Science.gov

Sample records for empirical delay time

  1. VARIABLE TIME DELAY MEANS

    DOEpatents

    Clemensen, R.E.

    1959-11-01

    An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

  2. Digital time delay

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  3. Time-Delay Interferometry

    NASA Astrophysics Data System (ADS)

    Dhurandhar, Sanjeev V.; Tinto, Massimo

    2005-07-01

    Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called Time-Delay Interferometry (TDI). This article provides an overview of the theory and mathematical foundations of TDI as it will be implemented by the forthcoming space-based interferometers such as the Laser Interferometer Space Antenna (LISA) mission. We have purposely left out from this first version of our "Living Review" article on TDI all the results of more practical and experimental nature, as well as all the aspects of TDI that the data analysts will need to account for when analyzing the LISA TDI data combinations. Our forthcoming "second edition" of this review paper will include these topics.

  4. An empirical formula for gas switch breakdown delay

    NASA Astrophysics Data System (ADS)

    Martin, T. H.

    An empirical scaling relationship between the mean electric field and the breakdown time has been found. Many divergent sets of data were used from breakdown experiments on power lines, laser-triggered switches, trigatrons, e-beam triggered gaps, sharp-point electrode to plane gaps, and uniform field gaps. This relationship builds on the Felsenthal and Proud data and extends their breakdown time delay (formative time) data by three orders of magnitude and into the region of interest for triggered gas switching. The data indicates that electrically triggered gaps, laser-triggered gaps, and untriggered gaps are governed by the same time-delay processes. Predictions can be made of trigger gap geometry, trigger delays, and trigger polarity effects. Breakdown delays of sub-centimeter-long to at least 8-meter-long gaps in air with either high or low field-enhanced electrodes are described by this equation. In addition, this relationship appears to be valid for a variety of gases and even accurately predicts the breakdown delay of mixtures of air and SF(sub 6).

  5. Time delay spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.

  6. Time Delay of CGM Sensors

    PubMed Central

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  7. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  8. Time delay in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Frumker, E.; Villeneuve, D. M.; Corkum, P. B.

    2016-05-01

    Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.

  9. Semi-empirical magnetostrictive delay line modelling

    NASA Astrophysics Data System (ADS)

    Kollár, Mojmír; Hristoforou, Evangelos

    In this paper, analogous approach as commonly used at the electric lines was adopted to model the magneostrictive delay line (MDL) operating on amorphous ribbons and wires like that of composition Fe 78Si 7B 15. Particularly, the damping and deterioration of the propagating magnetostrictive wave along the sample and their relation to the intrinsic material properties were of primary interest. Two damping factors taken into the consideration lead to a second-order differential equation of motion that could be solved analytically for instance of a rectangular-pulse excitation. The Laplace transform and convolution, in most of cases as a discrete procedure, has to be utilized in all other cases. Theoretical assessment confronted with some experimental results is showing a fairly good agreement.

  10. Time delay and distance measurement

    NASA Technical Reports Server (NTRS)

    Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)

    2011-01-01

    A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.

  11. Synchronization by small time delays

    NASA Astrophysics Data System (ADS)

    Pruessner, G.; Cheang, S.; Jensen, H. J.

    2015-02-01

    Synchronization is a phenomenon observed in all of the living and in much of the non-living world, for example in the heart beat, Huygens' clocks, the flashing of fireflies and the clapping of audiences. Depending on the number of degrees of freedom involved, different mathematical approaches have been used to describe it, most prominently integrate-and-fire oscillators and the Kuramoto model of coupled oscillators. In the present work, we study a very simple and general system of smoothly evolving oscillators, which continue to interact even in the synchronized state. We find that under very general circumstances, synchronization generically occurs in the presence of a (small) time delay. Strikingly, the synchronization time is inversely proportional to the time delay.

  12. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....

  13. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....

  14. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....

  15. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....

  16. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....

  17. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  18. Telepresence, time delay, and adaptation

    NASA Technical Reports Server (NTRS)

    Held, Richard; Durlach, Nathaniel

    1989-01-01

    Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.

  19. Time-delayed feedback in neurosystems.

    PubMed

    Schöll, Eckehard; Hiller, Gerald; Hövel, Philipp; Dahlem, Markus A

    2009-03-28

    The influence of time delay in systems of two coupled excitable neurons is studied in the framework of the FitzHugh-Nagumo model. A time delay can occur in the coupling between neurons or in a self-feedback loop. The stochastic synchronization of instantaneously coupled neurons under the influence of white noise can be deliberately controlled by local time-delayed feedback. By appropriate choice of the delay time, synchronization can be either enhanced or suppressed. In delay-coupled neurons, antiphase oscillations can be induced for sufficiently large delay and coupling strength. The additional application of time-delayed self-feedback leads to complex scenarios of synchronized in-phase or antiphase oscillations, bursting patterns or amplitude death. PMID:19218152

  20. Time delay plots of unflavoured baryons

    NASA Astrophysics Data System (ADS)

    Kelkar, N. G.; Nowakowski, M.; Khemchandani, K. P.; Jain, S. R.

    2004-01-01

    We explore the usefulness of the existing relations between the S-matrix and time delay in characterizing baryon resonances in pion-nucleon scattering. We draw attention to the fact that the existence of a positive maximum in time delay is a necessary criterion for the existence of a resonance and should be used as a constraint in conventional analyses which locate resonances from poles of the S-matrix and Argand diagrams. The usefulness of the time delay plots of resonances is demonstrated through a detailed analysis of the time delay in several partial waves of πN elastic scattering.

  1. Second order Kerr-Newman time delay

    NASA Astrophysics Data System (ADS)

    He, G.; Lin, W.

    2016-01-01

    The explicit form for the post-Newtonian gravitational time delay of light signals propagating on the equatorial plane of a Kerr-Newman black hole is derived. Based on the null geodesic in Kerr-Newman spacetime, we adopt the iterative method to calculate the time delay. Our result reduces to the previous formulation for the Kerr black hole if we drop the contribution from the electrical charge. Our time-delay formula for the Reissner-Nordström geometry is different from the previous publication [Phys. Rev. D 69, 023002 (2004)], in which the largest second order contribution to the time delay is missing.

  2. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...

  3. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...

  4. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...

  5. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...

  6. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...

  7. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions.

    PubMed

    Lin, Aijing; Liu, Kang K L; Bartsch, Ronny P; Ivanov, Plamen Ch

    2016-05-13

    Within the framework of 'Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991

  8. Intron Delays and Transcriptional Timing during Development

    PubMed Central

    Swinburne, Ian A.; Silver, Pamela A.

    2010-01-01

    The time taken to transcribe most metazoan genes is significant because of the substantial length of introns. Developmentally regulated gene networks, where timing and dynamic patterns of expression are critical, may be particularly sensitive to intron delays. We revisit and comment on a perspective last presented by Thummel 16 years ago: transcriptional delays may contribute to timing mechanisms during development. We discuss the presence of intron delays in genetic networks. We consider how delays can impact particular moments during development, which mechanistic attributes of transcription can influence them, how they can be modeled, and how they can be studied using recent technological advances as well as classical genetics. PMID:18331713

  9. Delay Independent Criterion for Multiple Time-delay Systems

    NASA Astrophysics Data System (ADS)

    Chang, C. J.; Liu, K. F. R.; Yeh, K.; Chen, C. W.; Chung, P. Y.

    Based on the fuzzy Lyapunov method, this work addresses the stability conditions for nonlinear systems with multiple time delays to ensure the stability of building structure control systems. The delay independent conditions are derived via the traditional Lyapunov and fuzzy Lyapunov methods for multiple time-delay systems as approximated by the Tagagi-Sugeno (T-S) fuzzy model. The fuzzy Lyapunov function is defined as a fuzzy blending of quadratic Lyapunov functions. A parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic control (FLC) by blending all linear local state feedback controllers in the controller design procedure. Furthermore, the H infinity performance and robustness of the design for modeling errors also need to be considered in the stability conditions.

  10. Switching control and time-delay identification

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Li, Xiang; Qin, Zhi-Chang; Zhong, Shun; Sun, J. Q.

    2014-12-01

    The unknown time delay makes the control design a difficult task. When the lower and upper bounds of an unknown time delay of dynamical systems are specified, one can design a supervisory control that switches among a set of controls designed for the sampled time delays in the given range so that the closed-loop system is stable and the control performance is maintained at a desirable level. In this paper, we propose to design a supervisory control to stabilize the system first. After the supervisory control converges, we start an algorithm to identify the unknown time delay, either on-line or off-line, with the known control being implemented. Examples are shown to demonstrate the stabilization and identification for linear time invariant and periodic systems with a single control time delay.

  11. Finite time stabilization of delayed neural networks.

    PubMed

    Wang, Leimin; Shen, Yi; Ding, Zhixia

    2015-10-01

    In this paper, the problem of finite time stabilization for a class of delayed neural networks (DNNs) is investigated. The general conditions on the feedback control law are provided to ensure the finite time stabilization of DNNs. Then some specific conditions are derived by designing two different controllers which include the delay-dependent and delay-independent ones. In addition, the upper bound of the settling time for stabilization is estimated. Under fixed control strength, discussions of the extremum of settling time functional are made and a switched controller is designed to optimize the settling time. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results. PMID:26264170

  12. Ionospheric irregularity influences on GPS time delay

    NASA Astrophysics Data System (ADS)

    Mansoori, Azad Ahmad; Gwal, Ashok Kumar; Khan, Parvaiz A.; Bhawre, Purushottam

    All the trans-ionospheric signals interact with the ionosphere during their passage through ionosphere, hence are strongly influenced by the ionosphere. One of most important ionospheric effects on the trans-ionospheric signals is the delay both in range and time. Under this investigation we have studied the variability of ionospheric range delay in GPS signals. To accomplish this study we have used the GPS measurements at a low latitude station, IISC Bangalore (13.02N, 77.57E) during January 2012 to December 2012. We studied the diurnal monthly as well as seasonal variability of the range delay. We also selected five intense geomagnetic storms that occurred during 2012 and investigated the variability of delay during the disturbed conditions. From our study we found the diurnal variability of the range delay is similar to the diurnal pattern observed for TEC. The delay is maximum during the month of October while lowest delay is found to occur in the month of December. During summer season the range delay in GPS signals in less while the largest delay occurs during the equinox season. The variability of delay during the geomagnetic storms of 09 Mar. 2012, 24 Apr. 2012, 15 Jul. 2012, 01 Oct. 2012 and 14 Nov. 2012 were also studied. All these geomagnetic storms belonged to intense category. We found that the value of delay is strongly increased during the course of geomagnetic storms. We took the peak value of delay as well as calculated the enhancement in the delay during these geomagnetic storms and then investigated their correlation with the storm intensity index Dst. Both the delays follow a very good correlation with Dst index.

  13. Delayed biodiversity change: no time to waste.

    PubMed

    Essl, Franz; Dullinger, Stefan; Rabitsch, Wolfgang; Hulme, Philip E; Pyšek, Petr; Wilson, John R U; Richardson, David M

    2015-07-01

    Delayed biodiversity responses to environmental forcing mean that rates of contemporary biodiversity changes are underestimated, yet these delays are rarely addressed in conservation policies. Here, we identify mechanisms that lead to such time lags, discuss shifting human perceptions, and propose how these phenomena should be addressed in biodiversity management and science. PMID:26028440

  14. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    SciTech Connect

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik E-mail: keeton@physics.rutgers.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  15. Gravitational lens time delays and gravitational waves

    SciTech Connect

    Frieman, J.A. Department of Astronomy Astrophysics, University of Chicago, Chicago, Illinois 60637 ); Harari, D.D.; Surpi, G.C. )

    1994-10-15

    Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic time delay due to the lens geometry.

  16. Resonance Effects in Photoemission Time Delays.

    PubMed

    Sabbar, M; Heuser, S; Boge, R; Lucchini, M; Carette, T; Lindroth, E; Gallmann, L; Cirelli, C; Keller, U

    2015-09-25

    We present measurements of single-photon ionization time delays between the outermost valence electrons of argon and neon using a coincidence detection technique that allows for the simultaneous measurement of both species under identical conditions. The analysis of the measured traces reveals energy-dependent time delays of a few tens of attoseconds with high energy resolution. In contrast to photoelectrons ejected through tunneling, single-photon ionization can be well described in the framework of Wigner time delays. Accordingly, the overall trend of our data is reproduced by recent Wigner time delay calculations. However, besides the general trend we observe resonance features occurring at specific photon energies. These features have been qualitatively reproduced and identified by a calculation using the multiconfigurational Hartree-Fock method, including the influence of doubly excited states and ionization thresholds. PMID:26451550

  17. Delay Differential Analysis of Time Series

    PubMed Central

    Lainscsek, Claudia; Sejnowski, Terrence J.

    2015-01-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  18. Time delays in correlated photoemission processes

    NASA Astrophysics Data System (ADS)

    Pazourek, R.; Nagele, S.; Burgdörfer, J.

    2015-09-01

    We theoretically study time-resolved two-photon double ionization (TPDI) of helium as probed by attosecond streaking. We review recent advances in the understanding of the photoelectric effect in the time domain and discuss the differences between one- and two-photon ionization, as well as one- and two-electron emission. We perform exact ab-initio simulations for attosecond streaking experiments in the sequential TPDI regime and compare the results to the two-electron Eisenbud-Wigner-Smith delay for the process. Our calculations directly show that the timing of the emission process sensitively depends on the energy sharing between the two outgoing electrons. In particular, we identify Fano-like interferences in the relative time delay of the two emitted electrons when the sequential ionization channel occurs via intermediate excited ionic (shake-up) states. Furthermore, we find that the photoemission time delays are only weakly dependent on the relative emission angle of the ejected electrons.

  19. Conversion of linear time-invariant time-delay feedback systems into delay-differential equations with commensurate delays

    NASA Astrophysics Data System (ADS)

    Yamazaki, Tatsuya; Hagiwara, Tomomichi

    2014-08-01

    A new stability analysis method of time-delay systems (TDSs) called the monodromy operator approach has been studied under the assumption that a TDS is represented as a time-delay feedback system consisting of a finite-dimensional linear time-invariant (LTI) system and a pure delay. For applying this approach to TDSs described by delay-differential equations (DDEs), the problem of converting DDEs into representation as time-delay feedback systems has been studied. With regard to such a problem, it was shown that, under discontinuous initial functions, it is natural to define the solutions of DDEs in two different ways, and the above conversion problem was solved for each of these two definitions. More precisely, the solution of a DDE was represented as either the state of the finite-dimensional part of a time-delay feedback system or a part of the output of another time-delay feedback system, depending on which definition of the DDE solution one is talking about. Motivated by the importance in establishing a thorough relationship between time-delay feedback systems and DDEs, this paper discusses the opposite problem of converting time-delay feedback systems into representation as DDEs, including the discussions about the conversion of the initial conditions. We show that the state of (the finite-dimensional part of) a time-delay feedback system can be represented as the solution of a DDE in the sense of one of the two definitions, while its 'essential' output can be represented as that of another DDE in the sense of the other type of definition. Rigorously speaking, however, it is also shown that the latter representation is possible regardless of the initial conditions, while some initial condition could prevent the conversion into the former representation. This study hence establishes that the representation of TDSs as time-delay feedback systems possesses higher ability than that with DDEs, as description methods for LTI TDSs with commensurate delays.

  20. Relationship between Weather, Traffic and Delay Based on Empirical Methods

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Swei, Sean S. M.

    2006-01-01

    The steady rise in demand for air transportation over the years has put much emphasis on the need for sophisticated air traffic flow management (TFM) within the National Airspace System (NAS). The NAS refers to hardware, software and people, including runways, radars, networks, FAA, airlines, etc., involved in air traffic management (ATM) in the US. One of the metrics that has been used to assess the performance of NAS is the actual delays provided through FAA's Air Traffic Operations Network (OPSNET). The OPSNET delay data includes those reportable delays, i.e. delays of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights, submitted by the FAA facilities. These OPSNET delays are caused by the application of TFM initiatives in response to, for instance, weather conditions, increased traffic volume, equipment outages, airline operations, and runway conditions. TFM initiatives such as, ground stops, ground delay programs, rerouting, airborne holding, and miles-in-trail restrictions, are actions which are needed to control the air traffic demand to mitigate the demand-capacity imbalance due to the reduction in capacity. Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has been identified as the most important causal factor for NAS delays. Therefore, in order to accurately assess the NAS performance, it has become necessary to create a baseline for NAS performance and establish a model which characterizes the relation between weather and NAS delays.

  1. Time delay in Swiss cheese gravitational lensing

    SciTech Connect

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-15

    We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  2. Time Delay for the Dirac Equation

    NASA Astrophysics Data System (ADS)

    Naumkin, Ivan; Weder, Ricardo

    2016-07-01

    We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator {intlimits0 ^{∞}e^{iH0t}ζ(\\vert x\\vert /R) e^{-iH0t}dt} , as {R → ∞} , is presented. Here, H 0 is the free Dirac operator and {ζ(t)} is such that {ζ(t) = 1} for {0 ≤ t ≤ 1} and {ζ(t) = 0} for {t > 1} . This approach allows us to obtain the time delay operator {δ {T}(f)} for initial states f in {{H} 2^{3/2+ɛ}({R}3;{C}4)} , {ɛ > 0} , the Sobolev space of order {3/2+ɛ} and weight 2. The relation between the time delay operator {δ{T}(f)} and the Eisenbud-Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.

  3. SBASI: Actuated pyrotechnic time delay initiator

    NASA Technical Reports Server (NTRS)

    Salter, S. J.; Lundberg, R. E.; Mcdougal, G. L.

    1975-01-01

    A precision pyrotechnic time delay initiator for missile staging was developed and tested. Incorporated in the assembly is a single bridgewire Apollo standard initiator (SBASI) for initiation, a through-bulkhead-initiator to provide isolation of the SBASI output from the delay, the pyrotechnic delay, and an output charge. An attempt was made to control both primary and secondary variables affecting functional performance of the delay initiator. Design and functional limit exploration was performed to establish tolerance levels on manufacturing and assembling operations. The test results demonstrate a 2% coefficient of variation at any one temperature and an overall 2.7% coefficient of variation throughout the temperature range of 30 to 120 F. Tests were conducted at simulated operational altitude from sea level to 200,000 feet.

  4. BOLD delay times using group delay in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  5. Time-Delayed Quantum Feedback Control

    NASA Astrophysics Data System (ADS)

    Grimsmo, Arne L.

    2015-08-01

    A theory of time-delayed coherent quantum feedback is developed. More specifically, we consider a quantum system coupled to a bosonic reservoir creating a unidirectional feedback loop. It is shown that the dynamics can be mapped onto a fictitious series of cascaded quantum systems, where the system is driven by past versions of itself. The derivation of this model relies on a tensor network representation of the system-reservoir time propagator. For concreteness, this general theory is applied to a driven two-level atom scattering into a coherent feedback loop. We demonstrate how delay effects can qualitatively change the dynamics of the atom and how quantum control can be implemented in the presence of time delays.

  6. Time-Delayed Quantum Feedback Control.

    PubMed

    Grimsmo, Arne L

    2015-08-01

    A theory of time-delayed coherent quantum feedback is developed. More specifically, we consider a quantum system coupled to a bosonic reservoir creating a unidirectional feedback loop. It is shown that the dynamics can be mapped onto a fictitious series of cascaded quantum systems, where the system is driven by past versions of itself. The derivation of this model relies on a tensor network representation of the system-reservoir time propagator. For concreteness, this general theory is applied to a driven two-level atom scattering into a coherent feedback loop. We demonstrate how delay effects can qualitatively change the dynamics of the atom and how quantum control can be implemented in the presence of time delays. PMID:26296104

  7. The Strong Lensing Time Delay Challenge (2014)

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  8. Time-delayed autosynchronous swarm control.

    PubMed

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations. PMID:22400623

  9. Time-delayed autosynchronous swarm control

    NASA Astrophysics Data System (ADS)

    Biggs, James D.; Bennet, Derek J.; Dadzie, S. Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  10. Joint moments of proper delay times

    SciTech Connect

    Martínez-Argüello, Angel M.; Martínez-Mares, Moisés; García, Julio C.

    2014-08-15

    We calculate negative moments of the N-dimensional Laguerre distribution for the orthogonal, unitary, and symplectic symmetries. These moments correspond to those of the proper delay times, which are needed to determine the statistical fluctuations of several transport properties through classically chaotic cavities, like quantum dots and microwave cavities with ideal coupling.

  11. Time delay measurement in the frequency domain

    DOE PAGESBeta

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less

  12. Time delay measurement in the frequency domain

    SciTech Connect

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible by simply extending the data acquisition time.

  13. Time Delays, Bends, Acceleration and Array Reconfigurations

    SciTech Connect

    Faltens, A.

    2011-06-24

    This note was originally one of the parts of the work on a 50 MeV and 500 MeV Rb{sup +} driver and part of work on delay lines for a 60 GeV U{sup +12} driver. It is slightly expanded here to make it more generally applicable. The emphasis is on beam manipulations such as joining and separating beams at the two ends of a driver and providing various time delays between beams as required by the target.

  14. Influence of time delay and nonlinear diffusion on herbivore outbreak

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Quan; Chakraborty, Amit; Liu, Quan-Xing; Jin, Zhen; Anderson, Kurt E.; Li, Bai-Lian

    2014-05-01

    Herbivore outbreaks, a major form of natural disturbance in many ecosystems, often have devastating impacts on their food plants. Understanding those factors permitting herbivore outbreaks to occur is a long-standing issue in conventional studies of plant-herbivore interactions. These studies are largely concerned with the relative importance of intrinsic biological factors and extrinsic environmental variations in determining the degree of herbivore outbreaks. In this paper, we illustrated that how the time delay associated with plant defense responses to herbivore attacks and the spatial diffusion of herbivore jointly promote outbreaks of herbivore population. Using a reaction-diffusion model, we showed that there exists a threshold of time delay in plant-herbivore interactions; when time delay is below the threshold value, there is no herbivore outbreak. However, when time delay is above the threshold value, periodic outbreak of herbivore emerges. Furthermore, the results confirm that during the outbreak period, plants display much lower density than its normal level but higher in the inter-outbreak periods. Our results are supported by empirical findings.

  15. Supervising Remote Humanoids Across Intermediate Time Delay

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Rabe, Kenneth; Allan, Mark

    2006-01-01

    The President's Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling humanoids under intermediate time delay is presented. This approach uses software running within a ground control cockpit to predict an immersed robot supervisor's motions which the remote humanoid autonomously executes. Initial results are presented.

  16. Inertia, gravitation, and radiation time delays

    SciTech Connect

    Graneau, P.

    1987-05-01

    This note explains how an instantaneous action-at-a-distance theory gives rise to time delays between a cause in one location and its effect at another. The key to this is a suitable law of induction which itself does not produce the time delay, but contains the cause in the form of a time derivative. The many-body solution process for an array of simultaneous induction equations then reveals retardation between cause and effect without the transport of energy at finite velocity. It is suggested that a suitable law of induction of inertia applied to an object in the solar system and the many-body universe may furnish the quantitative connection between inertia and Newtonian gravitation.

  17. Delay Aversion in Attention Deficit/Hyperactivity Disorder: An Empirical Investigation of the Broader Phenotype

    ERIC Educational Resources Information Center

    Bitsakou, Paraskevi; Psychogiou, Lamprini; Thompson, Margaret; Sonuga-Barke, Edmund J. S.

    2009-01-01

    Background: Delay-related motivational processes are impaired in children with Attention Deficit/Hyperactivity Disorder (ADHD). Here we explore the impact of ADHD on the performance of three putative indices of Delay Aversion (DAv): (i) the choice for immediate over delayed reward; (ii) slower reaction times following delay; and (iii) increased…

  18. Integrated Planning for Telepresence with Time Delays

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Rabe, Kenneth J.

    2006-01-01

    Teleoperation of remote robotic systems over time delays in the range of 2-10 seconds poses a unique set of challenges. In the context of a supervisory control system for the JSC Robonaut humanoid robot, we have developed an 'intelligent assistant' that integrates an Artificial Intelligence planner (JSHOP2) with execution monitoring of the state of both the human supervisor and the remote robot. The assistant reasons simultaneously about the world state on both sides of the time delay, which represents a novel application of this technology. The purpose of the assistant is to provide advice to the human supervisor about current and future activities, derived from a sequence of high-level goals to be achieved. To do this, the assistant must simultaneously monitor and react to various data sources, including actions taken by the supervisor who is issuing commands to the robot (e.g. with a data glove), actions taken by the robot, and the environment of the robot, both as currently perceived over the time delay, along with the current sequence of goals. We have developed a 'leader/follower' software architecture to handle the dual time-shifted streams of execution feedback. In this paper we describe the integrated planner and its executive, and how it operates in normal and anomaly situations.

  19. Stochastic nonlinear time series forecasting using time-delay reservoir computers: performance and universality.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2014-07-01

    Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. PMID:24732236

  20. Estimation of time delays from unresolved photometry

    NASA Astrophysics Data System (ADS)

    Hirv, A.; Eenmäe, T.; Liimets, T.; Liivamägi, L. J.; Pelt, J.

    2007-03-01

    Context: Longtime monitoring of gravitational lens systems is often done using telescopes and recording equipment with modest resolution. Still, it would be interesting to get as much information as possible from the measured lightcurves. From high resolution images we know that the recorded quasar images are often blends and that the corresponding time series are not pure shifted replicas of the source variability. Aims: In this paper we will develop an algorithm to unscramble this kind of blended data. Methods: The proposed method is based on a simple idea. We use one of the photometric curves, which is supposedly a simple shifted replica of the source curve, to build different artificial combined curves. Then we compare these artificial curves with the blended curves. Proper solutions for a full set of time delays are then obtained by varying free input parameters and estimating statistical distances between the artificial and blended curves. Results: We performed a check of feasibility and applicability of the new algorithm. For numerically generated data sets the time delay systems were recovered for a wide range of setups. Application of the new algorithm to the classical double quasar QSO 0957+561 A, B lightcurves shows a clear splitting of one of the images. This is an unexpected result and extremely interesting, especially in the context of the recent controversy about the exact time delay value for the system. Conclusions: .The proposed method allows us to properly analyse the data from low resolution observations that have long time coverages. There are a number of gravitational lens monitoring programmes that can make use of the new algorithm.

  1. An Empirical Study of Synchrophasor Communication Delay in a Utility TCP/IP Network

    NASA Astrophysics Data System (ADS)

    Zhu, Kun; Chenine, Moustafa; Nordström, Lars; Holmström, Sture; Ericsson, Göran

    2013-07-01

    Although there is a plethora of literature dealing with Phasor Measurement Unit (PMU) communication delay, there has not been any effort made to generalize empirical delay results by identifying the distribution with the best fit. The existing studies typically assume a distribution or simply build on analogies to communication network routing delay. Specifically, this study provides insight into the characterization of the communication delay of both unprocessed PMU data and synchrophasors sorted by a Phasor Data Concentrator (PDC). The results suggest that a bi-modal distribution containing two normal distributions offers the best fit of the delay of the unprocessed data, whereas the delay profile of the sorted synchrophasors resembles a normal distribution based on these results, the possibility of evaluating the reliability of a synchrophasor application with respect to a particular choice of PDC timeout is discussed.

  2. Angular dependence of Wigner time delay: Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.

    2016-05-01

    Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).

  3. Integrated Planning for Telepresence with Time Delays

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Rabe, Kenneth J.

    2006-01-01

    Integrated planning and execution of teleoperations in space with time delays is shown. The topics include: 1) The Problem; 2) Future Robot Surgery? 3) Approach Overview; 4) Robonaut; 5) Normal Planning and Execution; 6) Planner Context; 7) Implementation; 8) Use of JSHOP2; 9) Monitoring and Testing GUI; 10) Normal sequence: first the supervisor acts; 11) then the robot; 12) Robot might be late; 13) Supervisor can work ahead; 14) Deviations from Plan; 15) Robot State Change Example; 16) Accomplished goals skipped in replan; 17) Planning continuity; 18) Supervisor Deviation From Plan; 19) Intentional Deviation; and 20) Infeasible states.

  4. Integrated Planning for Telepresence With Time Delays

    NASA Technical Reports Server (NTRS)

    Johnston, Mark; Rabe, Kenneth

    2009-01-01

    A conceptual "intelligent assistant" and an artificial-intelligence computer program that implements the intelligent assistant have been developed to improve control exerted by a human supervisor over a robot that is so distant that communication between the human and the robot involves significant signal-propagation delays. The goal of the effort is not only to help the human supervisor monitor and control the state of the robot, but also to improve the efficiency of the robot by allowing the supervisor to "work ahead". The intelligent assistant is an integrated combination of an artificial-intelligence planner and a monitor of states of both the human supervisor and the remote robot. The novelty of the system lies in the way it uses the planner to reason about the states at both ends of the time delay. The purpose served by the assistant is to provide advice to the human supervisor about current and future activities, derived from a sequence of high-level goals to be achieved.

  5. Non-commutativity, teleology and GRB time delay

    NASA Astrophysics Data System (ADS)

    Li, Miao; Pang, Yi; Wang, Yi

    2010-01-01

    We propose a model in which an energy-dependent time delay of a photon originates from space-time non-commutativity, the time delay is due to a non-commutative coupling between dilaton and photon. We predict that in our model, high energy photons with different momentum can either be delayed or superluminal, this may be related to a possible time delay reported by the Fermi LAT and Fermi GBM Collaborations.

  6. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean...

  7. Relativistic calculations of angle-dependent photoemission time delay

    NASA Astrophysics Data System (ADS)

    Kheifets, Anatoli; Mandal, Ankur; Deshmukh, Pranawa C.; Dolmatov, Valeriy K.; Keating, David A.; Manson, Steven T.

    2016-07-01

    Angular dependence of photoemission time delay for the valence n p3 /2 and n p1 /2 subshells of Ar, Kr, and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.

  8. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Time delay analysis. 417.221 Section...

  9. New delay dependent stability criteria for recurrent neural networks with interval time-varying delay.

    PubMed

    Yang, Qiongfen; Ren, Quanhong; Xie, Xuemei

    2014-07-01

    This paper is concerned with the delay dependent stability criteria for a class of static recurrent neural networks with interval time-varying delay. By choosing an appropriate Lyapunov-Krasovskii functional and employing a delay partitioning method, the less conservative condition is obtained. Furthermore, the LMIs-based condition depend on the lower and upper bounds of time delay. Finally, a numerical example is also designated to verify the reduced conservatism of developed criteria. PMID:24908560

  10. A time delay controller for magnetic bearings

    NASA Technical Reports Server (NTRS)

    Youcef-Toumi, K.; Reddy, S.

    1991-01-01

    The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging problems. This is particularly important when high system performance needs to be guaranteed at all times. Recently, the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it combines adaptation with past observations to directly estimate the effect of the plant dynamics. A control law is formulated for a class of dynamic systems and a sufficient condition is presented for control systems stability. The derivation is based on the bounded input-bounded output stability approach using L sub infinity function norms. The control scheme is implemented on a five degrees of freedom high speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency responses, and disturbance rejection properties. The experimental data show an excellent control performance despite the system complexity.

  11. COSMOLOGICAL CONSTRAINTS FROM GRAVITATIONAL LENS TIME DELAYS

    SciTech Connect

    Coe, Dan; Moustakas, Leonidas A.

    2009-11-20

    Future large ensembles of time delay (TD) lenses have the potential to provide interesting cosmological constraints complementary to those of other methods. In a flat universe with constant w including a Planck prior, The Large Synoptic Survey Telescope TD measurements for approx4000 lenses should constrain the local Hubble constant h to approx0.007 (approx1%), OMEGA{sub de} to approx0.005, and w to approx0.026 (all 1sigma precisions). Similar constraints could be obtained by a dedicated gravitational lens observatory (OMEGA) which would obtain precise TD and mass model measurements for approx100 well-studied lenses. We compare these constraints (as well as those for a more general cosmology) to the 'optimistic Stage IV' constraints expected from weak lensing, supernovae, baryon acoustic oscillations, and cluster counts, as calculated by the Dark Energy Task Force. TDs yield a modest constraint on a time-varying w(z), with the best constraint on w(z) at the 'pivot redshift' of z approx 0.31. Our Fisher matrix calculation is provided to allow TD constraints to be easily compared to and combined with constraints from other experiments. We also show how cosmological constraining power varies as a function of numbers of lenses, lens model uncertainty, TD precision, redshift precision, and the ratio of four-image to two-image lenses.

  12. Analytic Modeling of Collector Current and Delay Time in Hbts

    NASA Astrophysics Data System (ADS)

    Jung, Hee-Bum

    1992-01-01

    Collector current in abrupt Al_ {0.48}In_{0.52} As/In_{0.53}Ga _{0.47}As HBTs is investigated. Because tunneling plays an important role for abrupt heterojunctions, thermionic field emission (TF) mechanism is included, as a part of the model, in addition to thermionic emission (TE) theory. To model the modulation of the effective barrier height correctly, non-ideal doping profile across the heterojunction is considered. Calculations showed that under nominal operating conditions, TF is dominant over TE in determining the collector current. Furthermore, modulation of the effective barrier height manifests itself in the collector ideality factor that is greater than unity. It is shown that, by calculating the above mentioned transport mechanisms and including the barrier height modulation, the collector current and its temperature dependence in abrupt AlInAs/InGaAs HBTs can be predicted correctly. The detailed calculation is reduced to an analytical closed -form model by assuming a Gaussian energy spectrum for TF current. The model is determined to be accurate over a wide range of bias and temperatures. A simple TE/TF Ebers -Moll model for abrupt HBTs is derived. The classical expression for collector small signal delay time is inadequate for vertically scaled transistors where transient velocity effects can no longer be ignored. Analytical expressions for collector transit time and small signal delay time are proposed for circuit simulation. These models use a general non-uniform velocity profile described entirely in terms of five physical parameters: momentum and energy relaxation times, and initial, peak, and saturated velocities. A C_infty-continuous function approximation for the transit time is used to obtain analytical closed-form expressions for collector small signal delay time in terms of physically meaningful transport parameters. An accurate empirical two-piece model is also proposed. As the collector thickness is scaled down, the ratio of small signal

  13. Delay time and Hartman effect in strain engineered graphene

    SciTech Connect

    Chen, Xi Deng, Zhi-Yong; Ban, Yue

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  14. Time-delay compensation for stabilization imaging system

    NASA Astrophysics Data System (ADS)

    Chen, Yueting; Xu, Zhihai; Li, Qi; Feng, Huajun

    2014-05-01

    The spatial resolution of imaging systems for airborne and space-borne remote sensing are often limited by image degradation resulting from mechanical vibrations of platforms during image exposure. A straightforward way to overcome this problem is to actively stabilize the optical axis or drive the focal plane synchronous to the motion image during exposure. Thus stabilization imaging system usually consists of digital image motion estimation and micromechanical compensation. The performance of such kind of visual servo system is closely related to precision of motion estimation and time delay. Large time delay results in larger phase delay between motion estimation and micromechanical compensation, and leads to larger uncompensated residual motion and limited bandwidth. The paper analyzes the time delay caused by image acquisition period and introduces a time delay compensation method based on SVM (Support Vector Machine) motion prediction. The main idea to cancel the time delay is to predict the current image motion from delayed measurements. A support vector machine based method is designed to predict the image motion. A prototype of stabilization imaging system has been implemented in the lab. To analyze the influences of time delay on system performance and to verify the proposed time delay cancelation method, comparative experiments over various frequencies of vibration are taken. The experimental results show that, the accuracy of motion compensation and the bandwidth of the system can be significantly improved with time delay cancelation.

  15. A novel online adaptive time delay identification technique

    NASA Astrophysics Data System (ADS)

    Bayrak, Alper; Tatlicioglu, Enver

    2016-05-01

    Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.

  16. Consensus networks with time-delays over finite fields

    NASA Astrophysics Data System (ADS)

    Li, Xiuxian; Su, Housheng; Chen, Michael Z. Q.

    2016-05-01

    In this paper, we investigate the consensus problem in networks with time-delays over finite fields. The delays are categorised into three cases: single constant delay, multiple constant delays, and time-varying bounded delays. For all cases, some sufficient and necessary conditions for consensus are derived. Furthermore, assuming that the communication graph is strongly connected, some of the obtained necessary conditions reveal that the conditions for consensus with time-delays over finite fields depend not only on the diagonal entries but also on the off-diagonal entries, something that is intrinsically distinct from the case over real numbers (where having at least one nonzero diagonal entry is a sufficient and necessary condition to guarantee consensus). In addition, it is shown that delayed networks cannot achieve consensus when the interaction graph is a tree if the corresponding delay-free networks cannot reach consensus, which is consistent with the result over real numbers. As for average consensus, we show that it can never be achieved for delayed networks over finite fields, although it indeed can be reached under several conditions for delay-free networks over finite fields. Finally, networks with time-varying delays are discussed and one sufficient condition for consensus is presented by graph-theoretic method.

  17. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis....

  18. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis....

  19. An evaluation of an empirical model for stall delay due to rotation for HAWTS

    SciTech Connect

    Tangler, J L; Selig, M S

    1997-07-01

    The objective of this study was to evaluate the Corrigan and Schillings stall delay model for predicting rotor performance for horizontal axis wind turbines. Two-dimensional (2D) wind tunnel characteristics with and without stall delay were used in the computer program PROP93 to predict performance for the NREL Combined Experiment Rotor (CER) and a lower solidity commercial machine. For the CER, predictions were made with a constant-chord/twisted blade and a hypothetical tapered/twisted blade. Results for the constant-chord/twisted blade were compared with CER data. Predicted performance using this empirical stall-delay method provided significant increases in peak power over 2D post-stall airfoil characteristics. The predicted peak power increase due to stall delay for the CER was found to be quite large (20% to 30%) as a result of its high blade solidity. For a more typical, lower-solidity commercial blade the predicted peak power increase was 15% to 20%. As described in the paper, correlation with test data was problematic due to factors not related to the stall-delay model.

  20. Stability analysis of genetic regulatory networks with multiple time delays.

    PubMed

    Wu, Fang-Xiang

    2007-01-01

    A genetic regulatory network is a dynamic system to describe interactions among genes (mRNA) and its products (proteins). From the statistic thermodynamics and biochemical reaction principle, a genetic regulatory network can be described by a group of nonlinear differential equations with time delays. Stability is one of interesting properties for genetic regulatory network. Previous studies have investigated stability of genetic regulatory networks with a single time delay. In this paper, we investigate properties of genetic regulatory networks with multiple time delays in the notion of delay-independent stability. We present necessary and sufficient condition for the local delay-independent stability of genetic regulatory network with multiple time delays which are independent or commensurate. PMID:18002223

  1. GPT2: Empirical slant delay model for radio space geodetic techniques

    PubMed Central

    Lagler, K; Schindelegger, M; Böhm, J; Krásná, H; Nilsson, T

    2013-01-01

    Up to now, state-of-the-art empirical slant delay modeling for processing observations from radio space geodetic techniques has been provided by a combination of two empirical models. These are GPT (Global Pressure and Temperature) and GMF (Global Mapping Function), both operating on the basis of long-term averages of surface values from numerical weather models. Weaknesses in GPT/GMF, specifically their limited spatial and temporal variability, are largely eradicated by a new, combined model GPT2, which provides pressure, temperature, lapse rate, water vapor pressure, and mapping function coefficients at any site, resting upon a global 5° grid of mean values, annual, and semi-annual variations in all parameters. Built on ERA-Interim data, GPT2 brings forth improved empirical slant delays for geophysical studies. Compared to GPT/GMF, GPT2 yields a 40% reduction of annual and semi-annual amplitude differences in station heights with respect to a solution based on instantaneous local pressure values and the Vienna mapping functions 1, as shown with a series of global VLBI (Very Long Baseline Interferometry) solutions. PMID:25821263

  2. Improved delay-dependent stability criteria for neutral-type systems with time-varying delays: a delayed decomposition approach

    NASA Astrophysics Data System (ADS)

    Liu, Pin-Lin

    2014-08-01

    This paper discusses the neutral system with time-varying delay. Firstly, by developing a delayed decomposition approach and introducing integral inequality approach, the information of the delayed plant states can be taken into full consideration, and new delay-dependent sufficient stability criteria are obtained in terms of linear matrix inequalities (LMIs). Then, based on the Lyapunov method, delay-dependent stability criteria are devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criteria are derived in terms of LMIs, which can be easily solved by using various convex optimization algorithms. Three illustrative numerical examples are given to show the less conservatism of our obtained results and the effectiveness of the proposed method.

  3. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Time delay analysis. 417.221 Section 417.221 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include...

  4. Stability of a general SEIV epidemic model with time delay

    NASA Astrophysics Data System (ADS)

    Hikal, M. M.; El-Sheikh, M. M. A.

    2013-10-01

    An SEIV epidemic model with a general nonlinear incidence rate, vaccination and time delay in treatment is considered. Sufficient conditions for the time delay to keep the stability of the endemic equilibria are given. A numerical simulations is given to illustrate our results.

  5. Using Constant Time Delay to Teach Braille Word Recognition

    ERIC Educational Resources Information Center

    Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah

    2014-01-01

    Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…

  6. Time-delayed operation of a telerobot via geosynchronous relay

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    1988-01-01

    Operation of a telerobot is compromised if a time delay of more than a few hundred milliseconds exists between the operator and remote manipulator. However, the most economically attractive way to perform telerobotic functions such as assembly, maintenance, and repair in Earth orbit is via geosynchronous relay satellites to a ground-based operator. This induces loop delays from one-half to two seconds, depending on how many relays are involved. Such large delays makes direct master-slave, force-reflecting teleoperated systems infeasible. Research at JPL on a useful telerobot that operates with such time delays is described.

  7. Photonic Circuits with Time Delays and Quantum Feedback

    NASA Astrophysics Data System (ADS)

    Pichler, Hannes; Zoller, Peter

    2016-03-01

    We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.

  8. Photonic Circuits with Time Delays and Quantum Feedback.

    PubMed

    Pichler, Hannes; Zoller, Peter

    2016-03-01

    We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem. PMID:26991174

  9. MSW variable time-delay techniques

    NASA Astrophysics Data System (ADS)

    Adam, J. D.; Daniel, M. R.; Emtage, P. R.; Weinert, R. W.

    1982-07-01

    Work performed during the first year of a program to investigate magnetostatic wave device techniques for phased arrays and microwave signal processing is described. Among the topics covered is a variable delay line formed by a backward volume wave down-chirp and a forward volume wave up-chirp; propagation in YIG films biased at an arbitrary angle; propagation and transduction in double YIG films; and the growth of Sm-doped GGG suitable for use as an epitaxial spacer between two YIG films.

  10. Microsecond delays on non-real time operating systems

    SciTech Connect

    Angstadt, R.; Estrada, J.; Diehl, H.T.; Flaugher, B.; Johnson, M.; /Fermilab

    2007-05-01

    We have developed microsecond timing and profiling software that runs on standard Windows and Linux based operating systems. This software is orders of magnitudes better than most of the standard native functions in wide use. Our software libraries calibrate RDTSC in microseconds or seconds to provide two different types of delays: a ''Guaranteed Minimum'' and a precision ''Long Delay'', which releases to the kernel. Both return profiling information of the actual delay.

  11. Electronically variable time delays using magnetostatic wave technology

    NASA Astrophysics Data System (ADS)

    Adkins, L. R.; Glass, H. L.; Jin, K. K.; Stearns, F. S.; Ataiiyn, Y. T.

    1986-03-01

    Variable time delays are necessary in phased array systems to prevent phase squinting and pulse stretching. Methods for providing these time delays include an assortment of fixed cables, ferrite loaded cables, surface acoustic wave (SAW) devices and magnetostatic wave (MSW) devices. Fixed cables are bulky, limiting the number that can be employed per system. Ferrite loaded cables and SAW devices are applicable primarily at frequencies below 1 GHz and provide relatively small delay differentials. MSW wave technology is capable of operating at frequencies up to 20 GHz and providing differential time delays on the order of tens of nanoseconds. An MSW device has recently been demonstrated with a bandwidth greater than 200 MHz centered at 3 GHz. This device has a phase error across the band as low as 8 deg and is capable of providing nearly 50 nS differential delay. Thus, MSW technology appears to be the most promising technique for the next generation of phased array systems.

  12. GPT2/GMF2: An improved empirical model for tropospheric delays

    NASA Astrophysics Data System (ADS)

    Boehm, J.; Lagler, K.; Schindelegger, M.; Krasna, H.

    2012-12-01

    Troposphere delay modelling is a major error source in the analysis of space geodetic observations at radio wavelengths, like those from Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). If available, it is recommended to use pressure values recorded at the geodetic sites to determine zenith hydrostatic delays, to map those delays down to the elevation of the observation with the hydrostatic Vienna Mapping Function 1 (VMF1), and to estimate the residual zenith wet delay with the wet VMF1 in a least-squares adjustment. In case that neither local pressure values nor VMF1 are available, the analyst is advised to take the empirical functions, like the Global Pressure and Temperature (GPT) model and the Global Mapping Functions (GMF). Both, GPT and GMF, are built on spherical harmonics up to degree and order nine and they describe the annual variation of pressure, temperature, and the mapping function coefficients. Here, we present an updated version of GPT and GMF, called GPT2/GMF2, which has been obtained from 10 years of monthly climatological means as portrayed by ERA-Interim data of the ECMWF (European Centre for Medium-Range Weather Forecasts). GPT2/GMF2 is based on 5 x 5 degree grids, sine and cosine amplitudes for the annual and semi-annual variation of pressure, temperature, lapse rate, humidity, and mapping function coefficients. We show its implementation and application in the Vienna VLBI Software (VieVS) and compare the station coordinates and zenith delays against those determined with GPT/GMF or the VMF1 with local pressure measurements.

  13. Stability domains of the delay and PID coefficients for general time-delay systems

    NASA Astrophysics Data System (ADS)

    Almodaresi, Elham; Bozorg, Mohammad; Taghirad, Hamid D.

    2016-04-01

    Time delays are encountered in many physical systems, and they usually threaten the stability and performance of closed-loop systems. The problem of determining all stabilising proportional-integral-derivative (PID) controllers for systems with perturbed delays is less investigated in the literature. In this study, the Rekasius substitution is employed to transform the system parameters to a new space. Then, the singular frequency (SF) method is revised for the Rekasius transformed system. A novel technique is presented to compute the ranges of time delay for which stable PID controller exists. This stability range cannot be readily computed from the previous methods. Finally, it is shown that similar to the original SF method, finite numbers of singular frequencies are sufficient to compute the stable regions in the space of time delay and controller coefficients.

  14. Next generation strong lensing time delay estimation with Gaussian processes

    NASA Astrophysics Data System (ADS)

    Hojjati, Alireza; Linder, Eric V.

    2014-12-01

    Strong gravitational lensing forms multiple, time delayed images of cosmological sources, with the "focal length" of the lens serving as a cosmological distance probe. Robust estimation of the time delay distance can tightly constrain the Hubble constant as well as the matter density and dark energy. Current and next generation surveys will find hundreds to thousands of lensed systems but accurate time delay estimation from noisy, gappy light curves is potentially a limiting systematic. Using a large sample of blinded light curves from the Strong Lens Time Delay Challenge we develop and demonstrate a Gaussian process cross correlation technique that delivers an average bias within 0.1% depending on the sampling, necessary for subpercent Hubble constant determination. The fits are accurate (80% of them within one day) for delays from 5-100 days and robust against cadence variations shorter than six days. We study the effects of survey characteristics such as cadence, season, and campaign length, and derive requirements for time delay cosmology: in order not to bias the cosmology determination by 0.5 σ , the mean time delay fit accuracy must be better than 0.2%.

  15. Chaos synchronization by resonance of multiple delay times

    NASA Astrophysics Data System (ADS)

    Martin, Manuel Jimenez; D'Huys, Otti; Lauerbach, Laura; Korutcheva, Elka; Kinzel, Wolfgang

    2016-02-01

    Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single-delay networks, the number of synchronized sublattices is determined by the greatest common divisor (GCD) of the network loop lengths. We demonstrate analytically the GCD condition in networks of iterated Bernoulli maps with multiple delay times and complement our analytic results by numerical phase diagrams, providing parameter regions showing complete and sublattice synchronization by resonance for Tent and Bernoulli maps. We compare networks with the same GCD with single and multiple delays, and we investigate the sensitivity of the correlation to a detuning between the delays in a network of coupled Stuart-Landau oscillators. Moreover, the GCD condition also allows detection of time-delay resonances, leading to high correlations in nonsynchronizable networks. Specifically, GCD-induced resonances are observed both in a chaotic asymmetric network and in doubly connected rings of delay-coupled noisy linear oscillators.

  16. Chaos synchronization by resonance of multiple delay times.

    PubMed

    Martin, Manuel Jimenez; D'Huys, Otti; Lauerbach, Laura; Korutcheva, Elka; Kinzel, Wolfgang

    2016-02-01

    Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single-delay networks, the number of synchronized sublattices is determined by the greatest common divisor (GCD) of the network loop lengths. We demonstrate analytically the GCD condition in networks of iterated Bernoulli maps with multiple delay times and complement our analytic results by numerical phase diagrams, providing parameter regions showing complete and sublattice synchronization by resonance for Tent and Bernoulli maps. We compare networks with the same GCD with single and multiple delays, and we investigate the sensitivity of the correlation to a detuning between the delays in a network of coupled Stuart-Landau oscillators. Moreover, the GCD condition also allows detection of time-delay resonances, leading to high correlations in nonsynchronizable networks. Specifically, GCD-induced resonances are observed both in a chaotic asymmetric network and in doubly connected rings of delay-coupled noisy linear oscillators. PMID:26986330

  17. Heterogeneity of time delays determines synchronization of coupled oscillators.

    PubMed

    Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K

    2016-07-01

    Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations. PMID:27575125

  18. Heterogeneity of time delays determines synchronization of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K.

    2016-07-01

    Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations.

  19. Workspace visualization and time-delay telerobotic operations

    NASA Technical Reports Server (NTRS)

    Schenker, P. S.; Bejczy, A. K.

    1990-01-01

    The paper examines the performance of telerobotic tasks where the operator and robot are physically separated, and a comunication time delay of up to several seconds between them exists. This situation is applicable to space robotic servicing-assembly-maintenance operations on low earth or geosynchronous orbits with a ground-based command station. Attention is given to two developments which address advanced time-delay teleoperations for unstructured tasks: (1) the 'phantom robot', a real-time predictive graphics simulator developed to allow teleoperator eye-to-hand coordination or robot free-space kinematics under a time delay of several seconds; and (2) shared compliance control, a modified form of automatic electromechanical impedance control employed in parallel with manual position control to permit soft contact and grasp compliance with workpiece geometry under a time delay of several seconds.

  20. Time Delay for Dispersive Systems in Quantum Scattering Theory

    NASA Astrophysics Data System (ADS)

    Tiedra de Aldecoa, Rafael

    We consider time delay and symmetrized time delay (defined in terms of sojourn times) for quantum scattering pairs {H0 = h(P), H}, where h(P) is a dispersive operator of hypoelliptic-type. For instance, h(P) can be one of the usual elliptic operators such as the Schrödinger operator h(P) = P2 or the square-root Klein-Gordon operator h(P) = √ {1 + P2}. We show under general conditions that the symmetrized time delay exists for all smooth even localization functions. It is equal to the Eisenbud-Wigner time delay plus a contribution due to the non-radial component of the localization function. If the scattering operator S commutes with some function of the velocity operator ∇h(P), then the time delay also exists and is equal to the symmetrized time delay. As an illustration of our results, we consider the case of a one-dimensional Friedrichs Hamiltonian perturbed by a finite rank potential. Our study puts into evidence an integral formula relating the operator of differentiation with respect to the kinetic energy h(P) to the time evolution of localization operators.

  1. Time-delayed directional beam phased array antenna

    DOEpatents

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  2. Time-delayed coupled logistic capacity model in population dynamics

    NASA Astrophysics Data System (ADS)

    Cáceres, Manuel O.

    2014-08-01

    This study proposes a delay-coupled system based on the logistic equation that models the interaction of a population with its varying environment. The integro-diferential equations of the model are presented in terms of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are presented, and analytical conclusions have been done in terms of the two parameters of the model.

  3. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  4. The time delay in the twin QSO Q0957 + 561

    SciTech Connect

    Schild, R.E. )

    1990-12-01

    From 10 yr of brightness monitoring of the two gravitational mirage components of Q0957 + 561 A,B it is shown that the time delay is 1.11 yr. An intensive program of daily brightness monitoring suggests a further refinement of the time delay to 404 days. Careful superposition of the phased brightness records shows that small differences are seen. These differences are attributed to microlensing by a star or stars in the lens galaxy. 5 refs.

  5. Time Delay Evolution of Five Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, A.; Popović, L. Č.; Shapovalova, A. I.; Ilić, D.; Burenkov, A. N.; Chavushyan, V. H.

    2015-12-01

    Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and observed AGN light curves, we apply Gaussian kernel-based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. However, Gaussian kernel-based method shows instability in the case of NGC 5548, 3C 390.3, E1821 + 643 and NGC 4051 possibly due to numerical discrepancies between damped random walk (DRW) time scale of light curves and sliding time windows of the method. The temporal variations of time lags of Arp 102B can correspond to the real nature of the time lag evolution.

  6. An Explanation of Persistence and Sleeper Effects: An Empirical Test of the Delayed Opinion Response Model.

    ERIC Educational Resources Information Center

    McDermott, Steve; Hylton, Cal

    A theoretical model was tested for its ability to explain persistence and delayed credibility (or "sleeper") effects in attitude change via persuasive variables. The model predicted opinion effects from two major components: a multiplicative effect of message repetition and credibility, and a simple effect of time since receipt of message. The…

  7. Quasar optical variability: searching for interband time delays

    NASA Astrophysics Data System (ADS)

    Bachev, R. S.

    2009-01-01

    Aims: The main purpose of this paper is to study time delays between the light variations in different wavebands for a sample of quasars. Measuring a reliable time delay for a large number of quasars may help constraint the models of their central engines. The standard accretion disk irradiation model predicts a delay of the longer wavelengths behind the shorter ones, a delay that depends on the fundamental quasar parameters. Since the black hole masses and the accretion rates are approximately known for the sample we use, one can compare the observed time delays with the expected ones. Methods: We applied the interpolation cross-correlation function (ICCF) method to the Giveon et al. sample of 42 quasars, monitored in two (B and R) colors, to find the time lags represented by the ICCF peaks. Different tests were performed to assess the influence of photometric errors, sampling, etc., on the final result. Results: We found that most of the objects show a delay in the red light curve behind the blue one (a positive lag), which on average for the sample is about +4 days (+3 for the median), although the scatter is significant. These results are broadly consistent with the reprocessing model, especially for the well-sampled objects. The normalized time-lag deviations do not seem to correlate significantly with other quasar properties, including optical, radio, or X-ray measurables. On the other hand, many objects show a clear negative lag, which, if real, may have important consequences for the variability models.

  8. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  9. A deterministic pseudo-fractal networks with time-delay

    NASA Astrophysics Data System (ADS)

    Xing, Changming; Yang, Lin; Ma, Jun

    2015-08-01

    In this paper, inspired by the pseudo-fractal networks (PFN) and the delayed pseudo-fractal networks (DPFN), we present a novel delayed pseudo-fractal networks model, denoted by NDPFN. Different from the generation algorithm of those two networks, every edge of the novel model has a time-delay to generate new nodes after producing one node. We derive exactly the main structural properties of the novel networks: degree distribution, clustering coefficient, diameter and average path length. Analytical results show that the novel networks have small-world effect and scale-free topology. Comparing topological parameters of these three networks, we find that the degree exponent of the novel networks is the largest while the clustering coefficient and the average path length are the smallest. It means that this kind of delay could weaken the heterogeneity and the small-world features of the network. Particularly, the delay effect in the NDPFN is contrary to that in the DPFN, which illustrates the variety of delay method could produce different effects on the network structure. These present findings may be helpful for a deeper understanding of the time-delay influence on the network topology.

  10. Time dependence of delayed neutron emission for fissionable isotope identification

    SciTech Connect

    Kinlaw, M.T.; Hunt, A.W.

    2005-06-20

    The time dependence of delayed neutron emission was examined as a method of fissionable isotope identification. A pulsed bremsstrahlung photon beam was used to induce photofission reactions in {sup 238}U, {sup 232}Th, and {sup 239}Pu targets. The resulting delayed neutron emission was recorded between irradiating pulses and is a well-known technique for fissionable material detection. Monitoring the decay of delayed neutron emission between irradiating pulses demonstrates the ability to not only detect the presence of fissionable materials, but also to identify which fissionable isotope is present.

  11. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  12. Unsignaled Delay Of Reinforcement, Relative Time, And Resistance To Change

    PubMed Central

    Shahan, Timothy A; Lattal, Kennon A

    2005-01-01

    Two experiments with pigeons examined the effects of unsignaled, nonresetting delays of reinforcement on responding maintained by different reinforcement rates. In Experiment 1, 3-s unsignaled delays were introduced into each component of a multiple variable-interval (VI) 15-s VI 90-s VI 540-s schedule. When considered as a proportion of the preceding immediate reinforcement baseline, responding was decreased similarly for the three multiple-schedule components in both the first six and last six sessions of exposure to the delay. In addition, the relation between response rates and reinforcement rates was altered such that both parameters of the single-response version of the matching law (i.e., k and Re) were decreased. Experiment 2 examined the effects of unsignaled delays ranging from 0.5 s to 8.0 s on responding maintained by a multiple VI 20-s VI 120-s schedule of reinforcement. Response rates in both components increased with brief unsignaled delays and decreased with longer delays. As in Experiment 1, response rates as a proportion of baseline were affected similarly for the two components in both the first six and last six sessions of exposure to the delay. Unlike delays imposed between two stimulus events, the effects of delays between responses and reinforcers do not appear to be attenuated when the average time between reinforcers is longer. In addition, the disruptions produced by unsignaled delays appear to be inconsistent with the general finding that responding maintained by higher rates of reinforcement is less resistant to change. PMID:16047606

  13. Time-delay cosmography: increased leverage with angular diameter distances

    NASA Astrophysics Data System (ADS)

    Jee, I.; Komatsu, E.; Suyu, S. H.; Huterer, D.

    2016-04-01

    Strong lensing time-delay systems constrain cosmological parameters via the so-called time-delay distance and the angular diameter distance to the lens. In previous studies, only the former information was used in forecasting cosmographic constraints. In this paper, we show that the cosmological constraints improve significantly when the latter information is also included. Specifically, the angular diameter distance plays a crucial role in breaking the degeneracy between the curvature of the Universe and the time-varying equation of state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on expectations for ongoing/future imaging surveys, we find that adding the angular diameter distance information to the time-delay distance information and the Planck's measurements of the cosmic microwave background anisotropies improves the constraint on the constant equation of state by 30%, on the time variation in the equation of state by a factor of two, and on the Hubble constant in the flat ΛCDM model by a factor of two. Therefore, previous forecasts for the statistical power of time-delay systems were overly pessimistic, i.e., time-delay systems are more powerful than previously appreciated.

  14. Relativity time-delay experiments utilizing 'Mariner' spacecraft

    NASA Technical Reports Server (NTRS)

    Esposito, P. B.; Anderson, J. D.

    1974-01-01

    Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.

  15. Time delay in simple one-dimensional systems

    NASA Astrophysics Data System (ADS)

    van Dijk, W.; Kiers, K. A.

    1992-06-01

    The time delay or the time advance in the scattering of simple one-dimensional systems can be evaluated in a straightforward manner for certain potential models. It is found that when the interacting potential is attractive and has a strength such that it nearly supports an additional bound state, the time delay at small scattering energy is very large. On the other hand, if the potential supports a bound state with nearly zero binding energy, the time advance near threshold is anomalously large. The behavior of a wave packet scattering from the double delta-function potential is also investigated.

  16. COSMOGRAIL: Time delays in lensed quasars from Himalayan Chandra Telescope

    NASA Astrophysics Data System (ADS)

    Rathna Kumar, S.; Stalin, C. S.; Tewes, M.; Courbin, F.; Asfandiyarov, I.; Ibrahimov, M.; Eulaers, E.; Meylan, G.; Prabhu, T. P.; Magain, P.

    Estimating H_0 to an accuracy of few percent is an important challenge today as it will offer key insights into various questions in cosmology. By measuring time delays between the photometric variations in lensed quasar images and subsequent modelling of the mass distribution in the lensing galaxy, it is possible to constrain H_0 in a way well complementary to traditional techniques. Time delays are difficult to measure due to the long time span needed to monitor the sources and photometry is challenging due to the small angular separation between the lensed quasar images. These issues are addressed by the COSMOGRAIL (COSmological MOnitoring of GRAvItational Lenses) collaboration, which uses several telescopes in both the hemispheres to monitor a large sample of gravitationally lensed quasars. As part of this collaboration, 6 sources are being monitored using the 2 m Himalayan Chandra Telescope (HCT) in Hanle, India. We present here the preliminary estimates of time delays in these sources.

  17. Impacts of Time Delays on Distributed Algorithms for Economic Dispatch

    SciTech Connect

    Yang, Tao; Wu, Di; Sun, Yannan; Lian, Jianming

    2015-07-26

    Economic dispatch problem (EDP) is an important problem in power systems. It can be formulated as an optimization problem with the objective to minimize the total generation cost subject to the power balance constraint and generator capacity limits. Recently, several consensus-based algorithms have been proposed to solve EDP in a distributed manner. However, impacts of communication time delays on these distributed algorithms are not fully understood, especially for the case where the communication network is directed, i.e., the information exchange is unidirectional. This paper investigates communication time delay effects on a distributed algorithm for directed communication networks. The algorithm has been tested by applying time delays to different types of information exchange. Several case studies are carried out to evaluate the effectiveness and performance of the algorithm in the presence of time delays in communication networks. It is found that time delay effects have negative effects on the convergence rate, and can even result in an incorrect converge value or fail the algorithm to converge.

  18. Wigner time delay in photodetachment of negative ions

    NASA Astrophysics Data System (ADS)

    Saha, S.; Deshmukh, P. C.; Jose, J.; Kkeifets, A. S.; Manson, S. T.

    2016-05-01

    In recent years, there has been much interest in studies on Wigner time delay in atomic photoionization using various experimental techniques and theoretical methodologies. In the present work, we report time delay in the photodetachment of negative ions using the relativistic-random-phase approximation (RRPA), which includes relativistic and important correlation effects. Time delay is obtained as energy derivative of phase of the photodetachment complex transition amplitude. We investigate the time delay in the dipole n p --> ɛd channels in the photodetachment of F- and Cl-, and in n f --> ɛg channels in the photodetachment of Tm-. In photodetachment of the negative ions, the photoelectron escapes in the field of the neutral atom and thus does not experience the nuclear Coulomb field; hence the phase is devoid of the Coulomb component. The systems chosen are well suited to examine the sensitivity of the photodetachment time delay to the centrifugal potential. The ions chosen have closed shells, and thus amenable to the RPA. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.

  19. Axonal delay lines for time measurement in the owl's brainstem.

    PubMed

    Carr, C E; Konishi, M

    1988-11-01

    Interaural time difference is an important cue for sound localization. In the barn owl (Tyto alba) neuronal sensitivity to this disparity originates in the brainstem nucleus laminaris. Afferents from the ipsilateral and contralateral magnocellular cochlear nuclei enter the nucleus laminaris through its dorsal and ventral surfaces, respectively, and interdigitate in the nucleus. Intracellular recordings from these afferents show orderly changes in conduction delay with depth in the nucleus. These changes are comparable to the range of interaural time differences available to the owl. Thus, these afferent axons act as delay lines and provide anatomical and physiological bases for a neuronal map of interaural time differences in the nucleus laminaris. PMID:3186725

  20. Linearisation via input-output injection of time delay systems

    NASA Astrophysics Data System (ADS)

    García-Ramírez, Eduardo; Moog, Claude H.; Califano, Claudia; Alejandro Márquez-Martínez, Luis

    2016-06-01

    This paper deals with the problem of linearisation of systems with constant commensurable delays by input-output injection using algebraic control tools based on the theory of non-commutative rings. Solutions for the problem of linearisation free of delays, and with delays of an observable nonlinear time-delay systems are presented based on the analysis of the input-output equation. These results are achieved by means of constructive algorithms that use the nth derivative of the output expressed in terms of the state-space variables instead of the explicit computation of the input-output representation of the system. Necessary and sufficient conditions are established in both cases by means of an invertible change of coordinates.

  1. Attosecond time-delay spectroscopy of the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.; Serov, Vladislav V.

    2012-12-01

    We apply the concept of photoemission time delay to the process of single-photon one-electron ionization of the H2 molecule. We demonstrate that, by resolving the photoelectron detection in time on the attosecond scale, one can extract differential photoionization cross sections for particular field and molecule orientations from the measurement on a randomly oriented molecule

  2. On the linearity of cross-correlation delay times

    NASA Astrophysics Data System (ADS)

    Mercerat, E. D.; Nolet, G.

    2012-12-01

    We investigate the question whether a P-wave delay time Δ T estimated by locating the maximum of the cross-correlation function between data d(t) and a predicted test function s(t): γ (t) = ∫ t1t_2 s(τ ) d(τ -t) \\ {d}τ, provides an estimate of the Delta T that is (quasi-)linear with the relative velocity perturbation deltaln V_P}. Such linearity is intuitive if the data d(t) is an undeformed but delayed replica of the test signal, i.e. if d(t)=s(t-Delta T). Then the maximum of gamma (t) is shifted exactly by the delay Delta T, and linearity holds even for Delta T very large. In this case, we say that the body waves are in the ray theoretical regime and their delays, because of Fermat's Principle, depend quasi-linearly on the relative velocity (or slowness) perturbations deltaln V_P in the model. However, even if we correct for dispersion induced by the instrument response and by attenuation, body waves may show frequency dependent delay times that are caused by diffraction effects around lateral heterogeneities. It is not a-priori clear that linearity holds for Delta T, as is assumed in finite-frequency theory, if the waveforms of d(t) and s(t) differ substantially because of such dispersion. To test the linearity, we generate synthetic seismograms between two boreholes, and between the boreholes and the surface, in a 3D box of 200 × 120 × 120 m. The heterogeneity is a checkerboard with cubic anomalies of size 12 × 12 × 12 m. We test two different anomaly amplitudes: ± 2% and ± 5%, and measure Delta T using a test seismogram s(t) computed for an homogeneous medium. We also predict the delays for the 5% model from those in the 2% model by multiplying with 5/2. These predictions are in error by 10-20% of the delay, which is usually acceptable for tomography when compared with actual data errors. A slight bias in the prediction indicates that the Wielandt effect - the fact that negative delays suffer less wavefront healing than positive delays - is a

  3. Adaptive control of systems with unknown time delays

    NASA Astrophysics Data System (ADS)

    Nelson, James P.

    Control systems, on earth or in outer-space, may exhibit time delays in their dynamic behavior. Aerospace control systems must be able to operate in the presence of time delays both internal to the system and in its inputs and outputs. These delays are often introduced via systems controlled through a network, by information, energy or mass transport phenomena, but can also be caused by computer processing time or by the accumulation of time lags in a number of simple dynamic systems connected in series. When a dynamic system is subject to a time delay, unlike other parameters, this affects the temporal characteristics of the system and exact control over system operation cannot be strictly implemented. Systems with significant time delays are difficult to control using standard feedback controllers. The United States Air Force Research Laboratory (AFRL) is considering the use of router-based data networks on-board next generation satellites and in decentralized control architectures. This approach has the potential to introduce non-constant and non-deterministic communications delays into feedback control loops that make use of these data networks. The desire for rapid deployment of new spacecraft architectures will also introduce many other control issues as the rigorous measurement, calibration and performance tests usually conducted on spacecraft systems to develop a highly precise dynamic model will need to be drastically shortened due to the desired abbreviated build and launch schedule. Due to limited testing and system identification, the spacecraft model will have uncertainties/perturbations from the actual plant. This will require a controller that can robustly control the non-linear dynamic model with limited plant knowledge. The problems created by the control of time delay systems and the limited plant knowledge nature of the systems of interest leads us to the concept of adaptive control. Adaptive control makes adjustment of the controllers

  4. The mean first passage time and stochastic resonance in gene transcriptional system with time delay

    NASA Astrophysics Data System (ADS)

    Feng, Y. L.; Zhu, J.; Zhang, M.; Gao, L. L.; Liu, Y. F.; Dong, J. M.

    2016-04-01

    In this paper, the gene transcriptional dynamics driven by correlated noises are investigated, where the time delay for the synthesis of transcriptional factor is introduced. The effects of the noise correlation strength and time delay on the stationary probability distribution (SPD), the mean first passage time and the stochastic resonance (SR) are analyzed in detail based on the delay Fokker-Planck equation. It is found that both the time delay and noise correlation strength play important roles in the bistable transcriptional system. The effect of the correlation strength reduces but the time delay enhances the mean first passage time (MFPT). Finally, the SR for this gene transcriptional system is found to be enhanced by the time delay.

  5. Delay time calculation for dual-wavelength quantum cascade lasers

    SciTech Connect

    Hamadou, A.; Lamari, S.; Thobel, J.-L.

    2013-11-28

    In this paper, we calculate the turn-on delay (t{sub th}) and buildup (Δt) times of a midinfrared quantum cascade laser operating simultaneously on two laser lines having a common upper level. The approach is based on the four-level rate equations model describing the variation of the electron number in the states and the photon number present within the cavity. We obtain simple analytical formulae for the turn-on delay and buildup times that determine the delay times and numerically apply our results to both the single and bimode states of a quantum cascade laser, in addition the effects of current injection on t{sub th} and Δt are explored.

  6. Radiation dependence of inverter propagation delay from timing sampler measurements

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Lin, Y.-S.

    1989-01-01

    A timing sampler consisting of 14 four-stage inverter-pair chains with different load capacitances was fabricated in 1.6-micron n-well CMOS and irradiated with cobalt-60 at 10 rad(Si)/s. For this CMOS process the measured results indicate that the rising delay increases by about 2.2 ns/Mrad(Si) and the falling delay increase is very small, i.e., less than 300 ps/Mrad(Si). The amount of radiation-induced delay depends on the size of the load capacitance. The maximum value observed for this effect was 5.65 ns/pF-Mrad(Si). Using a sensitivity analysis, the sensitivity of the rising delay to radiation can be explained by a simple timing model and the radiation sensitivity of dc MOSFET parameters. This same approach could not explain the insensitivity of the falling delay to radiation. This may be due to a failure of the timing model and/or trapping effects.

  7. Kernel regression estimates of time delays between gravitationally lensed fluxes

    NASA Astrophysics Data System (ADS)

    AL Otaibi, Sultanah; Tiňo, Peter; Cuevas-Tello, Juan C.; Mandel, Ilya; Raychaudhury, Somak

    2016-06-01

    Strongly lensed variable quasars can serve as precise cosmological probes, provided that time delays between the image fluxes can be accurately measured. A number of methods have been proposed to address this problem. In this paper, we explore in detail a new approach based on kernel regression estimates, which is able to estimate a single time delay given several data sets for the same quasar. We develop realistic artificial data sets in order to carry out controlled experiments to test the performance of this new approach. We also test our method on real data from strongly lensed quasar Q0957+561 and compare our estimates against existing results.

  8. Exponential Synchronization of Coupled Stochastic Memristor-Based Neural Networks With Time-Varying Probabilistic Delay Coupling and Impulsive Delay.

    PubMed

    Bao, Haibo; Park, Ju H; Cao, Jinde

    2016-01-01

    This paper deals with the exponential synchronization of coupled stochastic memristor-based neural networks with probabilistic time-varying delay coupling and time-varying impulsive delay. There is one probabilistic transmittal delay in the delayed coupling that is translated by a Bernoulli stochastic variable satisfying a conditional probability distribution. The disturbance is described by a Wiener process. Based on Lyapunov functions, Halanay inequality, and linear matrix inequalities, sufficient conditions that depend on the probability distribution of the delay coupling and the impulsive delay were obtained. Numerical simulations are used to show the effectiveness of the theoretical results. PMID:26485723

  9. Losing track of time through delayed body representations

    PubMed Central

    Fritz, Thomas H.; Steixner, Agnes; Boettger, Joachim; Villringer, Arno

    2015-01-01

    The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music). PMID:25918507

  10. Losing track of time through delayed body representations.

    PubMed

    Fritz, Thomas H; Steixner, Agnes; Boettger, Joachim; Villringer, Arno

    2015-01-01

    The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music). PMID:25918507

  11. Emergence of adaptability to time delay in bipedal locomotion.

    PubMed

    Ohgane, Kunishige; Ei, Shin-Ichiro; Kazutoshi, Kudo; Ohtsuki, Tatsuyuki

    2004-02-01

    Based on neurophysiological evidence, theoretical studies have shown that locomotion is generated by mutual entrainment between the oscillatory activities of central pattern generators (CPGs) and body motion. However, it has also been shown that the time delay in the sensorimotor loop can destabilize mutual entrainment and result in the failure to walk. In this study, a new mechanism called flexible-phase locking is proposed to overcome the time delay. It is realized by employing the Bonhoeffer-Van der Pol formalism - well known as a physiologically faithful neuronal model - for neurons in the CPG. The formalism states that neurons modulate their phase according to the delay so that mutual entrainment is stabilized. Flexible-phase locking derives from the phase dynamics related to an asymptotically stable limit cycle of the neuron. The effectiveness of the mechanism is verified by computer simulations of a bipedal locomotion model. PMID:14999479

  12. Two-actor conflict with time delay: A dynamical model

    NASA Astrophysics Data System (ADS)

    Qubbaj, Murad R.; Muneepeerakul, Rachata

    2012-11-01

    Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.

  13. Use of Constant Time Delay and Attentional Responses with Adolescents.

    ERIC Educational Resources Information Center

    Wolery, Mark; And Others

    1991-01-01

    This study examined effectiveness of a constant time delay (CTD) procedure in teaching social studies and health facts to five adolescents with learning or behavioral disorders. Students were given praise with and without additional information. Results indicated CTD procedures were reliable and effective, and students acquired nontargeted as well…

  14. Stability Criteria for Differential Equations with Variable Time Delays

    ERIC Educational Resources Information Center

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  15. Time-Dependent Delayed Signatures from Energetic Photon Interrogations

    SciTech Connect

    Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon

    2007-08-01

    Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.

  16. Time-Dependent Delayed Signatures from Energetic Photon Interrogations

    SciTech Connect

    Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon

    2007-08-01

    Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in the pulsed photonuclear assessment (PPA) environments. These developments demonstrate that pulsed, high-energy, photon- inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.

  17. Numerical bifurcation analysis of immunological models with time delays

    NASA Astrophysics Data System (ADS)

    Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady

    2005-12-01

    In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.

  18. Dynamical analysis of uncertain neural networks with multiple time delays

    NASA Astrophysics Data System (ADS)

    Arik, Sabri

    2016-02-01

    This paper investigates the robust stability problem for dynamical neural networks in the presence of time delays and norm-bounded parameter uncertainties with respect to the class of non-decreasing, non-linear activation functions. By employing the Lyapunov stability and homeomorphism mapping theorems together, a new delay-independent sufficient condition is obtained for the existence, uniqueness and global asymptotic stability of the equilibrium point for the delayed uncertain neural networks. The condition obtained for robust stability establishes a matrix-norm relationship between the network parameters of the neural system, which can be easily verified by using properties of the class of the positive definite matrices. Some constructive numerical examples are presented to show the applicability of the obtained result and its advantages over the previously published corresponding literature results.

  19. A comparison of cosmological models using time delay lenses

    SciTech Connect

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio E-mail: xfwu@pmo.ac.cn

    2014-06-20

    The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.

  20. Measurement of time delay for a prospectively gated CT simulator.

    PubMed

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  1. Measurement of Gravitational Lens Time Delays with LSST (SULI Paper)

    SciTech Connect

    Kirkby, Lowry Anna; /Oxford U. /SLAC

    2006-01-04

    The proposed Large Synoptic Survey Telescope will be the first to explore multiple dark energy probes simultaneously, including baryon acoustic oscillations, weak lensing, and strong gravitational lensing. The large data sample, covering the entire visible sky every few nights, will allow an unprecedented survey of deep supernova sources and their lensed images. The latter have not yet been observed. Notably, LSST will measure the time delays between different strong-lensed images of the same supernova. This will provide a unique probe of dark matter, dark energy, and the expansion rate of the Universe. By simulating LSST observations under realistic conditions, we determined the time delay precision of multiple images from a representative strong-lensed Type Ia supernova. The output of the simulation was a set of light curves according to field and filter, which were subsequently analyzed to determine the experimental time delays. We find that a time delay precision of better then 10% can be achieved under suitable conditions. Firstly, a minimum observed peak-magnitude of 22 is required for the lensed image, corresponding to an intrinsic source magnitude of about 24. The number of such supernova sources expected for LSST is under investigation, but it could amount to several thousand. Secondly, a minimum of about 50 visits per field is required, and, moreover, these visits must be evenly distributed over the duration of the event. The visit frequency should be approximately once per week, or better. Thirdly, the sky brightness should be below 21 magnitude arcsec{sup -2} to allow sufficient sensitivity to distance sources. Under the nominal LSST visiting schedule and field conditions, 15% of all fields satisfy these criteria, and allow time delay measurements of better than 10% precision. This performance can be further improved by fitting the predicted supernova light curves to the observations, rather than using the simple weighted mean as in the present study

  2. Tunable Optical True-Time Delay Devices Would Exploit EIT

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  3. Time delay of interplanetary magnetic field penetration into Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Rong, Z. J.; Lui, A. T. Y.; Wan, W. X.; Yang, Y. Y.; Shen, C.; Petrukovich, A. A.; Zhang, Y. C.; Zhang, T. L.; Wei, Y.

    2015-05-01

    Many previous studies have demonstrated that the interplanetary magnetic field (IMF) can control the magnetospheric dynamics. Immediate magnetospheric responses to the external IMF have been assumed for a long time. The specific processes by which IMF penetrates into magnetosphere, however, are actually unclear. Solving this issue will help to accurately interpret the time sequence of magnetospheric activities (e.g., substorm and tail plasmoids) exerted by IMF. With two carefully selected cases, we found that the penetration of IMF into magnetotail is actually delayed by 1-1.5 h, which significantly lags behind the magnetotail response to the solar wind dynamic pressure. The delayed time appears to vary with different auroral convection intensity, which may suggest that IMF penetration in the magnetotail is controlled considerably by the dayside reconnection. Several unfavorable cases demonstrate that the penetration lag time is more clearly identified when storm/substorm activities are not involved.

  4. Equilibrium and Disequilibrium Dynamics in Cobweb Models with Time Delays

    NASA Astrophysics Data System (ADS)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2015-06-01

    This paper aims to study price dynamics in two different continuous time cobweb models with delays close to [Hommes, 1994]. In both cases, the stationary equilibrium may be not representative of the long-term dynamics of the model, since it is possible to observe endogenous and persistent fluctuations (supercritical Hopf bifurcations) even if a deterministic context without external shocks is considered. In the model in which markets are in equilibrium every time, we show that the existence of time delays in the expectations formation mechanism may cause chaotic dynamics similar to those obtained in [Hommes, 1994] in a discrete time context. From a mathematical point of view, we apply the Poincaré-Lindstedt perturbation method to study the local dynamic properties of the models. In addition, several numerical experiments are used to investigate global properties of the systems.

  5. Real-time estimation of ionospheric delay using GPS measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lao-Sheng

    1997-12-01

    When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is

  6. A Threshold Value for the Time Delay to TB Diagnosis

    PubMed Central

    Uys, Pieter W.; Warren, Robin M.; van Helden, Paul D.

    2007-01-01

    Background In many communities where TB occurs at high incidence, the major force driving the epidemic is transmission. It is plausible that the typical long delay from the onset of infectious disease to diagnosis and commencement of treatment is almost certainly the major factor contributing to the high rate of transmission. Methodology/Principal Findings This study is confined to communities which are epidemiologically relatively isolated and which have low HIV incidence. The consequences of delays to diagnosis are analyzed and the existence of a threshold delay value is demonstrated. It is shown that unless a sufficient number of cases are detected before this threshold, the epidemic will escalate. The method used for the analysis avoids the standard computer integration of systems of differential equations since the intention is to present a line of reasoning that reveals the essential dynamics of an epidemic in an intuitively clear way that is nevertheless quantitatively realistic. Conclusions/Significance The analysis presented here shows that typical delays to diagnosis present a major obstacle to the control of a TB epidemic. Control can be achieved by optimizing the rapid identification of TB cases together with measures to increase the threshold value. A calculated and aggressive program is therefore necessary in order to bring about a reduction in the prevalence of TB in a community by decreasing the time to diagnosis in all its ramifications. Intervention strategies to increase the threshold value relative to the time to diagnosis and which thereby decrease disease incidence are discussed. PMID:17712405

  7. A Method for Measuring the Effective Throughput Time Delay in Simulated Displays Involving Manual Control

    NASA Technical Reports Server (NTRS)

    Jewell, W. F.; Clement, W. F.

    1984-01-01

    The advent and widespread use of the computer-generated image (CGI) device to simulate visual cues has a mixed impact on the realism and fidelity of flight simulators. On the plus side, CGIs provide greater flexibility in scene content than terrain boards and closed circuit television based visual systems, and they have the potential for a greater field of view. However, on the minus side, CGIs introduce into the visual simulation relatively long time delays. In many CGIs, this delay is as much as 200 ms, which is comparable to the inherent delay time of the pilot. Because most GCIs use multiloop processing and smoothing algorithms and are linked to a multiloop host computer, it is seldom possible to identify a unique throughput time delay, and it is therefore difficult to quantify the performance of the closed loop pilot simulator system relative to the real world task. A method to address these issues using the critical task tester is described. Some empirical results from applying the method are presented, and a novel technique for improving the performance of GCIs is discussed.

  8. Towards Supervising Remote Dexterous Robots Across Time Delay

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Wheeler, Kevin; Rabe, Ken

    2006-01-01

    The President s Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling dexterous robots under intermediate time delay is presented, in which software running within a ground control cockpit predicts the intention of an immersed robot supervisor, then the remote robot autonomously executes the supervisor s intended tasks. Initial results are presented.

  9. Medical ultrasound imager based on time delay spectrometry.

    PubMed

    Heyser, R C; Hestenes, J D; Rooney, J A; Gammell, P M; Le Croissette, D H

    1989-01-01

    A reflection mode proof-of-concept medical ultrasound imager based on time delay spectrometry has been developed and tested. The system uses a broad band swept-frequency signal operating up to 10 MHz. Signal processing using a fast Fourier transform (FFT) permits extraction of range information. The imager has a higher signal-to-noise ratio than pulse-echo systems which allows high resolution at greater depths. The time delay spectrometry (TDS) spread spectrum operates at lower peak intensities than pulse-echo and permits more control of the spectral content and amplitude of the signal. At present, the system is non-real time which degrades in vivo imaging because of averaging over several cardiac cycles and tissue movement. PMID:2643838

  10. Fullerene valence photoemission time delay near ionization cavity minima

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Anstine, Dylan; Dixit, Gopal; Madjet, Mohamed; Chakraborty, Himadri

    2015-05-01

    We investigate photoemission quantum phases and associated Wigner-Smith time delays for HOMO and HOMO-1 electrons of a C60 molecule using time-dependent local density approximation (TDLDA). The interference oscillations in C60 valence emissions produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. Besides fullerenes, the detection of photoemission minima in metal clusters suggests a possible universality of the phenomenon in cluster systems, or even quantum dots, that confine finite-sized electron gas. The work predicts a new research direction to apply attosecond metrology, such as RABITT, in the world of nanosystems. This work was supported by the U.S. National Science Foundation.

  11. Time-Dependent Delayed Signatures From Energetic Photon Interrogations

    SciTech Connect

    D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell

    2006-08-01

    A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.

  12. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  13. Delayed Timing of Eating: Impact on Weight and Metabolism.

    PubMed

    Allison, Kelly C; Goel, Namni; Ahima, Rexford S

    2014-03-01

    Animal studies of delayed eating have provided useful information regarding the potential relationship between nighttime eating and increased weight and metabolic dysregulation, which occur in the absence of increased locomotion or increased caloric intake. We first review recent studies detailing these relationships and possible mechanisms in rodents. We then examine human data showing that sleep restriction leads to increased energy intake and weight gain, followed by a review of the human phenotype of delayed eating, night eating syndrome, and its relation to weight and metabolism. Finally, we examine human experimental studies of delayed eating and discuss preliminary data that show slight weight gain, dysfunction in energy expenditure, and abnormalities in the circadian rhythms of appetitive, stress, and sleep hormones. Well-controlled, longer-term experimental studies in humans are warranted to test the effect of delayed eating without sleep restriction to clarify whether limiting or eliminating nighttime eating could lead to weight loss and significantly improve related disorders, such as diabetes and heart disease, over time. PMID:26626470

  14. Cross section versus time delay and trapping probability

    NASA Astrophysics Data System (ADS)

    Luna-Acosta, G. A.; Fernández-Marín, A. A.; Méndez-Bermúdez, J. A.; Poli, Charles

    2016-07-01

    We study the behavior of the s-wave partial cross section σ (k), the Wigner-Smith time delay τ (k), and the trapping probability P (k) as function of the wave number k. The s-wave central square well is used for concreteness, simplicity, and to elucidate the controversy whether it shows true resonances. It is shown that, except for very sharp structures, the resonance part of the cross section, the trapping probability, and the time delay, reach their local maxima at different values of k. We show numerically that τ (k) > 0 at its local maxima, occurring just before the resonant part of the cross section reaches its local maxima. These results are discussed in the light of the standard definition of resonance.

  15. Digital key for chaos communication performing time delay concealment.

    PubMed

    Nguimdo, Romain Modeste; Colet, Pere; Larger, Laurent; Pesquera, Luís

    2011-07-15

    We introduce a scheme that integrates a digital key in a phase-chaos electro-optical delay system for optical chaos communications. A pseudorandom binary sequence (PRBS) is mixed within the chaotic dynamics in a way that a mutual concealment is performed; e.g., the time delay is hidden by the binary sequence, and the PRBS is also masked by the chaos. In addition to bridging the gap between algorithmic symmetric key cryptography and chaos-based analog encoding, the proposed approach is intended to benefit from the complex algebra mixing between a (pseudorandom) Boolean variable, and another continuous time (chaotic) variable. The scheme also provides a large flexibility allowing for easy reconfigurations to communicate securely at a high bit rate between different systems. PMID:21838363

  16. Digital Key for Chaos Communication Performing Time Delay Concealment

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste; Colet, Pere; Larger, Laurent; Pesquera, Luís

    2011-07-01

    We introduce a scheme that integrates a digital key in a phase-chaos electro-optical delay system for optical chaos communications. A pseudorandom binary sequence (PRBS) is mixed within the chaotic dynamics in a way that a mutual concealment is performed; e.g., the time delay is hidden by the binary sequence, and the PRBS is also masked by the chaos. In addition to bridging the gap between algorithmic symmetric key cryptography and chaos-based analog encoding, the proposed approach is intended to benefit from the complex algebra mixing between a (pseudorandom) Boolean variable, and another continuous time (chaotic) variable. The scheme also provides a large flexibility allowing for easy reconfigurations to communicate securely at a high bit rate between different systems.

  17. Time Delay Integration: A Wide-Field Survey Technique

    NASA Astrophysics Data System (ADS)

    Lapointe, Robert; Hill, E.; Leimer, L.; McMillian, K.; Miller, A.; Prindle, A.

    2009-05-01

    The Advanced Placement Physics class of Orange Lutheran High School has conducted a survey-imaging pro-ject using a Time Delay Integration (TDI) technique. TDI enables very wide-field images to be collected in the form of long strips of the sky. A series of five consecutive nights were captured, calibrated and compared to re-veal possible transient phenomena such as supernovae, asteroids, and other events that have a noticeable change over 24-hour intervals.

  18. Simultaneous Estimation of Time Delays and Quasar Structure

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher W.; Eyler, Michael E.; Kochanek, C. S.; Morgan, Nicholas D.; Falco, Emilio E.; Vuissoz, C.; Courbin, F.; Meylan, G.

    2008-03-01

    We expand our Bayesian Monte Carlo method for analyzing the light curves of gravitationally lensed quasars to simultaneously estimate time delays and the sizes of quasar continuum emission regions including their mutual uncertainties. We apply the method to HE1104-1805 and QJ0158-4325, two doubly imaged quasars with microlensing and intrinsic variability on comparable timescales. For HE1104-1805 the resulting time delay of Δ tAB = tA - tB = 162.2-5.9+6.3 days and accretion disk size estimate of log {(rs/cm) [cos (i)/0.5]1/2} = 15.7-0.5+0.4 at 0.2 μm in the rest frame and for inclination i are consistent with earlier estimates but suggest that existing methods for estimating time delays in the presence of microlensing underestimate the uncertainties. We are unable to measure a time delay for QJ0158-4325, but the accretion disk size is log {(rs/cm) [cos (i)/0.5]1/2} = 14.9 +/- 0.3 at 0.3 μm in the rest frame. Based on observations obtained with the Small and Moderate Aperture Research Telescope System (SMARTS) 1.3 m, which is operated by the SMARTS Consortium, and observations made with the NASA/ESA Hubble Space Telescope for program HST-GO-9744 of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  19. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN

    SciTech Connect

    Dobler, Gregory; Fassnacht, Christopher D.; Rumbaugh, Nicholas; Treu, Tommaso; Liao, Kai; Marshall, Phil; Hojjati, Alireza; Linder, Eric

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.

  20. Correlation-induced Time Delay in Atomic Photoionization

    NASA Astrophysics Data System (ADS)

    Keating, David A.; Manson, Steven T.; Deshmukh, Pranawa C.; Kheifets, Anatoli S.

    2016-05-01

    Interchannel coupling has been seen to result in structures in the photoionization cross sections of outer shell electrons in the vicinity of inner-shell thresholds, a result which leads us to ask if the same would be true for the time delay of outer shell electrons near inner-shell thresholds. Using the relativistic-random-phase approximation (RRPA) methodology, a theoretical study of neon, argon, krypton, and xenon were performed to search for these correlation-induced effects. Calculations were performed both with coupling and without coupling to verify that the structures found in the time delay were in fact due to interchannel coupling. Using this method to study the effects of interchannel coupling reveals how much of an impact the coupling has on the time delay, in some cases over a broad energy range. In cases where the spin-orbit doublets' respective thresholds are far enough apart, effects can be found in the j = l + 1/2channels due to interchannel coupling with the j = l-1/2 channels. These structures are purely a relativistic effect and are related to spin-obit activated interchannel coupling effects. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.

  1. Network delay predictive compensation based on time-delay modelling as disturbance

    NASA Astrophysics Data System (ADS)

    Florin Caruntu, Constantin; Lazar, Corneliu

    2014-10-01

    In this paper, a control design methodology that can assure the closed-loop performances of a physical plant, while compensating the network-induced time-varying delays, is proposed. First, the error caused by the time-varying delays is modelled as a disturbance and a novel method of bounding the disturbance is proposed. Second, a robust one step ahead predictive controller based on flexible control Lyapunov functions is designed, which explicitly takes into account the bounds of the disturbances and guarantees also the input-to-state stability of the system in a non-conservative way. The methodology was tested on a vehicle drivetrain controlled through controller area network, with the aim of damping driveline oscillations. The comparison with a proportional-integral-derivative (PID) controller using TrueTime simulator shows that the proposed control scheme can outperform classical controllers and it can handle the performance/physical constraints. Moreover, the handling of the strict limitations on the computational complexity was tested using a real-time test-bench.

  2. Evaluation of Empirical Tropospheric Models Using Satellite-Tracking Tropospheric Wet Delays with Water Vapor Radiometer at Tongji, China.

    PubMed

    Wang, Miaomiao; Li, Bofeng

    2016-01-01

    An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS) processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, together with five mapping functions in wet delays calculation. The evaluations are conducted by comparing their slant wet delays with those measured by water vapor radiometer based on its satellite-tracking function (collected data with large liquid water path is removed). For all 15 combinations of three tropospheric models and five mapping functions, their accuracies as a function of elevation are statistically analyzed by using nine-day data in two scenarios, with and without meteorological data. The results show that (1) no matter with or without meteorological data, there is no practical difference between mapping functions, i.e., Chao, Ifadis, Vienna Mapping Function 1 (VMF1), Niell Mapping Function (NMF), and MTT Mapping Function (MTT); (2) without meteorological data, the UNB3 is much better than Saastamoinen and Hopfield models, while the Saastamoinen model performed slightly better than the Hopfield model; (3) with meteorological data, the accuracies of all three tropospheric delay models are improved to be comparable, especially for lower elevations. In addition, the kinematic precise point positioning where no parameter is set up for tropospheric delay modification is conducted to further evaluate the performance of tropospheric delay models in positioning accuracy. It is shown that the UNB3 model is best and can achieve about 10 cm accuracy for the N and E coordinate component while 20 cm accuracy for the U coordinate component no matter the meteorological data is available or not. This accuracy can be obtained by the Saastamoinen model only when meteorological data is

  3. Evaluation of Empirical Tropospheric Models Using Satellite-Tracking Tropospheric Wet Delays with Water Vapor Radiometer at Tongji, China

    PubMed Central

    Wang, Miaomiao; Li, Bofeng

    2016-01-01

    An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS) processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, together with five mapping functions in wet delays calculation. The evaluations are conducted by comparing their slant wet delays with those measured by water vapor radiometer based on its satellite-tracking function (collected data with large liquid water path is removed). For all 15 combinations of three tropospheric models and five mapping functions, their accuracies as a function of elevation are statistically analyzed by using nine-day data in two scenarios, with and without meteorological data. The results show that (1) no matter with or without meteorological data, there is no practical difference between mapping functions, i.e., Chao, Ifadis, Vienna Mapping Function 1 (VMF1), Niell Mapping Function (NMF), and MTT Mapping Function (MTT); (2) without meteorological data, the UNB3 is much better than Saastamoinen and Hopfield models, while the Saastamoinen model performed slightly better than the Hopfield model; (3) with meteorological data, the accuracies of all three tropospheric delay models are improved to be comparable, especially for lower elevations. In addition, the kinematic precise point positioning where no parameter is set up for tropospheric delay modification is conducted to further evaluate the performance of tropospheric delay models in positioning accuracy. It is shown that the UNB3 model is best and can achieve about 10 cm accuracy for the N and E coordinate component while 20 cm accuracy for the U coordinate component no matter the meteorological data is available or not. This accuracy can be obtained by the Saastamoinen model only when meteorological data is

  4. Nonlinear Memory Capacity of Parallel Time-Delay Reservoir Computers in the Processing of Multidimensional Signals.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2016-07-01

    This letter addresses the reservoir design problem in the context of delay-based reservoir computers for multidimensional input signals, parallel architectures, and real-time multitasking. First, an approximating reservoir model is presented in those frameworks that provides an explicit functional link between the reservoir architecture and its performance in the execution of a specific task. Second, the inference properties of the ridge regression estimator in the multivariate context are used to assess the impact of finite sample training on the decrease of the reservoir capacity. Finally, an empirical study is conducted that shows the adequacy of the theoretical results with the empirical performances exhibited by various reservoir architectures in the execution of several nonlinear tasks with multidimensional inputs. Our results confirm the robustness properties of the parallel reservoir architecture with respect to task misspecification and parameter choice already documented in the literature. PMID:27172266

  5. Pg-pPg Time Delays from Sparse Networks Using the Time-Frequency Correlation Method

    NASA Astrophysics Data System (ADS)

    Pearce, F.; Lu, R.; Toksoz, M. N.

    2008-12-01

    The arrival times of primary phases generally produce poor estimates of focal depth, particularly for shallow events. While depth phases may be detected at teleseismic distances, no reliable methods currently exist for identifying regional depth phase time delays, such as Pg-pPg. Scattering from crustal heterogeneities obscures the Pg-pPg time delay by producing multiplicative noise within the Pg time window. The theory of Time Reversed Acoustics (TRA) states that the autocorrelation of Pg time windows produces a clear sidelobe at the Pg-pPg time delay. Using large Pg time windows (i.e. including more scattering) and stacking the autocorrelations from an array of receivers improves the reconstruction of the sidelobe at the Pg-pPg time delay. In this paper, we expand the TRA concept to develop the Time-Frequency Correlation (TFC) method for measuring Pg-pPg time delays, which incorporates signal-processing techniques used in Sonar and Radar applications. The TFC method applies a 2D correlation function in time delay and frequency delay to the analytic representation of each Pg time window. Stacking the 2D correlation functions better identifies the sidelobe at the Pg-pPg time delay. Tests of the TFC method on synthetic Pg time windows provide guidance in detecting the Pg-pPg time delays for events with different source time functions, focal depths, and scattering distributions. We apply the TFC method to measure Pg-pPg time delays for 33 local earthquakes from the Southern California Earthquake Data Center (SCEDC) catalog. We include only catalog events with the most accurate locations ('A'), catalog depths between 2 and 16 km (±2 km), and magnitudes between 3.0 and 6.0. For each event, the TFC method uses a station array that is sparse (N < 20), narrow aperture (Δθ < 90°), and located greater than 300 km from the catalog epicenter. The Pg-pPg time delays are converted to focal depths assuming vertical propagation within the SCEDC 3D model at each event

  6. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

    2014-07-01

    We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore’s unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

  7. RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Ruiter, Ashley J.; Belczynski, Krzysztof; Fryer, Chris E-mail: kbelczyn@nmsu.edu

    2009-07-10

    We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae (SNe Ia) progenitors. We present and discuss evolutionary scenarios in which a white dwarf (WD) reaches the Chandrasekhar mass and potentially explodes in a SNe Ia. We consider Double Degenerate (DDS; merger of two WDs), Single Degenerate (SDS; WD accreting from H-rich companion), and AM Canum Venaticorum (AM CVn; WD accreting from He-rich companion) scenarios. The results are presented for two different star formation histories: burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency {alpha}{sub CE} = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. The DDS median delay time falls between {approx}0.5 and 1 Gyr; the SDS between {approx}2 and 3 Gyr; and the AM CVn between {approx}0.8 and 0.6 Gyr depending on the assumed {alpha}{sub CE}. For a Milky-Way-like (MW-like) galaxy, we estimate the rates of SNe Ia arising from different progenitors as: {approx}10{sup -4} yr{sup -1} for the SDS and AM CVn, and {approx}10{sup -3} yr{sup -1} for the DDS. We point out that only the rates for two merging carbon-oxygen WDs, the only systems found in the DDS, are consistent with the observed rates for typical MW-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power law implies more SNe Ia (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that WD mergers cannot produce a thermonuclear explosion

  8. Probability distributed time delays: integrating spatial effects into temporal models

    PubMed Central

    2010-01-01

    Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated

  9. On troposphere delay constraining in real-time GNSS Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Hadas, Tomasz; Kazmierski, Kamil; Bosy, Jaroslaw

    2015-04-01

    A common procedure in Precise Point Positioning (PPP) is to have the adjustment model accounting for the correction to an a priori value of the total troposphere delay (ZTD) given at the first epoch of data processing, and the troposphere wet delay filter is updated epoch by epoch. This approach requires some time so that a change in satellite geometry allows to efficiently de-correlate among tropospheric delay, receiver clock error and height. Empirical troposphere state models and mapping functions are available, however they may not reflect properly the actual state of the troposphere, especially in severe weather conditions. It might be more appropriate to take advantage on a regional troposphere model derived from near real-time (NRT) processing of GBAS network. To evaluate the impact of troposphere constraining in real-time PPP, one week long period was selected, that was characterized with active troposphere conditions. Using the development version of original GNSS-WARP software, a 1 Hz kinematic positioning was performed for 10 selected Polish GBAS stations using IGS Real-Time Service (RTS) products. Two processing strategies were used, one reflecting the common PPP approach and the second with NRT ZTD to constrain the troposphere delay estimates. GPS only and GPS+GLONASS positioning was performed and analyzed using both strategies. For unconstrained solutions, the convergence time of one hour (GPS only) and 15 minutes (GPS+GLONASS) was reached, providing the sub-decimeter accuracy in horizontal and vertical component. However, for some epochs, and outlying height estimates were observed with the residuals reaching up to 0.5m with the estimated error of 0.2m. At the same time, the unconstrained estimated troposphere delay differs up to 12 cm from the reference NRT ZTD solution. In case the troposphere delay is constrained, all three coordinate components remains accurate and precise for entire processing period after the convergence is reached. From the

  10. Sleep apnea detection using time-delayed heart rate variability.

    PubMed

    Nano, Marina-Marinela; Xi Long; Werth, Jan; Aarts, Ronald M; Heusdens, Richard

    2015-08-01

    Sleep apnea is a sleep disorder distinguished by repetitive absence of breathing. Compared with the traditional expensive and cumbersome methods, sleep apnea diagnosis or screening with physiological information that can be easily acquired is needed. This paper describes algorithms using heart rate variability (HRV) to automatically detect sleep apneas as long as it can be easily acquired with unobtrusive sensors. Because the changes in cardiac activity are usually hysteretic than the presence of apneas with a few minutes, we propose to use the delayed HRV features to identify the episodes with sleep apneic events. This is expected to help improve the apnea detection performance. Experiments were conducted with a data set of 23 sleep apnea patients using support vector machine (SVM) classifiers and cross validations. Results show that using eleven HRV features with a time delay of 1.5 minutes rather than the features without time delay for SA detection, the overall accuracy increased from 74.9% to 76.2% and the Cohen's Kappa coefficient increased from 0.49 to 0.52. Further, an accuracy of 94.5% and a Kappa of 0.89 were achieved when applying subject-specific classifiers. PMID:26738071

  11. On the time delay between ultra-relativistic particles

    NASA Astrophysics Data System (ADS)

    Fleury, Pierre

    2016-09-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  12. Lag and anticipating synchronization without time-delay coupling.

    PubMed

    Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D

    2005-06-01

    We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator. PMID:16035886

  13. Time delay spectrometry for hydrophone calibrations below 1 MHz.

    PubMed

    Gammell, P M; Harris, G R

    1999-11-01

    Knowing the response of miniature ultrasonic hydrophones at frequencies below 1 MHz is important for assessing the accuracy of acoustic pressure pulse measurements in medical ultrasound applications. Therefore, a time delay spectrometry (TDS) system was developed as an efficient means to measure hydrophone sensitivity in this frequency range. In TDS a swept-frequency signal is transmitted. A tracking receiver distinguishes arrivals with different propagation delays by their frequency offset relative to the signal being transmitted, thus eliminating spurious signals such as those reflected from the water surface or tank walls. Two piezoelectric ceramic source transducers were used: a standard planar disk and a disk with varying thickness to broaden the thickness-resonance. This latter design was preferred for its more uniform response without significant sensitivity loss. TDS is not an absolute method, but it was demonstrated to provide efficient, accurate calibrations via comparison with a reference hydrophone using a substitution technique. PMID:10573913

  14. Extreme fluctuations in stochastic network coordination with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  15. Remote Task-level Commanding of Centaur over Time Delay

    NASA Astrophysics Data System (ADS)

    Schreckenghost, Debra; Ngo, Tam; Burridge, Robert; Wang, Lui; Izygon, Michel

    2008-01-01

    Remote operation of robots on the lunar surface by ground controllers poses unique human-robot interaction challenges due to time delay and constrained bandwidth. One strategy for addressing these challenges is to provide task-level commanding of robots by a ground controller. Decision-support tools are being developed at JSC for remote task-level commanding over time-delay. The approach is to provide ground procedures that guide a controller when executing task-level command sequences and aid awareness of the state of command execution in the robot. This approach is being evaluated using the Centaur robot at JSC. The Centaur Central Commander provides a task-level command interface that executes on the robot side of the delay. Decision support tools have been developed for a human Supervisor in the JSC Cockpit to use when interacting with the Centaur Central Commander. Commands to the Central Commander are defined as instructions in a procedure. Sequences of these instructions are grouped into procedures for the Cockpit Supervisor. When a Supervisor is ready to perform a task, a procedure is loaded into the decision support tool. From this tool, the Supervisor can view command sequences and dispatch individual commands to Centaur. Commands are queued for execution on the robot side of the delay. Reliable command sequences can be dispatched automatically upon approval by the Supervisor. The decision support tool provides the Supervisor with feedback about which commands are waiting for execution and which commands have finished. It also informs the Supervisor when a command fails to have its intended effect. Cockpit procedures are defined using the Procedure Representation Language (PRL) developed at JSC for mission operations. The decision support tool is based on a Procedure Sequencer and multi-agent software developed for human-robot interaction. In this paper the approach for remote task-level commanding of robots is described and the results of the evaluation

  16. On time delay estimation from a sparse linear prediction perspective.

    PubMed

    He, Hongsen; Yang, Tao; Chen, Jingdong

    2015-02-01

    This paper proposes a sparse linear prediction based algorithm to estimate time difference of arrival. This algorithm unifies the cross correlation method without prewhitening and that with prewhitening via an ℓ2/ℓ1 optimization process, which is solved by an augmented Lagrangian alternating direction method. It also forms a set of time delay estimators that make a tradeoff between prewhitening and non-prewhitening through adjusting a regularization parameter. The effectiveness of the proposed algorithm is demonstrated in noisy and reverberant environments. PMID:25698037

  17. Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Le Croissette, D. H.

    1973-01-01

    Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.

  18. Simplified dead-time compensator for multiple delay SISO systems.

    PubMed

    Torrico, Bismark Claure; Correia, Wilkley Bezerra; Nogueira, Fabrício Gonzalez

    2016-01-01

    This paper presents a dead-time compensation structure able to deal with stable and unstable multiple delay single input single output (SISO) systems. The proposed method aims to simplify the primary controller by replacing it for FIR filters placed at the feedback path. Such modification reduces the total number of parameters to be tuned which facilitates the overall design in comparison with other primary controllers normally considered. Simulation results show a better performance for the proposed control approach compared with other dead-time compensator (DTC) recently proposed in the literature. PMID:26593966

  19. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.

    PubMed Central

    Marriott, G; Clegg, R M; Arndt-Jovin, D J; Jovin, T M

    1991-01-01

    An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1723311

  20. Predictive active disturbance rejection control for processes with time delay.

    PubMed

    Zheng, Qinling; Gao, Zhiqiang

    2014-07-01

    Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems. PMID:24182516

  1. Variations in propagation delay times for line ten (TV) based time transfers

    NASA Technical Reports Server (NTRS)

    Chiu, M. C.; Shaw, B. W.

    1982-01-01

    Variation in the propagation delay for a 30 km TV (Line Ten) radio link was evaluated for a series of 30 independent measurements. Time marks from TV Channel 5 WTTG in Washington, D.C. were simultaneously measured at the Johns Hopkins University Applied Physics Laboratory and at the United States Naval Observatory against each stations' local cesium standard clocks. Differences in the stations' cesium clocks were determined by portable cesium clock transfers. Thirty independent timing determinations were made. The root mean square deviation in the propagation delay calculated from the timing determinations was 11 ns. The variations seen in the propagation delays are believed to be caused by environmental factors and by errors in the portable clock timing measurements. In correlating the propagation delay variations with local weather conditions, only a moderate dependence on air temperature and absolute humidity was found.

  2. Empirical modeling of the quiet time nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Spence, H. E.; Stern, D. P.

    1993-01-01

    Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the addition of an inner eastward ring current at a radial distance of approximately 3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner magnetosphere while the latter prevails in the distant tail. The distribution of plasma pressure which is required to balance the magnetic force for each of these two field models is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This represents the first effort to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of approximately 3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between approximately 2 and approximately 35 RE.

  3. Empirical modeling of the quiet time nightside magnetosphere

    SciTech Connect

    Lui, A.T.Y. ); Spence, H.E. ); Stern, D.P. )

    1994-01-01

    Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko but is modified by the addition of an inner eastward ring current at a radial distance of [approximately]3 R[sub E] as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko such that the former dominates the magnetic field in the inner magnetosphere, whereas the latter prevails in the distant tail. The distribution of plasma pressure, which is required to balance the magnetic force for each of these two field models, is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This effort is the first attempt to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of [approximately]3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between [approximately]2 and [approximately]35 R[sub E]. 40 refs., 5 figs.

  4. Empirical modeling of the quiet time nightside magnetosphere

    SciTech Connect

    Lui, A.T.Y.; Spence, H.E.; Stern, D.P.

    1993-12-31

    Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko but is modified by the addition of an inner eastward ring current at a radial distance of approximately 3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko such that the former dominates the magnetic field in the inner magnetosphere while the latter prevails in the distant tail. The distribution of plasma pressure which is required to balance the magnetic force for each of these two field models is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This represents the first effort to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of approximately 3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between approximately 2 and approximately 35 RE.

  5. Empirical intrinsic geometry for nonlinear modeling and time series filtering

    PubMed Central

    Talmon, Ronen; Coifman, Ronald R.

    2013-01-01

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization. PMID:23847205

  6. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    PubMed

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization. PMID:23847205

  7. Empirical Bayes Estimation of Coalescence Times from Nucleotide Sequence Data.

    PubMed

    King, Leandra; Wakeley, John

    2016-09-01

    We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate. PMID:27440864

  8. Distinguishing time-delayed causal interactions using convergent cross mapping

    PubMed Central

    Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George

    2015-01-01

    An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402

  9. Distinguishing time-delayed causal interactions using convergent cross mapping.

    PubMed

    Ye, Hao; Deyle, Ethan R; Gilarranz, Luis J; Sugihara, George

    2015-01-01

    An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402

  10. Distinguishing time-delayed causal interactions using convergent cross mapping

    NASA Astrophysics Data System (ADS)

    Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George

    2015-10-01

    An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains.

  11. TDSDMI: Inference of time-delayed gene regulatory network using S-system model with delayed mutual information.

    PubMed

    Yang, Bin; Zhang, Wei; Wang, Haifeng; Song, Chuandong; Chen, Yuehui

    2016-05-01

    Regulatory interactions among target genes and regulatory factors occur instantaneously or with time-delay. In this paper, we propose a novel approach namely TDSDMI based on time-delayed S-system model (TDSS) model and delayed mutual information (DMI) to infer time-delay gene regulatory network (TDGRN). Firstly DMI is proposed to delete redundant regulator factors for each target gene. Secondly restricted gene expression programming (RGEP) is proposed as a new representation of the TDSS model to identify instantaneous and time-delayed interactions. To verify the effectiveness of the proposed method, TDSDMI is applied to both simulated and real biological datasets. Experimental results reveal that TDSDMI performs better than the recent reconstruction methods. PMID:27058285

  12. STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1

    SciTech Connect

    Liao, Kai; Treu, Tommaso; Marshall, Phil; Fassnacht, Christopher D.; Rumbaugh, Nick; Dobler, Gregory; Aghamousa, Amir; Bonvin, Vivien; Courbin, Frederic; Meylan, Georges; Hojjati, Alireza; Jackson, Neal; Kashyap, Vinay; Mandel, Kaisey; Rathna Kumar, S.; Prabhu, Tushar P.; Linder, Eric; Meng, Xiao-Li; Moustakas, Leonidas A.; Romero-Wolf, Andrew [Jet Propulsion Laboratory, California Institute of Technology, M and others

    2015-02-10

    We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit χ{sup 2}, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ{sup 2} < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration.

  13. Strong Lens Time Delay Challenge. II. Results of TDC1

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Treu, Tommaso; Marshall, Phil; Fassnacht, Christopher D.; Rumbaugh, Nick; Dobler, Gregory; Aghamousa, Amir; Bonvin, Vivien; Courbin, Frederic; Hojjati, Alireza; Jackson, Neal; Kashyap, Vinay; Rathna Kumar, S.; Linder, Eric; Mandel, Kaisey; Meng, Xiao-Li; Meylan, Georges; Moustakas, Leonidas A.; Prabhu, Tushar P.; Romero-Wolf, Andrew; Shafieloo, Arman; Siemiginowska, Aneta; Stalin, Chelliah S.; Tak, Hyungsuk; Tewes, Malte; van Dyk, David

    2015-02-01

    We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit χ2, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ2 < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration.

  14. On noise in time-delay integration CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Levski, Deyan; Choubey, Bhaskar

    2016-05-01

    Time delay integration sensors are of increasing interest in CMOS processes owing to their low cost, power and ability to integrate with other circuit readout blocks. This paper presents an analysis of the noise contributors in current day CMOS Time-Delay-Integration image sensors with various readout architectures. An analysis of charge versus voltage domain readout modes is presented, followed by a noise classification of the existing Analog Accumulator Readout (AAR) and Digital Accumulator Readout (DAR) schemes for TDI imaging. The analysis and classification of existing readout schemes include, pipelined charge transfer, buffered direct injection, voltage as well as current-mode analog accumulators and all-digital accumulator techniques. Time-Delay-Integration imaging modes in CMOS processes typically use an N-number of readout steps, equivalent to the number of TDI pixel stages. In CMOS TDI sensors, where voltage domain readout is used, the requirements over speed and noise of the ADC readout chain are increased due to accumulation of the dominant voltage readout and ADC noise with every stage N. Until this day, the latter is the primary reason for a leap-back of CMOS TDI sensors as compared to their CCD counterparts. Moreover, most commercial CMOS TDI implementations are still based on a charge-domain readout, mimicking a CCD-like operation mode. Thus, having a good understanding of each noise contributor in the signal chain, as well as its magnitude in different readout architectures, is vital for the design of future generation low-noise CMOS TDI image sensors based on a voltage domain readout. This paper gives a quantitative classification of all major noise sources for all popular implementations in the literature.

  15. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    SciTech Connect

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-06-20

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω{sub k}=0.00{sub −0.02}{sup +0.01} (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52{sub −0.20}{sup +0.19} (68% CI)

  16. Delay-dependent stability of neural networks of neutral type with time delay in the leakage term

    NASA Astrophysics Data System (ADS)

    Li, Xiaodi; Cao, Jinde

    2010-07-01

    This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method.

  17. Equation and test of possible delay time of Newton force

    NASA Astrophysics Data System (ADS)

    Diósi, Lajos

    2014-09-01

    Recently, a simple heuristic modification of the Newton potential with a nonzero delay-time τG has been proposed. Our modification is largely suppressed for purely gravitational interactions, it becomes relevant under non-gravitational accelerations of the sources. We illustrate how the choice τG ~ 1 ms may already influence the 5th digit of G determined by Cavendish experiments. Re-evaluation of old Cavendish experiments and implementing slightly modified new ones may confirm the proposal or, at least, put a stronger upper limit on τG.

  18. Delayed choice experiments, the arrow of time, and quantum measurement

    SciTech Connect

    Schulman, L. S.

    2011-11-29

    By a radical modification of statistical mechanics the measurement process of quantum mechanics can be described in terms of pure, unitary time evolution, with no wave function collapse or many-world ideas. The key notion is 'special states', rare microscopic states of a complex system. Recovering the standard probabilities requires of this theory the appearance of Cauchy-distributed noise in some measurement processes. This article treats experimental situations where such noise might be detected and correlated with the need or absence of need for special states. Included in this possibility are 'delayed choice' experiments, in which the correlation contravenes conventional ideas on causality. Background material on all topics is provided.

  19. Time Delay in Neutron-Alpha Resonant Scattering

    SciTech Connect

    Hoop, Bernard; Hale, Gerald M.

    2011-10-24

    Time delay analysis of neutron-alpha resonant scattering cross sections supports characterization of the lowest 3/2{sup +} level in {sup 5}He as fundamentally an n-{alpha} resonance on the second Riemann energy sheet of both n-{alpha} and deuteron-{sup 3}H channels, with an associated shadow pole on a different unphysical sheet that, through its associated zero on the physical sheet, contributes to the large {sup 4}He(n,d){sup 3}H cross section.

  20. Detector module for a simplified ultrasonic time delay spectrometry system

    NASA Astrophysics Data System (ADS)

    Gammell, Paul M.; Liu, Yunbo; Maruvada, Subha; Harris, Gerald R.

    2012-05-01

    When setting up a water-tank based ultrasonic system, aligning the transmitting and receiving transducers to maximize the received signal is required. With a digital time delay spectrometry (TDS) system the "dechirped" signal is observed while positional adjustments are being made. Observation is easier if only the envelope, rather than the modulated signal, is displayed. A module is described that provides an envelope (rectified signal) that, when displayed on an oscilloscope, is suitable as an alignment aid for use with the TDS system described elsewhere in these Proceedings.

  1. Time-Delayed Models of Gene Regulatory Networks

    PubMed Central

    Parmar, K.; Blyuss, K. B.; Kyrychko, Y. N.; Hogan, S. J.

    2015-01-01

    We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After discussion of alternative modelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA dynamics with that of the full model. The review concludes with the discussion of some open problems. PMID:26576197

  2. Bilateral Teleoperation under Time-Varying Communication Time Delay Considering Contact with Environment

    NASA Astrophysics Data System (ADS)

    Iiyama, Noriko; Natori, Kenji; Ohnishi, Kouhei

    With recent popularization of the Internet, bilateral control systems which are robust to fluctuant and unpredictable time delay are desirable. In such a situation, communication disturbance observer (CDOB) has been proposed as a control method for fluctuant and unpredictable time delay in bilateral teleoperation. It compensates time delay using disturbance observer by considering the effect of communication delay on the system as acceleration dimensional disturbance. Since this method cannot separate network disturbance from contact force exerted on a slave, force response of the slave transmitted to the master side is not precise. This paper presents a method for separating network disturbance from the contact force exerted on the slave. By producing the compensation value using separated network disturbance, the force response value of the slave is transmitted to the master side more precisely. The validity of the proposed method is verified by experimental results.

  3. The VLBI time delay function for synchronous orbits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1972-01-01

    The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.

  4. Teleoperation with large time delay using a prevision system

    NASA Astrophysics Data System (ADS)

    Bergamasco, Massimo; De Paolis, Lucio; Ciancio, Stefano; Pinna, Sebastiano

    1997-12-01

    In teleoperation technology various techniques have been proposed in order to alleviate the effects of time delayed communication and to avoid the instability of the system. This paper describes a different approach to robotic teleoperation with large-time delay and a teleoperation system, based on teleprogramming paradigm, has been developed with the intent to improve the slave autonomy and to decrease the amount of information exchanged between master and slave system. The goal concept, specific of AI, has been used. In order to minimize the total task completion time has been introduced a prevision system, called Merlino, able to know in advance the slave's choices taking into account both the operator's actions and the information about the remote environment. The prevision system allows, in case of environment changes, to understand if the slave can solve the goal. Otherwise, Merlino is able to signal a 'fail situation.' Some experiments have been carried out by means of an advanced human-machine interface with force feedback, designed at PERCRO Laboratory of Scuola Superiore S. Anna, which gives a better sensation of presence in the remote environment.

  5. Optical true time delay unit for multi-beamforming.

    PubMed

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2015-04-20

    An optical true time delay (TTD) unit capable of adding independent time delays to multiple RF signals is proposed, which can be used for multi-beamforming in both transmit and receive modes. In the proposed unit, N RF signals with different center frequencies are modulated on an optical frequency comb (OFC). After transmission through a dispersive element, the RF-modulated OFC is split into N paths. In each path, a comb line is selected by a tunable optical filter. Thanks to the chromatic dispersion of the dispersive element, independently-controllable TTDs can be obtained in all paths. Then, a microwave photonic filter (MPF) is incorporated in each path, allowing a designated RF signal to undergo the TTD in that path. A proof-of-concept experiment is carried out. A two-path unit with a low-pass MPF in one path and a high-pass MPF in the other path is built. Controllable TTDs up to ~1.4 ns with a step of ~69 ps are demonstrated based on a 25-GHz-spacing OFC. In addition, a wideband multi-beam phased-array antenna system that can work in both transmit and receive modes is designed using the proposed TTD unit. PMID:25969041

  6. ETD: an extended time delay algorithm for ventricular fibrillation detection.

    PubMed

    Kim, Jungyoon; Chu, Chao-Hsien

    2014-01-01

    Ventricular fibrillation (VF) is the most serious type of heart attack which requires quick detection and first aid to improve patients' survival rates. To be most effective in using wearable devices for VF detection, it is vital that the detection algorithms be accurate, robust, reliable and computationally efficient. Previous studies and our experiments both indicate that the time-delay (TD) algorithm has a high reliability for separating sinus rhythm (SR) from VF and is resistant to variable factors, such as window size and filtering method. However, it fails to detect some VF cases. In this paper, we propose an extended time-delay (ETD) algorithm for VF detection and conduct experiments comparing the performance of ETD against five good VF detection algorithms, including TD, using the popular Creighton University (CU) database. Our study shows that (1) TD and ETD outperform the other four algorithms considered and (2) with the same sensitivity setting, ETD improves upon TD in three other quality measures for up to 7.64% and in terms of aggregate accuracy, the ETD algorithm shows an improvement of 2.6% of the area under curve (AUC) compared to TD. PMID:25571480

  7. Effects of Time Delay on Three Interacting Species System with Noise

    NASA Astrophysics Data System (ADS)

    Su, Yi-Jian; Mei, Dong-Cheng

    2008-09-01

    We study the effects of time delay in three interacting species system with noise. The time evolution and spatiotemporal pattern in the Lotka-Volterra model of three interacting species with noise and time delay were investigated by means of stochastic simulation. Our results indicate that: (i) Time delay induces the synchronously periodic oscillations of the three species densities; (ii) Time delay cause the spatiotemporal pattern to be concentrated.

  8. Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control.

    PubMed

    Wang, Leimin; Shen, Yi; Sheng, Yin

    2016-04-01

    This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results. PMID:26878721

  9. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  10. Spectrometer employing optical fiber time delays for frequency resolution

    DOEpatents

    Schuss, Jack J.; Johnson, Larry C.

    1979-01-01

    This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

  11. Boltzmann's knock: auto-ignition delay times from Arrhenius theory

    NASA Astrophysics Data System (ADS)

    Heffer, Jon; Lewins, Jeffery

    2010-10-01

    An exact series solution is given for the first-order equation describing delay times in chemical kinetics, especially auto-ignition of fuels, employing the Arrhenius rate factor. Provision is made for both a constant pressure and a constant volume process by means of an index that describes the temperature dependence of the reaction rate. To allow for the common circumstance that the activation temperature is well above the temperature that would be recognised as the onset of combustion, an onset of combustion is defined analogous to the boundary layer theory of Blasius. Exact offset times are tabulated in non-dimensional form. The limitations of a Taylor-series expansion are discussed.

  12. Real-Time Tropospheric Delay Estimation using IGS Products

    NASA Astrophysics Data System (ADS)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  13. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output. PMID:22539852

  14. Asymptotic stability for force reflecting teleoperators with time delay

    SciTech Connect

    Anderson, R.J. ); Spong, M.W. )

    1992-04-01

    A bilateral system consists of a local master manipulator and a remotely located slave manipulator. Velocity commands are sent forward from the master to the slave, and force information is reflected back from the slave to the master. Often, there is a transmission delay when communicating between the two subsystems, which causes instability in the force-reflecting teleoperator. Recently, a solution for this problem was found, based on mimicking the behavior of a lossless transmission line. Although the resulting control law was shown to stabilize an actual single-DOF teleoperator system, and although the control law is intuitively stable because of its passivity properties, stability for the system has not yet been proven. In this article the authors extend these results to a nonlinear n-DOF system and prove its stability. Nonlinear, multidimensional networks are used to characterize the nonlinear equations for the master and slave manipulators, the time-delayed communication systems, the human operator, and the environment. Tellegen's theorem and the Lyapunov theory are then applied to prove that the master and slave subsystems have asymptotically stable velocities. In addition, they show how gain scaling can be used without disturbing the stability of the system.

  15. A novel memristive time-delay chaotic system without equilibrium points

    NASA Astrophysics Data System (ADS)

    Pham, V.-T.; Vaidyanathan, S.; Volos, C. K.; Jafari, S.; Kuznetsov, N. V.; Hoang, T. M.

    2016-02-01

    Memristor and time-delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time-delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time-delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time-delay system has been introduced to show its feasibility.

  16. Time-Delay Discrimination Training: Replication with Different Stimuli and Different Populations.

    ERIC Educational Resources Information Center

    Smeets, Paul M.; And Others

    1990-01-01

    Two time-delay conditions for teaching complex visual discriminations to 14 normal preschoolers, 12 with mild mental retardation, and 11 with moderate mental retardation were compared. Results indicated that for all populations and stimuli, time delay of multiple dynamic distinctive-feature prompts produced learning, while time delay of the single…

  17. An Evaluation of Real-Time Zenith Total Delay Estimates

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Teferle, F. N.; Bingley, R.; Laurichesse, D.

    2012-12-01

    The use of modern low-latency Numerical Weather Prediction (NWP) models by meteorological institutions to improve nowcasting operations requires the accurate and timely estimation of the Zenith Total Delay (ZTD). Observations from Global Navigation Satellite Systems (GNSS) can be processed to obtain such ZTD estimates. As of now, meeting the established requirements on the latency (as low as 5 min) and accuracy (up to few millimeters) of the ZTD for its use in nowcasting applications stands as a challenge. However, using, for example, the real-time orbit and clock products from the recently established IGS Real-Time Service, it is possible to estimate the ZTD by different processing strategies and each strategy can result in a different level of accuracy. The Bundesamt für Kartographie und Geodäsie Ntrip Client (BNC) can provide ZTD estimates in real-time using precise point positioning (PPP) without integer ambiguity resolution. Recently, the Centre National d'Etudes Spatiales (CNES) has released a modified version of BNC which produces ZTD estimates in real-time with integer-PPP, i.e. PPP with integer ambiguity resolution using their integer-recovery clock and widelane phase bias information. trackRT from MIT and RTNet from GPS Solutions Inc are also capable of providing real-time estimates of the ZTD. In this study, we present an evaluation of the real-time ZTD estimates obtained from different GNSS processing systems. Furthermore, we compare the real-time estimates to those from a near real-time system and the IGS Final Troposphere products.

  18. Direct Tunneling Delay Time Measurement in an Optical Lattice.

    PubMed

    Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D

    2016-07-01

    We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics. PMID:27419545

  19. Reduced time delay for gravitational waves with dark matter emulators

    NASA Astrophysics Data System (ADS)

    Desai, S.; Kahya, E. O.; Woodard, R. P.

    2008-06-01

    We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles.

  20. Time delay and integration detectors using charge transfer devices

    NASA Technical Reports Server (NTRS)

    Mccann, D. H.; White, M. H.; Turly, A. P.

    1981-01-01

    An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates.

  1. Time delay between cardiac and brain activity during sleep transitions

    NASA Astrophysics Data System (ADS)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  2. Time delay in the Einstein ring PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Van Ommen, T. D.; Jones, D. L.; Preston, R. A.; Jauncey, D. L.

    1995-01-01

    We present radio observations of the gravitational lens PKS 1830-211 at 8.4 and 15 GHz acquired using the Very Large Array. The observations were made over a 13 month period. Significant flux density changes over this period provide strong constraints on the time delay between the two lensed images and suffest a value of 44 +/- 9 days. This offers new direct evidence that this source is indeed a gravitational lens. The lens distance is dependent upon the model chosen, but reasonable limits on the mass of the lensing galaxy suggest that it is unlikely to be at a redshift less than a few tenths, and may well be significantly more distant.

  3. Direct Tunneling Delay Time Measurement in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Fortun, A.; Cabrera-Gutiérrez, C.; Condon, G.; Michon, E.; Billy, J.; Guéry-Odelin, D.

    2016-07-01

    We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.

  4. Lensing and time-delay contributions to galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Bertacca, Daniele; Maartens, Roy; Clarkson, Chris; Doré, Olivier

    2016-07-01

    Galaxy clustering on very large scales can be probed via the 2-point correlation function in the general case of wide and deep separations, including all the lightcone and relativistic effects. Using our recently developed formalism, we analyze the behavior of the local and integrated contributions and how these depend on redshift range, linear and angular separations and luminosity function. Relativistic corrections to the local part of the correlation can be non-negligible but they remain generally sub-dominant. On the other hand, the additional correlations arising from lensing convergence and time-delay effects can become very important and even dominate the observed total correlation function. We investigate different configurations formed by the observer and the pair of galaxies, and we find that the case of near-radial large-scale separations is where these effects will be the most important.

  5. THE HUBBLE CONSTANT INFERRED FROM 18 TIME-DELAY LENSES

    SciTech Connect

    Paraficz, Danuta; Hjorth, Jens

    2010-04-01

    We present a simultaneous analysis of 18 galaxy lenses with time-delay measurements. For each lens, we derive mass maps using pixelated simultaneous modeling with shared Hubble constant. We estimate the Hubble constant to be 66{sup +6}{sub -4} km s{sup -1} Mpc{sup -1} (for a flat universe with OMEGA{sub m} = 0.3, OMEGA{sub L}AMBDA = 0.7). We have also selected a subsample of five relatively isolated early-type galaxies, and by simultaneous modeling with an additional constraint on isothermality of their mass profiles, we get H{sub 0} = 76{sup +3}{sub -3} km s{sup -1} Mpc{sup -1}.

  6. Performance evaluation of the time delay digital tanlock loop architectures

    NASA Astrophysics Data System (ADS)

    Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh; Ponnapalli, Prasad

    2016-01-01

    This article presents the architectures, theoretical analyses and testing results of modified time delay digital tanlock loop (TDTLs) system. The modifications to the original TDTL architecture were introduced to overcome some of the limitations of the original TDTL and to enhance the overall performance of the particular systems. The limitations addressed in this article include the non-linearity of the phase detector, the restricted width of the locking range and the overall system acquisition speed. Each of the modified architectures was tested by subjecting the system to sudden positive and negative frequency steps and comparing its response with that of the original TDTL. In addition, the performance of all the architectures was evaluated under noise-free as well as noisy environments. The extensive simulation results using MATLAB/SIMULINK demonstrate that the new architectures overcome the limitations they addressed and the overall results confirmed significant improvements in performance compared to the conventional TDTL system.

  7. Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks

    NASA Astrophysics Data System (ADS)

    Mohamad, Sannay

    2001-11-01

    Convergence dynamics of continuous-time bidirectional neural networks with constant transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, Lyapunov functionals and Halanay-type inequalities are constructed and employed to derive delay independent sufficient conditions under which the continuous-time networks converge exponentially to the equilibria associated with temporally uniform external inputs to the networks. Discrete-time analogues of the continuous-time networks are formulated and we study their dynamical characteristics. It is shown that the convergence dynamics of the continuous-time networks are preserved by the discrete-time analogues without any restriction on the discretization step-size. Several examples are given to illustrate the advantages of the discrete-time analogues in numerically simulating the continuous-time networks.

  8. Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Quan; Wang, Su-Lan; Ren, Qian; Jin, Zhen; Wu, Yong-Ping

    2015-06-01

    Empirical results indicate that inducible defenses of plants have effects on herbivore populations. However, little is known about how inducible defenses of plants have influences on herbivore outbreak when space effect is considered. To reveal the relationship between inducible defenses and herbivore outbreak, we present a mathematical model to describe the interaction of them. It was found that time delay plays dual effects in the persistence of herbivore populations: (i) large value of time delay may be associated with small density of herbivore populations, and thus causes the populations to run a higher risk of extinction; (ii) moderate value of time delay is beneficial for maintaining herbivore density in a determined range which may promote the persistence of herbivore populations. Additionally, we revealed that interaction of time delay and space promotes the growth of average density of herbivore populations during their outbreak period which implied that time delay may drive the resilience of herbivore populations. Our findings highlight the close relationship between inducible defenses of plants and herbivore outbreak.

  9. Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak.

    PubMed

    Sun, Gui-Quan; Wang, Su-Lan; Ren, Qian; Jin, Zhen; Wu, Yong-Ping

    2015-01-01

    Empirical results indicate that inducible defenses of plants have effects on herbivore populations. However, little is known about how inducible defenses of plants have influences on herbivore outbreak when space effect is considered. To reveal the relationship between inducible defenses and herbivore outbreak, we present a mathematical model to describe the interaction of them. It was found that time delay plays dual effects in the persistence of herbivore populations: (i) large value of time delay may be associated with small density of herbivore populations, and thus causes the populations to run a higher risk of extinction; (ii) moderate value of time delay is beneficial for maintaining herbivore density in a determined range which may promote the persistence of herbivore populations. Additionally, we revealed that interaction of time delay and space promotes the growth of average density of herbivore populations during their outbreak period which implied that time delay may drive the resilience of herbivore populations. Our findings highlight the close relationship between inducible defenses of plants and herbivore outbreak. PMID:26084812

  10. Statistical analysis of the electrical breakdown time delay distributions in krypton

    NASA Astrophysics Data System (ADS)

    Maluckov, Čedomir A.; Karamarković, Jugoslav P.; Radović, Miodrag K.; Pejović, Momčilo M.

    2006-08-01

    The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.

  11. Statistical analysis of the electrical breakdown time delay distributions in krypton

    SciTech Connect

    Maluckov, Cedomir A.; Karamarkovic, Jugoslav P.; Radovic, Miodrag K.; Pejovic, Momcilo M.

    2006-08-15

    The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6 mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.

  12. Empirical reconstruction of storm-time steady magnetospheric convection events

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Kissinger, J.; Tsyganenko, N. A.; McPherron, R. L.; Korth, H.; Anderson, B. J.

    2013-12-01

    We investigate the storm-scale morphology of the magnetospheric magnetic field as well as underlying distributions of electric currents, equatorial plasma pressure and entropy for four Steady Magnetospheric Convection (SMC) events that occurred during the May 2000 and October 2011 magnetic storms. The analysis is made using the empirical geomagnetic field model TS07D, in which the structure of equatorial currents is not predefined and it is dictated by data. The model also combines the strengths of statistical and event-oriented approaches in mining data for the reconstruction of the magnetic field. The formation of a near-Earth minimum of the equatorial magnetic field in the midnight sector is inferred from data without ad hoc assumptions of a special current system postulated in earlier empirical reconstructions. In addition, a new SMC class is discovered where the minimum equatorial field is substantially larger and located closer to Earth. The magnetic field tailward of the minimum is also much larger, and the corresponding region of accumulated magnetic flux may occupy a very short tail region. The equatorial current and plasma pressure are found to be strongly enhanced far beyond geosynchronous orbit and in a broad local time interval covering the whole nightside region. This picture is consistent with independent recent statistical studies of the SMC pressure distributions, global MHD and kinetic RCM-E simulations. Distributions of the flux tube volume and entropy inferred from data reveal different mechanisms of the magnetotail convection crisis resolution for two classes of SMC events.

  13. MSW (magnetostatic wave) variable time-delay techniques

    NASA Astrophysics Data System (ADS)

    Adams, J. D.; Bajpai, S. N.; Daniel, M. R.; Emtage, P. R.; Talisa, S. H.

    1983-09-01

    Studies of magnetostatic wave (MSW) propagation, in epitaxial yttrium iron garnet (YIG) aimed at the development of dispersive delay lines electronically variable delay lines for use in radar and ECM systesms are described. Techniques which show the potential for achieving the performance required for systems application of MSW delay lines have been developed. The most pressing problem area is the reduction of amplitude and phase ripple arising from reflections and higher order mode interference to acceptable levels.

  14. Actuator fault estimation and accommodation for switched systems with time delay: Discrete-time case.

    PubMed

    Du, Dongsheng; Jiang, Bin

    2016-05-01

    This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results. PMID:26924247

  15. Synthetic LISA: Simulating time delay interferometry in a model LISA

    SciTech Connect

    Vallisneri, Michele

    2005-01-15

    We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA.

  16. Delay-dependent exponential passivity of uncertain cellular neural networks with discrete and distributed time-varying delays.

    PubMed

    Du, Yuanhua; Zhong, Shouming; Xu, Jia; Zhou, Nan

    2015-05-01

    This paper is concerned with the delay-dependent exponential passivity analysis issue for uncertain cellular neural networks with discrete and distributed time-varying delays. By decomposing the delay interval into multiple equidistant subintervals and multiple nonuniform subintervals, a suitable augmented Lyapunov-Krasovskii functionals are constructed on these intervals. A set of novel sufficient conditions are obtained to guarantee the exponential passivity analysis issue for the considered system. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed results. PMID:25702046

  17. Precision cosmology with time delay lenses: high resolution imaging requirements

    NASA Astrophysics Data System (ADS)

    Meng, Xiao-Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtotpropto r-γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of

  18. Precision cosmology with time delay lenses: High resolution imaging requirements

    SciTech Connect

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  19. Impact of delays in parallel I/O system: An empirical study

    SciTech Connect

    Venugopal, C.R.; Rao, S.S.S.P.

    1996-12-31

    Performance of I/O intensive applications on a multiprocessor system depends mostly on the variety of disk access delays encountered in the I/O system. Over the years, the improvement in disk performance has taken place slower than corresponding increase in processor speeds. It is therefore necessary to model I/O delays and evaluate performance benefits of moving an application to a better multiprocessor system. In this work, we perform such an analysis by measuring I/O delays for a synthesized application that uses Parallel Distributed File System. The aim of this study was to evaluate the performance benefits of better disks in a multiprocessor system which was designed few years back. We report how the I/O performance would get affected if an application were to be run on a system which would have better disks and communication links. In this study, we show a substantial improvement in the performance of I/O system with better disks and communication links with respect to the existing system.

  20. Unsignaled Delay of Reinforcement, Relative Time, and Resistance to Change

    ERIC Educational Resources Information Center

    Shahan, Timothy A.; Lattal, Kennon A.

    2005-01-01

    Two experiments with pigeons examined the effects of unsignaled, nonresetting delays of reinforcement on responding maintained by different reinforcement rates. In Experiment 1, 3-s unsignaled delays were introduced into each component of a multiple variable-interval (VI) 15-s VI 90-s VI 540-s schedule. When considered as a proportion of the…

  1. On the stability of the telegraph equation with time delay

    NASA Astrophysics Data System (ADS)

    Ashyralyev, Allaberen; Agirseven, Deniz; Turk, Koray

    2016-08-01

    In this study, the initial value problem for telegraph equations with delay in a Hilbert space is considered. Theorem on stability estimates for the solution of this problem is established. As a test problem, one-dimensional delay telegraph equation with Dirichlet boundary conditions is considered. Numerical solutions of this problem are obtained by first and second order of accuracy difference schemes.

  2. Satellite time series analysis using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.

    2016-04-01

    Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.

  3. Time-Delayed Subsidies: Interspecies Population Effects in Salmon

    PubMed Central

    Nelson, Michelle C.; Reynolds, John D.

    2014-01-01

    Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp.) can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species. PMID:24911974

  4. Minimizing the total completion time in a two-machine flowshop problem with time delays

    NASA Astrophysics Data System (ADS)

    Kais Msakni, Mohamed; Khallouli, Wael; Al-Salem, Mohamed; Ladhari, Talel

    2016-07-01

    This article proposes to solve the problem of minimizing the total completion time in a two-machine permutation flowshop environment in which time delays between the machines are considered. For this purpose, an enumeration algorithm based on the branch-and-bound framework is developed, which includes new lower and upper bounds as well as dominance rules. The computational study shows that problems with up to 40 jobs can be solved in a reasonable amount of time.

  5. Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series

    NASA Astrophysics Data System (ADS)

    Hegger, Rainer

    1999-08-01

    On the basis of a recently developed method for modeling time delay systems, we propose a procedure to estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of the time series is so low that the infinite dimensional tangent space is spanned quite sparsely.

  6. Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series.

    PubMed

    Hegger, R

    1999-08-01

    On the basis of a recently developed method for modeling time delay systems, we propose a procedure to estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of the time series is so low that the infinite dimensional tangent space is spanned quite sparsely. PMID:11969918

  7. Empirical estimation of the arrival time of ICME Shocks

    NASA Astrophysics Data System (ADS)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  8. Time delay identifiability and estimation for the delayed linear system with incomplete measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Jian

    2016-01-01

    When the excitation and the response of a multiple degree-of-freedom (dof) active system is incompletely measurable, the identifiability of delay parameter turns into vague. It instantly brings confidence problems on health monitoring and fault diagnosing for the control loop. To fix this problem, this paper inspects the difference between the system's frequency responses before and after control, and thereby gives practical criteria on parameter identifiability. It shows that when the active control only connects points within measurable ones, the delay parameters are all identifiable. In other words, if someone wants to identify all of the delay parameters in the control loop, only the frequency responses that are relative with the control connected points need to be measured. Based on this conclusion, a parameter identification algorithm based on Newton-Raphson method is proposed. Numerical simulation results show that this algorithm not only gives accurate parameters but also possesses a good quality of noise resistance.

  9. Discriminability of Prediction Artifacts in a Time Delayed Virtual Environment

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Jung, Jae Y.; Ellis, Stephen R.

    2001-01-01

    Overall latency remains an impediment to perceived image stability and consequently to human performance in virtual environment (VE) systems. Predictive compensators have been proposed as a means to mitigate these shortcomings, but they introduce rendering errors because of induced motion overshoot and heightened noise. Discriminability of these compensator artifacts was investigated by a protocol in which head tracked image stability for 35 ms baseline VE system latency was compared against artificially added (16.7 to 100 ms) latency compensated by a previously studied Kalman Filter (K-F) predictor. A control study in which uncompensated 16.7 to 100 ms latencies were compared against the baseline was also performed. Results from 10 subjects in the main study and 8 in the control group indicate that predictive compensation artifacts are less discernible than the disruptions of uncompensated time delay for the shorter but not the longer added latencies. We propose that noise magnification and overshoot are contributory cues to the presence of predictive compensation.

  10. The delay time distribution of massive double compact star mergers

    NASA Astrophysics Data System (ADS)

    Mennekens, N.; Vanbeveren, D.

    2016-05-01

    To investigate the temporal evolution of binary populations, in general, and double compact-star binaries and mergers, in particular, within a galactic evolution context, a very straightforward method is obviously to implement a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, the Brussels galactic chemical evolution code is the only one that fully and consistently accounts for the important effects of interacting binaries on the predictions of chemical evolution. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delay time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively in the past decade. In the present paper we present the DTD for merging double neutron-star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for producing r-process elements, and the DTDs can be used to study the galactic evolution of these elements with a code that does not explicitly account for binaries.

  11. Principal component analysis for LISA: The time delay interferometry connection

    SciTech Connect

    Romano, J.D.; Woan, G.

    2006-05-15

    Data from the Laser Interferometer Space Antenna (LISA) is expected to be dominated by frequency noise from its lasers. However, the noise from any one laser appears more than once in the data and there are combinations of the data that are insensitive to this noise. These combinations, called time delay interferometry (TDI) variables, have received careful study and point the way to how LISA data analysis may be performed. Here we approach the problem from the direction of statistical inference, and show that these variables are a direct consequence of a principal component analysis of the problem. We present a formal analysis for a simple LISA model and show that there are eigenvectors of the noise covariance matrix that do not depend on laser frequency noise. Importantly, these orthogonal basis vectors correspond to linear combinations of TDI variables. As a result we show that the likelihood function for source parameters using LISA data can be based on TDI combinations of the data without loss of information.

  12. Empirical Mode Decomposition and k-Nearest Embedding Vectors for Timely Analyses of Antibiotic Resistance Trends

    PubMed Central

    Teodoro, Douglas; Lovis, Christian

    2013-01-01

    Background Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment when the specific results of the patient are not yet available. Objective To improve antibiotic resistance trend analysis algorithms by building a novel, fully data-driven forecasting method from the combination of trend extraction and machine learning models for enhanced biosurveillance systems. Methods We investigate a robust model for extraction and forecasting of antibiotic resistance trends using a decade of microbiology data. Our method consists of breaking down the resistance time series into independent oscillatory components via the empirical mode decomposition technique. The resulting waveforms describing intrinsic resistance trends serve as the input for the forecasting algorithm. The algorithm applies the delay coordinate embedding theorem together with the k-nearest neighbor framework to project mappings from past events into the future dimension and estimate the resistance levels. Results The algorithms that decompose the resistance time series and filter out high frequency components showed statistically significant performance improvements in comparison with a benchmark random walk model. We present further qualitative use-cases of antibiotic resistance trend extraction, where empirical mode decomposition was applied to highlight the specificities of the resistance trends. Conclusion The decomposition of the raw signal was found not only to yield valuable insight into the resistance evolution, but also to produce novel models of resistance forecasters with boosted prediction performance, which could be utilized as a complementary method in the analysis of antibiotic resistance trends. PMID:23637796

  13. The determination for time delay of the CCTV signals relayed by local TV stations.

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Liang, Shuangyou

    1997-06-01

    It is necessary for the users, who need time signals of high precision, to understand the time delay of the received CCTV time signals. The methods for measuring the time delay of CCTV time signals relayed by synchronous satellite position and the measured results are described.

  14. A numerical study of bench blast row delay timing and its influence on percent-cast

    SciTech Connect

    Preece, D.S.

    1993-11-01

    The computer program, DMC (Distinct Motion Code), which was developed for simulating the rock motion associated with blasting, has been used to study the influence of row delay timing on rock motion. The numerical simulations correspond with field observations in that very short delays (< 50ms) and very long delays (> 300ms) produce a lower percent-cast than a medium delay (100 to 200 ms). The DMC predicted relationship between row delay timing and percent-cast is more complex than expected with a dip in the curve where the optimum timing might be expected. More study is required to gain a full understanding of this phenomenon.

  15. Finite-time boundedness and stabilization of uncertain switched neural networks with time-varying delay.

    PubMed

    Wu, Yuanyuan; Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed

    2015-09-01

    This paper deals with the finite-time boundedness and stabilization problem for a class of switched neural networks with time-varying delay and parametric uncertainties. Based on Lyapunov-like function method and average dwell time technique, some sufficient conditions are derived to guarantee the finite-time boundedness of considered uncertain switched neural networks. Furthermore, the state feedback controller is designed to solve the finite-time stabilization problem. Moreover, the proposed sufficient conditions can be simplified into the form of linear matrix equalities for conveniently using Matlab LMI toolbox. Finally, two numerical examples are given to show the effectiveness of the main results. PMID:26103615

  16. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  17. Effects of time delay on symmetric two-species competition subject to noise

    NASA Astrophysics Data System (ADS)

    Nie, Linru; Mei, Dongcheng

    2008-03-01

    Noise and time delay act simultaneously on real ecological systems. The Lotka-Volterra model of symmetric two-species competition with noise and time delay was investigated in this paper. By means of stochastic simulation, we find that (i) the time delay induces the densities of the two species to periodically oscillate synchronously; (ii) the stationary probability distribution function of the two-species densities exhibits a transition from multiple to single stability as the delay time increases; (iii) the characteristic correlation time for the sum of the two-species densities squared exhibits a nonmonotonic behavior as a function of delay time. Our results have the implication that the combination of noise and time delay could provide an efficient tool for understanding real ecological systems.

  18. Time delay measurement for linac based treatment delivery in synchronized respiratory gating radiotherapy.

    PubMed

    Jin, Jian-Yue; Yin, Fang-Fang

    2005-05-01

    A time delay in a respiratory gating system could cause an unexpected phase mismatch for synchronized gating radiotherapy. This study presents a method of identifying and measuring the time delay in a gating system. Various port films were taken for a motion phantom at different gating window levels with a very narrow window size. The time delay for the gating system was determined by comparing the motion curve (the position of a moving object versus the gating time) measured in the port films to the motion curve determined by the video cameras. The measured time delay for a linac-based gating system was 0.17+/-0.03 s. This time delay could induce target missing if it was not properly taken into account for the synchronized gating radiotherapy. Measurement/verification of the time delay should be considered as an important part of the accepting/commissioning test before the clinical use of the gating system. PMID:15984681

  19. Time-dependent local density approximation study of attosecond time delays in the photoionization of xenon

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2016-05-01

    We investigate Wigner-Smith (WS) time delays of the photoionization from various subshells of xenon using the time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. At the 4d giant dipole resonance region as well as near all the Cooper minimum anti-resonances in 5p, 5s and 4d photoemissions, effects of electron correlations uniquely determine the shapes of the emission quantum phase. The Wigner-Smith time delay derived from this phase indicates significant variations as a function of energy. The results qualitatively support our TDLDA predictions at the fullerene plasmon region and at 3p Cooper minimum in argon, and should encourage attosecond measurements of Xe photoemission via two-photon interferometric techniques, such as RABITT. The work is supported by the NSF, USA.

  20. Synchronization of Memristor-Based Coupling Recurrent Neural Networks With Time-Varying Delays and Impulses.

    PubMed

    Zhang, Wei; Li, Chuandong; Huang, Tingwen; He, Xing

    2015-12-01

    Synchronization of an array of linearly coupled memristor-based recurrent neural networks with impulses and time-varying delays is investigated in this brief. Based on the Lyapunov function method, an extended Halanay differential inequality and a new delay impulsive differential inequality, some sufficient conditions are derived, which depend on impulsive and coupling delays to guarantee the exponential synchronization of the memristor-based recurrent neural networks. Impulses with and without delay and time-varying delay are considered for modeling the coupled neural networks simultaneously, which renders more practical significance of our current research. Finally, numerical simulations are given to verify the effectiveness of the theoretical results. PMID:26054076

  1. Synchronization of time-delayed chemically coupled burst-spiking neurons with correlated noises.

    PubMed

    Zhang, X; Yang, J; Wu, F P; Wu, W J; Jiang, M; Chen, L; Wang, H J; Qi, G X; Huang, H B

    2014-06-01

    Synchronization of two time-delayed chemically coupled neurons with burst-spiking states is studied. Different from the previous study by N. Buric et al. (Phys. Rev. E 78, 036211 (2008)), it is found that exactly synchronous burst-spiking dynamics can occur for small coupling strengths and time delays. The results are confirmed by common time delays and non-equal time delays. When common noise is added to the two neurons, synchronization is enhanced as noise strength is increased. But the results are different for larger time delay and smaller time delay. When noises are correlated, it is found that only strong noises with large correlation coefficient can induce exact synchronization. Even one percent of independent noises can influence synchronization much. PMID:24965152

  2. A delay-dependent approach to robust control for neutral uncertain neural networks with mixed interval time-varying delays

    NASA Astrophysics Data System (ADS)

    Lu, Chien-Yu

    2011-04-01

    This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method.

  3. Transition from winnerless competition to synchronization in time-delayed neuronal motifs

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, P. J.; Wu, F. P.; Wu, W. J.; Jiang, M.; Chen, L.; Qi, G. X.; Huang, H. B.

    2012-03-01

    The dynamics of brain functional motifs are studied. It is shown that different rhythms can occur in the motifs when time delay is taken into account. These rhythms include synchronization, winnerless competition (WLC) and "two plus one" (TPO). The main discovery is that the transition from WLC to synchronization can be induced simply by time delay. It is also concluded that some medium time delay is needed to achieve WLC in the realistic case. The motifs composed of heterogeneous neurons are also considered.

  4. Real-time random delay compensation with prediction-based digital redesign.

    PubMed

    Zhang, Yongpeng; Cofie, Penrose; Ajuzie, Augustine N; Zhang, Jian; Akujuobi, Cajetan M

    2011-04-01

    Today's technological demands require challenging control solutions such as real-time applications of Networked Control System (NCS). However, due to communication protocol and shared data bus, NCS experiences uncertain and unpredictable time delays in both input and output channels. These delays cause asynchronization between the controller and the plant thereby degrading the performance of closed-loop control systems. To address this problem, this paper proposes to utilize digital redesign technique to provide real-time random delay compensation. PMID:21194688

  5. Synchronization and control in time-delayed complex networks and spatio-temporal patterns

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Kurths, J.; Schöll, E.

    2016-02-01

    This special topics issue is a collection of contributions on the recent developments of control and synchronization in time delayed systems and space time chaos. The various articles report interesting results on time delayed complex networks; fractional order delayed models; dynamics of spatio-temporal patterns; stochastic models etc. Experimental analysis on synchronization, dynamics and control of chaos are also well investigated using Field Programmable Gate Array (FPGA), circuit realizations and chemical reactions.

  6. Phase velocity spectrum analysis for a time delay comb transducer for guided wave mode excitation

    SciTech Connect

    Quarry, M J; Rose, J L

    2000-09-26

    A theoretical model for the analysis of ultrasonic guided wave mode excitation of a comb transducer with time delay features was developed. Time delay characteristics are included via a Fourier transform into the frequency domain. The phase velocity spectrum can be used to determine the mode excitation on the phase velocity dispersion curves for a given structure. Experimental and theoretical results demonstrate the tuning of guided wave modes using a time delay comb transducer.

  7. A method for efficient fractional sample delay generation for real-time frequency-domain beamformers

    SciTech Connect

    Breeding, J.E.; Karnowski, T.P.

    1995-07-01

    This paper presents an efficient method for fractional delay filter generation for frequency-domain beamformers. A common misunderstanding regarding frequency-domain beamforming is that any fractional time shift can be achieved using the delay property of the discrete Fourier transform (DFT). Blind application of the DFT delay property introduces circular convolution errors that may adversely affect the beam`s time series. The method presented avoids these errors while enabling real-time processing.

  8. Regenerative memory in time-delayed neuromorphic photonic resonators

    NASA Astrophysics Data System (ADS)

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  9. H∞ state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays

    NASA Astrophysics Data System (ADS)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2016-07-01

    This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.

  10. Programmable multiple true-time-delay elements based on a Fourier-domain optical processor.

    PubMed

    Yi, Xiaoke; Li, Liwei; Huang, Thomas X H; Minasian, Robert A

    2012-02-15

    A new technique to realize an array of multiple true-time-delay elements, which can be independently and continuously tuned, is reported. It is based on a WDM parallel signal processing approach in conjunction with a diffraction-based Fourier-domain optical signal processor. Programmable linear optical phase transfer functions are realized to obtain different electrical true-time delays. The technique can scale to a large number of wideband true-time-delay lines, with continuously tunable programmable delay. Results demonstrate multiple true-time-delay elements with independent tuning control and verify the concept by tuning the free spectral range of a microwave photonic notch filter. To our best knowledge, this is the first demonstration of multiple independently controllable true-time-delay lines for microwave photonic systems. PMID:22344122

  11. In-flight evaluation of pure time delays in pitch and roll

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1985-01-01

    An in-flight investigation of the effect of pure time delays in pitch and roll was undertaken. The evaluation tasks consisted of low lift-to-drag-ratio landings of various levels of difficulty and formation flying. The results indicate that the effect of time delay is strongly dependent on the task. In the pitch axis, in calm air, spot landings from a lateral offset were most strongly influenced by time delay. In the roll axis, in calm air, formation flying was most strongly influenced by time delay. However, when landings were made in turbulence, flying qualities in pitch were only slightly degraded, whereas in roll they were severely degraded.

  12. Time-delayed quantum coherent Pyragas feedback control of photon squeezing in a degenerate parametric oscillator

    NASA Astrophysics Data System (ADS)

    Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas

    2016-08-01

    Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.

  13. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  14. On the Influence of Delay Line Uncertainty in THz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jahn, D.; Lippert, S.; Bisi, M.; Oberto, L.; Balzer, J. C.; Koch, M.

    2016-06-01

    Terahertz time-domain spectroscopy (THz TDS) is a well-known tool for material analysis in the terahertz frequency band. One crucial system component in every time-domain spectrometer is the delay line which is necessary to accomplish the sampling of the electric field over time. Despite the fact that most of the uncertainty sources in TDS have been discussed, the delay line uncertainty has not been considered in detail. We model the impact of delay line uncertainty on the acquired THz TDS data. Interferometric measurements of the delay line precision and THz time-domain data are used to validate the theoretical model.

  15. The Delay Hypothesis: The Manifestation of Media Effects over Time

    ERIC Educational Resources Information Center

    Jensen, Jakob D.; Bernat, Jennifer K.; Wilson, Kari M.; Goonewardene, Julie

    2011-01-01

    A between-participants experiment (N = 147) tested for the presence of a delayed effect following exposure to an episode of a legal drama that contained false information. Participants were more likely to endorse false beliefs if they were queried two weeks after watching the program rather than immediately following exposure. The relationship…

  16. Protecting Seriously Mistreated Children: Time Delays in a Court Sample.

    ERIC Educational Resources Information Center

    Bishop, Sandra J.; And Others

    1992-01-01

    The progress of 206 severely abused or neglected children through the Boston (Massachusetts) court system was examined. Overall, children were in the system an average of 5 years before resolution with about 1.5 years following arraignment in juvenile court. No meaningful pattern was found which could predict delays. (Author/DB)

  17. Delay-dependent exponential stability for uncertain neutral stochastic neural networks with interval time-varying delay

    NASA Astrophysics Data System (ADS)

    Chen, Huabin; Zhao, Yang

    2015-10-01

    This paper is mainly concerned with the problem for the robustly exponential stability in mean square moment of uncertain neutral stochastic neural networks with interval time-varying delay. With an appropriate augmented Lyapunov-Krasovskii functional (LKF) formulated, the convex combination method is utilised to estimate the derivative of the LKF. Some new delay-dependent exponential stability criteria for such systems are obtained in terms of linear matrix inequalities, which involve fewer matrix variables and have less conservatism. Finally, two illustrative numerical examples are given to show the effectiveness of our obtained results.

  18. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  19. Time delay estimation in the ultrasonic flowmeter in the oil well

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Lin, Weijun; Zhang, Chengyu; Shen, Zhihui; Zhang, Hailan

    2010-01-01

    A new prototype of ultrasonic flowmeter used in the oil well is presented. The flowmeter depends on the time delay between the propagating times of the downstream and upstream ultrasonic pulses. The ultrasonic passageway is slanted to prevent the disadvantage introduced by the high viscosity of the oil. Two method of time delay estimation: threshold and cross-correlation are both studied and realized.

  20. Delay-dependent stability and stabilization criteria for T-S fuzzy singular systems with interval time-varying delay by improved delay partitioning approach.

    PubMed

    Sun, Chao; Wang, Fuli; He, Xiqin

    2016-01-01

    This paper deals with the stability analysis and fuzzy stabilizing controller design for a class of Takagi-Sugeno fuzzy singular systems with interval time-varying delay and linear fractional uncertainties. By decomposing the delay interval into two unequal subintervals and seeking a appropriate ρ, a new Lyapunov-Krasovskii functional is constructed to develop the improved delay-dependent stability criteria, which ensures the considered system to be regular, impulse-free and stable. Furthermore, the desired fuzzy controller gains are also presented by solving a set of strict linear matrix inequalities. Compared with some existing results, the obtained ones give the result with less conservatism. Finally, some examples are given to show the improvement and the effectiveness of the proposed method. PMID:27066363

  1. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    SciTech Connect

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  2. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    NASA Astrophysics Data System (ADS)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  3. Delay decomposition at a single server queue with constant service time and multiple inputs. [Waiting time on computer network

    NASA Technical Reports Server (NTRS)

    Ziegler, C.; Schilling, D. L.

    1977-01-01

    Two networks consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self delay and interference delay.

  4. Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Liang; Zhu, Jie; Luo, Xiao-Shu

    2009-09-01

    Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, the effectiveness and feasibility of the novel model in internet congestion control are verified.

  5. Delay decomposition at a single server queue with constant service time and multiple inputs

    NASA Technical Reports Server (NTRS)

    Ziegler, C.; Schilling, D. L.

    1978-01-01

    Two network consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self-delay and interference delay.

  6. Reducing transport delay through improvements in real-time program flow

    NASA Technical Reports Server (NTRS)

    Smith, R. M.

    1992-01-01

    This paper describes the process of measuring and reducing software-transport delays through careful analysis, and modifications of real-time programs. A 737 program is analyzed and modified to improve the simulation overall transport delay by approximately 30 percent. The transport delay was improved through modification to the real-time program flow and the implementation of quaternions in the calculation of the math model.

  7. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  8. Finite-time stabilization control for discontinuous time-delayed networks: New switching design.

    PubMed

    Zhang, Ling-Ling; Huang, Li-Hong; Cai, Zuo-Wei

    2016-03-01

    This paper discusses the finite-time stabilization problem for time-varying delayed neural networks (DNNs) with discontinuous activation functions. By using fixed point theory and set-valued analysis, we establish the existence theorem of equilibrium point. In order to stabilize the states of this class of discontinuous DNNs in finite time, we design two different kinds of switching controllers which are described by discontinuous functions. Under the framework of Filippov solutions, several new and effective criteria are derived to realize finite-time stabilization of discontinuous DNNs based on the famous finite-time stability theory. Besides, the upper bounds of the settling time of stabilization are estimated. Numerical examples are finally provided to illustrate the correctness of the proposed design method and theoretical results. PMID:26752437

  9. Finite-time stability for discrete-time system with time-varying delay and nonlinear perturbations.

    PubMed

    Kang, Wei; Zhong, Shouming; Shi, Kaibo; Cheng, Jun

    2016-01-01

    In this paper, the problem of finite-time stability for discrete-time system with time-varying delay and nonlinear perturbations is investigated. By constructing a novel Lyapunov-Krasovskii functional and employing a new summation inequality named discrete Wirtinger-based inequality, reciprocally convex approach and zero equality, the improved finite-time stability criteria are derived to guarantee that the state of the system with time-varying delay does not exceed a given threshold when fixed time interval. Furthermore, the obtained conditions are formulated in forms of linear matrix inequalities which can be solved by using some standard numerical packages. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed method. PMID:26619938

  10. Regenerative memory in time-delayed neuromorphic photonic resonators.

    PubMed

    Romeira, B; Avó, R; Figueiredo, José M L; Barland, S; Javaloyes, J

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals. PMID:26781583

  11. Regenerative memory in time-delayed neuromorphic photonic resonators

    PubMed Central

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals. PMID:26781583

  12. How Can The SN-GRB Time Delay Be Measured?

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2003-01-01

    The connection between SNe and GRBs, launched by SN 1998bw / GRB 980425 and clinched by SN 2003dh / GRB 030329-with the two GRBs differing by a factor of approximately 50000 in luminosity-so far suggests a rough upper limit of approximately 1-2 days for the delay between SN and GRB. Only four SNe have had nonnegligible coverage in close coincidence with the initial explosion, near the W shock breakout: two Qpe II, and two Type IC, SN 1999ex and SN 1998bw. For the latter, only a hint of the minimum between the UV maximum and the radioactivity bump served to help constrain the interval between SN and GRB. Swift GRB alerts may provide the opportunity to study many SNe through the UV breakout phase: GRB 980425 look dikes -apparently nearby, low- luminosity, soft-spectrum, long-lag GRBs-accounted for half of BATSE bursts near threshold, and may dominate the Swift yield near threshold, since it has sensitivity to lower energies than did BATSE. The SN to GRB delay timescale should be better constrained by prompt UV/optical observations alerted by these bursts. Definitive delay measurements may be obtained if long-lag bursters are truly nearby: The SNe/GRBs could emit gravitational radiation detectable by LIGO-II if robust non-axisymmetric bar instabilities develop during core collapse, and/or neutrino emission may be detectable as suggested by Meszaros et al.

  13. Autaptic self-feedback-induced synchronization transitions in Newman-Watts neuronal network with time delays

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Gong, Yubing; Wu, Yanan

    2015-04-01

    Autapse is a special synapse that connects a neuron to itself. In this work, we numerically study the effect of chemical autapse on the synchronization of Newman-Watts Hodgkin-Huxley neuron network with time delays. It is found that the neurons exhibit synchronization transitions as autaptic self-feedback delay is varied, and the phenomenon enhances when autaptic self-feedback strength increases. Moreover, this phenomenon becomes strongest when network time delay or coupling strength is optimal. It is also found that the synchronization transitions by network time delay can be enhanced by autaptic activity and become strongest when autaptic delay is optimal. These results show that autaptic delayed self-feedback activity can intermittently enhance and reduce the synchronization of the neuronal network and hence plays an important role in regulating the synchronization of the neurons. These findings could find potential implications for the information processing and transmission in neural systems.

  14. An observer for a velocity-sensorless VTOL aircraft with time-varying measurement delay

    NASA Astrophysics Data System (ADS)

    He, Qing; Liu, Jinkun

    2016-02-01

    This paper presents a kind of state observer for a velocity-sensorless vertical take-off and landing (VTOL) aircraft with bounded time-varying delay in its measurement outputs. The proposed observer predicts current state variables based on the delayed outputs, and the estimated state variables can be considered as the actual state variables for feedback control scheme design. Since the delay is time-varying, compared to the constant delay case, different analysis theory must be employed. Under the assumption that the delays are identical for different outputs and bounded input, the asymptotic convergence property of the estimation error based on Lyapunov-Razumikhin theorem is proved. A relative large time delay for the VTOL aircraft in the outputs has been tested in the numerical simulation, and the simulation results show the effectiveness of the proposed observer.

  15. Binary Optical True-Time Delay Based on the White Cell: Design and Demonstration

    NASA Astrophysics Data System (ADS)

    Anderson, Betty Lise; Rabb, David J.; Warnky, Carolyn M.; Abou-Galala, Feras

    2006-04-01

    An optical true-time delay device that uses a binary counting system in a modified White cell is demonstrated. The switching engine uses four spherical mirrors and a three-state digital micromirror array. The delay part, as designed, provides 6 bits of delay ranging from 78 ps to 5 ns, using a combination of dielectric blocks for short delays and lens trains for longer ones. Long lens trains are folded for compactness. The authors describe the design and demonstrate two of the 6 bits of delays experimentally. Delays were accurate to within the measurement resolution of 1.25 ps. The insertion loss varied from 3.1-5.2 dB, depending on delay. It was found that the micromirrors do not contribute significantly to the loss.

  16. Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks

    NASA Astrophysics Data System (ADS)

    Xie, Huijuan; Gong, Yubing; Wang, Qi

    2016-06-01

    In this paper, we numerically study how time delay induces multiple coherence resonance (MCR) and synchronization transitions (ST) in adaptive Hodgkin-Huxley neuronal networks with spike-timing dependent plasticity (STDP). It is found that MCR induced by time delay STDP can be either enhanced or suppressed as the adjusting rate Ap of STDP changes, and ST by time delay varies with the increase of Ap, and there is optimal Ap by which the ST becomes strongest. It is also found that there are optimal network randomness and network size by which ST by time delay becomes strongest, and when Ap increases, the optimal network randomness and optimal network size increase and related ST is enhanced. These results show that STDP can either enhance or suppress MCR and optimal STDP can enhance ST induced by time delay in the adaptive neuronal networks. These findings provide a new insight into STDP's role for the information processing and transmission in neural systems.

  17. The influences of delay time on the stability of a market model with stochastic volatility

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time <τo and the same role for the case of the delay time >τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  18. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  19. Finite-time synchronization for memristor-based neural networks with time-varying delays.

    PubMed

    Abdurahman, Abdujelil; Jiang, Haijun; Teng, Zhidong

    2015-09-01

    Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results. PMID:26024807

  20. Quantum shutter transient solutions and the delay time for the {delta} potential

    SciTech Connect

    Hernandez, Alberto; Garcia-Calderon, Gaston

    2003-07-01

    The analytical solution to the time-dependent Schroedinger equation for tunneling using cutoff plane-wave initial conditions is in general given by the sum of two types of terms that exhibit a transient behavior. The time evolution of the probability density for the {delta} potential is compared with the free case to investigate in this case the role of these transient terms for the delay time. We find, by a dynamical calculation, that the delay time arises from the interference between these transient terms and we show that at very long times it goes into the phase delay time, given by the energy derivative of the phase of the transmission amplitude.

  1. Face to phase: pitfalls in time delay estimation from coherency phase.

    PubMed

    Campfens, S Floor; van der Kooij, Herman; Schouten, Alfred C

    2014-08-01

    Coherency phase is often interpreted as a time delay reflecting a transmission delay between spatially separated neural populations. However, time delays estimated from corticomuscular coherency are conflicting and often shorter than expected physiologically. Recent work suggests that corticomuscular coherence is influenced by afferent sensory feedback and bidirectional interactions. We investigated how bidirectional interaction affects time delay estimated from coherency, using a feedback model of the corticomuscular system. We also evaluated the effect of bidirectional interaction on two popular directed connectivity measures: directed transfer function (DTF) and partial directed coherence (PDC). The model is able to reproduce the range of time delays found experimentally from coherency phase by varying the strengths of the efferent and afferent pathways and the recording of sensory feedback in the cortical signal. Both coherency phase and DTF phase were affected by sensory feedback, resulting in an underestimation of the transmission delay. Coherency phase was altered by the recording of sensory feedback in the cortical signals and both measures were affected by the presence of a closed loop feedback system. Only PDC phase led to the correct estimation of efferent transmission delay in all simulated model configurations. Coherency and DTF phase should not be used to estimate transmission delays in neural networks as the estimated time delays are meaningless in the presence of sensory feedback and closed feedback loops. PMID:24243139

  2. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: theory versus experiment.

    PubMed

    Semenov, Vladimir; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard; Zakharova, Anna

    2015-03-01

    Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit. PMID:25833433

  3. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Semenov, Vladimir; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard; Zakharova, Anna

    2015-03-01

    Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit.

  4. Time-delayed feedback control of coherence resonance near subcritical Hopf bifurcation: Theory versus experiment

    SciTech Connect

    Semenov, Vladimir; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard Zakharova, Anna

    2015-03-15

    Using the model of a generalized Van der Pol oscillator in the regime of subcritical Hopf bifurcation, we investigate the influence of time delay on noise-induced oscillations. It is shown that for appropriate choices of time delay, either suppression or enhancement of coherence resonance can be achieved. Analytical calculations are combined with numerical simulations and experiments on an electronic circuit.

  5. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  6. Relations between Self Regulation, Future Time Perspective and the Delay of Gratification in University Students

    ERIC Educational Resources Information Center

    Avci, Suleyman

    2013-01-01

    The present study was conducted on 508 (331 female, 144 male) first grade university students in order to investigate the relations between self regulation, the future time perspectives, and the delay of gratification in the academic field. A future time perspective scale, an academic delay of gratification scale and a motivational strategies for…

  7. The Effects of Aging on Time Reproduction in Delayed Free-Recall

    ERIC Educational Resources Information Center

    Rakitin, B.C.; Stern, Y.; Malapani, C.

    2005-01-01

    The experiments presented here demonstrate that normal aging amplifies differences in time production occurring in delayed free-recall testing. Experiment 1 compared the time production ability of two healthy aged groups as well as college-aged participants. During the test session, which followed a 24-h delay and omitted all feedback and examples…

  8. Control strategy for a myoelectric hand: measuring acceptable time delay in human intention discrimination.

    PubMed

    Nakamura, Tatsuhiro; Kita, Kahori; Kato, Ryu; Matsushita, Kojiro; Hiroshi, Yokoi

    2009-01-01

    In order to enhance controllability of a myoelectric hand, we focus on a gap between the time when a human intends to move a myoelectric hand and the time when the hand actually moves (i.e., time delay). Normally, the myoelectric hand users dislike the time delay because it makes them feel uncomfortable. However, the users learn the time delay within some time ranges and, eventually, get feel comfortable to operate the hand. Thus, we assume, if we reveal the acceptable delay time (i.e., the time the users accept the gap with their learning ability), we can provide more time in a human intention discrimination process, and enhance its success rate. Therefore, we developed a mobile myoelectric hand system with an embedded linux computer, and conducted a ball catch experiment: we investigate the acceptable delay time by adding the delay time (i.e., 120[ms], 170[ms], 220[ms], 270[ms], 320[ms]) into the human intention discrimination process. As a result, we confirmed that the max accept delay time was approximately 170 [ms] that achieves 61% success rate. PMID:19964377

  9. Stability Switches in a Host-Pathogen Model as the Length of a Time Delay Increases

    NASA Astrophysics Data System (ADS)

    Reynolds, Jennifer J. H.; Sherratt, Jonathan A.; White, Andrew

    2013-12-01

    The destabilising effects of a time delay in mathematical models are well known. However, delays are not necessarily destabilising. In this paper, we explore an example of a biological system where a time delay can be both stabilising and destabilising. This example is a host-pathogen model, incorporating density-dependent prophylaxis (DDP). DDP describes when individual hosts invest more in immunity when population densities are high, due to the increased risk of infection in crowded conditions. In this system, as the delay length increases, there are a finite number of switches between stable and unstable behaviour. These stability switches are demonstrated and characterised using a combination of numerical methods and analysis.

  10. Stochastic stability of switched genetic regulatory networks with time-varying delays.

    PubMed

    Zhang, Wenbing; Tang, Yang; Wu, Xiaotai; Fang, Jian-An

    2014-09-01

    This paper investigates the exponential stability problem of switched stochastic genetic regulatory networks (GRNs) with time-varying delays. Two types of switched systems are studied respectively: one is the stochastic switched delayed GRNs with only stable subsystems and the other is the stochastic switched delayed GRNs with both stable and unstable subsystems. By using switching analysis techniques and the modified Halanay differential inequality, new criteria are developed for the exponential stability of switched stochastic GRNs with time-varying delays. Finally, an example is given to illustrate the main results. PMID:25265564

  11. Stability analysis of switched stochastic neural networks with time-varying delays.

    PubMed

    Wu, Xiaotai; Tang, Yang; Zhang, Wenbing

    2014-03-01

    This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples. PMID:24365535

  12. Critical evaluation of attosecond time delays retrieved from photoelectron streaking measurements

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Morishita, Toru; Lin, C. D.

    2016-05-01

    A photoelectron streaking experiment which was conceived as a means to extract the electron wave packet of single-photon ionization has also been employed to retrieve time delays in the fundamental photoemission processes. The discrepancies between the time delays thus measured and those from many sophisticated theoretical calculations have generated a great deal of controversy in recent years. Here we present a careful examination of the methods that were used to retrieve the time delays and demonstrate the difficulty of achieving an accuracy of the retrieved time delays of a few to tens of attoseconds in typical streaking measurements. The difficulty owes more to the lower sensitivity of the streaking spectra to the phase of the photoionization transition dipole than to the spectral phase of the attosecond light pulse in the experiment. The retrieved time delay contains extra errors when the attochirp of the attosecond pulse is large so that the dipole phase becomes negligible compared to it.

  13. Super-transient scaling in time-delay autonomous Boolean network motifs

    NASA Astrophysics Data System (ADS)

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D.; Gauthier, Daniel J.

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  14. Time-delay effects on dynamics of a two-actor conflict model

    NASA Astrophysics Data System (ADS)

    Rojas-Pacheco, A.; Obregón-Quintana, B.; Liebovitch, L. S.; Guzmán-Vargas, L.

    2013-02-01

    We present a study of time-delay effects on a two-actor conflict model based on nonlinear differential equations. The state of each actor depends on its own state in isolation, its previous state, its inertia to change, the positive or negative feedback and a time delay in the state of the other actor. We use both theoretical and numerical approaches to characterize the evolution of the system for several values of time delays. We find that, under particular conditions, a time delay leads to the appearance of oscillations in the states of the actors. Besides, phase portraits for the trajectories are presented to illustrate the evolution of the system for different time delays. Finally, we discuss our results in the context of social conflict models.

  15. Information-transmission rates in manual control of unstable systems with time delays.

    PubMed

    Lupu, Mircea F; Sun, Mingui; Wang, Fei-Yue; Mao, Zhi-Hong

    2015-01-01

    In analyzing the human-machine interaction (HMI), a human-centered approach is needed to address the potential and limitation of human control, especially in the control of high-order or unstable systems. However, there is no quantitative measure of the human performance or cognitive workload in these difficult HMI tasks. We propose to characterize the HMI as information flows quantified by the information-transmission rate in bits per second (b/s). Using information- and control-theoretic approaches, we derive the minimum rates of information transmission in manual control required by any deterministic controller to stabilize the feedback system. Furthermore, we suggest a method adopted from time-series analysis to estimate the information-transmission rate from human experiments. We show that the relationship between the empirically estimated information rates and the minimum bounds allows for the quantitative indication of the potential and limitation of human manual control. We illustrate our method in the control of an inverted pendulum with time delays. PMID:25167543

  16. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    PubMed Central

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  17. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays.

    PubMed

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  18. Adaptive control for a class of MIMO nonlinear time delay systems against time varying actuator failures.

    PubMed

    Hashemi, Mahnaz; Ghaisari, Jafar; Askari, Javad

    2015-07-01

    This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method. PMID:25792517

  19. Exponential Stability for Neutral Stochastic Markov Systems With Time-Varying Delay and Its Applications.

    PubMed

    Chen, Huabin; Shi, Peng; Lim, Cheng-Chew; Hu, Peng

    2016-06-01

    In this paper, the exponential stability in p th( p > 1 )-moment for neutral stochastic Markov systems with time-varying delay is studied. The derived stability conditions comprise two forms: 1) the delay-independent stability criteria which are obtained by establishing an integral inequality and 2) the delay-dependent stability criteria which are captured by using the theory of the functional differential equations. As its applications, the obtained stability results are used to investigate the exponential stability in p th( p > 1 )-moment for the neutral stochastic neural networks with time-varying delay and Markov switching, and the globally exponential adaptive synchronization for the neutral stochastic complex dynamical systems with time-varying delay and Markov switching, respectively. On the delay-independent criteria, sufficient conditions are given in terms of M -matrix and thus are easy to check. The delay-dependent criteria are presented in the forms of the algebraic inequalities, and the least upper bound of the time-varying delay is also provided. The primary advantages of these obtained results over some recent and similar works are that the differentiability or continuity of the delay function is not required, and that the difficulty stemming from the presence of the neutral item and the Markov switching is overcome. Three numerical examples are provided to examine the effectiveness and potential of the theoretic results obtained. PMID:27187938

  20. Network coordination and synchronization in a noisy environment with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Szymanski, B. K.; Korniss, G.

    2012-11-01

    We study the effects of nonzero time delays in stochastic synchronization problems with linear couplings in complex networks. We consider two types of time delays: transmission delays between interacting nodes and local delays at each node (due to processing, cognitive, or execution delays). By investigating the underlying fluctuations for several delay schemes, we obtain the synchronizability threshold (phase boundary) and the scaling behavior of the width of the synchronization landscape, in some cases for arbitrary networks and in others for specific weighted networks. Numerical computations allow the behavior of these networks to be explored when direct analytical results are not available. We comment on the implications of these findings for simple locally or globally weighted network couplings and possible trade-offs present in such systems.

  1. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1988-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  2. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  3. Delay-dependent passivity criteria for uncertain switched neural networks of neutral type with interval time-varying delay

    NASA Astrophysics Data System (ADS)

    Nagamani, G.; Balasubramaniam, P.

    2012-04-01

    This paper is concerned with the robust passivity analysis of uncertain switched neural networks of neutral type with interval time-varying delay. We first discuss the passivity conditions for the addressed model with norm bounded uncertainties and then extend this result to the case of interval uncertainties. For the neural networks under study, a generalized activation function is considered, where the traditional assumptions on the boundedness, monotonicity and differentiability of the activation functions are removed. Constructing a new Lyapunov-Krasovskii functional with triple integral terms and using a minimal number of free-weighting matrices, some passivity criteria are proposed in terms of linear matrix inequalities, which are dependent on the size of the time delay. Finally, some numerical examples are given to illustrate the effectiveness and merits of the developed techniques.

  4. Thermodynamic second law in a feedback process with time delay

    NASA Astrophysics Data System (ADS)

    Um, Jaegon; Kwon, Chulan; Park, Hyunggyu

    We investigate a realistic feedback process repeated in multiple steps where a feedback protocol from measurement is applied with delay and maintains for a finite duration until next step. Unlike a feedback without delay, a composite system consists of the system and two memories where previous and present measurement outcomes are stored, leading to the 3-state Shannon entropy for the composite system. Then according to the thermodynamic second law, the change of the 3-state Shannon entropy provides the upper bound for heat flow from reservoir to system during the feedback and relaxation process. However, if the feedback protocol is depending on memory states sequentially, it turns out that the tighter bound for heat production can be obtained by integrating out the irrelevant memory state. We exemplify a cold damping case where a velocity of a particle is measured and a dissipative protocol is applied by feedback, and it is confirmed that the Shannon-entropy change of the reduced composite system gives the tighter bound for heat production.

  5. New Stabilization for Dynamical System with Two Additive Time-Varying Delays

    PubMed Central

    Yang, Fan; Chen, Xiaozhou

    2014-01-01

    This paper provides a new delay-dependent stabilization criterion for systems with two additive time-varying delays. The novel functional is constructed, a tighter upper bound of the derivative of the Lyapunov functional is obtained. These results have advantages over some existing ones because the combination of the delay decomposition technique and the reciprocally convex approach. Two examples are provided to demonstrate the less conservatism and effectiveness of the results in this paper. PMID:24701159

  6. Calibration System of Internal Delay Difference for Two-way Satellite Time Transfer

    NASA Astrophysics Data System (ADS)

    Fujieda, Miho; Imae, Michito; Suzuyama, Tomonari; Aida, Masanori; Maeno, Hideo; Tung, Lam Quoc

    Two Way Satellite Time and Frequency Transfer (TWSTFT) enables us to perform time transfer precisely, for atmospheric and geometric delays between the earth station and the satellite are almost canceled because of the path reciprocity. However, the delays in the uplink path and the downlink path of the earth station cannot cancel due to the different signal paths. The delay difference makes the absolute value of the time difference unknown, while the fluctuation in the delay difference degrades the stability of the time transfer. We have developed a delay-difference calibration system using a multi-channel TWSTFT modem. Because the signals for the calibration are processed with the received time-transfer signals from other stations, not only a short-term variation but also a secular change in the delay difference can be measured. It is found that the diurnal variation of the delay difference becomes a few hundred pico-second even if the low noise amplifier works in the temperature-controlled box. As for the time transfer result between two hydrogen masers, its stability was improved by the correction of the delay difference. We confirmed the calibration system was important to improve the precision of TWSTFT.

  7. Stochastic modeling of biochemical systems with multistep reactions using state-dependent time delay.

    PubMed

    Wu, Qianqian; Tian, Tianhai

    2016-01-01

    To deal with the growing scale of molecular systems, sophisticated modelling techniques have been designed in recent years to reduce the complexity of mathematical models. Among them, a widely used approach is delayed reaction for simplifying multistep reactions. However, recent research results suggest that a delayed reaction with constant time delay is unable to describe multistep reactions accurately. To address this issue, we propose a novel approach using state-dependent time delay to approximate multistep reactions. We first use stochastic simulations to calculate time delay arising from multistep reactions exactly. Then we design algorithms to calculate time delay based on system dynamics precisely. To demonstrate the power of proposed method, two processes of mRNA degradation are used to investigate the function of time delay in determining system dynamics. In addition, a multistep pathway of metabolic synthesis is used to explore the potential of the proposed method to simplify multistep reactions with nonlinear reaction rates. Simulation results suggest that the state-dependent time delay is a promising and accurate approach to reduce model complexity and decrease the number of unknown parameters in the models. PMID:27553753

  8. Stochastic modeling of biochemical systems with multistep reactions using state-dependent time delay

    PubMed Central

    Wu, Qianqian; Tian, Tianhai

    2016-01-01

    To deal with the growing scale of molecular systems, sophisticated modelling techniques have been designed in recent years to reduce the complexity of mathematical models. Among them, a widely used approach is delayed reaction for simplifying multistep reactions. However, recent research results suggest that a delayed reaction with constant time delay is unable to describe multistep reactions accurately. To address this issue, we propose a novel approach using state-dependent time delay to approximate multistep reactions. We first use stochastic simulations to calculate time delay arising from multistep reactions exactly. Then we design algorithms to calculate time delay based on system dynamics precisely. To demonstrate the power of proposed method, two processes of mRNA degradation are used to investigate the function of time delay in determining system dynamics. In addition, a multistep pathway of metabolic synthesis is used to explore the potential of the proposed method to simplify multistep reactions with nonlinear reaction rates. Simulation results suggest that the state-dependent time delay is a promising and accurate approach to reduce model complexity and decrease the number of unknown parameters in the models. PMID:27553753

  9. Finite-time synchronization of fractional-order memristor-based neural networks with time delays.

    PubMed

    Velmurugan, G; Rakkiyappan, R; Cao, Jinde

    2016-01-01

    In this paper, we consider the problem of finite-time synchronization of a class of fractional-order memristor-based neural networks (FMNNs) with time delays and investigated it potentially. By using Laplace transform, the generalized Gronwall's inequality, Mittag-Leffler functions and linear feedback control technique, some new sufficient conditions are derived to ensure the finite-time synchronization of addressing FMNNs with fractional order α:1<α<2 and 0<α<1. The results from the theory of fractional-order differential equations with discontinuous right-hand sides are used to investigate the problem under consideration. The derived results are extended to some previous related works on memristor-based neural networks. Finally, three numerical examples are presented to show the effectiveness of our proposed theoretical results. PMID:26547242

  10. Describing-function analysis of a ripple regulator with slew-rate limits and time delays

    NASA Technical Reports Server (NTRS)

    Wester, Gene W.

    1990-01-01

    The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.

  11. Improved outcomes for emergency department patients whose ambulance off-stretcher time is not delayed

    PubMed Central

    Crilly, Julia; Keijzers, Gerben; Tippett, Vivienne; O’Dwyer, John; Lind, James; Bost, Nerolie; O’Dwyer, Marilla; Shiels, Sue; Wallis, Marianne

    2015-01-01

    Objective To describe and compare characteristics and outcomes of patients who arrive by ambulance to the ED. We aimed to (i) compare patients with a delayed ambulance offload time (AOT) >30 min with those who were not delayed; and (ii) identify predictors of an ED length of stay (LOS) of >4 h for ambulance-arriving patients. Methods A retrospective, multi-site cohort study was undertaken in Australia using 12 months of linked health data (September 2007–2008). Outcomes of AOT delayed and non-delayed presentations were compared. Logistic regression analysis was undertaken to identify predictors of an ED LOS of >4 h. Results Of the 40 783 linked, analysable ambulance presentations, AOT delay of >30 min was experienced by 15%, and 63% had an ED LOS of >4 h. Patients with an AOT <30 min had better outcomes for: time to triage; ambulance time at hospital; time to see healthcare professional; proportion seen within recommended triage time frame; and ED LOS for both admitted and non-admitted patients. In-hospital mortality did not differ. Strong predictors of an ED LOS >4 h included: hospital admission, older age, triage category, and offload delay >30 min. Conclusion Patients arriving to the ED via ambulance and offloaded within 30 min experience better outcomes than those delayed. Given that offload delay is a modifiable predictor of an ED LOS of >4 h, targeted improvements in the ED arrival process for ambulance patients might be useful. PMID:25940975

  12. The role of time delay in adaptive cellular negative feedback systems.

    PubMed

    Lapytsko, Anastasiya; Schaber, Jörg

    2016-06-01

    Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour. PMID:26995333

  13. Cross-correlation analysis and time delay estimation of a homologous micro-seismic signal based on the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Mei; Jia, Rui-Sheng; Du, Qian-Qian; Fu, You

    2016-06-01

    A micro-seismic signal's transient features are non-stationary. The traditional weighted generalized cross-correlation (GCC) algorithm is based on the cross-power spectrum density. This algorithm diminishes the performance of the time delay estimation for homologous micro-seismic signals. This paper analyzed the influence of calculation error on the cross-power spectrum density of a non-stationary signal and proposed a new cross-correlation analysis and time delay estimation method for homologous micro-seismic signals based on the Hilbert-Huang transform (HHT). First, the original signals are decomposed into intrinsic mode function (IMF) components using empirical mode decomposition (EMD) for de-noising. Subsequently, the IMF components and the original signals are analyzed using a cross-correlation analysis. The IMF components are subsequently remodeled at different scales using the Hilbert transform. The marginal spectrum density is obtained via a time integration of the remodeled components. The cross-marginal spectrum density of the two signals can also be obtained. Finally, the cross-marginal spectrum density is used in the weighted GCC algorithm for time delay estimation instead of the cross-power spectrum density. The time delay estimation is determined by searching for the weighted GCC function peak. The experiments demonstrated the superior time delay estimation performance of the new method for non-stationary transient signals. Therefore, a new time delay estimation method for non-stationary random signals is presented in this paper.

  14. Ignition delay times of cyclopentene oxygen argon mixtures

    NASA Technical Reports Server (NTRS)

    Burcat, A.; Snyder, C.; Brabbs, T.

    1986-01-01

    The oxidation of cyclopentene was studied experimentally to expand the database on pyrolysis and the reaction products of five carbon unsaturated ring compounds. Pyrolysis was carried out in a single-pulse shock tube. Data were gathered on the shock speed, wall pressure, and reflected shock temperatures. Four different mixtures of C5H8, O2 and Ar, ranging from 0.25-1 percent cyclopentene and 1.75-7 percent O2, were examined in 76 different trials. The data showed a shock temperature range of 1323-1816 K and a pressure range of 1.67-7.36 atmospheres. A student-t test analysis of the results led to definition of an ignition delay equation accurate to the 2-sigma level.

  15. Surface-acoustic-wave filter with a short delay time

    NASA Astrophysics Data System (ADS)

    Guliaev, Iu. V.; Fedorets, V. N.

    1983-11-01

    A SAW filter centered at 50 MHz and comprising three identical 350-nm-thick Al transducers with surface resistivity 0.13 ohms fabricated on 0.5-mm or 1-mm thick 7 x 7-mm Y + 127 deg, X LiNbO3 substrates by photolithography is characterized experimentally. The electrodes are suspended capacitatively, and the transducers are separated by about 100 microns, corresponding to a delay of 30 nsec. The filter structure and response are presented graphically; characteristics include passband 10 percent, rejection of the forward-passage signal 55-60 dB, bandwidth ratio at 40 and 3 dB no worse than 2.6, active-pulse height -12 dB below the main signal, and triple-transit signal level -26 dB. Applications in radio and TV are discussed.

  16. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    PubMed Central

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  17. Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay

    PubMed Central

    Yoon, Sangwoon; McCamant, David W.; Kukura, Philipp; Mathies, Richard A.; Zhang, Donghui; Lee, Soo-Y.

    2005-01-01

    The effect of the time delay between the picosecond Raman pump and the femtosecond Stokes probe pulse on the Raman gain line shape in femtosecond broadband stimulated Raman spectroscopy (FSRS) is presented. Experimental data are obtained for cyclohexane to investigate the dependence of the FSRS line shape on this time delay. Theoretical simulations of the line shapes as a function of the time delay using the coupled wave theory agree well with experimental data, recovering broad line shapes at positive time delays and narrower bands with small Raman loss side wings at negative time delays. The analysis yields the lower bounds of the vibrational dephasing times of 2.0 ps and 0.65 ps for the 802 and 1027 cm−1 modes for cyclohexane, respectively. The theoretical description and simulation using the coupled wave theory are also consistent with the observed Raman gain intensity profile over time delay, reaching the maximum at a slightly negative time delay (∼−21 ps), and show that the coupled wave theory is a good model for describing FSRS. PMID:15638596

  18. The time-delay spectrum of GX 5-1 in its horizontal branch

    NASA Astrophysics Data System (ADS)

    Vaughan, B.; van der Klis, M.; Lewin, W. H. G.; Wijers, R. A. M. J.; van Paradijs, J.; Dotani, T.; Mitsuda, K.

    1994-02-01

    Using a cross-spectral technique we investigate time delays between intensity variations of GX 5-1 in 10 X-ray spectral channels. The data were taken during a 1989 Ginga observation during which the source was in its horizontal-branch spectral state. We develope a new method to measure 'time-delay spectra' in fixed Fourier frequency ranges and use it to determine the energy and intensity dependence of time delays in the low-frequency noise (nu less than 2 Hz), the horizontal branch quasi-periodic oscillations (QPO), and the QPO second harmonic. These are the first time-delay spectra of a Z-source in its horizontal branch, and the first detection of time delays in the second harmonic. We consider two mechanisms for the production of the time lags: Comptonization and evolving shots. We perform Monte Carlo simulations of Compton scattering in a homogeneous, isotropic, central corona and show that it qualitatively explain the observed energy and time-delay spectra, but that it cannot explain the differences in the QPO first and second harmonic time-delay spectra, nor the observed dependence of the QPO fractional rms variability upon energy. We consider implications of our results for millisecond pulsar searches in low-mass X-ray binaries.

  19. The time-delay spectrum of GX 5-1 in its horizontal branch

    NASA Technical Reports Server (NTRS)

    Vaughan, B.; Van Der Klis, M.; Lewin, W. H. G.; Wijers, R. A. M. J.; Van Paradijs, J.; Dotani, T.; Mitsuda, K.

    1994-01-01

    Using a cross-spectral technique we investigate time delays between intensity variations of GX 5-1 in 10 X-ray spectral channels. The data were taken during a 1989 Ginga observation during which the source was in its horizontal-branch spectral state. We develope a new method to measure 'time-delay spectra' in fixed Fourier frequency ranges and use it to determine the energy and intensity dependence of time delays in the low-frequency noise (nu less than 2 Hz), the horizontal branch quasi-periodic oscillations (QPO), and the QPO second harmonic. These are the first time-delay spectra of a Z-source in its horizontal branch, and the first detection of time delays in the second harmonic. We consider two mechanisms for the production of the time lags: Comptonization and evolving shots. We perform Monte Carlo simulations of Compton scattering in a homogeneous, isotropic, central corona and show that it qualitatively explain the observed energy and time-delay spectra, but that it cannot explain the differences in the QPO first and second harmomnic time-delay spectra, nor the observed dependence of the QPO fractional rms variability upon energy. We consider implications of our results for millisecond pulsar searches in low-mass X-ray binaries.

  20. Apparatus and Method for Compensating for Process, Voltage, and Temperature Variation of the Time Delay of a Digital Delay Line

    NASA Technical Reports Server (NTRS)

    Seefeldt, James (Inventor); Feng, Xiaoxin (Inventor); Roper, Weston (Inventor)

    2013-01-01

    A process, voltage, and temperature (PVT) compensation circuit and a method of continuously generating a delay measure are provided. The compensation circuit includes two delay lines, each delay line providing a delay output. The two delay lines may each include a number of delay elements, which in turn may include one or more current-starved inverters. The number of delay lines may differ between the two delay lines. The delay outputs are provided to a combining circuit that determines an offset pulse based on the two delay outputs and then averages the voltage of the offset pulse to determine a delay measure. The delay measure may be one or more currents or voltages indicating an amount of PVT compensation to apply to input or output signals of an application circuit, such as a memory-bus driver, dynamic random access memory (DRAM), a synchronous DRAM, a processor or other clocked circuit.

  1. The Type Ia Supernova Rate and Delay-Time Distribution

    NASA Astrophysics Data System (ADS)

    Graur, Or

    2013-11-01

    The nature of the progenitor stellar systems of thermonuclear, or Type Ia, supernovae (SNe Ia) remains unknown. Unlike core-collapse (CC) SNe, which have been successfully linked, at least partially, to various types of massive stars, the progenitors of SNe Ia are to date undetected in pre-explosion images and the nature of these progenitors can only be probed using indirect methods. In this thesis, I present three SN surveys aimed at measuring the rates at which SNe Ia explode at different times throughout the Universe's history and in different types of galaxies. I use these rates to re-construct the SN Ia delay-time distribution (DTD), a function that connects between the star-formation history (SFH) of a specific stellar environment and its SN Ia rate, and I use it to constrain different progenitor models. In Chapter 1, I provide a brief introduction of the field. This is followed, in Chapter 2, by a description of the Subaru Deep Field (SDF) SN Survey. Over a period of three years between 2005-2008, the SDF was observed on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i', and z' bands. In this survey, I discover 150 SNe out to redshift z ~ 2, including 27 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. The SN Ia rate measurements from this sample are consistent with those derived from the Hubble Space Telescope (HST) GOODS sample, but the overall uncertainty of the 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50%. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD is a power law of the form Psi(t) ~ t^beta, with index beta = -1.1 ± 0.1 (statistical) ± 0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs

  2. Extension of the spectral element method for stability analysis of time-periodic delay-differential equations with multiple and distributed delays

    NASA Astrophysics Data System (ADS)

    Lehotzky, David; Insperger, Tamas; Stepan, Gabor

    2016-06-01

    The spectral element method was introduced by Khasawneh and Mann (2013) for the stability analysis of time-periodic delay-differential equations (DDEs) with multiple delays. In this paper, this method is generalized for time-periodic DDEs with multiple delays and distributed delay. For this general case, an explicit formula is given for the construction of the matrix approximation of the monodromy operator. The derived formula enables the algorithmic application of the method to DDEs with general combinations of delays for arbitrary point sets and test functions. Stability analysis is demonstrated for specific case studies, and the computation code is provided for a complex example.

  3. On physical interpretation of two dimensional time-correlations regarding time delay velocities and eddy shaping

    SciTech Connect

    Fedorczak, N.; Manz, P.; Thakur, S. C.; Xu, M.; Tynan, G. R.; Xu, G. S.; Liu, S. C.

    2012-12-15

    Time delay estimation (TDE) techniques are frequently used to estimate the flow velocity from fluctuating measurements. Tilted structures carried by the flow lead to misinterpretation of the time delays in terms of velocity direction and amplitude. It affects TDE measurements from probes, and is also intrinsically important for beam emission spectroscopy and gas puff imaging measurements. Local eddy shapes estimated from 2D fluctuating field are necessary to gain a more accurate flow estimate from TDE, as illustrated by Langmuir probe array measurements. A least square regression approach is proposed to estimate both flow field and shaping parameters. The technique is applied to a test case built from numerical simulation of interchange fluctuations. The local eddy shape does not only provide corrections for the velocity field but also quantitative information about the statistical interaction mechanisms between local eddies and E Multiplication-Sign B flow shear. The technique is then tested on gaz puff imaging data collected at the edge of EAST tokamak plasmas. It is shown that poloidal asymmetries of the fluctuation fields-velocity and eddy shape-are consistent at least qualitatively with a ballooning type of turbulence immersed in a radially sheared equilibrium flow.

  4. Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay

    NASA Astrophysics Data System (ADS)

    Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao

    2016-06-01

    This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.

  5. Does it pay to delay? Flesh flies show adaptive plasticity in reproductive timing.

    PubMed

    Wessels, Frank J; Kristal, Ross; Netter, Fleta; Hatle, John D; Hahn, Daniel A

    2011-02-01

    Life-history plasticity is widespread among organisms. However, an important question is whether it is adaptive. Most models for plasticity in life-history timing predict that animals, once they have reached the minimal nutritional threshold under poor conditions, will accelerate development or time to reproduction. Adaptive delays in reproduction are not common, especially in short-lived species. Examples of adaptive reproductive delays exist in mammalian populations experiencing strong interspecific (e.g., predation) and intraspecific (e.g., infanticide) competition. But are there other environmental factors that may trigger an adaptive delay in reproductive timing? We show that the short-lived flesh fly Sarcophaga crassipalpis will delay reproduction under nutrient-poor conditions, even though it has already met the minimal nutritional threshold for reproduction. We test whether this delay strategy is an adaptive response allowing the scavenger time to locate more resources by experimentally providing supplemental protein pulses (early, mid and late) throughout the reproductive delay period. Flies receiving additional protein produced more and larger eggs, demonstrating a benefit of the delay. In addition, by tracking the allocation of carbon from the pulses using stable isotopes, we show that flies receiving earlier pulses incorporated more carbon into eggs and somatic tissue than those given a later pulse. These results indicate that the reproductive delay in S. crassipalpis is consistent with adaptive post-threshold plasticity, a nutritionally linked reproductive strategy that has not been reported previously in an invertebrate species. PMID:20953961

  6. A note on stability of analog neural networks with time delays.

    PubMed

    Cao, Y J; Wu, Q H

    1996-01-01

    This note presents a generalized sufficient condition which guarantees stability of analog neural networks with time delays. The condition is derived using a Lyapunov functional and the stability criterion is stated as: the equilibrium of analog neural networks with delays is globally asymptotically stable if the product of the norm of connection matrix and the maximum neuronal gain is less than one. PMID:18263550

  7. Synchronization of fractional-order complex-valued neural networks with time delay.

    PubMed

    Bao, Haibo; Park, Ju H; Cao, Jinde

    2016-09-01

    This paper deals with the problem of synchronization of fractional-order complex-valued neural networks with time delays. By means of linear delay feedback control and a fractional-order inequality, sufficient conditions are obtained to guarantee the synchronization of the drive-response systems. Numerical simulations are provided to show the effectiveness of the obtained results. PMID:27268259

  8. On almost periodic solutions of logistic delay differential equations with almost periodic time dependence

    NASA Astrophysics Data System (ADS)

    Yuan, Rong

    2007-06-01

    In this paper, we study almost periodic logistic delay differential equations. The existence and module of almost periodic solutions are investigated. In particular, we extend some results of Seifert in [G. Seifert, Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence, J. Differential Equations 164 (2000) 451-458].

  9. Attosecond time delays in the nuclear dynamics of strong-field molecular dissociation

    NASA Astrophysics Data System (ADS)

    Armstrong, Greg; Ultrafast Molecular Physics Group Collaboration

    2016-05-01

    The relative time delay in the photoemission from neighboring atomic valence sub-shells has become an area of considerable recent interest, with delays of tens of attoseconds reported in pump-probe experiments for a number of atomic targets. Such delays may be extracted, for example, from phase differences in the photoelectron energy spectra for the different sub-shells as a function of delay between pump and probe pulses. The focus of such experiments has, to date, been atomic targets, on the assumption that only electronic motion can lead to delays on the attosecond scale.We investigate the molecular analogue of such studies by calculating the kinetic-energy release (KER) spectrum for neighboring vibrational states as a function of pump-probe delay time. In particular, we focus on molecular targets where electronic excitation is negligible, and show that attosecond time delays are also possible for purely nuclear motion. We will present evidence of these attosecond delays derived from both numerical solutions of the time-dependent Schrödinger equation and experiment. We analyze and understand the observed shifts using the photon-phase formalism. G.S.J. Armstrong, J. McKenna, B. Gaire, M. Zohrabi, B. Berry, B. Jochim, Kanaka Raju, P., P. Feizollah, K.D. Carnes, Ben-Itzhak, B.D. Esry.

  10. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    ERIC Educational Resources Information Center

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  11. A new method to calculate the time delay of the Pi2 pulsations

    NASA Astrophysics Data System (ADS)

    Ghamry, Essam; Fathy, Adel

    2016-01-01

    The time delay determination of the Pi2 pulsations could provide more understanding of the propagation characteristics of the Pi2. Few studies have concerned with the time delay of Pi2 pulsation. We present a new method to calculate the time delay of Pi2 pulsations using cross wavelet technique. We study 48 events occurred in March 2008 and February-May 2009 at Carson City (CCNV), McGrath (MCGR), The Pas (TPAS) and Kuujjuarapik (KUUJ) stations which belong to the ground magnetometer network of the Time History of Events and Macroscale Interactions during Substorms (THEMIS). The cross wavelet spectrum showed a comparable time with that obtained using cross correlation method. We suggest that the cross wavelet technique can be effectively used to calculate the time delay of Pi2 pulsation and further used as a substitute for cross correlation method.

  12. Synchronisation of fractional-order time delayed chaotic systems with ring connection

    NASA Astrophysics Data System (ADS)

    He, S.; Sun, K.; Wang, H.

    2016-02-01

    In this paper, synchronisation of fractional-order time delayed chaotic systems in ring networks is investigated. Based on Lyapunov stability theory, a new generic synchronisation criterion for N-coupled chaotic systems with time delay is proposed. The synchronisation scheme is applied to N-coupled fractional-order time delayed simplified Lorenz systems, and the Adomian decomposition method (ADM) is developed for solving these chaotic systems. Performance analysis of the synchronisation network is carried out. Numerical experiments demonstrate that synchronisation realises in both state variables and intermediate variables, which verifies the effectiveness of the proposed method.

  13. Strong gravitational field time delay for photons coupled to Weyl tensor in a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Lu, Xu; Yang, Feng-Wei; Xie, Yi

    2016-07-01

    We analyze strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the measurement of time delay can more effectively improve detectability of the polarization direction.

  14. Stability analysis of a general family of nonlinear positive discrete time-delay systems

    NASA Astrophysics Data System (ADS)

    Nam, P. T.; Phat, V. N.; Pathirana, P. N.; Trinh, H.

    2016-07-01

    In this paper, we propose a new approach to analyse the stability of a general family of nonlinear positive discrete time-delay systems. First, we introduce a new class of nonlinear positive discrete time-delay systems, which generalises some existing discrete time-delay systems. Second, through a new technique that relies on the comparison and mathematical induction method, we establish explicit criteria for stability and instability of the systems. Three numerical examples are given to illustrate the feasibility of the obtained results.

  15. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School

    PubMed Central

    Thacher, Pamela V.; Onyper, Serge V.

    2016-01-01

    Study Objectives: To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. Methods: We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011–2012 and 2012–2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the “Owl-Lark” Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010–2011 through 2013–2014. Results: Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Conclusions: Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. Commentary: A commentary on this article appears in this issue on page 267. Citation: Thacher PV, Onyper SV. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. SLEEP 2016;39(2):271–281. PMID

  16. The range of time delay and the global stability of the equilibrium for an IVGTT model☆

    PubMed Central

    Li, Jiaxu; Wang, Minghu; De Gaetano, Andrea; Palumbo, Pasquale; Panunzi, Simona

    2011-01-01

    Diabetes mellitus has become a prevalent disease in the world. Diagnostic protocol for the onset of diabetes mellitus is the initial step in the treatments. The intravenous glucose tolerance test (IVGTT) has been considered as the most accurate method to determine the insulin sensitivity and glucose effectiveness. It is well known that there exists a time delay in insulin secretion stimulated by the elevated glucose concentration level. However, the range of the length of the delay in the existing IVGTT models are not fully discussed and thus in many cases the time delay may be assigned to a value out of its reasonable range. In addition, several attempts had been made to determine when the unique equilibrium point is globally asymptotically stable. However, all these conditions are delay-independent. In this paper, we discuss the range of the time delay and provide easy-to-check delay-dependent conditions for the global asymptotic stability of the equilibrium point for a recent IVGTT model through Liapunov function approach. Estimates of the upper bound of the delay for global stability are given in corollaries. In addition, the numerical simulation in this paper is fully incorporated with functional initial conditions, which is natural and more appropriate in delay differential equation system. PMID:22123436

  17. Future Time Orientation and Student Expectations: An Empirical Investigation

    ERIC Educational Resources Information Center

    Amyx, Douglas; Bristow, Dennis

    2004-01-01

    Navajo and Anglo college students' time orientation scores from the Future Time Orientation (FTO) Scale (Bristol & Amyx, 1996) were analyzed and compared. Anglo students were found to be significantly more future time oriented in two of the three dimensions: temporal distance and involvement with time. Future time orientation was used to explain…

  18. Bifurcations Induced in a Bistable Oscillator via Joint Noises and Time Delay

    NASA Astrophysics Data System (ADS)

    Fu, Jin; Sun, Zhongkui; Xiao, Yuzhu; Xu, Wei

    2016-06-01

    In this paper, noise-induced and delay-induced bifurcations in a bistable Duffing-van der Pol (DVP) oscillator under time delay and joint noises are discussed theoretically and numerically. Based on the qualitative changes of the plane phase, delay-induced bifurcations are investigated in the deterministic case. However, in the stochastic case, the response of the system is a stochastic non-Markovian process owing to the existence of noise and time delay. Then, methods have been employed to derive the stationary probability density function (PDF) of the amplitude of the response. Accordingly, stochastic P-bifurcations can be observed with the variations in the qualitative behavior of the stationary PDF for amplitude. Furthermore, results from both theoretical analyses and numerical simulations best demonstrate the appearance of noise-induced and delay-induced bifurcations, which are in good agreement.

  19. Effect of Time Delay on Binary Signal Detection via a Bistable System

    NASA Astrophysics Data System (ADS)

    Zeng, Ling-Zao; Liu, Bing-Yang; Xu, Yi-Da; Li, Jian-Long

    2014-02-01

    The effect of time delay on binary signal detection via a bistable system in the presence of white or colored Gaussian noise is investigated. By defining the bit error rate based on the solution of the approximated Fokker—Planck equation, the detector performance is investigated theoretically and is verified by Monte Carlo simulation. It is shown that, when the system parameter or noise intensity is optimally chosen, the increasing time delay generally improves the system performance. It is also shown that it is more difficult to accurately predict the system performance with a larger time delay and correlation time. This may inspire more thorough investigations in cooperative effects of a nonlinear system and time delay on signal processing.

  20. Effectiveness of brief time-out with and without contingent delay: a comparative analysis.

    PubMed Central

    Mace, F C; Page, T J; Ivancic, M T; O'Brien, S

    1986-01-01

    We evaluated a commonly used component of brief time-out, in which release from time-out is delayed contingent on the occurrence of disruption. Data were collected for one normal and two mentally retarded children on time-out-producing behaviors (aggression and disruption) as well as delay-producing behaviors during time-out (loud vocalizations, out-of-chair, aggression, and disruption). The results of a combination ABAC reversal and multiple-baseline design indicated that, under the conditions used in this investigation, both delay and no delay variations were effective in reducing the frequency of the target behaviors. Implications for the use of time-out to reduce aberrant behaviors are discussed. PMID:3710950

  1. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves

  2. Passivity and Passification of Memristor-Based Recurrent Neural Networks With Additive Time-Varying Delays.

    PubMed

    Rakkiyappan, Rajan; Chandrasekar, Arunachalam; Cao, Jinde

    2015-09-01

    This paper presents a new design scheme for the passivity and passification of a class of memristor-based recurrent neural networks (MRNNs) with additive time-varying delays. The predictable assumptions on the boundedness and Lipschitz continuity of activation functions are formulated. The systems considered here are based on a different time-delay model suggested recently, which includes additive time-varying delay components in the state. The connection between the time-varying delay and its upper bound is considered when estimating the upper bound of the derivative of Lyapunov functional. It is recognized that the passivity condition can be expressed in a linear matrix inequality (LMI) format and by using characteristic function method. For state feedback passification, it is verified that it is apathetic to use immediate or delayed state feedback. By constructing a Lyapunov-Krasovskii functional and employing Jensen's inequality and reciprocal convex combination technique together with a tighter estimation of the upper bound of the cross-product terms derived from the derivatives of the Lyapunov functional, less conventional delay-dependent passivity criteria are established in terms of LMIs. Moreover, second-order reciprocally convex approach is employed for deriving the upper bound for terms with inverses of squared convex parameters. The model based on the memristor with additive time-varying delays widens the application scope for the design of neural networks. Finally, pertinent examples are given to show the advantages of the derived passivity criteria and the significant improvement of the theoretical approaches. PMID:25415991

  3. Teleseismic P and S Delay Times within Tectonically Active and Stable North America

    NASA Astrophysics Data System (ADS)

    Lou, X.; van der Lee, S.

    2009-12-01

    We have measured teleseismic P and S relative delay times within 1) Stable North America (SNA) using waveforms from IRIS PASSCAL seismic arrays MOMA (Fischer et al., 1995), ABBA (Roecker and Beavan, 1995), Abitibi (Hearn and Mareschal, 1996), and FLED (Wysession and Fischer, 2001), and 2) Tectonically-active North America (TNA) using Earthscope's Transportable Array (TA). To study the contribution of mantle structure to these delays we subtracted delays predicted for topography and crustal structure, using CRUST 2.0 (Bassin et al., 2000). Preliminary analyses of delay times from earthquakes with Mw>=6.5 show surprising differences between the heterogeneity of the mantle beneath SNA and TNA. While the range of delay times is expectedly small for an intra-shield array such as Abitibi, the range of delay times from Proterozoic basement in the midwest to Paleozoic margin in New England is much larger and slightly exceeds that for the TA in TNA. This suggests that that the mantle of SNA is slightly more heterogeneous than TNA, despite there being relatively little surface expression of this heterogeneity. Patterns of P and S relative delay times measured in TNA correlate better with surface tectonics, suggesting that the mantle in TNA has a greater effect on the surface geology than in SNA. The central and southern Basin and Range are characterized by positive delays. As shown in previous studies, the Snake River Plain is also well delineated by positive delays. These delays exhibit a significant peak at station H17A in Yellowstone National Park. Teleseismic P and S waves arriving at stations in the Rocky Mountains are much faster, including in northern Idaho and western Washington, but not in western Oregon. For both SNA and TNA, the measured S and P delay times have a significant linear correlation, with S delays at approximately 3 times the P delays, which confirms the dominant effect of mantle temperature on mantle velocity structure. However, the slope of this

  4. Recirculating photonic filter: a wavelength-selective time delay for optically controlled phased-array antenna

    NASA Astrophysics Data System (ADS)

    Yegnanarayanan, Siva; Trinh, Paul D.; Jalali, Bahram

    1996-11-01

    A wavelength-selective photonic time delay filter is proposed and demonstrated. The device consists of an optical phased-array waveguide grating in a recirculating feedback configuration. It can function as a true-time-delay generator for squint-free beam steering in optically- controlled phased-array antennas. As the photonic filter uses the optical carrier wavelength to select the desired time delay, a one-to-one map is established between the optical carrier wavelength and the desired antenna direction, thus eliminating complex switching networks required to select the appropriate delay line. The proposed device can also function as the encoder/decoder in wavelength-CDMA. The concept uses a waveguide prism in a symmetric feedback (recirculating) configuration. The modulated optical carrier is steered by the waveguide prism to the appropriate integrated delay line depending on the carrier wavelength. The signal is delayed and is fed back into the symmetric input port. The prism then focuses the delayed beam into the common output port. Thus three sequential operations are performed: (1) wavelength demultiplexing, (2) time delay, and (3) wavelength multiplexing. It is important to note that the recirculating photonic filter has no 1/N loss; all the power at a given wavelength is diffracted into the output port. Furthermore, high resolution (6 - 8 bits) can be obtained in a compact integrated device. A prototype regular recirculating photonic filter true-time delay device was realized using a 8-channel arrayed-waveguide grating demultiplexer and external (off-chip) fiber delay lines. The grating was fabricated in the silica waveguide technology with 0.8 nm channel spacing (FSR equals 6.4 nm) and operating in the 1.5 micrometers wavelength range. Light from an external cavity tunable laser was rf modulated at 10 - 40 MHz and was coupled into the arrayed waveguide grating chip and time/phase measurements were performed sing a digital oscilloscope. Feedback delay

  5. Delay time in a single barrier for a movable quantum shutter

    SciTech Connect

    Hernandez, Alberto

    2010-05-15

    The transient solution and delay time for a {delta} potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value {Delta}t{sub sat} in the limit of very short distances, which represents the maximum delay produced by the potential barrier near the interaction region. The phase time {tau}{sub {theta},} on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.

  6. Attosecond delays in photoionization: time and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-10-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.

  7. A Comprehensive Review of Prehospital and In-hospital Delay Times in Acute Stroke Care

    PubMed Central

    Evenson, Kelly R.; Foraker, Randi; Morris, Dexter L.; Rosamond, Wayne D.

    2010-01-01

    The purpose of this study was to systematically review and summarize prehospital and in-hospital stroke evaluation and treatment delay times. We identified 123 unique peer-reviewed studies published from 1981 to 2007 of prehospital and in-hospital delay time for evaluation and treatment of patients with stroke, transient ischemic attack, or stroke-like symptoms. Based on studies of 65 different population groups, the weighted Poisson regression indicated a 6.0% annual decline (p<0.001) in hours/year for prehospital delay, defined from symptom onset to emergency department (ED) arrival. For in-hospital delay, the weighted Poisson regression models indicated no meaningful changes in delay time from ED arrival to ED evaluation (3.1%, p=0.49 based on 12 population groups). There was a 10.2% annual decline in hours/year from ED arrival to neurology evaluation or notification (p=0.23 based on 16 population groups) and a 10.7% annual decline in hours/year for delay time from ED arrival to initiation of computed tomography (p=0.11 based on 23 population groups). Only one study reported on times from arrival to computed tomography scan interpretation, two studies on arrival to drug administration, and no studies on arrival to transfer to an in-patient setting, precluding generalizations. Prehospital delay continues to contribute the largest proportion of delay time. The next decade provides opportunities to establish more effective community based interventions worldwide. It will be crucial to have effective stroke surveillance systems in place to better understand and improve both prehospital and in-hospital delays for acute stroke care. PMID:19659821

  8. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal

    NASA Astrophysics Data System (ADS)

    Torabi, H.; Pariz, N.; Karimpour, A.

    2016-02-01

    This paper investigates fractional Kalman filters when time-delay is entered in the observation signal in the discrete-time stochastic fractional order state-space representation. After investigating the common fractional Kalman filter, we try to derive a fractional Kalman filter for time-delay fractional systems. A detailed derivation is given. Fractional Kalman filters will be used to estimate recursively the states of fractional order state-space systems based on minimizing the cost function when there is a constant time delay (d) in the observation signal. The problem will be solved by converting the filtering problem to a usual d-step prediction problem for delay-free fractional systems.

  9. Bifurcation and oscillation in a time-delay neural mass model.

    PubMed

    Geng, Shujuan; Zhou, Weidong; Zhao, Xiuhe; Yuan, Qi; Ma, Zhen; Wang, Jiwen

    2014-12-01

    The neural mass model developed by Lopes da Silva et al. simulates complex dynamics between cortical areas and is able to describe a limit cycle behavior for alpha rhythms in electroencephalography (EEG). In this work, we propose a modified neural mass model that incorporates a time delay. This time-delay model can be used to simulate several different types of EEG activity including alpha wave, interictal EEG, and ictal EEG. We present a detailed description of the model's behavior with bifurcation diagrams. Through simulation and an analysis of the influence of the time delay on the model's oscillatory behavior, we demonstrate that a time delay in neuronal signal transmission could cause seizure-like activity in the brain. Further study of the bifurcations in this new neural mass model could provide a theoretical reference for the understanding of the neurodynamics in epileptic seizures. PMID:25048203

  10. Spiking Neurons Learning Phase Delays: How Mammals May Develop Auditory Time-Difference Sensitivity

    NASA Astrophysics Data System (ADS)

    Leibold, Christian; van Hemmen, J. Leo

    2005-04-01

    Time differences between the two ears are an important cue for animals to azimuthally locate a sound source. The first binaural brainstem nucleus, in mammals the medial superior olive, is generally believed to perform the necessary computations. Its cells are sensitive to variations of interaural time differences of about 10 μs. The classical explanation of such a neuronal time-difference tuning is based on the physical concept of delay lines. Recent data, however, are inconsistent with a temporal delay and rather favor a phase delay. By means of a biophysical model we show how spike-timing-dependent synaptic learning explains precise interplay of excitation and inhibition and, hence, accounts for a physical realization of a phase delay.

  11. Time Delay: A Technique to Increase Language Use and Facilitate Generalization in Retarded Children.

    ERIC Educational Resources Information Center

    Halle, James W.; And Others

    1979-01-01

    Institutional breakfast serving procedures were manipulated with regard to time delay to assess the effects of such changes on language use (requests for food) in six severely retarded children (ages 11 to 15 years). (Author/DLS)

  12. Effects of time delay and pitch control sensitivity in the flared landing

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Wingarten, N. C.; Grantham, W.

    1986-01-01

    Between December 1985 and January 1986, a flared landing program was conducted, using the USAF Total In-Flight simulator airplane, to examine time delay effects in a formal manner. Results show that as pitch sensitivity is increased, tolerance to time delay decreases. With the proper selection of pitch sensitivity, Level I performance was maintained with time delays ranging from 150 milliseconds to greater than 300 milliseconds. With higher sensitivity, configurations with Level I performance at 150 milliseconds degraded to level 2 at 200 milliseconds. When metrics of time delay and pitch sensitivity effects are applied to enhance previously developed predictive criteria, the result is an improved prediction technique which accounts for significant closed loop items.

  13. Robust state estimation for uncertain neural networks with time-varying delay.

    PubMed

    Huang, He; Feng, Gang; Cao, Jinde

    2008-08-01

    The robust state estimation problem for a class of uncertain neural networks with time-varying delay is studied in this paper. The parameter uncertainties are assumed to be norm bounded. Based on a new bounding technique, a sufficient condition is presented to guarantee the existence of the desired state estimator for the uncertain delayed neural networks. The criterion is dependent on the size of the time-varying delay and on the size of the time derivative of the time-varying delay. It is shown that the design of the robust state estimator for such neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. Finally, two simulation examples are given to demonstrate the effectiveness of the developed approach. PMID:18701365

  14. A Novel 2-D Programmable Photonic Time Delay Device for MM-Wave Signal Processing Applications

    NASA Technical Reports Server (NTRS)

    Yao, X.; Maleki, L.

    1994-01-01

    We describe a novel programmable photonic true time delay device that has the properties of low loss, inherent two dimensionality with a packing density exceeding 25 lines/cm super 2, virtually infinite bandwidth, and is easy to manufacture.

  15. Exact statistics for linear time delayed oscillators subjected to Gaussian excitation

    NASA Astrophysics Data System (ADS)

    Crawford, Jack H., III; Verriest, Erik I.; Lieuwen, Tim C.

    2013-10-01

    Large classes of stochastic systems of interest to acoustics and vibrations have time delays. The presence of these time delays hinders efforts to provide physical insight into the system behavior, because of the difficulty of finding exact solutions. This paper addresses this issue by presenting exact steady-state solutions for the probability density functions (pdf's) for linear time delayed oscillators subjected to Gaussian excitation of arbitrary correlation. A key parameter influencing these pdf's is shown to be the ratio of mean generalized kinetic energy to the mean generalized potential energy. In a single damped harmonic oscillator this ratio is unity which implies an equi-partition of generalized energy. Time delays cause deviations in the equi-partition of generalized energy which creates regions of preferential total phase and causes the amplitude pdf to shift from a Rayleigh distribution to a Hoyt distribution.

  16. Asymptotic properties of a HIV-1 infection model with time delay

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ma, Wanbiao

    2007-11-01

    Based on some important biological meanings, a class of more general HIV-1 infection models with time delay is proposed in the paper. In the HIV-1 infection model, time delay is used to describe the time between infection of uninfected target cells and the emission of viral particles on a cellular level as proposed by Herz et al. [A.V.M. Herz, S. Bonhoeffer, R.M. Anderson, R.M. May, M.A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA 93 (1996) 7247-7251]. Then, the effect of time delay on stability of the equilibria of the HIV-1 infection model has been studied and sufficient criteria for local asymptotic stability of the infected equilibrium and global asymptotic stability of the viral free equilibrium are given.

  17. Containment consensus with measurement noises and time-varying communication delays

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Wang, Zheng-Jie; Fan, Ning-Jun

    2015-02-01

    In this paper, we consider the containment consensus control problem for multi-agent systems with measurement noises and time-varying communication delays under directed networks. By using stochastic analysis tools and algebraic graph theory, we prove that the followers can converge to the convex hull spanned by the leaders in the sense of mean square if the allowed upper bound of the time-varying delays satisfies a certain sufficient condition. Moreover, the time-varying delays are asymmetric for each follower agent, and the time-delay-dependent consensus condition is derived. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results. Project supported by the National Natural Science Foundation of China (Grant No. 11102019), the Aeronautical Science Foundation of China (Grant No. 2013ZC72006), and the Research Foundation of Beijing Institute of Technology, China.

  18. Wigner time delay and related concepts: Application to transport in coherent conductors

    NASA Astrophysics Data System (ADS)

    Texier, Christophe

    2016-08-01

    The concepts of Wigner time delay and Wigner-Smith matrix allow us to characterise temporal aspects of a quantum scattering process. The paper reviews the statistical properties of the Wigner time delay for disordered systems; the case of disorder in 1D with a chiral symmetry is discussed and the relation with exponential functionals of the Brownian motion is underlined. Another approach for the analysis of time delay statistics is the random matrix approach, from which we review few results. As a practical illustration, we briefly outline a theory of non-linear transport and AC transport developed by Büttiker and coworkers, where the concept of Wigner-Smith time delay matrix is a central piece allowing us to describe screening properties in out-of-equilibrium coherent conductors.

  19. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  20. H ∞ synchronization of the coronary artery system with input time-varying delay

    NASA Astrophysics Data System (ADS)

    Xiao-Meng, Li; Zhan-Shan, Zhao; Jing, Zhang; Lian-Kun, Sun

    2016-06-01

    This paper investigates the H ∞ synchronization of the coronary artery system with input delay and disturbance. We focus on reducing the conservatism of existing synchronization strategies. Base on the triple integral forms of the Lyapunov–Krasovskii functional (LKF), we utilize single and double integral forms of Wirtinger-based inequality to guarantee that the synchronization feedback controller has good performance against time-varying delay and external disturbance. The effectiveness of our strategy can be exhibited by simulations under the different time-varying delays and different disturbances. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503280, 61403278, and 61272006).

  1. Cyclic additional optical true time delay for microwave beam steering with spectral filtering.

    PubMed

    Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J

    2014-06-15

    Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis. PMID:24978496

  2. Image encryption using chaotic coupled map lattices with time-varying delays

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wang, Zidong; Fang, Jian-an

    2010-09-01

    In this paper, a novel image encryption scheme using coupled map lattices (CML) with time delay is proposed. By employing discretized tent map to shuffle the positions of image pixels and then using delayed coupled map lattices (DCML) to confuse the relationship between the plain-image and the cipher-image, image encryption algorithms with permutation-diffusion structure are introduced in detail. In the process of generating keystream, the time-varying delay is also embedded in our proposed scheme to enhance the security. Theoretical analysis and computer experiments confirm that the new algorithm possesses high security for practical image encryption.

  3. Noise-resistant system of concealed information transfer on a chaotic delayed feedback oscillator with switchable delay time

    NASA Astrophysics Data System (ADS)

    Kul'minskii, D. D.; Ponomarenko, V. I.; Karavaev, A. S.; Prokhorov, M. D.

    2016-05-01

    We propose a system of concealed information transfer based on a delayed feedback oscillator with switchable chaotic regimes. The proposed system is analyzed numerically and experimentally. The dependences of the bit error rate during transmission of a binary information signal on the signal-to-noise ratio, attenuation of the signal in the communication channel, and the duration of the time interval during which a bit is transferred are constructed. The high stability of the system to noise and amplitude distortions of a signal in the communication channel is demonstrated.

  4. Experimental method for forecasting propagation delay of ground wave for timing signal.

    NASA Astrophysics Data System (ADS)

    Liang, Zhonghuan

    1998-06-01

    Up to now, only two methods for forecasting the propagation delay of a ground wave for timing signals have been formally published. The author has further developed the method, described by Miao Yongrei et al. (1979). The results show that with the number M = 3 for the segments, the precision of the forecasted values of the time delay is much better than that from the method in which the whole path is regarded as a homogeneous one.

  5. Ignition delay times of shock-heated tetraethoxysilane, hexamethyldisiloxane, and titanium tetraisopropoxide

    NASA Astrophysics Data System (ADS)

    Abdali, A.; Fikri, M.; Orthner, H.; Wiggers, H.; Schulz, C.

    2014-05-01

    Ignition delay times of tetraethoxysilane (TEOS), hexamethyldisiloxane (HMDSO) and titanium tetraisopropoxide (TTIP) were determined from the onset of chemiluminescence in shock-tube experiments behind reflected shock waves in dry as well as in humid gas mixtures. Additionally, the ignition delay times of TEOS and HMDSO have been investigated in humid air and as a function of water vapor concentration in the initial gas mixture.

  6. Numerical test for hyperbolicity of chaotic dynamics in time-delay systems.

    PubMed

    Kuptsov, Pavel V; Kuznetsov, Sergey P

    2016-07-01

    We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos. PMID:27575062

  7. Numerical test for hyperbolicity of chaotic dynamics in time-delay systems

    NASA Astrophysics Data System (ADS)

    Kuptsov, Pavel V.; Kuznetsov, Sergey P.

    2016-07-01

    We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos.

  8. Time delay of light signals in an energy-dependent spacetime metric

    SciTech Connect

    Grillo, A. F.; Luzio, E.; Mendez, F.

    2008-05-15

    In this paper we review the problem of time delay of photons propagating in a spacetime with a metric that explicitly depends on the energy of the particles (gravity-rainbow approach). We show that corrections due to this approach--which is closely related to the double special relativity proposal--produce for small redshifts (z<<1) smaller time delays than in the generic Lorentz invariance violating case.

  9. Time Delays of Blazar Flares Observed at Different Wavebands

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.

    2000-01-01

    Correlated variability at different frequencies can probe the structure and physics of the jet of a blazar on size scales much smaller than can be resolved by telescopes and interferometers. I discuss some observations of frequency dependent time lags and how these place constraints on models for the nonthermal emission in blazars. The time lags can be either positive (high frequency variations leading those at lower frequencies) or negative, while simultaneous flares are also possible.

  10. Automatic transponder. [measurement of the internal delay time of a transponder

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Brisken, A. F.; Lewis, J. R. (Inventor)

    1977-01-01

    A method and apparatus for the automatic, remote measurement of the internal delay time of a transponder at the time of operation is provided. A small portion of the transmitted signal of the transponder is converted to the receive signal frequency of the transponder and supplied to the input of the transponder. The elapsed time between the receive signal locally generated and the receive signal causing the transmission of the transmitted signal is measured, said time being representative of or equal to the internal delay time of the transponder at the time of operation.

  11. System for sensing droplet formation time delay in a flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1997-01-01

    A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

  12. Experimental study of wireless structural vibration control considering different time delays

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Guo, Jinhe; Li, Luyu; Song, Gangbing; Li, Peng; Ou, Jinping

    2015-04-01

    With the development of wireless communication technology, active structural vibration control based on a wireless sensor network has tended to replace the traditional wired control method. However, the problem of time delay in a wireless control system is inevitable and requires serious attention. In this study, a wireless active vibration control scheme consisting of a cantilever beam with a piezoelectric actuator is proposed and implemented. Experimental results indicate that wireless control gives good control performance; however, because of the influence of time delay, the performance of wireless control is slightly worse than that of wired control. Therefore, a novel method for time delay compensation is presented in this study to resolve this problem. This approach takes advantage of the finite difference method to extend the state space of the cantilever beam. Additional time delay states are used to form the extended state space model for time delay compensation. Simulation and experimental results demonstrate that this method can effectively compensate for time delay and enables the wireless control system to exhibit excellent control performance that can be favorably compared with that of wired control.

  13. A new delay line loops shrinking time-to-digital converter in low-cost FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhou, Dongming

    2015-01-01

    The article provides the design and test results of a new time-to-digital converter (TDC) based on delay line loops shrinking method and implemented in a low-cost field programmable gate array (FPGA) device. A technique that achieves high resolution with low cost and flexibility is presented. The technique is based on two delay line loops which are used to directly shrink the measured time interval in the designed TDC, and the resolution is dependent on the difference between the entire delay times of the two delay line loops. In order to realize high resolution and eliminate temperature influence, the two delay line loops consist of the same delay cells with the same number. A delay-locked loop (DLL) is used to stabilize the resolution against process variations and ambient conditions. Meanwhile, one method is used to accurately evaluate the resolution of the implemented TDC. The converter has been implemented in a general-propose FPGA device (Actel SmartFusion A2F200M3). A single shot resolution of the implemented converter is 63.3 ps and the measurement standard deviation is about 61.7 ps within the measurement range of 5 ns.

  14. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    NASA Astrophysics Data System (ADS)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (p<0.05) in ARI score was detected between the 0.5-min and 4.0-min delay groups with more adhesive remaining on the bracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  15. Determination of time delay between ventricles contraction using impedance measurements

    NASA Astrophysics Data System (ADS)

    Lewandowska, M.; Poliński, A.; Wtorek, J.

    2013-04-01

    The paper presents a novel approach to assessment of ventricular dyssynchrony basing on multichannel electrical impedance measurements. Using a proper placement of electrodes, the sensitivity approach allows estimating time difference between chambers contraction from over determined nonlinear system of equations. The theoretical considerations which include Finite Element Method simulations were verified using measurements on healthy 28 year's old woman. The nonlinear least squares method was applied to obtain a time difference between heart chambers contraction. The obtained value was in a good agreement with theoretical values found in literature.

  16. Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays.

    PubMed

    Wu, Ligang; Feng, Zhiguang; Lam, James

    2013-12-01

    This paper is concerned with the problems of exponential stability analysis and synchronization of discrete-time switched delayed neural networks. Using the average dwell time approach together with the piecewise Lyapunov function technique, sufficient conditions are proposed to guarantee the exponential stability for the switched neural networks with time-delays. Benefitting from the delay partitioning method and the free-weighting matrix technique, the conservatism of the obtained results is reduced. In addition, the decay estimates are explicitly given and the synchronization problem is solved. The results reported in this paper not only depend upon the delay, but also depend upon the partitioning, which aims at reducing the conservatism. Numerical examples are presented to demonstrate the usefulness of the derived theoretical results. PMID:24805215

  17. Delayed High School Starting Times. Information Capsule. Volume 0908

    ERIC Educational Resources Information Center

    Blazer, Christie

    2009-01-01

    Educators around the nation are considering pushing high school starting times back until later in the morning, based on evidence suggesting that amount of sleep and circadian rhythms play a part in adolescents' academic performance. While research confirms that adolescents do not get enough sleep and that insufficient sleep can negatively…

  18. Delay-dependent reliable H ∞ filtering for sector-bounded nonlinear continuous-time systems with time-varying state delays and sensor failures

    NASA Astrophysics Data System (ADS)

    Guo, Xiang-Gui; Yang, Guang-Hong

    2012-01-01

    In this article, the reliable H ∞ filtering problem against sensor failures is investigated for a class of continuous-time systems with simultaneous sector-bounded nonlinearities and varying time delays. The focus of this article is on designing a reliable filter such that the filtering error system is asymptotically stable and meets the prescribed H ∞ norm constraint in the normal case as well as in the sensor failure case simultaneously. Linear matrix inequality conditions, which depend not only on the upper and lower bounds of delay but also on the upper bound of delay derivative, are obtained for the existence of admissible filters and, based on these, the filter design is cast into a convex optimisation problem. What is worth mentioning is that the information about the upper bound of the delay derivative is taken into consideration even if this upper bound is not smaller than 1. A numerical example is presented to illustrate the effectiveness and advantage of the developed filter design method.

  19. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    SciTech Connect

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height or incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.

  20. Linear stability of a generalized multi-anticipative car following model with time delays

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2015-05-01

    In traffic flow, the multi-anticipative driving behavior describes the reaction of a vehicle to the driving behavior of many vehicles in front where as the time delay is defined as a physiological parameter reflecting the period of time between perceiving a stimulus of leading vehicles and performing a relevant action such as acceleration or deceleration. A lot of effort has been undertaken to understand the effects of either multi-anticipative driving behavior or time delays on traffic flow dynamics. This paper is a first attempt to analytically investigate the dynamics of a generalized class of car-following models with multi-anticipative driving behavior and different time delays associated with such multi-anticipations. To this end, this paper puts forwards to deriving the (long-wavelength) linear stability condition of such a car-following model and study how the combination of different choices of multi-anticipations and time delays affects the instabilities of traffic flow with respect to a small perturbation. It is found that the effect of delays and multi-anticipations are model-dependent, that is, the destabilization effect of delays is suppressed by the stabilization effect of multi-anticipations. Moreover, the weight factor reflecting the distribution of the driver's sensing to the relative gaps of leading vehicles is less sensitive to the linear stability condition of traffic flow than the weight factor for the relative speed of those leading vehicles.

  1. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    SciTech Connect

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  2. Methane oxidation behind reflected shock waves: Ignition delay times measured by pressure and flame band emission

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Robertson, T. F.

    1986-01-01

    Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.

  3. Experiences of time loss among videogame players: an empirical study.

    PubMed

    Wood, Richard T A; Griffiths, Mark D; Parke, Adrian

    2007-02-01

    Playing videogames is now a major leisure pursuit, yet research in the area is comparatively sparse. Previous correlational evidence suggests that subjective time loss occurs during playing videogames. This study examined experiences of time loss among a relatively large group of gamers (n = 280). Quantitative and qualitative data were collected through an online survey. Results showed that time loss occurred irrespective of gender, age, or frequency of play, but was associated with particular structural characteristics of games such as their complexity, the presence of multi-levels, missions and/or high scores, multiplayer interactions, and plot. Results also demonstrated that time loss could have both positive and negative outcomes for players. Positive aspects of time loss included helping players to relax and temporarily escape from reality. Negative aspects included the sacrificing of other things in their lives, guilty feelings about wasted time, and social conflict. It is concluded that for many gamers, losing track of time is a positive experience and is one of the main reasons for playing videogames. PMID:17305447

  4. Dynamics and synchronization of nonlinear oscillators with time delay: A study with fiber lasers

    NASA Astrophysics Data System (ADS)

    Franz, Anthony Lawrence

    The effect of time delay on nonlinear oscillators is an important problem in the study of dynamical systems. Erbium-doped fiber ring lasers have an internal time scale set by the length of the laser's electromagnetic cavity. Long cavities allow thousands of modes to experience gain making it very difficult to model the lasers. We examine the effect of adding external time delays through feedback and coupling. In the first experiment an external time delay is added to a laser by adding a feedback loop to the cavity. These delay times are varied over four orders of magnitude by changing the length of fiber in the feedback loop. The laser intensity dynamics are examined using time series, power spectra, time delay embeddings, and spatiotemporal representations. We apply Karhunen-Loeve (KL) decomposition on the spatiotemporal representations and use the Shannon entropy as calculated from the KL eigenvalue spectra as a measure of the complexity of the dynamics. For long delays we find that the complexity increases as expected, but also that the fluctuation size increases. In the second experiment two lasers are mutually coupled together with a coupling time delay that is varied over four orders of magnitude. The analysis is repeated and we find the surprising result that the dynamical complexity decreases for short coupling delays as compared to the uncoupled lasers. Measurements of the optical spectra indicate a narrowing of the spectra indicating that the simplification in dynamics could be due to the reduction in the number of electromagnetic modes experiencing gain. The fluctuation size increases for all delay times and is largest when the internal and external time delays match. Lag-synchrony is also observed for the mutually coupled lasers. Recent modeling using Ikeda ring oscillators showed that stable isochronal synchrony could be achieved if a third drive laser was unidirectionally coupled with enough strength. We experimentally find that increasing the

  5. Global Lagged Finite-Time Synchronization of Two Chaotic Lur’e Systems Subject to Time Delay

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Wu, Xiaofeng; Lin, Qian

    This paper investigates the global lagged finite-time synchronization of the master-slave Lur’e systems subject to time delay of signal transmission. By designing a variable-substitution and feedback controller, a master-slave finite-time synchronization scheme for the Lur’e systems with time delay is built up. Two delay-independent global lagged finite-time synchronization criteria are proved in the forms of linear matrix inequalities (LMIs), and the corresponding settling time of synchronization is analytically estimated. The obtained LMI criteria are applied to Chua’s oscillators, obtaining some easily implemented algebraic criteria under various single-variable-substitution and feedback controller, which are then optimized to improve their conservative property. Finally, several numerical examples are illustrated to verify the effectiveness of the optimized criteria.

  6. Economy with the time delay of information flow—The stock market case

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Janusz

    2012-02-01

    Any decision process requires information about the past and present state of the system, but in an economy acquiring data and processing it is an expensive and time-consuming task. Therefore, the state of the system is often measured over some legal interval, analysed after the end of well defined time periods and the results announced much later before any strategic decision is envisaged. The various time delay roles have to be crucially examined. Here, a model of stock market coupled with an economy is investigated to emphasise the role of the time delay span on the information flow. It is shown that the larger the time delay the more important the collective behaviour of agents since one observes time oscillations in the absolute log-return autocorrelations.

  7. Group consensus of multi-agent systems in directed networks with noises and time delays

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2015-10-01

    In this paper, group consensus problems in fixed directed networks of dynamic agents are investigated. Group consensus means that the agents in each group share a consistent value while there is no agreement between any two groups. Based on algebraic graph theory, sufficient conditions guaranteeing group consensus under the proposed control protocol in the presence of random noises and communication delays are derived. The analysis uses a stability result of Mao for stochastic differential delay equations, which ensures the consensus can be achieved almost surely and exponentially fast. Numerical examples are provided to demonstrate the availability of the obtained results as well as the effect of time delay/noise intensity.

  8. Bifurcation analysis on a turning system with large and state-dependent time delay

    NASA Astrophysics Data System (ADS)

    Kim, Pilkee; Bae, Sanghyun; Seok, Jongwon

    2012-12-01

    Stability and bifurcation analyses were performed in this study on the turning process with a state-dependent and large time delay using the method of multiple scales (MMS). The turning system tool was modeled as an oscillator with two degrees of freedom, and both the cubic nonlinear stiffness and the nonlinear cutting force were considered. The nonlinear cutting force was appropriately expanded in a Taylor series considering the state-dependency of the time delay. The time delay and parameters were scaled through the proper ordering process to reflect the large delay effect on an asymptotic formulation of the MMS. Asymptotic solutions were then obtained by the MMS in the large delay regime and used to calculate the linear stability boundaries (i.e., Hopf bifurcation points) and coexisting one-period periodic solutions (i.e., limit cycles) of the turning system. To investigate the local and global behaviors of the tool chatter, bifurcation diagrams were obtained at various workpiece rotating speeds. The validity of the results was examined by comparison with those obtained through the method of harmonic balance and direct numerical integration. Additionally, using the bifurcation diagrams, the effects of the state-dependent time delay and nonlinear stiffness on the chatter vibration behaviors were examined.

  9. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    PubMed

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work. PMID:25053870

  10. Simulation evaluation of the effects of time delay and motion on rotorcraft handling qualities

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.; Key, David L.

    1991-01-01

    A study aimed at determining the effects of simulator characteristics on perceived handling qualities is discussed. Evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual and overall time delays. As the visual and motion parameters were changed, differences in pilot opinion were found reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. It is concluded that it is necessary to tailor the motion washout dynamics to suit the task, with reduced washouts for precision maneuvering as compared to aggressive maneuvering. Visual-delay data suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.

  11. Nonlinear adaptive control for teleoperation systems with symmetrical and unsymmetrical time-varying delay

    NASA Astrophysics Data System (ADS)

    Islam, S.; Liu, P. X.; El Saddik, A.

    2015-12-01

    The stability and trajectory tracking control problem of passive teleoperation systems with the presence of the symmetrical and unsymmetrical time-varying communication delay is addressed in this paper. The proposed teleoperator is designed by coupling local and remote sites by delaying position signals of the master and slave manipulator. The design also comprises local proportional and derivative signals with nonlinear adaptive terms to cope with parametric uncertainty associated with the master and slave dynamics. The Lyapunov-Krasovskii function is employed to establish stability conditions for the closed-loop teleoperators under both symmetrical and unsymmetrical time-varying communication delay. These delay-dependent conditions allow the designer to estimate the control gains a priori in order to achieve asymptotic property of the position, velocity and synchronisation errors of the master and slave systems. Finally, simulation results along with comparative studies are presented to illustrate the effectiveness of the proposed method.

  12. Force-reflection and shared compliant control in operating telemanipulators with time delay

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Hannaford, Blake; Bejczy, Antal K.

    1992-01-01

    The performance of an advanced telemanipulation system in the presence of a wide range of time delays between a master control station and a slave robot is quantified. The contemplated applications include multiple satellite links to LEO, geosynchronous operation, spacecraft local area networks, and general-purpose computer-based short-distance designs. The results of high-precision peg-in-hole tasks performed by six test operators indicate that task performance decreased linearly with introduced time delays for both kinesthetic force feedback (KFF) and shared compliant control (SCC). The rate of this decrease was substantially improved with SCC compared to KFF. Task performance at delays above 1 s was not possible using KFF. SCC enabled task performance for such delays, which are realistic values for ground-controlled remote manipulation of telerobots in space.

  13. Strategies that delay or prevent the timely availability of affordable generic drugs in the United States.

    PubMed

    Jones, Gregory H; Carrier, Michael A; Silver, Richard T; Kantarjian, Hagop

    2016-03-17

    High cancer drug prices are influenced by the availability of generic cancer drugs in a timely manner. Several strategies have been used to delay the availability of affordable generic drugs into the United States and world markets. These include reverse payment or pay-for-delay patent settlements, authorized generics, product hopping, lobbying against cross-border drug importation, buying out the competition, and others. In this forum, we detail these strategies and how they can be prevented. PMID:26817958

  14. Second-order contributions to relativistic time delay in the parametrized post-Newtonian formalism

    SciTech Connect

    Richter, G.W.; Matzner, R.A.

    1983-12-15

    Using a parametrized expansion of the solar metric to second order in the Newtonian potential, we calculate the relativistic delay in the round-trip travel time of a radar signal reflected from a nearby planet. We find that one second-order contribution to the delay is on the order of ten nanoseconds, which is comparable to the uncertainties in present-day experiments involving the Viking spacecraft.

  15. Reversal of age-related neural timing delays with training.

    PubMed

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-03-12

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  16. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  17. Time-delay of classical and quantum scattering processes: a conceptual overview and a general definition

    NASA Astrophysics Data System (ADS)

    Sassoli de Bianchi, Massimiliano

    2012-04-01

    We present a step by step introduction to the notion of time-delay in classical and quantum mechanics, with the aim of clarifying its foundation at a conceptual level. In doing so, we motivate the introduction of the concepts of "fuzzy" and "free-flight" sojourn times that we use to provide the most general possible definition for the quantum time-delay, valid for simple and multichannel scattering systems, with or without conditions on the observation of the scattering particle, and for incoming wave packets whose energy can be smeared out or sharply peaked (fixed energy). We conclude our conceptual analysis by presenting what we think is the right interpretation of the concepts of sojourn and delay times in quantum mechanics, explaining why, in ultimate analysis, they should not be called "times."

  18. Calculations of first passage time of delayed tree-like networks

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Sun, Weigang; Zheng, Song

    2015-10-01

    In this paper, we study random walks in a family of delayed tree-like networks controlled by two network parameters, where an immobile trap is located at the initial node. The novel feature of this family of networks is that the existing nodes have a time delay to give birth to new nodes. By the self-similar network structure, we obtain exact solutions of three types of first passage time (FPT) measuring the efficiency of random walks, which includes the mean receiving time (MRT), mean sending time (MST) and mean first passage time (MFPT). The obtained results show that the MRT, MST and MFPT increase with the network parameters. We further show that the values of MRT, MST and MFPT are much shorter than the nondelayed counterpart, implying that the efficiency of random walks in delayed trees is much higher.

  19. A 7.5 ps single-shot precision integrated time counter with segmented delay line

    NASA Astrophysics Data System (ADS)

    Klepacki, K.; Szplet, R.; Pelka, R.

    2014-03-01

    This paper describes the design and test results of time interval counter featuring the single-shot precision of 7.5 ps root mean square (rms) and measurement range of 1 ms. These parameters have been achieved by combining direct counting method with a two-stage interpolation within a single clock period. Both stages of interpolation are based on the use of tapped delay lines stabilized by delay locked loop mechanism. In the first stage, a coarse resolution is obtained with the aid of high frequency multiphase clock, while in the second stage a sub-gate delay resolution is achieved with the use of differential delay line. To reduce the nonlinearities of conversion and to improve the precision of measurement, a novel segmented delay line is proposed. An important feature of this segmented delay line is partial overlapping of measurement range and resulting enhancement of both resolution and precision of time interval counter. The maximum integral nonlinearity error of the fine-stage interpolators does not exceed 16 ps and 14 ps in START and STOP interpolators, respectively. These errors have been identified by statistical calibration procedure and corrected to achieve single-shot precision better than 7.5 ps (rms). The time counter is integrated in a single ASIC (Application Specific Integrated Circuit) chip using a standard cost-effective 0.35 μm CMOS (Complementary Metal Oxide Semiconductor) process.

  20. Stability and Relative Stability of Linear Systems with Many Constant Time Delays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Barker, Larry Keith

    1976-01-01

    A method of determining the stability of linear systems with many constant time delays is developed. This technique, an extension of the tau-decomposition method, is used to examine not only the stability but also the relative stability of retarded systems with many delays and a class of neutral equations with one delay. Analytical equations are derived for partitioning the delay space of a retarded system with two time delays. The stability of the system in each of the regions defined by the partitioning curves in the parameter plane is determined using the extended tau-decomposition method. In addition, relative stability boundaries are defined using the extended tau-decompositon method in association with parameter plane techniques. Several applications of the extended tau-decomposition method are presented and compared with stability results obtained from other analyses. In all cases the results obtained using the method outlined herein coincide with and extend those of previous investigations. The extended tau-decomposition method applied to systems with time delays requires less computational effort and yields more complete stability analyses than previous techniques.

  1. From empirical data to time-inhomogeneous continuous Markov processes

    NASA Astrophysics Data System (ADS)

    Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G.

    2016-03-01

    We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60 % of tested matrices, typically 80 % to 90 % , and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.

  2. From empirical data to time-inhomogeneous continuous Markov processes.

    PubMed

    Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G

    2016-03-01

    We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed. PMID:27078320

  3. Stochastic resonance in a tumor-immune system subject to bounded noises and time delay

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Mei, Dong-Cheng

    2014-12-01

    Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.

  4. Bifurcation behavior and coexisting motions in a time-delayed power system

    NASA Astrophysics Data System (ADS)

    Ma, Mei-Ling; Min, Fu-Hong

    2015-03-01

    With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions. With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous “jump” bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincaré maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 51475246 and 51075215), the Natural Science Foundation of Jiangsu Province of China (Grant No. Bk20131402), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grand No. [2012]1707).

  5. A NEW CHANNEL FOR DETECTING DARK MATTER SUBSTRUCTURE IN GALAXIES: GRAVITATIONAL LENS TIME DELAYS

    SciTech Connect

    Keeton, Charles R.; Moustakas, Leonidas A.

    2009-07-10

    We show that dark matter substructure in galaxy-scale halos perturbs the time delays between images in strong gravitational lens systems. The variance of the effect depends on the subhalo mass function, scaling as the product of the substructure mass fraction, and a characteristic mass of subhalos (namely (m {sup 2})/(m)). Time delay perturbations therefore complement gravitational lens flux ratio anomalies and astrometric perturbations by measuring a different moment of the subhalo mass function. Unlike flux ratio anomalies, 'time delay millilensing' is unaffected by dust extinction or stellar microlensing in the lens galaxy. Furthermore, we show that time delay ratios are immune to the radial profile degeneracy that usually plagues lens modeling. We lay out a mathematical theory of time delay perturbations and find it to be tractable and attractive. We predict that in 'cusp' lenses with close triplets of images, substructure may change the arrival-time order of the images (compared with smooth models). We discuss the possibility that this effect has already been observed in RX J1131-1231.

  6. Inequivalence of Phase and Time Delay in High Harmonic Generation with Short Pulses

    NASA Astrophysics Data System (ADS)

    Peng, Dian; Pi, Liangwen; Starace, Anthony

    2016-05-01

    When mixing two (or more) laser pulses, the phase difference and the time delay are two crucial parameters. For long pulses, the relative phase and the time delay are equivalent: for example, cos(ω1 t) + cos(ω2 t + ϕ) = cos(ω1 t) + cos [ω2(t + ϕ /ω2) ] , i.e. in the extreme case of infinitely long pulses, the phase ϕ can be viewed as a time delay ϕ /ω2 between the two pulses. However, for ultra short pulses, this equivalence breaks down: the carrier-envelope phase can't be viewed as equivalent to a time delay between two pulse envelopes. Our quantum simulations show that the inequivalence of the phase and the time delay in short pulses can result in significantly different high-order harmonic generation spectra, with up to an order of magnitude difference in intensity and up to about 10 harmonic orders of difference in cutoff energy. Further analysis shows the underlying physics of such difference. Exposing this inequivalence directly for the first time, our work provides new insights into pulse shaping and related issues for both experimentalists and theorists. This work was supported in part by NSF Grant No. PHYS-1505492.

  7. The optimum design of time delay in time-domain seismic beam-forming based on receiver array

    NASA Astrophysics Data System (ADS)

    Ge, L.; Jiang, T.; Xu, X.; Jia, H.; Yang, Z.

    2013-12-01

    Generally, it is hard to bring high signal-to-noise ratio (SNR) data in seismic prospecting in the mining area especially when noise in the field is strong. To improve the quality of seismic data from complicated ore body, we developed Time-domain Seismic Beam-forming Based on Receiver Array (TSBBRA) method, which can extract directional wave beam in any direction. But only the direction parameter from the target body matches with the direction of reflected waves, the quality of reflected seismic data can be improved. So it's important to determine the direction of reflected waves from target bodies underground. In addition, previous studies have shown that the time delay parameter of TSBBRA can be used to control the direction of the main beam, so it is of great significance for studying the optimization design of the delay time parameter of TSBBRA. The optimum design of time delay is involved in seismic pre-processing, which uses delay and sum in time-domain to form directional reflected seismic beam with the strongest energy of the specified receiving array. Firstly, we establish the velocity model according to the original seismic records and profiles of the assigned exploration area. Secondly, we simulate the propagation of seismic wave and the response of receiver array with finite-difference method. Then, we calculate optimum beam direction from assigned reflection targets and give directional diagrams. And then we synthetize seismic records with a group of time delay using TSBBRA, give the curves that energy varies with time-delay, and obtain the optimum time-delay. The results are as follows: The optimum delay time is 1.125 ms, 0.625 ms, 0.500 ms for reflected wave that form first, second and third target. Besides, to analyze the performance of TSBBRA, we calculated SNR of reflected wave signal before and after TABBRA processing for the given model. The result shows that SNR increased by 1.2~9.4 dB with TSBBRA averagely. In conclusion, the optimum design

  8. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    SciTech Connect

    Li, Xue; Hjorth, Jens; Richard, Johan E-mail: jens@dark-cosmology.dk

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10{sup −4}Δt{sup β-tilde}/M{sub 250}{sup 2β-tilde}, with β-tilde = 0.77, where M{sub 250} is the projected cluster mass inside 250 kpc (in 10{sup 14}M{sub ☉}), and β-tilde is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M{sub 250} = 2 × 10{sup 14}M{sub ☉}, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ≥500kms{sup −1}, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of m{sub AB} = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to m{sub AB} ∼ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  9. An immune system-tumour interactions model with discrete time delay: Model analysis and validation

    NASA Astrophysics Data System (ADS)

    Piotrowska, Monika Joanna

    2016-05-01

    In this article a generalised mathematical model describing the interactions between malignant tumour and immune system with discrete time delay incorporated into the system is considered. Time delay represents the time required to generate an immune response due to the immune system activation by cancer cells. The basic mathematical properties of the considered model, including the global existence, uniqueness, non-negativity of the solutions, the stability of steady sates and the possibility of the existence of the stability switches, are investigated when time delay is treated as a bifurcation parameter. The model is validated with the sets of the experimental data and additional numerical simulations are performed to illustrate, extend, interpret and discuss the analytical results in the context of the tumour progression.

  10. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  11. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    SciTech Connect

    Virbhadra, K. S.; Keeton, C. R.

    2008-06-15

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.

  12. Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Zhao, Shuang-Shuang; Wang, Zhao-Long; Li, Hai-Bin

    2015-01-01

    The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value. A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).

  13. Identification and suppression of the time delay signature of wavelength chaos

    NASA Astrophysics Data System (ADS)

    Zhao, Qingchun; Yin, Hongxi; Shi, Wenbo; Huang, Degen; Liu, Fulai

    2016-08-01

    Time delay is one of the most important physical parameters in a nonlinear time-delay feedback system. In this paper, we numerically investigate the identification and suppression of the time-delay signature (TDS) of the wavelength chaos by numerical simulations. The autocorrelation function (ACF) and average mutual information (AMI) act as the TDS measures. Especially, the effect of the feedback gain and the initial phase on the TDS is analyzed in detail. The wavelength chaotic nonlinear system undergoes a period-doubling route-to-chaos as the feedback gain is increased. The ACF and/or AMI peaks located at the time delay decrease gradually with increasing the feedback gain. Of interest is that these peaks are kept at a low value when the feedback gain is greater than 15, which indicates the suppression of TDS. The initial phase, however, shows a little effect on the time-delay signature. These results pave the way for optimizing the wavelength chaos by appropriately choosing the control parameters of the nonlinear system.

  14. Identification and suppression of the time delay signature of wavelength chaos

    NASA Astrophysics Data System (ADS)

    Zhao, Qingchun; Yin, Hongxi; Shi, Wenbo; Huang, Degen; Liu, Fulai

    2016-07-01

    Time delay is one of the most important physical parameters in a nonlinear time-delay feedback system. In this paper, we numerically investigate the identification and suppression of the time-delay signature (TDS) of the wavelength chaos by numerical simulations. The autocorrelation function (ACF) and average mutual information (AMI) act as the TDS measures. Especially, the effect of the feedback gain and the initial phase on the TDS is analyzed in detail. The wavelength chaotic nonlinear system undergoes a period-doubling route-to-chaos as the feedback gain is increased. The ACF and/or AMI peaks located at the time delay decrease gradually with increasing the feedback gain. Of interest is that these peaks are kept at a low value when the feedback gain is greater than 15, which indicates the suppression of TDS. The initial phase, however, shows a little effect on the time-delay signature. These results pave the way for optimizing the wavelength chaos by appropriately choosing the control parameters of the nonlinear system.

  15. Information fusion control with time delay for smooth pursuit eye movement.

    PubMed

    Zhang, Menghua; Ma, Xin; Qin, Bin; Wang, Guangmao; Guo, Yanan; Xu, Zhigang; Wang, Yafang; Li, Yibin

    2016-05-01

    Smooth pursuit eye movement depends on prediction and learning, and is subject to time delays in the visual pathways. In this paper, an information fusion control method with time delay is presented, implementing smooth pursuit eye movement with prediction and learning as well as solving the problem of time delays in the visual pathways. By fusing the soft constraint information of the target trajectory of eyes and the ideal control strategy, and the hard constraint information of the eye system state equation and the output equation, optimal estimations of the co-state sequence and the control variable are obtained. The proposed control method can track not only constant velocity, sinusoidal target motion, but also arbitrary moving targets. Moreover, the absolute value of the retinal slip reaches steady state after 0.1 sec. Information fusion control method elegantly describes in a function manner how the brain may deal with arbitrary target velocities, how it implements the smooth pursuit eye movement with prediction, learning, and time delays. These two principles allowed us to accurately describe visually guided, predictive and learning smooth pursuit dynamics observed in a wide variety of tasks within a single theoretical framework. The tracking control performance of the proposed information fusion control with time delays is verified by numerical simulation results. PMID:27230904

  16. DDI-based finite-time stability analysis for nonlinear switched systems with time-varying delays

    NASA Astrophysics Data System (ADS)

    Xue, Wenping; Li, Kangji; Liu, Guohai

    2016-09-01

    This paper investigates the finite-time stability (FTS) analysis problem for switched systems with both nonlinear perturbation and time-varying delays. For the system to be finite-time stable, a sufficient condition is proposed based on some delay differential inequalities (DDIs), rather than the Lyapunov-like functions which are commonly used in the FTS analysis of switched systems. Compared with the Lyapunov-like function method, the FTS conditions based on the DDI method are easier for checking and do not require FTS of each subsystem. Two examples are given to illustrate the effectiveness of the developed theory.

  17. Time delay and Doppler tests of the Lorentz symmetry of gravity

    SciTech Connect

    Bailey, Quentin G.

    2009-08-15

    Modifications to the classic time-delay effect and Doppler shift in general relativity (GR) are studied in the context of the Lorentz-violating standard-model extension (SME). We derive the leading Lorentz-violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of sensitivities to gravity-sector coefficients in the SME are given for current and future experiments, including the recent Cassini solar conjunction experiment.

  18. Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

    SciTech Connect

    Novaes, Marcel

    2015-06-15

    We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.

  19. Novel application of the magnetostrictive delay lines for real-time monitoring of the ceramic components

    NASA Astrophysics Data System (ADS)

    Szewczyk, Roman; Salach, Jacek; Bieńkowski, Adam; Olszyna, Andrzej; Kostecki, Marek

    This paper presents results of the experimental investigation on the tensile stress dependence of signal transmission of the magnetostrictive delay line based on amorphous ribbon. These results create possibility of novel application of the magnetostrictive delay lines for real-time monitoring of ceramic components. Such ceramic components are commonly used in machine industry, where real-time tool monitoring is required from the practical point of view. Experimental results presented in the paper indicate that the magnetoelastic wave amplitude decreases with the value of stresses in the rod. This creates possibility of application of the developed methodology for the real-time monitoring of ceramic components in machine industry.

  20. Mean square average-consensus for multi-agent systems with measurement noise and time delay

    NASA Astrophysics Data System (ADS)

    Sun, Fenglan; Guan, Zhi-Hong; Ding, Li; Wang, Yan-Wu

    2013-06-01

    Mean square average consensus for multi-agent systems with measurement noise and time delay under fixed digraph is studied in this article. The time-varying consensus-gain is introduced to attenuate the measurement noise. By combining the tools of algebraic graph theory, matrix theory and stochastic analysis, consensus protocols for multi-agent systems with measurement noise and time delay are elaborately analysed. The example and simulation results are given to illustrate the effectiveness of the obtained theoretical results. Moreover, the simulations demonstrate that, the proper consensus-gain function in the consensus protocol is the necessary and sufficient condition for the convergence of the multi-agent systems.

  1. Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2003-01-01

    In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.

  2. Bifurcation analysis on the globally coupled Kuramoto oscillators with distributed time delays

    NASA Astrophysics Data System (ADS)

    Niu, Ben; Guo, Yuxiao

    2014-01-01

    Distributed delay interactions among a group of Kuramoto phase oscillators are studied from the viewpoint of bifurcation analysis. After restricting the system on the Ott-Antonsen manifold, a simplified model consisting of delay differential equations is obtained. Hopf bifurcation diagrams are drawn on some two-parameter planes around the incoherent state when delay follows Dirac, uniform, Gamma and normal distributions, respectively, and it is illustrated that stronger coupling is needed to achieve synchrony when increasing the variance of either natural frequency or time delay. With the aid of center manifold reduction and the normal form method, the direction of Hopf bifurcation and stability of bifurcating periodic solutions are investigated, and the existence of the hysteresis loop is explained theoretically.

  3. Modulating resonance behaviors by noise recycling in bistable systems with time delay

    SciTech Connect

    Sun, Zhongkui Xu, Wei; Yang, Xiaoli; Xiao, Yuzhu

    2014-06-01

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been found analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.

  4. The Role of Conduction Delay in Creating Sensitivity to Interaural Time Differences.

    PubMed

    Carr, Catherine; Ashida, Go; Wagner, Hermann; McColgan, Thomas; Kempter, Richard

    2016-01-01

    Axons from the nucleus magnocellularis (NM) and their targets in nucleus laminaris (NL) form the circuit responsible for encoding interaural time difference (ITD). In barn owls, NL receives bilateral inputs from NM, such that axons from the ipsilateral NM enter NL dorsally, while contralateral axons enter from the ventral side. These afferents act as delay lines to create maps of ITD in NL. Since delay-line inputs are characterized by a precise latency to auditory stimulation, but the postsynaptic coincidence detectors respond to ongoing phase difference, we asked whether the latencies of a local group of axons were identical, or varied by multiples of the inverse of the frequency they respond to, i.e., to multiples of 2π phase. Intracellular recordings from NM axons were used to measure delay-line latencies in NL. Systematic shifts in conduction delay within NL accounted for the maps of ITD, but recorded latencies of individual inputs at nearby locations could vary by 2π or 4π. Therefore microsecond precision is achieved through sensitivity to phase delays, rather than absolute latencies. We propose that the auditory system "coarsely" matches ipsilateral and contralateral latencies using physical delay lines, so that inputs arrive at NL at about the same time, and then "finely" matches latency modulo 2π to achieve microsecond ITD precision. PMID:27080659

  5. Substrate-guided wave true-time delay network for phased array antenna steering

    NASA Astrophysics Data System (ADS)

    Fu, Zhenhai

    2000-11-01

    Military and civilian wireless communication systems require compact phased array antenna systems with high performance. Unlike narrow-bandwidth phase shifters or bulky and lossy metallic time delay lines, photonic true- time delay lines open the possibility of high-performance antenna systems, while at the same time meeting the stringent weight and size requirements. Substrate-guided wave true-time delay lines, which have many advantages over other proposed structures, are proposed herein. The system structures of one-dimensional and two-dimensional antenna arrays based on the proposed true-time delay modules, along with the corresponding signal distribution methods for both transmit and receive modes were proposed and discussed. To demonstrate the generation and detection of microwave- encoded optical signal sources for the optically controlled antenna array, up to 50 GHz microwave signals with greater than 20 dB signal-to-noise ratios were generated by the optical heterodyning of two lasers with slightly different wavelengths at 786 nm or 1550 nm, demodulated by an ultra-fast photodetector, and then measured by a spectrum analyzer. The diffraction efficiencies of volume holographic gratings recorded on DuPont photopolymer for S-wave, P- wave, and random wave under different wavelengths were investigated in detail. The shrinkage effect of the holographic grating was compensated for by a proposed method shown herein. A simple method was also used to equalize the fanout beams to within +/-5%. Based on the above fabrication techniques, up to 7-bit TTD modules working at 850 nm and 1550 nm, which have the most number of bits and the highest packing density ever reported, were fabricated and packaged. The delay steps of the fabricated delay modules were experimentally confirmed using an original setup based on a femto-second laser, a high-speed photodetector, and the equivalent time sampling technique. The bandwidth of the delay module is experimentally confirmed to

  6. Correcting for Interstellar Scattering Delay in High-precision Pulsar Timing: Simulation Results

    NASA Astrophysics Data System (ADS)

    Palliyaguru, Nipuni; Stinebring, Daniel; McLaughlin, Maura; Demorest, Paul; Jones, Glenn

    2015-12-01

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse "jitter" is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.

  7. Symmetric bifurcation analysis of synchronous states of time-delayed coupled Phase-Locked Loop oscillators

    NASA Astrophysics Data System (ADS)

    Ferruzzo Correa, Diego Paolo; Wulff, Claudia; Piqueira, José Roberto Castilho

    2015-05-01

    In recent years there has been an increasing interest in studying time-delayed coupled networks of oscillators since these occur in many real life applications. In many cases symmetry patterns can emerge in these networks, as a consequence a part of the system might repeat itself, and properties of this subsystem are representative of the dynamics on the whole phase space. In this paper an analysis of the second order N-node time-delay fully connected network is presented which is based on previous work: synchronous states in time-delay coupled periodic oscillators: a stability criterion. Correa and Piqueira (2013), for a 2-node network. This study is carried out using symmetry groups. We show the existence of multiple eigenvalues forced by symmetry, as well as the existence of Hopf bifurcations. Three different models are used to analyze the network dynamics, namely, the full-phase, the phase, and the phase-difference model. We determine a finite set of frequencies ω , that might correspond to Hopf bifurcations in each case for critical values of the delay. The Sn map is used to actually find Hopf bifurcations along with numerical calculations using the Lambert W function. Numerical simulations are used in order to confirm the analytical results. Although we restrict attention to second order nodes, the results could be extended to higher order networks provided the time-delay in the connections between nodes remains equal.

  8. Resource Slack and Propensity to Discount Delayed Investments of Time Versus Money

    ERIC Educational Resources Information Center

    Zauberman, Gal; Lynch, John G.

    2005-01-01

    The authors demonstrate that people discount delayed outcomes as a result of perceived changes over time in supplies of slack. Slack is the perceived surplus of a given resource available to complete a focal task. The present research shows that, in general, people expect slack for time to be greater in the future than in the present. Typically,…

  9. Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability

    ERIC Educational Resources Information Center

    von Oertzen, Timo; Boker, Steven M.

    2010-01-01

    This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that "time delay embedding," i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard…

  10. Effects of Feedback Timing on Second Language Vocabulary Learning: Does Delaying Feedback Increase Learning?

    ERIC Educational Resources Information Center

    Nakata, Tatsuya

    2015-01-01

    Feedback, or information given to learners regarding their performance, is found to facilitate second language (L2) learning. Research also suggests that the timing of feedback (whether it is provided immediately or after a delay) may affect learning. The purpose of the present study was to identify the optimal feedback timing for L2 vocabulary…

  11. Bursting frequency versus phase synchronization in time-delayed neuron networks

    NASA Astrophysics Data System (ADS)

    Nordenfelt, Anders; Used, Javier; Sanjuán, Miguel A. F.

    2013-05-01

    We investigate the dependence of the average bursting frequency on time delay for neuron networks with randomly distributed time-delayed chemical synapses. The result is compared with the corresponding curve for the phase synchronization and it turns out that, in some intervals, these have a very similar shape and appear as almost mirror images of each other. We have analyzed both the map-based chaotic Rulkov model and the continuous Hindmarsh-Rose model, yielding the same conclusions. In order to gain further insight, we also analyzed time-delayed Kuramoto models displaying an overall behavior similar to that observed on the neuron network models. For the Kuramoto models, we were able to derive analytical formulas providing an implicit functional relationship between the mean frequency and the phase synchronization. These formulas suggest a strong dependence between those two measures, which could explain the similarities in shape between the curves.

  12. Decentralised memory static output feedback control for the nonlinear time-delay similar interconnected systems

    NASA Astrophysics Data System (ADS)

    Ma, Yuechao; Jin, Shujie; Gu, Nannan

    2016-07-01

    In this paper, the problem of decentralised memory static output feedback control for a class of nonlinear time-delayed interconnected systems with similar structure is investigated, where both the linear and nonlinear state vectors involve time delay. The contributions of the paper include the following: (1) a new similar structure is presented via memory static output feedback; (2) by exploiting the structure of interconnected systems, the new integral inequalities, constrained Lyapunov equations and LMI method, the decentralised memory static output derivative feedback controllers with similar structure are designed, which is dependent of time delays, to stabilise the interconnected systems uniformly asymptotically; and (3) the stability domain is estimated. The conservatism of the results obtained is reduced by full using the system output information. Finally, the numerical examples are given to demonstrate the effectiveness of the results obtained in this paper.

  13. Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay

    SciTech Connect

    Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Nakamori, S.

    2008-11-06

    This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use, a filtering algorithm based on linear approximations of the real observations is proposed.

  14. An experimental investigation of the changes of VLBI time delays due to antenna structural deformations

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Young, L. E.

    1982-01-01

    Structural deformations primarily occur as functions of antenna elevation angle due to gravity loading. For a Cassegrain antenna, one of the major effects of structural deformation on measured VLBI time delays are those delay changes associated with axial subreflector displacement from its nominal position. Two types of time delay changes that occur when the subreflector is axially defocused are: a change which is a linear function of subreflector defocus position; and a cyclical change caused by multipath. Test results show that for the 64-m DSN antenna, the linear change is 1.8 times the subreflector defocus position, while the peak-to-peak change in cyclical variation is about + or - 3 cm when a spanned bandwidth of 38 MHz at 2290 MHz is used.

  15. Time delay in photoionization in Ne: Effect of different types of correlation

    NASA Astrophysics Data System (ADS)

    Mandal, Ankur; Saha, Soumyajit; Dutta, Narenda Nath; Ganesan, Aarthi; Deshmukh, P. C.; Dolmatov, V. K.; Kheifets, A. S.; Manson, S. T.

    2015-05-01

    Various effects on time delay in photoionization, such as many body correlations, relativity, Cooper minima, autoionizing resonances, etc.,. have been studied. Here we investigate the effects of correlation on time delay using relativistic randon phase approximation (RRPA), RRPA with relaxation (RRPA-R) muticonfiguration Tamm Dancoff (MCTD) (configuration interaction) and many-body perturbation theory (MBPT). Ne is chosen since it has been studied extensively. In an earlier study a truncated RRPA calculation on Ne showed an increase in time delay near the 2s threshold as compared to a nonrelativistic calculation. In the present work, a full RRPA calculation is studied to explore the interchannel coupling effects in the vicinity of the 1s threshold.

  16. Photonic-assisted multi-channel compressive sampling based on effective time delay pattern.

    PubMed

    Liang, Yunhua; Chen, Minghua; Chen, Hongwei; Lei, Cheng; Li, Pengxiao; Xie, Shizhong

    2013-11-01

    In this paper, a photonic-assisted multi-channel compressive sampling scheme is proposed with one pseudo-random binary sequence (PRBS) source and Wavelength Division Multiplexing-based time delay. Meanwhile, the restricted isometry property of sensing matrix determined by the optimized time delay pattern is analyzed. In experiment, a four-channel photonic-assisted system with 5-GHz bandwidth was set up, where four-channel PRBS signals were generated by adding fiber-induced constant time delays to four-wavelength modulated PRBS signal, and a signal composed of twenty tones was recovered faithfully with four analog-to-digital converters (ADCs) with only 120-MHz-bandwidth. PMID:24216795

  17. Anomalous pulse delay in microwave propagation: A plausible connection to the tunneling time

    NASA Astrophysics Data System (ADS)

    Ranfagni, A.; Fabeni, P.; Pazzi, G. P.; Mugnai, D.

    1993-08-01

    Measures of pulse delay in microwave propagation, in open air and for short distances (not much greater than 1 m), were made by using launcher and receiver horns. When these are facing each other we observe a delay time corresponding to a speed equal to c while, if the receiver horn is shifted or tilted with respect to the launcher horn, the delay time decreases showing a superluminal behavior. In other words the modulation phase shift, interpreted as a propagation time, turns out to be surprisingly smaller than the one relative to the light speed. This effect, which disappears for longer distances, is here interpreted on the basis of the existence of a special kind of evanescent waves (leaky waves). Just the presence of evanescent waves allows one to make a comparison with the tunneling processes where superluminal transport properties have been theoretically predicted.

  18. Bifurcation Analysis in an n-Dimensional Diffusive Competitive Lotka-Volterra System with Time Delay

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoyuan; Wei, Junjie

    2015-06-01

    In this paper, we investigate the stability and Hopf bifurcation of an n-dimensional competitive Lotka-Volterra diffusion system with time delay and homogeneous Dirichlet boundary condition. We first show that there exists a positive nonconstant steady state solution satisfying the given asymptotic expressions and establish the stability of the positive nonconstant steady state solution. Regarding the time delay as a bifurcation parameter, we explore the system that undergoes a Hopf bifurcation near the positive nonconstant steady state solution and derive a calculation method for determining the direction of the Hopf bifurcation. Finally, we cite the stability of a three-dimensional competitive Lotka-Volterra diffusion system with time delay to illustrate our conclusions.

  19. Security-enhanced chaos communication with time-delay signature suppression and phase encryption.

    PubMed

    Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2016-08-15

    A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data. PMID:27519064

  20. Evaluation of the Possibility of Using the Predicted Tropospheric Delays in Real Time Gnss Positioning

    NASA Astrophysics Data System (ADS)

    Kalita, J. Z.; Rzepecka, Z.; Krzan, G.

    2014-12-01

    Among many sources of errors that influence Global Navigation Satellite System (GNSS) observations, tropospheric delay is one of the most significant. It causes nonrefractive systematic bias in the observations on the level of several meters, depending on the atmospheric conditions. Tropospheric delay modelling plays an important role in precise positioning. The current models use numerical weather data for precise estimation of the parameters that are provided as a part of the Global Geodetic Observation System (GGOS). The purpose of this paper is to analyze the tropospheric data provided by the GGOS Atmosphere Service conducted by the Vienna University of Technology. There are predicted and final delay data available at the Service. In real time tasks, only the predicted values can be used. Thus it is very useful to study accuracy of the forecast delays. Comparison of data sets based on predicted and real weather models allows for conclusions concerning possibility of using the former for real time positioning applications. The predicted values of the dry tropospheric delay component, both zenith and mapped, can be safely used in real time PPP applications, but on the other hand, while using the wet predicted values, one should be very careful.

  1. Reprint of: The role of delay times in subcycle-resolved probe retardation measurements

    NASA Astrophysics Data System (ADS)

    Reislöhner, Jan; Pfeiffer, Adrian N.

    2016-08-01

    The delay in the nonlinear response of matter to intense laser pulses has been studied since a long time regarding its nuclear contribution. In contrast, the electronic part of the nonlinear response in wide-band-gap dielectrics, which is usually dominant, is not well explored regarding its delay, and previous studies have revealed that the timescale is below 1 fs. Here, the influence of delay times on the recently introduced method of subcycle-resolved probe retardation measurements is investigated using a simulation. In the model assumed, the electronic nonlinearity is divided into the third order Kerr effect and the plasma contribution due to conduction band population in the strong laser field. In the regime of close-to-collinear pump-probe geometries, the probe retardation shows both π- and 2π-oscillations in the pump-probe delay. Sub-femtosecond delay times influence the phase of the oscillations significantly, but it remains difficult to distinguish the influence of the Kerr response from the plasma contribution.

  2. Adaptive time-delayed stabilization of steady states and periodic orbits.

    PubMed

    Selivanov, Anton; Lehnert, Judith; Fradkov, Alexander; Schöll, Eckehard

    2015-01-01

    We derive adaptive time-delayed feedback controllers that stabilize fixed points and periodic orbits. First, we develop an adaptive controller for stabilization of a steady state by applying the speed-gradient method to an appropriate goal function and prove global asymptotic stability of the resulting system. For an example we show that the advantage of the adaptive controller over the nonadaptive one is in a smaller controller gain. Second, we propose adaptive time-delayed algorithms for stabilization of periodic orbits. Their efficiency is confirmed by local stability analysis. Numerical examples demonstrate the applicability of the proposed controllers. PMID:25679681

  3. Mathematical model describing the thyroids-pituitary axis with distributed time delays in hormone transportation

    NASA Astrophysics Data System (ADS)

    Neamţu, Mihaela; Stoian, Dana; Navolan, Dan Bogdan

    2014-12-01

    In the present paper we provide a mathematical model that describe the hypothalamus-pituitary-thyroid axis in autoimmune (Hashimoto's) thyroiditis. Since there is a spatial separation between thyroid and pituitary gland in the body, time is needed for transportation of thyrotropin and thyroxine between the glands. Thus, the distributed time delays are considered as both weak and Dirac kernels. The delayed model is analyzed regarding the stability and bifurcation behavior. The last part contains some numerical simulations to illustrate the effectiveness of our results and conclusions.

  4. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy

    PubMed Central

    Xu, Shihe; Wei, Xiangqing; Zhang, Fangwei

    2016-01-01

    A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations. PMID:27274763

  5. Adaptive time-delayed stabilization of steady states and periodic orbits

    NASA Astrophysics Data System (ADS)

    Selivanov, Anton; Lehnert, Judith; Fradkov, Alexander; Schöll, Eckehard

    2015-01-01

    We derive adaptive time-delayed feedback controllers that stabilize fixed points and periodic orbits. First, we develop an adaptive controller for stabilization of a steady state by applying the speed-gradient method to an appropriate goal function and prove global asymptotic stability of the resulting system. For an example we show that the advantage of the adaptive controller over the nonadaptive one is in a smaller controller gain. Second, we propose adaptive time-delayed algorithms for stabilization of periodic orbits. Their efficiency is confirmed by local stability analysis. Numerical examples demonstrate the applicability of the proposed controllers.

  6. Deriving the orbital properties of pulsators in binary systems through their light arrival time delays

    NASA Astrophysics Data System (ADS)

    Murphy, Simon J.; Shibahashi, Hiromoto

    2015-07-01

    We present the latest developments to the phase modulation method for finding binaries among pulsating stars. We demonstrate how the orbital elements of a pulsating binary star can be obtained analytically, that is, without converting time delays to radial velocities by numerical differentiation. Using the time delays directly offers greater precision, and allows the parameters of much smaller orbits to be derived. The method is applied to KIC 9651065, KIC 10990452 and KIC 8264492, and a set of the orbital parameters is obtained for each system. Radial velocity curves for these stars are deduced from the orbital elements thus obtained.

  7. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy.

    PubMed

    Xu, Shihe; Wei, Xiangqing; Zhang, Fangwei

    2016-01-01

    A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations. PMID:27274763

  8. Robust H∞ fuzzy control of a class of fuzzy bilinear systems with time-delay

    NASA Astrophysics Data System (ADS)

    Tsai, S.-H.; Li, T.-H. S.

    2008-02-01

    This paper presents robust H∞ fuzzy controllers for a class of T-S fuzzy bilinear systems (FBSs) with time-delay. First, the parallel distributed compensation (PDC) method is adopted to design a fuzzy controller which ensures the robust asymptotic stability of the FBS with time-delay and guarantees an H∞ norm bound constraint on disturbance attenuation. Based on the Schur complement and some variable transformation, the stability conditions of the overall fuzzy control system are formulated by linear matrix inequalities (LMIs). Finally, the validity and effectiveness of the proposed schemes are demonstrated by the simulation.

  9. Time delay of wave packets during their tunnelling through a quantum diode

    SciTech Connect

    Ivanov, N A; Skalozub, V V

    2014-04-28

    A modified saddle-point method is used to investigate the process of propagation of a wave packet through a quantum diode. A scattering matrix is constructed for the structure in question. The case of tunnelling of a packet with a Gaussian envelope through the diode is considered in detail. The time delay and the shape of the wave packet transmitted are calculated. The dependence of the delay time on the characteristics of the input packet and the internal characteristics of the quantum diode is studied. Possible applications of the results obtained are discussed. (laser applications and other topics in quantum electronics)

  10. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zeng, Chang-Yan; Tian, Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  11. Further improved stability criteria for uncertain T-S fuzzy systems with time-varying delay by (m,N)-delay-partitioning approach.

    PubMed

    Yang, Jun; Luo, Wen-Pin; Wang, Yong-Hu; Cheng, Jun

    2015-11-01

    This paper mainly focuses on the robust stability criteria for uncertain T-S fuzzy systems with time-varying delay by (m,N)-delay-partitioning approach. A modified augmented LKF is established by partitioning the delay in all integral terms. Via taking into account of (i) the relationship between each subinterval and time-varying delay and (ii) the independent upper bounds of the delay derivative in the various delay intervals, some new results on tighter bounding inequalities such as Peng-Park׳s integral inequality and Free-Matrix-based integral inequality are introduced to effectively reduce the enlargement in bounding the derivative of LKF as much as possible, therefore, significant less conservative results can be expected in terms of es and LMIs, which can be solved efficiently with the Matlab LMI toolbox. Furthermore, it is worth mentioning that, when the delay-partitioning number m is fixed, the conservatism is gradually reduced with the increase of another delay-partitioning number N, but without increasing any computing burden. Finally, two numerical examples are included to show that the proposed method is less conservative than existing ones. PMID:26365365

  12. The time-delayed inverted pendulum: implications for human balance control.

    PubMed

    Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W; Campbell, Sue Ann

    2009-06-01

    The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, tau(n), be greater than a critical delay tau(c) that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when theta exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise. PMID:19566270

  13. The time-delayed inverted pendulum: Implications for human balance control

    NASA Astrophysics Data System (ADS)

    Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann

    2009-06-01

    The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.

  14. Resonant control of stochastic spatiotemporal dynamics in a tunnel diode by multiple time-delayed feedback.

    PubMed

    Majer, Niels; Schöll, Eckehard

    2009-01-01

    We study the control of noise-induced spatiotemporal current density patterns in a semiconductor nanostructure (double-barrier resonant tunneling diode) by multiple time-delayed feedback. We find much more pronounced resonant features of noise-induced oscillations compared to single time feedback, rendering the system more sensitive to variations in the delay time tau . The coherence of noise-induced oscillations measured by the correlation time exhibits sharp resonances as a function of tau , and can be strongly increased by optimal choices of tau . Similarly, the peaks in the power spectral density are sharpened. We provide analytical insight into the control mechanism by relating the correlation times and mean frequencies of noise-induced breathing oscillations to the stability properties of the deterministic stationary current density filaments under the influence of the control loop. Moreover, we demonstrate that the use of multiple time delays enlarges the regime in which the deterministic dynamical properties of the system are not changed by delay-induced bifurcations. PMID:19257003

  15. Validation of an operational product to determine L1 to Earth propagation time delays

    NASA Astrophysics Data System (ADS)

    Cash, M. D.; Witters Hicks, S.; Biesecker, D. A.; Reinard, A. A.; Koning, C. A.; Weimer, D. R.

    2016-02-01

    We describe the development and validation of an operational space weather tool to forecast propagation delay times between L1 and Earth using the Weimer and King (2008) tilted phase front technique. A simple flat plane convection delay method is currently used by the NOAA Space Weather Prediction Center (SWPC) to propagate the solar wind from a monitoring satellite located at L1 to a point upstream of the magnetosphere. This technique assumes that all observed solar wind discontinuities, such as interplanetary shocks and interplanetary coronal mass ejection boundaries, are in a flat plane perpendicular to the Sun-Earth line traveling in the GSE X direction at the observed solar wind velocity. In reality, these phase plane fronts can have significantly tilted orientations, and by relying on a ballistic propagation method, delay time errors of ±15 min are common. In principle, the propagation time delay product presented here should more accurately predict L1 to Earth transit times by taking these tilted phase plane fronts into account. This algorithm, which is based on the work of Weimer and King (2008), is currently running in real time in test mode at SWPC as part of the SWPC test bed. We discuss the current algorithm performance, and via our detailed validation study, show that there is no significant difference between the two propagation methods when run in a real-time operational environment.

  16. Time delay between photoemission from the 2p and 2s subshells of neon

    SciTech Connect

    Moore, L. R.; Lysaght, M. A.; Parker, J. S.; Hart, H. W. van der; Taylor, K. T.

    2011-12-15

    The R-matrix incorporating time (RMT) method is a method developed recently for solving the time-dependent Schroedinger equation for multielectron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond xuv pulse. Time delays due to xuv pulses in the range 76-105 eV are presented. For an xuv pulse at the experimentally relevant energy of 105.2 eV, we calculate the time delay to be 10.2{+-}1.3 attoseconds (as), somewhat larger than estimated by other theoretical calculations, but still a factor of 2 smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modeling correlated-electron dynamics within the neon atom and the residual Ne{sup +} ion. A time delay of 14.5{+-}1.5 as was observed, compared to a 16.7{+-}1.5 as result using a single-configuration representation of the residual Ne{sup +} ion.

  17. Application of fuzzy adaptive control to a MIMO nonlinear time-delay pump-valve system.

    PubMed

    Lai, Zhounian; Wu, Peng; Wu, Dazhuan

    2015-07-01

    In this paper, a control strategy to balance the reliability against efficiency is introduced to overcome the common off-design operation problem in pump-valve systems. The pump-valve system is a nonlinear multi-input-multi-output (MIMO) system with time delays which cannot be accurately measured but can be approximately modeled using Bernoulli Principle. A fuzzy adaptive controller is applied to approximate system parameters and achieve the control of delay-free model since the system model is inaccurate and the direct feedback linearization method cannot be applied. An extended Smith predictor is introduced to compensate time delays of the system using the inaccurate system model. The experiment is carried out to verify the effectiveness of the control strategy whose results show that the control performance is well achieved. PMID:25681018

  18. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    NASA Astrophysics Data System (ADS)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.; Hong, E. J.; Kim, S. B.; Yoo, S. J.; Ryu, S.

    2016-08-01

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  19. Improved stability conditions for uncertain neutral-type systems with time-varying delays

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Feng, Zhiguang; Sun, Guanghui

    2016-06-01

    This paper investigates the robust stability problem for a class of uncertain neutral-type delayed systems. The systems under consideration contain parameter uncertainties and time-varying delays. We aim at designing less conservative robust stability criteria for such systems. A new second-order reciprocally convex inequality is first proposed in order to deal with double integral terms. Then, by constructing a new Lyapunov- Krasovskii functional and employing the improved Wirtinger-based integral inequality and the reciprocally convex combination approaches, novel stability criteria are obtained. Moreover, the stability conditions for standard time-delay system are obtained as by-product results. Comparisons in three numerical examples illustrate the effectiveness of our results.

  20. Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control.

    PubMed

    Li, Y L; Xu, D L; Fu, Y M; Zhou, J X

    2011-09-01

    This paper presents a systematic study on the stability of a two-dimensional vibration isolation floating raft system with a time-delayed feedback control. Based on the generalized Sturm criterion, the critical control gain for the delay-independent stability region and critical time delays for the stability switches are derived. The critical conditions can provide a theoretical guidance of chaotification design for line spectra reduction. Numerical simulations verify the correctness of the approach. Bifurcation analyses reveal that chaotification is more likely to occur in unstable region defined by these critical conditions, and the stiffness of the floating raft and mass ratio are the sensitive parameters to reduce critical control gain. PMID:21974650

  1. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    PubMed Central

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  2. Subwavelength grating enabled on-chip ultra-compact optical true time delay line.

    PubMed

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R

    2016-01-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024

  3. Subwavelength grating enabled on-chip ultra-compact optical true time delay line

    NASA Astrophysics Data System (ADS)

    Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.

    2016-07-01

    An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.

  4. Adding connections can hinder network synchronization of time-delayed oscillators

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Pade, Jan Philipp; Pereira, Tiago; Murphy, Thomas E.; Roy, Rajarshi

    2015-08-01

    We provide experimental evidence that adding links to a network's structure can hinder synchronization. Our experiments and theoretical analysis of networks of time-delayed optoelectronic oscillators uncover the scenario of loss of identical synchronization upon connectivity modifications. This counterintuitive loss of synchronization can occur even when the network structure is improved from a connectivity perspective. Utilizing a master stability function approach, we show that a time delay in the coupling of nodes plays a crucial role in determining a network's synchronization properties and that this effect is more prominent in directed networks than in undirected networks, especially for large networks. Our results provide insight into the impact of structural modifications in networks with equal coupling delays and open the path to design changes to the network connectivity to sustain and control the performance of real-world networks.

  5. Continuous neural identifier for uncertain nonlinear systems with time delays in the input signal.

    PubMed

    Alfaro-Ponce, M; Argüelles, A; Chairez, I

    2014-12-01

    Time-delay systems have been successfully used to represent the complexity of some dynamic systems. Time-delay is often used for modeling many real systems. Among others, biological and chemical plants have been described using time-delay terms with better results than those models that have not consider them. However, getting those models represented a challenge and sometimes the results were not so satisfactory. Non-parametric modeling offered an alternative to obtain suitable and usable models. Continuous neural networks (CNN) have been considered as a real alternative to provide models over uncertain non-parametric systems. This article introduces the design of a specific class of non-parametric model for uncertain time-delay system based on CNN considering the so-called delayed learning laws analysis. The convergence analysis as well as the learning laws were produced by means of a Lyapunov-Krasovskii functional. Three examples were developed to demonstrate the effectiveness of the modeling process forced by the identifier proposed in this study. The first example was a simple nonlinear model used as benchmark example. The second example regarded the human immunodeficiency virus dynamic behavior is used to show the performance of the suggested non-parametric identifier based on CNN for no fictitious neither academic models. Finally, a third example describing the evolution of hepatitis B virus served to test the identifier presented in this study and was also useful to provide evidence of its superior performance against a non-delayed identifier based on CNN. PMID:25150629

  6. Diversity and time delays induce resonance in a modular neuronal network

    NASA Astrophysics Data System (ADS)

    Jia, Y. B.; Yang, X. L.; Kurths, J.

    2014-12-01

    This paper focuses on the resonance dynamics of a modular neuronal network consisting of several small-world subnetworks. The considered network is composed of delay-coupled FitzHugh-Nagumo (FHN) neurons, whose characteristic parameters present diversity in the form of quenched noise. Our numerical results indicate that when such a network is subjected to an external subthreshold periodic signal, its collective response is optimized for an intermediate level of diversity, namely, a resonant behavior can be induced by an appropriate level of diversity. How the probabilities of intramodule and intermodule connections, as well as the number of subnetworks influence the diversity-induced resonance are also discussed. Further, conclusive evidences demonstrate the nontrivial role of time-delayed coupling on the diversity-induced resonance properties. Especially, multiple resonance is obviously detected when time delays are located at integer multiples of the oscillation period of the signal. Moreover, the phenomenon of fine-tuned delays in inducing multiple resonance remains when diversity is within an intermediate range. Our findings have implications that neural systems may profit from their generic diversity and delayed coupling to optimize the response to external stimulus.

  7. Ultra-compact optical true time delay device for wideband phased array radars.

    SciTech Connect

    Spahn, Olga Blum; Rabb, David J.; Cowan, William D.; McCray, David L.; Rowe, Delton, J.; Flannery, Martin R.; Yi, Allen Y.; Ho, James G.; Anderson, Betty Lise

    2010-02-01

    An ultra-compact optical true time delay device is demonstrated that can support 112 antenna elements with better than six bits of delay in a volume 16-inch x 5-inch x 4-inch including the box and electronics. Free-space beams circulate in a White cell, overlapping in space to minimize volume. The 18 mirrors are slow-tool diamond turned on two substrates, one at each end, to streamline alignment. Pointing accuracy of better than 10 {micro}rad is achieved, with surface roughness {approx}45 nm rms. A MEMS tip-style mirror array selects among the paths for each beam independently, requiring {approx}100 {micro}s to switch the whole array. The micromirrors have 1.4{sup o} tip angle and three stable states (east, west, and flat). The input is a fiber-and-microlens array, whose output spots are re-imaged multiple times in the White cell, striking a different area of the single MEMS chip in each of 10 bounces. The output is converted to RF by an integrated InP wideband optical combiner detector array. Delays were accurate to within 4% (shortest delay) to 0.03% (longest mirror train). The fiber-to-detector insertion loss is 7.82 dB for the shortest delay path.

  8. Development of a subway operation incident delay model using accelerated failure time approaches.

    PubMed

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. PMID:25171521

  9. Ultra-compact optical true time delay device for wideband phased array radars

    NASA Astrophysics Data System (ADS)

    Anderson, Betty Lise; Ho, James G.; Cowan, William D.; Spahn, Olga B.; Yi, Allen Y.; Flannery, Martin R.; Rowe, Delton J.; McCray, David L.; Rabb, David J.; Chen, Peter

    2010-04-01

    An ultra-compact optical true time delay device is demonstrated that can support 112 antenna elements with better than six bits of delay in a volume 16"×5"×4" including the box and electronics. Free-space beams circulate in a White cell, overlapping in space to minimize volume. The 18 mirrors are slow-tool diamond turned on two substrates, one at each end, to streamline alignment. Pointing accuracy of better than 10μrad is achieved, with surface roughness ~45 nm rms. A MEMS tip-style mirror array selects among the paths for each beam independently, requiring ~100 μs to switch the whole array. The micromirrors have 1.4° tip angle and three stable states (east, west, and flat). The input is a fiber-and-microlens array, whose output spots are re-imaged multiple times in the White cell, striking a different area of the single MEMS chip in each of 10 bounces. The output is converted to RF by an integrated InP wideband optical combiner detector array. Delays were accurate to within 4% (shortest delay) to 0.03% (longest mirror train). The fiber-to-detector insertion loss is 7.82 dB for the shortest delay path.

  10. Numerical analysis and simulation of diffusion-free ignition delay times of unreacted pockets

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan

    2012-11-01

    Volumes of unreacted fluid surrounded by combustion products are observed in Deflagration-to-Detonation Transition (DDT) and unstable cellular detonations. The presence of this unburned reactant is typical of mixtures with large activation energies. Several different scales are involved in the consumption of unreacted pockets including the autoignition, diffusion, and acoustic times. Transport effects can influence the consumption rate of reactant within these pockets. In particular diffusion plays a major role when activations energies are large. In contrast, it has been shown that diffusion can play a minor role when reactive mixtures have small to moderately large activation energies. The current work focuses on the limit when diffusion effects are negligible and examines the dependence of delay time on initial temperatures and sizes. It is demonstrated that the ignition delay time is a function of both the initial temperature and the volumetric dimension of the fluid. Furthermore, the ignition delay time lies on a continuum scale with the constant pressure and constant volume ignition delay times demarcating the limiting extremes.

  11. Introducing time delay in the evolution of new technology: the case study of nanotechnology

    NASA Astrophysics Data System (ADS)

    Georgalis, Evangelos E.; Aifantis, Elias C.

    2013-12-01

    Starting with Feynman's "There's Plenty of Room at the Bottom" prophetic lecture at Caltech in the 1960s, the term "nanotechnology" was first coined in the scientific literature in the 1980s. This was followed by the unprecedented growth in the corresponding scientific field in 2000 due to the financial incentive provided by President Clinton in the US, followed up by similar efforts in Europe, Japan, China and Russia. Today, nanotechnology has become a driving force for economic development, with applications in all fields of engineering, information technology, transport and energy, as well as biology and medicine. Thus, it is important to forecast its future growth and evolution on the basis of two different criteria: (1) the government and private capital invested in related activities, and (2) the number of scientific publications and popular articles dedicated to this field. This article aims to extract forecasts on the evolution of nanotechnology, using the standard logistic equation that result in familiar sigmoid curves, as well as to explore the effect of time delay on its evolution. Time delay is commonly known from previous biological and ecological models, in which time lag is either already known or can be experimentally measured. In contrast, in the case of a new technology, we must first define the method for determining time delay and then interpret its existence and role. Then we describe the implications that time delay may have on the stability of the sigmoidal behavior of nanotechnology evolution and on the related oscillations that may appear.

  12. Effect of delayed polymerization time and bracket manipulation on orthodontic bracket bonding

    NASA Astrophysics Data System (ADS)

    Ponikvar, Michael J.

    This study examined the effect of bracket manipulation in combination with delayed polymerization times on orthodontic bracket shear bond strength and degree of resin composite conversion. Orthodontics brackets were bonded to extracted third molars in a simulated oral environment after a set period of delayed polymerization time and bracket manipulation. After curing the bracket adhesive, each bracket underwent shear bond strength testing followed by micro-Raman spectroscopy analysis to measure the degree of conversion of the resin composite. Results demonstrated the shear bond strength and the degree of conversion of ceramic brackets did not vary over time. However, with stainless steel brackets there was a significant effect (p ≤ 0.05) of delay time on shear bond strength between the 0.5 min and 10 min bracket groups. In addition, stainless steel brackets showed significant differences related to degree of conversion over time between the 0.5 min and 5 min groups, in addition to the 0.5 min and 10 min groups. This investigation suggests that delaying bracket adhesive polymerization up to a period of 10 min then adjusting the orthodontic bracket may increase both shear bond strength and degree of conversion of stainless steel brackets while having no effect on ceramic brackets.

  13. A new approach for teleoperation rendezvous and docking with time delay

    NASA Astrophysics Data System (ADS)

    Zhou, JianYong; Jiang, ZiCheng; Tang, GuoJin

    2012-02-01

    Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target. The inherent teleoperation time delay is a rigorous problem, especially when the chaser is teleoperated on the ground. To eliminate the effect of time delay, a new approach for teleoperation RVD is studied. The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD; the relative motion of the chaser is predicted based on the C-W equation; and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction. Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback, and consumes less time and fuel. The developed approach also solves the time delay problem effectively. Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.

  14. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling

    NASA Astrophysics Data System (ADS)

    Cepeda-Gomez, Rudy; Olgac, Nejat

    2016-01-01

    We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the 'spectral delay space (SDS)'. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the 'delay scheduling', which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.

  15. Buoyancy-induced time delays in Babcock-Leighton flux-transport dynamo models

    NASA Astrophysics Data System (ADS)

    Jouve, L.; Proctor, M. R. E.; Lesur, G.

    2010-09-01

    Context. The Sun is a magnetic star whose cyclic activity is thought to be linked to internal dynamo mechanisms. A combination of numerical modelling with various levels of complexity is an efficient and accurate tool to investigate such intricate dynamical processes. Aims: We investigate the role of the magnetic buoyancy process in 2D Babcock-Leighton dynamo models, by modelling more accurately the surface source term for poloidal field. Methods: To do so, we reintroduce in mean-field models the results of full 3D MHD calculations of the non-linear evolution of a rising flux tube in a convective shell. More specifically, the Babcock-Leighton source term is modified to take into account the delay introduced by the rise time of the toroidal structures from the base of the convection zone to the solar surface. Results: We find that the time delays introduced in the equations produce large temporal modulation of the cycle amplitude even when strong and thus rapidly rising flux tubes are considered. Aperiodic modulations of the solar cycle appear after a sequence of period doubling bifurcations typical of non-linear systems. The strong effects introduced even by small delays is found to be due to the dependence of the delays on the magnetic field strength at the base of the convection zone, the modulation being much less when time delays remain constant. We do not find any significant influence on the cycle period except when the delays are made artificially strong. Conclusions: A possible new origin of the solar cycle variability is here revealed. This modulated activity and the resulting butterfly diagram are then more compatible with observations than what the standard Babcock-Leighton model produces.

  16. Using convolutional decoding to improve time delay and phase estimation in digital communications

    DOEpatents

    Ormesher, Richard C.; Mason, John J.

    2010-01-26

    The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.

  17. A Comparison of Simultaneous Prompting and Constant Time Delay Procedures in Teaching State Capitals

    ERIC Educational Resources Information Center

    Head, Kenneth David; Collins, Belva C.; Schuster, John W.; Ault, Melinda Jones

    2011-01-01

    This investigation compared the effectiveness and efficiency of constant time delay (CTD) and simultaneous prompting (SP) procedures in teaching discrete social studies facts to 4 high school students with learning and behavior disorders using an adapted alternating treatments design nested within a multiple probe design. The results indicated…

  18. 46 CFR 95.16-45 - Pre-discharge alarms and time delay devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Last at least 20 seconds; (ii) Be approved by the Officer in Charge, Marine Inspection during system... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-45 Pre-discharge alarms and time delay devices. (a) Each system protecting a space with greater than 6,000...

  19. 46 CFR 95.16-45 - Pre-discharge alarms and time delay devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Last at least 20 seconds; (ii) Be approved by the Officer in Charge, Marine Inspection during system... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-45 Pre-discharge alarms and time delay devices. (a) Each system protecting a space with greater than 6,000...

  20. 46 CFR 95.16-45 - Pre-discharge alarms and time delay devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Last at least 20 seconds; (ii) Be approved by the Officer in Charge, Marine Inspection during system... VESSELS FIRE PROTECTION EQUIPMENT Fixed Clean Agent Gas Extinguishing Systems, Details § 95.16-45 Pre-discharge alarms and time delay devices. (a) Each system protecting a space with greater than 6,000...