ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
Connecting and Using Multiple Representations
ERIC Educational Resources Information Center
Nielsen, Maria E.; Bostic, Jonathan D.
2018-01-01
"Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014) emphasizes eight teaching practices for effective mathematics teaching, one of which is to "use and connect multiple representations" (NCTM 2014, p. 24). An action that describes how teachers might promote this practice is to "allocate substantial…
Learning by Understanding: The Role of Multiple Representations in Learning Algebra.
ERIC Educational Resources Information Center
Brenner, Mary E.; Mayer, Richard E.; Moseley, Bryan; Brar, Theresa; Duran, Richard; Reed, Barbara Smith; Webb, David
1997-01-01
In posttest results, 76 prealgebra students who learned about functions in a unit emphasizing multiple formats, anchoring learning in a thematic context, and problem solving in cooperative groups were more successful at problem solving and problem representation than were 56 comparison students conventionally taught. Similar results were found for…
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Hu, Shih-Shin
2013-01-01
Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…
ERIC Educational Resources Information Center
Flores, Margaret M.; Hinton, Vanessa; Strozier, Shaunita D.
2014-01-01
Based on Common Core Standards (2010), mathematics interventions should emphasize conceptual understanding of numbers and operations as well as fluency. For students at risk for failure, the concrete-representational-abstract (CRA) sequence and the Strategic Instruction Model (SIM) have been shown effective in teaching computation with an emphasis…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro
2009-01-01
An alternative program of instruction was implemented with 33 high-achieving Grade 9 students (15-16 years old) in Singapore that overtly focused on the use of macroscopic, submicroscopic, and symbolic representations to describe and explain the changes that occurred during the burning of metals, reactions of dilute acids, ionic precipitations,…
NASA Astrophysics Data System (ADS)
Madden, Sean Patrick
This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most difficult type of representation for students to interpret. Most subjects scored higher on representational competence when engaged in creating graphs and sketches than when evaluating provided representations. This study suggests that students may benefit from an instruction that emphasizes heuristic use of multiple representations in chemistry problem solving. An instructional strategy that makes use of a variety of representations and requires students to create their own representations may have measurable benefits to chemistry students.
ERIC Educational Resources Information Center
Flores, Margaret M.; Franklin, Toni M.
2014-01-01
The Common Core State Standards (2010) involve the demonstration of conceptual knowledge of numbers and operations. For students who struggle with mathematics and have not responded to instruction, it is important that interventions emphasize this understanding. In order to address conceptual understanding of numbers and operations in meeting the…
Exploring multivariate representations of indices along linear geographic features
NASA Astrophysics Data System (ADS)
Bleisch, Susanne; Hollenstein, Daria
2018-05-01
A study of the walkability of a Swiss town required finding suitable representations of multivariate geographical da-ta. The goal was to represent multiple indices of walkability concurrently and visualizing the data along the street network it relates to. Different indices of pedestrian friendliness were assessed for short street sections and then mapped to an overlaid grid. Basic and composite glyphs were designed using square- or triangle-areas to display one to four index values concurrently within the grid structure. Color was used to indicate different indices. Implement-ing visualizations for different combinations of index sets, we find that single values can be emphasized or de-emphasized by selecting the color scheme accordingly and that different color selections either allow perceiving sin-gle values or overall trends over the evaluated area. Values for up to four indices can be displayed in combination within the resulting geovisualizations and the underlying gridded road network references the data to its real world locations.
Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry
NASA Astrophysics Data System (ADS)
Daubenmire, Paul L.
Much like a practiced linguist, expert chemists utilize the power and elegance of chemical symbols to understand what is happening at the atomic level and to manipulate atoms and molecules to effect an observable change at the macroscopic level. Unfortunately, beginning chemistry is often taught in a way that emphasizes memorizing the symbolic representations of equations and reactions without much opportunity to meaningfully connect the observable macroscopic phenomena with an understanding of the chemistry taking place at the atomic level. The compartmentalized manner of chemistry instruction in most chemistry classrooms further nullifies the efficacy of the triplet relationship to connect between macroscopic observations, symbolic representations, and atomic scale views. If symbolic representations are presented as the goal of instruction, rather than as the means to gain understanding, then students will be impaired in developing a coherent understanding of chemical principles. This dissertation describes the development and implementation of an interview study to examine how undergraduate students interpreted multiple representations of a chemical equilibrium. To establish a baseline of ideas, students first were coached to verbally generate successive representations. They were then cued to think about the chemistry occurring between atoms and ions at the molecular level. Next, an experiment involving a change in states of matter and color was performed which paralleled the symbolic representations. Through self-explanations and verbalizing of conjectures, students were encouraged to explore, interpret, and refine their understanding of the observations related to the chemical symbols presented to them. Finally, with the goal of fostering a deeper understanding of the process of equilibrium, a dynamic visualization of the molecular level was introduced as a tool for helping students connect these multiple representations. This study revealed that one way in which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.
Opposite effects of capacity load and resolution load on distractor processing.
Zhang, Weiwei; Luck, Steven J
2015-02-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.
Opposite Effects of Capacity Load and Resolution Load on Distractor Processing
Zhang, Weiwei; Luck, Steven J.
2014-01-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
Evaluating learning and teaching using the Force Concept Inventory
NASA Astrophysics Data System (ADS)
Zitzewitz, Paul
1997-04-01
Teaching methods used in the calculus-based mechanics course for engineers and scientists (P150) at the University of Michigan-Dearborn were markedly changed in September, 1996. Lectures emphasize active learning with Mazur's ConcepTests, Sokoloff's Interactive Demonstrations, and Van Heuvelen's ALPS Kit worksheets. Students solve context-rich problems using Van Heuvelen's multiple representation format in cooperative groups in discussion sections. Labs were changed to use MBL emphasizing concepts and Experiment Problems to learn lab-based problem solving. Pre- and post-testing of 400 students with the Force Concept Inventory has demonstrated considerable success. The average increase in score has been 35-45methods as defined by Hake. The methods and results will be discussed. Detailed analyses of the FCI results will look at success in teaching specific concepts and the effect of student preparation in mathematics and high school physics.
The Ability of Young Korean Children to Use Spatial Representations
ERIC Educational Resources Information Center
Kim, Minsung; Bednarz, Robert; Kim, Jaeyil
2012-01-01
The National Research Council emphasizes using tools of representation as an essential element of spatial thinking. However, it is debatable at what age the use of spatial representation for spatial thinking skills should begin. This study investigated whether young Korean children possess the potential to understand map-like representation using…
Students’ Representation in Mathematical Word Problem-Solving: Exploring Students’ Self-efficacy
NASA Astrophysics Data System (ADS)
Sahendra, A.; Budiarto, M. T.; Fuad, Y.
2018-01-01
This descriptive qualitative research aims at investigating student represented in mathematical word problem solving based on self-efficacy. The research subjects are two eighth graders at a school in Surabaya with equal mathematical ability consisting of two female students with high and low self-efficacy. The subjects were chosen based on the results of test of mathematical ability, documentation of the result of middle test in even semester of 2016/2017 academic year, and results of questionnaire of mathematics word problem in terms of self-efficacy scale. The selected students were asked to do mathematical word problem solving and be interviewed. The result of this study shows that students with high self-efficacy tend to use multiple representations of sketches and mathematical models, whereas students with low self-efficacy tend to use single representation of sketches or mathematical models only in mathematical word problem-solving. This study emphasizes that teachers should pay attention of student’s representation as a consideration of designing innovative learning in order to increase the self-efficacy of each student to achieve maximum mathematical achievement although it still requires adjustment to the school situation and condition.
Perceptual and Symbolic Representations as a Starting Point of the Acquisition of the Derivative
ERIC Educational Resources Information Center
Hahkioniemi, Markus
2004-01-01
In this paper we study how a student begins to acquire the concept of the derivative, what kind of representations he acquires and how he connects these representations. A teaching period, in which different perceptual and symbolic representation were emphasized, was carried out and task based interviews conducted to five students. The students…
Workshop on Aircraft Surface Representation for Aerodynamic Computation
NASA Technical Reports Server (NTRS)
Gregory, T. J. (Editor); Ashbaugh, J. (Editor)
1980-01-01
Papers and discussions on surface representation and its integration with aerodynamics, computers, graphics, wind tunnel model fabrication, and flow field grid generation are presented. Surface definition is emphasized.
Reaction schemes visualized in network form: the syntheses of strychnine as an example.
Proudfoot, John R
2013-05-24
Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.
ERIC Educational Resources Information Center
Robinson, Ted P.; And Others
Most research efforts concerning minority politics have focused on descriptive representation, which emphasizes (1) counting the minority or female persons in office, and (2) explaining representative levels on the basis of political, social and economic determinants. Descriptive representation, however, is passive and focuses on "being something"…
ERIC Educational Resources Information Center
Portmess, Lisa
2013-01-01
Media representations of massive open online courses (MOOCs) such as those offered by Coursera, edX and Udacity reflect tension and ambiguity in their bold promise of democratized education and global knowledge sharing. An approach to MOOCs that emphasizes the tacit epistemology of such representations suggests a richer account of the ambiguities…
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
Risk and Representation in Research Ethics: The NunatuKavut Experience.
Brunger, Fern; Russell, Todd
2015-10-01
This article examines Canadian policy governing the ethics of research involving Indigenous communities. Academics and community members collaborated in research to examine how best to apply the Tri-Council Policy Statement guidelines in a community with complex and multiple political and cultural jurisdictions. We examined issues of NunatuKavut (Southern Inuit) authority and representation in relation to governance of research in a context where community identity is complex and shifting, and new provincial legislation mandates centralized ethics review. We describe the politics of risk--the ways in which collective identity and research risks are co-constructed. Our case study illustrates that collective consent to research must emphasize shifting identity construction in relation to the particular risks and benefits invoked by the research question, to ascertain with which groups or individuals the negotiation of risk should take place in the first place. We conclude by describing a necessary re-imagining of policy governing research ethics involving Indigenous communities. © The Author(s) 2015.
High-risk multiple myeloma: a multifaceted entity, multiple therapeutic challenges.
Muchtar, Eli; Magen, Hila; Gertz, Morie A
2017-06-01
The term high-risk multiple myeloma is aimed to identify a heterogeneous group of patients who are more likely to progress and die early of their disease. Therefore, recognition of these patients is crucial. With the increase in the number of treatment options, the outcome for high-risk patients has probably improved, although the true extent of this improvement remains unknown, due to both the heterogeneous components of high-risk disease and its under-representation in clinical trials. In this article, we review the definitions of high-risk disease, emphasizing the fact that no single definition can represent the entire high-risk population. In the second part, we review the treatment options available for the management of high-risk myeloma as well as our general approach for high-risk disease. In light of the poor prognosis associated with high-risk myeloma, even in the current era, new approaches for the management of this subset of patients are needed.
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons.
Edwards, Jonathan C W
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a 'consumer' in the street. The arguments presented draw on two principles - the neuron doctrine and the need for a venue for 'presentation' or 'reception' of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include 'null' elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance - since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming 'scenarios' comprising a molecular combination of 'premises' from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to 'occurrent' representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal 'consumer' of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of 'gnostic' cell types.
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons
Edwards, Jonathan C. W.
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right – some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of ‘gnostic’ cell types. PMID:27746760
Representations of Disability in Print News Media in Postsocialist Ukraine
ERIC Educational Resources Information Center
Phillips, Sarah D.
2012-01-01
This article examines the narrative discourses that shape representations of disability in newspapers in postsocialist Ukraine, arguing that narratives about disability are linked to a meta-discourse of "transition" that emphasizes disorder. Further, newspaper coverage prescribes competing and contradictory models of citizenship and…
Connecting Slope, Steepness, and Angles
ERIC Educational Resources Information Center
Nagle, Courtney R.; Moore-Russo, Deborah
2013-01-01
All teachers, especially high school teachers, face the challenge of ensuring that students have opportunities to relate and connect the various representations and notions of mathematics concepts developed over the course of the pre-K-12 mathematics curriculum. NCTM's (2000) Representation Standard emphasizes the importance of students being…
Descriptive Analysis of the Graphic Representations of Science Textbooks
ERIC Educational Resources Information Center
Khine, Myint Swe; Liu, Yang
2017-01-01
Textbooks are primary teaching aids, sources from which students obtain knowledge of science domain. Due to this fact, curriculum developers in the field emphasize the crucial role of analysing the contents of science textbooks in improving science education. Scientific domain knowledge relies on graphical representations for the manifestation of…
Successful Learning with Multiple Graphical Representations and Self-Explanation Prompts
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2015-01-01
Research shows that multiple external representations can significantly enhance students' learning. Most of this research has focused on learning with text and 1 additional graphical representation. However, real instructional materials often employ multiple "graphical" representations (MGRs) in addition to text. An important open…
Intelligence with representation.
Steels, Luc
2003-10-15
Behaviour-based robotics has always been inspired by earlier cybernetics work such as that of W. Grey Walter. It emphasizes that intelligence can be achieved without the kinds of representations common in symbolic AI systems. The paper argues that such representations might indeed not be needed for many aspects of sensory-motor intelligence but become a crucial issue when bootstrapping to higher levels of cognition. It proposes a scenario in the form of evolutionary language games by which embodied agents develop situated grounded representations adapted to their needs and the conventions emerging in the population.
Sensory v.s. Symbolic Aspects of Imagery Processes.
ERIC Educational Resources Information Center
Fleming, Malcolm L.
A central theoretical issue is that of the cognitive status of imagery. Detractors emphasize the merely-sensory aspects while proponents emphasize the also-symbolic aspects. Examined with reference to this issue are the theories of Piaget and Bruner, recent studies of concept learning and representation, and studies related to the Craik and…
ERIC Educational Resources Information Center
White, Jeffry L.; Massiha, G. H.
2015-01-01
As a nation wrestles with the need to train more professionals, persons with disabilities are undereducated and underrepresented in science, technology, engineering, and mathematics (STEM). The following project was proposed to increase representation of students with disabilities in the STEM disciplines. The program emphasizes an integrated…
Schermerhorn, Alice C; Cummings, E Mark; Davies, Patrick T
2008-02-01
The authors examine mutual family influence processes at the level of children's representations of multiple family relationships, as well as the structure of those representations. From a community sample with 3 waves, each spaced 1 year apart, kindergarten-age children (105 boys and 127 girls) completed a story-stem completion task, tapping representations of multiple family relationships. Structural equation modeling with autoregressive controls indicated that representational processes involving different family relationships were interrelated over time, including links between children's representations of marital conflict and reactions to conflict, between representations of security about marital conflict and parent-child relationships, and between representations of security in father-child and mother-child relationships. Mixed support was found for notions of increasing stability in representations during this developmental period. Results are discussed in terms of notions of transactional family dynamics, including family-wide perspectives on mutual influence processes attributable to multiple family relationships.
Modified Stereographic Projections of Point Groups and Diagrams of Their Irreducible Representations
NASA Astrophysics Data System (ADS)
Kettle, Sidney F. A.
1999-05-01
Modified versions of the stereographic projections of the point groups of classical crystallography are presented. They show the consequences of symmetry operations rather than emphasizing the existence of symmetry elements. These projections may be used to give pictures of the irreducible representations of point groups and several examples are given. Such pictures add physical reality to the irreducible representations and facilitate simple lecture demonstration of many important aspects and applications of group theory in chemistry.
Beyond one-size-fits-all: Tailoring diversity approaches to the representation of social groups.
Apfelbaum, Evan P; Stephens, Nicole M; Reagans, Ray E
2016-10-01
When and why do organizational diversity approaches that highlight the importance of social group differences (vs. equality) help stigmatized groups succeed? We theorize that social group members' numerical representation in an organization, compared with the majority group, influences concerns about their distinctiveness, and consequently, whether diversity approaches are effective. We combine laboratory and field methods to evaluate this theory in a professional setting, in which White women are moderately represented and Black individuals are represented in very small numbers. We expect that focusing on differences (vs. equality) will lead to greater performance and persistence among White women, yet less among Black individuals. First, we demonstrate that Black individuals report greater representation-based concerns than White women (Study 1). Next, we observe that tailoring diversity approaches to these concerns yields greater performance and persistence (Studies 2 and 3). We then manipulate social groups' perceived representation and find that highlighting differences (vs. equality) is more effective when groups' representation is moderate, but less effective when groups' representation is very low (Study 4). Finally, we content-code the diversity statements of 151 major U.S. law firms and find that firms that emphasize differences have lower attrition rates among White women, whereas firms that emphasize equality have lower attrition rates among racial minorities (Study 5). (PsycINFO Database Record (c) 2016 APA, all rights reserved).
De Visscher, Alice; Noël, Marie-Pascale; De Smedt, Bert
2016-12-01
Arithmetic facts, in particular multiplication tables, are thought to be stored in long-term memory and to be interference prone. At least two representations underpinning these arithmetic facts have been suggested: a physical representation of the digits and a numerical magnitude representation. We hypothesized that both representations are possible sources of interference that could explain individual differences in multiplication fact performance and/or in strategy use. We investigated the specificity of these interferences on arithmetic fact retrieval and explored the relation between interference and performance on the different arithmetic operations and on general mathematics achievement. Participants were 79 fourth-grade children (M age =9.6 years) who completed a products comparison and a multiplication production task with verbal strategy reports. Performances on a speeded calculation test including the four operations and on a general mathematics achievement test were also collected. Only the interference coming from physical representations was a significant predictor of the performance across multiplications. However, both the magnitude and physical representations were unique predictors of individual differences in multiplication. The frequency of the retrieval strategy across multiplication problems and across individuals was determined only by the physical representation, which therefore is suggested as being responsible for memory storage issues. Interestingly, this impact of physical representation was not observed when predicting performance on subtraction or on general mathematical achievement. In contrast, the impact of the numerical magnitude representation was more general in that it was observed across all arithmetic operations and in general mathematics achievement. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.
2017-09-01
This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).
ERIC Educational Resources Information Center
Moon, Kyunghee
2013-01-01
This study examined how preservice secondary mathematics teachers developed mathematical knowledge for teaching (MKT) around representations and big ideas through mathematics and mathematics education courses. The importance of big ideas and representations in mathematics has been emphasized in national standards as well as in literature. Yet,…
ERIC Educational Resources Information Center
Cannizzaro, Sara; Gholami, Reza
2018-01-01
Using content analysis, this study investigated the coverage of the Trojan Horse news story aiming to ascertain whether its representation by the British press emphasized "Islamist extremism" over "poor school governance". The sample coverage was extracted from five national newspapers and ranged from 9 June (the date of…
NASA Technical Reports Server (NTRS)
Kim, Hakil; Swain, Philip H.
1990-01-01
An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method.
The Case of the Missing Visual Details: Occlusion and Long-Term Visual Memory
ERIC Educational Resources Information Center
Williams, Carrick C.; Burkle, Kyle A.
2017-01-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing…
ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2018-01-01
Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…
ERIC Educational Resources Information Center
Rau, Martina A.
2015-01-01
Multiple representations are ubiquitous in chemistry education. To benefit from multiple representations, students have to make connections between them. However, connection making is a difficult task for students. Prior research shows that supporting connection making enhances students' learning in math and science domains. Most prior research…
Generating Cognitive Dissonance in Student Interviews through Multiple Representations
ERIC Educational Resources Information Center
Linenberger, Kimberly J.; Bretz, Stacey Lowery
2012-01-01
This study explores what students understand about enzyme-substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme-substrate…
Students' Difficulties With Multiple Representations in Introductory Mechanics
ERIC Educational Resources Information Center
Nguyen, Dong-Hai; Rebello, N. Sanjay
2011-01-01
Research in physics education indicates that the use of multiple representations in teaching and learning helps students become better problem-solvers. We report on a study to investigate students' difficulties in solving mechanics problems presented in multiple representations. We conducted teaching/learning interviews with 20 students in a…
Interleaved Practice in Multi-Dimensional Learning Tasks: Which Dimension Should We Interleave?
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2013-01-01
Research shows that multiple representations can enhance student learning. Many curricula use multiple representations across multiple task types. The temporal sequence of representations and task types is likely to impact student learning. Research on contextual interference shows that interleaving learning tasks leads to better learning results…
Role of Multiple Representations in Physics Problem Solving
ERIC Educational Resources Information Center
Maries, Alexandru
2013-01-01
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…
The Array Representation and Primary Children's Understanding and Reasoning in Multiplication
ERIC Educational Resources Information Center
Barmby, Patrick; Harries, Tony; Higgins, Steve; Suggate, Jennifer
2009-01-01
We examine whether the array representation can support children's understanding and reasoning in multiplication. To begin, we define what we mean by understanding and reasoning. We adopt a "representational-reasoning" model of understanding, where understanding is seen as connections being made between mental representations of concepts, with…
ERIC Educational Resources Information Center
Dreher, Anika; Kuntze, Sebastian; Lerman, Stephen
2016-01-01
Dealing with multiple representations and their connections plays a key role for learners to build up conceptual knowledge in the mathematics classroom. Hence, professional knowledge and views of mathematics teachers regarding the use of multiple representations certainly merit attention. In particular, investigating such views of preservice…
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z.
2014-01-01
Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…
Why Johnny can't reengineer health care processes with information technology.
Webster, C; McLinden, S; Begler, K
1995-01-01
Many educational institutions are developing curricula that integrate computer and business knowledge and skills concerning a specific industry, such as banking or health care. We have developed a curriculum that emphasizes, equally, medical, computer, and business management concepts. Along the way we confronted a formidable obstacle, namely the domain specificity of the reference disciplines. Knowledge within each domain is sufficiently different from other domains that it reduces the leverage of building on preexisting knowledge and skills. We review this problem from the point of view of cognitive science (in particular, knowledge representation and machine learning) to suggest strategies for coping with incommensurate domain ontologies. These strategies include reflective judgment, implicit learning, abstraction, generalization, analogy, multiple inheritance, project-orientation, selectivity, goal- and failure-driven learning, and case- and story-based learning.
ERIC Educational Resources Information Center
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2010-01-01
This study investigates students' ability to interpret multiple representations consistently (i.e., representational consistency) in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI), which makes use of nine items from the 1995 version of the Force Concept Inventory…
ERIC Educational Resources Information Center
Tang, Kok-Sing; Delgado, Cesar; Moje, Elizabeth Birr
2014-01-01
This paper presents an integrative framework for analyzing science meaning-making with representations. It integrates the research on multiple representations and multimodal representations by identifying and leveraging the differences in their units of analysis in two dimensions: timescale and compositional grain size. Timescale considers the…
NASA Astrophysics Data System (ADS)
Namdar, Bahadir; Shen, Ji
2016-05-01
Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based study in order to distill the relationship between these two processes. Specifically, we designed a learning unit on nuclear energy and implemented it with a group of preservice middle school teachers. The participants used a web-based knowledge organization platform that incorporated three representational modes: textual, concept map, and pictorial. The participants organized their knowledge on nuclear energy by searching, sorting, clustering information through the use of these representational modes and argued about the nuclear energy issue. We found that the use of multiple representations and argumentation interacted with each other in a complex way. Based on our findings, we argue that the complexity can be unfolded in two aspects: (a) the use of multiple representations mediates argumentation in different forms and for different purposes; (b) the type of argumentation that leads to refinement of the use of multiple representations is often non-mediated and drawn from personal experience.
ERIC Educational Resources Information Center
Luxford, Cynthia J.; Bretz, Stacey Lowery
2014-01-01
Teachers use multiple representations to communicate the concepts of bonding, including Lewis structures, formulas, space-filling models, and 3D manipulatives. As students learn to interpret these multiple representations, they may develop misconceptions that can create problems in further learning of chemistry. Interviews were conducted with 28…
ERIC Educational Resources Information Center
Chen, Qi; Mirman, Daniel
2012-01-01
One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations ("neighbors") have been shown to…
Robson, Barry; Boray, Srinidhi
2016-06-01
Extracting medical knowledge by structured data mining of many medical records and from unstructured data mining of natural language source text on the Internet will become increasingly important for clinical decision support. Output from these sources can be transformed into large numbers of elements of knowledge in a Knowledge Representation Store (KRS), here using the notation and to some extent the algebraic principles of the Q-UEL Web-based universal exchange and inference language described previously, rooted in Dirac notation from quantum mechanics and linguistic theory. In a KRS, semantic structures or statements about the world of interest to medicine are analogous to natural language sentences seen as formed from noun phrases separated by verbs, prepositions and other descriptions of relationships. A convenient method of testing and better curating these elements of knowledge is by having the computer use them to take the test of a multiple choice medical licensing examination. It is a venture which perhaps tells us almost as much about the reasoning of students and examiners as it does about the requirements for Artificial Intelligence as employed in clinical decision making. It emphasizes the role of context and of contextual probabilities as opposed to the more familiar intrinsic probabilities, and of a preliminary form of logic that we call presyllogistic reasoning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hwang, Wonil; Salvendy, Gavriel
2005-06-10
Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.
Cohen, Adam S; Sasaki, Joni Y; German, Tamsin C
2015-03-01
Does theory of mind depend on a capacity to reason about representations generally or on mechanisms selective for the processing of mental state representations? In four experiments, participants reasoned about beliefs (mental representations) and notes (non-mental, linguistic representations), which according to two prominent theories are closely matched representations because both are represented propositionally. Reaction times were faster and accuracies higher when participants endorsed or rejected statements about false beliefs than about false notes (Experiment 1), even when statements emphasized representational format (Experiment 2), which should have favored the activation of representation concepts. Experiments 3 and 4 ruled out a counterhypothesis that differences in task demands were responsible for the advantage in belief processing. These results demonstrate for the first time that understanding of mental and linguistic representations can be dissociated even though both may carry propositional content, supporting the theory that mechanisms governing theory of mind reasoning are narrowly specialized to process mental states, not representations more broadly. Extending this theory, we discuss whether less efficient processing of non-mental representations may be a by-product of mechanisms specialized for processing mental states. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Multiple Representations and Connections with the Sierpinski Triangle
ERIC Educational Resources Information Center
Kirwan, J. Vince; Tobias, Jennifer M.
2014-01-01
To understand multiple representations in algebra, students must be able to describe relationships through a variety of formats, such as graphs, tables, pictures, and equations. NCTM indicates that varied representations are "essential elements in supporting students' understanding of mathematical concepts and relationships" (NCTM…
The Golden Ratio: A Golden Opportunity to Investigate Multiple Representations of a Problem.
ERIC Educational Resources Information Center
Dickey, Edwin M.
1993-01-01
This article explores the multiple representations (verbal, algebraic, graphical, and numerical) that can be used to study the golden ratio. Emphasis is placed on using technology (both calculators and computers) to investigate the algebraic, graphical, and numerical representations. (JAF)
Interparental conflict and adolescents' self-representations: The role of emotional insecurity.
Silva, Carla Sofia; Calheiros, Maria Manuela; Carvalho, Helena
2016-10-01
Adolescents' signs of emotional insecurity in the context of interparental conflict (IC) - emotional reactivity, internal representations (i.e., constructive/destructive; spillover) and behavioral responses (i.e., withdrawal; inhibition; involvement) - were examined as mediators in the relation between IC and adolescents' self-representations. Self-reported measures were filled out by 221 Portuguese adolescents (59.3% girls; Mage = 12.91), attending public elementary and secondary schools. IC predicted less favorable self-representations. Adolescents' emotional reactivity and withdrawal mediated the relation between IC and emotional and physical appearance self-representations, while conflict spillover representations and constructive family representations mediated associations between IC and instrumental self-representations. This study emphasizes the importance of interparental conflict and adolescent emotional insecurity in the construction of their self-representations, having important theoretical and practical implications. It highlights the value of analyzing the specific role of several emotional insecurity dimensions, and informs practitioners' work aimed at promoting constructive conflict and adaptive emotional regulation skills. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Techniques for capturing expert knowledge - An expert systems/hypertext approach
NASA Technical Reports Server (NTRS)
Lafferty, Larry; Taylor, Greg; Schumann, Robin; Evans, Randy; Koller, Albert M., Jr.
1990-01-01
The knowledge-acquisition strategy developed for the Explosive Hazards Classification (EHC) Expert System is described in which expert systems and hypertext are combined, and broad applications are proposed. The EHC expert system is based on rapid prototyping in which primary knowledge acquisition from experts is not emphasized; the explosive hazards technical bulletin, technical guidance, and minimal interviewing are used to develop the knowledge-based system. Hypertext is used to capture the technical information with respect to four issues including procedural, materials, test, and classification issues. The hypertext display allows the integration of multiple knowlege representations such as clarifications or opinions, and thereby allows the performance of a broad range of tasks on a single machine. Among other recommendations, it is suggested that the integration of hypertext and expert systems makes the resulting synergistic system highly efficient.
ERIC Educational Resources Information Center
Kordaki, Maria
2015-01-01
This study focuses on the role of multiple solution tasks (MST) incorporating multiple learning tools and representation systems (MTRS) in encouraging each student to develop multiple perspectives on the learning concepts under study and creativity of thought. Specifically, two types of MST were used, namely tasks that allowed and demanded…
NASA Astrophysics Data System (ADS)
Bakri, F.; Muliyati, D.
2018-05-01
This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.
Apes, skulls and drums: using images to make ethnographic knowledge in imperial Germany.
Petrou, Marissa H
2018-03-01
In this paper, I discuss the development and use of images employed by the Dresden Royal Museum for Zoology, Anthropology and Ethnography to resolve debates about how to use visual representation as a means of making ethnographic knowledge. Through experimentation with techniques of visual representation, the founding director, A.B. Meyer (1840-1911), proposed a historical, non-essentialist approach to understanding racial and cultural difference. Director Meyer's approach was inspired by the new knowledge he had gained through field research in Asia-Pacific as well as new forms of imaging that made highly detailed representations of objects possible. Through a combination of various techniques, he developed new visual methods that emphasized intimate familiarity with variations within any one ethnic group, from skull shape to material ornamentation, as integral to the new disciplines of physical and cultural anthropology. It is well known that photographs were a favoured form of visual documentation among the anthropological and ethnographic sciences at the fin de siècle. However, in the scholarly journals of the Dresden museum, photographs, drawings, tables and etchings were frequently displayed alongside one another. Meyer sought to train the reader's eye through organized arrangements that represented objects from multiple angles and at various levels of magnification. Focusing on chimpanzees, skulls and kettledrums from Asia-Pacific, I track the development of new modes of making and reading images, from zoology and physical anthropology to ethnography, to demonstrate how the museum visually historicized humankind.
Learning with Multiple Representations: Extending Multimedia Learning beyond the Lab
ERIC Educational Resources Information Center
Eilam, Billie; Poyas, Yael
2008-01-01
The present study extended multimedia learning principles beyond the lab to an ecologically valid setting (homework). Eighteen information cards were used to perform three homework tasks. The control group students learned from single representation (SR) cards that presented all information as printed text. The multiple representation (MR) group…
Interleaved Practice with Multiple Representations: Analyses with Knowledge Tracing Based Techniques
ERIC Educational Resources Information Center
Rau, Martina A.; Pardos, Zachary A.
2012-01-01
The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…
The differential view of genotype–phenotype relationships
Orgogozo, Virginie; Morizot, Baptiste; Martin, Arnaud
2015-01-01
An integrative view of diversity and singularity in the living world requires a better understanding of the intricate link between genotypes and phenotypes. Here we re-emphasize the old standpoint that the genotype–phenotype (GP) relationship is best viewed as a connection between two differences, one at the genetic level and one at the phenotypic level. As of today, predominant thinking in biology research is that multiple genes interact with multiple environmental variables (such as abiotic factors, culture, or symbionts) to produce the phenotype. Often, the problem of linking genotypes and phenotypes is framed in terms of genotype and phenotype maps, and such graphical representations implicitly bring us away from the differential view of GP relationships. Here we show that the differential view of GP relationships is a useful explanatory framework in the context of pervasive pleiotropy, epistasis, and environmental effects. In such cases, it is relevant to view GP relationships as differences embedded into differences. Thinking in terms of differences clarifies the comparison between environmental and genetic effects on phenotypes and helps to further understand the connection between genotypes and phenotypes. PMID:26042146
Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation
NASA Astrophysics Data System (ADS)
Beghdadi, Azeddine; Iordache, Răzvan
2006-12-01
This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.
ERIC Educational Resources Information Center
Adadan, Emine
2013-01-01
This study explored two groups of Grade 11 (age 16-17) students' conceptual understandings about aspects of particle theory before, immediately after, and 3 months after instruction with multiple representations (IMR) and instruction with verbal representations (IVR). Data sources included open-ended questionnaires, interviews, and student…
[Citizen constitution and social representations: reflecting about health care models].
da Silva, Sílvio Eder Dias; Ramos, Flávia Regina Souza; Martins, Cleusa Rios; Padilha, Maria Itayra; Vasconcelos, Esleane Vilela
2010-12-01
This article presents a reflection on the meaning of the terms citizenship and health, addressing the Theory of Social Representations as a strategy for implementing and evaluating health care models in Brazil. First, a brief history about the concept of citizenship is presented; then the article addresses the principles of freedom and equality according to Kant; the third section of the article shows that health is as a right of the citizen and a duty of the state. Finally, the Theory of Social Representations is emphasized as a strategy to evaluate and implement the health services provided to citizens by the current health care models in Brazil.
Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.
Peng, Yong; Lu, Bao-Liang; Wang, Suhang
2015-05-01
Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.
The current practice of using multiple representations in year 4 science classrooms
NASA Astrophysics Data System (ADS)
Chuenmanee, Chanoknat; Thathong, Kongsak
2018-01-01
Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.
Superselection Structure of Massive Quantum Field Theories in 1+1 Dimensions
NASA Astrophysics Data System (ADS)
Müger, Michael
We show that a large class of massive quantum field theories in 1+1 dimensions, characterized by Haag duality and the split property for wedges, does not admit locally generated superselection sectors in the sense of Doplicher, Haag and Roberts. Thereby the extension of DHR theory to 1+1 dimensions due to Fredenhagen, Rehren and Schroer is vacuous for such theories. Even charged representations which are localizable only in wedge regions are ruled out. Furthermore, Haag duality holds in all locally normal representations. These results are applied to the theory of soliton sectors. Furthermore, the extension of localized representations of a non-Haag dual net to the dual net is reconsidered. It must be emphasized that these statements do not apply to massless theories since they do not satisfy the above split property. In particular, it is known that positive energy representations of conformally invariant theories are DHR representations.
Medendorp, W. P.
2015-01-01
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289
ERIC Educational Resources Information Center
Gebre, Engida
2018-01-01
This paper presents a descriptive case study where infographics--visual representation of data and ideas--have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students' science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools…
ERIC Educational Resources Information Center
Wei, Liew Tze; Sazilah, Salam
2012-01-01
This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
NASA Astrophysics Data System (ADS)
Tweney, Ryan D.
2011-07-01
James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.
Representation and presentation of requirements knowledge
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Feather, Martin S.; Harris, David R.
1992-01-01
An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.
Hierarchical competitions subserving multi-attribute choice
Hunt, Laurence T; Dolan, Raymond J; Behrens, Timothy EJ
2015-01-01
Valuation is a key tenet of decision neuroscience, where it is generally assumed that different attributes of competing options are assimilated into unitary values. Such values are central to current neural models of choice. By contrast, psychological studies emphasize complex interactions between choice and valuation. Principles of neuronal selection also suggest competitive inhibition may occur in early valuation stages, before option selection. Here, we show behavior in multi-attribute choice is best explained by a model involving competition at multiple levels of representation. This hierarchical model also explains neural signals in human brain regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where activity represents competition within-attribute, competition between attributes, and option selection. This multi-layered inhibition framework challenges the assumption that option values are computed before choice. Instead our results indicate a canonical competition mechanism throughout all stages of a processing hierarchy, not simply at a final choice stage. PMID:25306549
A sparse representation-based approach for copy-move image forgery detection in smooth regions
NASA Astrophysics Data System (ADS)
Abdessamad, Jalila; ElAdel, Asma; Zaied, Mourad
2017-03-01
Copy-move image forgery is the act of cloning a restricted region in the image and pasting it once or multiple times within that same image. This procedure intends to cover a certain feature, probably a person or an object, in the processed image or emphasize it through duplication. Consequences of this malicious operation can be unexpectedly harmful. Hence, the present paper proposes a new approach that automatically detects Copy-move Forgery (CMF). In particular, this work broaches a widely common open issue in CMF research literature that is detecting CMF within smooth areas. Indeed, the proposed approach represents the image blocks as a sparse linear combination of pre-learned bases (a mixture of texture and color-wise small patches) which allows a robust description of smooth patches. The reported experimental results demonstrate the effectiveness of the proposed approach in identifying the forged regions in CM attacks.
ERIC Educational Resources Information Center
Hsu, Yu-Chang
2009-01-01
Students in the Science, Technology, Engineering, and Mathematics (STEM) fields are confronted with multiple external representations (MERs) in their learning materials. The ability to learn from and communicate with these MERs requires not only that students comprehend each representation individually but also that students recognize how the…
ERIC Educational Resources Information Center
Stadtler, Marc; Bromme, Rainer
2007-01-01
Drawing on the theory of documents representation (Perfetti et al., Toward a theory of documents representation. In: H. v. Oostendorp & S. R. Goldman (Eds.), "The construction of mental representations during reading." Mahwah, NJ: Erlbaum, 1999), we argue that successfully dealing with multiple documents on the World Wide Web requires readers to…
Using Student Contributions and Multiple Representations To Develop Mathematical Language.
ERIC Educational Resources Information Center
Herbel-Eisenmann, Beth A.
2002-01-01
Describes a way to introduce and use mathematical language as an alternative to using vocabulary lists to introduce students to mathematical language in mathematics classrooms. Draws on multiple representations and student language. (YDS)
Multiple External Representations: Bridges or Barriers to Climate Literacy?
NASA Astrophysics Data System (ADS)
Holzer, M. A.
2012-12-01
The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a reader. Climatologists recognize the wealth of data and content found in these representations and therefore find themselves in a position where they can effectively interact with the author and their claims. This expert ability to seamlessly integrate text with the associated representations is at one end of the continuum of scientific text comprehension, but what abilities define a novice and those in between expert and novice in this continuum of scientific text comprehension? This talk will describe an ongoing research project with the overarching goal to establish the balance of this continuum in order to identify scaffolds that will assist non expert readers negotiate meaning from complex scientific text inclusive of multiple representations found in popular literature in climatology. It will inform those creating data representations on how best to create the representations so that claims and causal relationships may be derived from the literature or media source.
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
Teaching and Evaluation Materials Utilizing Multiple Representations in Mechanics
ERIC Educational Resources Information Center
Savinainen, A.; Nieminen, P.; Makynen, A.; Viiri, J.
2013-01-01
In this paper, we present materials and teaching ideas utilizing multiple representations in the contexts of kinematics and the force concept. These ideas and materials are substantiated by evidence and can be readily used in teaching with no special training. In addition, we briefly discuss two multiple-choice tests based on physics education…
ERIC Educational Resources Information Center
Crim, Courtney L.; Kennedy, Kimberley D.; Thornton, Jenifer S.
2013-01-01
This article reviews the relevant literature in regard to differentiation, multiple intelligences, and aesthetic representations. Next, it presents the methodology, reports findings, and discusses themes related to the authors' research questions. Finally, it concludes that tapping into students' multiple intelligence strength(s) is an excellent…
ERIC Educational Resources Information Center
Hill, Matthew; Sharma, Manjula Devi
2015-01-01
To succeed within scientific disciplines, using representations, including those based on words, graphs, equations, and diagrams, is important. Research indicates that the use of discipline specific representations (sometimes referred to as expert generated representations), as well as multi-representational use, is critical for problem solving…
Properties of heuristic search strategies
NASA Technical Reports Server (NTRS)
Vanderbrug, G. J.
1973-01-01
A directed graph is used to model the search space of a state space representation with single input operators, an AND/OR is used for problem reduction representations, and a theorem proving graph is used for state space representations with multiple input operators. These three graph models and heuristic strategies for searching them are surveyed. The completeness, admissibility, and optimality properties of search strategies which use the evaluation function f = (1 - omega)g = omega(h) are presented and interpreted using a representation of the search process in the plane. The use of multiple output operators to imply dependent successors, and thus obtain a formalism which includes all three types of representations, is discussed.
NASA Astrophysics Data System (ADS)
Alami, Y.; Sinaga, P.; Setiawan, A.
2018-05-01
Based on recommendations from the Physics Education literature recommend the use of multiple representations to help students solve problems. The use of some good representations is considered important to study physics, so many good motivations to learn how students use multiple representations while solving problems and to learn how to solve problems using multiple representations. This study aims to explore the profile of high school students’ problem solving abilities and this study is part of a larger research focus on improving this ability in students in physics. The data is needed to determine the appropriate treatment to be used in subsequent research. A purposive sampling technique was used in this study and a survey was conducted to collect data. 74 students from one high school in Bandung were involved in this research.
The Role of Research in Children's Education.
ERIC Educational Resources Information Center
Rogers, P. J.; Aston, F. M.
1990-01-01
Presents four educational experiments reflecting Jerome Bruner's theories on iconic and enactive representation to emphasize the need for more research on how children learn. Advocates greater institutional cooperation among schools, teachers, and researchers to improve research implementation and reduce problems of school disruption and…
The Invisible Substrate of Information Science.
ERIC Educational Resources Information Center
Bates, Marcia J.
1999-01-01
Articulates key elements in the "invisible substrate" of information science. Emphasizes information science's role as a meta-science--conducting research and developing theory around documentary products of other disciplines and activities. Suggests that mental activities of information science center around "representation" and "organization" of…
Multimodal Literacies in Science: Currency, Coherence and Focus
NASA Astrophysics Data System (ADS)
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of RISE advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are integral to reasoning about scientific phenomena. This focus on thinking with representations mediates between well-resolved representations and formal reasoning of disciplinary science, and the capacity-limited, perceptually-driven nature of human cognition. The teaching practices described here build on three key principles: Each representation is interpreted through others; natural language is a sign system that is used to interpret a variety of other kinds of representations; and this chain of signs or representations is ultimately grounded in bodily experiences of perception and action. In these papers, the researchers provide examples and analysis of teachers scaffolding students in using representations to construct new knowledge, and in constructing new representations to express and develop their knowledge. The result is a new delineation of the power and the challenges of teaching science with multiple representations.
Optimization of digital designs
NASA Technical Reports Server (NTRS)
Miles, Lowell H. (Inventor); Whitaker, Sterling R. (Inventor)
2009-01-01
An application specific integrated circuit is optimized by translating a first representation of its digital design to a second representation. The second representation includes multiple syntactic expressions that admit a representation of a higher-order function of base Boolean values. The syntactic expressions are manipulated to form a third representation of the digital design.
Jacklin, Derek L; Cloke, Jacob M; Potvin, Alphonse; Garrett, Inara; Winters, Boyer D
2016-01-27
Rats, humans, and monkeys demonstrate robust crossmodal object recognition (CMOR), identifying objects across sensory modalities. We have shown that rats' performance of a spontaneous tactile-to-visual CMOR task requires functional integration of perirhinal (PRh) and posterior parietal (PPC) cortices, which seemingly provide visual and tactile object feature processing, respectively. However, research with primates has suggested that PRh is sufficient for multisensory object representation. We tested this hypothesis in rats using a modification of the CMOR task in which multimodal preexposure to the to-be-remembered objects significantly facilitates performance. In the original CMOR task, with no preexposure, reversible lesions of PRh or PPC produced patterns of impairment consistent with modality-specific contributions. Conversely, in the CMOR task with preexposure, PPC lesions had no effect, whereas PRh involvement was robust, proving necessary for phases of the task that did not require PRh activity when rats did not have preexposure; this pattern was supported by results from c-fos imaging. We suggest that multimodal preexposure alters the circuitry responsible for object recognition, in this case obviating the need for PPC contributions and expanding PRh involvement, consistent with the polymodal nature of PRh connections and results from primates indicating a key role for PRh in multisensory object representation. These findings have significant implications for our understanding of multisensory information processing, suggesting that the nature of an individual's past experience with an object strongly determines the brain circuitry involved in representing that object's multisensory features in memory. The ability to integrate information from multiple sensory modalities is crucial to the survival of organisms living in complex environments. Appropriate responses to behaviorally relevant objects are informed by integration of multisensory object features. We used crossmodal object recognition tasks in rats to study the neurobiological basis of multisensory object representation. When rats had no prior exposure to the to-be-remembered objects, the spontaneous ability to recognize objects across sensory modalities relied on functional interaction between multiple cortical regions. However, prior multisensory exploration of the task-relevant objects remapped cortical contributions, negating the involvement of one region and significantly expanding the role of another. This finding emphasizes the dynamic nature of cortical representation of objects in relation to past experience. Copyright © 2016 the authors 0270-6474/16/361273-17$15.00/0.
NASA Astrophysics Data System (ADS)
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2010-07-01
This study investigates students’ ability to interpret multiple representations consistently (i.e., representational consistency) in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI), which makes use of nine items from the 1995 version of the Force Concept Inventory (FCI). These original FCI items were redesigned using various representations (such as motion map, vectorial and graphical), yielding 27 multiple-choice items concerning four central concepts underpinning the force concept: Newton’s first, second, and third laws, and gravitation. We provide some evidence for the validity and reliability of the R-FCI; this analysis is limited to the student population of one Finnish high school. The students took the R-FCI at the beginning and at the end of their first high school physics course. We found that students’ (n=168) representational consistency (whether scientifically correct or not) varied considerably depending on the concept. On average, representational consistency and scientifically correct understanding increased during the instruction, although in the post-test only a few students performed consistently both in terms of representations and scientifically correct understanding. We also compared students’ (n=87) results of the R-FCI and the FCI, and found that they correlated quite well.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
Risk Taking Under the Influence: A Fuzzy-Trace Theory of Emotion in Adolescence
Rivers, Susan E.; Reyna, Valerie F.; Mills, Britain
2008-01-01
Fuzzy-trace theory explains risky decision making in children, adolescents, and adults, incorporating social and cultural factors as well as differences in impulsivity. Here, we provide an overview of the theory, including support for counterintuitive predictions (e.g., when adolescents “rationally” weigh costs and benefits, risk taking increases, but it decreases when the core gist of a decision is processed). Then, we delineate how emotion shapes adolescent risk taking—from encoding of representations of options, to retrieval of values/principles, to application of those values/principles to representations of options. Our review indicates that: (i) Gist representations often incorporate emotion including valence, arousal, feeling states, and discrete emotions; and (ii) Emotion determines whether gist or verbatim representations are processed. We recommend interventions to reduce unhealthy risk-taking that inculcate stable gist representations, enabling adolescents to identify quickly and automatically danger even when experiencing emotion, which differs sharply from traditional approaches emphasizing deliberation and precise analysis. PMID:19255597
NASA Astrophysics Data System (ADS)
Manzungu, Emmanuel
In 1998 both South Africa and Zimbabwe promulgated new water laws to ensure that ownership and user-ship patterns of water resources match the new socio-political order. Integrated water resource management, incorporating among other things decentralized and democratized water management institutions and the principles of stakeholder participation, was regarded as the cornerstone of the reforms. This article examines how stakeholder representation, particularly of the formerly disadvantaged people, has been handled. It is observed that there has been too much effort dedicated to ensure a mere headcount of the stakeholders at the water table rather than on strategic representation. Strategic representation emphasizes stakeholder identity instead of consensus. Selective alliance building is important as is establishing genuine local level platforms with enough political space outside the state-tailored formal straight jackets. It is equally important to address developmental aspects of establishing catchment-wide bodies and structural problems such as access to land and financial resources. Without addressing these issues stakeholder representation will remain hamstrung in good intentions.
A Pedagogical Challenge: Integrative Thinking.
ERIC Educational Resources Information Center
Peterson, Nils S.; And Others
An instructional framework which provides opportunities for students to synthesize knowledge and recognize general approaches to problem representation and solution is advocated and discussed in this paper. The need for a combination of an interdisciplinary approach with the new technologies of the information age is emphasized. Major ideas…
Fieldwork as Theatre: A Week's Performance in Venice and Its Region.
ERIC Educational Resources Information Center
Cosgrove, Denis; Daniels, Stephen
1989-01-01
Describes the concluding activity of a cultural geography course in which students went on a field trip to Venice (Italy) during spring vacation. Emphasizes the representation in relations between land and life, using the metaphor of theatre to conceptualize these relations. (GG)
Pedagogical Implications of Postmodernism in Adult Literacy.
ERIC Educational Resources Information Center
Campbell, Pat
The literature on postmodernism and education agrees on postmodernism's central features. It emphasizes heterogeneity, difference, plurality, and the fragmentary. It is unified in its critique of the Enlightenment's positions--totality, unity, representational and objective concepts of knowledge and truth. The pedagogy of Paulo Freire intersects…
Knowledge-based vision and simple visual machines.
Cliff, D; Noble, J
1997-01-01
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684
ERIC Educational Resources Information Center
Nichols, Kim; Ranasinghe, Muditha; Hanan, Jim
2013-01-01
Interacting with and translating across multiple representations is an essential characteristic of expertise and representational fluency. In this study, we explored the effect of interacting with and translating between representations in a computer simulation or in a paper-based assignment on scientific accuracy of undergraduate science…
NASA Astrophysics Data System (ADS)
Yanti, Y. R.; Amin, S. M.; Sulaiman, R.
2018-01-01
This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.
Promoting Decimal Number Sense and Representational Fluency
ERIC Educational Resources Information Center
Suh, Jennifer M.; Johnston, Chris; Jamieson, Spencer; Mills, Michelle
2008-01-01
The abstract nature of mathematics requires the communication of mathematical ideas through multiple representations, such as words, symbols, pictures, objects, or actions. Building representational fluency involves using mathematical representations flexibly and being able to interpret and translate among these different models and mathematical…
Credit Assignment in Multiple Goal Embodied Visuomotor Behavior
Rothkopf, Constantin A.; Ballard, Dana H.
2010-01-01
The intrinsic complexity of the brain can lead one to set aside issues related to its relationships with the body, but the field of embodied cognition emphasizes that understanding brain function at the system level requires one to address the role of the brain-body interface. It has only recently been appreciated that this interface performs huge amounts of computation that does not have to be repeated by the brain, and thus affords the brain great simplifications in its representations. In effect the brain's abstract states can refer to coded representations of the world created by the body. But even if the brain can communicate with the world through abstractions, the severe speed limitations in its neural circuitry mean that vast amounts of indexing must be performed during development so that appropriate behavioral responses can be rapidly accessed. One way this could happen would be if the brain used a decomposition whereby behavioral primitives could be quickly accessed and combined. This realization motivates our study of independent sensorimotor task solvers, which we call modules, in directing behavior. The issue we focus on herein is how an embodied agent can learn to calibrate such individual visuomotor modules while pursuing multiple goals. The biologically plausible standard for module programming is that of reinforcement given during exploration of the environment. However this formulation contains a substantial issue when sensorimotor modules are used in combination: The credit for their overall performance must be divided amongst them. We show that this problem can be solved and that diverse task combinations are beneficial in learning and not a complication, as usually assumed. Our simulations show that fast algorithms are available that allot credit correctly and are insensitive to measurement noise. PMID:21833235
Linking Neural and Symbolic Representation and Processing of Conceptual Structures
van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.
2017-01-01
We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking), which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures. PMID:28848460
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2012 CFR
2012-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2014 CFR
2014-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2013 CFR
2013-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
The Coming of the French Revolution in Multi-Media.
ERIC Educational Resources Information Center
Brown, Gregory S.
2001-01-01
Asserts that the use of multimedia furthers historians' work as opposed to changing it. Explores three objectives that multimedia allows historians to achieve: (1) the issue of representation; (2) the concern with emphasizing historical thinking skills; and (3) the topic of how others appropriate history. (CMK)
Toward an Aristotelian Model of Teacher Reasoning.
ERIC Educational Resources Information Center
Orton, Robert E.
1997-01-01
Utilizes Aristotle's three-way distinctions between theory, practice, and production to describe a balanced model of teacher reasoning. Reviews differing models of teacher reasoning that emphasize the role of contemplation and subject-matter representations. Uses the Aristotelian model to point toward a normative vision of teacher reasoning. (MJP)
Statistical virtual eye model based on wavefront aberration
Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie
2012-01-01
Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
ERIC Educational Resources Information Center
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-01-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific…
ERIC Educational Resources Information Center
Cuero, Kimberley K.; Bonner, Jennifer; Smith, Brittaney; Schwartz, Michelle; Touchstone, Rose; Vela, Yvonne
2008-01-01
Based on Elliot Eisner's notions of multiple forms of representation and Rosenblatt's aesthetic/efferent responses to reading, a teacher educator/researcher had her undergraduate students explore their connections, using aesthetic representations, to a course entitled "Reading Comprehension". Each aesthetic representation revealed the complexities…
Narrative, memory and social representations: a conversation between history and social psychology.
Jovchelovitch, Sandra
2012-12-01
This paper explores relations between narrative, memory and social representations by examining how social representations express the ways in which communities deal with the historical past. Drawing on a case study of social representations of the Brazilian public sphere, it shows how a specific narrative of origins re-invents history as a useful mythological resource for defending identity, building inter-group solidarity and maintaining social cohesion. Produced by a time-travelling dialogue between multiple sources, this historical narrative is functional both to transform, to stabilise and give resilience to specific social representations of public life. The Brazilian case shows that historical narratives, which tend to be considered as part of the stable core of representational fields, are neither homogenous nor consensual but open polyphasic platforms for the construction of alternative, often contradictory, representations. These representations do not go away because they are ever changing and situated, recruit multiple ways of thinking and fulfil functions of identity, inter-group solidarity and social cohesion. In the disjunction between historiography and the past as social representation are the challenges and opportunities for the dialogue between historians and social psychologists.
Kellman, Philip J; Massey, Christine M; Son, Ji Y
2010-04-01
Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.
Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations
ERIC Educational Resources Information Center
Timmerman, Maria A.
2014-01-01
If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…
Using Computer-Assisted Multiple Representations in Learning Geometry Proofs
ERIC Educational Resources Information Center
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Hsi-Hsun; Cheng, Ying-Hao
2011-01-01
Geometry theorem proving involves skills that are difficult to learn. Instead of working with abstract and complicated representations, students might start with concrete, graphical representations. A proof tree is a graphical representation of a formal proof, with each node representing a proposition or given conditions. A computer-assisted…
The Effects of Multiple Linked Representations on Student Learning in Mathematics.
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
This study investigated the effects on student understanding of linear relationships using the linked representation software VideoPoint as compared to using semi-linked representation software. It investigated students' attitudes towards and preferences for mathematical representations--equations, tables, or graphs. An Algebra I class was divided…
Learning STEM through Integrative Visual Representations
ERIC Educational Resources Information Center
Virk, Satyugjit Singh
2013-01-01
Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with…
Examining Students' Reluctance to Use Graphs
ERIC Educational Resources Information Center
Dyke, Frances Van; White, Alexander
2004-01-01
An evaluation designed to test basic graphical-thinking skills to students entering calculus or applied calculus at American University was given to use the assessment to discover the underlying causes for student's inability to use graphs effectively. The study indicates that graphical representation is not emphasized properly in the curriculum…
CogSkillnet: An Ontology-Based Representation of Cognitive Skills
ERIC Educational Resources Information Center
Askar, Petek; Altun, Arif
2009-01-01
A number of studies emphasized the need to capture learners' interaction patterns in order to personalize their learning process as they study through learning objects. In education context, learning materials are designed based on pre-determined expectations and learners are evaluated to what extent they master these expectations. Representation…
Design of Lexicons in Some Natural Language Systems.
ERIC Educational Resources Information Center
Cercone, Nick; Mercer, Robert
1980-01-01
Discusses an investigation of certain problems concerning the structural design of lexicons used in computational approaches to natural language understanding. Emphasizes three aspects of design: retrieval of relevant portions of lexicals items, storage requirements, and representation of meaning in the lexicon. (Available from ALLC, Dr. Rex Last,…
Causal Connections in Beginning Reading: The Importance of Rhyme.
ERIC Educational Resources Information Center
Goswami, Usha
2000-01-01
Discusses the implications of Goswami and Bryant's (1990) theory about important causal connections in reading for classroom teaching, and reviews more recent "rhyme and analogy" research within this framework. Discusses new research on the nature of the English spelling system and the representation of linguistic knowledge. Emphasizes the…
The Representation of Oral Culture in the "Vita Constantini."
ERIC Educational Resources Information Center
Butler, Francis
1995-01-01
Examines a passage describing an encounter between the missionary, Saint Constantine-Cyril, and a pagan in the land of the Khazars. The main focus of the saint's discourse emphasized that without inventing the Slavic alphabet, he would have had no hope of success as a missionary. (24 references) (CK)
Engagement in Philosophical Dialogue Facilitates Children's Reasoning about Subjectivity
ERIC Educational Resources Information Center
Walker, Caren M.; Wartenberg, Thomas E.; Winner, Ellen
2013-01-01
Theories of learning have long emphasized the essential role of social factors in the development of early reasoning abilities. More recently, it has been proposed that the presentation of conflicting perspectives may facilitate young children's understanding of knowledge claims as potentially subjective--one of many possible representations of…
ERIC Educational Resources Information Center
Mein, Erika
2009-01-01
Within the context of neoliberal globalization, portrayals of "literacy" and "knowledge" are increasingly emphasized for their instrumental value for individuals and markets. At the same time, locally situated movements have emerged to challenge, resist, and transform these representations. This article examines a grassroots…
Supporting Place Sensemaking with Multidimensional Information Representation on Mobile Devices
ERIC Educational Resources Information Center
Wu, Anna
2012-01-01
Knowing the living environments is an intrinsic part of human development for building self-confidence and meeting social requirements. Proliferation of mobile devices has greatly changed our interaction with the physical environments. The problem for existing mobile navigation tools is that it only emphasizes the spatial factor by offering…
A User Study on Tactile Graphic Generation Methods
ERIC Educational Resources Information Center
Krufka, S. E.; Barner, K. E.
2006-01-01
Methods to automatically convert graphics into tactile representations have been recently investigated, creating either raised-line or relief images. In particular, we briefly review one raised-line method where important features are emphasized. This paper focuses primarily on the effects of such emphasis and on comparing both raised-line and…
Indicators that influence prospective mathematics teachers representational and reasoning abilities
NASA Astrophysics Data System (ADS)
Darta; Saputra, J.
2018-01-01
Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.
NASA Astrophysics Data System (ADS)
Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.
2017-12-01
A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.
The representation of multiplication and division facts in memory.
De Brauwer, Jolien; Fias, Wim
2011-01-01
Recently, using a training paradigm, Campbell and Agnew (2009) observed cross-operation response time savings with nonidentical elements (e.g., practice 3 + 2, test 5 - 2) for addition and subtraction, showing that a single memory representation underlies addition and subtraction performance. Evidence for cross-operation savings between multiplication and division have been described frequently (e.g., Campbell, Fuchs-Lacelle, & Phenix, 2006) but they have always been attributed to a mediation strategy (reformulating a division problem as a multiplication problem, e.g., Campbell et al., 2006). Campbell and Agnew (2009) therefore concluded that there exists a fundamental difference between addition and subtraction on the one hand and multiplication and division on the other hand. However, our results suggest that retrieval savings between inverse multiplication and division problems can be observed. Even for small problems (solved by direct retrieval) practicing a division problem facilitated the corresponding multiplication problem and vice versa. These findings indicate that shared memory representations underlie multiplication and division retrieval. Hence, memory and learning processes do not seem to differ fundamentally between addition-subtraction and multiplication-division.
Craft, David
2010-10-01
A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
On squares of representations of compact Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less
The body and the fading away of abstract concepts and words: a sign language analysis
Borghi, Anna M.; Capirci, Olga; Gianfreda, Gabriele; Volterra, Virginia
2014-01-01
One of the most important challenges for embodied and grounded theories of cognition concerns the representation of abstract concepts, such as “freedom.” Many embodied theories of abstract concepts have been proposed. Some proposals stress the similarities between concrete and abstract concepts showing that they are both grounded in perception and action system while other emphasize their difference favoring a multiple representation view. An influential view proposes that abstract concepts are mapped to concrete ones through metaphors. Furthermore, some theories underline the fact that abstract concepts are grounded in specific contents, as situations, introspective states, emotions. These approaches are not necessarily mutually exclusive, since it is possible that they can account for different subsets of abstract concepts and words. One novel and fruitful way to understand the way in which abstract concepts are represented is to analyze how sign languages encode concepts into signs. In the present paper we will discuss these theoretical issues mostly relying on examples taken from Italian Sign Language (LIS, Lingua dei Segni Italiana), the visual-gestural language used within the Italian Deaf community. We will verify whether and to what extent LIS signs provide evidence favoring the different theories of abstract concepts. In analyzing signs we will distinguish between direct forms of involvement of the body and forms in which concepts are grounded differently, for example relying on linguistic experience. In dealing with the LIS evidence, we will consider the possibility that different abstract concepts are represented using different levels of embodiment. The collected evidence will help us to discuss whether a unitary embodied theory of abstract concepts is possible or whether the different theoretical proposals can account for different aspects of their representation. PMID:25120515
Genetics Reasoning with Multiple External Representations.
ERIC Educational Resources Information Center
Tsui, Chi-Yan; Treagust, David F.
2003-01-01
Explores a case study of a class of 10th grade students whose learning of genetics involved activities using BioLogica, a computer program that features multiple external representations (MERs). Findings indicate that the MERs in BioLogica contributed to students' development of genetics reasoning by engendering their motivation and interest but…
Students' Construction of External Representations in Design-Based Learning Situations
ERIC Educational Resources Information Center
de Vries, Erica
2006-01-01
This article develops a theoretical framework for the study of students' construction of mixed multiple external representations in design-based learning situations involving an adaptation of professional tasks and tools to a classroom setting. The framework draws on research on professional design processes and on learning with multiple external…
Using Multiple Representations to Teach Composition of Functions
ERIC Educational Resources Information Center
Steketee, Scott; Scher, Daniel
2012-01-01
Composition of functions is one of the five big ideas identified in NCTM's "Developing Essential Understanding of Functions, Grades 9-12" (Cooney, Beckmann, and Lloyd 2010). Through multiple representations (another big idea) and the use of The Geometer's Sketchpad[R] (GSP), students can directly manipulate variables and thus see dynamic visual…
Asymmetric Translation between Multiple Representations in Chemistry
ERIC Educational Resources Information Center
Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II
2016-01-01
Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests…
An Evaluation of Multimodal Interactions with Technology while Learning Science Concepts
ERIC Educational Resources Information Center
Anastopoulou, Stamatina; Sharples, Mike; Baber, Chris
2011-01-01
This paper explores the value of employing multiple modalities to facilitate science learning with technology. In particular, it is argued that when multiple modalities are employed, learners construct strong relations between physical movement and visual representations of motion. Body interactions with visual representations, enabled by…
ERIC Educational Resources Information Center
Pierce, Robyn; Stacey, Kaye; Wander, Roger; Ball, Lynda
2011-01-01
Current technologies incorporating sophisticated mathematical analysis software (calculation, graphing, dynamic geometry, tables, and more) provide easy access to multiple representations of mathematical problems. Realising the affordances of such technology for students' learning requires carefully designed lessons. This paper reports on design…
ERIC Educational Resources Information Center
Ozdemir, S.; Reis, Z. Ayvaz
2013-01-01
Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…
Learning-Induced Plasticity in Medial Prefrontal Cortex Predicts Preference Malleability
Garvert, Mona M.; Moutoussis, Michael; Kurth-Nelson, Zeb; Behrens, Timothy E.J.; Dolan, Raymond J.
2015-01-01
Summary Learning induces plasticity in neuronal networks. As neuronal populations contribute to multiple representations, we reasoned plasticity in one representation might influence others. We used human fMRI repetition suppression to show that plasticity induced by learning another individual’s values impacts upon a value representation for oneself in medial prefrontal cortex (mPFC), a plasticity also evident behaviorally in a preference shift. We show this plasticity is driven by a striatal “prediction error,” signaling the discrepancy between the other’s choice and a subject’s own preferences. Thus, our data highlight that mPFC encodes agent-independent representations of subjective value, such that prediction errors simultaneously update multiple agents’ value representations. As the resulting change in representational similarity predicts interindividual differences in the malleability of subjective preferences, our findings shed mechanistic light on complex human processes such as the powerful influence of social interaction on beliefs and preferences. PMID:25611512
Queiroz, M S
2000-01-01
This article focuses on social representations of alternative medicines by a group of professors from the School of Medicine and health professionals from the public health system in the city of Campinas, São Paulo, basically physicians and nurses. The article also emphasizes personal trajectories by which these health professionals opted for a dissident theoretical and practical perspective vis-à-vis the hegemonic positivist scientific medical paradigm. The research methods were mainly ethnographic, from a phenomenological perspective. The article concludes by sustaining (in theoretical terms) the importance of these dissident perspectives for scientific development.
Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C
Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.
Number games, magnitude representation, and basic number skills in preschoolers.
Whyte, Jemma Catherine; Bull, Rebecca
2008-03-01
The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was compared following four 25-min intervention sessions. The linear number board game significantly improved children's performance in all posttest measures and facilitated a shift from a logarithmic to a linear representation of numerical magnitude, emphasizing the importance of spatial cues in estimation. Exposure to the number card games involving nonsymbolic magnitude judgments and association of symbolic and nonsymbolic quantities, but without any linear spatial cues, improved some aspects of children's basic number skills but not numerical estimation precision.
A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives
NASA Astrophysics Data System (ADS)
Tytler, Russell; Prain, Vaughan
2010-10-01
Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.
Wanting, liking, and preference construction.
Dai, Xianchi; Brendl, C Miguel; Ariely, Dan
2010-06-01
According to theories on preference construction, multiple preferences result from multiple contexts (e.g., loss vs. gain frames). This implies that people can have different representations of a preference in different contexts. Drawing on Berridge's (1999) distinction between unconscious liking and wanting, we hypothesize that people may have multiple representations of a preference toward an object even within a single context. Specifically, we propose that people can have different representations of an object's motivational value, or incentive value, versus its emotional value, or likability, even when the object is placed in the same context. Study 1 establishes a divergence between incentive value and likability of faces using behavioral measures. Studies 2A and 2B, using self-report measures, provide support for our main hypothesis that people are perfectly aware of these distinct representations and are able to access them concurrently at will. We also discuss implications of our findings for the truism that people seek pleasure and for expectancy-value theories.
Video based object representation and classification using multiple covariance matrices.
Zhang, Yurong; Liu, Quan
2017-01-01
Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.
Transformations in the Visual Representation of a Figural Pattern
ERIC Educational Resources Information Center
Montenegro, Paula; Costa, Cecília; Lopes, Bernardino
2018-01-01
Multiple representations of a given mathematical object/concept are one of the biggest difficulties encountered by students. The aim of this study is to investigate the impact of the use of visual representations in teaching and learning algebra. In this paper, we analyze the transformations from and to visual representations that were performed…
NASA Astrophysics Data System (ADS)
Warsito; Darhim; Herman, T.
2018-01-01
This study aims to determine the differences in the improving of mathematical representation ability based on progressive mathematization with realistic mathematics education (PMR-MP) with conventional learning approach (PB). The method of research is quasi-experiments with non-equivalent control group designs. The study population is all students of class VIII SMPN 2 Tangerang consisting of 6 classes, while the sample was taken two classes with purposive sampling technique. The experimental class is treated with PMR-MP while the control class is treated with PB. The instruments used are test of mathematical representation ability. Data analysis was done by t-test, ANOVA test, post hoc test, and descriptive analysis. The result of analysis can be concluded that: 1) there are differences of mathematical representation ability improvement between students treated by PMR-MP and PB, 2) no interaction between learning approach (PMR-MP, PB) and prior mathematics knowledge (PAM) to improve students’ mathematical representation; 3) Students’ mathematical representation improvement in the level of higher PAM is better than medium, and low PAM students. Thus, based on the process of mathematization, it is very important when the learning direction of PMR-MP emphasizes on the process of building mathematics through a mathematical model.
A review of visual memory capacity: Beyond individual items and towards structured representations
Brady, Timothy F.; Konkle, Talia; Alvarez, George A.
2012-01-01
Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system - going beyond quantifying how many items can be remembered, and moving towards structured representations - but how we model memory systems and memory processes. PMID:21617025
What should I do next? Using shared representations to solve interaction problems.
Pezzulo, Giovanni; Dindo, Haris
2011-06-01
Studies on how "the social mind" works reveal that cognitive agents engaged in joint actions actively estimate and influence another's cognitive variables and form shared representations with them. (How) do shared representations enhance coordination? In this paper, we provide a probabilistic model of joint action that emphasizes how shared representations help solving interaction problems. We focus on two aspects of the model. First, we discuss how shared representations permit to coordinate at the level of cognitive variables (beliefs, intentions, and actions) and determine a coherent unfolding of action execution and predictive processes in the brains of two agents. Second, we discuss the importance of signaling actions as part of a strategy for sharing representations and the active guidance of another's actions toward the achievement of a joint goal. Furthermore, we present data from a human-computer experiment (the Tower Game) in which two agents (human and computer) have to build together a tower made of colored blocks, but only the human knows the constellation of the tower to be built (e.g., red-blue-red-blue-…). We report evidence that humans use signaling strategies that take another's uncertainty into consideration, and that in turn our model is able to use humans' actions as cues to "align" its representations and to select complementary actions.
NASA Astrophysics Data System (ADS)
Price, Gwyneth A.
In this study, multiple external representations and Generative Learning Theory were used to design instruction that would facilitate physics learning. Specifically, the study looks at the learning differences that may occur when students are engaged in generating a graphical representation as compared to being presented with a computer-generated graph. It is hypothesized that by generating the graphical representation students will be able to overcome obstacles to integration and determine the relationships involved within a representation. In doing so, students will build a more complete mental model of the situation and be able to more readily use this information in transfer situations, thus improving their problem solving ability. Though the results of this study do not lend strong support for the hypothesis, the results are still informative and encouraging. Though several of the obstacles associated with learning from multiple representations such as cognitive load were cause for concern, those students with appropriate prior knowledge and familiarity with graphical representations were able to benefit from the generative activity. This finding indicates that if the issues are directly addressed within instruction, it may be that all students may be able to benefit from being actively engaged in generating representations.
NASA Astrophysics Data System (ADS)
Son, Ji-Won; Hu, Qintong
2016-05-01
In order to provide insight into cross-national differences in students' achievement, this study compares the initial treatment of the concept of function sections of Chinese and US textbooks. The number of lessons, contents, and mathematical problems were analyzed. The results show that the US curricula introduce the concept of function one year earlier than the Chinese curriculum and provide strikingly more problems for students to work on. However, the Chinese curriculum emphasizes developing both concepts and procedures and includes more problems that require explanations, visual representations, and problem solving in worked-out examples that may help students formulate multiple solution methods. This result could indicate that instead of the number of problems and early introduction of the concept, the cognitive demands of textbook problems required for student thinking could be one reason for differences in American and Chinese students' performances in international comparative studies. Implications of these findings for curriculum developers, teachers, and researchers are discussed.
The Nature of Change Detection and Online Representations of Scenes
ERIC Educational Resources Information Center
Ryan,J ennifer D.; Cohen, Neal J.
2004-01-01
This article provides evidence for implicit change detection and for the contribution of multiple memory sources to online representations. Multiple eye-movement measures distinguished original from changed scenes, even when college students had no conscious awareness for the change. Patients with amnesia showed a systematic deficit on 1 class of…
ERIC Educational Resources Information Center
Bergey, Bradley W.; Cromley, Jennifer G.; Newcombe, Nora S.
2015-01-01
There is growing evidence that targeted instruction can improve diagram comprehension, yet one of the skills identified in the diagram comprehension literature--coordinating multiple representations--has rarely been directly taught to students and tested as a classroom intervention. We created a Coordinating Multiple Representation (CMR)…
Wait-Time and Multiple Representation Levels in Chemistry Lessons
ERIC Educational Resources Information Center
Li, Winnie Sim Siew; Arshad, Mohammad Yusof
2014-01-01
Wait-time is an important aspect in a teaching and learning process, especially after the teacher has posed questions to students, as it is one of the factors in determining quality of students' responses. This article describes the practices of wait-time one after teacher's questions at multiple representation levels among twenty three chemistry…
Real-World Contexts, Multiple Representations, Student-Invented Terminology, and Y-Intercept
ERIC Educational Resources Information Center
Davis, Jon D.
2007-01-01
One classroom using two units from a "Standards"-based curriculum was the focus of a study designed to examine the effects of real-world contexts, delays in the introduction of formal mathematics terminology, and multiple function representations on student understanding. Students developed their own terminology for y-intercept, which was tightly…
Coordinating Multiple Representations in a Reform Calculus Textbook
ERIC Educational Resources Information Center
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2015-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro
2011-01-01
This study involved the evaluation of the efficacy of a planned instructional program to facilitate understanding of the macroscopic, submicroscopic and symbolic representational systems when describing and explaining chemical reactions by sixty-five Grade 9 students in a Singapore secondary school. A two-tier multiple-choice diagnostic instrument…
Coordinating Multiple Representations in a Reform Calculus Textbook
ERIC Educational Resources Information Center
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2016-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
ERIC Educational Resources Information Center
Rosengrant, David
2011-01-01
Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…
Looking beyond the Boundaries: Time to Put Landmarks Back on the Cognitive Map?
ERIC Educational Resources Information Center
Lew, Adina R.
2011-01-01
Since the proposal of Tolman (1948) that mammals form maplike representations of familiar environments, cognitive map theory has been at the core of debates on the fundamental mechanisms of animal learning and memory. Traditional formulations of cognitive map theory emphasize relations between landmarks and between landmarks and goal locations as…
Communicative Function Demonstration Induces Kind-Based Artifact Representation in Preverbal Infants
ERIC Educational Resources Information Center
Futo, Judit; Teglas, Erno; Csibra, Gergely; Gergely, Gyorgy
2010-01-01
Human infants grow up in environments populated by artifacts. In order to acquire knowledge about different kinds of human-made objects, children have to be able to focus on the information that is most relevant for sorting artifacts into categories. Traditional theories emphasize the role of superficial, perceptual features in object…
ERIC Educational Resources Information Center
National Urban League, Inc., New York, NY.
The theme of the 1976 Urban League Conference was "a new bill of rights" for all Americans. Rights of blacks and other minority groups were particularly emphasized. The subject of the right to black representation in the American political system was addressed by Samuel Du Bois Cook. The keynote address by Vernon E. Jordan, Jr. considered such…
ERIC Educational Resources Information Center
Morrison, Robert G.; Doumas, Leonidas A. A.; Richland, Lindsey E.
2011-01-01
Theories accounting for the development of analogical reasoning tend to emphasize either the centrality of relational knowledge accretion or changes in information processing capability. Simulations in LISA (Hummel & Holyoak, 1997, 2003), a neurally inspired computer model of analogical reasoning, allow us to explore how these factors may…
Cultivating a Critical Classroom for Viewing Gendered Violence in Music Video
ERIC Educational Resources Information Center
Rodier, Kristin; Meagher, Michelle; Nixon, Randelle
2012-01-01
Though this exercise was originally designed for a first year course in women's studies that emphasizes representations of girls and women, it is also entirely appropriate to students considering matters of gender and sexuality in the fields of media studies, communications, sociology, political science, and cultural studies. This teaching…
Changing Issue Representation among Major United States Environmental Movement Organizations
ERIC Educational Resources Information Center
Johnson, Erik
2006-01-01
Histories of the environmental movement have emphasized the importance of a shift in focus from those issues traditionally associated with the movement, such as resource and wildlife protection, towards "new" quality of life issues, such as environmental pollution and its human health effects. Here, time-series data between 1970 and 2000…
ERIC Educational Resources Information Center
Pitcher, Erich N.
2016-01-01
Previous research about college students' social media usage emphasizes social media "practices," often ignoring the "content" that students' post. Increasing knowledge about the language that college students use to describe their intimate relationships can inform student affairs practice. Using a digital ethnographic data…
The Role of Elaboration in the Comprehension and Retention of Prose: A Critical Review.
ERIC Educational Resources Information Center
Reder, Lynne M.
1980-01-01
Recent research in the area of prose comprehension is reviewed, including factors that affect amount of recall, representations of text structures, and use of world knowledge to aid comprehension. The need for more information processing models of comprehension is emphasized. Elaboration is considered important for comprehension and retention.…
Risk/Protective Factors for Alcohol Use among Hispanic and White Teenagers.
ERIC Educational Resources Information Center
Felix-Ortiz, Maria; Newcomb, Michael D.
Changing alcohol and drug use patterns among women and ethnic minorities, such as the over-representation of Hispanics in alcohol-related deaths, drunk driving arrests, and treatment facilities, emphasize the importance of understanding substance use patterns in these populations. This study attempted to identify a single cause of substance abuse…
Lau-Walker, Margaret
2006-02-01
This paper analyses the two prominent psychological theories of patient response--illness representation and self-efficacy--and explore the possibilities of the development of a conceptual individualized care model that would make use of both theories. Analysis of the literature established common themes that were used as the basis to form a conceptual framework intended to assist in the joint application of these theories to therapeutic settings. Both theories emphasize personal experience, pre-construction of self, individual response to illness and treatment, and that the patients' beliefs are more influential in their recovery than the severity of the illness. Where the theories are most divergent is their application to therapeutic interventions, which reflects the different sources of influence that each theory emphasizes. Based on their similarities and differences it is possible to integrate the two theories into a conceptual care model. The Interactive Care Model combines both theories of patient response and provides an explicit framework for further research into the design of effective therapeutic interventions in rehabilitation care.
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2017-01-01
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) "sense making" of connections by verbally explaining how…
ERIC Educational Resources Information Center
Goodwin, Amanda P.; Gilbert, Jennifer K.; Cho, Sun-Joo; Kearns, Devin M.
2014-01-01
The current study models reader, item, and word contributions to the lexical representations of 39 morphologically complex words for 172 middle school students using a crossed random-effects item response model with multiple outcomes. We report 3 findings. First, results suggest that lexical representations can be characterized by separate but…
Pedagogical Affordances of Multiple External Representations in Scientific Processes
ERIC Educational Resources Information Center
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-01-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs…
ERIC Educational Resources Information Center
Won, Mihye; Yoon, Heojeong; Treagust, David F.
2014-01-01
The purpose of this study was to understand how students utilized multiple representations to learn and explain science concepts, in this case the human breathing mechanism. The study was conducted with Grade 11 students in a human biology class. Semistructured interviews and a two-tier diagnostic test were administered to evaluate students'…
ERIC Educational Resources Information Center
Beyranevand, Matthew L.
2010-01-01
Although it is difficult to find any current literature that does not encourage use of multiple representations in mathematics classrooms, there has been very limited research that compared such practice to student achievement level on standardized tests. This study examined the associations between students' achievement levels and their (a)…
ERIC Educational Resources Information Center
Flores, Raymond; Koontz, Esther; Inan, Fethi A.; Alagic, Mara
2015-01-01
This study examined the impact of the order of two teaching approaches on students' abilities and on-task behaviors while learning how to solve percentage problems. Two treatment groups were compared. MR first received multiple representation instruction followed by traditional algorithmic instruction and TA first received these teaching…
ERIC Educational Resources Information Center
Yilmaz, Yasemin; Durmus, Soner; Yaman, Hakan
2018-01-01
This study investigated the pattern problems posed by middle school mathematics preservice teachers using multiple representations to determine both their pattern knowledge levels and their abilities to transfer this knowledge to students. The design of the study is the survey method, one of the quantitative research methods. The study group was…
ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2016-01-01
Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based…
ERIC Educational Resources Information Center
Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim
2014-01-01
This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…
THE DIALOGICAL SELF IN PSYCHOANALYSIS.
Muller, Felipe
2016-10-01
This paper describes the shift that appears to be taking place in contemporary psychoanalysis, as reflected among intersubjective approaches, from a monological conception of the self to a dialogical one. The monological self emphasizes the separation between mind, body, and external world, focusing on the representational and descriptive/referential function of language. In contrast, the dialogical self emphasizes practices, the permeable nature of relationships between subjects, and the constitutive function of language. This paper attempts to explain the growing emphasis on the dialogical self, understood from a theoretical, metatheoretical, and technical point of view, using contemporary intersubjective approaches to illustrate this shift. © 2016 The Psychoanalytic Quarterly, Inc.
On the calculation of atomic term populations
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1992-01-01
The usefulness of calculations on model atomic term systems which can give spectral multiplet intensities is emphasized, in contrast to more detailed level calculations which are not always feasible because of lack of appropriate atomic data. A more general expression for the multiplet radiative transition rate is proposed to facilitate term representations. The differences between term and level representations are discussed quantitatively with respect to a model three-level atom and real examples of the C III and Ne IV ions. It is shown that term representations fail at lower densities when level inverse lifetimes within terms differ by only a few orders of magnitude. In such cases one must resort to other methods; a hybrid calculation is therefore proposed to fill this need and is carried out for the C III ion to demonstrate its feasibility and validity.
Martínez-Bartolomé, Salvador; Medina-Aunon, J Alberto; López-García, Miguel Ángel; González-Tejedo, Carmen; Prieto, Gorka; Navajas, Rosana; Salazar-Donate, Emilio; Fernández-Costa, Carolina; Yates, John R; Albar, Juan Pablo
2018-04-06
Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .
Object-based benefits without object-based representations.
Fougnie, Daryl; Cormiea, Sarah M; Alvarez, George A
2013-08-01
Influential theories of visual working memory have proposed that the basic units of memory are integrated object representations. Key support for this proposal is provided by the same object benefit: It is easier to remember multiple features of a single object than the same set of features distributed across multiple objects. Here, we replicate the object benefit but demonstrate that features are not stored as single, integrated representations. Specifically, participants could remember 10 features better when arranged in 5 objects compared to 10 objects, yet memory for one object feature was largely independent of memory for the other object feature. These results rule out the possibility that integrated representations drive the object benefit and require a revision of the concept of object-based memory representations. We propose that working memory is object-based in regard to the factors that enhance performance but feature based in regard to the level of representational failure. PsycINFO Database Record (c) 2013 APA, all rights reserved.
ERIC Educational Resources Information Center
Borba, Marcelo; Confrey, Jere
Function Probe is a multi-representational software for Apple Macintosh computers. It was designed to allow students to approach problems in different ways and/or use different representations. This case study describes a 16-year-old student as he creates a path among a variety of representations of transformations of functions while using the…
Multiple Representations-Based Face Sketch-Photo Synthesis.
Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie
2016-11-01
Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.
Pusic, Martin V.; LeBlanc, Vicki; Patel, Vimla L.
2001-01-01
Traditional task analysis for instructional design has emphasized the importance of precisely defining behavioral educational objectives and working back to select objective-appropriate instructional strategies. However, this approach may miss effective strategies. Cognitive task analysis, on the other hand, breaks a process down into its component knowledge representations. Selection of instructional strategies based on all such representations in a domain is likely to lead to optimal instructional design. In this demonstration, using the interpretation of cervical spine x-rays as an educational example, we show how a detailed cognitive task analysis can guide the development of computer-aided instruction.
NASA Astrophysics Data System (ADS)
Allen, Emily Christine
Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.
ERIC Educational Resources Information Center
McMahan, Ethan A.; Estes, David
2011-01-01
Conceptions of well-being are cognitive representations of the nature and experience of well-being. These conceptions can be described generally by the degree to which hedonic and eudaimonic dimensions are emphasized as important aspects of the experience of well-being. In two studies, the prediction that eudaimonic dimensions of individual…
ERIC Educational Resources Information Center
Thompson, Carol; Kleine, Michael
2016-01-01
This essay explains pedagogical experiment at the University of Arkansas at Little Rock using a piece of literature as a case study to examine interpersonal-communication concepts and to emphasize a course theme of objectification of other human beings. The course, entitled Rhetoric and Communication, has two co-instructors. One instructor is from…
NASA Technical Reports Server (NTRS)
Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.
1981-01-01
A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.
ERIC Educational Resources Information Center
Sunyono; Yuanita, L.; Ibrahim, M.
2015-01-01
The aim of this research is identify the effectiveness of a multiple representation-based learning model, which builds a mental model within the concept of atomic structure. The research sample of 108 students in 3 classes is obtained randomly from among students of Mathematics and Science Education Studies using a stratified random sampling…
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2017-01-01
Prior research shows that multiple representations can enhance learning, provided that students make connections among them. We hypothesized that support for connection making is most effective in enhancing learning of domain knowledge if it helps students both in making sense of these connections and in becoming perceptually fluent in making…
What Students Choose to Do and Have to Say about Use of Multiple Representations in College Algebra
ERIC Educational Resources Information Center
Herman, Marlena
2007-01-01
This report summarizes findings on strategies chosen by students (n=38) when solving algebra problems related to various functions with the freedom to use a TI-83 graphing calculator, influences on student problem-solving strategy choices, student ability to approach algebra problems with use of multiple representations, and student beliefs on how…
ERIC Educational Resources Information Center
Nixon, Ryan S.; Smith, Leigh K.; Wimmer, Jennifer J.
2015-01-01
This quasi-experimental study investigated how explicit instruction about multiple modes of representation (MMR) impacted grades 7 (n = 61) and 8 (n = 141) students' learning and multimodal use on end-of-unit assessments. Half of each teacher's (n = 3) students received an intervention consisting of explicit instruction on MMR in science…
Learning with Multiple Representations: An Example of a Revision Lesson in Mathematics
ERIC Educational Resources Information Center
Wong, Darren; Poo, Sng Peng; Hock, Ng Eng; Kang, Wee Loo
2011-01-01
We describe an example of learning with multiple representations in an A-level revision lesson on mechanics. The context of the problem involved the motion of a ball thrown vertically upwards in air and studying how the associated physical quantities changed during its flight. Different groups of students were assigned to look at the ball's motion…
ERIC Educational Resources Information Center
Rau, Martina A.; Scheines, Richard
2012-01-01
Although learning from multiple representations has been shown to be effective in a variety of domains, little is known about the mechanisms by which it occurs. We analyzed log data on error-rate, hint-use, and time-spent obtained from two experiments with a Cognitive Tutor for fractions. The goal of the experiments was to compare learning from…
NASA Astrophysics Data System (ADS)
Suminar, Iin; Muslim, Liliawati, Winny
2017-05-01
The purpose of this research was to identify student's written argument embedded in scientific inqury investigation and argumentation skill using integrated argument-based inquiry with multiple representation approach. This research was using quasi experimental method with the nonequivalent pretest-posttest control group design. Sample ot this research was 10th grade students at one of High School in Bandung using two classes, they were 26 students of experiment class and 26 students of control class. Experiment class using integrated argument-based inquiry with multiple representation approach, while control class using argument-based inquiry. This study was using argumentation worksheet and argumentation test. Argumentation worksheet encouraged students to formulate research questions, design experiment, observe experiment and explain the data as evidence, construct claim, warrant, embedded multiple modus representation and reflection. Argumentation testinclude problem which asks students to explain evidence, warrants, and backings support of each claim. The result of this research show experiment class students's argumentation skill performed better than control class students that
Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation
Mur, Marieke; Meys, Mirjam; Bodurka, Jerzy; Goebel, Rainer; Bandettini, Peter A.; Kriegeskorte, Nikolaus
2013-01-01
Primate inferior temporal (IT) cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral-stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and non-human animals and between man-made and natural objects. hIT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual-feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions. PMID:23525516
A probabilistic approach to aircraft design emphasizing stability and control uncertainties
NASA Astrophysics Data System (ADS)
Delaurentis, Daniel Andrew
In order to address identified deficiencies in current approaches to aerospace systems design, a new method has been developed. This new method for design is based on the premise that design is a decision making activity, and that deterministic analysis and synthesis can lead to poor, or misguided decision making. This is due to a lack of disciplinary knowledge of sufficient fidelity about the product, to the presence of uncertainty at multiple levels of the aircraft design hierarchy, and to a failure to focus on overall affordability metrics as measures of goodness. Design solutions are desired which are robust to uncertainty and are based on the maximum knowledge possible. The new method represents advances in the two following general areas. 1. Design models and uncertainty. The research performed completes a transition from a deterministic design representation to a probabilistic one through a modeling of design uncertainty at multiple levels of the aircraft design hierarchy, including: (1) Consistent, traceable uncertainty classification and representation; (2) Concise mathematical statement of the Probabilistic Robust Design problem; (3) Variants of the Cumulative Distribution Functions (CDFs) as decision functions for Robust Design; (4) Probabilistic Sensitivities which identify the most influential sources of variability. 2. Multidisciplinary analysis and design. Imbedded in the probabilistic methodology is a new approach for multidisciplinary design analysis and optimization (MDA/O), employing disciplinary analysis approximations formed through statistical experimentation and regression. These approximation models are a function of design variables common to the system level as well as other disciplines. For aircraft, it is proposed that synthesis/sizing is the proper avenue for integrating multiple disciplines. Research hypotheses are translated into a structured method, which is subsequently tested for validity. Specifically, the implementation involves the study of the relaxed static stability technology for a supersonic commercial transport aircraft. The probabilistic robust design method is exercised resulting in a series of robust design solutions based on different interpretations of "robustness". Insightful results are obtained and the ability of the method to expose trends in the design space are noted as a key advantage.
Attitude Error Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2002-01-01
The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.
Fusing Quantitative Requirements Analysis with Model-based Systems Engineering
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven
2006-01-01
A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.
Do Knowledge-Component Models Need to Incorporate Representational Competencies?
ERIC Educational Resources Information Center
Rau, Martina Angela
2017-01-01
Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…
Drawing Connections across Conceptually Related Visual Representations in Science
ERIC Educational Resources Information Center
Hansen, Janice
2013-01-01
This dissertation explored beliefs about learning from multiple related visual representations in science, and compared beliefs to learning outcomes. Three research questions were explored: 1) What beliefs do pre-service teachers, non-educators and children have about learning from visual representations? 2) What format of presenting those…
Multimodal Literacies in Science: Currency, Coherence and Focus
ERIC Educational Resources Information Center
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of "RISE" advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are…
Student Difficulties Regarding Symbolic and Graphical Representations of Vector Fields
ERIC Educational Resources Information Center
Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke
2017-01-01
The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing,…
Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning
ERIC Educational Resources Information Center
Rau, Martina A.
2017-01-01
Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…
ERIC Educational Resources Information Center
McPadden, Daryl; Brewe, Eric
2017-01-01
Representation use is a critical skill for learning, problem solving, and communicating in science, especially in physics where multiple representations often scaffold the understanding of a phenomenon. University Modeling Instruction, which is an active-learning, research-based introductory physics curriculum centered on students' use of…
A Framework for Understanding Experiments
2008-06-01
operations. Experiments that emphasize free play and uncertainty in scenarios reflect conditions found in existent operations and satisfy external...validity Requirement 4, the ability to relate results. Conversely, experiments emphasizing similar conditions with diminished free play across multiple
Costall, A P
1984-01-01
Representational theories of perception postulate an isolated and autonomous "subject" set apart from its real environment, and then go on to invoke processes of mental representation, construction, or hypothesizing to explain how perception can nevertheless take place. Although James Gibson's most conspicuous contribution has been to challenge representational theory, his ultimate concern was the cognitivism which now prevails in psychology. He was convinced that the so-called cognitive revolution merely perpetuates, and even promotes, many of psychology's oldest mistakes. This review article considers Gibson's final statement of his "ecological" alternative to cognitivism (Gibson, 1979). It is intended not as a complete account of Gibson's alternative, however, but primarily as an appreciation of his critical contribution. Gibson's sustained attempt to counter representational theory served not only to reveal the variety of arguments used in support of this theory, but also to expose the questionable metaphysical assumptions upon which they rest. In concentrating upon Gibson's criticisms of representational theory, therefore, this paper aims to emphasize the point of his alternative scheme and to explain some of the important concerns shared by Gibson's ecological approach and operant psychology. PMID:6699538
Distributed representations in memory: Insights from functional brain imaging
Rissman, Jesse; Wagner, Anthony D.
2015-01-01
Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171
A familiarity disadvantage for remembering specific images of faces.
Armann, Regine G M; Jenkins, Rob; Burton, A Mike
2016-04-01
Familiar faces are remembered better than unfamiliar faces. Furthermore, it is much easier to match images of familiar than unfamiliar faces. These findings could be accounted for by quantitative differences in the ease with which faces are encoded. However, it has been argued that there are also some qualitative differences in familiar and unfamiliar face processing. Unfamiliar faces are held to rely on superficial, pictorial representations, whereas familiar faces invoke more abstract representations. Here we present 2 studies that show, for 1 task, an advantage for unfamiliar faces. In recognition memory, viewers are better able to reject a new picture, if it depicts an unfamiliar face. This rare advantage for unfamiliar faces supports the notion that familiarity brings about some representational changes, and further emphasizes the idea that theoretical accounts of face processing should incorporate familiarity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Schultes, Marie-Therese; Kollmayer, Marlene; Mejeh, Mathias; Spiel, Christiane
2018-06-15
Positive attitudes toward evaluation among stakeholders are an important precondition for successful evaluation processes. However, empirical studies focusing on stakeholders' attitudes toward evaluation are scarce. The present paper explores the approach of assessing social representations as indicators of people's attitudes toward evaluation. In an exploratory study, two groups were surveyed: University students (n = 60) with rather theoretical knowledge of evaluation and stakeholders (n = 61) who had shortly before taken part in participatory evaluation studies. Both groups were asked to name their free associations with the term "evaluation", which were subsequently analyzed lexicographically. The results indicate different social representations of evaluation in the two groups. The student group primarily saw evaluation as an "appraisal", whereas the stakeholders emphasized the "improvement" resulting from evaluation. Implications for further evaluation research and practice are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
The neuroscience of learning: beyond the Hebbian synapse.
Gallistel, C R; Matzel, Louis D
2013-01-01
From the traditional perspective of associative learning theory, the hypothesis linking modifications of synaptic transmission to learning and memory is plausible. It is less so from an information-processing perspective, in which learning is mediated by computations that make implicit commitments to physical and mathematical principles governing the domains where domain-specific cognitive mechanisms operate. We compare the properties of associative learning and memory to the properties of long-term potentiation, concluding that the properties of the latter do not explain the fundamental properties of the former. We briefly review the neuroscience of reinforcement learning, emphasizing the representational implications of the neuroscientific findings. We then review more extensively findings that confirm the existence of complex computations in three information-processing domains: probabilistic inference, the representation of uncertainty, and the representation of space. We argue for a change in the conceptual framework within which neuroscientists approach the study of learning mechanisms in the brain.
ERIC Educational Resources Information Center
Wichaidit, Patcharee Rompayom; Wichaidit, Sittichai
2016-01-01
Learning chemistry may be difficult for students for several reasons, such as the abstract nature of many chemistry concepts and the fact that students may view chemistry as irrelevant to their everyday lives. Teaching chemistry in familiar contexts and the use of multiple representations are seen as effective approaches for enhancing students'…
ERIC Educational Resources Information Center
Vinz, Ruth
Focusing on three literature teachers who have lived with and through the changing representations of the discipline, this paper, an examination of the nature of inquiry in literature education, describes the multiple realities that such teachers must negotiate for themselves and their students. The paper discusses conceptions of reflective…
Orienting Attention to Sound Object Representations Attenuates Change Deafness
ERIC Educational Resources Information Center
Backer, Kristina C.; Alain, Claude
2012-01-01
According to the object-based account of attention, multiple objects coexist in short-term memory (STM), and we can selectively attend to a particular object of interest. Although there is evidence that attention can be directed to visual object representations, the assumption that attention can be oriented to sound object representations has yet…
Research-Based Worksheets on Using Multiple Representations in Science Classrooms
ERIC Educational Resources Information Center
Hill, Matthew; Sharma, Manjula
2015-01-01
The ability to represent the world like a scientist is difficult to teach; it is more than simply knowing the representations (e.g., graphs, words, equations and diagrams). For meaningful science learning to take place, consideration needs to be given to explicitly integrating representations into instructional methods, linked to the content, and…
Tree-structured information file and its subprogram subtree
NASA Technical Reports Server (NTRS)
Mesztenyi, C. K.
1970-01-01
Development documentation programs are considered. A document tree is defined as the syntactic representation of a document when it is divided into subdivisions such as chapters and sections; a developmental tree is also defined as a tree of information obtained during the course of the development of the computer program. A developmental subtree is emphasized and described. A printed subprogram is also included.
ERIC Educational Resources Information Center
Kamarainen, Amy M.; Metcalf, Shari; Grotzer, Tina; Dede, Chris
2015-01-01
Recent reform efforts and the next generation science standards emphasize the importance of incorporating authentic scientific practices into science instruction. Modeling can be a particularly challenging practice to address because modeling occurs within a socially structured system of representation that is specific to a domain. Further, in the…
ERIC Educational Resources Information Center
Antink-Meyer, Allison; Brown, Ryan A.
2017-01-01
Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined…
Multivariate Density Estimation and Remote Sensing
NASA Technical Reports Server (NTRS)
Scott, D. W.
1983-01-01
Current efforts to develop methods and computer algorithms to effectively represent multivariate data commonly encountered in remote sensing applications are described. While this may involve scatter diagrams, multivariate representations of nonparametric probability density estimates are emphasized. The density function provides a useful graphical tool for looking at data and a useful theoretical tool for classification. This approach is called a thunderstorm data analysis.
Visual Image Sensor Organ Replacement: Implementation
NASA Technical Reports Server (NTRS)
Maluf, A. David (Inventor)
2011-01-01
Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.
Sparseness of vowel category structure: Evidence from English dialect comparison
Scharinger, Mathias; Idsardi, William J.
2014-01-01
Current models of speech perception tend to emphasize either fine-grained acoustic properties or coarse-grained abstract characteristics of speech sounds. We argue for a particular kind of 'sparse' vowel representations and provide new evidence that these representations account for the successful access of the corresponding categories. In an auditory semantic priming experiment, American English listeners made lexical decisions on targets (e.g. load) preceded by semantically related primes (e.g. pack). Changes of the prime vowel that crossed a vowel-category boundary (e.g. peck) were not treated as a tolerable variation, as assessed by a lack of priming, although the phonetic categories of the two different vowels considerably overlap in American English. Compared to the outcome of the same experiment with New Zealand English listeners, where such prime variations were tolerated, our experiment supports the view that phonological representations are important in guiding the mapping process from the acoustic signal to an abstract mental representation. Our findings are discussed with regard to current models of speech perception and recent findings from brain imaging research. PMID:24653528
Unified double- and single-sided homogeneous Green’s function representations
van der Neut, Joost; Slob, Evert
2016-01-01
In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983
Unified double- and single-sided homogeneous Green's function representations
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Slob, Evert
2016-06-01
In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.
2007-05-01
sufficient for explaining how theory -of- mind emerges in normally developing children . As confirmation of its plausibility, our theory explains the... autism . While there are a number of different substrate elements that we believe are operative during theory of mind computations, three elements in...15. SUBJECT TERMS PMESII, multiple representations, integrated reasoning, hybrid systems, social cognition, theory of mind 16. SECURITY
Elementary students' multiple representations of their ideas about air
NASA Astrophysics Data System (ADS)
Gravel, Brian Edward
This dissertation explores how students generate multiple external representations of their ideas about air, an "invisible" substance. External representations can serve a powerful role in placing students' ideas into the external world for reflection and abstraction. When provided the opportunity to represent their understandings of science in different ways, students generate increasingly coherent explanations of what they observe, including developing ideas about mechanisms that describe cause and effect. In this qualitative study, extended clinical interviews were conducted with twelve fifth-grade students from an urban public charter school. In study was designed to investigate students' ideas about air in the context of a linked-syringe device with the support of multiple representations. Students were given the opportunity to produce representations and to offer verbal explanations of the behavior of the syringes in a sequence of three interviews. In the first session, students were introduced to the linked-syringes, and they generated drawings to explain their thinking about air. In the second session, students created stop-motion animations of their explanations for air in the syringes. And in the final session, students built physical devices to demonstrate their ideas about air. Careful analysis of each individual student's trajectory through the microgenetic design and a cross-student analysis reveal that the process of generating multiple representations facilitates how students think and reason about air. Drawings served to organize elements of the linked-syringe problem, providing students with focal points on which to direct their reasoning as they generated more precise explanations. Stop-motion animation supported students' efforts to make sense of processes that change over time, such as compressing the air inside the syringes. And, the construction of physical artifacts prompted students to think about air as a substance, as the activity allowed them to generate analogous physical models of the linked syringes. Furthermore, the students' productions provided the researcher with enhanced access to the substance of students' ideas as captured in their representations. The results of this study are presented in case-study form to highlight how representations serve as embodiments of the resources that students possess for making sense of science. This dissertation contributes to the resources perspective of the importance of external representations in students' development of coherent explanations of what they observe.
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang;
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180
Redundant binary number representation for an inherently parallel arithmetic on optical computers.
De Biase, G A; Massini, A
1993-02-10
A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.
ERIC Educational Resources Information Center
Defeyter, Margaret Anne; Avons, S. E.; German, Tamsin C.
2007-01-01
Research suggests that while information about design is a central feature of older children's artifact representations it may be less important in the artifact representations of younger children. Three experiments explore the pattern of responses that 5- and 7-year-old children generate when asked to produce multiple uses for familiar…
ERIC Educational Resources Information Center
Rau, Martina A.
2018-01-01
To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…
The Effects of Multiple Linked Representations on Students' Learning of Linear Relationships
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
2004-01-01
The focus of this study was on comparing three groups of Algebra I 9th-year students: one group using linked representation software, the second group using similar software but with semi-linked representations, and the control group in order to examine the effects on students' understanding of linear relationships. Data collection methods…
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.
2011-01-01
Graphical representations (GRs) of the learning content are often used for instruction (Ainsworth, 2006). When used in learning technology, GRs can be especially useful since they allow for interactions across representations that are physically impossible, for instance by dragging and dropping symbolic statements into a chart that automatically…
,
1983-01-01
This standard establishes uniform formats for geographic point location data. Geographic point location refers to the use of a coordinate system to define the position of a point that may be on, above, or below the Earth's surface. It provides a means for representing these data in digital form for the purpose of interchanging information among data systems and improving clarity and accuracy of interpersonal communications. This document is an expansion and clarification of National Bureau of Standards FIPS PUB 70, issued October 24, 1980. There are minor editorial changes, plus the following additions and modifications: (I) The representation of latitude and longitude using radian measure was added. (2) Alternate 2 for Representation of Hemispheric Information was deleted. (3) Use of the maximum precision for all numerical values was emphasized. The Alternate Representation of Precision was deleted. (4) The length of the zone representation for the State Plane Coordinate System was standardized. (5) The term altitude was substituted for elevation throughout to conform with international usage. (6) Section 3, Specifications for Altitude Data, was expanded and upgraded significantly to the same level of detail as for the horizontal values. (7) A table delineating the coverage of Universal Transverse Mercator zones and the longitudes of the Central Meridians was added and the other tables renumbered. (8) The total length of the representation of point location data at maximum precision was standardized.
Children’s Imaginaries of Human-Robot Interaction in Healthcare
2018-01-01
This paper analyzes children’s imaginaries of Human-Robots Interaction (HRI) in the context of social robots in healthcare, and it explores ethical and social issues when designing a social robot for a children’s hospital. Based on approaches that emphasize the reciprocal relationship between society and technology, the analytical force of imaginaries lies in their capacity to be embedded in practices and interactions as well as to affect the construction and applications of surrounding technologies. The study is based on a participatory process carried out with six-year-old children for the design of a robot. Imaginaries of HRI are analyzed from a care-centered approach focusing on children’s values and practices as related to their representation of care. The conceptualization of HRI as an assemblage of interactions, the prospective bidirectional care relationships with robots, and the engagement with the robot as an entity of multiple potential robots are the major findings of this study. The study shows the potential of studying imaginaries of HRI, and it concludes that their integration in the final design of robots is a way of including ethical values in it. PMID:29757221
Children's Imaginaries of Human-Robot Interaction in Healthcare.
Vallès-Peris, Núria; Angulo, Cecilio; Domènech, Miquel
2018-05-12
This paper analyzes children’s imaginaries of Human-Robots Interaction (HRI) in the context of social robots in healthcare, and it explores ethical and social issues when designing a social robot for a children’s hospital. Based on approaches that emphasize the reciprocal relationship between society and technology, the analytical force of imaginaries lies in their capacity to be embedded in practices and interactions as well as to affect the construction and applications of surrounding technologies. The study is based on a participatory process carried out with six-year-old children for the design of a robot. Imaginaries of HRI are analyzed from a care-centered approach focusing on children’s values and practices as related to their representation of care. The conceptualization of HRI as an assemblage of interactions, the prospective bidirectional care relationships with robots, and the engagement with the robot as an entity of multiple potential robots are the major findings of this study. The study shows the potential of studying imaginaries of HRI, and it concludes that their integration in the final design of robots is a way of including ethical values in it.
Online evaluation of novel choices by simultaneous representation of multiple memories
Barron, Helen C; Dolan, Raymond J; Behrens, Timothy E J
2014-01-01
Prior experience plays a critical role in decision making. It enables explicit representation of potential outcomes and provides training to valuation mechanisms. However, we can also make choices in the absence of prior experience, by merely imagining the consequences of a new experience. Here, using fMRI repetition suppression in humans, we show how neuronal representations of novel rewards can be constructed and evaluated. A likely novel experience is constructed by invoking multiple independent memories within hippocampus and medial prefrontal cortex. This construction persists for only a short time period, during which new associations are observed between the memories for component items. Together these findings suggest that in the absence of direct experience, co-activation of multiple relevant memories can provide a training signal to the valuation system which allows the consequences of new experiences to be imagined and acted upon. PMID:24013592
Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex
Lafer-Sousa, Rosa; Conway, Bevil R.
2014-01-01
Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Geometrical interpretation for the outer SU(3) outer multiplicity label
NASA Technical Reports Server (NTRS)
Draayer, Jerry P.; Troltenier, D.
1995-01-01
A geometrical interpretation for the outer multiplicity rho that occurs in a reduction of the product of two SU(3) representations, (lambda(sub pi), mu(sub pi)) x (lambda(sub nu), mu(sub nu)) approaches sigma(sub rho)(lambda, mu)(sub rho), is introduced. This coupling of proton (pi) and neutron (nu) representations arises, for example, in both boson and fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises the possibility of introducing a simple interaction that provides a physically meaningful way for distinguishing multiple occurrences of (lambda, mu) values that can arise in such products.
Facilitating Multiple Intelligences through Multimodal Learning Analytics
ERIC Educational Resources Information Center
Perveen, Ayesha
2018-01-01
This paper develops a theoretical framework for employing learning analytics in online education to trace multiple learning variations of online students by considering their potential of being multiple intelligences based on Howard Gardner's 1983 theory of multiple intelligences. The study first emphasizes the need to facilitate students as…
ERIC Educational Resources Information Center
Danzer, Gerald A.
1992-01-01
Describes a woodcut of the earliest map printed in a vernacular language, circa 1480. Discusses the location and representation of paradise, the winds, rivers, the world sea and islands, countries, and cities. Emphasizes the map as a world view of the late Middle Ages representing the popular culture of the time. (DK)
NASA Astrophysics Data System (ADS)
Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey
2015-05-01
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
2015-05-28
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports
NASA Astrophysics Data System (ADS)
Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward
2009-11-01
This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.
Rassinoux, Anne-Marie; Baud, Robert H; Rodrigues, Jean-Marie; Lovis, Christian; Geissbühler, Antoine
2007-01-01
The importance of clinical communication between providers, consumers and others, as well as the requisite for computer interoperability, strengthens the need for sharing common accepted terminologies. Under the directives of the World Health Organization (WHO), an approach is currently being conducted in Australia to adopt a standardized terminology for medical procedures that is intended to become an international reference. In order to achieve such a standard, a collaborative approach is adopted, in line with the successful experiment conducted for the development of the new French coding system CCAM. Different coding centres are involved in setting up a semantic representation of each term using a formal ontological structure expressed through a logic-based representation language. From this language-independent representation, multilingual natural language generation (NLG) is performed to produce noun phrases in various languages that are further compared for consistency with the original terms. Outcomes are presented for the assessment of the International Classification of Health Interventions (ICHI) and its translation into Portuguese. The initial results clearly emphasize the feasibility and cost-effectiveness of the proposed method for handling both a different classification and an additional language. NLG tools, based on ontology driven semantic representation, facilitate the discovery of ambiguous and inconsistent terms, and, as such, should be promoted for establishing coherent international terminologies.
Mathematics Teacher Candidates' Skills of Using Multiple Representations for Division of Fractions
ERIC Educational Resources Information Center
Biber, Abdullah Çagri
2014-01-01
The aim of this study is to reveal teacher candidates' preference regarding uses of verbal, symbolic, number line, and/or model representations of fraction divisions, and to investigate their skill of transferring from one representation type to the others. Case study was used as the research method in this study. The case that is examined within…
ERIC Educational Resources Information Center
Brar, Rozy
2010-01-01
There is a strong push from within mathematics education reform to incorporate representations in math classrooms (Behr, Harel, Post, & Lesh, 1993; Kieren, 1993; NCTM, 2000). However, questions regarding what representations should be used (for a given topic) and how representations should be used (such that students gain a deep understanding of…
ERIC Educational Resources Information Center
Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke
2018-01-01
The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the…
ERIC Educational Resources Information Center
Einsiedler, Wolfgang
1996-01-01
Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…
What do we mean by prediction in language comprehension?
Kuperberg, Gina R.; Jaeger, T. Florian
2016-01-01
We consider several key aspects of prediction in language comprehension: its computational nature, the representational level(s) at which we predict, whether we use higher level representations to predictively pre-activate lower level representations, and whether we ‘commit’ in any way to our predictions, beyond pre-activation. We argue that the bulk of behavioral and neural evidence suggests that we predict probabilistically and at multiple levels and grains of representation. We also argue that we can, in principle, use higher level inferences to predictively pre-activate information at multiple lower representational levels. We also suggest that the degree and level of predictive pre-activation might be a function of the expected utility of prediction, which, in turn, may depend on comprehenders’ goals and their estimates of the relative reliability of their prior knowledge and the bottom-up input. Finally, we argue that all these properties of language understanding can be naturally explained and productively explored within a multi-representational hierarchical actively generative architecture whose goal is to infer the message intended by the producer, and in which predictions play a crucial role in explaining the bottom-up input. PMID:27135040
Güçlü, Umut; van Gerven, Marcel A J
2017-01-15
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.
Asymmetric translation between multiple representations in chemistry
NASA Astrophysics Data System (ADS)
Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II
2016-03-01
Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests that presenting concrete representations before abstract representations can increase the effectiveness of MR instruction; however, little work has been conducted on varying the order of different representations during instruction and the role of concreteness in assessment. In this study, we investigated the application of concreteness fading to MR instruction and assessment in teaching chemistry. In two experiments, undergraduate students in either introductory psychology courses or general chemistry courses were given MR instruction on phase changes using different orders of presentation and MR assessment questions based on the representations in the chemistry triplet. Our findings indicate that the order of presentation based on levels of concreteness in MR chemistry instruction is less important than implementation of comprehensive MR assessments. Even after MR instruction, students display an asymmetric understanding of the chemical phenomenon on the MR assessments. Greater emphasis on MR assessments may be an important component in MR instruction that effectively moves novices toward more expert MR understanding.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
ERIC Educational Resources Information Center
Westermann, Gert; Mareschal, Denis; Johnson, Mark H.; Sirois, Sylvain; Spratling, Michael W.; Thomas, Michael S. C.
2007-01-01
Neuroconstructivism is a theoretical framework focusing on the construction of representations in the developing brain. Cognitive development is explained as emerging from the experience-dependent development of neural structures supporting mental representations. Neural development occurs in the context of multiple interacting constraints acting…
Communication: Multiple-property-based diabatization for open-shell van der Waals molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C., E-mail: gerritg@theochem.ru.nl
2016-03-28
We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated formore » O{sub 2} − O{sub 2} in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.« less
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation
Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus
2014-01-01
Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires computational features trained through supervised learning to emphasize the behaviorally important categorical divisions prominently reflected in IT. PMID:25375136
Valentino, Kristin; Toth, Sheree L; Cicchetti, Dante
2009-08-01
This investigation addresses whether there are differences in the form and content of autobiographical memory recall as a function of maltreatment, and examines the roles of self-system functioning and psychopathology in autobiographical memory processes. Autobiographical memory for positive and negative nontraumatic events was evaluated among abused, neglected, and nonmaltreated school-aged children. Abused children's memories were more overgeneral and contained more negative self-representations than did those of the nonmaltreated children. Negative self-representations and depression were significantly related to overgeneral memory, but did not mediate the relation between abuse and overgeneral memory. The meaning of these findings for models of memory and for the development of overgenerality is emphasized. Moreover, the clinical implications of the current research are discussed.
bioWeb3D: an online webGL 3D data visualisation tool.
Pettit, Jean-Baptiste; Marioni, John C
2013-06-07
Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets.
Factors influencing infants’ ability to update object representations in memory
Moher, Mariko; Feigenson, Lisa
2013-01-01
Remembering persisting objects over occlusion is critical to representing a stable environment. Infants remember hidden objects at multiple locations and can update their representation of a hidden array when an object is added or subtracted. However, the factors influencing these updating abilities have received little systematic exploration. Here we examined the flexibility of infants’ ability to update object representations. We tested 11-month-olds in a looking-time task in which objects were added to or subtracted from two hidden arrays. Across five experiments, infants successfully updated their representations of hidden arrays when the updating occurred successively at one array before beginning at the other. But when updating required alternating between two arrays, infants failed. However, simply connecting the two arrays with a thin strip of foam-core led infants to succeed. Our results suggest that infants’ construal of an event strongly affects their ability to update memory representations of hidden objects. When construing an event as containing multiple updates to the same array, infants succeed, but when construing the event as requiring the revisiting and updating of previously attended arrays, infants fail. PMID:24049245
Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.
McLane, Sharon; Turley, James P
2009-11-14
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Complexity vs. unity in unilateral spatial neglect.
Rode, G; Fourtassi, M; Pagliari, C; Pisella, L; Rossetti, Y
Unilateral spatial neglect constitutes a heterogeneous syndrome characterized by two main entangled components: a contralesional bias of spatial attention orientation; and impaired building and/or exploration of mental representations of space. These two components are present in different subtypes of unilateral spatial neglect (visual, auditory, somatosensory, motor, allocentric, egocentric, personal, representational and productive manifestations). Detailed anatomical and clinical analyses of these conditions and their underlying disorders show the complexity of spatial cognitive deficits and the difficulty of proposing just one explanation. This complexity is in contrast, however, to the widely acknowledged effectiveness of rehabilitation of the various symptoms and subtypes of unilateral spatial neglect, exemplified in the case of prism adaptation. These common effects are reflections of the unity of the physiotherapeutic mechanisms behind the higher brain functions related to multisensory integration and spatial representations, whereas the paradoxical aspects of unilateral spatial neglect emphasize the need for a greater understanding of spatial cognitive disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Black, R. X.
2017-12-01
We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.
Using the Logarithm of Odds to Define a Vector Space on Probabilistic Atlases
Pohl, Kilian M.; Fisher, John; Bouix, Sylvain; Shenton, Martha; McCarley, Robert W.; Grimson, W. Eric L.; Kikinis, Ron; Wells, William M.
2007-01-01
The Logarithm of the Odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures. PMID:17698403
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
"To Veil the Threat of Terror": Afghan Women and the in the Imagery of the U.S. War on Terrorism
ERIC Educational Resources Information Center
Cloud, Dana L.
2004-01-01
This article explores the role of widely circulated images of Afghan people in building public support for the 2001-2002 U.S. war with Afghanistan. Emphasizing images of women, I argue that these representations participate in the more general category of "the clash of civilizations," which constitutes a verbal and a visual ideograph linked to the…
Object-oriented models of cognitive processing.
Mather, G
2001-05-01
Information-processing models of vision and cognition are inspired by procedural programming languages. Models that emphasize object-based representations are closely related to object-oriented programming languages. The concepts underlying object-oriented languages provide a theoretical framework for cognitive processing that differs markedly from that offered by procedural languages. This framework is well-suited to a system designed to deal flexibly with discrete objects and unpredictable events in the world.
ERIC Educational Resources Information Center
Hill, Natashia J.
2013-01-01
Presently the paucity of scholarship available is often unitary in nature and usually focuses on the lived experiences of African Americans principals in a predominately African American urban context and as well as emphasizes the necessity of same race principals for the purpose of mentorship and racial representation. Race and cultural identity…
Silva, Pedro; Garganta, Júlio; Araújo, Duarte; Davids, Keith; Aguiar, Paulo
2013-09-01
Previous research has proposed that team coordination is based on shared knowledge of the performance context, responsible for linking teammates' mental representations for collective, internalized action solutions. However, this representational approach raises many questions including: how do individual schemata of team members become reformulated together? How much time does it take for this collective cognitive process to occur? How do different cues perceived by different individuals sustain a general shared mental representation? This representational approach is challenged by an ecological dynamics perspective of shared knowledge in team coordination. We argue that the traditional shared knowledge assumption is predicated on 'knowledge about' the environment, which can be used to share knowledge and influence intentions of others prior to competition. Rather, during competitive performance, the control of action by perceiving surrounding informational constraints is expressed in 'knowledge of' the environment. This crucial distinction emphasizes perception of shared affordances (for others and of others) as the main communication channel between team members during team coordination tasks. From this perspective, the emergence of coordinated behaviours in sports teams is based on the formation of interpersonal synergies between players resulting from collective actions predicated on shared affordances.
The impact of representation format and task instruction on student understanding in science
NASA Astrophysics Data System (ADS)
Stephenson, Susan Raatz
The purpose of this study is to examine how representation format and task instructions impact student learning in a science domain. Learning outcomes were assessed via measures of mental model, declarative knowledge, and knowledge inference. Students were asked to use one of two forms of representation, either drawing or writing, during study of a science text. Further, instructions (summarize vs. explain) were varied to determine if students' intended use of the presentation influenced learning. Thus, this study used a 2 (drawing vs. writing) X 2 (summarize vs. explain) between-subjects design. Drawing was hypothesized to require integration across learning materials regardless of task instructions, because drawings (by definition) require learners to integrate new information into a visual representation. Learning outcomes associated with writing were hypothesized to depend upon task instructions: when asked to summarize, writing should result in reproduction of text; when asked to explain, writing should emphasize integration processes. Because integration processes require connecting and analyzing new and prior information, it also was predicted that drawing (across both conditions of task instructions) and writing (when combined the explain task instructions only) would result in increased metacognitive monitoring. Metacognitive monitoring was assessed indirectly via responses to metacognitive prompts interspersed throughout the study.
Solopchuk, Oleg; Alamia, Andrea; Dricot, Laurence; Duque, Julie; Zénon, Alexandre
2017-12-01
Neuroimaging studies have repeatedly emphasized the role of the supplementary motor area (SMA) in motor sequence learning, but interferential approaches have led to inconsistent findings. Here, we aimed to test the role of the SMA in motor skill learning by combining interferential and neuroimaging techniques. Sixteen subjects were trained on simple finger movement sequences for 4 days. Afterwards, they underwent two neuroimaging sessions, in which they executed both trained and novel sequences. Prior to entering the scanner, the subjects received inhibitory transcranial magnetic stimulation (TMS) over the SMA or a control site. Using multivariate fMRI analysis, we confirmed that motor training enhances the neural representation of motor sequences in the SMA, in accordance with previous findings. However, although SMA inhibition altered sequence representation (i.e. between-sequence decoding accuracy) in this area, behavioural performance remained unimpaired. Our findings question the causal link between the neuroimaging correlate of elementary motor sequence representation in the SMA and sequence generation, calling for a more thorough investigation of the role of this region in performance of learned motor sequences. Copyright © 2017 Elsevier Inc. All rights reserved.
Texture-Based Correspondence Display
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael
2004-01-01
Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.
ERIC Educational Resources Information Center
Unal, Hasan
2008-01-01
The importance of visualisation and multiple representations in mathematics has been stressed, especially in a context of problem solving. Hanna and Sidoli comment that "Diagrams and other visual representations have long been welcomed as heuristic accompaniments to proof, where they not only facilitate the understanding of theorems and their…
Distributed Representation of Visual Objects by Single Neurons in the Human Brain
Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.
2015-01-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044
Assessment of representational competence in kinematics
NASA Astrophysics Data System (ADS)
Klein, P.; Müller, A.; Kuhn, J.
2017-06-01
A two-tier instrument for representational competence in the field of kinematics (KiRC) is presented, designed for a standard (1st year) calculus-based introductory mechanics course. It comprises 11 multiple choice (MC) and 7 multiple true-false (MTF) questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical) expressions (1st tier). Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier). Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N =83 and N =46 , respectively), including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR 20 =0.86 ). Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions) and for the scope of content covered (e.g., choice of coordinate systems). Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students' representational competency in kinematics (and of its potential change). Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen's d ) varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination). The introduced method of test combination analysis can be applied to any test comprising two components for the purpose of finding effect size ranges.
Salter, Phia S.; Adams, Glenn
2016-01-01
A cultural-psychological analysis emphasizes the intentionality of everyday worlds: the idea that material products not only bear psychological traces of culturally constituted beliefs and desires, but also subsequently afford and promote culturally consistent understandings and actions. We applied this conceptual framework of mutual constitution in a research project using quantitative and qualitative approaches to understand the dynamic resonance between sociocultural variance in Black History Month (BHM) representations and the reproduction of racial inequality in the U.S. In studies 1 and 2, we considered whether mainstream BHM artifacts reflect the preferences and understandings of White Americans (i.e., psychological constitution of cultural worlds). Consistent with the psychological constitution hypothesis, White American participants reported more positive affect, better recognition, and greater liking for BHM representations from the schools where White Americans were the majority than BHM representations from the schools where Black students and other students of color were the majority. Moreover, as an indication of the identity relevance of BHM representations, White identification was more positively associated with judgments of positive affect and preference in response to BHM representations from White schools than BHM representations from the schools where Black students were in the majority. In studies 3 and 4, we considered whether BHM representations from different settings differentially afford support or opposition to anti-racism policies (i.e., cultural constitution of psychological experience). In support of the cultural constitution hypothesis, BHM representations typical of schools where Black students were in the majority were more effective at promoting support for anti-racism policies compared to BHM representations typical of predominately White schools and a control condition. This effect was mediated by the effect of (different) BHM representations on perception of racism. Together, these studies suggest that representations of Black History constitute cultural affordances that, depending on their source, can promote (or impede) perception of racism and anti-racism efforts. This research contributes to an emerging body of work examining the bidirectional, psychological importance of cultural products. We discuss implications for theorizing collective manifestations of mind. PMID:27621712
Teaching Multiplication and Multiplication Tables by the Application of Finger Multiplication
ERIC Educational Resources Information Center
Bahadir, Elif
2017-01-01
Developments in mathematics education tend to emphasize mathematics teaching with the help of activities that will allow the students to create these concepts rather than to make them memorize mathematical rules. The purpose of this study is to analyze the applicability of the application of multiplication with fingers developed by the researcher.…
Cherkasskaya, Eugenia; Rosario, Margaret
2017-11-01
The etiology of low female sexual desire, the most prevalent sexual complaint in women, is multi-determined, implicating biological and psychological factors, including women's early parent-child relationships and bodily self-representations. The current study evaluated a model that hypothesized that sexual body self-representations (sexual subjectivity, self-objectification, genital self-image) explain (i.e., mediate) the relation between internalized working models of parent-child relationships (attachment, separation-individuation, parental identification) and sexual desire in heterosexual women. We recruited 614 young, heterosexual women (M = 25.5 years, SD = 4.63) through social media. The women completed an online survey. Structural equation modeling was used. The hypotheses were supported in that the relation between internalized working models of parent-child relationships (attachment and separation-individuation) and sexual desire was mediated by sexual body self-representations (sexual body esteem, self-objectification, genital self-image). However, parental identification was not related significantly to sexual body self-representations or sexual desire in the model. Current findings demonstrated that understanding female sexual desire necessitates considering women's internalized working models of early parent-child relationships and their experiences of their bodies in a sexual context. Treatment of low or absent desire in women would benefit from modalities that emphasize early parent-child relationships as well as interventions that foster mind-body integration.
Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex
Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.
2015-01-01
Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A
2013-10-29
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexandre E [Chappaqua, NY; Gschwind, Michael K [Chappaqua, NY; Gunnels, John A [Yorktown Heights, NY
2012-08-28
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
A Theory Upon Origin of Implicit Musical Language.
Vas József, P
2015-11-30
The author suggests that the origin of musicality is implied in an implicit musical language every human being possesses in uterus due to a resonance and attunement with prenatal environment, mainly the mother. It is emphasized that ego-development and evolving implicit musical language can be regarded as parallel processes. To support this idea a lot of examples of musical representations are demonstrated by the author. Music is viewed as a tone of ego-functioning involving the musical representations of bodily and visceral senses, cross-modal perception, unity of sense of self, individual fate of ego, and tripolar and bipolar musical coping codes. Finally, a special form of music therapy is shown to illustrate how can implicit musical language be transformed into explicit language by virtue of participants' spontaneity, creativity, and playfulness.
A Theory Upon Origin of Implicit Musical Language
Vas József, P.
2015-01-01
The author suggests that the origin of musicality is implied in an implicit musical language every human being possesses in uterus due to a resonance and attunement with prenatal environment, mainly the mother. It is emphasized that ego-development and evolving implicit musical language can be regarded as parallel processes. To support this idea a lot of examples of musical representations are demonstrated by the author. Music is viewed as a tone of ego-functioning involving the musical representations of bodily and visceral senses, cross-modal perception, unity of sense of self, individual fate of ego, and tripolar and bipolar musical coping codes. Finally, a special form of music therapy is shown to illustrate how can implicit musical language be transformed into explicit language by virtue of participants’ spontaneity, creativity, and playfulness. PMID:26973966
Valentino, Kristin; Toth, Sheree L.; Cicchetti, Dante
2012-01-01
Background This investigation addresses whether there are differences in the form and content of autobiographical memory recall as a function of maltreatment, and examines the roles of self-system functioning and psychopathology in autobiographical memory processes. Methods Autobiographical memory for positive and negative nontraumatic events was evaluated among abused, neglected, and nonmaltreated school-aged children. Results Abused children’s memories were more overgeneral and contained more negative self-representations than did those of the nonmaltreated children. Negative self-representations and depression were significantly related to overgeneral memory, but did not mediate the relation between abuse and overgeneral memory. Conclusions The meaning of these findings for models of memory and for the development of overgenerality is emphasized. Moreover, the clinical implications of the current research are discussed. PMID:19490313
NASA Astrophysics Data System (ADS)
Waight, Noemi; Gillmeister, Kristina
2014-04-01
This study examined teachers' and students' initial conceptions of computer-based models—Flash and NetLogo models—and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry classrooms. Individual in-depth interviews were conducted with 32 students and 6 teachers. Findings revealed an interplay of complex factors that functioned as opportunities and obstacles in the implementation of technologies in science classrooms. Students revealed preferences for the Flash models as opposed to the open-ended NetLogo models. Altogether, due to lack of content and modeling background knowledge, students experienced difficulties articulating coherent and blended understandings of multiple representations. Concurrently, while the aesthetic and interactive features of the models were of great value, they did not sustain students' initial curiosity and opportunities to improve understandings about chemistry phenomena. Most teachers recognized direct alignment of the Flash model with their existing curriculum; however, the benefits were relegated to existing procedural and passive classroom practices. The findings have implications for pedagogical approaches that address the implementation of computer-based models, function of models, models as multiple representations and the role of background knowledge and cognitive load, and the role of teacher vision and classroom practices.
Incremental Implicit Learning of Bundles of Statistical Patterns
Qian, Ting; Jaeger, T. Florian; Aslin, Richard N.
2016-01-01
Forming an accurate representation of a task environment often takes place incrementally as the information relevant to learning the representation only unfolds over time. This incremental nature of learning poses an important problem: it is usually unclear whether a sequence of stimuli consists of only a single pattern, or multiple patterns that are spliced together. In the former case, the learner can directly use each observed stimulus to continuously revise its representation of the task environment. In the latter case, however, the learner must first parse the sequence of stimuli into different bundles, so as to not conflate the multiple patterns. We created a video-game statistical learning paradigm and investigated 1) whether learners without prior knowledge of the existence of multiple “stimulus bundles” — subsequences of stimuli that define locally coherent statistical patterns — could detect their presence in the input, and 2) whether learners are capable of constructing a rich representation that encodes the various statistical patterns associated with bundles. By comparing human learning behavior to the predictions of three computational models, we find evidence that learners can handle both tasks successfully. In addition, we discuss the underlying reasons for why the learning of stimulus bundles occurs even when such behavior may seem irrational. PMID:27639552
Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715
Online multi-modal robust non-negative dictionary learning for visual tracking.
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.
Multiple Intelligences for Differentiated Learning
ERIC Educational Resources Information Center
Williams, R. Bruce
2007-01-01
There is an intricate literacy to Gardner's multiple intelligences theory that unlocks key entry points for differentiated learning. Using a well-articulated framework, rich with graphic representations, Williams provides a comprehensive discussion of multiple intelligences. He moves the teacher and students from curiosity, to confidence, to…
NASA Technical Reports Server (NTRS)
Sponder, E W
1952-01-01
This report concerns the use of the Hurwitz determinants in defining boundaries of regions where oscillatory phenomena are to be stable or unstable. A simplification is suggested as an aid in reducing the computations usually required, although it is emphasized that point checks in the various regions defined are required using the complete set of Hurwitz determinants or some other complete stability determination.
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
bioWeb3D: an online webGL 3D data visualisation tool
2013-01-01
Background Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. Results An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Conclusions Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets. PMID:23758781
Vaughn, Brian E.; Waters, Theodore E. A.; Steele, Ryan D.; Roisman, Glenn I.; Bost, Kelly K.; Truitt, Warren; Waters, Harriet S.; Booth-LaForce, Cathryn
2016-01-01
Although attachment theory claims that early attachment representations reflecting the quality of the child’s “lived experiences” are maintained across developmental transitions, evidence that has emerged over the last decade suggests that the association between early relationship quality and adolescents’ attachment representations is fairly modest in magnitude. We used aspects of parenting beyond sensitivity over childhood and adolescence and early security to predict adolescents’ scripted attachment representations. At age 18 years, 673 participants from the NICHD Study of Early Child Care and Youth Development (SECCYD) completed the Attachment Script Assessment (ASA) from which we derived an assessment of secure base script knowledge. Measures of secure base support from childhood through age 15 years (e.g., parental monitoring of child activity, father presence in the home) were selected as predictors and accounted for an additional 8% of the variance in secure base script knowledge scores above and beyond direct observations of sensitivity and early attachment status alone, suggesting that adolescents’ scripted attachment representations reflect multiple domains of parenting. Cognitive and demographic variables also significantly increased predicted variance in secure base script knowledge by 2% each. PMID:27032953
Testing the exclusivity effect in location memory.
Clark, Daniel P A; Dunn, Andrew K; Baguley, Thom
2013-01-01
There is growing literature exploring the possibility of parallel retrieval of location memories, although this literature focuses primarily on the speed of retrieval with little attention to the accuracy of location memory recall. Baguley, Lansdale, Lines, and Parkin (2006) found that when a person has two or more memories for an object's location, their recall accuracy suggests that only one representation can be retrieved at a time (exclusivity). This finding is counterintuitive given evidence of non-exclusive recall in the wider memory literature. The current experiment explored the exclusivity effect further and aimed to promote an alternative outcome (i.e., independence or superadditivity) by encouraging the participants to combine multiple representations of space at encoding or retrieval. This was encouraged by using anchor (points of reference) labels that could be combined to form a single strongly associated combination. It was hypothesised that the ability to combine the anchor labels would allow the two representations to be retrieved concurrently, generating higher levels of recall accuracy. The results demonstrate further support for the exclusivity hypothesis, showing no significant improvement in recall accuracy when there are multiple representations of a target object's location as compared to a single representation.
Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming
2018-02-28
The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.
The conventionality of pictorial representation in interstellar messages
NASA Astrophysics Data System (ADS)
Vakoch, D. A.
2000-06-01
Pictorial messages have previously been advocated for interstellar communication because such messages are presumed to be capable of presenting information in a non-arbitrary and easily intelligible manner. In contrast to this view, pictorial messages actually represent information in a partially conventional way. This point is demonstrated by examining pictorial representations of human beings from a range of cultures. While such representations may be understood quite readily by individuals familiar with the conventions of a particular culture, to the uninitiated outsider, such representations can be unintelligible. In spite of the partially arbitrary nature of pictorial representation, we may be able to construct messages that would teach extraterrestrial intelligence (ETI) some of the conventions by which we view pictures. One such approach is to pair numerical information about geometrical objects with pictorial representations of the same objects. Problems of conventionality can also be addressed in part through use of (1) multiple representations of the same object, (2) contextual cues, (3) three- and four-dimensional representations and (4) non-visual representations.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Technical Reports Server (NTRS)
Kozimore, John; Habermann, Ted; Gordon, Sean; Powers, Lindsay
2016-01-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways.
Multiplicative Versus Additive Filtering for Spacecraft Attitude Determination
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2003-01-01
The absence of a globally nonsingular three-parameter representation of rotations forces attitude Kalman filters to estimate either a singular or a redundant attitude representation. We compare two filtering strategies using simplified kinematics and measurement models. Our favored strategy estimates a three-parameter representation of attitude deviations from a reference attitude specified by a higher- dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. We point out some disadvantages of the other strategy, which directly estimates the four-parameter quaternion representation.
Integrating multiple data sources for malware classification
Anderson, Blake Harrell; Storlie, Curtis B; Lane, Terran
2015-04-28
Disclosed herein are representative embodiments of tools and techniques for classifying programs. According to one exemplary technique, at least one graph representation of at least one dynamic data source of at least one program is generated. Also, at least one graph representation of at least one static data source of the at least one program is generated. Additionally, at least using the at least one graph representation of the at least one dynamic data source and the at least one graph representation of the at least one static data source, the at least one program is classified.
Reconceptualizing synergism and antagonism among multiple stressors.
Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D
2015-04-01
The potential for complex synergistic or antagonistic interactions between multiple stressors presents one of the largest uncertainties when predicting ecological change but, despite common use of the terms in the scientific literature, a consensus on their operational definition is still lacking. The identification of synergism or antagonism is generally straightforward when stressors operate in the same direction, but if individual stressor effects oppose each other, the definition of synergism is paradoxical because what is synergistic to one stressor's effect direction is antagonistic to the others. In their highly cited meta-analysis, Crain et al. (Ecology Letters, 11, 2008: 1304) assumed in situations with opposing individual effects that synergy only occurs when the cumulative effect is more negative than the additive sum of the opposing individual effects. We argue against this and propose a new systematic classification based on an additive effects model that combines the magnitude and response direction of the cumulative effect and the interaction effect. A new class of "mitigating synergism" is identified, where cumulative effects are reversed and enhanced. We applied our directional classification to the dataset compiled by Crain et al. (Ecology Letters, 11, 2008: 1304) to determine the prevalence of synergistic, antagonistic, and additive interactions. Compared to their original analysis, we report differences in the representation of interaction classes by interaction type and we document examples of mitigating synergism, highlighting the importance of incorporating individual stressor effect directions in the determination of synergisms and antagonisms. This is particularly pertinent given a general bias in ecology toward investigating and reporting adverse multiple stressor effects (double negative). We emphasize the need for reconsideration by the ecological community of the interpretation of synergism and antagonism in situations where individual stressor effects oppose each other or where cumulative effects are reversed and enhanced.
Representational Competence: Towards a Distributed and Embodied Cognition Account
ERIC Educational Resources Information Center
Pande, Prajakt; Chandrasekharan, Sanjay
2017-01-01
Multiple external representations (MERs) are central to the practice and learning of science, mathematics and engineering, as the phenomena and entities investigated and controlled in these domains are often not available for perception and action. MERs therefore play a twofold constitutive role in reasoning in these domains. Firstly, MERs stand…
On Transitions between Representations: The Role of Contextual Reasoning in Calculus Problem Solving
ERIC Educational Resources Information Center
Zazkis, Dov
2016-01-01
This article argues for a shift in how researchers discuss and examine students' uses and understandings of multiple representations within a calculus context. An extension of Zazkis, Dubinsky, and Dautermann's (1996) visualization/analysis framework to include contextual reasoning is proposed. Several examples that detail transitions between…
ERIC Educational Resources Information Center
Bull, Glen; Garofalo, Joe
2010-01-01
The ability to move from one representation of data to another is one of the key characteristics of expert mathematicians and scientists. Cloud computing will offer more opportunities to create and display multiple representations of data, making this skill even more important in the future. The advent of the Internet led to widespread…
Critiquing Borders: Teaching about Religions in a Postcolonial World
ERIC Educational Resources Information Center
Ramey, Steven W.
2006-01-01
In a postcolonial environment, our students will encounter multiple representations and diverse followers of various religions outside the classroom. Students need to think critically about the representations of all religions and recognize the humanity of all people. Too often, students leave courses discussing one or more world religions with an…
A Simple Method for Calculating Clebsch-Gordan Coefficients
ERIC Educational Resources Information Center
Klink, W. H.; Wickramasekara, S.
2010-01-01
This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…
The "Double Bind" of Re-presentation in Qualitative Research Methods.
ERIC Educational Resources Information Center
Smithmier, Angela
A current movement in qualitative research is a preoccupation with representation of the "other" (Denzin and Lincoln 1994). Feminists, critical theorists and postmodernists have questioned the dominant, legitimized social order and remained sensitive to the multiple issues related to and emanating from power. This paper briefly reviews the…
Probabilistic Graphical Model Representation in Phylogenetics
Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.
2014-01-01
Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
NASA Astrophysics Data System (ADS)
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-10-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific and abstract chemical representations and presenting them to 133 learners with low prior knowledge of the represented domain. The results provide insight into three separate mechanisms of learning with MER. (1) A memory (number of ideas reproduced) and (2) an accuracy (correctness of these ideas) effects occur when two representations are presented in a sequence. An accuracy and a (3) redundancy (number of redundant ideas remembered) effects occur when three representations are presented in a sequence. A necessary precondition for these effects is that descriptive formats are placed before depictive formats. The identified effects are analyzed in terms of the concept of cognitive dissonance.
ERIC Educational Resources Information Center
Chen, Hong-Ren; Chiang, Chih-Hao; Lin, Wen-Shan
2013-01-01
With the rapid progress in information technology, interactive whiteboards have become IT-integrated in teaching activities. The theory of multiple intelligences argues that every person possesses multiple intelligences, emphasizing learners' cognitive richness and the possible role of these differences in enhanced learning. This study is the…
Orientation-Enhanced Parallel Coordinate Plots.
Raidou, Renata Georgia; Eisemann, Martin; Breeuwer, Marcel; Eisemann, Elmar; Vilanova, Anna
2016-01-01
Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualization of multivariate data. However, for large datasets, the representation suffers from clutter due to overplotting. In this case, discerning the underlying data information and selecting specific interesting patterns can become difficult. We propose a new and simple technique to improve the display of PCPs by emphasizing the underlying data structure. Our Orientation-enhanced Parallel Coordinate Plots (OPCPs) improve pattern and outlier discernibility by visually enhancing parts of each PCP polyline with respect to its slope. This enhancement also allows us to introduce a novel and efficient selection method, the Orientation-enhanced Brushing (O-Brushing). Our solution is particularly useful when multiple patterns are present or when the view on certain patterns is obstructed by noise. We present the results of our approach with several synthetic and real-world datasets. Finally, we conducted a user evaluation, which verifies the advantages of the OPCPs in terms of discernibility of information in complex data. It also confirms that O-Brushing eases the selection of data patterns in PCPs and reduces the amount of necessary user interactions compared to state-of-the-art brushing techniques.
2013-01-01
There is considerable interest in the structural and functional properties of the angular gyrus (AG). Located in the posterior part of the inferior parietal lobule, the AG has been shown in numerous meta-analysis reviews to be consistently activated in a variety of tasks. This review discusses the involvement of the AG in semantic processing, word reading and comprehension, number processing, default mode network, memory retrieval, attention and spatial cognition, reasoning, and social cognition. This large functional neuroimaging literature depicts a major role for the AG in processing concepts rather than percepts when interfacing perception-to-recognition-to-action. More specifically, the AG emerges as a cross-modal hub where converging multisensory information is combined and integrated to comprehend and give sense to events, manipulate mental representations, solve familiar problems, and reorient attention to relevant information. In addition, this review discusses recent findings that point to the existence of multiple subdivisions in the AG. This spatial parcellation can serve as a framework for reporting AG activations with greater definition. This review also acknowledges that the role of the AG cannot comprehensibly be identified in isolation but needs to be understood in parallel with the influence from other regions. Several interesting questions that warrant further investigations are finally emphasized. PMID:22547530
Hernaus, Dennis; Gold, James M; Waltz, James A; Frank, Michael J
2018-04-03
While many have emphasized impaired reward prediction error signaling in schizophrenia, multiple studies suggest that some decision-making deficits may arise from overreliance on stimulus-response systems together with a compromised ability to represent expected value. Guided by computational frameworks, we formulated and tested two scenarios in which maladaptive representations of expected value should be most evident, thereby delineating conditions that may evoke decision-making impairments in schizophrenia. In a modified reinforcement learning paradigm, 42 medicated people with schizophrenia and 36 healthy volunteers learned to select the most frequently rewarded option in a 75-25 pair: once when presented with a more deterministic (90-10) pair and once when presented with a more probabilistic (60-40) pair. Novel and old combinations of choice options were presented in a subsequent transfer phase. Computational modeling was employed to elucidate contributions from stimulus-response systems (actor-critic) and expected value (Q-learning). People with schizophrenia showed robust performance impairments with increasing value difference between two competing options, which strongly correlated with decreased contributions from expected value-based learning (Q-learning). Moreover, a subtle yet consistent contextual choice bias for the probabilistic 75 option was present in people with schizophrenia, which could be accounted for by a context-dependent reward prediction error in the actor-critic. We provide evidence that decision-making impairments in schizophrenia increase monotonically with demands placed on expected value computations. A contextual choice bias is consistent with overreliance on stimulus-response learning, which may signify a deficit secondary to the maladaptive representation of expected value. These results shed new light on conditions under which decision-making impairments may arise. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks
Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel
2017-01-01
The “subsequent memory paradigm” is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential “subsequent memory effects” (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding. PMID:28194105
ERP Subsequent Memory Effects Differ between Inter-Item and Unitization Encoding Tasks.
Kamp, Siri-Maria; Bader, Regine; Mecklinger, Axel
2017-01-01
The "subsequent memory paradigm" is an analysis tool to identify brain activity elicited during episodic encoding that is associated with successful subsequent retrieval. Two commonly observed event-related potential "subsequent memory effects" (SMEs) are the parietal SME in the P300 time window and the frontal slow wave SME, but to date a clear characterization of the circumstances under which each SME is observed is missing. To test the hypothesis that the parietal SME occurs when aspects of an experience are unitized into a single item representation, while inter-item associative encoding is reflected in the frontal slow wave effect, participants were assigned to one of two conditions that emphasized one of the encoding types under otherwise matched study phases of a recognition memory experiment. Word pairs were presented either in the context of a definition that allowed to combine the word pairs into a new concept (unitization or item encoding) or together with a sentence frame (inter-item encoding). Performance on the recognition test did not differ between the groups. The parietal SME was only found in the definition group, supporting the idea that this SME occurs when the components of an association are integrated in a unitized item representation. An early prefrontal negativity also exhibited an SME only in this group, suggesting that the formation of novel units occurs through interactions of multiple brain areas. The frontal slow wave SME was pronounced in both groups and may thus reflect processes generally involved in encoding of associations. Our results provide evidence for a partial dissociation of the eliciting conditions of the two types of SMEs and therefore provide a tool for future studies to characterize the different types of episodic encoding.
Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells.
Trimper, John B; Trettel, Sean G; Hwaun, Ernie; Colgin, Laura Lee
2017-01-01
At rest, hippocampal "place cells," neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These "replay" events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay.
New perspectives on the auditory cortex: learning and memory.
Weinberger, Norman M
2015-01-01
Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.
Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location
Kanwisher, Nancy
2012-01-01
The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex—important for stable object recognition and action—contains information about retinotopic and/or spatiotopic object position. Using functional magnetic resonance imaging multivariate pattern analysis techniques, we found information about both object category and object location in each of the ventral, dorsal, and early visual regions tested, replicating previous reports. By manipulating fixation position and stimulus position, we then tested whether these location representations were retinotopic or spatiotopic. Crucially, all location information was purely retinotopic. This pattern persisted when location information was irrelevant to the task, and even when spatiotopic (not retinotopic) stimulus position was explicitly emphasized. We also conducted a “searchlight” analysis across our entire scanned volume to explore additional cortex but again found predominantly retinotopic representations. The lack of explicit spatiotopic representations suggests that spatiotopic object position may instead be computed indirectly and continually reconstructed with each eye movement. Thus, despite our subjective impression that visual information is spatiotopic, even in higher level visual cortex, object location continues to be represented in retinotopic coordinates. PMID:22190434
Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui
2015-10-30
Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.
Bidirectional associations in multiplication memory: conditions of negative and positive transfer.
Campbell, Jamie I D; Robert, Nicole D
2008-05-01
A variety of experimental evidence indicates that the memory representation for multiplication facts (e.g., 6 x 9 = 54) incorporates bidirectional links with a forward association from factors to product and a reverse association from product to factors. Surprisingly, the authors did not find evidence in Experiment 1 of facilitative transfer-of-practice from multiplication (6 x 9 = ?) to factoring (54 = ? x ?); in fact, multiplication practice produced item-specific interference with factoring. Similarly, the authors found no evidence in Experiment 2 that repetition of specific factoring problems (54 = ? x ?) facilitated performance of corresponding multiplication problems (6 x 9 = ?). In Experiment 3, participants practiced both multiplication and factoring and presented facilitative transfer in both directions. Thus, bidirectional facilitation occurred if both operations were practiced, but interference occurred when only one operation was practiced. We propose that this seemingly paradoxical behavior occurs because it is adaptive for the bidirectional retrieval structure to retain operational flexibility in the context of practicing both operations, whereas it is adaptive to specialize the memory representation for the practiced operation (i.e., factoring or multiplication) when only one operation is practiced.
Haberman, Jason; Brady, Timothy F; Alvarez, George A
2015-04-01
Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. (c) 2015 APA, all rights reserved).
A Representation for Gaining Insight into Clinical Decision Models
Jimison, Holly B.
1988-01-01
For many medical domains uncertainty and patient preferences are important components of decision making. Decision theory is useful as a representation for such medical models in computer decision aids, but the methodology has typically had poor performance in the areas of explanation and user interface. The additional representation of probabilities and utilities as random variables serves to provide a framework for graphical and text insight into complicated decision models. The approach allows for efficient customization of a generic model that describes the general patient population of interest to a patient- specific model. Monte Carlo simulation is used to calculate the expected value of information and sensitivity for each model variable, thus providing a metric for deciding what to emphasize in the graphics and text summary. The computer-generated explanation includes variables that are sensitive with respect to the decision or that deviate significantly from what is typically observed. These techniques serve to keep the assessment and explanation of the patient's decision model concise, allowing the user to focus on the most important aspects for that patient.
Distributed representation of visual objects by single neurons in the human brain.
Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N
2015-04-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.
ERIC Educational Resources Information Center
Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido
1997-01-01
Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…
Multiple Intelligences: Its Tensions and Possibilities
ERIC Educational Resources Information Center
Eisner, Elliot W.
2004-01-01
This article explores the tensions between Howard Gardner's theory of multiple intelligences and current educational policies emphasizing standardized and predictable outcomes. The article situates Gardner's theory within the historical interests among psychometricians in identifying those core processes that constitute human intelligence.…
Pedagogical Affordances of Multiple External Representations in Scientific Processes
NASA Astrophysics Data System (ADS)
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-12-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
Karakowsky, L; Siegel, J P
1999-08-01
Much of the research that has examined the behavioral consequences of membership in mixed-gender work groups suggests that men are more participative and influential in task-related behavior. Drawing from elements of sociological, structural, and psychological perspectives, this study examined the effects of group gender composition and gender orientation of the group's task on patterns of emergent leadership behavior. Participants were assigned to male-dominated, female-dominated, or balanced-gender groups for the purpose of discussing and generating solutions for two business-related cases--each case emphasized either male-oriented or female-oriented expertise. The findings suggest that the proportional representation of men and women in a work group, along with the gender orientation of the group's task, can significantly influence the level of leadership behavior exhibited in group activity.
"What's in a structure?" The story of biguanides
NASA Astrophysics Data System (ADS)
Kathuria, Deepika; Bankar, Apoorva A.; Bharatam, Prasad V.
2018-01-01
Biguanides are a very interesting class of molecules which have been extensively studied for their medicinal applications. The structural and electronic structural aspects of biguanides have been explored in detail; however, even today, scientific literature continues to represent biguanides incorrectly as 1a. The X-ray crystal structure analysis and various spectroscopic studies such as UV, 1H and 15N NMR have confirmed that biguanide exists as tautomer 1b. Electronic structure analysis also supports the existence of 1b. This review focuses on the structure and electronic structure of biguanides and aims to emphasize the importance of the correct representation of a structure. There is a need to commence the use of 1b for the general representation of biguanides in textbooks and research articles which will ensure a correct perspective for further studies on these molecules.
Implicit Self-Importance in an Interpersonal Pronoun Categorization Task.
Fetterman, Adam K; Robinson, Michael D; Gilbertson, Elizabeth P
2014-06-01
Object relations theories emphasize the manner in which the salience/importance of implicit representations of self and other guide interpersonal functioning. Two studies and a pilot test (total N = 304) sought to model such representations. In dyadic contexts, the self is a "you" and the other is a "me", as verified in a pilot test. Study 1 then used a simple categorization task and found evidence for implicit self-importance: The pronoun "you" was categorized more quickly and accurately when presented in a larger font size, whereas the pronoun "me" was categorized more quickly and accurately when presented in a smaller font size. Study 2 showed that this pattern possesses value in understanding individual differences in interpersonal functioning. As predicted, arrogant people scored higher in implicit self-importance in the paradigm. Findings are discussed from the perspective of dyadic interpersonal dynamics.
NASA Astrophysics Data System (ADS)
Tippett, Christine Diane
Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed-methods verification study that was conducted to refine and validate the theoretical framework. This study examined middle school students' representational competence and focused on students' creation of visual representations such as labelled diagrams, a form of representation commonly found in science information texts and textbooks. An analysis of the 31 Grade 6 participants' representations and semistructured interviews revealed five themes, each of which supports one or more dimensions of the exploratory framework: participants' use of color, participants' choice of representation (form and function), participants' method of planning for representing, participants' knowledge of conventions, and participants' selection of information to represent. Together, the results of these three projects highlight the need for further research on learning with rather than learning from representations.
ERIC Educational Resources Information Center
Corradi, David M. J.; Elen, Jan; Schraepen, Beno; Clarebout, Geraldine
2014-01-01
When learning with abstract and scientific multiple external representations (MERs), low prior knowledge learners are said to have difficulties in using these MERs to achieve conceptual understanding. Yet little is known about what these limitations precisely entail. In order to understand this, we presented 101 learners with low prior knowledge…
Selection of a Man-Modelling CAD (Computer-Aided Design),
1985-09-01
OPTIONS link-length input options internal dimensions - V V external dimensions V V V percentile values V V V absolute values (mm) V V/ V somatotypes V...specific data .035 A3 somatotype representation .020 A4 a-typical postures possible .035 * A5 flesh contour representation .040 A6 multiple number of
A Study of Pre-Service Teachers Use of Representations in Their Proportional Reasoning
ERIC Educational Resources Information Center
Johnson, Kim
2017-01-01
Proportional reasoning is important to the field of mathematics education because it lies at the crossroads of additive reasoning in the elementary school and multiplicative reasoning needed for more advanced mathematics. This research reports on the representations used by pre-service teachers (PSTs) as they responded to tasks involving…
Effect of Algorithms' Multiple Representations in the Context of Programming Education
ERIC Educational Resources Information Center
Siozou, Stefania; Tselios, Nikolaos; Komis, Vassilis
2008-01-01
Purpose: The purpose of this paper is to compare the effect of different representations while teaching basic algorithmic concepts to novice programmers. Design/methodology/approach: A learning activity was designed and mediated with two conceptually different learning environments, each one used by a different group. The first group used the…
Unitary vs Multiple Semantics: PET Studies of Word and Picture Processing
ERIC Educational Resources Information Center
Bright, P.; Moss, H.; Tyler, L. K.
2004-01-01
In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990;…
ERIC Educational Resources Information Center
Li, Na; Black, John B.
2016-01-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences…
Impact of Context and Representation on Year 10 Students' Expression of Conceptions of Rate
ERIC Educational Resources Information Center
Herbert, Sandra
2010-01-01
Rate is an important, but difficult mathematical concept. More than twenty years of research, especially with calculus students, report difficulties with this concept. This paper reports on an alternative analysis, from the perspective of multiple representations and context, of interviews probing twenty Victorian Year 10 students' conceptions of…
ERIC Educational Resources Information Center
Gebre, Engida H.; Polman, Joseph L.
2016-01-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and…
ERIC Educational Resources Information Center
Nichols, Kim; Hanan, Jim; Ranasinghe, Muditha
2013-01-01
This study used an interactive dynamic simulation of action potential to explore social practices of learning among first year undergraduate biology students. It aimed to create a learning environment that fosters knowledge building discourse through working with multiple concept-specific representations. Three hundred and eighty-nine students and…
Developing Box Plots While Navigating the Maze of Data Representations
ERIC Educational Resources Information Center
Duncan, Bruce; Fitzallen, Noleine
2013-01-01
The learning sequence described in this article was developed to provide students with a demonstration of the development of box plots from authentic data as an illustration of the advantages gained from using multiple forms of data representation. The sequence follows an authentic process that starts with a problem to which data representations…
ERIC Educational Resources Information Center
Sturge-Apple, Melissa L.; Davies, Patrick T.; Winter, Marcia A.; Cummings, E. Mark; Schermerhorn, Alice
2008-01-01
This study examined how children's insecure internal representations of interparental and parent-child relationships served as explanatory mechanisms in multiple pathways linking interparental conflict and parent emotional unavailability with the emotional and classroom engagement difficulties the children had in their adjustment to school. With…
Identity from Variation: Representations of Faces Derived from Multiple Instances
ERIC Educational Resources Information Center
Burton, A. Mike; Kramer, Robin S. S.; Ritchie, Kay L.; Jenkins, Rob
2016-01-01
Research in face recognition has tended to focus on discriminating between individuals, or "telling people apart." It has recently become clear that it is also necessary to understand how images of the same person can vary, or "telling people together." Learning a new face, and tracking its representation as it changes from…
The Role of Multiple Representations in the Understanding of Ideal Gas Problems
ERIC Educational Resources Information Center
Madden, Sean P.; Jones, Loretta L.; Rahm, Jrene
2011-01-01
This study examined the representational competence of students as they solved problems dealing with the temperature-pressure relationship for ideal gases. Seven students enrolled in a first-semester general chemistry course and two advanced undergraduate science majors participated in the study. The written work and transcripts from videotaped…
ERIC Educational Resources Information Center
Dündar, Sefa
2015-01-01
Using multiple representations of a problem can reveal the relationship between complex concepts by expressing the same mathematical condition differently and can contribute to the meaningful learning of mathematical concepts. The purpose of this study is to assess the performances of mathematics teacher-candidates on trigonometry problems…
NASA Astrophysics Data System (ADS)
Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke
2018-01-01
The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the other hand, pragmatist theories on how continuity between the purposes of different inquiry activities can be sustained. Data consist of 10 videotaped and transcribed lessons with 14-year-old students (N = 26) in Sweden. The analysis focused instances where meaning of representations was negotiated. Findings indicate that continuity is established in multiple ways, for example, as the use of metaphors articulated as an interlanguage expression that enables the students (and the teacher) to maintain the conversation and explain pressing issues in ways that support of the end-in-view of the immediate action. Continuity is also established between every day and scientific registers and between organisation levels as well as between the smaller parts and the whole system.
Chen, Qi; Mirman, Daniel
2012-04-01
One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.
Generative Representations for Evolving Families of Designs
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2003-01-01
Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.
Feynman formulas for semigroups generated by an iterated Laplace operator
NASA Astrophysics Data System (ADS)
Buzinov, M. S.
2017-04-01
In the present paper, we find representations of a one-parameter semigroup generated by a finite sum of iterated Laplace operators and an additive perturbation (the potential). Such semigroups and the evolution equations corresponding to them find applications in the field of physics, chemistry, biology, and pattern recognition. The representations mentioned above are obtained in the form of Feynman formulas, i.e., in the form of a limit of multiple integrals as the multiplicity tends to infinity. The term "Feynman formula" was proposed by Smolyanov. Smolyanov's approach uses Chernoff's theorems. A simple form of representations thus obtained enables one to use them for numerical modeling the dynamics of the evolution system as a method for the approximation of solutions of equations. The problems considered in this note can be treated using the approach suggested by Remizov (see also the monograph of Smolyanov and Shavgulidze on path integrals). The representations (of semigroups) obtained in this way are more complicated than those given by the Feynman formulas; however, it is possible to bypass some analytical difficulties.
A knowledge base of the chemical compounds of intermediary metabolism.
Karp, P D
1992-08-01
This paper describes a publicly available knowledge base of the chemical compounds involved in intermediary metabolism. We consider the motivations for constructing a knowledge base of metabolic compounds, the methodology by which it was constructed, and the information that it currently contains. Currently the knowledge base describes 981 compounds, listing for each: synonyms for its name, a systematic name, CAS registry number, chemical formula, molecular weight, chemical structure and two-dimensional display coordinates for the structure. The Compound Knowledge Base (CompoundKB) illustrates several methodological principles that should guide the development of biological knowledge bases. I argue that biological datasets should be made available in multiple representations to increase their accessibility to end users, and I present multiple representations of the CompoundKB (knowledge base, relational data base and ASN. 1 representations). I also analyze the general characteristics of these representations to provide an understanding of their relative advantages and disadvantages. Another principle is that the error rate of biological data bases should be estimated and documented-this analysis is performed for the CompoundKB.
Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition
Uddin, Lucina Q.; Davies, Mari S.; Scott, Ashley A.; Zaidel, Eran; Bookheimer, Susan Y.; Iacoboni, Marco; Dapretto, Mirella
2008-01-01
Background Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored. Methodology/Principal Findings We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made “self/other” judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face. Conclusions/Significance This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others. PMID:18958161
Representation control increases task efficiency in complex graphical representations.
Moritz, Julia; Meyerhoff, Hauke S; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients.
Representation control increases task efficiency in complex graphical representations
Meyerhoff, Hauke S.; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients. PMID:29698443
The Differential Role of Verbal and Spatial Working Memory in the Neural Basis of Arithmetic
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2014-01-01
We examine the relations of verbal and spatial WM ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems. PMID:25144257
Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search.
Liu, Xianglong; Deng, Cheng; Lang, Bo; Tao, Dacheng; Li, Xuelong
2016-02-01
Recent years have witnessed the success of binary hashing techniques in approximate nearest neighbor search. In practice, multiple hash tables are usually built using hashing to cover more desired results in the hit buckets of each table. However, rare work studies the unified approach to constructing multiple informative hash tables using any type of hashing algorithms. Meanwhile, for multiple table search, it also lacks of a generic query-adaptive and fine-grained ranking scheme that can alleviate the binary quantization loss suffered in the standard hashing techniques. To solve the above problems, in this paper, we first regard the table construction as a selection problem over a set of candidate hash functions. With the graph representation of the function set, we propose an efficient solution that sequentially applies normalized dominant set to finding the most informative and independent hash functions for each table. To further reduce the redundancy between tables, we explore the reciprocal hash tables in a boosting manner, where the hash function graph is updated with high weights emphasized on the misclassified neighbor pairs of previous hash tables. To refine the ranking of the retrieved buckets within a certain Hamming radius from the query, we propose a query-adaptive bitwise weighting scheme to enable fine-grained bucket ranking in each hash table, exploiting the discriminative power of its hash functions and their complement for nearest neighbor search. Moreover, we integrate such scheme into the multiple table search using a fast, yet reciprocal table lookup algorithm within the adaptive weighted Hamming radius. In this paper, both the construction method and the query-adaptive search method are general and compatible with different types of hashing algorithms using different feature spaces and/or parameter settings. Our extensive experiments on several large-scale benchmarks demonstrate that the proposed techniques can significantly outperform both the naive construction methods and the state-of-the-art hashing algorithms.
Is Hypovitaminosis D One of the Environmental Risk Factors for Multiple Sclerosis?
ERIC Educational Resources Information Center
Pierrot-Deseilligny, Charles; Souberbielle, Jean-Claude
2010-01-01
The role of hypovitaminosis D as a possible risk factor for multiple sclerosis is reviewed. First, it is emphasized that hypovitaminosis D could be only one of the risk factors for multiple sclerosis and that numerous other environmental and genetic risk factors appear to interact and combine to trigger the disease. Secondly, the classical…
Multiple time-scales and the developmental dynamics of social systems
Flack, Jessica C.
2012-01-01
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819
Wood, Guilherme; Nuerk, Hans-Christoph; Moeller, Korbinian; Geppert, Barbara; Schnitker, Ralph; Weber, Jochen; Willmes, Klaus
2008-01-02
Number processing recruits a complex network of multiple numerical representations. Usually the components of this network are examined in a between-task approach with the disadvantage of relying upon different instructions, tasks, and inhomogeneous stimulus sets across different studies. A within-task approach may avoid these disadvantages and access involved numerical representations more specifically. In the present study we employed a within-task approach to investigate numerical representations activated in the number bisection task (NBT) using parametric rapid event-related fMRI. Participants were to judge whether the central number of a triplet was also its arithmetic mean (e.g. 23_26_29) or not (e.g. 23_25_29). Activation in the left inferior parietal cortex was associated with the deployment of arithmetic fact knowledge, while activation of the intraparietal cortex indicated more intense magnitude processing, instrumental aspects of calculation and integration of the base-10 structure of two-digit numbers. These results replicate evidence from the literature. Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex revealed mechanisms of feature monitoring and inhibition as well as allocation of cognitive resources recruited to solve a specific triplet. We conclude that the network of numerical representations should rather be studied in a within-task approach than in varying between-task approaches.
Multiple time-scales and the developmental dynamics of social systems.
Flack, Jessica C
2012-07-05
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.; Alam, Mohammed S.
1998-07-01
Highly-efficient two-step recoded and one-step nonrecoded trinary signed-digit (TSD) carry-free adders subtracters are presented on the basis of redundant-bit representation for the operands digits. It has been shown that only 24 (30) minterms are needed to implement the two-step recoded (the one-step nonrecoded) TSD addition for any operand length. Optical implementation of the proposed arithmetic can be carried out by use of correlation- or matrix-multiplication-based schemes, saving 50% of the system memory. Furthermore, we present four different multiplication designs based on our proposed recoded and nonrecoded TSD adders. Our multiplication designs require a small number of reduced minterms to generate the multiplication partial products. Finally, a recently proposed pipelined iterative-tree algorithm can be used in the TSD adders multipliers; consequently, efficient use of all available adders can be made.
Cherri, A K; Alam, M S
1998-07-10
Highly-efficient two-step recoded and one-step nonrecoded trinary signed-digit (TSD) carry-free adders-subtracters are presented on the basis of redundant-bit representation for the operands' digits. It has been shown that only 24 (30) minterms are needed to implement the two-step recoded (the one-step nonrecoded) TSD addition for any operand length. Optical implementation of the proposed arithmetic can be carried out by use of correlation- or matrix-multiplication-based schemes, saving 50% of the system memory. Furthermore, we present four different multiplication designs based on our proposed recoded and nonrecoded TSD adders. Our multiplication designs require a small number of reduced minterms to generate the multiplication partial products. Finally, a recently proposed pipelined iterative-tree algorithm can be used in the TSD adders-multipliers; consequently, efficient use of all available adders can be made.
Hosseinbor, A. Pasha; Chung, Moo K.; Koay, Cheng Guan; Schaefer, Stacey M.; van Reekum, Carien M.; Schmitz, Lara Peschke; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.
2015-01-01
Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneously parameterize multiple disjoint structures. In such a situation, SPHARM has to be applied separately to each individual structure. We present a novel surface parameterization technique using 4D hyperspherical harmonics in representing multiple disjoint objects as a single analytic function, terming it HyperSPHARM. The underlying idea behind Hyper-SPHARM is to stereographically project an entire collection of disjoint 3D objects onto the 4D hypersphere and subsequently simultaneously parameterize them with the 4D hyperspherical harmonics. Hence, HyperSPHARM allows for a holistic treatment of multiple disjoint objects, unlike SPHARM. In an imaging dataset of healthy adult human brains, we apply HyperSPHARM to the hippocampi and amygdalae. The HyperSPHARM representations are employed as a data smoothing technique, while the HyperSPHARM coefficients are utilized in a support vector machine setting for object classification. HyperSPHARM yields nearly identical results as SPHARM, as will be shown in the paper. Its key advantage over SPHARM lies computationally; Hyper-SPHARM possess greater computational efficiency than SPHARM because it can parameterize multiple disjoint structures using much fewer basis functions and stereographic projection obviates SPHARM's burdensome surface flattening. In addition, HyperSPHARM can handle any type of topology, unlike SPHARM, whose analysis is confined to topologically invariant structures. PMID:25828650
Excitatory Local Interneurons Enhance Tuning of Sensory Information
Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim
2012-01-01
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661
Examining student heuristic usage in a hydrogen bonding assessment.
Miller, Kathryn; Kim, Thomas
2017-09-01
This study investigates the role of representational competence in student responses to an assessment of hydrogen bonding. The assessment couples the use of a multiple-select item ("Choose all that apply") with an open-ended item to allow for an examination of students' cognitive processes as they relate to the assignment of hydrogen bonding within a structural representation. Response patterns from the multiple-select item implicate heuristic usage as a contributing factor to students' incorrect responses. The use of heuristics is further supported by the students' corresponding responses to the open-ended assessment item. Taken together, these data suggest that poor representational competence may contribute to students' previously observed inability to correctly navigate the concept of hydrogen bonding. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):411-416, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Predicting perceptual quality of images in realistic scenario using deep filter banks
NASA Astrophysics Data System (ADS)
Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang
2018-03-01
Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.
Transductive multi-view zero-shot learning.
Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang
2015-11-01
Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.
'How many female scientists do you know?'.
Jones, Robert A
2005-06-01
The stereotypical scientist wears a lab-coat, is often eccentric and is usually male. Images of female scientists in popular culture remain rare. Some of the first portrayals of women in science occurred in a handful of British films made during the 1950s and 1960s. These films reflected the difficulties experienced by women in science at the time, but they might also explain why representations of female scientists in film continue to downplay their role as scientists and emphasize their identity as women.
A unified theory of development: a dialectic integration of nature and nurture.
Sameroff, Arnold
2010-01-01
The understanding of nature and nurture within developmental science has evolved with alternating ascendance of one or the other as primary explanations for individual differences in life course trajectories of success or failure. A dialectical perspective emphasizing the interconnectedness of individual and context is suggested to interpret the evolution of developmental science in similar terms to those necessary to explain the development of individual children. A unified theory of development is proposed to integrate personal change, context, regulation, and representational models of development.
ERIC Educational Resources Information Center
Son, Ji-Won; Lee, Ji-Eun
2016-01-01
Despite the importance of teacher fractional knowledge, there are several areas of teacher understanding that are not well understood. The purpose of this study was to characterise profiles of pre-service teachers' (PSTs) mathematical competence on the topic of fraction multiplication by examining PSTs' understanding of multiplication of fractions…
Information Integration in Multiple Cue Judgment: A Division of Labor Hypothesis
ERIC Educational Resources Information Center
Juslin, Peter; Karlsson, Linnea; Olsson, Henrik
2008-01-01
There is considerable evidence that judgment is constrained to additive integration of information. The authors propose an explanation of why serial and additive cognitive integration can produce accurate multiple cue judgment both in additive and non-additive environments in terms of an adaptive division of labor between multiple representations.…
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Integrable generalizations of non-linear multiple three-wave interaction models
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1989-07-01
Integrable generalizations of multiple three-wave interaction models in terms of r-matrix formulation are investigated. The Lax representations, complete sets of first integrals in involution are constructed, the quantization leading to Gaudin's models is discussed.
GraDit: graph-based data repair algorithm for multiple data edits rule violations
NASA Astrophysics Data System (ADS)
Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.
VLSI architectures for computing multiplications and inverses in GF(2m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.
1985-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2-m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.
1983-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
Hosseinbor, A. Pasha; Chung, Moo K.; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.
2014-01-01
We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, HyperSPHARM treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. HyperSPHARM is shown to achieve a better reconstruction with only 5 basis compared to SPHARM that requires more than 441. PMID:24505716
VLSI architectures for computing multiplications and inverses in GF(2m).
Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S
1985-08-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.
Interactions Dominate the Dynamics of Visual Cognition
ERIC Educational Resources Information Center
Stephen, Damian G.; Mirman, Daniel
2010-01-01
Many cognitive theories have described behavior as the summation of independent contributions from separate components. Contrasting views have emphasized the importance of multiplicative interactions and emergent structure. We describe a statistical approach to distinguishing additive and multiplicative processes and apply it to the dynamics of…
NASA Astrophysics Data System (ADS)
Peake, L.; Young Morse, R.
2017-12-01
Since 2005, the Gulf of Maine Research Institute has brought 70% of Maine's 5th/6th grade cohort annually to our marine research lab for a 2.5-hour exploration of ecosystem complexity. Using a digital platform, tools of science, and live marine species, students consider the interconnections among key Gulf of Maine species while experiencing the process of authentic marine research. With funding from NASA, we are renovating the program's learning content, underlying technology, and physical interfaces to leverage NASA data sets. The new experience will emphasize development of students' data skills as they investigate the impacts of climate change in the Gulf of Maine. To do this, students will explore representations of rising ocean temperatures and connect that to representations of changes in the populations of key species like lobster and black sea bass. Past experience suggests the abstraction and synthesis required to make meaning from data visualizations is extremely challenging for this age student. We will report on an early round of informal testing with 250+ students to understand their ability to extract meaning from geospatial and graphical representations of change over time. We will also report on experiments that will be conducted in Fall 2017 to understand the kinds of informal learning experiences, and the sequences of data representations, that best support growth in students' ability to interpret a range of representations. Finally, we will discuss the project's work to extend the learning experiences 1) back into the classroom, including through citizen science; and 2) out to regional science centers for adaptation to investigations of local climate impacts.
ERIC Educational Resources Information Center
Stull, Andrew T.; Hegarty, Mary
2016-01-01
This study investigated the development of representational competence among organic chemistry students by using 3D (concrete and virtual) models as aids for teaching students to translate between multiple 2D diagrams. In 2 experiments, students translated between different diagrams of molecules and received verbal feedback in 1 of the following 3…
The Born Digital Graduate: Multiple Representations of and within Digital Humanities PhD Theses
ERIC Educational Resources Information Center
Webb, Sharon; Teehan, Aja; Keating, John
2013-01-01
This chapter examines the production and utilisation of digital tools to create and present a born-digital theses, and in so doing, considers the changing function of traditional theses. It asks how (relatively) new technologies and methodologies should affect the representation and function of graduate scholarship in the Digital Humanities (DH),…
ERIC Educational Resources Information Center
Adadan, Emine; Oner, Diler
2014-01-01
This multiple case study investigated how two preservice chemistry teachers' pedagogical content knowledge (PCK) representations of behavior of gases progressed in the context of a semester-long chemistry teaching methods course. The change in the participants' PCK components was interpreted with respect to the theoretical PCK learning…
ERIC Educational Resources Information Center
Waight, Noemi; Gillmeister, Kristina
2014-01-01
This study examined teachers' and students' initial conceptions of computer-based models--Flash and NetLogo models--and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry…
ERIC Educational Resources Information Center
Yakubova, Gulnoza; Hughes, Elizabeth M.; Shinaberry, Megan
2016-01-01
The purpose of this study was to determine the effectiveness of a video modeling intervention with concrete-representational-abstract instructional sequence in teaching mathematics concepts to students with autism spectrum disorder (ASD). A multiple baseline across skills design of single-case experimental methodology was used to determine the…
ERIC Educational Resources Information Center
Alnizami, Reema
2017-01-01
This study examined the math talk and the use of multiple representations in elementary classrooms of 134 beginning teachers, all in their second year of teaching. A quantitative correlational research design was employed to investigate the research questions. The data were collected using a log instrument, the Instructional Practices Log in…
Rudebeck, Peter H; Murray, Elisabeth A
2014-12-17
The orbitofrontal cortex (OFC) has long been associated with the flexible control of behavior and concepts such as behavioral inhibition, self-control, and emotional regulation. These ideas emphasize the suppression of behaviors and emotions, but OFC's affirmative functions have remained enigmatic. Here we review recent work that has advanced our understanding of this prefrontal area and how its functions are shaped through interaction with subcortical structures such as the amygdala. Recent findings have overturned theories emphasizing behavioral inhibition as OFC's fundamental function. Instead, new findings indicate that OFC provides predictions about specific outcomes associated with stimuli, choices, and actions, especially their moment-to-moment value based on current internal states. OFC function thereby encompasses a broad representation or model of an individual's sensory milieu and potential actions, along with their relationship to likely behavioral outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Categorization = Decision Making + Generalization
Seger, Carol A; Peterson, Erik J.
2013-01-01
We rarely, if ever, repeatedly encounter exactly the same situation. This makes generalization crucial for real world decision making. We argue that categorization, the study of generalizable representations, is a type of decision making, and that categorization learning research would benefit from approaches developed to study the neuroscience of decision making. Similarly, methods developed to examine generalization and learning within the field of categorization may enhance decision making research. We first discuss perceptual information processing and integration, with an emphasis on accumulator models. We then examine learning the value of different decision making choices via experience, emphasizing reinforcement learning modeling approaches. Next we discuss how value is combined with other factors in decision making, emphasizing the effects of uncertainty. Finally, we describe how a final decision is selected via thresholding processes implemented by the basal ganglia and related regions. We also consider how memory related functions in the hippocampus may be integrated with decision making mechanisms and contribute to categorization. PMID:23548891
Localization of Unitary Braid Group Representations
NASA Astrophysics Data System (ADS)
Rowell, Eric C.; Wang, Zhenghan
2012-05-01
Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.
Learning viewpoint invariant perceptual representations from cluttered images.
Spratling, Michael W
2005-05-01
In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations.
Update on "What" and "Where" in Spatial Language: A New Division of Labor for Spatial Terms.
Landau, Barbara
2017-03-01
In this article, I revisit Landau and Jackendoff's () paper, "What and where in spatial language and spatial cognition," proposing a friendly amendment and reformulation. The original paper emphasized the distinct geometries that are engaged when objects are represented as members of object kinds (named by count nouns), versus when they are represented as figure and ground in spatial expressions (i.e., play the role of arguments of spatial prepositions). We provided empirical and theoretical arguments for the link between these distinct representations in spatial language and their accompanying nonlinguistic neural representations, emphasizing the "what" and "where" systems of the visual system. In the present paper, I propose a second division of labor between two classes of spatial prepositions in English that appear to be quite distinct. One class includes prepositions such as in and on, whose core meanings engage force-dynamic, functional relationships between objects, with geometry only a marginal player. The second class includes prepositions such as above/below and right/left, whose core meanings engage geometry, with force-dynamic relationships a passing or irrelevant variable. The insight that objects' force-dynamic relationships matter to spatial terms' uses is not new; but thinking of these terms as a distinct set within spatial language has theoretical and empirical consequences that are new. I propose three such consequences, rooted in the fact that geometric knowledge is highly constrained and early-emerging in life, while force-dynamic knowledge of objects and their interactions is relatively unconstrained and needs to be learned piecemeal over a lengthy timeline. First, the two classes will engage different learning problems, with different developmental trajectories for both first and second language learners; second, the classes will naturally lead to different degrees of cross-linguistic variation; and third, they may be rooted in different neural representations. Copyright © 2016 Cognitive Science Society, Inc.
Sonnemann, Eckart
2008-10-01
The introduction of sequentially rejective multiple test procedures (Einot and Gabriel, 1975; Naik, 1975; Holm, 1977; Holm, 1979) has caused considerable progress in the theory of multiple comparisons. Emphasizing the closure of multiple tests we give a survey of the general theory and its recent results in applications. Some new applications are given including a discussion of the connection with the theory of confidence regions.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Astrophysics Data System (ADS)
Kozimor, J.; Habermann, T.; Powers, L. A.; Gordon, S.
2016-12-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways. This situation has led to the development of metadata repositories that can ingest and output metadata in multiple dialects. As an operational example, the NASA Common Metadata Repository (CMR) includes three different metadata dialects (DIF, ECHO, and ISO 19115-2). These systems raise a new question for metadata providers: if I have a choice of metadata dialects, which should I use and how do I make that decision? We have developed a collection of metadata evaluation tools that can be used to evaluate metadata records in many dialects for completeness with respect to recommendations from many organizations and communities. We have applied these tools to over 8000 collection and granule metadata records in four different dialects. This large collection of identical content in multiple dialects enables us to address questions about metadata and dialect evolution and to answer those questions quantitatively. We will describe those tools and results from evaluating the NASA CMR metadata collection.
Mariani Canova, Giordana
2008-01-01
The paper intends to prove the incidence that scientific doctrines, mostly Pietro d'Abano's astrological and medical studies, had on Giotto's painting at the Cappella degli Scrovegni in Padova and his lost astrological cycle in the Sala della Ragione. It is emphasized how in no other painting of his, Giotto displayed as much intellectualism as in the Cappella degli Scrovegni. There we can note the importance of the physical representation of the sky and stars and figures' particular physiognomic characterization referable to Pietro d'Abano's theories presented in his astrological treatises and in his Compilation Phisionomiae. Even the ecceptional botanical realism displayed in the representation of plants can be probably referred to Pietro d'Abano's scientific teaching. An hypotetical reconstruction, according to Ptolomeus' theories and Pietro d'Abano's physiognomic, of Giotto's astrological cycle in the Sala della Ragione is also proposed.
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J
2010-06-24
Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.
Quantifying Semantic Linguistic Maturity in Children.
Hansson, Kristina; Bååth, Rasmus; Löhndorf, Simone; Sahlén, Birgitta; Sikström, Sverker
2016-10-01
We propose a method to quantify semantic linguistic maturity (SELMA) based on a high dimensional semantic representation of words created from the co-occurrence of words in a large text corpus. The method was applied to oral narratives from 108 children aged 4;0-12;10. By comparing the SELMA measure with maturity ratings made by human raters we found that SELMA predicted the rating of semantic maturity made by human raters over and above the prediction made using a child's age and number of words produced. We conclude that the semantic content of narratives changes in a predictable pattern with children's age and argue that SELMA is a measure quantifying semantic linguistic maturity. The study opens up the possibility of using quantitative measures for studying the development of semantic representation in children's narratives, and emphasizes the importance of word co-occurrences for understanding the development of meaning.
Interpretant Levels Presented by Higher Education Students about the Seasons
NASA Astrophysics Data System (ADS)
Sanzovo, Daniel Trevisan; Laburú, Carlos Eduardo
2016-12-01
The aim of this study is to investigate the initial interpretant levels of the seasons of the year presented by students in a physics discipline of undergraduate course of a biological sciences degree at a state university of the south of Brazil. This study is qualitative, it analyzes textual oral representations and images about that astronomical phenomenon. It found that all students showed similar interpretant levels than those without any instruction, focusing their explanation of this concept in the variation of the distance between Earth and the Sun and indeterminate/confused representations. Another important result was the absence of a scientifically correct conception of the subject. The data from this study are in agreement with several studies on the weak training of science teachers in astronomy, and emphasizes the importance of both a re-structuration of the initial training of these future teachers, as well as the continuous teacher training of the working professional ones.
Implicit Self-Importance in an Interpersonal Pronoun Categorization Task
Fetterman, Adam K.; Robinson, Michael D.; Gilbertson, Elizabeth P.
2014-01-01
Object relations theories emphasize the manner in which the salience/importance of implicit representations of self and other guide interpersonal functioning. Two studies and a pilot test (total N = 304) sought to model such representations. In dyadic contexts, the self is a “you” and the other is a “me”, as verified in a pilot test. Study 1 then used a simple categorization task and found evidence for implicit self-importance: The pronoun “you” was categorized more quickly and accurately when presented in a larger font size, whereas the pronoun “me” was categorized more quickly and accurately when presented in a smaller font size. Study 2 showed that this pattern possesses value in understanding individual differences in interpersonal functioning. As predicted, arrogant people scored higher in implicit self-importance in the paradigm. Findings are discussed from the perspective of dyadic interpersonal dynamics. PMID:25419089
Extracting the information of coastline shape and its multiple representations
NASA Astrophysics Data System (ADS)
Liu, Ying; Li, Shujun; Tian, Zhen; Chen, Huirong
2007-06-01
According to studying the coastline, a new way of multiple representations is put forward in the paper. That is stimulating human thinking way when they generalized, building the appropriate math model and describing the coastline with graphics, extracting all kinds of the coastline shape information. The coastline automatic generalization will be finished based on the knowledge rules and arithmetic operators. Showing the information of coastline shape by building the curve Douglas binary tree, it can reveal the shape character of coastline not only microcosmically but also macroscopically. Extracting the information of coastline concludes the local characteristic point and its orientation, the curve structure and the topology trait. The curve structure can be divided the single curve and the curve cluster. By confirming the knowledge rules of the coastline generalization, the generalized scale and its shape parameter, the coastline automatic generalization model is established finally. The method of the multiple scale representation of coastline in this paper has some strong points. It is human's thinking mode and can keep the nature character of the curve prototype. The binary tree structure can control the coastline comparability, avoid the self-intersect phenomenon and hold the unanimous topology relationship.
A Probabilistic Palimpsest Model of Visual Short-term Memory
Matthey, Loic; Bays, Paul M.; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204
A probabilistic palimpsest model of visual short-term memory.
Matthey, Loic; Bays, Paul M; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.
Feature generation and representations for protein-protein interaction classification.
Lan, Man; Tan, Chew Lim; Su, Jian
2009-10-01
Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.
Spinal cord injury affects the interplay between visual and sensorimotor representations of the body
Ionta, Silvio; Villiger, Michael; Jutzeler, Catherine R; Freund, Patrick; Curt, Armin; Gassert, Roger
2016-01-01
The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs’ somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants’ body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations. PMID:26842303
Quaternionic representation of the genetic code.
Carlevaro, C Manuel; Irastorza, Ramiro M; Vericat, Fernando
2016-03-01
A heuristic diagram of the evolution of the standard genetic code is presented. It incorporates, in a way that resembles the energy levels of an atom, the physical notion of broken symmetry and it is consistent with original ideas by Crick on the origin and evolution of the code as well as with the chronological order of appearance of the amino acids along the evolution as inferred from work that mixtures known experimental results with theoretical speculations. Suggested by the diagram we propose a Hamilton quaternions based mathematical representation of the code as it stands now-a-days. The central object in the description is a codon function that assigns to each amino acid an integer quaternion in such a way that the observed code degeneration is preserved. We emphasize the advantages of a quaternionic representation of amino acids taking as an example the folding of proteins. With this aim we propose an algorithm to go from the quaternions sequence to the protein three dimensional structure which can be compared with the corresponding experimental one stored at the Protein Data Bank. In our criterion the mathematical representation of the genetic code in terms of quaternions merits to be taken into account because it describes not only most of the known properties of the genetic code but also opens new perspectives that are mainly derived from the close relationship between quaternions and rotations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Affective and contextual values modulate spatial frequency use in object recognition
Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno
2014-01-01
Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514
The complexity of teaching density in middle school
NASA Astrophysics Data System (ADS)
Hashweh, Maher Z.
2016-01-01
Background: Density is difficult to learn and teach in middle schools. This study, hypothesizing that the density concept develops as part of a conceptual system, used a conceptual change approach to teaching density. The approach emphasized the use of multiple strategies to teach the density concept and the associated concepts in the conceptual system. Purpose: This study assessed post-instructional understanding of different aspects of density in a sample of seventh grade students, examined the effectiveness of the multi-dimensional approach in teaching density, investigated the relations between prior student characteristics and their post-instructional understanding, and investigated if the concept of density develops as part of a conceptual system. Program description: In the first part of the study, student understanding of density was assessed in regular classrooms. In the second part, the investigator and a science teacher co-taught the density unit over a two-week period emphasizing relations between density, mass, volume, part-whole relations, and a scientific particulate conception of matter. A conceptual change approach was used which emphasized multiple representations of knowledge and the use of analogies. Sample: The sample in regular classes consisted of 1645 seventh graders in 51 schools in the West Bank, Palestine. The intervention group consisted of 29 students in one school. Design and methods: The post-instructional understanding of density in 51 regularly taught classrooms was assessed in the first part of the study using a pencil-and paper test. In the second part, a pre-test was used with the intervention group. Students in both parts of the study took the same post-test. Descriptive statistics were calculated to describe student performance. Comparison between pre-test and post-test performance of students in the intervention group was conducted using t-test and ANOVA. Correlations between pre-test sub-scores and post-test scores for students in the intervention class also were calculated. X2 was used to test for co-development of the density concept and other concepts using the different items of the post-test for all groups. Results: Student understanding of density was found poor after instruction, while the intervention had a moderate effect on understanding. Students who started with a basic understanding of some aspects of density gained more from the intervention. The density concept co-developed with the concept of volume and a particulate conception of matter. Conclusions: Teaching density as part of a conceptual system helps promote understanding of the concept. This requires the continuous development and refinement of a learning progression of density, volume, and the particulate nature of matter on the one hand, and an in-depth treatment while teaching the concept on the other hand.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun
2017-11-01
The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval.
Xiao, Xiaoqian; Dong, Qi; Gao, Jiahong; Men, Weiwei; Poldrack, Russell A; Xue, Gui
2017-03-15
Contemporary models of episodic memory posit that remembering involves the reenactment of encoding processes. Although encoding-retrieval similarity has been consistently reported and linked to memory success, the nature of neural pattern reinstatement is poorly understood. Using high-resolution fMRI on human subjects, our results obtained clear evidence for item-specific pattern reinstatement in the frontoparietal cortex, even when the encoding-retrieval pairs shared no perceptual similarity. No item-specific pattern reinstatement was found in the ventral visual cortex. Importantly, the brain regions and voxels carrying item-specific representation differed significantly between encoding and retrieval, and the item specificity for encoding-retrieval similarity was smaller than that for encoding or retrieval, suggesting different nature of representations between encoding and retrieval. Moreover, cross-region representational similarity analysis suggests that the encoded representation in the ventral visual cortex was reinstated in the frontoparietal cortex during retrieval. Together, these results suggest that, in addition to reinstatement of the originally encoded pattern in the brain regions that perform encoding processes, retrieval may also involve the reinstatement of a transformed representation of the encoded information. These results emphasize the constructive nature of memory retrieval that helps to serve important adaptive functions. SIGNIFICANCE STATEMENT Episodic memory enables humans to vividly reexperience past events, yet how this is achieved at the neural level is barely understood. A long-standing hypothesis posits that memory retrieval involves the faithful reinstatement of encoding-related activity. We tested this hypothesis by comparing the neural representations during encoding and retrieval. We found strong pattern reinstatement in the frontoparietal cortex, but not in the ventral visual cortex, that represents visual details. Critically, even within the same brain regions, the nature of representation during retrieval was qualitatively different from that during encoding. These results suggest that memory retrieval is not a faithful replay of past event but rather involves additional constructive processes to serve adaptive functions. Copyright © 2017 the authors 0270-6474/17/372986-13$15.00/0.
Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop
NASA Technical Reports Server (NTRS)
Messina, E. R.; Meystel, A. M.
2002-01-01
Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.
ERIC Educational Resources Information Center
Chan, Chitat; Ting, Wai-Fong
2012-01-01
This study explores whether the deficit approach to understanding youth, which has been widely critiqued in contemporary youth studies, could still be a dominant paradigm in an emerging curriculum which emphasises multiple-perspective thinking. The analysis compares the representations of youth in selected reference sources at different levels of…
Syntactic levels, lexicalism, and ellipsis: The jury is still out.
Hartsuiker, Robert J; Bernolet, Sarah
2017-01-01
Structural priming data are sometimes compatible with several theoretical views, as shown here for three key theoretical claims. One reason is that prime sentences affect multiple representational levels driving syntactic choice. Additionally, priming is affected by further cognitive functions (e.g., memory). We therefore see priming as a useful tool for the investigation of linguistic representation but not the only tool.
ERIC Educational Resources Information Center
Strickland, Tricia K.; Maccini, Paula
2013-01-01
We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…
Translation of P = kT into a Pictorial External Representation by High School Seniors
ERIC Educational Resources Information Center
Matijaševic, Igor; Korolija, Jasminka N.; Mandic, Ljuba M.
2016-01-01
This paper describes the results achieved by high school seniors on an item which involves translation of the equation P = kT into a corresponding pictorial external representation. The majority of students (the classes of 2011, 2012 and 2013) did not give the correct answer to the multiple choice part of the translation item. They chose pictorial…
ERIC Educational Resources Information Center
Thigpen, L. Christine
2012-01-01
The purpose of this study was to explore teaching styles and how frequently teachers with a variety of teaching styles incorporate multiple representations, such as manipulatives, drawings, counters, etc., in the middle school mathematics classroom. Through this explanatory mixed methods study it was possible to collect the quantitative data in…
ERIC Educational Resources Information Center
Mondini, Sara; Luzzatti, Claudio; Zonca, Giusy; Pistarini, Caterina; Semenza, Carlo
2004-01-01
This study seeks information on the mental representation of Verb-Noun (VN) nominal compounds through neuropsychological methods. The lexical retrieval of compound nouns is tested in 30 aphasic patients using a visual confrontation naming task. The target names are VN compounds, Noun-Noun (NN) compounds, and long morphologically simple nouns…
Theory of Mind in the Wild: Toward Tackling the Challenges of Everyday Mental State Reasoning
Wertz, Annie E.; German, Tamsin C.
2013-01-01
A complete understanding of the cognitive systems underwriting theory of mind (ToM) abilities requires articulating how mental state representations are generated and processed in everyday situations. Individuals rarely announce their intentions prior to acting, and actions are often consistent with multiple mental states. In order for ToM to operate effectively in such situations, mental state representations should be generated in response to certain actions, even when those actions occur in the presence of mental state content derived from other aspects of the situation. Results from three experiments with preschool children and adults demonstrate that mental state information is indeed generated based on an approach action cue in situations that contain competing mental state information. Further, the frequency with which participants produced or endorsed explanations that include mental states about an approached object decreased when the competing mental state information about a different object was made explicit. This set of experiments provides some of the first steps toward identifying the observable action cues that are used to generate mental state representations in everyday situations and offers insight into how both young children and adults processes multiple mental state representations. PMID:24069160
Wang, Anran; Wang, Jian; Lin, Hongfei; Zhang, Jianhai; Yang, Zhihao; Xu, Kan
2017-12-20
Biomedical event extraction is one of the most frontier domains in biomedical research. The two main subtasks of biomedical event extraction are trigger identification and arguments detection which can both be considered as classification problems. However, traditional state-of-the-art methods are based on support vector machine (SVM) with massive manually designed one-hot represented features, which require enormous work but lack semantic relation among words. In this paper, we propose a multiple distributed representation method for biomedical event extraction. The method combines context consisting of dependency-based word embedding, and task-based features represented in a distributed way as the input of deep learning models to train deep learning models. Finally, we used softmax classifier to label the example candidates. The experimental results on Multi-Level Event Extraction (MLEE) corpus show higher F-scores of 77.97% in trigger identification and 58.31% in overall compared to the state-of-the-art SVM method. Our distributed representation method for biomedical event extraction avoids the problems of semantic gap and dimension disaster from traditional one-hot representation methods. The promising results demonstrate that our proposed method is effective for biomedical event extraction.
Female political representation and child health: Evidence from a multilevel analysis.
Quamruzzaman, Amm; Lange, Matthew
2016-10-24
This article explores the impact of female political representation in national parliaments on child health through a multilevel analysis. Using available Demographic and Health Surveys, we employ both cross-sectional data for 51 low- and middle-income countries and longitudinal data for 20 countries with multiple surveys. For both the cross-sectional and longitudinal analyses, female representation is negatively related to infant mortality and positively related to measles vaccination status. To explore potential mechanisms, we control for state spending on health and analyze whether the impact of female representation depends on a critical mass of female representatives. The analysis offers evidence that state spending accounts for some of the mediation effect and that the impact of female representation on infant death depends on a critical mass. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Descriptive Study on the Use of Materials in Vocabulary Lessons
ERIC Educational Resources Information Center
Holmes, Kerry; Holmes, Stacy V.; Watts, Karley
2012-01-01
Vocabulary knowledge is important because it is highly correlated with content area learning. Strategies for vocabulary instruction recommend using new words in multiple contexts as key to learning. To date, the term "multiple contexts" emphasizes written contexts, not three-dimensional concrete material contexts. This article describes the…
The primary goal was to asess Hg cycling within a small coastal plain watershed (McTier Creek) using multiple watershed models with distinct mathematical frameworks that emphasize different system dynamics; a secondary goal was to identify current needs in watershed-scale Hg mode...
Local Multi-Grouped Binary Descriptor With Ring-Based Pooling Configuration and Optimization.
Gao, Yongqiang; Huang, Weilin; Qiao, Yu
2015-12-01
Local binary descriptors are attracting increasingly attention due to their great advantages in computational speed, which are able to achieve real-time performance in numerous image/vision applications. Various methods have been proposed to learn data-dependent binary descriptors. However, most existing binary descriptors aim overly at computational simplicity at the expense of significant information loss which causes ambiguity in similarity measure using Hamming distance. In this paper, by considering multiple features might share complementary information, we present a novel local binary descriptor, referred as ring-based multi-grouped descriptor (RMGD), to successfully bridge the performance gap between current binary and floated-point descriptors. Our contributions are twofold. First, we introduce a new pooling configuration based on spatial ring-region sampling, allowing for involving binary tests on the full set of pairwise regions with different shapes, scales, and distances. This leads to a more meaningful description than the existing methods which normally apply a limited set of pooling configurations. Then, an extended Adaboost is proposed for an efficient bit selection by emphasizing high variance and low correlation, achieving a highly compact representation. Second, the RMGD is computed from multiple image properties where binary strings are extracted. We cast multi-grouped features integration as rankSVM or sparse support vector machine learning problem, so that different features can compensate strongly for each other, which is the key to discriminativeness and robustness. The performance of the RMGD was evaluated on a number of publicly available benchmarks, where the RMGD outperforms the state-of-the-art binary descriptors significantly.
Woolgar, Alexandra; Williams, Mark A; Rich, Anina N
2015-04-01
Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
NASA Astrophysics Data System (ADS)
Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein
2018-03-01
We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.
Using Knowledge Space Theory To Assess Student Understanding of Stoichiometry
NASA Astrophysics Data System (ADS)
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Lonjers, Stacy
2004-10-01
Using the concept of stoichiometry we examined the ability of beginning college chemistry students to make connections among the molecular, symbolic, and graphical representations of chemical phenomena, as well as to conceptualize, visualize, and solve numerical problems. Students took a test designed to follow conceptual development; we then analyzed student responses and the connectivities of their responses, or the cognitive organization of the material or thinking patterns, applying knowledge space theory (KST). The results reveal that the students' logical frameworks of conceptual understanding were very weak and lacked an integrated understanding of some of the fundamental aspects of chemical reactivity. Analysis of response states indicates that the overall thinking patterns began with symbolic representations, moved to numerical problem solving, and then lastly to visualization: the acquisition of visualization skills comes later in the knowledge structure. The results strongly suggest the need for teaching approaches that help students integrate their knowledge by emphasizing the relationships between the different representations and presenting them concurrently during instruction. Also, the results indicate that KST is a useful tool for revealing various aspects of students' cognitive structure in chemistry and can be used as an assessment tool or as a pedagogical tool to address a number of student-learning issues.
Representing Nature of Science in a Science Textbook: Exploring author-editor-publisher interactions
NASA Astrophysics Data System (ADS)
DiGiuseppe, Maurice
2014-05-01
Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science (NOS)-a process in which science textbooks play a significant role. This paper reports on a case study of the development of representations of the NOS in a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of NOS; squared these with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing. As a result, the team developed and incorporated, in the textbook, representations of NOS they believed were the most pedagogically suitable. Analysis of the data in this study indicates that a number of factors significantly influenced the development of representations of NOS, including representational accuracy (the degree to which representations of NOS conformed to informed views of the NOS), representational consistency (the degree to which representations of NOS in different parts of the book conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level appropriateness of the NOS representations), representational alignment (the degree to which NOS representations aligned with mandated curriculum), representational marketability (the degree to which NOS representations would affect sales of the textbook), and 'Workplace Resources' factors including availability of time, relevant expertise, and opportunities for professional development.
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Wang, Dongwen; Peleg, Mor; Tu, Samson W; Boxwala, Aziz A; Greenes, Robert A; Patel, Vimla L; Shortliffe, Edward H
2002-12-18
Representation of clinical practice guidelines in a computer-interpretable format is a critical issue for guideline development, implementation, and evaluation. We studied 11 types of guideline representation models that can be used to encode guidelines in computer-interpretable formats. We have consistently found in all reviewed models that primitives for representation of actions and decisions are necessary components of a guideline representation model. Patient states and execution states are important concepts that closely relate to each other. Scheduling constraints on representation primitives can be modeled as sequences, concurrences, alternatives, and loops in a guideline's application process. Nesting of guidelines provides multiple views to a guideline with different granularities. Integration of guidelines with electronic medical records can be facilitated by the introduction of a formal model for patient data. Data collection, decision, patient state, and intervention constitute four basic types of primitives in a guideline's logic flow. Decisions clarify our understanding on a patient's clinical state, while interventions lead to the change from one patient state to another.
NASA Astrophysics Data System (ADS)
Gebre, Engida H.; Polman, Joseph L.
2016-12-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and producing infographic-based science news for possible online publication. An external editor reviewed their draft infographics and provided comments for subsequent revision. Students also provided peer feedback to the draft version of infographics using an online commentary tool. We analysed the nature of representations students used as well as the comments from peer and the editor feedback. Results showed both students' capabilities and challenges in learning with representations in this context. Students frequently rely on using certain kinds of representations that are depictive in nature, and supporting their progress towards using more abstract representations requires special attention and identifying learning gaps. Results also showed that students were able to determine representational adequacy in the context of providing peer feedback. The study has implication for research and instruction using infographics as expressive tools to support learning.
EliXR-TIME: A Temporal Knowledge Representation for Clinical Research Eligibility Criteria.
Boland, Mary Regina; Tu, Samson W; Carini, Simona; Sim, Ida; Weng, Chunhua
2012-01-01
Effective clinical text processing requires accurate extraction and representation of temporal expressions. Multiple temporal information extraction models were developed but a similar need for extracting temporal expressions in eligibility criteria (e.g., for eligibility determination) remains. We identified the temporal knowledge representation requirements of eligibility criteria by reviewing 100 temporal criteria. We developed EliXR-TIME, a frame-based representation designed to support semantic annotation for temporal expressions in eligibility criteria by reusing applicable classes from well-known clinical temporal knowledge representations. We used EliXR-TIME to analyze a training set of 50 new temporal eligibility criteria. We evaluated EliXR-TIME using an additional random sample of 20 eligibility criteria with temporal expressions that have no overlap with the training data, yielding 92.7% (76 / 82) inter-coder agreement on sentence chunking and 72% (72 / 100) agreement on semantic annotation. We conclude that this knowledge representation can facilitate semantic annotation of the temporal expressions in eligibility criteria.
Neural representations of magnitude for natural and rational numbers.
DeWolf, Melissa; Chiang, Jeffrey N; Bassok, Miriam; Holyoak, Keith J; Monti, Martin M
2016-11-01
Humans have developed multiple symbolic representations for numbers, including natural numbers (positive integers) as well as rational numbers (both fractions and decimals). Despite a considerable body of behavioral and neuroimaging research, it is currently unknown whether different notations map onto a single, fully abstract, magnitude code, or whether separate representations exist for specific number types (e.g., natural versus rational) or number representations (e.g., base-10 versus fractions). We address this question by comparing brain metabolic response during a magnitude comparison task involving (on different trials) integers, decimals, and fractions. Univariate and multivariate analyses revealed that the strength and pattern of activation for fractions differed systematically, within the intraparietal sulcus, from that of both decimals and integers, while the latter two number representations appeared virtually indistinguishable. These results demonstrate that the two major notations formats for rational numbers, fractions and decimals, evoke distinct neural representations of magnitude, with decimals representations being more closely linked to those of integers than to those of magnitude-equivalent fractions. Our findings thus suggest that number representation (base-10 versus fractions) is an important organizational principle for the neural substrate underlying mathematical cognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Modified signed-digit arithmetic based on redundant bit representation.
Huang, H; Itoh, M; Yatagai, T
1994-09-10
Fully parallel modified signed-digit arithmetic operations are realized based on redundant bit representation of the digits proposed. A new truth-table minimizing technique is presented based on redundant-bitrepresentation coding. It is shown that only 34 minterms are enough for implementing one-step modified signed-digit addition and subtraction with this new representation. Two optical implementation schemes, correlation and matrix multiplication, are described. Experimental demonstrations of the correlation architecture are presented. Both architectures use fixed minterm masks for arbitrary-length operands, taking full advantage of the parallelism of the modified signed-digit number system and optics.
Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo
2017-01-01
Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.
Mapping Stormwater Retention in the Cities: A Flexible Model for Data-Scarce Environments
NASA Astrophysics Data System (ADS)
Hamel, P.; Keeler, B.
2014-12-01
There is a growing demand for understanding and mapping urban hydrological ecosystem services, including stormwater retention for flood mitigation and water quality improvement. Progress in integrated urban water management and low impact development in Western countries increased our understanding of how grey and green infrastructure interact to enhance these services. However, valuation methods that account for a diverse group of beneficiaries are typically not made explicit in urban water management models. In addition, the lack of spatial data on the stormwater network in developing countries makes it challenging to apply state-of-the-art models needed to understand both the magnitude and spatial distribution of the stormwater retention service. To fill this gap, we designed the Urban InVEST stormwater retention model, a tool that complements the suite of InVEST software models to quantify and map ecosystem services. We present the model structure emphasizing the data requirements from a user's perspective and the representation of services and beneficiaries. We illustrate the model application with two case studies in a data-rich (New York City) and data-scarce environment. We discuss the difference in the level of information obtained when less resources (data, time, or expertise) are available, and how this affects multiple ecosystem service assessments that the tool is ultimately designed for.
How many music centers are in the brain?
Altenmüller, E O
2001-06-01
When reviewing the literature on brain substrates of music processing, a puzzling variety of findings can be stated. The traditional view of a left-right dichotomy of brain organization--assuming that in contrast to language, music is primarily processed in the right hemisphere--was challenged 20 years ago, when the influence of music education on brain lateralization was demonstrated. Modern concepts emphasize the modular organization of music cognition. According to this viewpoint, different aspects of music are processed in different, although partly overlapping neuronal networks of both hemispheres. However, even when isolating a single "module," such as, for example, the perception of contours, the interindividual variance of brain substrates is enormous. To clarify the factors contributing to this variability, we conducted a longitudinal experiment comparing the effects of procedural versus explicit music teaching on brain networks. We demonstrated that cortical activation during music processing reflects the auditory "learning biography," the personal experiences accumulated over time. Listening to music, learning to play an instrument, formal instruction, and professional training result in multiple, in many instances multisensory, representations of music, which seem to be partly interchangeable and rapidly adaptive. In summary, as soon as we consider "real music" apart from laboratory experiments, we have to expect individually formed and quickly adaptive brain substrates, including widely distributed neuronal networks in both hemispheres.
ERIC Educational Resources Information Center
Milenkovic´, Dus?ica D.; Segedinac, Mirjana D.; Hrin, Tamara N.
2014-01-01
The central goal of this study was to examine the extent to which a teaching approach focused on the interaction between macroscopic, submicroscopic, and symbolic levels of chemistry representations could affect high school students' performance in the field of inorganic reactions, as well as to examine how the applied instruction influences…
Multimodal Sparse Coding for Event Detection
2015-10-13
classification tasks based on single modality. We present multimodal sparse coding for learning feature representations shared across multiple modalities...The shared representa- tions are applied to multimedia event detection (MED) and evaluated in compar- ison to unimodal counterparts, as well as other...and video tracks from the same multimedia clip, we can force the two modalities to share a similar sparse representation whose benefit includes robust
The Deleuzian Concept of Structure and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christiaens, Wim A.
2014-03-01
Gilles Deleuze wanted a philosophy of nature in a pre-kantian almost archaic sense. A central concept in his philosophy is `multiplicity'. Although the concept is philosophical through and through, it has roots in the mathematical notion of manifold, specifically the state spaces for dynamical systems exhibiting non-linear behaviour. Deleuze was attracted to such mathematical structures because he believed they indicated a break with the dogmatic image of thought (the kind of thought that constrains itself into producing representations of reality conceived as particular things with strict borders, behaving and interacting according to invariant covering laws within space). However, even though it is true that a phase space representation of a physical entity is not a typical materialist picture of reality, it derives from a normal Euclidean representation, and can in principle be reduced to it. We want to argue that the real break happens with the quantum state space, and that Deleuze's typical description of a multiplicity fits even better with the quantum state space.
Multiple memory stores and operant conditioning: a rationale for memory's complexity.
Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu
2009-02-01
Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory stores, but such access was penalized as energy expenditure. Model animals were then selected on their fitness in simulated operant conditioning tasks. Results suggest that having access to multiple memory stores and their representations is important in learning to regulate dopamine release, as well as in contextual discrimination. For simple operant conditioning, as well as stimulus discrimination, hippocampal compound representations turned out to suffice, a counterintuitive result given findings that hippocampal lesions tend not to affect performance in such tasks. We argue that there is in fact evidence to support a role for compound representations and the hippocampus in even the simplest conditioning tasks.
Combining Multiple Forms Of Visual Information To Specify Contact Relations In Spatial Layout
NASA Astrophysics Data System (ADS)
Sedgwick, Hal A.
1990-03-01
An expert system, called Layout2, has been described, which models a subset of available visual information for spatial layout. The system is used to examine detailed interactions between multiple, partially redundant forms of information in an environment-centered geometrical model of an environment obeying certain rather general constraints. This paper discusses the extension of Layout2 to include generalized contact relations between surfaces. In an environment-centered model, the representation of viewer-centered distance is replaced by the representation of environmental location. This location information is propagated through the representation of the environment by a network of contact relations between contiguous surfaces. Perspective information interacts with other forms of information to specify these contact relations. The experimental study of human perception of contact relations in extended spatial layouts is also discussed. Differences between human results and Layout2 results reveal limitations in the human ability to register available information; they also point to the existence of certain forms of information not yet formalized in Layout2.
Multiple Grammars: Old Wine in Old Bottles
ERIC Educational Resources Information Center
Sorace, Antonella
2014-01-01
Amaral and Roeper (this issue; henceforth A&R) argue that all speakers -- regardless of whether monolingual or bilingual -- have multiple grammars in their mental language representations. They further claim that this simple assumption can explain many things: optionality in second language (L2) language behaviour, multilingualism, language…
FINDING A COMMON DATA REPRESENTATION AND INTERCHANGE APPROACH FOR MULTIMEDIA MODELS
Within many disciplines, multiple approaches are used to represent and access very similar data (e.g., a time series of values), often due to the lack of commonly accepted standards. When projects must use data from multiple disciplines, the problems quickly compound. Often sig...
Evidence for multiple, distinct representations of the human body.
Schwoebel, John; Coslett, H Branch
2005-04-01
Previous data from single-case and small group studies have suggested distinctions among structural, conceptual, and online sensorimotor representations of the human body. We developed a battery of tasks to further examine the prevalence and anatomic substrates of these body representations. The battery was administered to 70 stroke patients. Fifty-one percent of the patients were impaired relative to controls on at least one body representation measure. Further, principal components analysis of the patient data as well as direct comparisons of patient and control performance suggested a triple dissociation between measures of the 3 putative body representations. Consistent with previous distinctions between the "what" and "how" pathways, lesions of the left temporal lobe were most consistently associated with impaired performance on tasks assessing knowledge of the shape or lexical-semantic information about the body, whereas lesions of the dorsolateral frontal and parietal regions resulted in impaired performance on tasks requiring on-line coding of body posture.
ERIC Educational Resources Information Center
Ungar, Michael
2004-01-01
An ecological approach to the study of resilience, informed by Systems Theory and emphasizing predictable relationships between risk and protective factors, circular causality, and transactional processes, is inadequate to account for the diversity of people's experiences of resilience. In contrast, a constructionist interpretation of resilience…
Auditory Training with Multiple Talkers and Passage-Based Semantic Cohesion
ERIC Educational Resources Information Center
Casserly, Elizabeth D.; Barney, Erin C.
2017-01-01
Purpose: Current auditory training methods typically result in improvements to speech recognition abilities in quiet, but learner gains may not extend to other domains in speech (e.g., recognition in noise) or self-assessed benefit. This study examined the potential of training involving multiple talkers and training emphasizing discourse-level…
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve
2010-02-01
In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal.
NASA Astrophysics Data System (ADS)
Robertson, Amy D.; Daane, Abigail R.
2017-12-01
Promoting positive attitudes about science among teachers has important implications for teachers' classroom practice and for their relationship to science as a discipline. In this paper, we report positive shifts in teachers' attitudes about science, as measured by the Colorado Learning Attitudes about Science (CLASS) survey, over the course of their participation in a professional development course that emphasized the flexible use of energy representations to understand real world scenarios. Our work contributes to the larger effort to make the case that professional development matters for teacher learning and attitudes.
Treatment of uncertainty in artificial intelligence
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1988-01-01
The present assessment of the development status of research efforts concerned with AI reasoning under conditions of uncertainty emphasizes the importance of appropriateness in the approach selected for both the epistemic and the computational levels. At the former level, attention is given to the form of uncertainty-representation and the fidelity of its reflection of actual problems' uncertainties; at the latter level, such issues as the availability of the requisite information and the complexity of the reasoning process must be considered. The tradeoff between these levels must always be the focus of AI system-developers' attention.
2002-06-01
Applied Psychology, 84, 3-13. Denzin , N. K., Lincoln , Y. S. (2000). Handbook of Qualitative Research (2nd ed.). Thousand Oaks: Sage Publications...understanding of the phenomenon in question. Objective reality can never be captured. We can know a thing only through its representations. ( Denzin and... Lincoln , 2000; p. 5). A. INTRODUCTION The above quotation emphasizes the diversity and the strength of data gathered achieved through the use of
The case of the missing visual details: Occlusion and long-term visual memory.
Williams, Carrick C; Burkle, Kyle A
2017-10-01
To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing the visible details in the former and the object's overall form in the latter. On a token discrimination test, surprisingly, memory for solid or stripe occluded objects at either encoding (Experiment 1) or test (Experiment 2) was the same. In contrast, when occluded objects matched at encoding and test (Experiment 3) or when the occlusion shifted, revealing the entire object piecemeal (Experiment 4), memory was better for solid compared with stripe occluded objects, indicating that objects are represented differently in long-term visual memory. Critically, we also found that when the task emphasized remembering exactly what was shown, memory performance in the more detailed solid occlusion condition exceeded that in the stripe condition (Experiment 5). However, when the task emphasized the whole object form, memory was better in the stripe condition (Experiment 6) than in the solid condition. We argue that long-term visual memory can represent objects flexibly, and task demands can interact with visual information, allowing the viewer to cope with changing real-world visual environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian
2016-10-01
Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.
ERIC Educational Resources Information Center
Adams, Thomasenia Lott
2001-01-01
Focuses on the National Council of Teachers of Mathematics 2000 process-oriented standards of problem solving, reasoning and proof, communication, connections, and representation as providing a framework for using the multiple intelligences that children bring to mathematics learning. Presents ideas for mathematics lessons and activities to…
The Promise and Pitfalls of Making Connections in Mathematics
ERIC Educational Resources Information Center
Fyfe, Emily R.; Alibali, Martha W.; Nathan, Mitchell J.
2017-01-01
Making connections during math instruction is a recommended practice, but may increase the difficulty of the lesson. We used an avatar video instructor to qualitatively examine the role of linking multiple representations for 24 middle school students learning algebra. Students were taught how to solve polynomial multiplication problems, such as…
Laying the Foundation for Multiplicative Thinking in Year 2
ERIC Educational Resources Information Center
Watson, Kelly
2016-01-01
In order for students to move from using concrete materials to using mental strategies and from additive to multiplicative thinking, the use of arrays and visualisation is pivotal. This article describes a lesson in which students are taken through a Concrete-Representational-Abstract (CRA) approach that involves noticing structure, using…
ERIC Educational Resources Information Center
Caglayan, Günhan
2013-01-01
This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…
Plurilingualism, Linguistic Representations and Multiple Identities: Crossing the Frontiers
ERIC Educational Resources Information Center
Stratilaki, Sofia
2012-01-01
This article is concerned with the conditions and stakes of building competence in multiple languages in learners who, due to their language biographies or the educational system, are studying in prestigious institutional school environments, such as the French-German schools of Buc (Versailles), Freiburg (Breisgau) and Saarbrucken (Saarland). In…
Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets
NASA Astrophysics Data System (ADS)
Sorokine, A.; Stewart, R. N.
2017-10-01
Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
Representation, Modeling and Recognition of Outdoor Scenes
1994-04-01
B. C. Vemuri and R . Malladi . Deformable models: Canonical parameters for surface representation and multiple view integration. In Conference on...or a high disparity gradient. If both L- R and R -L disparity images are made available, then mirror images of this pattern may be sought in the two...et at., 1991, Terzopoulos and Vasilescu, 1991, Vemuri and Malladi , 1991], parameterized surfaces [Stokely and Wu, 1992, Lowe, 1991], local surfaces
Hausfeld, Lars; Riecke, Lars; Formisano, Elia
2018-06-01
Often, in everyday life, we encounter auditory scenes comprising multiple simultaneous sounds and succeed to selectively attend to only one sound, typically the most relevant for ongoing behavior. Studies using basic sounds and two-talker stimuli have shown that auditory selective attention aids this by enhancing the neural representations of the attended sound in auditory cortex. It remains unknown, however, whether and how this selective attention mechanism operates on representations of auditory scenes containing natural sounds of different categories. In this high-field fMRI study we presented participants with simultaneous voices and musical instruments while manipulating their focus of attention. We found an attentional enhancement of neural sound representations in temporal cortex - as defined by spatial activation patterns - at locations that depended on the attended category (i.e., voices or instruments). In contrast, we found that in frontal cortex the site of enhancement was independent of the attended category and the same regions could flexibly represent any attended sound regardless of its category. These results are relevant to elucidate the interacting mechanisms of bottom-up and top-down processing when listening to real-life scenes comprised of multiple sound categories. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Validation and structural analysis of the kinematics concept test
NASA Astrophysics Data System (ADS)
Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stern, E.; Vaterlaus, A.
2017-06-01
The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part of this article we describe the development and the validation process of the KCT. We applied the KCT to 338 Swiss high school students who attended traditional teaching in kinematics. We analyzed the response data to provide the psychometric properties of the test. In the second part we present the results of a structural analysis of the test. An exploratory factor analysis of 664 student answers finally uncovered the seven kinematics concepts as factors. However, the analysis revealed a hierarchical structure of concepts. At the higher level, mathematical concepts group together, and then split up into physics concepts at the lower level. Furthermore, students who seem to understand a concept in one representation have difficulties transferring the concept to similar problems in another representation. Both results have implications for teaching kinematics. First, teaching mathematical concepts beforehand might be beneficial for learning kinematics. Second, instructions have to be designed to teach students the change between different representations.
Beck, Valerie M; Hollingworth, Andrew
2017-02-01
The content of visual working memory (VWM) guides attention, but whether this interaction is limited to a single VWM representation or functional for multiple VWM representations is under debate. To test this issue, we developed a gaze-contingent search paradigm to directly manipulate selection history and examine the competition between multiple cue-matching saccade target objects. Participants first saw a dual-color cue followed by two pairs of colored objects presented sequentially. For each pair, participants selectively fixated an object that matched one of the cued colors. Critically, for the second pair, the cued color from the first pair was presented either with a new distractor color or with the second cued color. In the latter case, if two cued colors in VWM interact with selection simultaneously, we expected the second cued color object to generate substantial competition for selection, even though the first cued color was used to guide attention in the immediately previous pair. Indeed, in the second pair, selection probability of the first cued color was substantially reduced in the presence of the second cued color. This competition between cue-matching objects provides strong evidence that both VWM representations interacted simultaneously with selection. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Unpacking Exoplanet Detection Using Pedagogical Discipline Representations (PDRs)
NASA Astrophysics Data System (ADS)
Prather, Edward E.; Chambers, Timothy G.; Wallace, Colin Scott; Brissenden, Gina
2017-01-01
Successful educators know the importance of using multiple representations to teach the content of their disciplines. We have all seen the moments of epiphany that can be inspired when engaging with just the right representation of a difficult concept. The formal study of the cognitive impact of different representations on learners is now an active area of education research. The affordances of a particular representation are defined as the elements of disciplinary knowledge that students are able to access and reason about using that representation. Instructors with expert pedagogical content knowledge teach each topic using representations with complementary affordances, maximizing their students’ opportunity to develop fluency with all aspects of the topic. The work presented here examines how we have applied the theory of affordances to the development of pedagogical discipline representation (PDR) in an effort to provide access to, and help non-science-majors engage in expert-like reasoning about, general relativity as applied to detection of exoplanets. We define a pedagogical discipline representation (PDR) as a representation that has been uniquely tailored for the purpose of teaching a specific topic within a discipline. PDRs can be simplified versions of expert representations or can be highly contextualized with features that purposefully help unpack specific reasoning or concepts, and engage learners’ pre-existing mental models while promoting and enabling critical discourse. Examples of PDRs used for instruction and assessment will be provided along with preliminary results documenting the effectiveness of their use in the classroom.
Narcissism and relational representations among psychiatric outpatients.
Kealy, David; Ogrodniczuk, John S; Joyce, Anthony S; Steinberg, Paul I; Piper, William E
2015-06-01
Pathological narcissism is associated with maladaptive interpersonal behavior, although less is known regarding the internal relational representations of narcissistic patients. The authors examined the relationship between pathological narcissism and two constructs that reflect internal representations of relational patterns: quality of object relations and attachment style. Patients attending a psychiatric day treatment program (N = 218) completed measures of narcissism, general psychiatric distress, and attachment style in terms of attachment avoidance and anxiety. A semistructured interview was used to assess quality of object relations. Multiple regression analysis was conducted, controlling for general psychiatric distress. Pathological narcissism was associated with anxious attachment, but not with avoidant attachment. Narcissism was also associated with lower levels of quality of object relations. The implications of these results are discussed in terms of internal representations of self-other relations.
Barratt, Barnaby B
2017-02-01
It is argued that only free-association methodically opens the discourse of self-consciousness (the representations available to reflective awareness) to the voicing of the repressed. The method is key to Freud's originality and the sine qua non of any genuinely psychoanalytic process. Clinical procedures which do not prioritize a steadfast and ongoing commitment to this method (instead emphasizing either interpretative formulations, as decisive acts that appear to fix and finalize the meaning of a particular lived experience, or the vicissitudes of transference-countertransference in the immediate treatment situation) all too readily entrap the treatment, limiting its capacity to divulge the power of unconscious processes. Influenced by Laplanche, Freud's 1920 principles of lifefulness and deathfulness (the binding and unbinding of psychic energy in representations) facilitate an understanding of the unique significance of free-associative discourse in opening the representational textuality of self-consciousness to the voicing of that which is otherwise than representationality and reason. The 'otherwise' is intimated as the returning force of the repressed, as the 'unfathomable navel' of 'thing-presentations,' experienced and expressed within the text of awareness, yet not translatable into the law and order of its logical and rhetorical reflections. Free-associative discourse thus affects self-consciousness in a way that is radically different from other creative procedures ('psychosynthetic' or integratively interpretive). In this respect, the status of free-associative praxis as necessary for a genuinely psychoanalytic process is justified. Copyright © 2016 Institute of Psychoanalysis.
Opaque models: Using drugs and dreams to explore the neurobiological basis of mental phenomena.
Langlitz, Nicolas
2017-01-01
On the basis of four historical and ethnographic case studies of modeling in neuroscience laboratories, this chapter introduces a distinction between transparent and opaque models. A transparent model is a simplified representation of a real world phenomenon. If it is not patently clear, it is at least much better comprehended than its objects of representation. An opaque model, by contrast, looks at one only partially understood phenomenon to stand in for another partially understood phenomenon. Here, the model is often just as complex as its target. Examples of such opaque models discussed in this chapter are the use of hallucinogen intoxication in humans and animals as well as the dreaming brain as models of psychosis as well as the dreaming brain as a model of consciousness in general. Several functions of opaque models are discussed, ranging from the generation of funding to the formulation of new research questions. While science studies scholars have often emphasized the epistemic fertility of failures of representation, the opacity of hallucinogen intoxications and dreams seems to have diminished the potential to produce positive knowledge from the representational relationship between the supposed models and their targets. Bidirectional comparisons between inebriation, dreaming, and psychosis, however, proved to be generative on the level of basic science. Moreover, the opaque models discussed in this chapter implicated cosmologies that steered research endeavors into certain directions rather than others. © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman Mohammed
2006-01-01
Howard Gardner's Theory of Multiple Intelligences has provided educators with a new view of intelligence. It emphasizes that science, math and language are not the only ways to exhibit intelligence. People exhibit intelligence in many different ways. Each type of intelligence is as valuable as the others. Gardner classifies these intelligences…
Conversion from Tree to Graph Representation of Requirements
NASA Technical Reports Server (NTRS)
Mayank, Vimal; Everett, David Frank; Shmunis, Natalya; Austin, Mark
2009-01-01
A procedure and software to implement the procedure have been devised to enable conversion from a tree representation to a graph representation of the requirements governing the development and design of an engineering system. The need for this procedure and software and for other requirements-management tools arises as follows: In systems-engineering circles, it is well known that requirements- management capability improves the likelihood of success in the team-based development of complex systems involving multiple technological disciplines. It is especially desirable to be able to visualize (in order to identify and manage) requirements early in the system- design process, when errors can be corrected most easily and inexpensively.
General methodology for simultaneous representation and discrimination of multiple object classes
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
We address a new general method for linear and nonlinear feature extraction for simultaneous representation and classification. We call this approach the maximum representation and discrimination feature (MRDF) method. We develop a novel nonlinear eigenfeature extraction technique to represent data with closed-form solutions and use it to derive a nonlinear MRDF algorithm. Results of the MRDF method on synthetic databases are shown and compared with results from standard Fukunaga-Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem and for classification and pose estimation of two similar objects under 3D aspect angle variations.
Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin
2015-01-01
Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on conceptual differences between MVF devices. However, our findings need to be validated within specific patient groups. PMID:26018572
Johnson, Emily
2012-01-01
American advertising in the period immediately following the Second World War portrayed nurses as trusted advisers and capable professionals and frequently pictured them performing skilled work, including dispensing medicine and assisting in surgery. Advertisements published in a range of magazines whose target audiences varied by gender, race, age, and class show that nurses in postwar advertisements embodied two broad categories of representation: (a) medical authority, scientific progress, and hospital cleanliness; and (b) feminine expertise, especially in female and family health. Typically portrayed as young white women--although older nurses were occasionally depicted and black nurses appeared in advertisements intended for black audiences-nurses were especially prominent in advertisements for menstrual and beauty products, as well as products related to children's health. Although previous scholarly examinations of nurses in postwar mass media have emphasized their portrayal as hypersexual and incompetent, this investigation posits postwar advertising as a forum that emphasized nurses' professionalism, as well as complex expectations surrounding women's professional and domestic roles.
Perceiving while acting: action affects perception.
Schubö, Anna; Prinz, Wolfgang; Aschersleben, Gisa
2004-08-01
In two experiments we studied how motor responses affect stimulus encoding when stimuli and responses are functionally unrelated and merely overlap in time. Such R-S effects across S-R assignments have been reported by Schubö, Aschersleben, and Prinz (2001), who found that stimulus encoding was affected by concurrent response execution in the sense of a contrast (i.e., emphasizing differences). The present study aimed at elucidating the mechanisms underlying this effect. Experiment 1 studied the time course of the R-S effect. Contrast was only obtained for short intertrial intervals (ITIs). With long ITIs contrast turned into assimilation (i.e., emphasizing similarities). Experiment 2 excluded an interpretation of the assimilation effect in terms of motor repetition. Our findings support the notion of a shared representational domain for perception and action control, and suggest that contrast between stimulus and response codes emerges when two S-R assignments compete with each other in perception. When perceptual competition is over, assimilation emerges in memory.
Role of multiple representations in physics problem solving
NASA Astrophysics Data System (ADS)
Maries, Alexandru
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role in the initial stages of conceptual analysis and planning of the problem solution. Findings suggest that students who draw productive diagrams are more successful problem solvers even if their approach is primarily mathematical. Furthermore, students provided with a diagram of the physical situation presented in a problem sometimes exhibited deteriorated performance. Think-aloud interviews suggest that this deteriorated performance is in part due to reduced conceptual planning time which caused students to jump to the implementation stage without fully understanding the problem and planning problem solution. Another study investigated two interventions aimed at improving introductory students' representational consistency between mathematical and graphical representations and revealed that excessive scaffolding can have a detrimental effect. The detrimental effect was partly due to increased cognitive load brought on by the additional steps and instructions. Moreover, students who exhibited representational consistency also showed improved problem solving performance. The final investigation is centered on a problem solving task designed to provide information about the pedagogical content knowledge (PCK) of graduate student teaching assistants (TAs). In particular, the TAs identified what they considered to be the most common difficulties of introductory physics students related to graphical representations of kinematics concepts as they occur in the Test of Understanding Graphs in Kinematics (TUG-K). As an extension, the Force Concept Inventory (FCI) was also used to assess this aspect of PCK related to knowledge of student difficulties of both physics instructors and TAs. We find that teaching an independent course and recent teaching experience do not correlate with improved PCK. In addition, the performance of American TAs, Chinese TAs and other foreign TAs in identifying common student difficulties both in the context of the TUG-K and in the context of the FCI is similar. Moreover, there were many common difficulties of introductory physics students that were not identified by many instructors and TAs.
Vollmann, Manja; Scharloo, Margreet; Langguth, Berthold; Kalkouskaya, Natallia; Salewski, Christel
2013-01-01
Both dispositional optimism and illness representations are related to psychological health in chronic patients. In a group of chronic tinnitus sufferers, the interplay between these two variables was examined. Specifically, it was tested to what extent the relationship between dispositional optimism and depression is mediated by more positive illness representations. The study had a cross-sectional design. One hundred and eighteen patients diagnosed with chronic tinnitus completed questionnaires assessing optimism (Life Orientation Test-Revised [LOT-R]), illness representations (Illness Perceptions Questionnaire-Revised [IPQ-R]) and depression (Hospital Anxiety and Depression Scale [HADS]). Correlation analysis showed that optimism was associated with more positive illness representations and lower levels of depression. Simple mediation analyses revealed that the relationship between optimism and depression was partially mediated by the illness representation dimensions consequences, treatment control, coherence, emotional representations and internal causes. A multiple mediation analysis indicated that the total mediation effect of illness representations is particularly due to the dimension consequences. Optimism influences depression in tinnitus patients both directly and indirectly. The indirect effect indicates that optimism is associated with more positive tinnitus-specific illness representations which, in turn, are related to less depression. These findings contribute to a better understanding of the interplay between generalised expectancies, illness-specific perceptions and psychological adjustment to medical conditions.
ERIC Educational Resources Information Center
Ni, Yujing; Zhou, Dehui; Li, Xiaoqing; Li, Qiong
2014-01-01
This study, based on observation of 90 fifth-grade mathematics classes in Chinese elementary schools, examined how the task features, high cognitive demand, multiple representations, and multiple solution methods may relate to classroom discourse. Results indicate that high cognitive demand tasks were associated with teachers' use higher order…
Multiple Grammars and Second Language Representation
ERIC Educational Resources Information Center
Amaral, Luiz; Roeper, Tom
2014-01-01
This paper presents an extension of the Multiple Grammars Theory (Roeper, 1999) to provide a formal mechanism that can serve as a generative-based alternative to current descriptive models of interlanguage. The theory extends historical work by Kroch and Taylor (1997), and has been taken into a computational direction by Yang (2003). The proposal…
Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree
ERIC Educational Resources Information Center
Chen, Wei-Bang
2012-01-01
The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…
Validation and Structural Analysis of the Kinematics Concept Test
ERIC Educational Resources Information Center
Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stem, E.; Vaterlaus, A.
2017-01-01
The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part…
Bidirectional Associations in Multiplication Memory: Conditions of Negative and Positive Transfer
ERIC Educational Resources Information Center
Campbell, Jamie I. D.; Robert, Nicole D.
2008-01-01
A variety of experimental evidence indicates that the memory representation for multiplication facts (e.g., 6 [times] 9 = 54) incorporates bidirectional links with a forward association from factors to product and a reverse association from product to factors. Surprisingly, the authors did not find evidence in Experiment 1 of facilitative…
Children's Comprehension Monitoring of Multiple Situational Dimensions of a Narrative
ERIC Educational Resources Information Center
Wassenburg, Stephanie I.; Beker, Katinka; van den Broek, Paul; van der Schoot, Menno
2015-01-01
Narratives typically consist of information on multiple aspects of a situation. In order to successfully create a coherent representation of the described situation, readers are required to monitor all these situational dimensions during reading. However, little is known about whether these dimensions differ in the ease with which they can be…
"You Have to Count the Squares": Applying Knowledge in Pieces to Learning Rectangular Area
ERIC Educational Resources Information Center
Izsak, Andrew
2005-01-01
This article extends and strengthens the knowledge in pieces perspective (diSessa, 1988, 1993) by applying core components to analyze how 5th-grade students with computational knowledge of whole-number multiplication and connections between multiplication and discrete arrays constructed understandings of area and ways of using representations to…
Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.
Grossberg, S
1997-07-01
This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.
NASA Astrophysics Data System (ADS)
Vicari, Rosa; Tchiguirisnkaia, Ioulia; Schertzer, Daniel
2017-04-01
By the 2000s increasing attention among academics, as well as practitioners, has been devoted to the implementation of resilience. Putting the concept of social-ecological resilience (Holling, 1973) into practice involves relevant changes in policy and decision-making. Indeed, the social-ecological resilience approach emphasizes the need to apply the principle of subsidiarity, i.e. to decentralize risk management, to encourage citizen participation and share responsibilities (Tanguy, 2015). The concept of social-ecological resilience draws attention to the the impact of social construction of the reality- and therefore of the influence of media and other cultural contents, individual and groups knowledge, perceptions, emotions - on urban development. In this framework, communication between municipalities and citizens, especially a two-ways dialogue (i.e. participatory communication), has become a keystone of resilience strategies since it facilitates mutual understanding, shared goals identification and cooperation. Going beyond theory and implementing resilience requires resilience metrics: such indexes allow decision makers to compare the costs of resilience enhancement actions with the economic, environmental, social, and sanitary costs of non-action. However important gaps persists between theories and applied metrics of resilience. For instance, operational resilience metrics are usually defined with the help of semi-quantitative indicators that are applied to variables aggregated up to the outer scale of the system, not across the various spatial scales of the system. This research exploits recent computer aided text mining techniques to explore web communications and map press and social media representation of flood resilience, as well as identify the main opinion makers in the city of Paris. This approach allows a quantitative analysis of communication impacts, in terms of frequency and quality, and it is meant to be a basis to define new resilience communication indicators that take into account the interplay among different resilience drivers and between multiple spatial and temporal scales. This research is being undertaken in partnership with Veolia.
Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells
Trimper, John B.; Trettel, Sean G.; Hwaun, Ernie; Colgin, Laura Lee
2017-01-01
At rest, hippocampal “place cells,” neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These “replay” events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay. PMID:28824388
Guo, Yang; Liu, Shuhui; Li, Zhanhuai; Shang, Xuequn
2018-04-11
The classification of cancer subtypes is of great importance to cancer disease diagnosis and therapy. Many supervised learning approaches have been applied to cancer subtype classification in the past few years, especially of deep learning based approaches. Recently, the deep forest model has been proposed as an alternative of deep neural networks to learn hyper-representations by using cascade ensemble decision trees. It has been proved that the deep forest model has competitive or even better performance than deep neural networks in some extent. However, the standard deep forest model may face overfitting and ensemble diversity challenges when dealing with small sample size and high-dimensional biology data. In this paper, we propose a deep learning model, so-called BCDForest, to address cancer subtype classification on small-scale biology datasets, which can be viewed as a modification of the standard deep forest model. The BCDForest distinguishes from the standard deep forest model with the following two main contributions: First, a named multi-class-grained scanning method is proposed to train multiple binary classifiers to encourage diversity of ensemble. Meanwhile, the fitting quality of each classifier is considered in representation learning. Second, we propose a boosting strategy to emphasize more important features in cascade forests, thus to propagate the benefits of discriminative features among cascade layers to improve the classification performance. Systematic comparison experiments on both microarray and RNA-Seq gene expression datasets demonstrate that our method consistently outperforms the state-of-the-art methods in application of cancer subtype classification. The multi-class-grained scanning and boosting strategy in our model provide an effective solution to ease the overfitting challenge and improve the robustness of deep forest model working on small-scale data. Our model provides a useful approach to the classification of cancer subtypes by using deep learning on high-dimensional and small-scale biology data.
The first international congress on whole person care--a report.
Huffaker, Gary; Petrie, David; Kreisberg, Joel
2015-01-01
This report on the First International Congress on Whole Person Care, sponsored by McGill University, is based on the experiences of two attending authors who developed a poster of Integral Theory that emphasized the importance of taking multiple perspectives in all areas of human inquiry to allow a "big picture" perspective on medicine. Interiors (thoughts, intentions, will) of both physician and patient are as important as the exteriors (measurable parameters, such as lab results) which are often emphasized.
Thoughts on hate and aggression.
Prelinger, Ernst
2004-01-01
The phenomenon of hate is explored from two perspectives: in terms of intensive bodily arousal and mobilization, and as a form of active but paralyzed aggression. Aggression, in this context, is viewed not in terms of discharges of drive energies but rather as reinforced effort aimed at the removal or destruction of barriers that impede the organism's movement, in real or symbolic space. Winnicott (1950) already had emphasized how the basic fact of the child's motility, its activity, lies at the source of what becomes aggression. Encounter with 'reality' brings interference with free, unrestricted movement at first in actual, physical space, then gradually within the representational world. Inasmuch as such additional mobilization finds intrapsychic representation which, in turn, comes to be coupled with an 'injured' response from a loved or valued object, an intrapsychic representation of what the person experiences as his own aggressiveness emerges. Aggression thus derives from accumulating 'inevitable' collisions between adaptive motility and objects (real and symbolic barriers, obstacles) in the way. Aggression plays its part in the development of object relations. If aggressive mobilizations are sufficiently interfered with to block any further movement but continue to be stimulated in pursuing valued actual or symbolic goals, hate emerges as a form of active but paralyzed aggression. Selections from two patients' material illustrate these issues clinically.