F. H.

    2012-10-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of large scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  3. Improving scintillation crystals using muon tomography

    SciTech Connect

    Dowell, D.H.; Fineman, B.J.; Sandorfi, A.M.

    1987-01-01

    The cosmic ray muon scanning array provides information on NaI(T1) crystals using some 65,536 trajectories, each measuring the NaI(T1) response to high energy muons. With this information, it is possible to use established computer-aided-tomography techniques to deconvolute these integrated responses and produce a detailed picture of the detector's interior.

  4. Detector Background at Muon Colliders

    SciTech Connect

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  5. BATATA: a buried muon hodoscope

    NASA Astrophysics Data System (ADS)

    Sánchez, F.; Supanitsky, A. D.; Medina-Tanco, G.; Paic, G.; Salazar, M. E. Patiño; D'Olivo, J. C.; Molina, R. Alfaro

    2009-04-01

    Muon hodoscopes have several applications, ranging from astrophysics to fundamental particle physics. In this work, we present a detector dedicated to the study, at ground level, of the main signals of cosmic-ray induced showers above 6 PeV. The whole detector is composed by a set of three parallel dual-layer scintillator planes buried at fix depths ranging from 120 g/cm2 to 600 g/cm2 and by a triangular array of water cerenkov detectors located nearby on ground.

  6. Lifetime of Cosmic-Ray Muons and the Standard Model of Fundamental Particles

    NASA Astrophysics Data System (ADS)

    Mukherji, Sahansha; Shevde, Yash; Majewski, Walerian

    2015-04-01

    Muon is one of the twelve fundamental particles of matter, having the longest free-particle lifetime. It decays into three other leptons through an exchange of the weak vector bosons W+/W-. Muons are present in the secondary cosmic ray showers in the atmosphere, reaching the sea level. By detecting time delay between arrival of the muon and an appearance of the decay electron in our single scintillation detector (donated by the Thomas Jefferson National Accelerator Facility, Newport News, VA), we measured muon's lifetime at rest. It compares well with the value predicted by the Standard Model of Particles. From the lifetime we were able to calculate the ratio gw /MW of the weak coupling constant gw (an analog of the electric charge) to the mass of the W-boson MW. Using further Standard Model relations and an experimental value for MW, we calculated the weak coupling constant, the electric charge of the muon, and the vacuum expectation value of the Higgs field. We determined the sea-level flux of cosmic muons.

  7. Muon detection studied by pulse-height energy analysis: Novel converter arrangements.

    PubMed

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-01

    Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  8. Muon detection studied by pulse-height energy analysis: Novel converter arrangements

    SciTech Connect

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-15

    Muons are conventionally measured by a plastic scintillator–photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  9. Reverse Emittance Exchange for Muon Colliders

    SciTech Connect

    V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang, S.A. Bogacz, Y.S. Derbenev

    2009-05-01

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is currently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. Six-dimensional cooling schemes will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch will help achieve high luminosity in muon colliders. Analytic expressions for the reverse emittance exchange mechanism were derived, including a new resonant method of beam focusing.

  10. Muon dynamics in a toroidal sector magnet

    SciTech Connect

    Gallardo, J.C.; Fernow, R.C.; Palmer, R.B.

    1998-01-01

    The present scenario for the cooling channel in a high brightness muon collider calls for a quasi-continuous solenoidal focusing channel. The beam line consists of a periodic array of hydrogen absorbers immersed in a solenoid with alternating focusing field and rf linacs at the zero field points. Solenoids and toroidal sectors have a natural place in muon collider design given the large emittance of the beam and consequently, the large transverse momentum of the initial pion beam or the decay muon beam. Bent solenoids as shown were studied for use at the front end of the machine, as part of the capture channel and more recently as part of a diagnostic setup to measure the position and momentum of muons. The authors present a Hamiltonian formulation of muon dynamics in toroidal sector solenoids (bent solenoid).

  11. Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector

    NASA Astrophysics Data System (ADS)

    Ruan, L.; Lin, G.; Xu, Z.; Asselta, K.; Chen, H. F.; Christie, W.; Crawford, H. J.; Engelage, J.; Eppley, G.; Hallman, T. J.; Li, C.; Liu, J.; Llope, W. J.; Majka, R.; Nussbaum, T.; Scheblein, J.; Shao, M.; Soja, R.; Sun, Y.; Tang, Z.; Wang, X.; Wang, Y.

    2009-09-01

    We propose a large-area, cost-effective muon telescope detector (MTD) at mid-rapidity for the solenoidal tracker at the RHIC (STAR) and for the next generation of detectors at a possible electron-ion collider. We utilize large multi-gap resistive plate chambers with long readout strips (long-MRPC) in the detector design. The results from cosmic ray and beam tests show that the intrinsic timing and spatial resolution for a long-MRPC are 60-70 ps and ~1 cm, respectively. The performance of the prototype muon telescope detector at STAR indicates that muon identification at a transverse momentum of a few GeV/c can be achieved by combining information from track matching with the MTD, ionization energy loss in the time projection chamber and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at the RHIC. Simulations of the muon efficiency, the signal-to-background ratio of J/ψ, the separation of Upsilon 1S from 2S+3S states and the electron-muon correlation from charm pair production in the RHIC environment are presented.

  12. CONCEPTUAL DESIGN REPORT FOR A FAST MUON TRIGGER

    SciTech Connect

    OBRIEN,E.; BASYE, A.; ISENHOWER, D.; JUMPER, D.; SPARKS, N.; TOWELL, R.; WATTS, C.; WOOD, J.; WRIGHT, R.; HAGGERTY, J.; LYNCH, D.; BARISH, K.; EYSER, K.O.; SETO, R.; HU, S.; LI, X.; ZHOU, S.; GLENN, A.; KINNEY, E.; KIRILUK, K.; NAGLE, J.; CHI, C.Y.; SIPPACH, W.; ZAJC. W.; BUTLER, C.; HE, X.; OAKLEY, C.; YING, J.; BLACKBURN, J.; CHIU, M.; PERDEKAMP, M.G.; KIM, Y.J.; KOSTER, J.; LAYTON, D.; MAKINS, N.; MEREDITH, B.; NORTHACKER, D.; PENG, J.-C.; SEIDL, R.; THORSLAND, E.; WADHAMS, S.; WILLIAMSON, S.; YANG, R.; HILL, J.; KEMPEL, T.; LAJOIE, J.; SLEEGE, G.; VALE, C.; WEI, F.; SAITO, N.; HONG, B.; KIM, B.; LEE, K.; LEE, K.S.; PARK, S.; SIM, K.-S.; AOKI, K.; DAIRAKU, S.; IMAI, K.; KARATSU, K.; MURAKAMI, T.; SATO, A.; SENZAKA, K.; SHOJI, K.; TANIDA, K.; BROOKS, M.; LEITCH, M.; ADAMS, J.; CARINGI, A.; FADEM, B.; IDE, J.; LICHTENWALNER, P.; FIELDS, D.; MAO, Y.; HAN, R.; BUNCE, G.; XIE, W.; FUKAO, Y.; TAKETANI, A.; KURITA, K.; MURATA, J.

    2007-08-01

    This document is a Conceptual Design Report for a fast muon trigger for the PHENIX experiment that will enable the study of flavor separated quark and anti-quark spin polarizations in the proton. A powerful way of measuring these polarizations is via single spin asymmetries for W boson production in polarized proton-proton reactions. The measurement is done by tagging W{sup +} and W{sup -} via their decay into high transverse momentum leptons in the forward directions. The PHENIX experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample the rare leptons fromW decay at the highest luminosities at the Relativistic Heavy Ion Collider (RHIC). This Report details the goals, design, R&D, and schedule for building new detectors and trigger electronics to use the full RHIC luminosity to make this critical measurement. The idea for W boson measurements in polarized proton-proton collisions at RHIC was first suggested by Jacques Soffer and Claude Bourrely in 1995. This prompted the RIKEN institute in Japan to supply funds to build a second muon arm for PHENIX (south muon arm). The existence of both a north and south muon arm makes it possible to utilize a Z{sup 0} sample to study and control systematic uncertainties which arise in the reconstruction of high momentum muons. This document has its origins in recommendations made by a NSAC Subcommittee that reviewed the U.S. Heavy Ion Physics Program in June 2004. Part of their Recommendation 1 was to 'Invest in near-term detector upgrades of the two large experiments, PHENIX and STAR'. In Recommendation 2 the subcommittee stated '- detector improvements proceed at a rate that allows a timely determination of the flavor dependence of the quark-antiquark sea polarization through W-asymmetry measurements' as we are proposing here. On September 13, 2004 DOE requested from BNL a report articulating a research plan for the RHIC spin physics

  13. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  14. Muon spin rotation research program

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1980-01-01

    Data from cyclotron experiments and room temperature studies of dilute iron alloys and iron crystals under strain were analyzed. The Fe(Mo) data indicate that the effect upon the contact hyperfine field in Fe due to the introduction of Mo is considerably less than that expected from pure dilution, and the muon (+) are attracted to the Mo impurity sites. There is a significant change in the interstitial magnetic field with Nb concentration. The Fe(Ti) data, for which precession could clearly be observed early only at 468K and above, show that the Ti impurities are attractive to muon (+), and the magnitude of B(hf) is reduced far beyond the amount expected from pure dilution. Changes in the intersitital magnetic field with the introduction of Cr, W, Ge, and Si are also discussed. When strained to the elastic limit, the interstitial magnetic field in Fe crystals is reduced by 33 gauss, and the relaxation rate of the precession signal increases by 47%.

  15. The Majorana Muon Veto System

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew; Majorana Demonstrator Collaboration

    2016-03-01

    Majorana Demonstrator (MJD) is one of the major efforts of the DOE NP to demonstrate very high sensitivity for the search of the neutrino less double beta decay. The ultimate goal of MJD is to prove that background levels for a tonne-scale experiment with a similar design can be as low as 1.0 count/(4 keV*t*y). One source of background is cosmic muons that can interact in the detectors or in the shielding. In order to tag cosmic muon induced background, an efficient veto system is necessary. The MJD veto system is made out of thirty two panels of 1'' plastic scintillator. Understanding the performance of MJD veto system is vital for reducing the background count. Initial data of veto system performance during the commissioning stage will be presented. This material is based upon work supported by the U.S. Dept. of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  16. A search for flaring very-high-energy cosmic γ-ray sources with the L3+C muon spectrometer

    NASA Astrophysics Data System (ADS)

    L3 Collaboration; Adriani, O.; Aguilar-Benitez, M.; van den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Romeo, G. Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiarusi, T.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de La Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.; Deiters, K.; Della Volpe, D.; Delmeire, E.; Denes, P.; Denotaristefani, F.; de Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.; Duran, I.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grabosch, H. J.; Grenier, G.; Grimm, O.; Groenstege, H.; Gruenewald, M. W.; Guida, M.; Guo, Y. N.; Gupta, S. K.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller, Ch.; Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.; Hirschfelder, J.; Hofer, H.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.; Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur, M.; Kawakami, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal, M.; Koutsenko, V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger, A.; Kuijpers, J.; Kunin, A.; de Guevara, P. Ladron; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Coultre, P. Le; Goff, J. M. Le; Lei, Y.; Leich, H.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña, C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Meng, X. W.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; van Mil, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Monteleoni, B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Parriaud, J.-F.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Quartieri, J.; Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran, K. C.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.; Riemann, S.; Riles, K.; Roe, B. P.; Rojkov, A.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Saidi, R.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.; Schmitt, V.; Schoeneich, B.; Schopper, H.; Schotanus, D. J.; Sciacca, C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sulanke, H.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen, H.; van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.; Wang, X. L.; Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen, T. A. M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, J. S.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.; Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou, S. J.; Zhu, G. Y.; Zhu, R. Y.; Zhu, Q. Q.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M.

    2006-06-01

    The L3+C muon detector at the CERN electron positron collider, LEP, is used for the detection of very-high-energy cosmic γ-ray sources through the observation of muons of energies above 20, 30, 50 and 100 GeV. Daily or monthly excesses in the rate of single-muon events pointing to some particular direction in the sky are searched for. The periods from mid July to November 1999, and April to November 2000 are considered. Special attention is also given to a selection of known γ-ray sources. No statistically significant excess is observed for any direction or any particular source.

  17. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  18. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    SciTech Connect

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  19. Status of the Fermilab Muon (g-2) Experiment

    SciTech Connect

    Roberts, B.Lee

    2010-01-01

    The New Muon (g-2) Collaboration at Fermilab has proposed to measure the anomalous magnetic moment of the muon, a{sub {mu}}, a factor of four better than was done in E821 at the Brookhaven AGS, which obtained a{sub {mu}} = [116592089(63)] x 10{sup -11} {+-} 0.54 ppm. The last digit of a{sub {mu}} is changed from the published value owing to a new value of the ratio of the muon-to-proton magnetic moment that has become available. At present there appears to be a difference between the Standard-Model value and the measured value, at the {approx}= 3 standard deviation level when electron-positron annihilation data are used to determine the lowest-order hadronic piece of the Standard Model contribution. The improved experiment, along with further advances in the determination of the hadronic contribution, should clarify this difference. Because of its ability to constrain the interpretation of discoveries made at the LHC, the improved measurement will be of significant value, whatever discoveries may come from the LHC.

  20. A compact muon tracking system for didactic and outreach activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.

    2016-07-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.

  1. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 47{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February--May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run. We have compared the shapes of the experimentally-obtained pulse height spectra to the Landau prediction for the ionization loss in a continuous thin absorber in the four electromagnetic and four hadronic layers of the calorimeter, and find good agreement after experimental effects are folded in. We have also determined an absolute energy calibration using two independent methods: one which measures the response of the electronics to a known amount of charge injected at the preamplifiers, and one which uses a carry-over of the calibration from a beam test of central calorimeter modules. Both absolute energy conversion factors agree with one another, within their errors. The calibration determined from the test beam carryover, relevant for use with collider physics data, has an error of 2.3%. We believe that, with further study, a final error of {approx}1% will be achieved. The theory-to-experiment comparison of the peaks (or most probable values) of the muon spectra was used to determine the layer-to-layer consistency of the muon signal. We find that the mean response in the 3 fine hadronic layers is (12 {plus_minus} 2%) higher than that in the 4 electromagnetic layers. These same comparisons have been used to verify the absolute energy conversion factors. The conversion factors work well for the electromagnetic sections.

  2. Muon simulation codes MUSIC and MUSUN for underground physics

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. A.

    2009-03-01

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  3. Calibration Software for the Muon Detectors at CDF

    NASA Astrophysics Data System (ADS)

    Lannon, Kevin

    2001-04-01

    The muon detector system at CDF consists of the following subsystems: Central Muon Detector (CMU), the Central Muon Upgrade (CMP), the Central Muon Extension (CMX), and the Intermediate Muon Detector (IMU). Each subsystem is a collection of drift chambers and all but the CMU also incorporate scintillation counters for trigger and timing purposes. The muon calibration system performs diagnostics and calibrations on the above systems. We will describe the software that controls the muon calibration system. This software takes advantage of the existing CDF DAQ infrastructure to handle communication between a Java client containing the user interface and the VME crates where the calibration hardware resides.

  4. Pion contamination in the MICE muon beam

    DOE PAGES

    Adams, D.; Alekou, A.; Apollonio, M.; ...

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  5. Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2016-02-17

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muonmore » counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. As a result, the completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here.« less

  6. Status and future prospects of the Muon Drift Tubes System of CMS

    NASA Astrophysics Data System (ADS)

    Masetti, G.

    2017-01-01

    A key component of the CMS (Compact Muon Solenoid) experiment is its muon system. The tracking and triggering of muons in the central part relies on Drift Tube (DT) chambers. In 2013 and 2014 a number of improvements and upgrades were implemented, in particular concerning the readout and trigger electronics. The increase of luminosity expected by LHC will impose several constraints for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. In order to exploit the muon detector redundancy, a new trigger system has been designed. The TwinMux system is the early layer of the muon barrel region that combines the primitives information from different subdetectors: DT, Resistive Plate Chambers (RPC) and Outer Hadron Calorimeter (HO). Regarding the long term operation of the DT system, in order to cope with up to a factor 2 nominal LHC luminosity, several improvements will be implemented. The in-chamber local electronics will be modified to cope with the new rate and radiation environment. This paper will present, along with the main system improvements implemented in the system, the first performance results from data collected at 13 TeV center-of-mass energy during 2016, confirming the satisfactory operation of both DT performance and the TwinMux system. A review of the present status and plans for the DT system upgrades will be also described.

  7. Systematic muon capture rates in PQRPA

    SciTech Connect

    Samana, A. R.; Sande, D.; Krmpotić, F.

    2015-05-15

    In this work we performed a systematic study of the inclusive muon capture rates for several nuclei with A < 60 using the Projected Random Quasi-particle Phase Approximation (PQRPA) as nuclear model, because it is the only RPA model that treats the Pauli Principle correctly. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are more robust for such a purpose.

  8. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  9. The University of Texas Maya Muon Project

    SciTech Connect

    Schwitters, Roy

    2007-05-09

    Plans to explore the ruin of a Maya Pyramid in Belize using cosmic ray muon tomography will be described. Muon tomography was pioneered by Luis Alvarez in the 1960's to explore the Second Pyramid of Chephren in Egypt. Improvements in detector technology since the Alvarez experiment suggest that muon tomography may be a practical method for exploring and monitoring relatively large underground volumes when exposure times of order months are acceptable. A prototype detector based on Fermilab/MINOS scintillator strip/WLS fiber technology has been built and is being tested at UT Austin. Initial results using the detector will be discussed.

  10. Atmospheric muons and neutrinos, and the neutrino-induced muon flux underground

    NASA Technical Reports Server (NTRS)

    Liland, A.

    1985-01-01

    The diffusion equation for neutrino-induced cosmic ray muons underground was solved. The neutrino-induced muon flux and charge ratio underground have been calculated. The calculated horizontal neutrino-induced muon flux in the energy range 0.1 - 10000 GeV is in agreement with the measured horizontal flux. The calculated vertical flux above 2 GeV is in agreement with the measured vertical flux. The average charge ratio of neutrino-induced muons underground was found to be mu+/mu- = 0.40.

  11. Calibrating the Muon Piston Calorimeter (MPC)

    NASA Astrophysics Data System (ADS)

    Skolnik, Marianne

    2012-10-01

    The Muon Piston Calorimeter (MPC) is a subsystem of the PHENIX detector. The MPC, an electromagnetic calorimeter, is effective at measuring the energy of photons and electrons produced from collisions at the Relativistic Heavy Ion Collider (RHIC). The MPC outputs a voltage signal that we then convert into an energy reading. One common way to calibrate electromagnetic calorimeters is to use photons from π^0 decays. Since many of the photons that enter the detector are the result of natural pion decay, we can pair up the photons and create π^0 candidates. We then plot their masses tower by tower and with the correct cuts a mass peak will appear close to the position predicted by the simulation PISA of the PHENIX detector. Then, we relate the mass peaks from the measured data to mass peaks from simulated data to adjust the gains. Once the MPC is calibrated we can use it to study Au+Au collisions. Previously, the detector has been used to study spin physics using data collected from p+p collisions, and cold nuclear matter effects using d+Au collisions. These new calibrations will allow us to measure new global variables such as transverse energy in both the forward and backward kinematic regions, 3.1< |η| < 3.9.

  12. Statistical reconstruction for cosmic ray muon tomography.

    PubMed

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  13. Intense muon beams and neutrino factories

    SciTech Connect

    Parsa, Z.

    2000-10-05

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy {mu}{sup +}{mu}{sup {minus}} colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings ({mu}SR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included.

  14. Development of low noise cosmic ray muon detector for imaging density structure of Usu Volcano, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Kusagaya, T.; Tanaka, H.; Taketa, A.; Oshima, H.; Maekawa, T.

    2012-12-01

    We are developing low noise cosmic ray muon detector to image a density structure of Usu Volcano, Hokkaido, Japan by muon radiography. Intensity of cosmic ray muon penetrating through the object is expressed as a function of the product of muon path length and density along muon path. And, the intensity of penetrating muon steeply decreases if muon path length becomes longer or density along muon path becomes larger. The detector that we are developing is called hodoscope that consists of multiple Position Sensitive Detectors (PSDs). A PSD has NxM grids consisting of N vertically aligned Scintillation Counters (SC: a plastic scintillator attached to a photo multiplier tube) and M horizontally aligned SCs. We can identify a muon path direction with two or more PSDs by connecting muon-detecting points in each PSD. But, Usu Volcano is so large that the intensity of penetrating muon becomes lower, and then noise rate becomes higher: the count of penetrating cosmic ray muon is estimated to be a few counts per month with the detector of which has the cross-section area of one square meter and the solid angle of 0.01 steradian. The noise is defined as a particle other than the muon penetrating the observed object such as electrons, photons, vertically arriving muons and so on. If noise rate becomes higher, the measured intensity of penetrating muon becomes higher than the theoretical intensity of that. Then we get a wrong result as if there were matter of lower density relative to real. So we need to develop a low noise detector. The ElectroMagnetic (EM) shower that consists of many electrons and photons is thought to be one of noise. When EM shower reaches the detector, each PSD detects arriving particles and detecting points are sometimes connected by a straight line. In that case, we cannot discriminate the penetrating muon from EM shower, and we count it as a muon event. This results noise. In order to discriminate the noise event, the use of more PSDs for our

  15. Motivations for muon radiography of active volcanoes

    NASA Astrophysics Data System (ADS)

    Macedonio, G.; Martini, M.

    2010-02-01

    Muon radiography represents an innovative tool for investigating the interior of active volcanoes. This method integrates the conventional geophysical techniques and provides an independent way to estimate the density of the volcano structure and reveal the presence of magma conduits. The experience from the pioneer experiments performed at Mt. Asama, Mt. West Iwate, and Showa-Shinzan (Japan) are very encouraging. Muon radiography could be applied, in principle, at any stratovolcano. Here we focus our attention on Vesuvius and Stromboli (Italy).

  16. Special Relativity in the School Laboratory: A Simple Apparatus for Cosmic-Ray Muon Detection

    ERIC Educational Resources Information Center

    Singh, P.; Hedgeland, H.

    2015-01-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth's surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity…

  17. Target and collection optimization for muon colliders

    SciTech Connect

    Mokhov, N.V.; Noble, R.J.; Van Ginneken, A.

    1996-01-10

    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target ({approximately} one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold.

  18. The MICE Demonstration of Muon Ionization Cooling

    SciTech Connect

    Lagrange, Jean-Baptiste; Hunt, Christopher; Palladino, Vittorio; Pasternak, Jaroslaw

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  19. Muon Emittance Exchange with a Potato Slicer

    SciTech Connect

    Summers, D. J.; Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Perera, L. P.; Neuffer, D. V.

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  20. Negative muon spin precession measurement of the hyperfine states of muonic sodium

    NASA Astrophysics Data System (ADS)

    Brewer, J. H.; Ghandi, K.; Froese, A. M.; Fryer, B. A.

    2005-05-01

    Both hyperfine states of muonic 23Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2μs-1, is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8μs-1, leaving medium-dependent effects ambiguous.

  1. Measurement of muon capture on the proton to 1% precision and determination of the pseudoscalar coupling gP.

    PubMed

    Andreev, V A; Banks, T I; Carey, R M; Case, T A; Clayton, S M; Crowe, K M; Deutsch, J; Egger, J; Freedman, S J; Ganzha, V A; Gorringe, T; Gray, F E; Hertzog, D W; Hildebrandt, M; Kammel, P; Kiburg, B; Knaack, S; Kravtsov, P A; Krivshich, A G; Lauss, B; Lynch, K R; Maev, E M; Maev, O E; Mulhauser, F; Petitjean, C; Petrov, G E; Prieels, R; Schapkin, G N; Semenchuk, G G; Soroka, M A; Tishchenko, V; Vasilyev, A A; Vorobyov, A A; Vznuzdaev, M E; Winter, P

    2013-01-04

    The MuCap experiment at the Paul Scherrer Institute has measured the rate Λ(S) of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultrapure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. Λ(S) is determined from the difference between the μ(-) disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 × 10(10) μ(-) decays, from which we extract the capture rate Λ(S) = (714.9 ± 5.4(stat) ± 5.1(syst)) s(-1) and derive the proton's pseudoscalar coupling g(P)(q(0)(2) = -0.88 m(μ)(2)) = 8.06 ± 0.55.

  2. Scintillation light from cosmic-ray muons in liquid argon

    SciTech Connect

    Whittington, Denver Wade; Mufson, S.; Howard, B.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay time constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  3. Development and Testing of Scintillating Detectors for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Martinez, Benjamin; Diamond, Edward; Sblendorio, Alec; Gray, Frederick

    2016-09-01

    The precise value of the muon's anomalous magnetic moment that was measured at Brookhaven National Laboratory E821 differed by more than three standard deviations from predictions of the Standard Model. The Muon g-2 Experiment at Fermilab will attain a more precise measurement by a factor of three by observing the muon spin precession frequency in a magnetic field. This improved measurement could lead to evidence of physics beyond the Standard Model. A thin-scintillator entrance (T0) counter prototype is being tested for possible use in the experiment to determine the intensity and temporal profile of the beam as it is injected into the muon storage ring. The counter is also being evaluated to determine whether it can monitor undesired particles that arrive after the main beam pulse. The unique design of the entrance counter uses a silicon photomultiplier to read the light output from a scintillator. The progress of the design of the T0 entrance counter along with the results of light output tests from a beta source and the SLAC high-energy electron beam are the primary foci of this presentation. The status of scintillating fiber harp beam monitor detectors that will also be used in the g-2 Experiment to detect the position and width of the muon beam will also be presented. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1505887.

  4. Muon-Substituted Malonaldehyde: Transforming a Transition State into a Stable Structure by Isotope Substitution.

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2016-02-12

    Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014, 53, 13706-13709; Angew. Chem. 2014, 126, 13925-13929] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear-electronic orbital non-Born-Oppenheimer procedure, the nuclear configuration of the muon-substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the "atoms in molecules" (AIM) structure of the muon-substituted malonaldehyde and the AIM structure of the stable and the transition-state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon-substituted malonaldehyde to the transition state.

  5. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    SciTech Connect

    Neuffer, D.; Bao, Y.; Hansen, G.

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  6. Modular detector for deep underwater registration of muons and muon groups

    NASA Technical Reports Server (NTRS)

    Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.

    1985-01-01

    Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.

  7. Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Nishiyama, Ryuichi; Taketa, Akimichi; Miyamoto, Seigo; Kasahara, Katsuaki

    2016-08-01

    Several attempts have been made to obtain a radiographic image inside volcanoes using cosmic-ray muons (muography). Muography is expected to resolve highly heterogeneous density profiles near the surface of volcanoes. However, several prior works have failed to make clear observations due to contamination by background noise. The background contamination leads to an overestimation of the muon flux and consequently a significant underestimation of the density in the target mountains. To investigate the origin of the background noise, we performed a Monte Carlo simulation. The main components of the background noise in muography are found to be low-energy protons, electrons and muons in case of detectors without particle identification and with energy thresholds below 1 GeV. This result was confirmed by comparisons with actual observations of nuclear emulsions. This result will be useful for detector design in future works, and in addition some previous works of muography should be reviewed from the view point of background contamination.

  8. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  9. Physics Studies for the CMS muon system upgrade with triple-GEM detectors

    NASA Astrophysics Data System (ADS)

    Caputo, C.

    2014-12-01

    The CMS collaboration considers upgrading the muon forward region with Gas Electron Multiplier (GEM) chambers, which are able to handle the extreme particle rates expected in this region along with a high spatial resolution. This allows to combine tracking and triggering capabilities, resulting in a lower trigger threshold along with improved muon identification and track reconstruction. In the last year the GEM project took a major leap forward by integrating triple-GEM chambers in the official CMS software, allowing physics studies to be carried out. Several benchmark analyses have been studied for the impact of such detector upgrade on the physics performance. In this contribution the status of the CMS upgrade project with the usage of GEM detector will be reviewed, discussing the trigger, the muon reconstruction performance, and the impact on the physics analyses.

  10. Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Garcia, A. Conde; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Stenis, M. Van; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6 < | η | < 2.2, while continuing R&D is ongoing for additional regions.

  11. Searching for Dark Matter using the NOvA upward-going muon trigger

    NASA Astrophysics Data System (ADS)

    Principato, Cristiana; Group, Robert; Norman, Andrew; Aliaga, Leonidas; Ding, Pengfei; Tsaris, Aristeidis; Oksuzian, Yuri; NOvA Collaboration

    2017-01-01

    The NOvA collaboration has constructed a 14,000 ton, fine-grained, low-Z, total absorption tracking calorimeter at an off-axis angle to an upgraded NuMI neutrino beam. This detector, with its excellent granularity and energy resolution and relatively low-energy neutrino thresholds, was designed to observe electron neutrino appearance in a muon neutrino beam, but it also has unique capabilities suitable for more exotic efforts. In fact, if sufficient cosmic ray background rejection can be demonstrated, NO νA will be capable of a competitive indirect dark matter search for low-mass Weakly-Interacting Massive Particles (WIMPs). The cosmic ray muon rate at the NO νA far detector is approximately 100 kHz and provides the primary challenge for triggering and optimizing such a search analysis. We present the first dark matter search results using the full dataset collected with the upward-going muon trigger.

  12. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    SciTech Connect

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  13. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  14. Muon-fluorine entangled states in molecular magnets.

    PubMed

    Lancaster, T; Blundell, S J; Baker, P J; Brooks, M L; Hayes, W; Pratt, F L; Manson, J L; Conner, M M; Schlueter, J A

    2007-12-31

    The information accessible from a muon-spin relaxation experiment can be limited due to a lack of knowledge of the precise muon stopping site. We demonstrate here the possibility of localizing a spin polarized muon in a known stopping state in a molecular material containing fluorine. The muon-spin precession that results from the entangled nature of the muon spin and surrounding nuclear spins is sensitive to the nature of the stopping site. We use this property to identify three classes of sites that occur in molecular magnets and describe the extent to which the muon distorts its surroundings.

  15. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  16. The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Yokoyama, K; Lord, J S; Murahari, P; Wang, K; Dunstan, D J; Waller, S P; McPhail, D J; Hillier, A D; Henson, J; Harper, M R; Heathcote, P; Drew, A J

    2016-12-01

    A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.

  17. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    Volcanic activity is regulated by the interaction of gas-liquid flow with conduit geometry. Hence, the quantitative understanding of the inner shallow structure of a volcano is mandatory to forecast the occurrence of dangerous stages of activity and mitigate volcanic hazards. Among the techniques used to investigate the underground structure of a volcano, muon imaging offers some advantages, as it provides a fine spatial resolution, and does not require neither spatially dense measurements in active zones, nor the implementation of cost demanding energizing systems, as when electric or active seismic sources are utilized. The principle of muon radiography is essentially the same as X-ray radiography: muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. Up-to-date, muon imaging of volcanic structures has been mainly accomplished with detectors that employ planes of scintillator strips. These telescopes are exposed to different types of background noise (accidental coincidence of vertical shower particles, horizontal high-energy electrons, flux of upward going particles), whose amplitude is high relative to the tiny flux of interest. An alternative technique is based on the detection of the Cherenkov light produced by muons. The latter can be imaged as an annular pattern that contains the information needed to reconstruct both direction and energy of the particle. Cherenkov telescopes have never been utilized to perform muon imaging of volcanoes. Nonetheless, thanks to intrinsic features, they offer the possibility to detect the through-target muon flux with negligible levels of background noise. Under some circumstances, they would also provide a better spatial resolution and acceptance than scintillator-based telescopes. Furthermore, contrarily to the latter systems, Cherenkov detectors allow in-situ measurements of the open-sky energy spectrum of

  18. Muon and Tau Neutrinos Spectra from Solar Flares

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; Moscato, Federica

    2003-12-01

    Most power-full solar flare as the ones occurred on 23th February 1956, September 29th 1989, 28th October and on 2nd-4th November 2003 are sources of cosmic rays, X, gamma and neutrino bursts. These flares took place both on front or in the edge and in the hidden solar disk. The 4th November event was the most powerful X event in the highest known rank category X28 just at horizons. The observed and estimated total flare energy (EFL ≃ 1031div 1033 erg) should be a source of a prompt secondary neutrino burst originated, by proton-proton-pion production on the sun itself; a more delayed and spread neutrino flux signal arise by the solar charged flare particles reaching the terrestrial atmosphere. These first earliest prompt solar neutrino burst might be observed, in a few neutrino clustered events, in present or future largest neutrino underground detectors as Super-Kamiokande one, in time correlation with the X-Radio flare. The onset in time correlation has great statistical significance. Our first estimate on the neutrino number events detection at the Super-Kamiokande II Laboratory for horizontal or hidden flare is found to be few events: NeV_bar{ν}_e≃ 0.63&etae ()/(35 MeV) ()/(1031 erg); and NeV_bar{ν}μ ≃ 3.58()/(200 MeV) ()/(1031erg) η,SUB>μ, where η≃ 1, Eνμ > 113 MeV. Our first estimates of neutrino signals in largest underground detectors hint for few events in correlation with X, gamma, radio onser. Our approximated spectra for muons and taus from these rare solar eruption are shown over the most common background. The muon and tau signature is very peculiar and characteristic over electron and anti-electron neutrino fluxes. The rise of muon neutrinos will be detectable above the minimal muon threshold Eν ≃ 113 MeV energy, or above the pion and Δ ° thresholds (Eν≃ 151 and 484 MeV). Any large neutrino flare event record might also verify the expected neutrino flavour mixing leading to a few as well as a comparable

  19. Pulsed-focusing recirculating linacs for muon acceleration

    SciTech Connect

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  20. A precise measurement of the polarization of a 200 GeV muon beam in a polarized deep inelastic scattering experiment at CERN

    NASA Astrophysics Data System (ADS)

    Eichblatt, Stephen Lynn

    1997-09-01

    The Spin Muon Collaboration (SMC) measures the spin dependent structure function g1 of the proton and nentron by measuring the scattering asymmetry of polarized 200 GeV muons off polarized protons and deuterons. The structure functions enable tests of theoretical sum rules, and a measurement of the spin contribution of the quarks to the nucleon. The uncertainty of the muon beam polarization was a major source of error in preliminary measurements of proton structure functions. A muon polarimeter measuring the shape of the Michel spectrum of positrons from muon decay was built. In this polarimeter muons enter and are allowed to decay (μ+ /to e+νe/barνμ) in a 35 meter length. The shape of the momentum spectrum of electrons is sensitive to the muon polarization. The decay positrons are momentum-analyzed and the measured spectrum is fit to the Michel formula to determine the polarization. A data sample with a μsp- beam was used to estimate the effects of background events in the spectrum. Careful analysis of the polarimeter data determined the polarization to within 3%. The muon polarization was found to be stable in time and to vary with muon momentum. This variation will be included in the structure function analysis. A second polarimeter measuring the scattering asymmetry of polarized muons off polarized electrons obtained consistent results. The two independent polarization measurements were combined to give a polarization of -0.778 ± 0.019 at 186.9 GeV. With the improved structure function measurements, the Bjorken sum rule was tested and confirmed. Assuming that the gluons are unpolarized, the contribution of the quarks to the nucleon spin was estimated to be 20%, and the strange quark sea negatively polarized.

  1. Neutrino mass implications for muon decay parameters

    SciTech Connect

    Erwin, Rebecca J.; Kile, Jennifer; Ramsey-Musolf, Michael J.; Wang Peng

    2007-02-01

    We use the scale of neutrino mass and naturalness considerations to obtain model-independent expectations for the magnitude of possible contributions to muon decay Michel parameters from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neutrinos, we obtain a complete basis of dimension four and dimension six effective operators that are invariant under the gauge symmetry of the standard model and that contribute to both muon decay and neutrino mass. We show that - in the absence of fine tuning - the most stringent neutrino-mass naturalness bounds on chirality-changing vector operators relevant to muon decay arise from one-loop operator mixing. The bounds we obtain on their contributions to the Michel parameters are 2 orders of magnitude stronger than bounds previously obtained in the literature. In addition, we analyze the implications of one-loop matching considerations and find that the expectations for the size of various scalar and tensor contributions to the Michel parameters are considerably smaller than derived from previous estimates of two-loop operator mixing. We also show, however, that there exist gauge-invariant operators that generate scalar and tensor contributions to muon decay but whose flavor structure allows them to evade neutrino-mass naturalness bounds. We discuss the implications of our analysis for the interpretation of muon-decay experiments.

  2. Analysis of Near Horizontal Muons at HAWC

    NASA Astrophysics Data System (ADS)

    Barber, Ahron; HAWC Collaboration

    2017-01-01

    The HAWC (High Altitude Water Cherenkov) gamma ray observatory observes muons with nearly horizontal trajectories. HAWC is located at an altitude of 4100 meters a.s.l. on Sierra Negra in Mexico. The Gamma and Cosmic Ray detector is composed of 300 water tanks, 7.3 m in diameter and 4.5 m tall, spread over a physical area of 22,000 m2. Due to its thickness of 4.5 m, HAWC acts as a hodoscope capable of observing muons with trajectories at zenith angles greater than 75 degrees to just over 90 degrees. These muon trajectories have a unique signal in that they are linear and travel at nearly the speed of light. CORSIKA simulations indicate that these muons originate from high zenith angle cosmic ray events, where the air shower core is located at great distance from HAWC. I will present the angular distribution and rate at which HAWC observes these muon events. High Altitude Water Cherenkov Observatory.

  3. Pion production for neutrino factories and muon colliders

    SciTech Connect

    Mokhov, N.V.; Guidman, K.K.; Strait, J.B.; Striganov, S.I.; /Fermilab

    2009-12-01

    Optimization of pion and muon production/collection for neutrino factories and muon colliders is described along with recent developments of the MARS15 code event generators and effects influencing the choice of the optimal beam energy.

  4. Studies of muon-induced radioactivity at NuMI

    SciTech Connect

    Boehnlein, David j.; Leveling, A.F.; Mokhov, N.V.; Vaziri, K.; Iwamoto, Y.; Kasugai, Y.; Matsuda, N.; Nakashima, H.; Sakamoto, Y.; Hagiwara, M.; Iwase, Hiroshi; /KEK, Tsukuba /Kyoto U., KURRI /Pohang Accelerator Lab. /Shimizu, Tokyo /Tohoku U.

    2009-12-01

    The JASMIN Collaboration has studied the production of radionuclides by muons in the muon alcoves of the NuMI beamline at Fermilab. Samples of aluminum and copper are exposed to the muon field and counted on HpGe detectors when removed to determine their content of radioactive isotopes. We compare the results to MARS simulations and discuss the radiological implications for neutrino factories and muon colliders.

  5. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  6. Muon (g-2) Technical Design Report

    SciTech Connect

    Grange, J.

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  7. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  8. Higgs boson and Z physics at the first muon collider

    SciTech Connect

    Demarteau, M.; Han, T.

    1998-01-01

    The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the ``Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Collider``.

  9. Jet production in muon-proton and muon-nuclei scattering at Fermilab-E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates from Muon-Proton Muon- Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Proton deep-inelastic scattering are compared to perturbative Quantum Chromodynamics (PQCD) and Monte Carlo model predictions. We observe hadronic (2+1)-jet rates which are a factor of two higher than PQCD predictions at the partonic level. Preliminary results from jet production on heavy targets, in the shadowing region, show a suppression of the jet rates as compared to deuterium. The two- forward jet sample present higher suppression as compared to the one-forward jet sample.

  10. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    SciTech Connect

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  11. The MU-RAY project: volcano radiography with cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Noli, Pasquale

    2013-04-01

    The MU-RAY project: volcano radiography with cosmic-ray muons Cosmic-ray muon radiography is a technique for imaging the variation of density inside the top few hundred meters of a volcanic cone. it is based on the high penetration capability of the high energy muon component of the cosmic radiation.The measurement of the flux variation allows the evaluation of the average density along the observation line with few percents precision and spatial resolution up to tens of meters, in optimal detection conditions. Muon radiography can provide images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with conventional methods.Such precise measurements are expected to provide us with information on anomalies in the rock density distribution, like those expected from dense lava conduits, low density magma supply paths or the compression with depth of the overlying soil. The MU-RAY project developed a muon telescopes prototype for muon radiography. The telescopes is required to be able to work in harsh environment and to have low power consumption, good angular and time resolutions, large active area and modularity. The telescope consists of three X-Y planes of one square meter area made by plastic scintillator strips of triangular shape. Each strip is read by a fast WLS fibre coupled to a silicon photomultiplier. The readout electronics is based on the SPIROC/EASIROC ASIC. The prototype is under test and will be soon installed at the Mt Vesuvio in Naples.Detector technology and first results will be presented.

  12. Muon neutrino CCQE at MINERvA

    SciTech Connect

    Betancourt, M.

    2016-12-13

    A precise understanding of quasi-elastic interactions is crucial to measure neutrino oscillations. The MINERvA experiment is currently working on different analyses of muon neutrino charged current quasi-elastic interactions. Here, we present updates to the previous quasi-elastic measurement, using a new flux, and we present the status of several analyses in progress; including double differential cross sections, a study of final state interactions using a sample with muon and a proton and the status of the CCQE analysis in the medium energy neutrino beam.

  13. Muon production in extended air shower simulations.

    PubMed

    Pierog, T; Werner, K

    2008-10-24

    Whereas air shower simulations are very valuable tools for interpreting cosmic ray data, there is a long-standing problem: it is difficult to accommodate at the same time the longitudinal development of air showers and the number of muons measured on the ground. Using a new hadronic interaction model (EPOS) in air shower simulations produces much more muons, in agreement with results from the HiRes-MIA experiment. We find that this is mainly due to a better description of (anti) baryon production in hadronic interactions. This is an aspect of air shower physics which has been neglected so far.

  14. A COMPLETE SCHEME FOR A MUON COLLIDER.

    SciTech Connect

    PALMER,R.B.; BERG, J.S.; FERNOW, R.C.; GALLARDO, J.C.; KIRK, H.G.; ALEXAHIN, Y.; NEUFFER, D.; KAHN, S.A.; SUMMERS, D.

    2007-09-01

    A complete scheme for production, cooling, acceleration, and ring for a 1.5 TeV center of mass muon collider is presented, together with parameters for two higher energy machines. The schemes starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Six dimensional cooling in long-period helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids.

  15. Searches for violation of muon number conservation

    SciTech Connect

    Redwine, R.P.

    1981-01-01

    The question of violation of muon number conservation is one which has occupied considerable attention and resources in recent years. The first generation of experiments at the medium energy accelerators has now been completed and the next generation of experiments is ready to begin. The history of muon number conservation is reviewed, including the reasons for the present belief that the conservation law may not be exact. The experiments that have been completed in the last few years are discussed. The new experiments that are being mounted and planned at several laboratories are discussed, and the relationship of these types of experiments to other studies, such as searches for neutrino oscillations, are considered.

  16. Muon Neutrino CCQE at MINERvA

    NASA Astrophysics Data System (ADS)

    Betancourt, M.

    A precise understanding of quasi-elastic interactions is crucial to measure neutrino oscillations. The MINERvA experiment is currently working on different analyses of muon neutrino charged current quasi-elastic interactions. We present updates to the previous quasi-elastic measurement, using a new flux, and we present the status of several analyses in progress; including double differential cross sections, a study of final state interactions using a sample with muon and a proton and the status of the CCQE analysis in the medium energy neutrino beam.

  17. Flavor tagging with muons at SLAC

    NASA Astrophysics Data System (ADS)

    Prepost, R.

    1984-05-01

    Identification of muons in hadronic events from e+e- annihilation observed in the MAC detector at PEP at √s=29 GeV provides flavor tagging of heavy quark mesons. A sample enriched in events from bb production is obtained and the b quark fragmentation function is determined. The b quark is found to fragment predominantly with high values of z, with =0.8+/-0.1 and to have an overall semileptonic branching ratio to muons of (15.5+5.4-2.9)%. The sample also provides flavor tagged hadronic jets. Invariant mass and charged multiplicity distributions are presented.

  18. Comparison of Muon Capture in Light and in Heavy Nuclei

    SciTech Connect

    Measday, David F.; Stocki, Trevor J.

    2007-10-26

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The ({mu}{sup -},{nu}n) reaction is always dominant. In light nuclei, reactions such as ({mu}{sup -},{nu}p) and ({mu}{sup -},{nu}pn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as ({mu}{sup -},{nu}3n) and ({mu}{sup -},{nu}4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  19. Cosmogenic Chlorine-36 Production in Calcite by Muons

    NASA Astrophysics Data System (ADS)

    Stone, J. O. H.; Evans, J. M.; Fifield, L. K.; Allan, G. L.; Cresswell, R. G.

    1998-02-01

    At depths below a few metres, 36Cl production in calcite is initiated almost entirely by cosmic ray muons. The principal reactions are (1) direct negative muon capture by Ca; 40Ca(μ -,α) 36Cl, and (2) capture by 35Cl of secondary neutrons produced in muon capture and muon-induced photodisintegration reactions. We have determined rates for 36Cl and neutron production due to muon capture in calcite from a 20 m (5360 g cm -2) depth profile in limestone. The 36Cl yield from muon capture by Ca in pure calcite is 0.012 ± 0.002 atom per stopped negative muon. The surface production rate of 36Cl by muon capture on Ca in calcite is, therefore, 2.1 ± 0.4 atom g -1a -1 at sea level and high latitude, approximately 11% of the production rate by Ca spallation. If it is assumed that 34% of the negative muons are captured by the Ca atom in calcite, the α-yield from 40Ca following muon capture is 0.043 ± 0.008, somewhat lower than the result of a recent muon irradiation experiment (0.062 ± 0.020), but well within the extremes of existing theoretical predictions (0.0033-0.15). The average neutron yield following muon capture in pure calcite is 0.44 ± 0.15 secondary neutrons per stopped negative muon, in good agreement with existing theoretical predictions. Cosmogenic isotope production by muons must be taken into account when dating young geomorphic surfaces, especially those created by excavation of only a few metres of overlying rock. Attention to isotope production by muons is also crucial to determining surface erosion rates accurately. Due to the deep penetration of muons compared to cosmic ray hadrons, the accumulation of muon-produced 36Cl is less sensitive to erosion than that of spallogenic 36Cl. Although production by muons at the surface is only a small fraction of production by spallation, the fraction of muon-produced 36Cl in rapidly eroding limestone surfaces can approach 50%. In such cases, erosion rates estimated using conventional models which attribute

  20. Sensitivity of EAS measurements to the energy spectrum of muons

    NASA Astrophysics Data System (ADS)

    Espadanal, J.; Cazon, L.; Conceição, R.

    2017-01-01

    We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJET-II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm2 and ∼ 0 g/cm2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.

  1. Muon Collider Machine-Detector Interface

    SciTech Connect

    Mokhov, Nikolai V.; /Fermilab

    2011-08-01

    In order to realize the high physics potential of a Muon Collider (MC) a high luminosity of {mu}{sup +}{mu}{sup -}-collisions at the Interaction Point (IP) in the TeV range must be achieved ({approx}10{sup 34} cm{sup -2}s{sup -1}). To reach this goal, a number of demanding requirements on the collider optics and the IR hardware - arising from the short muon lifetime and from relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling should be satisfied. These requirements are aggravated by limitations on the quadrupole gradients as well as by the necessity to protect superconducting magnets and collider detectors from muon decay products. The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the beam in the ring are very important issues in the Interaction Region (IR), detector and Machine-Detector Interface (MDI) designs. This report is based on studies presented very recently.

  2. Precision measurements of fundamental muon properties

    NASA Astrophysics Data System (ADS)

    Debevec, P. T.

    2003-02-01

    The g-factor of the muon differs from two due to the excitation of virtual field quanta and particles. The deviation from two, the g-factor anomaly, can be calculated with high precision in the Standard Model of particle physics. The g-factor anomaly can be measured with high precision by determining the rate at which the spin direction of high-energy muons circulating in a storage ring precesses. The Brookhaven National Laboratory g-2 experiment (BNL g-2 collaboration) has measured g-2 to 1.3 ppm. The result is essentially in agreement with the Standard Model. The result puts interesting constraints on Standard Model extensions. Data under analysis will reduce the uncertainty to the order of 0.5 ppm. The precision timing techniques used in the g-2 experiment are a central element of a new experiment to measure the lifetime of the positive muon. The goal of this experiment is to determine the lifetime to 1 ppm, and the Fermi coupling constant to 0.5 ppm. The high statistics demand of this measurement is satisfied by one of the surface muon beams of the Paul Scherrer Institute. An artificial time structure is imposed on the continuous beam by an electrostatic kicker. The decay positrons are detected in a 180 element quasi-spherical detector. The effective counting rate is of the order of 1 MHz. The experiment is designed to control systematic errors to a level below 1 ppm.

  3. Neutrino masses, Majorons, and muon decay

    SciTech Connect

    Santamaria, A.; Bernabeu, J.; Pich, A.

    1987-09-01

    The contributions to the parameters xi, delta, rho, and eta in muon decay coming from double Majoron emission, Majorana neutrino masses, and effects of charged scalars are evaluated in the scalar-triplet model. The relevance of these effects for planned experiments is discussed.

  4. ICOOL: A TOOL FOR MUON COLLIDER SIMULATIONS.

    SciTech Connect

    FERNOW,R.C.

    2001-09-28

    Current ideas for designing neutrino factories [ 1,2] and muon colliders [3] require unique configurations of fields and materials to prepare the muon beam for acceleration. This so-called front end system must accomplish the goals of phase rotation, bunching and cooling. We have continued the development of a 3-D tracking code, ICOOL [4], for examining possible muon collider front end configurations. A system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary codes can be used for pre-processing, post-processing and optimization.

  5. Muon Acceleration Concepts for Future Neutrino Factory

    SciTech Connect

    Bogacz, Slawomir Alex

    2016-05-01

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.

  6. Reconstruction of muon tracks in a buried plastic scintillator muon telescope (BATATA)

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Insolia, A.; Medina-Tanco, G.; Trovato, E.

    2012-10-01

    The BATATA muon counter was designed as one of the foreseen detector upgrades of the Pierre Auger Observatory with the main goal of quantifying the electromagnetic contamination of the muon signal as a function of the depth for cosmic ray shower energies above 10 PeV. Nevertheless BATATA offers also the possibility of measuring the incoming direction of secondary muons from both GeV and PeV primary cosmic rays. Large efforts have been already done to quantify from simulations the amount of the electromagnetic contamination and the expected muon identification performances. The present work is focused on the evaluation of the detector performances for muon track reconstruction. To this aim and in view of the detector installation in the field, expected to be completed by the first half of current year, we performed a GEANT4 end-to-end simulation of such device and set up a track reconstruction procedure. Typical results concerning achieved acceptance and angular resolution for muons are presented.

  7. Measurements of Beam Cooling in Muon Ionization Cooling Experiment

    NASA Astrophysics Data System (ADS)

    Mohayai, Tanaz; Snopok, Pavel; Rogers, Chris; Neuffer, David; Muon Ionization Cooling Experiment Collaboration

    2017-01-01

    Cooled muon beams are essential for production of high-flux neutrino beams at the Neutrino Factory and high luminosity muon beams at the Muon Collider. The international Muon Ionization Cooling Experiment, MICE aims to demonstrate muon beam cooling through ionization energy loss of muons in material. The standard figure of merit for cooling in MICE is the transverse RMS emittance reduction and to measure this, the individual muon positions and momenta are reconstructed using scintillating-fiber tracking detectors, before and after a low-Z absorbing material. In this study, in addition to a preview on the standard measurement technique, an alternative technique is described, which is the measurement of phase-space density using the novel Kernel Density Estimation method. Work supported by the U.S. Department of Energy under contract No. DE - AC05 - 06OR23100.

  8. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  9. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  10. The MU-RAY project: Volcano radiography with cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Ambrosi, G.; Ambrosino, F.; Battiston, R.; Bross, A.; Callier, S.; Cassese, F.; Castellini, G.; Ciaranfi, R.; Cozzolino, F.; D'Alessandro, R.; de La Taille, C.; Iacobucci, G.; Marotta, A.; Masone, V.; Martini, M.; Nishiyama, R.; Noli, P.; Orazi, M.; Parascandolo, L.; Parascandolo, P.; Passeggio, G.; Peluso, R.; Pla-Dalmau, A.; Raux, L.; Rocco, R.; Rubinov, P.; Saracino, G.; Scarpato, G.; Sekhniaidze, G.; Strolin, P.; Tanaka, H. K. M.; Tanaka, M.; Trattino, P.; Uchida, T.; Yokoyamao, I.

    2011-02-01

    Cosmic-ray muon radiography is a technique for imaging the variation of density inside the top few 100 m of a volcanic cone. With resolutions up to 10s of meters in optimal detection conditions, muon radiography can provide images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with conventional methods. Such precise measurements are expected to provide us with information on anomalies in the rock density distribution, like those expected from dense lava conduits, low density magma supply paths or the compression with depth of the overlying soil. The MU-RAY project aims at the construction of muon telescopes and the development of new analysis tools for muon radiography. The telescopes are required to be able to work in harsh environment and to have low power consumption, good angular and time resolutions, large active area and modularity. The telescope consists of two X-Y planes of 2×2 square meters area made by plastic scintillator strips of triangular shape. Each strip is read by a fast WLS fiber coupled to a silicon photomultiplier. The readout electronics is based on the SPIROC chip.

  11. Status and Physics Opportunities of the STAR Heavy Flavor Tracker and the Muon Telescope Detector Upgrades

    NASA Astrophysics Data System (ADS)

    Hao, Qiu; Star Collaboration

    2014-05-01

    The STAR Collaboration will complete the Heavy Flavor Tracker (HFT) and the Muon Telescope Detector (MTD) upgrades by 2014. HFT utilizes the state-of-art active pixel detector technology, which will greatly enhance the STAR physics capabilities by measuring heavy quark yield, collectivity and correlations via the topological reconstruction of charmed hadrons over a wide momentum range. The MTD is based on the long Multi-Gap Resistive Plate Chamber detector technology designed to measure muons penetrating the bulk of other detectors and the magnet yoke. It will enable STAR to study di-muon and electron-muon correlations and enhance heavy quarkonium studies. With the addition of these upgrades, STAR is well suited to perform precise measurements of production as well as correlations of rare probes (heavy flavors, dileptons) to systematically investigate the quark-gluon plasma properties at RHIC. For Run 13 63% of the MTD has been installed and data have been taken. Prototype PXL sectors (30% coverage) have also been installed and commissioned. Anticipated physics results and current status of these upgrades is reported.

  12. NEUTRINO RADIATION CHALLENGES AND PROPOSED SOLUTIONS FOR MANY-TEV MUON COLLIDERS

    SciTech Connect

    KING,B.J.

    2000-05-05

    Neutrino radiation is expected to impose major design and siting constraints on many-TeV muon colliders. Previous predictions for radiation doses at TeV energy scales are briefly reviewed and then modified for extension to the many-TeV energy regime. The energy-cubed dependence of lower energy colliders is found to soften to an increase of slightly less than quadratic when averaged over the plane of the collider ring and slightly less than linear for the radiation hot spots downstream from straight sections in the collider ring. Despite this, the numerical values are judged to be sufficiently high that any many-TeV muon colliders will likely be constructed on large isolated sites specifically chosen to minimize or eliminate human exposure to the neutrino radiation. It is pointed out that such sites would be of an appropriate size scale to also house future proton-proton and electron-positron colliders at the high energy frontier, which naturally leads to conjecture on the possibilities for a new world laboratory for high energy physics. Radiation dose predictions are also presented for the speculative possibility of linear muon colliders. These have greatly reduced radiation constraints relative to circular muon colliders because radiation is only emitted in two pencil beams directed along the axes of the opposing linacs.

  13. Utilisation de dispositifs a transfert de charge pour la detection de muons cosmiques dans un contexte de tomographie

    NASA Astrophysics Data System (ADS)

    Marion-Ouellet, Laurence Olivier

    775 mum respectively, which translates to 28 000 and 76 000 electron-hole pairs as signal for the two thicknesses. All the results obtained through Geant4 are consistent with the known theory of energy deposits in thin semiconductor materials. A practical experimentation was also considered, using an astronomical camera DMK51 AU02.AS to capture a series of images hidden from light with the camera turned towards the sky. The pixels presenting a high intensity are considered to be the consequence of the passage of a muon. The expected rate of detection according to the size of the detector was 0.372 muons per minute but the results were 0.1578 muons per minute for data taken inside Polytechnique and 0.1615 for images taken outside. Therefore, the presence of about two meters of concrete above the camera does not significantly affect the detectable muon flux. However, the ratio of 40 % between expected signal and the observations is explained by the small size of the sensitive area of a pixel when compared to its total size. Components such as electrodes and differently doped silicon occupy a certain area in the pixel causing it, in the eyes of the muon, to be much smaller. A smaller pixel will ensure a smaller expected muon flux. Also, the possibility that the energy deposition is simply too small in some cases to be detected is also studied in the results section and solutions to resolve this problem are presented in the conclusion.

  14. Low-energy muon [LEM] study of Zn-phthalocyanine and ZnO thin films

    NASA Astrophysics Data System (ADS)

    Alberto, H. V.; Piroto Duarte, J.; Weidinger, A.; Vilão, R. C.; Gil, J. M.; Ayres de Campos, N.; Fostiropoulos, K.; Prokscha, T.; Suter, A.; Morenzoni, E.

    2009-04-01

    Implantation of low-energy muons in zinc-phthalocyanine (ZnPc) thin-films leads to the formation of muoniated radical states, the fast decaying of the μSR signal at low fields being a clear indication of muonium formation. The formation probability of these paramagnetic states is independent of the implantation depth and amounts, as in the bulk, to approximately 100% of all muons. In these molecular crystals the formation of muonium is a highly local effect and is fairly independent of crystalline structure and defects in the sample. In contrast to that, in vapour-grown ZnO films the paramagnetic signal known from bulk experiments is not observed, even for the deeper implantations. We suggest that in this case muonium is not formed due to the low concentration of free electrons. In these strongly distorted films, electrons are captured at defects and are not available for muonium formation.

  15. Upgrade of the ATLAS muon spectrometer for operation at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Kortner, Oliver

    2017-02-01

    The High-Luminosity Large Hadron Collider will increase the sensitivity of the ATLAS experiment to rare physics processes. In order to cope with a 10 times higher instantaneous luminosity compared to the LHC, the trigger system of ATLAS needs to be upgraded. The ATLAS experiment plans to increase the maximum rate capability of the 1st trigger level to 1 MHz at 6 μ s latency. This requires new on- and off-chamber electronics for its muon spectrometer. The replacement of the precision chamber read-out electronics will make it possible to include their data in the 1st level trigger decision and thus to increase the selectivity of the 1st level muon trigger. The acceptance of the present RPC trigger system in the barrel region will be increased from 75% to 95% by the installation of additional thin-gap RPC with a substantially increased high-rate capability compared to the current RPCs.

  16. The Muon Scattering Experiment (MUSE) at PSI and the proton radius puzzle

    NASA Astrophysics Data System (ADS)

    Kohl, Michael

    2014-11-01

    The unexplained large discrepancy of the proton charge radius measurements with muonic hydrogen Lamb shift and determinations from elastic electron scattering and Lamb shift in regular hydrogen of seven standard deviations is known as the proton radius puzzle. Suggested solutions of the puzzle range from possible errors in the experiments through unexpectedly large hadronic physics effects to new physics beyond the Standard Model. A new approach to verify the radius discrepancy in a systematic manner will be pursued with the Muon Scattering Experiment (MUSE) at PSI. The experiment aims to compare elastic cross sections, the proton elastic form factors, and the extracted proton charge radius with scattering of electrons and muons of either charge and under identical conditions. The difference in the observed radius will be probed with a high precision to verify the discrepancy. An overview of the experiment and the current status will be presented.

  17. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    SciTech Connect

    Jay L. Hirshfield

    2005-12-15

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation.

  18. Imaging a vertical shaft from a tunnel using muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Dorsey, D. J.; Schwellenbach, D.; Green, A.; Smalley, D.

    2015-12-01

    We use muon technology to image a vertical shaft from a tunnel. The density of the materials through which cosmic ray muons pass influences the flux of muons because muons are more attenuated by higher density material. Additionally, muons can travel several kilometers allowing measurements through deep rock. Density maps are generated from muon flux measurements to locate subsurface features like tunnel structures and ore bodies. Additionally, muon data can be jointly inverted with other data such as gravity and seismic to produce higher quality earth models than produced from a single method. We collected several weeks of data in a tunnel to image a vertical shaft. The minimum length of rock between the vertical shaft and the detector is 120 meters and the diameter of the vertical shaft is 4.6 meters. The rock the muons traveled through consists of Tertiary age volcanic tuff and steeply dipping, small-displacement faults. Results will be presented for muon flux in the tunnel and Monte-Carlo simulations of this experiment. Simulations from both GEANT4 (Geometry And Tracking version 4) and MCNP6 (Monte-Carlo N-Particle version 6) models will be compared. The tunnel overburden from muon measurements is also estimated and compared with actual the overburden. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. The calorimeter system of the new muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2016-07-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0-4.5 GeV electrons with a 28-element prototype array.

  20. The calorimeter system of the new muon g-2 experiment at Fermilab

    DOE PAGES

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; ...

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  1. The calorimeter system of the new muon g-2 experiment at Fermilab

    SciTech Connect

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Pocanic, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  2. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    SciTech Connect

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described.

  3. Special relativity in the school laboratory: a simple apparatus for cosmic-ray muon detection

    NASA Astrophysics Data System (ADS)

    Singh, P.; Hedgeland, H.

    2015-05-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth’s surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity and to extended investigations for more inquisitive students.

  4. Muon-catalyzed fusion experiments at LAMPF

    SciTech Connect

    Caffrey, A.J.; Anderson, A.N.; Van Siclen, C.D.W.; Watts, K.D.; Bradbury, J.N.; Gram, P.A.M.; Leon, M.; Maltrud, H.R.; Paciotti, M.A.; Jones, S.E.

    1986-01-01

    Our collaboration has conducted a series of muon-catalysis experiments over broad temperature and density ranges at the LAMPF accelerator in Los Alamos. We have discovered surprising effects on the normalized muon-catalysis cycling rate, lambda/sub c/, and the apparent alpha-particle sticking coefficient, ..omega../sub s/, that depend on the d-t mixture density. This paper reviews our experimental approach, analysis methods, and results for tests with targets varying in density from 0.12 to 1.30, normalized to liquid hydrogen density, and in temperature from 15K to 800K. In particular, results will be presented on the cycling rate, sticking coefficient, and /sup 3/He scavenging rate, as functions of temperature, mixture density, or tritium concentration.

  5. PHENIX Muon Tracking Detector Gas System

    NASA Astrophysics Data System (ADS)

    Kotchenda, L.; Kravtsov, P.; Pisani, R. P.; Tretiakov, G.; Trofimov, V.

    2007-07-01

    The Muon Tracking Detector Gas System was designed and fabricated to supply Ar+30% CO 2+20% CF 4 mixture to the PHENIX [K. Adcox, S.S. Adler, M. Aizam, et al., Nucl. Instr. and Meth. A 499 (2003) 669.] [1]. Muon Tracking (MuTr) chambers located at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Nation Lab (BNL). The gas system purpose is to provide gas at the requested mixture at a constant controlled pressure and at various flow rates. The system can do this while monitoring the mixture's temperature, pressure, flow rate, and CO 2, oxygen, and moisture content. A custom computer data acquisition system collects and logs the gas system operating parameters. This system can also be alarmed to provide automatic responses to undesired system conditions.

  6. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  7. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  8. Observation of a VHE cosmic-ray flare-signal with the L3+C muon spectrometer

    NASA Astrophysics Data System (ADS)

    Adriani, O.; van den Akker, M.; Aziz, T.; Bähr, J.; Banerjee, S.; Becattini, F.; Bellucci, L.; Betev, B. L.; Blaising, J. J.; Bobbink, G. J.; Bottai, S.; Bourilkov, D.; Cartacci, A.; Chemarin, M.; Chen, G.; Chen, G. M.; Chen, H. S.; Chiarusi, T.; Coignet, G.; Ding, L. K.; Duran, I.; Eline, A.; El Mamouni, H.; Faber, G.; Fay, J.; Filthaut, F.; Ganguli, S. N.; Gong, Z. F.; Grabosch, H. J.; Groenstege, H.; Guo, Y. N.; Gupta, S.; Gurtu, A.; Haller, Ch.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.; Hofer, H.; Hofer, H.; Huo, A. X.; Ito, N.; Jing, C. L.; Jones, L. W.; Kantserov, V.; Kawakami, S.; Kittel, W.; König, A. C.; Kok, E.; Kuang, H. H.; Kuijpers, J.; Ladron de Guevara, P.; Le Coultre, P.; Lei, Y.; Leich, H.; Leiste, R.; Li, L.; Li, Z. C.; Liu, Z. A.; Lohmann, W.; Lu, Y. S.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Mele, S.; Meng, X. W.; Meschini, M.; Metzger, W. J.; van Mil, A.; Milcent, H.; Mohanty, G. B.; Monteleoni, B.; Nahnhauer, R.; Naumov, V. A.; Nowak, H.; Parriaud, J.-F.; Pauss, F.; Petersen, B.; Pieri, M.; Pohl, M.; Pojidaev, V.; Qing, C. R.; Ramelli, R.; Ranieri, R.; Ravindran, K. C.; Rewiersma, P.; Riemann, S.; Rojkov, A.; Romero, L.; Schmitt, V.; Schoeneich, B.; Schotanus, D. J.; Shen, C. Q.; Spillantini, P.; Sulanke, H.; Tang, X. W.; Timmermans, C.; Tonwar, S. C.; Trowitzsch, G.; Unger, M.; Verkooijen, H.; van de Walle, R. T.; Vogt, H.; Wang, R. G.; Wang, Q.; Wang, X. L.; Wang, X. W.; Wang, Z. M.; van Wijk, R.; Wijnen, T. A. M.; Wilkens, H.; Xu, Y. P.; Xu, J. S.; Xu, Z. Z.; Yang, C. G.; Yang, X. F.; Yao, Z. G.; Yu, Z. Q.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhou, S. J.; Zhu, G. Y.; Zhu, Q. Q.; Zhuang, H. L.; Zwart, A. N. M.; L3+C Collaboration

    2010-02-01

    The data collected by the L3+C muon spectrometer at the CERN Large Electron-Positron collider, LEP, have been used to search for short duration signals emitted by cosmic point sources. A sky survey performed from July to November 1999 and from April to November 2000 has revealed one single flux enhancement (chance probability=2.6×10-3) between the 17th and 20th of August 2000 from a direction with a galactic longitude of (265.02 ± 0.42)° and latitude of (55.58 ± 0.24)°. The energy of the detected muons was above 15 GeV.

  9. Recent results from COMPASS muon scattering measurements

    NASA Astrophysics Data System (ADS)

    Capozza, Luigi; Compass Collaboration

    2012-10-01

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  10. Seasonal modulations of the underground cosmic-ray muon energy

    SciTech Connect

    Malgin, A. S.

    2015-08-15

    The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than their intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.

  11. SSC detector muon sub-system beam tests

    SciTech Connect

    Downing, R.; Errede, S.; Gauthier, A.; Haney, M.; Karliner, I.; Liss, T.; O`Halloran, T.; Sheldon, P.; Simiatis, V.; Thaler, J.; Wiss, J.; Green, D.; Martin, P.; Morfin, J.; Kunori, S.; Skuja, A.; Okusawa, T.; Takahashi, T.; Teramoto, Y.; Yoshida, T.; Asano, Y.; Mann, T.; Davisson, R.; Liang, G.; Lubatti, H.; Wilkes, R.; Zhao, T.; Carlsmith, D.

    1993-08-01

    We propose to start a test-beam experiment at Fermilab studying the problems associated with tracking extremely high energy muons through absorbers. We anticipate that in this energy range the observation of the muons will be complicated by associated electromagnetic radiation Monte Carlo simulations of this background need to be tuned by direct observations. These beam tests are essential to determine important design parameters of a SSC muon detector, such as the choice of the tracking, geometry, hardware triggering schemes, the number of measuring stations, the amount of iron between measuring stations, etc. We intend to begin the first phase of this program in November of 1990 utilizing the Tevatron muon beam. We plan to measure the multiplicity, direction, and separation of secondary particles associated with the primary muon track as it emerges from an absorber. The second phase of beam test in 1992 or later will be a full scale test for the final design chosen in our muon subsystem proposal.

  12. Analytical calculation of muon intensities under deep sea-water

    NASA Technical Reports Server (NTRS)

    Inazawa, H.; Kobayakawa, K.

    1985-01-01

    The study of the energy loss of high energy muons through different materials, such as rock and sea-water can cast light on characteristics of lepton interactions. There are less ambiguities for the values of atomic number (Z) and mass number (A) in sea-water than in rock. Muon intensities should be measured as fundamental data and as background data for searching the fluxes of neutrino. The average range energy relation in sea-water is derived. The correction factors due to the range fluctuation is also computed. By applying these results, the intensities deep under sea are converted from a given muon energy spectra at sea-level. The spectra of conventional muons from eta, K decays have sec theta enhancement. The spectrum of prompt muons from charmed particles is almost isotropic. The effect of prompt muons is examined.

  13. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    SciTech Connect

    Kyberd, P.; Smith, D.R.; Coney, L.; Pascoli, S.; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  14. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  15. Recent Innovations in Muon Beam Cooling

    SciTech Connect

    Johnson, Rolland P.; Alsharo'a, Mohammad; Hanlet, Pierrick M.; Hartline, Robert; Kuchnir, Moyses; Paul, Kevin; Roberts, Thomas J.; Ankenbrandt, Charles; Barzi, Emanuela; Del Frate, Licia; Gonin, Ivan; Moretti, Alfred; Neuffer, David; Popovic, Milorad; Romanov, Gennady; Turrioni, Daniele; Yarba, Victor; Beard, Kevin; Bogacz, S. Alex; Derbenev, Yaroslav

    2006-03-20

    Eight new ideas are being developed under SBIR/STTR grants to cool muon beams for colliders, neutrino factories, and muon experiments. Analytical and simulation studies have confirmed that a six-dimensional (6D) cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas can provide effective beam cooling. This helical cooling channel (HCC) has solenoidal, helical dipole, helical quadrupole, and helical sextupole magnetic fields to generate emittance exchange and achieve 6D emittance reduction of over 3 orders of magnitude in a 100 m segment. Four such sequential HCC segments, where the RF frequencies are increased and transverse physical dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost five orders of magnitude. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, then can be employed to reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that can be used as MANX, an exceptional 6D cooling demonstration experiment.

  16. Muon g-2 Experiment at Fermilab

    SciTech Connect

    Gray, Frederick

    2015-10-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.

  17. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  18. Recent Innovations in Muon Beam Cooling

    SciTech Connect

    Rolland P. Johnson; Mohammad Alsharo'a; Charles Ankenbrandt; Emanuela Barzi; Kevin Beard; S. Alex Bogacz; Yaroslav Derbenev; Licia Del Frate; Ivan Gonin; Pierrick M. Hanlet; Robert Hartline; Daniel M. Kaplan; Moyses Kuchnir; Alfred Moretti; David Neuffer; Kevin Paul; Milorad Popovic; Thomas J. Roberts; Gennady Romanov; Daniele Turrioni; Victor Yarba; and Katsuya Yonehara

    2006-03-01

    Eight new ideas are being developed under SBIR/STTR grants to cool muon beams for colliders, neutrino factories, and muon experiments. Analytical and simulation studies have confirmed that a six-dimensional (6D) cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas can provide effective beam cooling. This helical cooling channel (HCC) has solenoidal, helical dipole, helical quadrupole, and helical sextupole magnetic fields to generate emittance exchange and achieve 6D emittance reduction of over 3 orders of magnitude in a 100 m segment. Four such sequential HCC segments, where the RF frequencies are increased and transverse physical dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost five orders of magnitude. Two new cooling ideas, Parametric-resonance Ionization Cooling and Reverse Emittance Exchange, then can be employed to reduce transverse emittances to a few mm-mr, which allows high luminosity with fewer muons than previously imagined. We describe these new ideas as well as a new precooling idea based on a HCC with z dependent fields that can be used as MANX, an exceptional 6D cooling demonstration experiment.

  19. A Novel and Compact Muon Telescope Detector at STAR for Midrapidity Di-lepton Physics at RHIC

    NASA Astrophysics Data System (ADS)

    Ruan, Lijuan

    2011-10-01

    Data taken over the last decade have demonstrated that RHIC has created a hot, dense medium with partonic degrees of freedom. One of the physics goals for the next decade is to study the fundamental properties of this medium such as temperature, density profile, and color screening length via electro-magnetic probes such as di-leptons. Muons have a clear advantage over electrons due to reduced Bremsstrahlung radiation in the detector material. This is essential for separating the ground state (1S) of the Upsilon from its excited states (2S+3S) which are predicted to melt at very different temperatures. We propose a novel and compact Muon Telescope Detector (MTD) in the Solenoidal Tracker at RHIC (STAR) at mid-rapidity to measure different Upsilon states, J/psi over a broad transverse momentum range through di-muon decays to study color screening features, and muon-e correlations to distinguish heavy flavor correlations from initial lepton pair production. In this talk, we will present the physics cases for the proposed MTD. We will report the R&D results including simulations and MTD prototype performance at STAR.

  20. Installation for the study of the angular distribution of cosmic muons with super-high energies at large zenith angles

    NASA Technical Reports Server (NTRS)

    Borog, V. V.; Kirillov-Ugryumov, V. G.; Petrukhin, A. A.; Shestakov, V. V.

    1975-01-01

    An installation consisting of an ionization calorimeter and a counter hodoscope can be used to record cascade showers caused by the electromagnetic interactions of muons with superhigh energies in the cosmic ray horizontal flux. The direction of the muons is determined by a hodoscope consisting of 2196 counters. The information obtained makes it possible to restore the angular and energy distribution of the cosmic muons, which, in turn, makes it possible to determine the mechanism of their generation. The accuracy with which the angle of the passing particle is determined is discussed in detail in addition to the causes which can introduce distortions, such as shower accompaniment of neutrons, escape of shower electrons from the calorimeter, random coincidences, etc.

  1. Jet production in muon scattering at Fermilab E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-11-01

    Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

  2. Muon Cooling R&D Progress in the US

    NASA Astrophysics Data System (ADS)

    Li, Derun

    2008-02-01

    Muon ionization cooling R&D is important for a neutrino factory and future muon collider. In addition to theoretical studies, much progress has been made in muon cooling channel hardware R&D since NuFact-2006. This paper reports the progress on hardware R&D that includes experimental RF test programs using 805-MHz RF cavity, superconducting (SC) solenoids (coupling coils), 201-MHz RF cavity, liquid hydrogen absorber and MUCOOL Test Area (MTA) experiment preparation for beam tests.

  3. Aligning the CMS muon chambers with the muon alignment system during an extended cosmic ray run

    NASA Astrophysics Data System (ADS)

    CMS Collaboration

    2010-03-01

    The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 μm and 30-200 μrad, close to the precision requirements of the experiment. Systematic errors on absolute positions are estimated to be 340-590 μm based on comparisons with independent photogrammetry measurements.

  4. Muon SR Newsletter, No. 29, April 5, 1984

    SciTech Connect

    Crowe, K.M.; Portis, A.M.; Yamazaki, T.

    1984-04-05

    Muon SR stands for Muon Spin Relaxation, Rotation, Resonance, Research, or what have you. The intention of the mnemonic acronym is to draw attention to the analogy with NMR and ESR, the range of whose applications is well known. Any study of the interactions of the muon spin by virtue of the asymmetric decay is considered ..mu..SR, but this definition is not intended to exclude any peripherally related phenomena, especially if relevant to the use of the muon's mganetic moment as a delicate probe of matter. Abstracts of individual items from this issue were prepared separately for the data base.

  5. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  6. Muons probe strong hydrogen interactions with defective graphene.

    PubMed

    Riccò, Mauro; Pontiroli, Daniele; Mazzani, Marcello; Choucair, Mohammad; Stride, John A; Yazyev, Oleg V

    2011-11-09

    Here, we present the first muon spectroscopy investigation of graphene, focused on chemically produced, gram-scale samples, appropriate to the large muon penetration depth. We have observed an evident muon spin precession, usually the fingerprint of magnetic order, but here demonstrated to originate from muon-hydrogen nuclear dipolar interactions. This is attributed to the formation of CHMu (analogous to CH(2)) groups, stable up to 1250 K where the signal still persists. The relatively large signal amplitude demonstrates an extraordinary hydrogen capture cross section of CH units. These results also rule out the formation of ferromagnetic or antiferromagnetic order in chemically synthesized graphene samples.

  7. Investigation into the feasibility of a soft muon experiment

    SciTech Connect

    Tincknell, M.L.

    1990-06-01

    Issues relevant in a soft ({lt} 5 GeV) muon pair experiment at the AGS or the RHIC central region are investigated. Observation of direct muon pairs is difficult because the muon pair to pion ratio is {omicron} (10{sup {minus}4}). Absorber penetration is the only means available to identify high energy muons among a large number of hadrons. Three important sources of background are sail-through hadrons that fail to interact in the absorber, the decays of pions and kaons to muons in the absorber, and leakage of hadronic shower products through the absorber. An absorber thick enough to limit the ratio of combinatorical background pairs to pions to {omicron} (10{sup {minus}4}) imposes a significant muon kinetic energy threshold due to muon range in the absorber. Absorbers with low atomic number Z are preferred to keep this threshold low, and to avoid loss of invariant mass resolution due to energy loss straggling and multiple coulomb scattering. Long-lived meson to muon decays can be directly suppressed only by picking an absorber with short interaction length, which implies a high density, high Z material. With sufficiently high statistics, a subtraction of the spectra of like-sign pairs from the spectrum of opposite-sign pairs should recover the direct muon pair spectrum. 9 refs., 9 figs., 2 tabs.

  8. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  9. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  10. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Blyth, S. C.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Yeh, M.; Zhang, B. J.; Aberdeen Tunnel Experiment Collaboration

    2016-04-01

    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7 ±0.6 )×10-6 cm-2 s-1 sr-1 . The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19 ±0.08 (stat)±0.21 (syst))×10-4 neutrons /(μ .g .cm-2 ) . A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩ 0.76 ±0.03 for liquid-scintillator targets.

  11. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE PAGES

    Yeh, M.; Chan, Y. L.; Chen, X. C.; ...

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depthsmore » gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.« less

  12. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  13. Helical muon beam cooling channel engineering design

    SciTech Connect

    Johnson, Rolland

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  14. The search for single top quark production in the muon plus jets channel at D0

    SciTech Connect

    Christofek, L.; /Kansas U.

    2005-01-01

    The authors have performed a search for the electroweak production of single top quarks in p{bar p} collisions at the Fermilab Tevatron at a center of mass energy of {radical}s = 1.96 TeV. The search was performed in the muon plus jets decay channel requiring at least one b-tagged jet. The data were collected using the D0 detector between August 2002 and September 2003 corresponding to an integrated luminosity of 158 pb{sup -1}. The resulting 95% C.L. upper limits on the production cross sections are 27 pb in the s-channel, 41 pb in the t-channel, and 36 pb in the combined s + t channel using the secondary vertex tagger (SVT) algorithm. They also present results from the combined electron and muon channel search using the D0 detector.

  15. JTAG test system for RPC muon trigger in the CMS experiment

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Rutkowski, Piotr Z.; Kudla, Ignacy M.; Pietrusinski, Michal

    2003-10-01

    Theoretical and practical realization of the JTAG testing system for the RPC Muon Trigger of the CMS experiment at the LHC accelerator at CERN laboratory (Geneva) is presented. The paper covers issues related to tests of connections of the printed circuit boards (PCB) of the RPC Trigger. Functionality test of devices and modules were performed. Special test were designed for large PLD FPGA. Testing environment for the JTAG model is discussed. The model is based on some existing and some newly developed testing algorithms. Practical system realization is presented. The system consists of the hardware interface and the software layer. Software was built using C++ object oriented language and databases. Exemplary test of the RPC Muon Trigger electronics was performed and the results were given.

  16. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    NASA Astrophysics Data System (ADS)

    Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D. L.; Bonanno, G.; Bongiovanni, D.; Fallica, P. G.; Garozzo, S.; Grillo, A.; La Rocca, P.; Leonora, E.; Longhitano, F.; Lo Presti, D.; Marano, D.; Parasole, O.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Romeo, M.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.

    2017-02-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m3) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  17. Fabrication of the prototype 201.25 mhz cavity for a muon ionization cooling experiment

    SciTech Connect

    Rimmer, R.A.; Manning, S.; Manus, R.; Phillips, L.; Stirbet, M.; Worland, K.; Wu, G.; Li, D.; MacGill, R.; Staples, J.; Virostek, S.; Zisman, M.S.; Taminger, K.; Hafley, R.; Martin, R.; Summers, D.; Reep, M.

    2005-05-20

    We describe the fabrication and assembly of the first prototype 201. 25 MHz copper cavity for the muon ionization cooling experiment (MICE). This cavity was developed by the US MUCOOL collaboration and will be tested in the new MUCOOL Test Area at Fermilab. We outline the component and subassembly fabrication steps and the various metal forming and joining methods used to produce the final cavity shape. These include spinning, brazing, TIG welding, electron beam welding, electron beam annealing and deep drawing. Some of the methods developed for this cavity are novel and offer significant cost savings over conventional methods.

  18. Fabrication of the Prototype 201.25 MHz Cavity for a Muon Ionization Cooling Experiment

    SciTech Connect

    R.A. Rimmer; S. Manning; R. Manus; L. Phillips; M. Stirbet; K. Worland; G. Wu; D. Li; R. MacGill; J. Staples; S. Virostek; M. Zisman; K. Taminger; R. Hafley; R. Martin; D. Summers; M. Reep

    2005-05-01

    We describe the fabrication and assembly of the first prototype 201.25 MHz copper cavity for the muon ionization cooling experiment (MICE). This cavity was developed by the US MUCOOL collaboration and will be tested in the new MUCOOL Test Area at Fermilab. We outline the component and subassembly fabrication steps and the various metal forming and joining methods used to produce the final cavity shape. These include spinning, brazing, TIG welding, electron beam welding, electron beam annealing and deep drawing. Some of the methods developed for this cavity are novel and offer significant cost savings over conventional construction methods.

  19. Chromaticity correction for a muon collider optics

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  20. Densitometric tomography using the measurement of muon flux

    NASA Astrophysics Data System (ADS)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  1. Radiative muon capture in hydrogen and nucleon excitation

    SciTech Connect

    Beder, D. S.; Fearing, H. W.

    1989-06-01

    We extend our previous calculations of radiative muon capture on a nucleonand present detailed calculations of the role of the ..delta..(1232) using animproved ..delta..-nucleon-..gamma.. vertex and for a variety of values of theinduced pseudoscalar coupling /ital g//sub /ital P//. We also present calculations ofthe photon-muon spin asymmetry and examine effects of the ..delta..(1232)there.

  2. Alignment of the Muon System at the CMS Experiment

    NASA Astrophysics Data System (ADS)

    Mueller, Ryan; Perniè, Luca; Pakhotin, Yuriy; Kamon, Teruki; Safonov, Alexei; Brown, Malachi

    2017-01-01

    The muon detectors of the CMS experiment provide fast trigger decisions, muon identifications and muon track measurements. Alignment of the muon detectors is crucial for accurate reconstruction of events with high pT muons that are present in signatures for many new physics scenarios. The muon detector's relative positions and orientations with respect to the inner silicon tracker may be precisely measured using reconstructed tracks propagating from the interaction point. This track-based alignment procedure is capable of aligning individual muon detectors to within 100 microns along sensitive modes. However, weak (insensitive) modes may not be well measured due to the system's design and cause systematic miss-measurements. In this report, we present a new track-based procedure which enables all 6 alignment parameters - 3 positions and 3 rotations for each individual muon detector. The improved algorithm allows for measurement of weak modes and considerably reduced related systematic uncertainties. We describe results of the alignment procedure obtained with 2016 data.

  3. Participation in Muon Collider/Neutrino Factory Research and Development

    SciTech Connect

    Torun, Yagmur

    2013-03-20

    Muon accelerators hold great promise for the future of high energy physics and their construction can be staged to support a broad physics program. Great progress was made over the past decade toward developing the technology for muon beam cooling which is one of the main challenges for building such facilities.

  4. Helical Channel Design and Technology for Cooling of Muon Beams

    NASA Astrophysics Data System (ADS)

    Yonehara, K.; Derbenev, Y. S.; Johnson, R. P.

    2010-11-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  5. Muon tomography of rock density using Micromegas-TPC telescope

    NASA Astrophysics Data System (ADS)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  6. Characteristics of neutrons produced by muons in a standard rock

    SciTech Connect

    Malgin, A. S.

    2015-10-15

    Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.

  7. Muon-induced spallation backgrounds in DUNE

    NASA Astrophysics Data System (ADS)

    Zhu, Guanying; Li, Shirley; Beacom, John

    2017-01-01

    Galactic supernovae are rare, just a few per century, so it is important to be prepared. If we are, then the long-baseline detector DUNE could detect thousands of events, compared to the tens from SN 1987A. An important question is backgrounds from muon-induced spallation reactions. We simulate particle energy-loss processes in liquid argon, and compare relevant isotope yields with those in the water-Cherenkov detector SuperK. Our approach will help optimize the design of DUNE and further benefit the study of supernova neutrinos. GZ, SWL, and JFB are supported by NSF Grant PHY-1404311.

  8. Atmospheric effects on the underground muon intensity

    NASA Technical Reports Server (NTRS)

    Fenton, A. G.; Fenton, K. B.; Humble, J. E.; Hyland, G. B.

    1985-01-01

    It has previously been reported that the barometric pressure coefficient observed for muons at Poatina (vertical absorber depth 357 hg/sq cm) appears to be appreciably higher than would be expected from atmospheric absorption alone. There is a possibility that the effect is due to an upper atmospheric temperature effect arising from an inverse correlation of surface pressure with stratospheric temperature. A new proportional telescope is discussed which has been operating at Poatina since about the beginning of 83 and which has a long term stability suitable for studying variations of atmospheric origin.

  9. The Muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Chapelain, Antoine

    2017-03-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  10. (Studies of high energy phenomena using muons)

    SciTech Connect

    Not Available

    1991-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract FG02-91ER40641 during the period from March 1991 to December 1991. Our group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, we are also members of the SDC collaboration at the SSC.

  11. Stochastic processes in muon ionization cooling

    NASA Astrophysics Data System (ADS)

    Errede, D.; Makino, K.; Berz, M.; Johnstone, C. J.; Van Ginneken, A.

    2004-02-01

    A muon ionization cooling channel consists of three major components: the magnet optics, an acceleration cavity, and an energy absorber. The absorber of liquid hydrogen contained by thin aluminum windows is the only component which introduces stochastic processes into the otherwise deterministic acceleration system. The scattering dynamics of the transverse coordinates is described by Gaussian distributions. The asymmetric energy loss function is represented by the Vavilov distribution characterized by the minimum number of collisions necessary for a particle undergoing loss of the energy distribution average resulting from the Bethe-Bloch formula. Examples of the interplay between stochastic processes and deterministic beam dynamics are given.

  12. Leptomeson contribution to the muon g -2

    NASA Astrophysics Data System (ADS)

    Zhuridov, Dmitry

    2016-02-01

    Many models on the market allow for particles carrying both lepton number and color, e.g., leptoquarks and leptogluons. Some of the models with this feature can also accommodate color-singlet leptohadrons. We have found that the long-standing discrepancy between the experimental result and the Standard Model prediction for the muon anomalous magnetic moment can be explained by the effect of leptomesons with masses of a few hundred GeV and couplings to the leptons and mesons either of O (1 0-2) (vector-meson case) or of O (1 ) (scalar case). These new particles are testable at the current run of the LHC.

  13. Can galileons solve the muon problem?

    NASA Astrophysics Data System (ADS)

    Lamm, Henry

    2015-09-01

    The leptonic bound states positronium and muonium are used to constrain Galileon contributions to the Lamb shift of muonic hydrogen. Through the application of a variety of bounds on lepton compositeness, it is shown that either the assumption of equating the charge radius of a particle with its Galileon scale radius is incompatible with experiments, or the scale of Galileons must be M >1.33 GeV , too large to solve the muon problem. The possibility of stronger constraints in the future from true muonium is discussed.

  14. Bayesian image reconstruction for improving detection performance of muon tomography.

    PubMed

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  15. Noise reduction in muon tomography for detecting high density objects

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  16. Material science and solid state physics studies with positive muon spin precession. [fe(a1) alloys

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1979-01-01

    The hyperfine field on the muon, B sub hf, at interstitial sites in dilute Fe(Al) alloys was measured for four different concentrations of Al and as a function of temperature by the muon spin rotation method. The magnitude of B sub hf, which is negative, decreases at rates ranging from 0.09 + or - 0.03% per at.% Al at 200 K to an asymptotic limit of 0.35 + or - far above 440 K. This behavior shows that sites near the Al impurity are weakly repulsive to the muon, with an interaction potential of 13 + or - 3 meV. In order to fit the temperature dependence of the hyperfine field, it is necessary to hypothesize the existence of a small concentration of unidentified defects, possibly dislocations, which are attractive to the muon. Although the Al impurity acts as a non-magnetic hole in the Fe lattice, the observed decrease in B sub hf is only 35% of the decrease in the bulk magnetization. It is concluded that B sub hf is determined mainly by the enhanced screening of conduction electrons in Fe and Fe(Al). Since the influence of the Al impurity on the neighboring Fe monents is very small, most of the change in B sub hf is therefore attributed to the increase in conduction electron polarization of the Al impurity.

  17. The composition of cosmic rays near the Bend (10 to the 15th power eV) from a study of muons in air showers at sea level

    NASA Technical Reports Server (NTRS)

    Goodman, J. A.; Gupta, S. C.; Freudenreich, H. T.; Sivaprasad, K.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Goodman, M. C.; Bogert, M. C.; Burnstein, R.

    1985-01-01

    The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV.

  18. Muon background studies for shallow depth Double - Chooz near detector

    SciTech Connect

    Gómez, H.

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  19. Improved detectors for the new muon g-2 measurement

    NASA Astrophysics Data System (ADS)

    Damhorst, Gregory

    2009-10-01

    A precision measurement of the muon anomalous magnetic moment (g-2) is one of the most promising efforts for the detection of new physics beyond the standard model. A new proposal to perform the measurement at Fermi National Accelerator Laboratory promises to reduce uncertainty in the measurement from 0.54 ppm to 0.14 ppm, improving the measurement's power in discriminating various extensions to the standard model. To accomplish this greater precision, the new g-2 measurement will require improved detectors and data acquisition techniques. Calorimeters made of tungsten and scintillating fiber (SciFi) will be used for the detection of weak decay electrons. This design is preferred over the grooved lead/SciFi calorimeters used in past g-2 measurements for its simple assembly and smaller radiation length. Photons produced in the scintillation process will be directed to photomultipliers for electronic readout through foil-lined acrylic light guides which must concentrate photons with minimal loss within a limited available space. The challenge of developing an optimal detector design is being addressed by the University of Illinois Nuclear Physics Group through Monte Carlo simulations and tests of prototype calorimeters and light guides. Significant aspects of this project include determining optimal calorimeter module size, light guide geometry, and photomultiplier style.

  20. Electron muon scattering in the exotic Z(0)' pole

    SciTech Connect

    Diaz, H.; Ravinez, O.; Romero, D.; Reyes, J.

    2009-04-30

    The search for new physics in the future Internacional Linear Collider ILC, implies the existence of new particles, among them, the Z(0)' particle. In this regard, we calculate the e{sup +}+e{sup -}{yields}{mu}{sup +}+{mu}{sup -} scattering cross section near the Z(0)' pole, whitin the contex of the SU(3){sub L}xU(1){sub Y} weak model, which contains exotic leptons, quarks, and bosons (E,J,U,V) with the finality of obtain constraints in the parameters of the model.

  1. CMOS front end electronics for the ATLAS muon detector

    SciTech Connect

    Huth, J.; Oliver, J.; Hazen, E.; Shank, J.

    1997-12-31

    An all-CMOS design for an integrated ASD (Amplifier-Shaper-Discriminator) chip for readout of the ATLAS Monitored Drift Tubes (MDTs) is presented. Eight channels of charge-sensitive preamp, two-stage pole/zero shaper, Wilkinson ADC and discriminator with programmable hysteresis are integrated on a single IC. Key elements have been prototyped in 1.2 and 0.5 micron CMOS operating at 5V and 3.3V respectively.

  2. Muon-electron conversion in a family gauge boson model

    NASA Astrophysics Data System (ADS)

    Koide, Yoshio; Yamanaka, Masato

    2016-11-01

    We study the μ-e conversion in muonic atoms via an exchange of family gauge boson (FGB) A21 in a U (3) FGB model. Within the class of FGB model, we consider three types of family-number assignments for quarks. We evaluate the μ-e conversion rate for various target nuclei, and find that next generation μ-e conversion search experiments can cover entire energy scale of the model for all of types of the quark family-number assignments. We show that the conversion rate in the model is so sensitive to up- and down-quark mixing matrices, Uu and Ud, where the CKM matrix is given by VCKM =Uu†Ud. Precise measurements of conversion rates for various target nuclei can identify not only the types of quark family-number assignments, but also each quark mixing matrix individually.

  3. Frontiers of muon spectroscopy—25 years of muon science at ISIS

    NASA Astrophysics Data System (ADS)

    Cottrell, Stephen

    2013-12-01

    The ISIS muon source developed with support from the European Community (EC) and groups at Grenoble, Parma, Uppsala and Munich in the late 1980s, with a single instrument providing many scientists with their first opportunity to explore the unique capabilities of muon spectroscopy. The timing was opportune, as the muon technique was making an important contribution to the study of the then recently discovered cuprate high T c superconductors. The ISIS user community developed rapidly over subsequent years, with the technique finding a broad range of applications in condensed matter physics, materials science and chemistry. The single instrument was hugely oversubscribed, and the importance of the technique was recognized in 1993 with a further grant from the EC to develop the triple beamline facility that is currently available at ISIS. During 2009 the suite of spectrometers available at the facility received a major upgrade, with the Science and Technology Facilities Council funding the development of a 5 T high field instrument that has enabled entirely new applications of muon spectroscopy to be explored. The facility continues to flourish, with a strong user community exploiting the technique to support research across an increasingly broad range of subject areas. Condensed matter science continues to be a major area of interest, with applications including semiconductors and dielectrics, superconductors, magnetism, interstitial diffusion and charge transport. Recently, however, molecular science and radical chemistry have become prominent in the ISIS programme, applications where the availability of high magnetic fields is frequently vital to the success of the experiments. For ISIS, 23 March 2012 marked a significant milestone, it being 25 years since muons were first produced at the facility for research in condensed matter and molecular science. To celebrate, the ISIS muon group organized a science symposium with the theme 'Frontiers of Muon Spectroscopy

  4. Cosmic ray muons for spent nuclear fuel monitoring

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  5. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  6. Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-03-01

    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m2 detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed. The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98% efficiency for the highest tested overvoltage, combined with a low probability of accidental counting (~2%), show a promising performance for this new system.

  7. A Micromegas-based telescope for muon tomography: The WatTo experiment

    NASA Astrophysics Data System (ADS)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  8. Muon decay: an old, yet alive experiment in the university physics curriculum

    NASA Astrophysics Data System (ADS)

    Riggi, F.; La Rocca, P.; Riggi, S.

    2016-07-01

    The classic experiment on muon decay is proposed in the undergraduate or master physics curriculum, making use of a single scintillation detector and observing in coincidence the delayed signal due to the electron following muon decay. Two experimental setups, with different geometries and scintillation materials, were considered, making use of standard equipment available in most undergraduate labs. The results obtained in the two cases were compared and discussed. For a better understanding of the results, and to also evaluate the possible effect of material surrounding the detector, detailed GEANT simulations were carried out for both experimental setups. Such simulations are also intended as an additional student activity to virtually exploit in a short time the effect of modifying detector and material configuration, which cannot be achieved during a single student session. The results of this experiment and its interpretation also proved to be a useful way to discuss with students many topics of interest in modern physics, such as—among others—the time dilation, the dependence of muon lifetime in matter, the Fermi weak interaction coupling constant and the parity violation in weak interactions.

  9. Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2017-03-03

    Here, AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory designed to extend its energy range of detection and to directly measure the muon content of the cosmic ray primary particle showers. The array will be formed by an infill of surface water-Cherenkov detectors associated with buried scintillation counters employed for muon counting. Each counter is composed of three scintillation modules, with a 10 m2 detection area per module. In this paper, a new generation of detectors, replacing the current multi-pixel photomultiplier tube (PMT) with silicon photo sensors (aka. SiPMs), is proposed.more » The selection of the new device and its front-end electronics is explained. A method to calibrate the counting system that ensures the performance of the detector is detailed. This method has the advantage of being able to be carried out in a remote place such as the one where the detectors are deployed. High efficiency results, i.e. 98% efficiency for the highest tested overvoltage, combined with a low probability of accidental counting (~2%), show a promising performance for this new system.« less

  10. Generating Polarized High-Brightness Muon Beams With High-Energy Gammas

    SciTech Connect

    Yakimenko, Vitaly

    2009-01-22

    Hadron colliders are impractical at very high energies as effective interaction energy is a fraction of the energies of the beams and luminosity must rise as energy squared. Further, the prevailing gluon-gluon background radiation makes it difficult to sort out events. e{sup +}e{sup -} colliders, on other hand, are constrained at TeV energies by beamstrahlung radiation and also by cost as long linacs are required to avoid synchrotron radiation in the rings. A muon collider will have the same advantages in energy reach as an e{sup +}e{sup -} collider, but without prohibitive beamstrahlung- and synchrotron- radiation. Generation of the high-brightness polarized muon ({mu}{sup -}{mu}{sup +}) beams through gamma conversion into pairs in the nuclei field is considered in this paper. The dominant effect in the interaction of the high-energy photons with the solid target will be the production of electron-positron pairs. The low-phase space of the resulting muon beams adequately compensates for the small probability of generating a {mu}{sup -}{mu}{sup +} pair.

  11. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ

    SciTech Connect

    Tang, Alfred; Horton-Smith, Glenn; Kudryavtsev, Vitaly A.; Tonazzo, Alessandra

    2006-09-01

    Muon backgrounds at Super-Kamiokande, KamLAND, and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea-level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux, and rate are tabulated. Plots of average energy and angular distributions are given. Implications for muon tracker design in future experiments are discussed.

  12. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J. J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J. P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J. P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  13. MUSE, the goddess of muons, and her future.

    PubMed

    Kadono, Ryosuke; Miyake, Yasuhiro

    2012-02-01

    The Muon Science Establishment (MUSE) is one of the major experimental facilities, along with those for neutron, hadron and neutrino experiments, in J-PARC. It makes up a part of the Materials and Life Science Experiment Facility (MLF) that hosts a tandem neutron facility (JSNS) driven by a single proton beam. The facility consists of a superconducting solenoid (for pion confinement) with a modest-acceptance (about 45 mSr) injector of pions and muons obtained from a 20 mm thick edge-cooled stationary graphite target, delivering a 'surface muon' beam (μ(+)) and a 'decay muon' beam (μ(+)/μ(-)) for a wide variety of applications. It has recently been confirmed that the beamline has the world's highest muon intensity (∼10(6) μ(+)/s) at a proton beam power of 120 kW. The beamline is furnished with two experimental areas (D1 and D2) at the exit branches, where an apparatus for muon spin rotation/relaxation experiments (μSR) is currently installed at the D1 area while test experiments are conducted at the D2 area. In this paper, the current performance of the MUSE facility as a whole is reviewed. The facility is still in the early stage of development, including both beamlines and infrastructure for experiments, and plans for upgrading it are discussed together with perspectives for research works envisaged with unprecedented high-intensity muons.

  14. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    SciTech Connect

    Mohayai, Tanaz; Rogers, Chris; Snopok, Pavel

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  15. Feasibility of using backscattered muons for archeological imaging

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.

    2013-12-01

    Use of nondestructive methods to accurately locate and characterize underground objects such as rooms and tools found at archeological sites is ideal to preserve these historic sites. High-energy cosmic ray muons are very sensitive to density variation and have been used to image volcanoes and archeological sites such as the Egyptian and Mayan pyramids. Muons are subatomic particles produced in the upper atmosphere that penetrate the earth's crust up to few kilometers. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale making it useful for this type of work. However, the muon detector must be placed below the target of interest. For imaging volcanoes, the upper portion is imaged when the detector is placed on the earth's surface at the volcano's base. For sites of interest beneath the ground surface, the muon detector would need to be placed below the site in a tunnel or borehole. Placing the detector underground can be costly and may disturb the historical site. We will assess the feasibility of imaging the subsurface using upward traveling muons, to eliminate the current constraint of positioning the detector below the target. This work consists of three parts 1) determine the backscattered flux rate from theory, 2) distinguish backscattered from forward scattered muons at the detector, and 3) validate the theoretical results with field experimentation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    SciTech Connect

    Radovic, Alexander

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  17. Front End and HFOFO Snake for a Muon Facility

    SciTech Connect

    Neuffer, D.; Alexahin, Y.

    2015-09-01

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and a $\\phi-\\delta E$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $\\mu^+$ and $\\mu^-$ transversely and longitudinally. The status of the design is presented and variations are discussed.

  18. Muon multiplicities measured using an underground cosmic-ray array

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Enqvist, T.; Bezrukov, L.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Loo, K.; Lubsandorzhiev, B.; Petkov, V.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2016-05-01

    EMMA (Experiment with Multi-Muon Array) is an underground detector array designed for cosmic-ray composition studies around the knee energy (or ~ 1 — 10 PeV). It operates at the shallow depth in the Pyhasalmi mine, Finland. The array consists of eleven independent detector stations ~ 15 m2 each. Currently seven stations are connected to the DAQ and the rest will be connected within the next few months. EMMA will determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons event by event. The preliminary estimates concerning its performance together with an example of measured muon multiplicities are presented.

  19. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    SciTech Connect

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.; Pearson, C. E.; Qian, X.; Theman, H.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  20. The muon content of gamma-ray showers

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered.

  1. Range fluctuations of high energy muons passing through matter

    NASA Technical Reports Server (NTRS)

    Minorikawa, Y.; Mitsui, K.

    1985-01-01

    The information about energy spectrum of sea level muons at high energies beyond magnetic spectrographs can be obtained from the underground intensity measurements if the fluctuations problems are solved. The correction factor R for the range fluctuations of high energy muons were calculated by analytical method of Zatsepin, where most probable energy loss parameter are used. It is shown that by using the R at great depth together with the slope, lambda, of the vertical depth-intensity (D-I) curve in the form of exp(-t/lambda), the spectral index, gamma, in the power law energy spectrum of muons at sea level can be obtained.

  2. Efficiency Studies for the new Muon Telescope Detector at STAR

    NASA Astrophysics Data System (ADS)

    Carson, Hannah; STAR Collaboration

    2013-10-01

    The Muon Telescope Detector (MTD) is a new detector subsystem in STAR at the Relativistic Heavy Ion Collider (RHIC). The MTD will contribute to studies of the matter being created in heavy-ion collisions by allowing measurements of the J/Psi meson and the different Upsilon states over a broad transverse momentum range via the reconstruction of their di-muon decays. Simulations to estimate the efficiency of the MTD for detecting muons were performed. The results of these simulations will be presented.

  3. Helical FOFO Snake for 6D Ionization Cooling of Muons

    SciTech Connect

    Alexahin, Y.

    2010-03-30

    A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside the solenoids and RF cavities between them. An important feature of such a channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4beamline are presented which show that a 200 MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

  4. The muon system of the Daya Bay Reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. E.; Butorov, I.; Cao, G. F.; Cao, J.; Carr, R.; Chan, Y. L.; Chang, J. F.; Chang, L.; Chang, Y.; Chasman, C.; Chen, H. S.; Chen, H. Y.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, Y.; Chen, Y. X.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; Dale, E.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Han, G. H.; Hans, S.; He, M.; He, Q.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. J.; Hu, L. M.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, H. Z.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kebwaro, J. M.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lai, W. H.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. C.; Liu, J. L.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Pearson, C. E.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wilhelmi, J.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, G. H.; Xu, J.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. M.; Zhang, S. H.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.

    2015-02-01

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described.

  5. Overview of the Fermilab Muon g-2 Experiment

    SciTech Connect

    Kim, SeungCheon

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  6. Helical FOFO snake for 6D ionization cooling of muons

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2009-10-01

    A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside solenoids and RF cavities between them. Important feature of such channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4Beamline are presented which show that 200MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

  7. Search for Time-Independent Lorentz Violation using Muon Neutrino to Muon Antineutrino Transitions in MINOS

    SciTech Connect

    Adamson, P.; et al.

    2016-05-10

    Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$\\times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{\\mu\\mu} $ and $(c_{L})^{TT}_{\\tau\\tau}$ at $-8.4\\times10^{-23} < (c_{L})^{TT}_{\\mu\\mu} < 8.0\\times10^{-23}$ and $-8.0\\times10^{-23} < (c_{L})^{TT}_{\\tau\\tau} < 8.4\\times10^{-23}$, and the world's best limits on the $\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}$ and $\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}$ parameters at $|\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}| < 3.3\\times 10^{-23}$ and $|\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}| < 3.3\\times 10^{-23}$, all limits quoted at $3\\sigma$.

  8. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    SciTech Connect

    Bogomilov, M.; et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  9. The muon component in extensive air showers and new p+C data in fixed target experiments

    SciTech Connect

    Meurer, C.; Bluemer, J.; Engel, R.; Haungs, A.; Roth, M.

    2007-03-19

    One of the most promising approaches to determine the energy spectrum and composition of the cosmic rays with energies above 1015 eV is the measurement of the number of electrons and muons produced in extensive air showers (EAS). Therefore simulation of air showers using electromagnetic and hadronic interaction models are necessary. These simulations show uncertainties which come mainly from hadronic interaction models. One aim of this work is to specify the low energy hadronic interactions which are important for the muon production in EAS. Therefore we simulate extensive air showers with a modified version of the simulation package CORSIKA. In particular we investigate in detail the energy and the phase space regions of secondary particle production, which are most important for muon production. This phase space region is covered by fixed target experiments at CERN. In the second part of this work we present preliminary momentum spectra of secondary {pi}+ and {pi}- in p+C collisions at 12 GeV/c measured with the HARP spectrometer at the PS accelerator at CERN. In addition we use the new p+C NA49 data at 158 GeV/c to check the reliability of hadronic interaction models for muon production in EAS. Finally, possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.

  10. Elliptical Muon Helical Cooling Channel Coils

    SciTech Connect

    Kahn, S. A.; Flanagan, G.; Lopes, M. L.; Yonehara, K.

    2013-09-01

    A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoid, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional phase space reduction for muon beams. The most effective approach to implementing the desired magnetic field is a helical solenoid (HS) channel composed of short solenoid coils arranged in a helical pattern. The HS channel along with an external solenoid allows the B$_z$ and B$_{\\phi}$ components along the reference orbit to be set to any desired values. To set dB$_{\\phi}$/dr to the desired value for optimum focusing requires an additional variable to tune. We shall show that using elliptical shaped coils in the HS channel allows the flexibility to achieve the desired dB$_{\\phi}$/dr on the reference orbit without significant change to B$_z$ and B$_{\\phi}$.

  11. The muon g-2 experiment at Fermilab

    SciTech Connect

    Gohn, W.

    2016-11-15

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model prediction of $a_\\mu$. The new measurement will accumulate 21 times those statistics using upgraded detection and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent and ongoing improvements in the evaluation of the QCD contributions to the $a_\\mu$, could provide a 7.5$\\sigma$ discrepancy from the standard model if the current difference between experiment and theory is confirmed, a possible indication of new physics.

  12. First direct observation of muon antineutrino disappearance

    DOE PAGES

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν¯μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν¯μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm¯2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ¯) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν¯μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  13. Intermediate vector bosons in the muon channel

    SciTech Connect

    Smith, D.A.

    1989-12-01

    Description of the W{sup {plus minus}} and Z{sup 0} mass measurement in the muon decay channel, using 4.4 pb{sup {minus}1} of proton-antiproton collision data from the Fermilab Tevatron and CDF. A preliminary result of M{sub w} = 79.9 {plus minus} 0.4 {plus minus} 0.6 GeV/c{sup 2} is presented, and the published values of M{sub z} = 90.9 {plus minus} 0.3 {plus minus} 0.2 GeV/c{sup 2} and {Gamma}{sub z} = 3.8 {plus minus} 1.1 {plus minus} 1.0 GeV/c{sup 2} are described. 8 refs., 5 figs., 6 tabs.

  14. Muon-Induced Neutrons Do Not Explain the DAMA Data

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.

    2015-04-01

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC /MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φnν=1.0 ×10-9 cm-2 s-1 . We predict 3.49 ×10-5 counts /day /kg /keV , which accounts for less than 0.3% of the DAMA signal modulation amplitude.

  15. Pulsed Magnet Arc Designs for Recirculating Linac Muon Accelerators

    SciTech Connect

    K.B. Beard, R.P. Johnson, S.A. Bogacz, G.M. Wang

    2009-05-01

    Recirculating linear accelerators (RLAs) using both pulsed quadrupoles and pulsed dipoles can be used to quickly accelerate muons in the 3 – 2000 GeV range. Estimates on the requirements for the pulsed quadrupoles and dipoles are presented.

  16. Calibration of a digital hadron calorimeter with muons

    SciTech Connect

    Bilki, Burak; Butler, John; Cundiff, Tim; Drake, Gary; Haberichter, William; Hazen, Eric; Hoff, Jim; Holm, Scott; Kreps, Andrew; May, Ed; Mavromanolakis, Georgios; /Fermilab /Iowa U. /Argonne /Boston U. /Argonne, PHY

    2008-02-01

    The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as the active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.

  17. The Determination of the Muon Magnetic Moment from Cosmic Rays

    ERIC Educational Resources Information Center

    Amsler, C.

    1974-01-01

    Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)

  18. Muon-Induced Neutrons Do Not Explain the DAMA Data.

    PubMed

    Klinger, J; Kudryavtsev, V A

    2015-04-17

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC/MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φ(n)(ν)=1.0 × 10(-9)  cm(-2) s(-1). We predict 3.49 × 10(-5)  counts/day/kg/keV, which accounts for less than 0.3% of the DAMA signal modulation amplitude.

  19. Equivalent dose rate by muons to the human body.

    PubMed

    Băcioiu, I

    2011-11-01

    In this paper, the relative sensitivity from different human tissues of the human body, at a ground level, from muon cosmic radiation has been studied. The aim of this paper was to provide information on the equivalent dose rates received from atmospheric muons to human body, at the ground level. The calculated value of the effective dose rate by atmospheric muons plus the radiation levels of the natural annual background radiation dose, at the ground level, in the momentum interval of cosmic ray muon (0.2-120.0 GeV/c) is about 2.106±0.001 mSv/y, which is insignificant in comparison with the values of the doses from the top of the atmosphere.

  20. A novel muon detector for borehole density tomography

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  1. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  2. Cosmic-Ray Muons in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Clem, John Mason

    1990-01-01

    The purpose of this dissertation is to present the SPS (Short Prototype String) muon data and to compare the data with previous measurements and with the current theories of muon energy losses. The experiment with the SPS was an international collaborative effort, whose purpose was to determine the feasibility of reconstructing muon trajectories in the ocean from measurements, with a sparse array of photomultipliers, of the Cerenkov light from the muons. The successful measurement of the angular distributions and vertical fluxes at several ocean depths by reconstructing muon trajectories from the photomultipler signals demonstrates the feasibility of DUMAND (Deep Underwater Muon And Neutrino Detector). DUMAND will be a large array of photomultipliers anchored to the bottom of the ocean and used to detect the resulting Cerenkov light from high energy muons produced by the neutrino charged current interactions. The search for sources of very high energy neutrinos in the universe will be DUMAND's primary goal. This technique for reconstructing the muon has been successfully applied in several previous experiments with much more closely spaced detectors and with sensitive volumes several orders of magnitude smaller than required by DUMAND. Moreover, the backgrounds from bioluminescence and from 40K decay in the ocean present a very different set of problems for this extension of the technique. The results presented here show that this technique remains practical despite these additional problems. The SPS, which was the first stage of DUMAND, was a vertical string of seven Cerenkov detectors tethered to a ship. The detector achieved an average effective area of 322 +/- 64m^2 . The experiment was performed at the DUMAND site. Muons were successfully detected and reconstructed at depths ranging from 2km to 4km at 500m intervals. The average effective area and the associated muon rate at the respective depths give fluxes consistent with the previous measurements at

  3. Muon Production in Relativistic Cosmic-Ray Interactions

    SciTech Connect

    Klein, Spencer

    2009-07-27

    Cosmic-rays with energies up to 3x1020 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is sqrt snn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders.This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (pT) spectra in cosmic-ray air showers fromMACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher pT region where perturbative QCD should apply. With a 1 km2 surface area, the full IceCube detector should observe hundreds of muons/year with pT in the pQCD regime.

  4. Physics beyond the standard model: Focusing on the muon anomaly

    SciTech Connect

    Chavez, Helder; Ferreira, Cristine N.; Helayel-Neto, Jose A.

    2006-08-01

    We present a model based on the implication of an exceptional E{sub 6}-GUT symmetry for the anomalous magnetic moment of the muon. We follow a particular chain of breakings with Higgses in the 78 and 351 representations. We analyze the radiative correction contributions to the muon mass and the effects of the breaking of the so-called Weinberg symmetry. We also estimate the range of values of the parameters of our model.

  5. A VERY FAST RAMPING MUON SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.PALMER,R.B.GARREN,A.A.

    2003-05-12

    A 4600 Hz fast ramping synchrotron is studied as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice. Muon survival is 83%.

  6. Characterization of the atmospheric muon flux in IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  7. The muon-induced neutron indirect detection EXperiment, MINIDEX

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Carissimo, C.; Gooch, C.; Kneißl, R.; Langford, J.; Liu, X.; Majorovits, B.; Palermo, M.; Schulz, O.; Vanhoefer, L.

    2017-04-01

    A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with a GEANT4-based package for two different sets of physics models of relevance for neutron production by muons is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo packages. In addition, the time evolution of the muon-induced signal is not well described by the simulations.

  8. Industrial radiography with cosmic-ray muons: A progress report

    NASA Astrophysics Data System (ADS)

    Gilboy, W. B.; Jenneson, P. M.; Simons, S. J. R.; Stanley, S. J.; Rhodes, D.

    2007-09-01

    Cosmic-ray produced muons arrive at the surface of the earth with enormous energies ranging up to 1012 GeV. There have been sporadic attempts to exploit their extreme penetration through matter to probe the internal structures of very large objects, including an Egyptian pyramid and a volcano but their very low intensity per unit area ( ≈1 cm-2 per min) generally restricts the practicably attainable spatial resolution to large dimensions. Nevertheless the more intense low energy region of the muon spectrum has recently been shown to be capable of detecting high-Z objects with dimensions of the order of 10 cm hidden inside large transport containers in measurement times of minutes. These various developments have encouraged further studies of potential industrial uses of cosmic-ray muons in industrial applications. In order to gain maximum benefit from the low muon flux large area detectors are required and plastic scintillators offer useful advantages in size, cost and simplicity. Scintillator slabs up to 1 m2 square and 76.2 mm thick are undergoing testing for applications in the nuclear industry. The most direct approach employs photomultiplier tubes at each corner to measure the relative sizes of muon induced pulses to determine the location of each muon track passing through the scintillator. The performance of this technique is reported and its imaging potential is assessed.

  9. Prototype Performance of Novel Muon Telescope Detector at STAR

    NASA Astrophysics Data System (ADS)

    Tlusty, David; Ruan, Lijuan

    2008-04-01

    A large area of muon telescope detector is proposed to measure muons of momentum at a few GeV/c at mid-rapidity, allowing for the detection of di-muon pairs from QGP thermal radiation, quarkonia, light vector mesons, possible correlations of quarks and gluons as resonances in QGP, and Drell-Yan production as well as the measurement of heavy flavor hadrons through their semi-leptonic decays into single muons. The R&D research has been carried out for this large area Muon Telescope Detector (MTD). The multi-gap resistive plate chamber technology with large module, long strips and two-end readout (Long-MRPC) was used for this research. The results from cosmic ray and beam test will be presented to address intrinsic timing and spatial resolution for Long-MRPC. Besides, a single prototype of MTD was installed in STAR during the 200 GeV Au+Au run in spring 2007. The detector consists of a long-MRPC layer between two layers of scintillator planes. They are placed outside of the magnet yoke that serves as hadron absorber. We will present results from this prototype run. Muon identification capability, timing and spatial resolution will be reported. We also discuss the implication of these tests on the physics performance and capabilities of full scale detector.

  10. Six Dimensional Bunch Merging for Muon Collider Cooling

    SciTech Connect

    Palmer, R.B.; Fernow, R.C.

    2011-03-28

    A muon collider requires single, intense, muon bunches with small emittances in all six dimensions. It is most efficient to initally phase-rotate the muons into many separate bunches, cool these bunches in six dimensions (6D), and, when cool enough, merge them into single bunches (one of each sign). Previous studies only merged in longitudinal phase space (2D). In this paper we describe merging in all six dimensions (6D). The scheme uses rf for longitudinal merging, and kickers and transports with differing lengths (trombones) for transverse merging. Preliminary simulations, including incorporation in 6D cooling, is described. Muons are efficiently generated by pion decay, but they then have very large emittances. A muon collider requires low emittances, which can be achieved using transverse ionization cooling, combined with emittance exchange using dispersion and shaped absorbers. For efficient capture, muons are first phase-rotated by rf into a train of many bunches. But for high luminosity, we need just one bunch of each sign, so after some initial cooling, these bunches should be merged.

  11. The Effect of Extending the Length of the Coupling Coils in a Muon Ionization Cooling Channel

    NASA Astrophysics Data System (ADS)

    Green, Michael A.

    2008-02-01

    RF cavities are used to re-accelerate muons that have been cooled by absorbers that are in low beta regions of a muon ionization cooling channel. A superconducting coupling magnet (or magnets) are around or among the RF cavities of a muon ionization-cooling channel. The field from the magnet guides the muons so that they are kept within the iris of the RF cavities that are used to accelerate the muons. This report compares the use of a single short coupling magnet with an extended coupling magnet that has one or more superconducting coils as part of a muon-cooling channel of the same design as the muon ionization cooling experiment (MICE). Whether the superconducting magnet is short and thick or long and this affects the magnet stored energy and the peak field in the winding. The magnetic field distribution also affects is the muon beam optics in the cooling cell of a muon cooling channel.

  12. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  13. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    SciTech Connect

    Yeh, M.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Zhang, B. J.

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.

  14. EPIC Muon Cooling Simulations using COSY INFINITY

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanasev, R.P. Johnson, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Next gen­er­a­tion mag­net sys­tems need­ed for cool­ing chan­nels in both neu­tri­no fac­to­ries and muon col­lid­ers will be in­no­va­tive and com­pli­cat­ed. De­sign­ing, sim­u­lat­ing and op­ti­miz­ing these sys­tems is a chal­lenge. Using COSY IN­FIN­I­TY, a dif­fer­en­tial al­ge­bra-based code, to sim­u­late com­pli­cat­ed el­e­ments can allow the com­pu­ta­tion and cor­rec­tion of a va­ri­ety of high­er order ef­fects, such as spher­i­cal and chro­mat­ic aber­ra­tions, that are dif­fi­cult to ad­dress with other sim­u­la­tion tools. As an ex­am­ple, a he­li­cal dipole mag­net has been im­ple­ment­ed and sim­u­lat­ed, and the per­for­mance of an epicyclic para­met­ric ion­iza­tion cool­ing sys­tem for muons is stud­ied and com­pared to sim­u­la­tions made using G4Beam­line, a GEAN­T4 toolk­it.

  15. ON THE SPIN CORRELATIONS OF MUONS AND TAU LEPTONS GENERATED IN THE ANNIHILATION PROCESSES e+e- → μ+μ-, e+e- → τ+τ-

    NASA Astrophysics Data System (ADS)

    Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.

    2014-12-01

    Using the technique of helicity amplitudes, the electromagnetic process e+e- → μ+μ-(τ+τ-) is theoretically studied in the one-photon approximation. The structure of the triplet states of the final (μ+μ-) system is analyzed. It is shown that in the case of unpolarized electron and positron the final muons are also unpolarized, but their spins are strongly correlated. Explicit expressions for the components of the correlation tensor of the (μ+μ-) system are derived. The formula for the angular correlation at the decays of final muons μ+ and μ- is obtained. It is demonstrated that spin correlations of muons in the considered process have the purely quantum character, since one of the Bell-type incoherence inequalities for the correlation tensor components is always violated.

  16. Muon sticking factor in muon catalyzed fusion and the other aspect of this fusion process

    SciTech Connect

    Takahashi, H.

    1986-01-01

    The effect of resonance nuclear fusion reaction on the initial muon sticking factor is formulated. The analysis shows that it is very sensitive to the resonance parameter, and the factor calculated, using the molecular wave function obtained by the Diffusion Monte Carlo method, is 0.1 +- 0.01 for the presently evaluated resonance parameter. The analysis of the multistep excitation effect on the reactivation factor shows that the effect is not so large, and the analysis of muonic x-ray spectra of ..mu../sup 3/He from P..mu..d and d..mu..d fusions is in good agreement with the values measured by Bossy et al.

  17. Calibrating Momentum Measurements Of The CMS Detector Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Zaleski, Shawn

    2017-01-01

    We report results on the muon momentum calibration using cosmic-ray data taken by the Compact Muon Solenoid (CMS) experiment during run 2 at the Large Hadron Collider (LHC). The momentum scale of high-pT muons is sensitive to a possible bias on the curvature coming from the alignment of the muon system. Cosmic rays are a source of high-pT muons that can be used to measure the momentum scale of muons with pT > 200 GeV. The present talk describes the method used to measure the momentum scale from cosmic data and the measurement using the 2016 cosmic data is presented.

  18. Muon Energy Calibration of the MINOS Detectors

    SciTech Connect

    Miyagawa, Paul S.

    2004-01-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.

  19. Muon capture on deuteron and He3

    NASA Astrophysics Data System (ADS)

    Marcucci, L. E.; Piarulli, M.; Viviani, M.; Girlanda, L.; Kievsky, A.; Rosati, S.; Schiavilla, R.

    2011-01-01

    The muon-capture reactions H2(μ-,νμ)nn and He3(μ-,νμ)H3 are studied with conventional or chiral realistic potentials and consistent weak currents. The initial and final A=2 and A=3 nuclear wave functions are obtained from the Argonne v18 or chiral next-to-next-to-next-to leading order (N3LO) two-nucleon potential, in combination with, respectively, the Urbana IX or chiral next-to-next-to leading order (N2LO) three-nucleon potential in the case of A=3. The weak current consists of polar- and axial-vector components. The former are related to the isovector piece of the electromagnetic current via the conserved-vector-current hypothesis. These and the axial currents are derived either in a meson-exchange or in a chiral effective field theory (χEFT) framework. There is one parameter (either the N-to-Δ axial coupling constant in the meson-exchange model, or the strength of a contact term in the χEFT model) that is fixed by reproducing the Gamow-Teller matrix element in tritium β decay. The model dependence relative to the adopted interactions and currents (and cutoff sensitivity in the χEFT currents) is weak, resulting in total rates of 392.0±2.3 s-1 for A=2, and 1484±13 s-1 for A=3, where the spread accounts for this model dependence.

  20. Muon Acceleration-RLA and FFAG

    SciTech Connect

    Bogacz, S. Alex

    2011-10-06

    Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittace dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

  1. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  2. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  3. Leak Rate Test for a Fiber Beam Monitor Contained in a Vacuum for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    O'Mara, Bridget; Lane, Noel; Gross, Eisen; Gray, Frederick; Muon g-2 Collaboration

    2014-09-01

    The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions and have determined the leak rate of the FBMs within the constructed vacuum apparatus. This leak rate will be reported, along with preliminary results from tests of the light output from the scintillating fibers. The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions

  4. A Proposal for the Upgrade of the Muon Drift Tubes Trigger for the CMS Experiment at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Zotto, Pierluigi; Montecassiano, Fabio

    2016-11-01

    A major upgrade of the readout and trigger electronics of the CMS Drift Tubes muon detector is foreseen in order to allow its efficient operation at the High Luminosity LHC. A proposal for a new L1 Trigger Primitives Generator for this detector is presented, featuring an algorithm operating on the time of charge collection measurements provided by the asynchronous readout of the new TDC system being developed. The algorithm is being designed around the implementation in state-of-the-art FPGA devices of the original development of a Compact Hough Transform (CHT) algorithm combined with a Majority Mean-Timer, to identify both the parent bunch crossing and the muon track parameters. The current state of the design is presented along with the performance requirements, focusing on the future developments.

  5. Quality Control of the Large-area GEM detectors at Production Sites for the CMS Muon Endcap Upgrade

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; CMS Collaboration

    2017-01-01

    GEM (Gas Electron Multipliers) detectors will be installed in the high-eta region of the CMS muon system by the year 2019. With precise tracking and fast trigger information, these detectors will significantly improve the CMS muon triggering after the second long shutdown of the LHC. There are six sites, external to CERN, where at total of 160 1-meter long GEM detectors will be produced. We present the detector construction and discuss the critical quality control (QC) procedures implemented for chamber commissioning. Some of the most important QCs discussed are: current leakage tests, gas leak tests, gain measurements, high voltage test and response uniformity test. We discuss the criteria that are used to accept or reject a GEM detector based on the QC results. The production and QC status will be presented as well.

  6. Can muon-induced backgrounds explain the DAMA data?

    NASA Astrophysics Data System (ADS)

    Klinger, Joel; Kudryavtsev, Vitaly A.

    2016-05-01

    We present an accurate simulation of the muon-induced background in the DAMA/LIBRA experiment. Muon sampling underground has been performed using the MUSIC/MUSUN codes and subsequent interactions in the rock around the DAMA/LIBRA detector cavern and the experimental setup including shielding, have been simulated with GEANT4.9.6. In total we simulate the equivalent of 20 years of muon data. We have calculated the total muon-induced neutron flux in the DAMA/LIBRA detector cavern as Φμ n = 1.0 × 10-9 cm-2s-1, which is consistent with other simulations. After selecting events which satisfy the DAMA/LIBRA signal criteria, our simulation predicts 3.49 × 10-5 cpd/kg/keV which accounts for less than 0.3% of the DAMA/LIBRA modulation amplitude. We conclude from our work that muon-induced backgrounds are unable to contribute to the observed signal modulation.

  7. Precision muon tracking detectors for high-energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Gadow, Ph.; Kortner, O.; Kroha, H.; Richter, R.

    2017-02-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimised for mass production and provide sense wire positioning accuracy of better than 10 μm. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and γ-rays, by an order of magnitude, which is sufficient for almost the whole of the muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  8. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  9. Next generation muon g-2 experiment at FNAL

    NASA Astrophysics Data System (ADS)

    Fertl, Martin

    2016-12-01

    The precise measurement of the muon anomalous magnetic moment a μ has stimulated much theoretical and experimental efforts over more than six decades. The last experiment at Brookhaven National Laboratory, Upton, NY, USA obtained a value more than three standard deviations larger than predicted by the Standard Model of particle physics, and is one of the strongest hints for physics beyond the Standard Model. A new experiment at Fermi National Accelerator Laboratory, Batavia, IL, USA to measure a μ with fourfold increased precision to 140 ppb is currently in its commissioning phase. While the new experiment will reuse the 1.45 T superconducting muon storage ring which was shipped from Brookhaven National Laboratory, most of the other instrumentation of the experiment will be new. This will allow the experiment to make efficient use of the significantly higher number of muons available at the new muon campus. We discuss the general status of the experiment and in particular focus on the improved tools available to homogenize and determine the magnetic field in the muon storage ring.

  10. Muon tomography in the Mont Terri underground rock laboratory

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Gibert, D.; Marteau, J.; Carlus, B.; Nussbaum, C.

    2012-04-01

    The Mont Terri underground rock laboratory (Switzerland) was excavated in a Mesozoic shale formation constituted by Opalinus clay. This impermeable formation presents suitable properties for hosting repository sites of radioactive waste. A muon telescope has been placed in this laboratory in October 2009 to establish the feasibility of the muon tomography and to test the sensor performance in a calm environment, where we are protected from atmospheric noisy particles. However, the presence of radon in the gallery as well as charged particles issued from the decay of gamma rays may create a background noise. This noise shift and smooths the signal inducing an under estimation of the rock density. The uncorrelated background has been measured by placing the planes of detection in anti-coincidence. This estimation is preponderant and has to be combined to the theoretical feasibility evaluation to determine the best experimental set-up to observe muon flux fluctuations due to density variations. The muon densitometry experience is here exposed with the estimation of its feasibility. The data acquired from different locations inside the underground laboratory are presented. They are compared to two models representing the layer above the laboratory corresponding to a minimum and a maximum muon flux expectation depending on the values of the rock density.

  11. Final Muon Emittance Exchange in Vacuum for a Collider

    SciTech Connect

    Summers, Don; Acosta, John; Cremaldi, Lucien; Hart, Terry; Oliveros, Sandra; Perera, Lalith; Wu, Wanwei; Neuffer, David

    2015-05-07

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low β region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 μs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

  12. Elena Guardincerri: Tracking muons to reduce nuclear threats and help preserve architectural treasures

    SciTech Connect

    Del Mauro, Diana; Guardincerri, Elena

    2016-02-29

    When Elena Guardincerri was a physics PhD student at the University of Genova, she considered muons a nuisance. She built muon detectors to snare these secondary cosmic rays, which were interfering with her experiments to study elusive neutrinos.

  13. Charge Separation for Muon Collider Cooling

    SciTech Connect

    Palmer, R.B.; Fernow; R.C.

    2011-03-28

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  14. Scintillator Based Tracking Detectors for a Muon System at Future Colliders

    NASA Astrophysics Data System (ADS)

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja; Ujic, Predrag

    2017-01-01

    Extruded scintilator +WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Light yield of up to 140 photoelectrons per muon per strip has been observed, as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm. With such excellent performance parameters this detector is natural option for large scale future colliders muon systems.

  15. Modelling of cosmic-ray muon exposure in building's interior.

    PubMed

    Fujitaka, K; Abe, S

    1984-06-01

    Physical parameters on the exposure indoors from cosmic ray muons were determined in order to undertake computer simulations. The hitherto known information was compiled, and the unknowns were newly calculated. Assumptions and approximations required in making a practical model were also described. The stopping power and the range of muons in a normal concrete as well as the air were calculated for the energy up to hundreds GeV. The consistency of those results with ready-made tables was found satisfactory although the comparisons were available only in the low energy tail. The scattering effect of cosmic ray muons in building's interior was examined numerically through very simple model calculations. It was revealed that the overall scattering effect would be ignored unless very small variations are wanted. The iron fraction in a reinforced concrete as well as the density of the concrete was also shown to be an ineffective factor.

  16. The Reconstruction Software for the Muon Ionization Cooling Experiment Trackers

    SciTech Connect

    Dobbs, A.; Long, K.; Santos, E.; Adey, D.; Hanlet, P.; Heidt, C.

    2014-01-01

    The international Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the principle of muon ionization cooling, for application to a future Neutrino Factory or Muon Collider. In order to measure the change in emittance, MICE is equipped with a pair of high precision scintillating fibre trackers. The trackers are required to measure a 10% change in emittance to 1% accuracy (giving an overall precision of 0.1%). This paper describes the tracker reconstruction software, as a part of the overall MICE software framework, MAUS. Channel clustering is described, proceeding to the formation of space-points, which are then associated with particle tracks using pattern recognition algorithms. Finally a full custom Kalman track fit is performed, to account for energy loss and multiple scattering. Exemplar results are shown for Monte Carlo data.

  17. ATLAS Muon Identification and Reconstruction Performance in 2016

    NASA Astrophysics Data System (ADS)

    Bergsten, Laura; Atlas Collaboration

    2017-01-01

    This talk aims to describe the ATLAS muon identification and reconstruction performance in 2016. Reconstruction and isolation efficiencies as well as the transverse momentum scale and transverse momentum resolution are measured from LHC proton-proton collision data recorded by ATLAS in 2016 at a center-of-mass-energy of 13 TeV. The measurements are performed by studying the abundantly produced and well known J / Ψ and Z-boson resonances decaying into two oppositely-charged muons. Muon momenta ranging from 5 to a few hundred GeV and covering the pseudo-rapidity range | η | < 2 . 5 are found to be in good agreement with tuned detector simulations. Furthermore, the performance of the detector for data collected in 2016 is compared to the performance for data collected during 2015.

  18. The Muon Cooling RF R&D Program

    SciTech Connect

    Y. Torun; A. Bross; D. Li; A. Moretti; J. Norem; Z. Qian; R. A. Rimmer; M. S. Zisman

    2006-03-01

    Cooling muon beams in flight requires absorbers to reduce the muon momentum, accelerating fields to replace the lost momentum in the longitudinal direction, and static solenoidal magnetic fields to focus the muon beams. The process is most efficient if both the magnetic fields and accelerating fields are high and the rf frequency is low. We have conducted tests to determine the operating envelope of high-gradient accelerating cavities in strong static magnetic fields. These studies have already produced useful information on dark currents, magnetic fields and breakdown in cavities. In addition to continuing our program at 805 MHz, we are starting to test a 201 MHz cavity and are planning to look at a variety of appropriate geometries and materials. In parallel with these activities, we are supporting R&D on models and surface structure.

  19. Global Muon Detector Network Used for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Rockenbach, M.; Dal Lago, A.; Schuch, N. J.; Munakata, K.; Kuwabara, T.; Oliveira, A. G.; Echer, E.; Braga, C. R.; Mendonça, R. R. S.; Kato, C.; Kozai, M.; Tokumaru, M.; Bieber, J. W.; Evenson, P.; Duldig, M. L.; Humble, J. E.; Al Jassar, H. K.; Sharma, M. M.; Sabbah, I.

    2014-08-01

    In this work, we summarize the development and current status of the Global Muon Detector Network (GMDN). The GMDN started in 1992 with only two muon detectors. It has consisted of four detectors since the Kuwait-city muon hodoscope detector was installed in March 2006. The present network has a total of 60 directional channels with an improved coverage of the sunward Interplanetary Magnetic Field (IMF) orientation, making it possible to continuously monitor cosmic ray precursors of geomagnetic storms. The data analysis methods developed also permit precise calculation of the three dimensional cosmic ray anisotropy on an hourly basis free from the atmospheric temperature effect and analysis of the cosmic ray precursors free from the diurnal anisotropy of the cosmic ray intensity.

  20. Measurement of Ground Level Muon Charge Ratio Using ECRS Simulation

    NASA Astrophysics Data System (ADS)

    Sanjeewa, Hakmana; He, Xiaochun; Cleven, Christopher

    2006-11-01

    The Muon charge ratio at the Earth's surface has been studied with a Geant4 based simulation for two different geomagnetic locations: Atlanta and Lynn Lake. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake, At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 ± 0.05 (without geomagnetic field), 1.12 ± 0.05 (with geomagnetic field) for Atlanta and 1.22 ± 0.04 (with geomagnetic field) for Lynn Lake. These types of studies are very important for analyzing secondary cosmic ray muon flux distribution at Earth's surface and can be used to evaluate the parameter of atmospheric neutrino oscillations.

  1. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect

    Bogdanova, L. N.; Bom, V. R.; Demin, A. M.; Demin, D. L.; Eijk, C. W. E. van; Filchagin, S. V.; Filchenkov, V. V.; Grafov, N. N. Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Kuryakin, A. V.; Medved', S. V.; Musyaev, R. K.; Rudenko, A. I.; Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A.; Yukhimchuk, S. A.; Zinov, V. G.

    2009-02-15

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  2. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect

    Zisman, Michael S

    2009-04-29

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  3. Improvements to the LC Muon tracking and identification software

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.

    2005-03-01

    This note summarizes the evolution of the Muon-ID package originally written by R. Markeloff at NIU. The original method used a helical swimmer to extrapolate the tracks from the interaction point and to collect hits in all sub-detectors: the electromagnetic and hadronic calorimeters and muon detector. The package was modified to replace the swimmer by a stepper which does account for both the effects of the magnetic field and for the losses by ionization in the material encountered by the particle. The modified package shows a substantial improvement in the efficiency of muon identification. Further improvement should be reached by accounting for stochastic processes via the utilization of a Kalman filter.

  4. Light Higgs bosons and muon g - 2 in THDM

    NASA Astrophysics Data System (ADS)

    Niş, Büşra; ćiçi, Ali; Ün, Cem Salih; Kirca, Zerrin

    2017-02-01

    As well as having a significant impact on models beyond the Standard Model, the Higgs boson discovery has opened a new era in both experimental and phenomenological searches. For instance, observed anomalies in Higgs decays into two photons and four leptons and muon anomalous magnetic moment (muon g - 2) may imply more Higgs-like scalars. In this work, we study Two Higgs Doublet Model-TypeIII, in which one Higgs doublet develops a zero vacuum expectation value. we find the mass spectrum include five Higgs bosons each of which is lighter than about 350 GeV. We consider the contributions to muon g - 2 from these light extra Higgs bosons, and we find that the discrepancy between the SM and the experimental measurements can be resolved if mH, mA, mH± ≲ 150 GeV.

  5. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    NASA Astrophysics Data System (ADS)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  6. Improvement of the CMS Muon Reconstruction Performance due to Precise Track-based Alignment

    NASA Astrophysics Data System (ADS)

    Brown, Malachi

    2017-01-01

    The performance of the CMS muon system depends on a precise knowledge of the positions and orientations of all its elements. The muon tracks reconstructed in proton-proton collision data at the LHC are used to align the individual muon detectors with respect to the inner silicon tracker. The alignment procedure measures these positions and provides geometries of the muon system that must be validated to ensure the performance of the detectors. In this report we present a set of sophisticated validation tools, developed to test the accuracy of a given muon system geometry with data from collisions. The validation procedure uses events with pairs of muons from Z-boson decays and events with very high pT muons, in order to quantify the reconstruction performance of the muon system for a given geometry. Kinematic properties of muons reconstructed using information from the muon system are compared to the properties of muons built using information from the tracker. We demonstrate improvements of the muon reconstruction performance after track-based alignment procedures are performed with 2016 data.

  7. Underground muon counters as a tool for composition analyses

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.; Etchegoyen, A.; Medina-Tanco, G.; Allekotte, I.; Gómez Berisso, M.; Medina, M. C.

    2008-07-01

    The transition energy from galactic to extragalactic cosmic ray sources is still uncertain, but it should be associated either with the region of the spectrum known as the second knee or with the ankle. The baseline design of the Pierre Auger Observatory was optimized for the highest energies. The surface array is fully efficient above 3 × 10 18 eV and, even if the hybrid mode can extend this range below 10 18 eV, the second knee and a considerable portion of the wide ankle structure are left outside its operating range. Therefore, in order to encompass these spectral features and gain further insight into the cosmic ray composition variation along the transition region, enhancements to the surface and fluorescence components of the baseline design are being implemented that will lower the full efficiency regime of the Observatory down to ˜10 17 eV. The surface enhancements consist of a graded infilled area of standard Auger water Cherenkov detectors deployed in two triangular grids of 433 m and 750 m of spacing. Each surface station inside this area will have an associated muon counter detector. The fluorescence enhancement, on the other hand, consists of three additional fluorescence telescopes with higher elevation angle (30°-58°) than the ones in operation at present. The aim of this paper is threefold. We study the effect of the segmentation of the muon counters and find an analytical expression to correct for the under counting due to muon pile-up. We also present a detailed method to reconstruct the muon lateral distribution function for the 750 m spacing array. Finally, we study the mass discrimination potential of a new parameter, the number of muons at 600 m from the shower axis, obtained by fitting the muon data with the above mentioned reconstruction method.

  8. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    SciTech Connect

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  9. R&D Proposal for the National Muon Acccelerator Program

    SciTech Connect

    Not Available

    2010-02-01

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  10. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  11. Experimental results on the atmospheric muon charge ratio

    NASA Astrophysics Data System (ADS)

    Mauri, N.

    2016-07-01

    The atmospheric muon charge ratio, defined as the number of positive over negative charged muons, is a highly informative observable both for cosmic rays and particle physics. It allows studying the features of high-energy hadronic interactions in the forward region and the composition of primary cosmic rays. In this review results from underground experiments measuring the charge ratio around 1 TeV are discussed. The measurements in the TeV energy region constrain the associated kaon production, which is particularly important e.g. for the calculation of the atmospheric neutrino flux.

  12. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multi-purpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 4{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February - May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run.

  13. Muon collider//neutrino factory: status and prospects

    NASA Astrophysics Data System (ADS)

    Kaplan, Daniel M.; Neutrino Factory Collaboration; Muon Collider Collaboration

    2000-10-01

    During the 1990s an international collaboration has been studying the possibility of constructing and operating a high-energy high-luminosity μ +μ - collider. Such a machine could be the approach of choice to extend our discovery reach beyond that of the LHC. More recently, a growing collaboration is exploring the potential of a stored-muon-beam "neutrino factory" to elucidate neutrino oscillations. A neutrino factory could be an attractive stepping-stone to a muon collider. Its construction, possibly feasible within the coming decade, could have substantial impact on neutrino physics.

  14. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect

    Lee, Hye-Sung

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  15. NEW RESULTS FROM THE MUON G - 2 EXPERIMENT.

    SciTech Connect

    SICHTERMANN,E.P.BENNETT,G.W.BOUSQUET,B.BROWN,H.N.BUNCE,G.CAREY,R.M.ET ALMUON G - 2 COLLABORATION

    2002-09-09

    The Muon g-2 collaboration has measured the anomalous magnetic g value, a = (g-2)/2, of the positive muon with an unprecedented uncertainty of O.7parts per million. The result a{sub {mu}{sup +}}(expt) = 11 659 204(7)(5) x 10{sup -10}, based on data collected in the year 2000 at Brookhaven National Laboratory, is in good agreement with the preceding data on a{sub {mu}{sup +}} and a{sub {mu}{sup -}}. The measurement tests standard model theory, which at the level of the current experimental uncertainty involves quantum electrodynamics, quantum chromodynamics, and electroweak interaction in a significant way.

  16. Some thoughts on the muon catalyzed fusion reactor

    SciTech Connect

    Takahashi, H.

    1986-01-01

    The design of the muon catalyzed fusion reactor is discussed. Some of the engineering challenges and critical research areas such as ..pi../sup -/ meson transport, beam entry single crystal window and coherent x-ray for stripping the muon from ..cap alpha.. particle, are considered. In order to reduce the tritium inventory and neutron wall loading, use of the laser technique for manipulating the d-t mixture is considered. The heterogeneous d-t mixture using the droplet or jet is discussed. 39 refs., 6 figs.

  17. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  18. Investigating the Anisotropic Scintillation Response in Anthracene through Neutron, Gamma-Ray, and Muon Measurements

    NASA Astrophysics Data System (ADS)

    Schuster, Patricia; Brubaker, Erik

    2016-06-01

    This paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, Cs-137 gamma rays, and, for the first time, cosmic ray muons. The neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth of that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. This set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, which are not well understood.

  19. Investigating the anisotropic scintillation response in anthracene through neutron, gamma-ray, and muon measurements

    SciTech Connect

    Schuster, Patricia; Brubaker, Erik

    2016-05-05

    Our paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, 137Cs gamma rays, and, for the first time, cosmic ray muons. Moreover, the neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth of that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. Our set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, which are not well understood.

  20. Investigating the anisotropic scintillation response in anthracene through neutron, gamma-ray, and muon measurements

    DOE PAGES

    Schuster, Patricia; Brubaker, Erik

    2016-05-05

    Our paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline anthracene to incident DT neutrons, DD neutrons, 137Cs gamma rays, and, for the first time, cosmic ray muons. Moreover, the neutron measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature. In similar measurements using incident gamma rays, no directional effect is evident, and any anisotropy with respect to the electron recoil direction is constrained to have a magnitude of less than a tenth ofmore » that present in the proton recoil events. Cosmic muons are measured at two directions, and no anisotropy is observed. Our set of observations indicates that high dE/dx is necessary for an anisotropy to be present for a given type of scintillation event, which in turn could be used to discriminate among different hypotheses for the underlying causes of the anisotropy, which are not well understood.« less

  1. Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation.

    PubMed

    Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre

    2015-08-19

    Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high-temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T(3) dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s-wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s-wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry.

  2. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    SciTech Connect

    Bowring, D. L.; DeMello, A. J.; Lambert, A. R.; Li, D.; Virostek, S.; Zisman, M.