Sample records for empirical interatomic potentials

  1. Systematic approach to developing empirical interatomic potentials for III-N semiconductors

    NASA Astrophysics Data System (ADS)

    Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji

    2016-05-01

    A systematic approach to the derivation of empirical interatomic potentials is developed for III-N semiconductors with the aid of ab initio calculations. The parameter values of empirical potential based on bond order potential are determined by reproducing the cohesive energy differences among 3-fold coordinated hexagonal, 4-fold coordinated zinc blende, wurtzite, and 6-fold coordinated rocksalt structures in BN, AlN, GaN, and InN. The bond order p is successfully introduced as a function of the coordination number Z in the form of p = a exp(-bZn ) if Z ≤ 4 and p = (4/Z)α if Z ≥ 4 in empirical interatomic potential. Moreover, the energy difference between wurtzite and zinc blende structures can be successfully evaluated by considering interaction beyond the second-nearest neighbors as a function of ionicity. This approach is feasible for developing empirical interatomic potentials applicable to a system consisting of poorly coordinated atoms at surfaces and interfaces including nanostructures.

  2. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  3. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  4. The ReaxFF reactive force-field: Development, applications, and future directions

    DOE PAGES

    Senftle, Thomas; Hong, Sungwook; Islam, Md Mahbubul; ...

    2016-03-04

    The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFFmore » method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. As a result, this article provides an overview of the development, application, and future directions of the ReaxFF method.« less

  5. Empirical potential for molecular simulation of graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Bourque, Alexander J.; Rutledge, Gregory C.

    2018-04-01

    A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ˜15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.

  6. Development of a machine learning potential for graphene

    NASA Astrophysics Data System (ADS)

    Rowe, Patrick; Csányi, Gábor; Alfè, Dario; Michaelides, Angelos

    2018-02-01

    We present an accurate interatomic potential for graphene, constructed using the Gaussian approximation potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data—and amongst the empirical potentials themselves—the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].

  7. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    PubMed

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.

  8. Computer modelling of solid alkali metal carboxylates

    NASA Astrophysics Data System (ADS)

    Barreto, L. S.; Mort, K. A.; Jackson, R. A.; Alves, O. L.

    2000-11-01

    A computational study of solid lithium acetate dihydrate and anhydrous sodium acetate is presented. Interatomic potentials are obtained by empirical fitting to experimental structural data for both materials and the resulting potentials were found to be transferable to different phases of the same materials, giving good agreement with the experimental structure.

  9. A Relationship Between the 2-body Energy of Kaxiras Pandey and Pearson Takai Halicioglu Tiller Potential Functions

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2004-01-01

    A parametric relationship between the Pearson Takai Halicioglu Tiller (PTHT) and the Kaxiras Pandey (KP) empirical potential energy functions is developed for the case of 2-body interaction. The need for such relationship arises when preferred parametric data and adopted software correspond to different potential functions. The analytical relationship was obtained by equating the potential functions' derivatives at zeroth, first and second order with respect to the interatomic distance at the equilibrium bond length, followed by comparison of coefficients in the repulsive and attractive terms. Plots of non-dimensional 2-body energy versus the nondimensional interatomic distance verified the analytical relationships developed herein. The discrepancy revealed in theoretical plots suggests that the 2-body PTHT and KP potentials are more suitable for curve-fitting "softer" and "harder" bonds respectively.

  10. An empirical potential for simulating vacancy clusters in tungsten.

    PubMed

    Mason, D R; Nguyen-Manh, D; Becquart, C S

    2017-12-20

    We present an empirical interatomic potential for tungsten, particularly well suited for simulations of vacancy-type defects. We compare energies and structures of vacancy clusters generated with the empirical potential with an extensive new database of values computed using density functional theory, and show that the new potential predicts low-energy defect structures and formation energies with high accuracy. A significant difference to other popular embedded-atom empirical potentials for tungsten is the correct prediction of surface energies. Interstitial properties and short-range pairwise behaviour remain similar to the Ackford-Thetford potential on which it is based, making this potential well-suited to simulations of microstructural evolution following irradiation damage cascades. Using atomistic kinetic Monte Carlo simulations, we predict vacancy cluster dissociation in the range 1100-1300 K, the temperature range generally associated with stage IV recovery.

  11. Thermal transport in UO 2 with defects and fission products by molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO 2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO 2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U 5+ and Zr 4+ in UO 2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then correctedmore » for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO 2+x samples.« less

  12. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less

  13. Assessment of empirical potential for MOX nuclear fuels and thermomechanical properties

    NASA Astrophysics Data System (ADS)

    Balboa, Hector; Van Brutzel, Laurent; Chartier, Alain; Le Bouar, Yann

    2017-11-01

    We assess five empirical interatomic potentials in the approximation of rigid ions and pair interactions for the (U1-y,Puy)O solid solution. The assessment compares available experimental data and Fink's recommendation with simulations on: the structural, thermodynamics, and mechanical properties over the full range of plutonium composition, from pure UO2 to pure PuO2 and for temperatures ranging from 300 K to the melting point. The best results are obtained by potentials referred as Cooper and Potashnikov potentials. The first one reproduces more accurately recommendations for the thermodynamics and mechanical properties exhibiting ductile-like behaviour during crack propagation, while the second one gives brittle behaviour at low temperature.

  14. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method

    NASA Astrophysics Data System (ADS)

    Etesami, S. Alireza; Asadi, Ebrahim

    2018-01-01

    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  15. Interatomic potentials in condensed matter via the maximum-entropy principle

    NASA Astrophysics Data System (ADS)

    Carlsson, A. E.

    1987-09-01

    A general method is described for the calculation of interatomic potentials in condensed-matter systems by use of a maximum-entropy Ansatz for the interatomic correlation functions. The interatomic potentials are given explicitly in terms of statistical correlation functions involving the potential energy and the structure factor of a ``reference medium.'' Illustrations are given for Al-Cu alloys and a model transition metal.

  16. Critical assessment of Pt surface energy - An atomistic study

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  17. First-principles study of point defects at a semicoherent interface

    DOE PAGES

    Metsanurk, E.; Tamm, A.; Caro, A.; ...

    2014-12-19

    Most of the atomistic modeling of semicoherent metal-metal interfaces has so far been based on the use of semiempirical interatomic potentials. Here, we show that key conclusions drawn from previous studies are in contradiction with more precise ab-initio calculations. In particular we find that single point defects do not delocalize, but remain compact near the interfacial plane in Cu-Nb multilayers. Lastly, we give a simple qualitative explanation for this difference on the basis of the well known limited transferability of empirical potentials.

  18. Thermal conductivity of silicon using reverse non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Talaat, Khaled; Cowen, Benjamin J.

    2018-05-01

    Simulations are performed using the reverse non-equilibrium molecular dynamics (rNEMD) method and the Stillinger-Weber (SW) potential to determine the input parameters for achieving ±1% convergence of the calculated thermal conductivity of silicon. These parameters are then used to investigate the effects of the interatomic potentials of SW, Tersoff II, Environment Dependent Interatomic Potential (EDIP), Second Nearest Neighbor, Modified Embedded-Atom Method (MEAM), and Highly Optimized Empirical Potential MEAM on determining the bulk thermal conductivity as a function of temperature (400-1000 K). At temperatures > 400 K, data collection and swap periods of 15 ns and 150 fs, system size ≥6 × 6 UC2 and system lengths ≥192 UC are adequate for ±1% convergence with all potentials, regardless of the time step size (0.1-0.5 fs). This is also true at 400 K, except for the SW potential, which requires a data collection period ≥30 ns. The calculated bulk thermal conductivities using the rNEMD method and the EDIP potential are close to, but lower than experimental values. The 10% difference at 400 K increases gradually to 20% at 1000 K.

  19. Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks

    The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the View the MathML source symmetrical tilt S5 and the View the MathML source symmetrical tilt S3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core–shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The S3 boundary was found to be more prone to fracture than the S5 one, indicated bymore » a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.« less

  20. Phonon optimized interatomic potential for aluminum

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  1. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  2. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ng, T. Y.; Yeak, S. H.; Liew, K. M.

    2008-02-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.

  3. Lattice Stability and Interatomic Potential of Non-equilibrium Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Mo, M.; Soulard, L.; Recoules, V.; Hering, P.; Tsui, Y. Y.; Ng, A.; Glenzer, S. H.

    2017-10-01

    Interatomic potential is central to the calculation and understanding of the properties of matter. A manifestation of interatomic potential is lattice stability in the solid-liquid transition. Recently, we have used frequency domain interferometry (FDI) to study the disassembly of ultrafast laser heated warm dense gold nanofoils. The FDI measurement is implemented by a spatial chirped single-shot technique. The disassembly of the sample is characterized by the change in phase shift of the reflected probe resulted from hydrodynamic expansion. The experimental data is compared with the results of two-temperature molecular dynamic simulations based on a highly optimized embedded-atom-method (EAM) interatomic potential. Good agreement is found for absorbed energy densities of 0.9 to 4.3MJ/kg. This provides the first demonstration of the applicability of an EAM interatomic potential in the non-equilibrium warm dense matter regime. The MD simulations also reveal the critical role of pressure waves in solid-liquid transition in ultrafast laser heated nanofoils. This work is supported by DOE Office of Science, Fusion Energy Science under FWP 100182, and SLAC LDRD program.

  4. Diatomic interhalogens - Systematics and implications of spectroscopic interatomic potentials and curve crossings

    NASA Technical Reports Server (NTRS)

    Child, M. S.; Bernstein, R. B.

    1973-01-01

    Spectroscopically derived potential curves for the low-lying excited states of homonuclear and heteronuclear diatomic interhalogens are systematized by the spin-orbit state of their dissociation products. The implications of spectroscopic interatomic potentials and curve crossings are discussed.

  5. OpenKIM - Building a Knowledgebase of Interatomic Models

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Tadmor, Ellad; Elliott, Ryan; Wennblom, Trevor; Alemi, Alexander; Chen, Yan-Jiun; Karls, Daniel; Ludvik, Adam; Sethna, James

    2014-03-01

    The Knowledgebase of Interatomic Models (KIM) is an effort by the computational materials community to provide a standard interface for the development, characterization, and use of interatomic potentials. The KIM project has developed an API between simulation codes and interatomic models written in several different languages including C, Fortran, and Python. This interface is already supported in popular simulation environments such as LAMMPS and ASE, giving quick access to over a hundred compatible potentials that have been contributed so far. To compare and characterize models, we have developed a computational processing pipeline which automatically runs a series of tests for each model in the system, such as phonon dispersion relations and elastic constant calculations. To view the data from these tests, we created a rich set of interactive visualization tools located online. Finally, we created a Web repository to store and share these potentials, tests, and visualizations which can be found at https://openkim.org along with futher information.

  6. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/˜knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery.

  7. Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface

    PubMed Central

    Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao; Becker, Chandler; Hennig, Richard G.; Tavazza, Francesca

    2017-01-01

    Classical empirical potentials/force-fields (FF) provide atomistic insights into material phenomena through molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic evaluation of materials properties using such potentials and, especially, an easy-to-use user-interface for their comparison is still lacking. To address this deficiency, we computed energetics and elastic properties of variety of materials such as metals and ceramics using a wide range of empirical potentials and compared them to density functional theory (DFT) as well as to experimental data, where available. The database currently consists of 3248 entries including energetics and elastic property calculations, and it is still increasing. We also include computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 materials and 116 force-fields. In addition, both the complete database and the software coding used in the process have been released for public use online (presently at http://www.ctcms.nist.gov/∼knc6/periodic.html) in a user-friendly way designed to enable further material design and discovery. PMID:28140407

  8. Development of interatomic potentials appropriate for simulation of devitrification of Al 90Sm 10 alloy

    DOE PAGES

    Mendelev, M. I.; Zhang, F.; Ye, Z.; ...

    2015-04-23

    In this study, a semi-empirical potential for the Al 90Sm 10 alloy is presented. The potential provides satisfactory reproduction of pure Al properties, the formation energies of a set of Al–Sm crystal phases with Sm content about 10%, and the structure of the liquid Al 90Sm 10 alloy. During molecular dynamics simulation in which the liquid alloy is cooled at a rate of 10 10 K/s, the developed potential produces a glass structure with lower ab initio energy than that produced by ab initio molecular dynamics (AIMD) itself using a typical AIMD cooling rate of 8 ∙10 13 K/s. Basedmore » on these facts the developed potential should be suitable for simulations of phase transformations in the Al 90Sm 10 alloy.« less

  9. New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys

    NASA Astrophysics Data System (ADS)

    Dickel, Doyl E.; Baskes, Michael I.; Aslam, Imran; Barrett, Christopher D.

    2018-06-01

    Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg–Al–Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg–Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.

  10. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Ito, Tomonori; Suski, Tadeusz; Kumagai, Yoshinao; Kakimoto, Koichi; Koukitu, Akinori

    2017-07-01

    The composition pulling effect in metalorganic vapor-phase InGaN epitaxy was theoretically investigated by thermodynamic analysis. The excess energies of biaxial-strained In x Ga1- x N were numerically calculated using empirical interatomic potentials considering different situations: (i) coherent growth on GaN(0001), (ii) coherent growth on In0.2Ga0.8N(0001), and (iii) bulk growth. Using the excess energies, the excess chemical potentials of InN and GaN alloys were computed. Our results show that compressive strain suppresses In incorporation, whereas tensile strain promotes it. Moreover, assuming chemical equilibrium, the relationship between the solid composition and the growth conditions was predicted. The results successfully reproduced the typical composition pulling effect.

  11. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen

    2016-06-01

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12, and C44, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.

  12. A fitting empirical potential for NiTi alloy and its application

    NASA Astrophysics Data System (ADS)

    Ren, Guowu; Tang, Tiegang; Sehitoglu, Huseyin

    Due to its superelastic behavior, NiTi shape memory alloy receives considerable attentions over a wide range of industrial and commercial applications. Limited to its complex structural transformation and multiple variants, semiempirical potentials for performing large-scale molecular dynamics simulations to investigate the atomistic mechanical process, are very few. In this work, we construct a new interatomic potential for the NiTi alloy by fitting to experimental or ab initio data. The fitting potential correctly predicts the lattice parameter, structural stability, equation of state for cubic B2(austenite) and monoclinic B19'(martensite) phases. In particular the elastic properties(three elastic constants for B2 and thirteen ones for B19') are in satisfactory agreement with the experiments or ab initio calculations. Furthermore, we apply this potential to conduct the molecular dynamics simulations of the mechanical behavior for NiTi alloy and the results capture its reversible transformation.

  13. Critical length scale controls adhesive wear mechanisms

    PubMed Central

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  14. Development of an inter-atomic potential for the Pd-H binary system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Jonathan A.; Hoyt, Jeffrey John; Leonard, Francois Leonard

    2007-09-01

    Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason formore » this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.« less

  15. Atomicrex—a general purpose tool for the construction of atomic interaction models

    NASA Astrophysics Data System (ADS)

    Stukowski, Alexander; Fransson, Erik; Mock, Markus; Erhart, Paul

    2017-07-01

    We introduce atomicrex, an open-source code for constructing interatomic potentials as well as more general types of atomic-scale models. Such effective models are required to simulate extended materials structures comprising many thousands of atoms or more, because electronic structure methods become computationally too expensive at this scale. atomicrex covers a wide range of interatomic potential types and fulfills many needs in atomistic model development. As inputs, it supports experimental property values as well as ab initio energies and forces, to which models can be fitted using various optimization algorithms. The open architecture of atomicrex allows it to be used in custom model development scenarios beyond classical interatomic potentials while thanks to its Python interface it can be readily integrated e.g., with electronic structure calculations or machine learning algorithms.

  16. SNAP: Automated Generation of High-Accuracy Interatomic Potentials using Quantum Data

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Wood, Mitchell; Phillpot, Simon

    Molecular dynamics simulation is a powerful computational method for bridging between macroscopic continuum models and quantum models treating a few hundred atoms, but it is limited by the accuracy of the interatomic potential. Sound physical and chemical understanding have led to good potentials for certain systems, but it is difficult to extend them to new materials and properties. The solution is obvious but challenging: develop more complex potentials that reproduce large quantum datasets. The growing availability of large data sets has made it possible to use automated machine-learning approaches for interatomic potential development. In the SNAP approach, the interatomic potential depends on a very general set of atomic neighborhood descriptors, based on the bispectrum components of the density projected onto the surface of the unit 3-sphere. Previously, this approach was demonstrated for tantalum, reproducing the screw dislocation Peierls barrier. In this talk, it will be shown that the SNAP method is capable of reproducing a wide range of energy landscapes relevant to diverse material science applications: i) point defects in indium phosphide, ii) stability of tungsten surfaces at high temperatures, and iii) formation of intrinsic defects in uranium. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energys National Nuclear Security Admin. under contract DE-AC04-94AL85000.

  17. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen, E-mail: zhangyu@missouri.edu

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since investigations on the mechanical behavior of materials at micro/nanoscale have been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum, and nickel interatomic potentials at room temperature which is considered asmore » the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology, as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C{sub 11}, C{sub 12}, and C{sub 44}, were found for Cu, Al, and Ni cubic single crystals. Voigt-Reuss-Hill approximation was then implemented to convert elastic constants of the single crystals into isotropic polycrystalline elastic moduli including bulk modulus, shear modulus, and Young's modulus as well as Poisson's ratio. Simulation results from massive molecular dynamic were compared with available experimental data in the literature to justify the robustness of each potential for each species. Eventually, accurate interatomic potentials have been recommended for finding each of the elastic properties of the pure species. Exactitude of the elastic properties was found to be sensitive to the choice of the force fields. Those potentials that were fitted for a specific compound may not necessarily work accurately for all the existing pure species. Tabulated results in this paper might be used as a benchmark to increase assurance of using the interatomic potential that was designated for a problem.« less

  18. Ab initio interatomic potentials and the thermodynamic properties of fluids

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  19. Ab initio interatomic potentials and the thermodynamic properties of fluids.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-07-14

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  20. Influence of Parameters of a Reactive Interatomic Potential on the Properties of Saturated Hydrocarbons

    DTIC Science & Technology

    2017-01-01

    Methodology 3 2.1 Modified Embedded-Atom Method Theory 3 2.1.1 Embedding Energy Function 3 2.1.2 Screening Factor 8 2.1.3 Modified Embedded-Atom...Simulation Methodology 2.1 Modified Embedded-Atom Method Theory In the EAM and MEAM formalisms1,2,5 the total energy of a system of atoms (Etot) is...An interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a semiempirical many-body potential based on

  1. Fast Model Generalized Pseudopotential Theory Interatomic Potential Routine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-03-18

    MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanical realism.

  2. Evaluating variability with atomistic simulations: the effect of potential and calculation methodology on the modeling of lattice and elastic constants

    NASA Astrophysics Data System (ADS)

    Hale, Lucas M.; Trautt, Zachary T.; Becker, Chandler A.

    2018-07-01

    Atomistic simulations using classical interatomic potentials are powerful investigative tools linking atomic structures to dynamic properties and behaviors. It is well known that different interatomic potentials produce different results, thus making it necessary to characterize potentials based on how they predict basic properties. Doing so makes it possible to compare existing interatomic models in order to select those best suited for specific use cases, and to identify any limitations of the models that may lead to unrealistic responses. While the methods for obtaining many of these properties are often thought of as simple calculations, there are many underlying aspects that can lead to variability in the reported property values. For instance, multiple methods may exist for computing the same property and values may be sensitive to certain simulation parameters. Here, we introduce a new high-throughput computational framework that encodes various simulation methodologies as Python calculation scripts. Three distinct methods for evaluating the lattice and elastic constants of bulk crystal structures are implemented and used to evaluate the properties across 120 interatomic potentials, 18 crystal prototypes, and all possible combinations of unique lattice site and elemental model pairings. Analysis of the results reveals which potentials and crystal prototypes are sensitive to the calculation methods and parameters, and it assists with the verification of potentials, methods, and molecular dynamics software. The results, calculation scripts, and computational infrastructure are self-contained and openly available to support researchers in performing meaningful simulations.

  3. Melt-growth dynamics in CdTe crystals

    DOE PAGES

    Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...

    2012-06-01

    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less

  4. FAST TRACK COMMUNICATION: A Be-W interatomic potential

    NASA Astrophysics Data System (ADS)

    Björkas, C.; Henriksson, K. O. E.; Probst, M.; Nordlund, K.

    2010-09-01

    In this work, an interatomic potential for the beryllium-tungsten system is derived. It is the final piece of a potential puzzle, now containing all possible interactions between the fusion reactor materials beryllium, tungsten and carbon as well as the plasma hydrogen isotopes. The potential is suitable for plasma-wall interaction simulations and can describe the intermetallic Be2W and Be12W phases. The interaction energy between a Be surface and a W atom, and vice versa, agrees qualitatively with ab initio calculations. The potential can also reasonably describe BexWy molecules with x, y = 1, 2, 3, 4.

  5. Detonation Product EOS Studies: Using ISLS to Refine Cheetah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaug, J M; Howard, W M; Fried, L E

    2001-08-08

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less

  6. Facilitating the selection and creation of accurate interatomic potentials with robust tools and characterization

    NASA Astrophysics Data System (ADS)

    Trautt, Zachary T.; Tavazza, Francesca; Becker, Chandler A.

    2015-10-01

    The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM.

  7. An ab initio-based Er–He interatomic potential in hcp Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; ye, Yeting; Fan, K. M.

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less

  8. DEVELOPMENT OF INTERATOMIC POTENTIALS IN TUNGSTEN-RHENIUM SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    Reference data are generated using the ab initio method to fit interatomic potentials for the W-Re system. The reference data include single phases of W and Re, strained structures, slabs, systems containing several concentrations of vacancies, systems containing various types of interstitial defects, melt structures, structures in the σ and χ phases, and structures containing several concentrations of solid solutions of Re in bcc W and W in hcp Re. Future work will start the fitting iterations.

  9. MOLECULAR DYNAMICS OF CASCADES OVERLAP IN TUNGSTEN WITH 20-KEV PRIMARY KNOCK-ON ATOMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    2015-04-16

    Molecular dynamics simulations are performed to investigate the mutual influence of two subsequent cascades in tungsten. The influence is studied using 20-keV primary knock-on atoms, to induce one cascade after another separated by 15 ps, in a lattice temperature of 1025 K (i.e. 0.25 of the melting temperature of the interatomic potential). The center of mass of the vacancies at the peak damage during the cascade is taken as the location of the cascade. The distance between this location to that of the next cascade is taken as the overlap parameter. Empirical fits describing the number of surviving vacancies andmore » interstitial atoms as a function of overlap are presented.« less

  10. Kinetics versus thermodynamics in materials modeling: The case of the di-vacancy in iron

    NASA Astrophysics Data System (ADS)

    Djurabekova, F.; Malerba, L.; Pasianot, R. C.; Olsson, P.; Nordlund, K.

    2010-07-01

    Monte Carlo models are widely used for the study of microstructural and microchemical evolution of materials under irradiation. However, they often link explicitly the relevant activation energies to the energy difference between local equilibrium states. We provide a simple example (di-vacancy migration in iron) in which a rigorous activation energy calculation, by means of both empirical interatomic potentials and density functional theory methods, clearly shows that such a link is not granted, revealing a migration mechanism that a thermodynamics-linked activation energy model cannot predict. Such a mechanism is, however, fully consistent with thermodynamics. This example emphasizes the importance of basing Monte Carlo methods on models where the activation energies are rigorously calculated, rather than deduced from widespread heuristic equations.

  11. A modified Embedded-Atom Method interatomic potential for uranium-silicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeler, Benjamin; Baskes, Michael; Andersson, David

    Uranium-silicide (U-Si) fuels are being pursued as a possible accident tolerant fuel (ATF). This uranium alloy fuel bene ts from higher thermal conductivity and higher ssile density compared to uranium dioxide (UO 2). In order to perform engineering scale nuclear fuel performance simulations, the material properties of the fuel must be known. Currently, the experimental data available for U-Si fuels is rather limited. Thus, multiscale modeling e orts are underway to address this gap in knowledge. In this study, a semi-empirical modi ed Embedded-Atom Method (MEAM) potential is presented for the description of the U-Si system. The potential is ttedmore » to the formation energy, defect energies and structural properties of U 3Si 2. The primary phase of interest (U 3Si 2) is accurately described over a wide temperature range and displays good behavior under irradiation and with free surfaces. The potential can also describe a variety of U-Si phases across the composition spectrum.« less

  12. A modified Embedded-Atom Method interatomic potential for uranium-silicide

    DOE PAGES

    Beeler, Benjamin; Baskes, Michael; Andersson, David; ...

    2017-08-18

    Uranium-silicide (U-Si) fuels are being pursued as a possible accident tolerant fuel (ATF). This uranium alloy fuel bene ts from higher thermal conductivity and higher ssile density compared to uranium dioxide (UO 2). In order to perform engineering scale nuclear fuel performance simulations, the material properties of the fuel must be known. Currently, the experimental data available for U-Si fuels is rather limited. Thus, multiscale modeling e orts are underway to address this gap in knowledge. In this study, a semi-empirical modi ed Embedded-Atom Method (MEAM) potential is presented for the description of the U-Si system. The potential is ttedmore » to the formation energy, defect energies and structural properties of U 3Si 2. The primary phase of interest (U 3Si 2) is accurately described over a wide temperature range and displays good behavior under irradiation and with free surfaces. The potential can also describe a variety of U-Si phases across the composition spectrum.« less

  13. A modified Embedded-Atom Method interatomic potential for uranium-silicide

    NASA Astrophysics Data System (ADS)

    Beeler, Benjamin; Baskes, Michael; Andersson, David; Cooper, Michael W. D.; Zhang, Yongfeng

    2017-11-01

    Uranium-silicide (U-Si) fuels are being pursued as a possible accident tolerant fuel (ATF). This uranium alloy fuel benefits from higher thermal conductivity and higher fissile density compared to uranium dioxide (UO2). In order to perform engineering scale nuclear fuel performance simulations, the material properties of the fuel must be known. Currently, the experimental data available for U-Si fuels is rather limited. Thus, multiscale modeling efforts are underway to address this gap in knowledge. In this study, a semi-empirical modified Embedded-Atom Method (MEAM) potential is presented for the description of the U-Si system. The potential is fitted to the formation energy, defect energies and structural properties of U3Si2. The primary phase of interest (U3Si2) is accurately described over a wide temperature range and displays good behavior under irradiation and with free surfaces. The potential can also describe a variety of U-Si phases across the composition spectrum.

  14. Stillinger-Weber potential for elastic and fracture properties in graphene and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hossain, M. Z.; Hao, T.; Silverman, B.

    2018-02-01

    This paper presents a new framework for determining the Stillinger-Weber (SW) potential parameters for modeling fracture in graphene and carbon nanotubes. In addition to fitting the equilibrium material properties, the approach allows fitting the potential to the forcing behavior as well as the mechanical strength of the solid, without requiring ad hoc modification of the nearest-neighbor interactions for avoiding artificial stiffening of the lattice at larger deformation. Consistent with the first-principles results, the potential shows the Young’s modulus of graphene to be isotropic under symmetry-preserving and symmetry-breaking deformation conditions. It also shows the Young’s modulus of carbon nanotubes to be diameter-dependent under symmetry-breaking loading conditions. The potential addresses the key deficiency of existing empirical potentials in reproducing experimentally observed glass-like brittle fracture in graphene and carbon nanotubes. In simulating the entire deformation process leading to fracture, the SW-potential costs several factors less computational time compared to the state-of-the-art interatomic potentials that enables exploration of the fracture processes in large atomistic systems which are inaccessible otherwise.

  15. Detonation product EOS studies: Using ISLS to refine CHEETAH

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Fried, Larry; Hansen, Donald

    2001-06-01

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.

  16. Detonation Product EOS Studies: Using ISLS to Refine Cheetah

    NASA Astrophysics Data System (ADS)

    Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.

    2002-07-01

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.

  17. INFLUENCE OF MASS ON DISPLACEMENT THRESHOLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Selby, A.; Nandipati, Giridhar

    2014-12-30

    Molecular dynamics simulations are performed to investigate the effect of mass on displacement threshold energy in Cr, Mo, Fe and W. For each interatomic potential, the mass of the atoms is varied among those metals for a total of 16 combinations. The average threshold energy over all crystal directions is calculated within the irreducible crystal directions using appropriate weighting factors. The weighting factors account for the different number of equivalent directions among the grid points and the different solid angle coverage of each grid point. The grid points are constructed with a Miller index increment of 1/24 for a totalmore » of 325 points. For each direction, 10 simulations each with a different primary-knock-on atom are performed. The results show that for each interatomic potential, the average threshold energy is insensitive to the mass; i.e., the values are the same within the standard error. In the future, the effect of mass on high-energy cascades for a given interatomic potential will be investigated.« less

  18. Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid

    NASA Astrophysics Data System (ADS)

    Hu, Yuan-Chao; Shang, Bao-Shuang; Guan, Peng-Fei; Yang, Yong; Bai, Hai-Yang; Wang, Wei-Hua

    2016-09-01

    A ternary metallic glass-forming liquid is found to be not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities including the high order dynamic correlation length, and static structure are still well described by thermodynamic scaling with the same scaling exponent γ. This may indicate that the metallic liquid could be treated as a single-parameter liquid. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of the potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glassformers. These findings may shed light on how to understand metallic glass formation from the fundamental interatomic interactions.

  19. Peierls-Nabarro modeling of dislocations in UO2

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2017-11-01

    Under conditions of high stress or low temperature, glide of dislocations plays an important role in the deformation of UO2. In this paper, the Peierls-Nabarro model is used to calculate the core widths and Peierls stresses of ½<110> edge and screw dislocations gliding on {100}, {110}, and {111}. The energy of the inelastic displacement field in the dislocation core is parameterized using generalized stacking fault energies, which are calculated atomistically using interatomic potentials. We use seven different interatomic potential models, representing the variety of different models available for UO2. The different models broadly agree on the relative order of the strengths of the different slip systems, with the 1/2<110>{100} edge dislocation predicted to be the weakest slip system and 1/2<110>{110} the strongest. However, the calculated Peierls stresses depend strongly on the interatomic potential used, with values ranging between 2.7 and 12.9 GPa for glide of 1/2<110>{100} edge dislocations, 16.4-32.3 GPa for 1/2<110>{110} edge dislocations, and 6.8-13.6 GPa for 1/2<110>{111} edge dislocations. The glide of 1/2<110> screw dislocations in UO2 is also found to depend on the interatomic potential used, with some models predicting similar Peierls stresses for glide on {100} and {111}, while others predict a unique easy glide direction. Comparison with previous fully atomistic calculations show that the Peierls-Nabarro model can accurately predict dislocation properties in UO2.

  20. Sensitivity of Force Fields on Mechanical Properties of Metals Predicted by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    Increasing number of micro/nanoscale studies for scientific and engineering applications, leads to huge deployment of atomistic simulations such as molecular dynamics and Monte-Carlo simulation. Many complains from users in the simulation community arises for obtaining wrong results notwithstanding of correct simulation procedure and conditions. Improper choice of force field, known as interatomic potential is the likely causes. For the sake of users' assurance, convenience and time saving, several interatomic potentials are evaluated by molecular dynamics. Elastic properties of multiple FCC and BCC pure metallic species are obtained by LAMMPS, using different interatomic potentials designed for pure species and their alloys at different temperatures. The potentials created based on the Embedded Atom Method (EAM), Modified EAM (MEAM) and ReaX force fields, adopted from available open databases. Independent elastic stiffness constants of cubic single crystals for different metals are obtained. The results are compared with the experimental ones available in the literature and deviations for each force field are provided at each temperature. Using current work, users of these force fields can easily judge on the one they are going to designate for their problem.

  1. A Wsbnd Ne interatomic potential for simulation of neon implantation in tungsten

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Juslin, Niklas; Huang, Guiyang; Wirth, Brian D.

    2016-08-01

    An interatomic pair potential for Wsbnd Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.

  2. Evaluation of interatomic potentials for rainbow scattering under axial channeling at KCl(0 0 1) surface by three-dimensional computer simulations based on binary collision approximation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wataru

    2017-05-01

    The rainbow angles corresponding to prominent peaks in the angular distributions of scattered projectiles with small angle, attributed to rainbow scattering (RS), under axial surface channeling conditions are strongly influenced by the interatomic potentials between projectiles and target atoms. The dependence of rainbow angles on normal energy of projectile energy to the target surface, being experimentally obtained by Specht et al. for RS of He, N, Ne and Ar atoms under <1 0 0> and <1 1 0> axial channeling conditions at a KCl(0 0 1) surface with projectile energies of 1-60 keV, was evaluated by the three-dimensional computer simulations using the ACOCT code based on the binary collision approximation with interatomic pair potentials. Good agreement between the ACOCT results using the ZBL pair potential and the individual pair potentials calculated from Hartree-Fock (HF) wave functions and the experimental ones was found for RS of He, N and Ne atoms from the atomic rows along <1 0 0> direction. For <1 1 0> direction, the ACOCT results employing the Moliere pair potential with adjustable screening length of O'Connor-Biersack (OB) formula, the ZBL pair potential and the individual HF pair potentials except for Ar → KCl using the OB pair potential are nearly in agreement with the experimental ones.

  3. An improved interatomic potential for xenon in UO2: a combined density functional theory/genetic algorithm approach.

    PubMed

    Thompson, Alexander E; Meredig, Bryce; Wolverton, C

    2014-03-12

    We have created an improved xenon interatomic potential for use with existing UO2 potentials. This potential was fit to density functional theory calculations with the Hubbard U correction (DFT + U) using a genetic algorithm approach called iterative potential refinement (IPR). We examine the defect energetics of the IPR-fitted xenon interatomic potential as well as other, previously published xenon potentials. We compare these potentials to DFT + U derived energetics for a series of xenon defects in a variety of incorporation sites (large, intermediate, and small vacant sites). We find the existing xenon potentials overestimate the energy needed to add a xenon atom to a wide set of defect sites representing a range of incorporation sites, including failing to correctly rank the energetics of the small incorporation site defects (xenon in an interstitial and xenon in a uranium site neighboring uranium in an interstitial). These failures are due to problematic descriptions of Xe-O and/or Xe-U interactions of the previous xenon potentials. These failures are corrected by our newly created xenon potential: our IPR-generated potential gives good agreement with DFT + U calculations to which it was not fitted, such as xenon in an interstitial (small incorporation site) and xenon in a double Schottky defect cluster (large incorporation site). Finally, we note that IPR is very flexible and can be applied to a wide variety of potential forms and materials systems, including metals and EAM potentials.

  4. Structures of 38-atom gold-platinum nanoalloy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atomsmore » are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.« less

  5. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties and defect energetics, important properties for UO2 because of the high temperature and defective reactor environment.. Previously published potentials could only yield accurate defect energetics or accurate phonons, but never both.

  6. Influence of strain on dislocation core in silicon

    NASA Astrophysics Data System (ADS)

    Pizzagalli, L.; Godet, J.; Brochard, S.

    2018-05-01

    First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.

  7. EON: software for long time simulations of atomic scale systems

    NASA Astrophysics Data System (ADS)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  8. Enabling Computational Nanotechnology through JavaGenes in a Cycle Scavenging Environment

    NASA Technical Reports Server (NTRS)

    Globus, Al; Menon, Madhu; Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    A genetic algorithm procedure is developed and implemented for fitting parameters for many-body inter-atomic force field functions for simulating nanotechnology atomistic applications using portable Java on cycle-scavenged heterogeneous workstations. Given a physics based analytic functional form for the force field, correlated parameters in a multi-dimensional environment are typically chosen to fit properties given either by experiments and/or by higher accuracy quantum mechanical simulations. The implementation automates this tedious procedure using an evolutionary computing algorithm operating on hundreds of cycle-scavenged computers. As a proof of concept, we demonstrate the procedure for evaluating the Stillinger-Weber (S-W) potential by (a) reproducing the published parameters for Si using S-W energies in the fitness function, and (b) evolving a "new" set of parameters using semi-empirical tightbinding energies in the fitness function. The "new" parameters are significantly better suited for Si cluster energies and forces as compared to even the published S-W potential.

  9. The behavior of small helium clusters near free surfaces in tungsten

    NASA Astrophysics Data System (ADS)

    Barashev, A. V.; Xu, H.; Stoller, R. E.

    2014-11-01

    The results of a computational study of helium-vacancy clusters in tungsten are reported. A recently developed atomistic kinetic Monte Carlo method employing empirical interatomic potentials was used to investigate the behavior of clusters composed of three interstitial-helium atoms near {1 1 1}, {1 1 0} and {1 0 0} free surfaces. Multiple configurations were examined and the local energy landscape was characterized to determine cluster mobility and the potential for interactions with the surface. The clusters were found to be highly mobile if far from the surface, but were attracted and bound to the surface when within a distance of a few lattice parameters. When near the surface, the clusters were transformed into an immobile configuration due to the creation of a Frenkel pair; the vacancy was incorporated into what became a He3-vacancy complex. The corresponding interstitial migrated to and became an adatom on the free surface. This process can contribute to He retention, and may be responsible for the observed deterioration of the plasma-exposed tungsten surfaces.

  10. Implementation of metal-friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: A GPU-accelerated molecular dynamics software

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Zhang, Feng; Wang, Cai-Zhuang; Ho, Kai-Ming; Travesset, Alex

    2018-04-01

    We present an implementation of EAM and FS interatomic potentials, which are widely used in simulating metallic systems, in HOOMD-blue, a software designed to perform classical molecular dynamics simulations using GPU accelerations. We first discuss the details of our implementation and then report extensive benchmark tests. We demonstrate that single-precision floating point operations efficiently implemented on GPUs can produce sufficient accuracy when compared against double-precision codes, as demonstrated in test simulations of calculations of the glass-transition temperature of Cu64.5Zr35.5, and pair correlation function g (r) of liquid Ni3Al. Our code scales well with the size of the simulating system on NVIDIA Tesla M40 and P100 GPUs. Compared with another popular software LAMMPS running on 32 cores of AMD Opteron 6220 processors, the GPU/CPU performance ratio can reach as high as 4.6. The source code can be accessed through the HOOMD-blue web page for free by any interested user.

  11. Investigation of matter-antimatter interaction for possible propulsion applications

    NASA Technical Reports Server (NTRS)

    Morgan, D. L., Jr.

    1974-01-01

    Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.

  12. Data-Driven Learning of Total and Local Energies in Elemental Boron

    NASA Astrophysics Data System (ADS)

    Deringer, Volker L.; Pickard, Chris J.; Csányi, Gábor

    2018-04-01

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β -rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  13. Data-Driven Learning of Total and Local Energies in Elemental Boron.

    PubMed

    Deringer, Volker L; Pickard, Chris J; Csányi, Gábor

    2018-04-13

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morante, S., E-mail: morante@roma2.infn.it; Rossi, G.C., E-mail: rossig@roma2.infn.it; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  15. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    NASA Astrophysics Data System (ADS)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-08-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  16. Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions.

    PubMed

    Chaudhari, Mangesh I; Muralidharan, Ajay; Pratt, Lawrence R; Rempe, Susan B

    2018-02-12

    Progress in understanding liquid ethylene carbonate (EC) and propylene carbonate (PC) on the basis of molecular simulation, emphasizing simple models of interatomic forces, is reviewed. Results on the bulk liquids are examined from the perspective of anticipated applications to materials for electrical energy storage devices. Preliminary results on electrochemical double-layer capacitors based on carbon nanotube forests and on model solid-electrolyte interphase (SEI) layers of lithium ion batteries are considered as examples. The basic results discussed suggest that an empirically parameterized, non-polarizable force field can reproduce experimental structural, thermodynamic, and dielectric properties of EC and PC liquids with acceptable accuracy. More sophisticated force fields might include molecular polarizability and Buckingham-model description of inter-atomic overlap repulsions as extensions to Lennard-Jones models of van der Waals interactions. Simple approaches should be similarly successful also for applications to organic molecular ions in EC/PC solutions, but the important case of Li[Formula: see text] deserves special attention because of the particularly strong interactions of that small ion with neighboring solvent molecules. To treat the Li[Formula: see text] ions in liquid EC/PC solutions, we identify interaction models defined by empirically scaled partial charges for ion-solvent interactions. The empirical adjustments use more basic inputs, electronic structure calculations and ab initio molecular dynamics simulations, and also experimental results on Li[Formula: see text] thermodynamics and transport in EC/PC solutions. Application of such models to the mechanism of Li[Formula: see text] transport in glassy SEI models emphasizes the advantage of long time-scale molecular dynamics studies of these non-equilibrium materials.

  17. Thermal conductivity and phonon transport properties of silicon using perturbation theory and the environment-dependent interatomic potential

    NASA Astrophysics Data System (ADS)

    Pascual-Gutiérrez, José A.; Murthy, Jayathi Y.; Viskanta, Raymond

    2009-09-01

    Silicon thermal conductivities are obtained from the solution of the linearized phonon Boltzmann transport equation without the use of any parameter-fitting. Perturbation theory is used to compute the strength of three-phonon and isotope scattering mechanisms. Matrix elements based on Fermi's golden rule are computed exactly without assuming either average or mode-dependent Grüeisen parameters, and with no underlying assumptions of crystal isotropy. The environment-dependent interatomic potential is employed to describe the interatomic force constants and the perturbing Hamiltonians. A detailed methodology to accurately find three-phonon processes satisfying energy- and momentum-conservation rules is also described. Bulk silicon thermal conductivity values are computed across a range of temperatures and shown to match experimental data very well. It is found that about two-thirds of the heat transport in bulk silicon may be attributed to transverse acoustic modes. Effective relaxation times and mean free paths are computed in order to provide a more complete picture of the detailed transport mechanisms and for use with carrier transport models based on the Boltzmann transport equation.

  18. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2017-10-01

    We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.

  19. A general transformation to canonical form for potentials in pairwise interatomic interactions.

    PubMed

    Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2015-06-14

    A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations. Specifically, accurately determined potentials of the diatomic molecules H2, H2(+), HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.

  20. Extending the accuracy of the SNAP interatomic potential form

    NASA Astrophysics Data System (ADS)

    Wood, Mitchell A.; Thompson, Aidan P.

    2018-06-01

    The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functions in EAM. The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similar to artificial neural network potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting. The quality of this new potential form is measured through a robust cross-validation analysis.

  1. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids

    NASA Astrophysics Data System (ADS)

    Anatole von Lilienfeld, O.; Tkatchenko, Alexandre

    2010-06-01

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  2. Two and three-body interatomic dispersion energy contributions to binding in molecules and solids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole; Tkatchenko, Alexandre

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C{sub 6} and C{sub 9}, are computed 'on the fly' from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiriciallymore » determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C{sub 60} dimer, a peptide (Ala{sub 10}), an intercalated drug-DNA model [ellipticine-d(CG){sub 2}], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.« less

  3. Assessment of current atomic scale modelling methods for the investigation of nuclear fuels under irradiation: Example of uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolus, Marjorie; Krack, Matthias; Freyss, Michel

    Multiscale approaches are developed to build more physically based kinetic and mechanical mesoscale models to enhance the predictive capability of fuel performance codes and increase the efficiency of the development of the safer and more innovative nuclear materials needed in the future. Atomic scale methods, and in particular electronic structure and empirical potential methods, form the basis of this multiscale approach. It is therefore essential to know the accuracy of the results computed at this scale if we want to feed them into higher scale models. We focus here on the assessment of the description of interatomic interactions in uraniummore » dioxide using on the one hand electronic structure methods, in particular in the density functional theory (DFT) framework and on the other hand empirical potential methods. These two types of methods are complementary, the former enabling to get results from a minimal amount of input data and further insight into the electronic and magnetic properties, while the latter are irreplaceable for studies where a large number of atoms needs to be considered. We consider basic properties as well as specific ones, which are important for the description of nuclear fuel under irradiation. These are especially energies, which are the main data passed to higher scale models. We limit ourselves to uranium dioxide.« less

  4. A multiscale quasi-continuum theory to determine thermodynamic properties of fluid mixtures in nanochannels

    NASA Astrophysics Data System (ADS)

    Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.

    2015-11-01

    We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.

  5. Embedded-atom-method interatomic potentials from lattice inversion.

    PubMed

    Yuan, Xiao-Jian; Chen, Nan-Xian; Shen, Jiang; Hu, Wangyu

    2010-09-22

    The present work develops a physically reliable procedure for building the embedded-atom-method (EAM) interatomic potentials for the metals with fcc, bcc and hcp structures. This is mainly based on Chen-Möbius lattice inversion (Chen et al 1997 Phys. Rev. E 55 R5) and first-principles calculations. Following Baskes (Baskes et al 2007 Phys. Rev. B 75 094113), this new version of the EAM eliminates all of the prior arbitrary choices in the determination of the atomic electron density and pair potential functions. Parameterizing the universal form deduced from the calculations within the density-functional scheme for homogeneous electron gas as the embedding function, the new-type EAM potentials for Cu, Fe and Ti metals have successfully been constructed by considering interatomic interactions up to the fifth neighbor, the third neighbor and the seventh neighbor, respectively. The predictions of elastic constants, structural energy difference, vacancy formation energy and migration energy, activation energy of vacancy diffusion, latent heat of melting and relative volume change on melting all satisfactorily agree with the experimental results available or first-principles calculations. The predicted surface energies for low-index crystal faces and the melting point are in agreement with the experimental data to the same extent as those calculated by other EAM-type potentials such as the FBD-EAM, 2NN MEAM and MS-EAM. In addition, the order among the predicted low-index surface energies is also consistent with the experimental information.

  6. Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials

    NASA Astrophysics Data System (ADS)

    Moriarty, John A.

    1988-08-01

    The first-principles, density-functional version of the generalized pseudopotential theory (GPT) developed in papers I and II of this series [Phys. Rev. B 16, 2537 (1977); 26, 1754 (1982)] for empty- and filled-d-band metals is here extended to pure transition metals with partially filled d bands. The present focus is on a rigorous, real-space expansion of the bulk total energy in terms of widely transferable, structure-independent interatomic potentials, including both central-force pair interactions and angular-force triplet and quadruplet interactions. To accomplish this expansion, a specialized set of starting equations is derived from the basic local-density formalism for a pure metal, including refined expansions for the exchange-correlation terms and a simplified yet accurate representation of the cohesive energy. The parent pseudo-Green's-function formalism of the GPT is then used to develop these equations in a plane-wave, localized-d-state basis. In this basis, the cohesive energy divides quite naturally into a large volume component and a smaller structural component. The volume component,which includes all one-ion intra-atomic energy contributions, already gives a good description of the cohesion in lowest order. The structural component is expanded in terms of weak interatomic matrix elements and gives rise to a multi-ion series which establishes the interatomic potentials. Special attention is focused on the dominant d-electron contributions to this series and complete formal results for the two-ion, three-ion, and four-ion d-state potentials (vd2, vd3, and vd4) are derived. In addition, a simplified model is used to demonstrate that while vd3 can be of comparable importance to vd2, vd4 is inherently small and the series is rapidly convergent beyond three-ion interactions. Analytic model forms are also derived for vd2 and vd3 in the case of canonical d bands. In this limit, vd2 is purely attractive and varies with interatomic distance as r-10, while vd3 is weak and attractive for almost empty or filled d bands and maximum in strength and repulsive for half-filled d bands. Full first-principles expressions are then developed for the total two-ion and three-ion potentials and implemented for all 20 3d and 4d transition metals. The first-principles potentials qualitatively display all of the trends predicted by the model results, but they also reflect additional effects, including long-range hybridization tails which must be suitably screened in real-space calculations. Finally, illustrative application of the first-principles potentials is made to the calculation of the [100] phonon spectrum for V and Cr, where the importance of three-ion angular forces is explicitly demonstrated.

  7. Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system

    NASA Astrophysics Data System (ADS)

    Juslin, N.; Erhart, P.; Träskelin, P.; Nord, J.; Henriksson, K. O. E.; Nordlund, K.; Salonen, E.; Albe, K.

    2005-12-01

    A reactive interatomic potential based on an analytical bond-order scheme is developed for the ternary system W-C-H. The model combines Brenner's hydrocarbon potential with parameter sets for W-W, W-C, and W-H interactions and is adjusted to materials properties of reference structures with different local atomic coordinations including tungsten carbide, W-H molecules, as well as H dissolved in bulk W. The potential has been tested in various scenarios, such as surface, defect, and melting properties, none of which were considered in the fitting. The intended area of application is simulations of hydrogen and hydrocarbon interactions with tungsten, which have a crucial role in fusion reactor plasma-wall interactions. Furthermore, this study shows that the angular-dependent bond-order scheme can be extended to second nearest-neighbor interactions, which are relevant in body-centered-cubic metals. Moreover, it provides a possibly general route for modeling metal carbides.

  8. An interatomic pair potential for cadmium selenide

    NASA Astrophysics Data System (ADS)

    Rabani, Eran

    2002-01-01

    We have developed a set of interatomic pair potentials for cadmium selenide based on a form similar to the Born-Mayer model. We show that this simple form of the pair potential, which has been used to describe the properties of alkali halides in the sixfold-coordinate structure, provides a realistic description of the properties of cadmium selenide in all three crystal structures: wurtzite, zinc blende, and rocksalt. Using the new pair potential we have studied the pressure-induced phase transition from the fourfold-coordinate wurtzite structure to the sixfold-coordinate rocksalt structure. The pressure transformation and the equation of state are in good agreement with experimental observations. Using the dispersion term in our pair potential we have also calculated the Hamaker constant for cadmium selenide within the framework of the original microscopic approach due to Hamaker. The results indicate that for ionic materials many-body terms that are included in the Lifshitz theory are well captured by the simple pair potential.

  9. Implementation of metal-friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: A GPU-accelerated molecular dynamics software

    DOE PAGES

    Yang, Lin; Zhang, Feng; Wang, Cai-Zhuang; ...

    2018-01-12

    We present an implementation of EAM and FS interatomic potentials, which are widely used in simulating metallic systems, in HOOMD-blue, a software designed to perform classical molecular dynamics simulations using GPU accelerations. We first discuss the details of our implementation and then report extensive benchmark tests. We demonstrate that single-precision floating point operations efficiently implemented on GPUs can produce sufficient accuracy when compared against double-precision codes, as demonstrated in test simulations of calculations of the glass-transition temperature of Cu 64.5Zr 35.5, and pair correlation function of liquid Ni 3Al. Our code scales well with the size of the simulating systemmore » on NVIDIA Tesla M40 and P100 GPUs. Compared with another popular software LAMMPS running on 32 cores of AMD Opteron 6220 processors, the GPU/CPU performance ratio can reach as high as 4.6. In conclusion, the source code can be accessed through the HOOMD-blue web page for free by any interested user.« less

  10. Implementation of metal-friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: A GPU-accelerated molecular dynamics software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lin; Zhang, Feng; Wang, Cai-Zhuang

    We present an implementation of EAM and FS interatomic potentials, which are widely used in simulating metallic systems, in HOOMD-blue, a software designed to perform classical molecular dynamics simulations using GPU accelerations. We first discuss the details of our implementation and then report extensive benchmark tests. We demonstrate that single-precision floating point operations efficiently implemented on GPUs can produce sufficient accuracy when compared against double-precision codes, as demonstrated in test simulations of calculations of the glass-transition temperature of Cu 64.5Zr 35.5, and pair correlation function of liquid Ni 3Al. Our code scales well with the size of the simulating systemmore » on NVIDIA Tesla M40 and P100 GPUs. Compared with another popular software LAMMPS running on 32 cores of AMD Opteron 6220 processors, the GPU/CPU performance ratio can reach as high as 4.6. In conclusion, the source code can be accessed through the HOOMD-blue web page for free by any interested user.« less

  11. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Fan, Meng; Liu, Yanhui

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approachingmore » that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for designing BMGs with cm or greater casting thickness.« less

  12. Application of Tight-Binding Method in Atomistic Simulation of Covalent Materials

    NASA Astrophysics Data System (ADS)

    Isik, Ahmet

    1994-05-01

    The primary goal of this thesis is to develop and apply molecular dynamics simulation methods to elemental and binary covalent materials (Si, C, SiC) based on the tight-binding (TB) model of atomic cohesion in studies of bulk and deformation properties far from equilibrium. A second purpose is to compare results with those obtained using empirical interatomic potential functions in order to elucidate the applicability of models of interatomic interactions which do not take into account explicitly electronic structure effects. We have calculated the former by using a basis set consisting of four atomic orbitals, one for the s state and three for the p states, constructing a TB Hamiltonian in the usual Slater-Koster parametrization, and diagonalizing the Hamiltonian matrix at the origin of the Brillouin zone. For the repulsive part of the energy we employ a function in the form of inverse power law with screening which is then fitted to the bulk modulus and lattice parameter of several stable polytypes, results calculated by ab initio methods in the literature. Three types of applications have been investigated to demonstrate the utility of the present TB models and their advantages relative to empirical potentials. In the case of Si we show the calculated cohesive energy agrees to within a few percent with the ab initio local-density approximation (LDA) results. In addition, for clusters up to 10 atoms we find most of the energies and equilibrium structures to be in good agreement with LDA results (the failure of the empirical potential of Stillinger and Weber (SW) is well known). In the case of C clusters our TB model gives ring and chain structures which have been found both experimentally and by LDA calculations. In the second application we have applied our TB model of Si to investigate the core structure and energetics of partial dislocations on the glide plane and reconstruction antiphase defect (APD). For the 90^circ partial we show that the TB description gives the correct asymetric reconstruction previously found by LDA. For the 30^circ partial, TB gives better bond angles in the dislocation core. For the APD we have obtained a binding energy and activation for migration which are somewhat larger than the SW values, but the conclusion remains that APD is a low-energy defect which should be quite mobile. In the third application we formulate a simple TB model for SiC where the coefficients of the two-center integrals in Si-C interactions are taken to be simple averages of Si-Si and C-C integrals. Fitting is done on two polytypes, zincblende and rocksalt structures, and a simulated annealing procedure is used. The TB results are found in good agreement with LDA and experimental results in the cohesive energy, acoustic phonon modes, and elastic constants. (Abstract shortened by UMI.).

  13. A quantum perturbative pair distribution for determining interatomic potentials from extended x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piazza, F.

    2002-11-01

    In this paper we develop a technique for determining interatomic potentials in materials in the quantum regime from single-shell extended x-ray absorption spectroscopy (EXAFS) spectra. We introduce a pair distribution function, based on ordinary quantum time-independent perturbation theory. In the proposed scheme, the model potential parameters enter the distribution through a fourth-order Taylor expansion of the potential, and are directly refined in the fit of the model signal to the experimental spectrum. We discuss in general the validity of our theoretical framework, namely the quantum regime and perturbative treatment, and work out a simple tool for monitoring the sensitivity of our theory in determining lattice anharmonicities based on the statistical F-test. As an example, we apply our formalism to an EXAFS spectrum at the Ag K edge of AgI at T = 77 K. We determine the Ag-I potential parameters and find good agreement with previous studies.

  14. Interatomic potential to study plastic deformation in tungsten-rhenium alloys

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Mastrikov, Yu. A.

    2017-04-01

    In this work, an interatomic potential for the W-Re system is fitted and benchmarked against experimental and density functional theory (DFT) data, of which part are generated in this work. Having in mind studies related to the plasticity of W-Re alloys under irradiation, emphasis is put on fitting point-defect properties, elastic constants, and dislocation properties. The developed potential can reproduce the mechanisms responsible for the experimentally observed softening, i.e., decreasing shear moduli, decreasing Peierls barrier, and asymmetric screw dislocation core structure with increasing Re content in W-Re solid solutions. In addition, the potential predicts elastic constants in reasonable agreement with DFT data for the phases forming non-coherent precipitates (σ- and χ-phases) in W-Re alloys. In addition, the mechanical stability of the different experimentally observed phases is verified in the temperature range of interest (700-1500 K). As a conclusion, the presented potential provides an excellent tool to study plasticity in W-Re alloys at the atomic level.

  15. Inter-atomic potentials for radiation damage studies in CePO4 monazite

    NASA Astrophysics Data System (ADS)

    Jolley, Kenny; Asuvathraman, Rajaram; Smith, Roger

    2017-02-01

    An original empirical potential used for modelling phosphate glasses is adapted to be suitable for use with monazite (CePO4) so as to have a consistent formulation for radiation damage studies of phosphates. This is done by adding a parameterisation for the Ce-O interaction to the existing potential set. The thermal and structural properties of the resulting computer model are compared to experimental results. The parameter set gives a stable monazite structure where the volume of the unit cell is almost identical to that measured experimentally, but with some shrinkage in the a and b lengths and a small expansion in the c direction compared to experiment. The thermal expansion, specific heat capacity and estimates of the melting point are also determined. The estimate of the melting temperature of 2500 K is comparable to the experimental value of 2318 ± 20 K, but the simulated thermal expansion of 49 ×10-6 K-1 is larger than the usually reported value. The simulated specific heat capacity at constant pressure was found to be approximately constant at 657 J kg-1 K-1 in the range 300-1000 K, however, this is not observed experimentally or in more detailed ab initio calculations.

  16. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    NASA Astrophysics Data System (ADS)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  17. A tungsten-rhenium interatomic potential for point defect studies

    DOE PAGES

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-28

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  18. A tungsten-rhenium interatomic potential for point defect studies

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  19. A tungsten-rhenium interatomic potential for point defect studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  20. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids

    NASA Astrophysics Data System (ADS)

    Pueblo, Christopher E.; Sun, Minhua; Kelton, K. F.

    2017-08-01

    The dynamical behaviour of liquids is frequently characterized by the fragility, which can be defined from the temperature dependence of the shear viscosity, η (ref. ). For a strong liquid, the activation energy for η changes little with cooling towards the glass transition temperature, Tg. The change is much greater in fragile liquids, with the activation energy becoming very large near Tg. While fragility is widely recognized as an important concept--believed, for example, to play an important role in glass formation--the microscopic origin of fragility is poorly understood. Here, we present new experimental evidence showing that fragility reflects the strength of the repulsive part of the interatomic potential, which can be determined from the steepness of the pair distribution function near the hard-sphere cutoff. On the basis of an analysis of scattering data from ten different metallic alloy liquids, we show that stronger liquids have steeper repulsive potentials.

  1. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    NASA Astrophysics Data System (ADS)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  2. Extending the accuracy of the SNAP interatomic potential form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Mitchell A.; Thompson, Aidan P.

    The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functionsmore » in EAM. It is also argued that the quadratic SNAP form is a special case of an artificial neural network (ANN). The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similarly to ANN potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting, as measured by cross-validation analysis.« less

  3. Extending the accuracy of the SNAP interatomic potential form

    DOE PAGES

    Wood, Mitchell A.; Thompson, Aidan P.

    2018-03-28

    The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functionsmore » in EAM. It is also argued that the quadratic SNAP form is a special case of an artificial neural network (ANN). The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similarly to ANN potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting, as measured by cross-validation analysis.« less

  4. New interatomic potentials of W, Re and W-Re alloy for radiation defects

    NASA Astrophysics Data System (ADS)

    Chen, Yangchun; Li, Yu-Hao; Gao, Ning; Zhou, Hong-Bo; Hu, Wangyu; Lu, Guang-Hong; Gao, Fei; Deng, Huiqiu

    2018-04-01

    Tungsten (W) and W-based alloys have been considered as promising candidates for plasma-facing materials (PFMs) in future fusion reactors. The formation of rhenium (Re)-rich clusters and intermetallic phases due to high energy neutron irradiation and transmutations significantly induces the hardening and embrittlement of W. In order to better understand these phenomena, in the present work, new interatomic potentials of W-W, Re-Re and W-Re, suitable for description of radiation defects in such alloys, have been developed. The fitted potentials not only reproduce the results of the formation energy, binding energy and migration energy of various radiation defects and the physical properties from the extended database obtained from DFT calculations, but also predict well the relative stability of different interstitial dislocation loops in W, as reported in experiments. These potentials are applicable for describing the evolution of defects in W and W-Re alloys, thus providing a possibility for the detailed understanding of the precipitation mechanism of Re in W under irradiation.

  5. Perspective: Machine learning potentials for atomistic simulations

    NASA Astrophysics Data System (ADS)

    Behler, Jörg

    2016-11-01

    Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry, condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments and the ever growing complexity of the investigated problems, there is a constantly increasing need for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases, the availability of sufficiently efficient interatomic potentials providing reliable energies and forces has become a serious bottleneck for performing these simulations. To address this problem, currently a paradigm change is taking place in the development of interatomic potentials. Since the early days of computer simulations simplified potentials have been derived using physical approximations whenever the direct application of electronic structure methods has been too demanding. Recent advances in machine learning (ML) now offer an alternative approach for the representation of potential-energy surfaces by fitting large data sets from electronic structure calculations. In this perspective, the central ideas underlying these ML potentials, solved problems and remaining challenges are reviewed along with a discussion of their current applicability and limitations.

  6. Physically founded phonon dispersions of few-layer materials and the case of borophene

    DOE PAGES

    Carrete, Jesús; Li, Wu; Lindsay, Lucas; ...

    2016-04-21

    By building physically sound interatomic force constants,we offer evidence of the universal presence of a quadratic phonon branch in all unstrained 2D materials, thus contradicting much of the existing literature. Through a reformulation of the interatomic force constants (IFCs) in terms of internal coordinates, we find that a delicate balance between the IFCs is responsible for this quadraticity. We use this approach to predict the thermal conductivity of Pmmn borophene, which is comparable to that of MoS 2, and displays a remarkable in-plane anisotropy. Ultimately, these qualities may enable the efficient heat management of borophene devices in potential nanoelectronic applications

  7. Elasticity and dislocation anelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The book is concerned with the application of the results of physical acoustic studies of elasticity and dislocation anelasticity to the investigation of interatomic interactions and interactions between lattice defects. The analysis of the potential functions determining the energy of interatomic interactions is based on a study of the elastic properties of crystals over a wide temperature range; data on the dislocation structure and on the interaction between dislocations and point defects are based mainly on a study of inelastic effects. Particular attention is given to the relationship between microplastic effects and the initial stage of plastic deformation under conditions of elastic oscillations, when the multiplication of dislocations is negligible.

  8. Elasticity and dislocation inelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The use of methods of physical acoustics for studying the elasticity and dislocation inelasticity of crystals is discussed, as is the application of the results of such studies to the analysis of interatomic and lattice defect interactions. The analysis of the potential functions determining the energy of interatomic interactions is based on an analysis of the elastic properties of crystals over a wide temperature range. The data on the dislocation structure and the interaction between dislocations and point defects are obtained from a study of inelastic effects. Particular attention is given to the relationship between microplastic effects under conditions of elastic oscillations and the initial stage of plastic deformation.

  9. Frenkel pair recombinations in UO2: Importance of explicit description of polarizability in core-shell molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Devynck, Fabien; Iannuzzi, Marcella; Krack, Matthias

    2012-05-01

    The oxygen and uranium Frenkel pair (FP) recombination mechanisms are studied in UO2 using an empirical interatomic potential accounting for the polarizability of the ions, namely a dynamical core-shell model. The results are compared to a more conventional rigid-ion model. Both model types have been implemented into the cp2k program package and thoroughly validated. The overall picture indicates that the FP recombination mechanism is a complex process involving several phenomena. The FP recombination can happen instantaneously when the distance between the interstitial and the vacancy is small or can be thermally activated at larger separation distances. However, other criteria can prevail over the interstitial-vacancy distance. The surrounding environment of the FP defect, the mechanical stiffness of the matrix, and the orientation of the migration path are shown to be major factors acting on the FP lifetime. The core-shell and rigid-ion models provide a similar qualitative description of the FP recombination mechanism. However, the FP stabilities determined by both models significantly differ in the lower temperature range considered. Indeed, the recombination time of the oxygen and uranium FPs can be up to an order of magnitude lower in the core-shell model at T=600 K and T=1800 K, respectively. These differences highlight the importance of the explicit description of polarizability on some crucial properties such as the resistance to amorphization. This refined description of the interatomic interactions would certainly affect the description of the recrystallization process following a displacement cascade. In turn, the self-healing phase would be better accounted for in the core-shell model and the misestimate inherent to the lack of polarizability in the rigid-ion model corrected.

  10. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    NASA Astrophysics Data System (ADS)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter < 10 nm requires no external sintering aids such as the addition of barium sources (since stoichiometry is preserved during heat treatment in this size regime). Also, we observe that sintering of particles > 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  11. Literature review report on atomistic modeling tools for FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Martinez, Enrique

    2015-12-01

    This reports summarizes the literature review results on atomistic tools, particularly interatomic potentials used in molecular dynamics simulations, for FeCrAl ternary alloys. FeCrAl has recently been identified as a possible cladding concept for accident tolerant fuels for its superior corrosion resistance. Along with several other concepts, an initial evaluation and recommendation are desired for FeCrAl before it’s used in realistic fuels. For this purpose, sufficient understanding on the in-reactor behavior of FeCrAl needs to be grained in a relatively short timeframe, and multiscale modeling and simulations have been selected as an efficient measure to supplement experiments and in-reactor testing formore » better understanding on FeCrAl. For the limited knowledge on FeCrAl alloys, the multiscale modeling approach relies on atomistic simulations to obtain the missing material parameters and properties. As a first step, atomistic tools have to be identified and this is the purpose of the present report. It was noticed during the literature survey that no interatomic potentials currently available for FeCrAl. Here, we summarize the interatomic potentials available for FeCr alloys for possible molecular dynamics studies using FeCr as surrogate materials. Other atomistic methods such as lattice kinetic Monte Carlo are also included in this report. A couple of research topics at the atomic scale are suggested based on the literature survey.« less

  12. A modified Stillinger-Weber potential for TlBr and its polymorphic extension

    DOE PAGES

    Zhou, Xiaowang; Foster, Michael E.; Jones, Reese E.; ...

    2015-04-30

    TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always bemore » applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.« less

  13. Interatomic potentials for HeAr, HeKr, and HeXe from multiproperty fits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danielson, L.J.; Keil, M.

    1988-01-15

    Crossed molecular beam measurements of differential cross sections (DCS) are reported for elastic scattering of He by Ar, Kr, and Xe at high resolution. Interatomic potentials are determined by simultaneously fitting the DCS's, as well as mixture viscosity and interaction second virial data. Bias due to systematic and potential model errors are examined and are used to estimate the accuracy of the potential energy curves obtained. Attractive well depths are 2.59, 2.67, and 2.64 meV +- 3% for HeAr, HeKr, and HeXe, respectively, agreeing with the best available HeAr potential and a previously proposed HeKr potential, but significantly deeper thanmore » previously reported potentials for HeXe. The HeXe attractive well is also considerably broader than previously reported. Attractive minimum positions are 3.48, 3.70, and 4.00 A ( +- 0.03 A) for HeAr, HeKr, and HeXe, respectively. Including the accurate diffusion data of Dunlop and co-workers (Physica A 95, 561 (1979)) and the absolute integral cross sections of Pirani and Vecchiocattivi (J. Chem. Phys. 66, 372 (1977) and revisions thereto) verify the error bounds for all three potentials.« less

  14. Density Scaling of Glassy Dynamics and Dynamic Heterogeneities in Glass-forming Liquids.

    NASA Astrophysics Data System (ADS)

    Hu, Yuan-Chao; Yang, Yong; Wang, Wei-Hua

    The discovery of density scaling in strongly correlating systems is an important progress for understanding the dynamic behaviors of supercooled liquids. Here we found for a ternary metallic glass-forming liquid, it is not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities and static structure are still well described by density scaling with the same scaling exponent γ. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glass-formers. The supercooled dynamics and density scaling behaviors will also be discussed in model glass-forming liquids with tunable attractive potentials to further quantify the nonperturbative roles of attractive interactions. We acknowledge the support from ''Peter Ho Conference Scholarships'' of City University of Hong Kong.

  15. Deformation of periodic nanovoid structures in Mg single crystals

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing; Zare Chavoshi, Saeed

    2018-01-01

    Large scale molecular dynamics (MD) simulations in Mg single crystal containing periodic cylindrical voids subject to uniaxial tension along the z direction are carried out. Models with different initial void sizes and crystallographic orientations are explored using two interatomic potentials. It is found that (i) a larger initial void always leads to a lower yield stress, in agreement with an analytic prediction; (ii) in the model with x[\\bar{1}100]-y[0001]-z[11\\bar{2}0] orientations, the two potentials predict different types of tension twins and phase transformation; (iii) in the model with x[0001]-y[11\\bar{2}0]-z[\\bar{1}100] orientations, the two potentials identically predict the nucleation of edge dislocations on the prismatic plane, which then glide away from the void, resulting in extrusions at the void surface; in the case of the smallest initial void, these surface extrusions pinch the void into two voids. Besides bringing new physical understanding of the nanovoid structures, our work highlights the variability and uncertainty in MD simulations arising from the interatomic potential, an issue relatively lightly addressed in the literature to date.

  16. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated phase transformation, which is a transition to a disordered phase (liquid or dense amorphous), regardless of whether or not the model accounts for core-softening. The onset pressures of the transformation predicted by different models show a wide scatter within 60-110 GPa; for potentials without core-softening, the onset pressure is much higher than 110 GPa. Our results show that the core-softening of the interaction in the oxygen subsystem of silica is the key mechanism for the structural transformation and thermodynamics in shock compressed silica. These results may provide an important contribution to a unified picture of anomalous response to shock compression observed in other network-forming oxides and single-component systems with core-softening of effective interactions.

  17. Crystal structure, stability and spectroscopic properties of methane and CO2 hydrates.

    PubMed

    Martos-Villa, Ruben; Francisco-Márquez, Misaela; Mata, M Pilar; Sainz-Díaz, C Ignacio

    2013-07-01

    Methane hydrates are highly present in sea-floors and in other planets and their moons. Hence, these compounds are of great interest for environment, global climate change, energy resources, and Cosmochemistry. The knowledge of stability and physical-chemical properties of methane hydrate crystal structure is important for evaluating some new green becoming technologies such as, strategies to produce natural gas from marine methane hydrates and simultaneously store CO2 as hydrates. However, some aspects related with their stability, spectroscopic and other chemical-physical properties of both hydrates are not well understood yet. The structure and stability of crystal structure of methane and CO2 hydrates have been investigated by means of calculations with empirical interatomic potentials and quantum-mechanical methods based on Hartree-Fock and Density Functional Theory (DFT) approximations. Molecular Dynamic simulations have been also performed exploring different configurations reproducing the experimental crystallographic properties. Spectroscopic properties have also been studied. Frequency shifts of the main vibration modes were observed upon the formation of these hydrates, confirming that vibration stretching peaks of C-H at 2915cm(-1) and 2905cm(-1) are due to methane in small and large cages, respectively. Similar effect is observed in the CO2 clathrates. The guest-host binding energy in these clathrates calculated with different methods are compared and discussed in terms of adequacy of empirical potentials and DFT methods for describing the interactions between gas guest and the host water cage, proving an exothermic nature of methane and CO2 hydrates formation process. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  19. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE PAGES

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  20. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium

    DOE PAGES

    Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.

    2016-10-17

    New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less

  1. Mathematical Research in Materials Science: Opportunities and Perspectives. Part 2

    DTIC Science & Technology

    1993-01-01

    spheres and Lennard - Jones potentials , but have not been extended to a general framework that will allow input from more complicated interatomic...focuses on directions for potentially promising collaboration between materials scientists and mathematical scientists, and encourages both communities...interface between the mathematical sciences and other fields. The purpose of this report is not only to focus on directions for potentially promising

  2. Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study

    NASA Astrophysics Data System (ADS)

    Wang, Jingliang; Madsen, Georg K. H.; Drautz, Ralf

    2018-02-01

    Grain boundaries (GBs) have a significant influence on material properties. In the present paper, we calculate the energies of eleven low-Σ ({{Σ }}≤slant 13) symmetrical tilt GBs and two twist GBs in ferromagnetic bcc iron using first-principles density functional theory (DFT) calculations. The results demonstrate the importance of a sufficient sampling of initial rigid body translations in all three directions. We show that the relative GB energies can be explained by the miscoordination of atoms at the GB region. While the main features of the studied GB structures were captured by previous empirical interatomic potential calculations, it is shown that the absolute values of GB energies calculated were substantially underestimated. Based on DFT-calculated GB structures and energies, we construct a new d-band orthogonal tight-binding (TB) model for bcc iron. The TB model is validated by its predictive power on all the studied GBs. We apply the TB model to block boundaries in lath martensite and demonstrate that the experimentally observed GB character distribution can be explained from the viewpoint of interface energy.

  3. Temperature dependent structural properties and bending rigidity of pristine and defective hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.

    2015-08-01

    Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.

  4. Effect of alloying on screw dislocation structure in Mo: atomistic modelling approach with ab-initio parametrization

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.

    2005-03-01

    The plastic deformation in bcc metals is realized by the motion of screw dislocations with a complex star-like non-planar core. In this case, the direct investigation of the solute effect by first principles electronic structure calculations is a challenging problem for which we follow a combined approach that includes atomistic dislocation modelling with ab-initio parametrization of interatomic interactions. The screw dislocation core structure in Mo alloys is described within the model of atomic row displacements along a dislocation line with the interatomic row potential estimated from total energy full-potential linear muffin-tin orbital (FLMTO) calculations with the generalized gradient approximation (GGA) for the exchange-correlation potential. We demonstrate (1) that the solute effect on the dislocation structure is different for ``hard'' and ``easy'' cores and (2) that the softener addition in a ``hard'' core gives rise to a structural transformation into a configuration with a lower energy through an intermediate state. The softener solute is shown to disturb locally the three-fold symmetry of the dislocation core and the dislocation structure tends to the split planar core.

  5. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion

    PubMed Central

    Schmidt, Michael W.; Ivanic, Joseph; Ruedenberg, Klaus

    2014-01-01

    An analysis based on the variation principle shows that in the molecules H2+, H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation. PMID:24880263

  6. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion.

    PubMed

    Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-28

    An analysis based on the variation principle shows that in the molecules H2 (+), H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  7. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.

    PubMed

    Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele

    2016-06-16

    One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.

  8. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2016-10-01

    Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner-Preston (GP) zones in dilute Al-Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson-Mehl-Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.

  10. Combining a reactive potential with a harmonic approximation for molecular dynamics simulation of failure: construction of a reduced potential

    NASA Astrophysics Data System (ADS)

    Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.

    2015-01-01

    Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.

  11. Collisional Dynamics of the Cesium D1 and D2 Transitions

    DTIC Science & Technology

    2010-09-01

    37 14. Comparison of Phase Changing Probability and Polarizability ...Phase Changing Probability and Polarizability for D2 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 25...theoretically determined the values for broadening and shift rates for cesium with Argon , Krypton, and Xenon from the interatomic potentials [27]. The rates

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremin, N. N., E-mail: neremin@geol.msu.ru; Grechanovsky, A. E.; Marchenko, E. I.

    Semi-empirical and ab initio theoretical investigation of crystal structure geometry, interatomic distances, phase densities and elastic properties for some CaAl{sub 2}O{sub 4} phases under pressures up to 200 GPa was performed. Two independent simulation methods predicted the appearance of a still unknown super-dense CaAl{sub 2}O{sub 4} modification. In this structure, the Al coordination polyhedron might be described as distorted one with seven vertices. Ca atoms were situated inside polyhedra with ten vertices and Ca–O distances from 1.96 to 2.49 Å. It became the densest modification under pressures of 170 GPa (density functional theory prediction) or 150 GPa (semi-empirical prediction). Bothmore » approaches indicated that this super-dense CaAl{sub 2}O{sub 4} modification with a “stuffed α-PbO{sub 2}” type structure could be a probable candidate for mutual accumulation of Ca and Al in the lower mantle. The existence of this phase can be verified experimentally using high pressure techniques.« less

  13. Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview

    NASA Astrophysics Data System (ADS)

    Chowdhury, Piyas

    2018-03-01

    In this concise review, general aspects of modeling shape memory alloys (SMAs) are recounted. Different approaches are discussed under four general categories, namely, (a) macro-phenomenological, (b) micromechanical, (c) molecular dynamics, and (d) first principles models. Macro-phenomenological theories, stemming from empirical formulations depicting continuum elastic, plastic, and phase transformation, are primarily of engineering interest, whereby the performance of SMA-made components is investigated. Micromechanical endeavors are generally geared towards understanding microstructural phenomena within continuum mechanics such as the accommodation of straining due to phase change as well as role of precipitates. By contrast, molecular dynamics, being a more recently emerging computational technique, concerns attributes of discrete lattice structures, and thus captures SMA deformation mechanism by means of empirically reconstructing interatomic bonding forces. Finally, ab initio theories utilize quantum mechanical framework to peek into atomistic foundation of deformation, and can pave the way for studying the role of solid-sate effects. With specific examples, this paper provides concise descriptions of each category along with their relative merits and emphases.

  14. Next generation interatomic potentials for condensed systems

    NASA Astrophysics Data System (ADS)

    Handley, Christopher Michael; Behler, Jörg

    2014-07-01

    The computer simulation of condensed systems is a challenging task. While electronic structure methods like density-functional theory (DFT) usually provide a good compromise between accuracy and efficiency, they are computationally very demanding and thus applicable only to systems containing up to a few hundred atoms. Unfortunately, many interesting problems require simulations to be performed on much larger systems involving thousands of atoms or more. Consequently, more efficient methods are urgently needed, and a lot of effort has been spent on the development of a large variety of potentials enabling simulations with significantly extended time and length scales. Most commonly, these potentials are based on physically motivated functional forms and thus perform very well for the applications they have been designed for. On the other hand, they are often highly system-specific and thus cannot easily be transferred from one system to another. Moreover, their numerical accuracy is restricted by the intrinsic limitations of the imposed functional forms. In recent years, several novel types of potentials have emerged, which are not based on physical considerations. Instead, they aim to reproduce a set of reference electronic structure data as accurately as possible by using very general and flexible functional forms. In this review we will survey a number of these methods. While they differ in the choice of the employed mathematical functions, they all have in common that they provide high-quality potential-energy surfaces, while the efficiency is comparable to conventional empirical potentials. It has been demonstrated that in many cases these potentials now offer a very interesting new approach to study complex systems with hitherto unreached accuracy.

  15. Automated generation of quantum-accurate classical interatomic potentials for metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Foiles, Stephen; Schultz, Peter; Swiler, Laura; Trott, Christian; Tucker, Garritt

    2013-03-01

    Molecular dynamics (MD) is a powerful condensed matter simulation tool for bridging between macroscopic continuum models and quantum models (QM) treating a few hundred atoms, but is limited by the accuracy of available interatomic potentials. Sound physical and chemical understanding of these interactions have resulted in a variety of concise potentials for certain systems, but it is difficult to extend them to new materials and properties. The growing availability of large QM data sets has made it possible to use more automated machine-learning approaches. Bartók et al. demonstrated that the bispectrum of the local neighbor density provides good regression surrogates for QM models. We adopt a similar bispectrum representation within a linear regression scheme. We have produced potentials for silicon and tantalum, and we are currently extending the method to III-V compounds. Results will be presented demonstrating the accuracy of these potentials relative to the training data, as well as their ability to accurately predict material properties not explicitly included in the training data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy Nat. Nuclear Security Admin. under Contract DE-AC04-94AL85000.

  16. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our methodologies to graphene and MoS2 as examples. Young's modulus, Poison's ratio, heat conductivity, heat capacity, and energy release rate at the nanoscale are studied. These findings lend compelling insights into the atomistic mechanisms of graphene and MoS2, and provide useful guidelines for the design of 2D-material-based nanodevices.

  17. Error estimates for (semi-)empirical dispersion terms and large biomacromolecules.

    PubMed

    Korth, Martin

    2013-10-14

    The first-principles modeling of biomaterials has made tremendous advances over the last few years with the ongoing growth of computing power and impressive developments in the application of density functional theory (DFT) codes to large systems. One important step forward was the development of dispersion corrections for DFT methods, which account for the otherwise neglected dispersive van der Waals (vdW) interactions. Approaches at different levels of theory exist, with the most often used (semi-)empirical ones based on pair-wise interatomic C6R(-6) terms. Similar terms are now also used in connection with semiempirical QM (SQM) methods and density functional tight binding methods (SCC-DFTB). Their basic structure equals the attractive term in Lennard-Jones potentials, common to most force field approaches, but they usually use some type of cutoff function to make the mixing of the (long-range) dispersion term with the already existing (short-range) dispersion and exchange-repulsion effects from the electronic structure theory methods possible. All these dispersion approximations were found to perform accurately for smaller systems, but error estimates for larger systems are very rare and completely missing for really large biomolecules. We derive such estimates for the dispersion terms of DFT, SQM and MM methods using error statistics for smaller systems and dispersion contribution estimates for the PDBbind database of protein-ligand interactions. We find that dispersion terms will usually not be a limiting factor for reaching chemical accuracy, though some force fields and large ligand sizes are problematic.

  18. VoroMQA: Assessment of protein structure quality using interatomic contact areas.

    PubMed

    Olechnovič, Kliment; Venclovas, Česlovas

    2017-06-01

    In the absence of experimentally determined protein structure many biological questions can be addressed using computational structural models. However, the utility of protein structural models depends on their quality. Therefore, the estimation of the quality of predicted structures is an important problem. One of the approaches to this problem is the use of knowledge-based statistical potentials. Such methods typically rely on the statistics of distances and angles of residue-residue or atom-atom interactions collected from experimentally determined structures. Here, we present VoroMQA (Voronoi tessellation-based Model Quality Assessment), a new method for the estimation of protein structure quality. Our method combines the idea of statistical potentials with the use of interatomic contact areas instead of distances. Contact areas, derived using Voronoi tessellation of protein structure, are used to describe and seamlessly integrate both explicit interactions between protein atoms and implicit interactions of protein atoms with solvent. VoroMQA produces scores at atomic, residue, and global levels, all in the fixed range from 0 to 1. The method was tested on the CASP data and compared to several other single-model quality assessment methods. VoroMQA showed strong performance in the recognition of the native structure and in the structural model selection tests, thus demonstrating the efficacy of interatomic contact areas in estimating protein structure quality. The software implementation of VoroMQA is freely available as a standalone application and as a web server at http://bioinformatics.lt/software/voromqa. Proteins 2017; 85:1131-1145. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.

    2015-10-01

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (∼0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential. The Gao-Weber potential appears to give a more realistic description of cascade dynamics in SiC, but still has some shortcomings when the defect migration barriers are compared to the ab initio results.

  20. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    NASA Astrophysics Data System (ADS)

    Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker, G. J.

    2015-03-01

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  1. Atomistic properties of γ uranium.

    PubMed

    Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria

    2012-02-22

    The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.

  2. Atomistic properties of γ uranium

    NASA Astrophysics Data System (ADS)

    Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria

    2012-02-01

    The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.

  3. Classical and quantum simulations of warm dense carbon

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin

    We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV

  4. Probing the interatomic potential of solids with strong-field nonlinear phononics

    NASA Astrophysics Data System (ADS)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  5. An existence criterion for low-dimensional materials

    NASA Astrophysics Data System (ADS)

    Chen, Jiapeng; Wang, Biao; Hu, Yangfan

    2017-10-01

    The discovery of graphene and other two-dimensional (2-D) materials has stimulated a general interest in low-dimensional (low-D) materials. Whereas long time ago, Peierls (1935) and Landau's (1937) theoretical work demonstrated that any one- and two-dimensional materials could not exist in any finite temperature environment. Then, two basic issues became a central concern for many researchers: How can stable low-D materials exist? What kind of low-D materials are stable? Here, we establish an energy stability criterion for low-D materials, which seeks to provide a clear answer to these questions. For a certain kind of element, the stability of its specific low-D structure is determined by several derivatives of its interatomic potential. This atomistic-based approach is then applied to study any straight/planar, low-D, equal-bond-length elemental materials. We found that 1-D monatomic chains, 2-D honeycomb lattices, square lattices, and triangular lattices are the only four permissible structures, and the stability of these structures can only be understood by assuming multi-body interatomic potentials. Using this approach, the stable existence of graphene, silicene and germanene can be explained.

  6. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    PubMed Central

    2017-01-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411

  7. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Bich, Eckard

    2017-06-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  8. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  9. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  10. Strong field control of the interatomic Coulombic decay process in quantum dots

    NASA Astrophysics Data System (ADS)

    Haller, Anika; Chiang, Ying-Chih; Menger, Maximilian; Aziz, Emad F.; Bande, Annika

    2017-01-01

    In recent years the laser-induced interatomic Coulombic decay (ICD) process in paired quantum dots has been predicted (Bande, 2013). In this work we target the enhancement of ICD by scanning over a range of strong-field laser intensities. The GaAs quantum dots are modeled by a one-dimensional double-well potential in which simulations are done with the space-resolved multi-configuration time-dependent Hartree method including antisymmetrization to account for the fermions. As a novelty a complementary state-resolved ansatz is developed to consolidate the interpretation of transient state populations, widths obtained for the ICD and the competing direct ionization channel, and Fano peak profiles in the photoelectron spectra. The major results are that multi-photon processes are unimportant even for the strongest fields. Further, below- π to π pulses display the highest ICD efficiency while the direct ionization becomes less dominant.

  11. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  12. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  13. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  14. Compositional and strain analysis of In(Ga)N/GaN short period superlattices

    NASA Astrophysics Data System (ADS)

    Dimitrakopulos, G. P.; Vasileiadis, I. G.; Bazioti, C.; Smalc-Koziorowska, J.; Kret, S.; Dimakis, E.; Florini, N.; Kehagias, Th.; Suski, T.; Karakostas, Th.; Moustakas, T. D.; Komninou, Ph.

    2018-01-01

    Extensive high resolution transmission and scanning transmission electron microscopy observations were performed in In(Ga)N/GaN multi-quantum well short period superlattices comprising two-dimensional quantum wells (QWs) of nominal thicknesses 1, 2, and 4 monolayers (MLs) in order to obtain a correlation between their average composition, geometry, and strain. The high angle annular dark field Z-contrast observations were quantified for such layers, regarding the indium content of the QWs, and were correlated to their strain state using peak finding and geometrical phase analysis. Image simulations taking into thorough account the experimental imaging conditions were employed in order to associate the observed Z-contrast to the indium content. Energetically relaxed supercells calculated with a Tersoff empirical interatomic potential were used as the input for such simulations. We found a deviation from the tetragonal distortion prescribed by continuum elasticity for thin films, i.e., the strain in the relaxed cells was lower than expected for the case of 1 ML QWs. In all samples, the QW thickness and strain were confined in up to 2 ML with possible indium enrichment of the immediately abutting MLs. The average composition of the QWs was quantified in the form of alloy content.

  15. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aidan P.; Swiler, Laura P.; Trott, Christian R.

    2015-03-15

    Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1].more » The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less

  16. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, A.P., E-mail: athomps@sandia.gov; Swiler, L.P., E-mail: lpswile@sandia.gov; Trott, C.R., E-mail: crtrott@sandia.gov

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. Themore » SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less

  17. MEAM interatomic force calculation subroutine for LAMMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stukowski, A.

    2010-10-25

    Interatomic force and energy calculation subroutine tobe used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluates the total energy and atomic forces (energy gradient) according to cubic spine-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM).

  18. Molecular dynamics simulations of the formation of 1D spin-valves from stretched Au-Co and Pt-Co nanowires

    NASA Astrophysics Data System (ADS)

    Cortes-Huerto, R.; Sondon, T.; Saúl, A.

    2014-11-01

    We have performed molecular dynamics (MD) simulations of stretched Aux-Co1 - x and Ptx-Co1 - x nanowires to investigate the formation of bimetallic monoatomic wires between two electrodes. We have considered nanowires with two concentrations x = 0.2 and 0.8, aspect ratio of 13, a cross section of 1 nm2 and a wide range of temperatures (from 10 to 400 K). For the MD simulations we have used a semi-empirical interatomic potential based on the second moment approximation (SMA) of the density of states to the tight-binding Hamiltonian. For Au-Co alloys, Au atoms tends to migrate towards the narrowed region to form almost pure Au wires. In the PtCo case the formed chains usually consist of Pt enriched alternating structures. The most striking result is probably the Au0.2-Co0.8 alloy where pure monoatomic Au chains form between two Co electrodes constituting a potential 1D spin valve. Despite the known ease with which the 5d metals (Pt, Ir, and Au) form monoatomic chains (MACS), our results show that in the presence of Co (x = 0.2), the percentage of chain formation is higher than in the Pt and Au rich cases (x = 0.8).

  19. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.

    PubMed

    Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha

    2004-09-22

    Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.

  20. Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system.

    PubMed

    Henriksson, K O E; Björkas, C; Nordlund, K

    2013-11-06

    Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides-Fe3C (cementite) and Cr23C6-being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.

  1. Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system

    NASA Astrophysics Data System (ADS)

    Henriksson, K. O. E.; Björkas, C.; Nordlund, K.

    2013-11-01

    Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides—Fe3C (cementite) and Cr23C6—being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.

  2. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    PubMed

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in <222> direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction <022>.This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  3. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  4. Interatomic potential at small internuclear distances. A simple formula for the screening constant

    NASA Astrophysics Data System (ADS)

    Zinoviev, A. N.

    2017-09-01

    A simple formula for estimating the screening constant has been proposed. This formula fits well experimental data on the interaction potentials. Quantitative description of the experiment for the effect of electronic screening on the nuclear synthesis reaction cross-section for the D+-D system has been obtained. A conclusion has been made that the differences between the measured cross-sections and their theoretically predicted values, which take place in more complicated cases nuclear synthesis reactions, are not caused by uncertainties in the knowledge of potentials.

  5. Kinetics of homogeneous nucleation on many-component systems

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.

    1974-01-01

    Reiss's (1950) classical treatment of the kinetics of homogeneous nucleation in a system containing two chemical components is extended to many-component systems. The formulation is analogous to the pseudostationary-state theory of chemical reaction rates, with the free energy as a function of the composition of the embryo taking the place of the potential energy as a function of interatomic distances.

  6. Kinetics of homogeneous nucleation in many component systems

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.

    1974-01-01

    Reiss's classical treatment of the kinetics of homogeneous nucleation in a system containing two chemical components is extended to many-component systems. The formulation is analogous to the pseudo-stationary state theory of chemical reaction rates with the free energy as a function of the composition of the embryo taking the place of the potential energy as a function of interatomic distances.

  7. Surface Impact Simulations of Helium Nanodroplets

    DTIC Science & Technology

    2015-06-30

    mechanical delocalization of the individual helium atoms in the droplet and the quan- tum statistical effects that accompany the interchange of identical...incorporates the effects of atomic delocaliza- tion by treating individual atoms as smeared-out probability distributions that move along classical...probability density distributions to give effec- tive interatomic potential energy curves that have zero-point averaging effects built into them [25

  8. An atomistic fingerprint algorithm for learning ab initio molecular force fields

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em

    2018-01-01

    Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.

  9. Evolution of sp{sup 2} networks with substrate temperature in amorphous carbon films: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gago, R.; Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid; Vinnichenko, M.

    2005-07-01

    The evolution of sp{sup 2} hybrids in amorphous carbon (a-C) films deposited at different substrate temperatures was studied experimentally and theoretically. The bonding structure of a-C films prepared by filtered cathodic vacuum arc was assessed by the combination of visible Raman spectroscopy, x-ray absorption, and spectroscopic ellipsometry, while a-C structures were generated by molecular-dynamics deposition simulations with the Brenner interatomic potential to determine theoretical sp{sup 2} site distributions. The experimental results show a transition from tetrahedral a-C (ta-C) to sp{sup 2}-rich structures at {approx}500 K. The sp{sup 2} hybrids are mainly arranged in chains or pairs whereas graphitic structures aremore » only promoted for sp{sup 2} fractions above 80%. The theoretical analysis confirms the preferred pairing of isolated sp{sup 2} sites in ta-C, the coalescence of sp{sup 2} clusters for medium sp{sup 2} fractions, and the pronounced formation of rings for sp{sup 2} fractions >80%. However, the dominance of sixfold rings is not reproduced theoretically, probably related to the functional form of the interatomic potential used.« less

  10. Anisotropic high-harmonic generation in bulk crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Reis, David A.; Ghimire, Shambhu

    2016-11-21

    The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less

  11. Coupled thermomechanical behavior of graphene using the spring-based finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr

    The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less

  12. Path-integral simulation of ice Ih: The effect of pressure

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.; Ramírez, Rafael

    2011-12-01

    The effect of pressure on structural and thermodynamic properties of ice Ih has been studied by means of path-integral molecular dynamics simulations at temperatures between 50 and 300 K. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Positive (compression) and negative (tension) pressures have been considered, which allowed us to approach the limits for the mechanical stability of this solid water phase. We have studied the pressure dependence of the crystal volume, bulk modulus, interatomic distances, atomic delocalization, and kinetic energy. The spinodal point at both negative and positive pressures is derived from the vanishing of the bulk modulus. For P<0, the spinodal pressure changes from -1.38 to - 0.73 GPa in the range from 50 to 300 K. At positive pressure the spinodal is associated with ice amorphization, and at low temperatures it is found to be between 1.1 and 1.3 GPa. Quantum nuclear effects cause a reduction of the metastability region of ice Ih.

  13. Quantum chemical calculations of interatomic potentials for computer simulation of solids

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A comprehensive mathematical model by which the collective behavior of a very large number of atoms within a metal or alloy can accurately be simulated was developed. Work was done in order to predict and modify the strength of materials to suit our technological needs. The method developed is useful in studying atomic interactions related to dislocation motion and crack extension.

  14. Analytical W-He and H-He interatomic potentials for a W-H-He system

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Chun; Shu, Xiaolin; Liu, Yi-Nan; Yu, Yi; Gao, F.; Lu, Guang-Hong

    2012-07-01

    We have constructed W-He and H-He analytical bond-order potentials for a W-H-He system. In combination with the previously self-developed W-H potential [X.-C. Li, X. Shu, Y.-N. Liu, F. Gao, G.-H. Lu, J. Nucl. Mater. 408 (2011) 12] and the Hartree-Fock-dispersion pair potential (Aziz-potential) for He-He interactions, we demonstrate that such potentials behave well for reproducing various properties of the W-H-He system such as defect formation energies, structural properties, and diffusion barriers. Such potentials can be employed to model both the He behaviours and the H-He synergetic effects in the W-H-He system.

  15. Heat conduction in diatomic chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    Savin, Alexander V.; Zolotarevskiy, Vadim; Gendelman, Oleg V.

    2017-01-01

    The paper considers heat transport in diatomic one-dimensional lattices, containing equal amounts of particles with different masses. Ordering of the particles in the chain is governed by single correlation parameter - the probability for two neighboring particles to have the same mass. As this parameter grows from zero to unity, the structure of the chain varies from regular staggering chain to completely random configuration, and then - to very long clusters of particles with equal masses. Therefore, this correlation parameter allows a control of typical cluster size in the chain. In order to explore different regimes of the heat transport, two interatomic potentials are considered. The first one is an infinite potential wall, corresponding to instantaneous elastic collisions between the neighboring particles. In homogeneous chains such interaction leads to an anomalous heat transport. The other one is classical Lennard-Jones interatomic potential, which leads to a normal heat transport. The simulations demonstrate that the correlated disorder of the particle arrangement does not change the convergence properties of the heat conduction coefficient, but essentially modifies its value. For the collision potential, one observes essential growth of the coefficient for fixed chain length as the limit of large homogeneous clusters is approached. The thermal transport in these models remains superdiffusive. In the Lennard-Jones chain the effect of correlation appears to be not monotonous in the limit of low temperatures. This behavior stems from the competition between formation of long clusters mentioned above, and Anderson localization close to the staggering ordered state.

  16. Self-Diffusion of small Ag and Ni islands on Ag(111) and Ni(111) using the self-learning kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Islamuddin Shah, Syed; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S.

    2012-02-01

    We have applied a modified Self-Learning Kinetic Monte Carlo (SLKMC) method [1] to examine the self-diffusion of small Ag and Ni islands, containing up to 10 atom, on the (111) surface of the respective metal. The pattern recognition scheme in this new SLKMC method allows occupancy of the fcc, hcp and top sites on the fcc(111) surface and employs them to identify the local neighborhood around a central atom. Molecular static calculations with semi empirical interatomic potential and reliable techniques for saddle point search revealed several new diffusion mechanisms that contribute to the diffusion of small islands. For comparison we have also evaluated the diffusion characteristics of Cu clusters on Cu(111) and compared results with previous findings [2]. Our results show a linear increase in effective energy barriers scaling almost as 0.043, 0.051 and 0.064 eV/atom for the Cu/Cu(111), Ag/Ag(111), and Ni/Ni(111) systems, respectively. For all three systems, diffusion of small islands proceeds mainly through concerted motion, although several multiple and single atom processes also contribute. [1] Oleg Trushin et al. Phys. Rev. B 72, 115401 (2005) [2] Altaf Karim et al. Phys. Rev. B 73, 165411 (2006)

  17. Influence of Fe/Co ratio on structural and magnetic properties of (Fe100-xCox)84.5Nb5B8.5P2 alloy

    NASA Astrophysics Data System (ADS)

    Gehlot, K.; Kane, S. N.; Sinha, A. K.; Ghodke, N.; Varga, L. K.

    2018-05-01

    Structural and magnetic properties of a series of (Fe100-xCox)84.5Nb5B8.5P2 (x = 20, 40, 60) have been investigated respectively by using synchrotron x-ray diffraction and magnetic measurements. Results show that Fe/Co ratio: i) affects stability of the alloy against crystallization, ii) shows evidence for ordering, which has considerable effect on magnetic properties, iii) influences the grain diameter and volume fraction of the formed nano-grains range between 4.8 - 9.5 nm and 1.5 - 9 %, affects magnetic properties considerably. An empirical relation is obtained, which shows linear relationship between interatomic distances for 1st, 2nd co-ordination shell, suggests strong correlation between structural, magnetic properties.

  18. Atomistic modeling for interfacial properties of Ni-Al-V ternary system

    NASA Astrophysics Data System (ADS)

    Dong, Wei-ping; Lee, Byeong-Joo; Chen, Zheng

    2014-05-01

    Interatomic potentials for Ni-Al-V ternary systems have been developed based on the second-nearest-neighbor modified embedded-atom method potential formalism. The potentials can describe various fundamental physical properties of the relevant materials in good agreement with experimental information. The potential is utilized for an atomistic computation of interfacial properties of Ni-Al-V alloys. It is found that vanadium atoms segregate on the γ-fcc/L12 interface and this segregation affects the interfacial properties. The applicability of the atomistic approach to an elaborate alloy design of advanced Ni-based superalloys through the investigation of the effect of alloying elements on interfacial properties is discussed.

  19. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  20. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Anne Myers

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies formore » the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.« less

  1. Study of interatomic interactions and phonons in magnesium chalcogenides

    NASA Astrophysics Data System (ADS)

    Gupta, Yuhit; Sinha, M. M.

    2018-05-01

    Alkaline earth chalcogenides (AECs) are very important compounds because of these possess semiconducting properties besides having large band gap mostly of the order of 7-10 eV which is the characteristic properties of insulators. These compounds are having many important optoelectronic properties, which serves its role in the production of many electronic devices. These are found in many crystallographic phases such as rock salt (B1), zinc blende (B3), wurtzite (B5) and nickel arsenide (B8) phase. A de-Launay angular force (DAF) model has been used to study the interatomic interactions and phonons of MgX (X=S, Se, Te) in zinc blende structure. The interatomic interaction in the form of central and angular forces up to second nearest neighbors has been considered. The interatomic interaction Mg-X is found to be strongest and its value is highest for MgS compared to others. This is because of small bond length in MgS compared to others. Zone centre phonons have been calculated for MgX and are in agreement with other available results. The phonon dispersion curves in three high symmetric direction are calculated for MgX (X=S, Se, Te) and are interpreted in light of other existing results.

  2. Strength of the interatomic potential derived from angular scans in LEIS

    NASA Astrophysics Data System (ADS)

    Primetzhofer, D.; Markin, S. N.; Draxler, M.; Beikler, R.; Taglauer, E.; Bauer, P.

    2008-09-01

    Angular scans were performed for a Cu(1 0 0) single crystal and He + ions. The results were compared to MARLOWE, KALYPSO and FAN simulations to obtain information on the interaction potential. The influence of the used evaluation procedure on the deduced scattering potential was investigated. The scattering potential is found to be weaker than what is predicted by an uncorrected TFM potential. It was found that the use of a single screening correction factor is applicable in a wide range of impact parameters. It is further shown that selection of single scattering trajectories and a limitation of information depth to the surface layers is possible for neutral and charge integrated spectra.

  3. On the role of structure-dynamic relationship in determining the excess entropy of mixing and chemical ordering in binary square-well liquid alloys

    NASA Astrophysics Data System (ADS)

    Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar

    2018-05-01

    Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.

  4. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  5. Resonance interatomic energy in a Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2017-08-01

    We study, in the Schwarzschild spacetime, the resonance interatomic energy (RIE) of two static identical atoms with an interatomic separation L along the radial direction and correlated by a symmetric/antisymmetric entangled state. The atoms are assumed to be coupled to massless scalar fields in the Boulware, Unruh, and Hartle-Hawking vacua, and approximate analytical results are obtained both at infinity and near the horizon. Our results show that at infinity, the RIE approaches that in a flat spacetime, while, near the horizon, they can deviate dramatically from each other. Besides, different from other atomic radiative properties such as the Lamb shift of a single atom or the interatomic energy between two uncorrelated atoms, which can be obviously affected by the thermal character of quantum fields, the RIE of two atoms in a symmetric/antisymmetric entangled state in the Boulware, Unruh, and Hartle-Hawking vacua are exactly the same as a result of the fact that the RIE of two such atoms depends only on the atomic self-reaction, i.e., it does not feel the vacuum fluctuations. This suggests that the RIE of two static atoms in a symmetric/antisymmetric entangled state outside a black hole is oblivious to the Hawking radiation, in contrast to those uncorrelated atoms.

  6. Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load

    NASA Astrophysics Data System (ADS)

    Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.

    2017-03-01

    The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.

  7. Analysis of oxygen binding-energy variations for BaO on W

    NASA Astrophysics Data System (ADS)

    Haas, G. A.; Shih, A.; Mueller, D.; Thomas, R. E.

    Interatomic Auger analyses have been made of different forms of BaO layers on W substrates. Variations in Auger spectroscopy energies of the Ba4dBa5pO2p interatomic Auger transition were found to be largely governed by the O2p binding energy of the BaO adsorbate. This was illustrated by comparing results of the Auger data values with values derived from O2p binding energies using ultraviolet photoelectron spectroscopy. Very good agreement was observed not only for the W<100> substrate but also for the W<110> substrate which showed two oxygen-induced electronics state. Variations in binding energy were noted for different states of BaO lattice formation and for different amounts of oxidation, ranging from the transition of Ba to BaO and continuing to the BaO 2 stoichiometry and beyond. Effects were also reported for adsorbate alignment and thermal activation (i.e., reduction) of the oxidized state. An empirical relationship was found suggesting that the more tightly bound the O2p states of the BaO adsorbate were, the lower its work function would be. This link between binding energy and work function was observed to be valid not only for cases of poisoning by oxidation, but held as well during reactivation by the subsequent reduction of the oxide. In addition, this relationship also appeared to predict the low work function obtained through the introduction of substances such as Sc to the BaO-W system. Possible qualitative reasons which might contribute to this are discussed in terms of enhanced dipole effects and shifts in band structure.

  8. Anharmonic interatomic force constants and thermal conductivity from Grüneisen parameters: An application to graphene

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua; Gan, Chee Kwan

    2017-07-01

    Phonon-mediated thermal conductivity, which is of great technological relevance, arises due fundamentally to anharmonic scattering from interatomic potentials. Despite its prevalence, accurate first-principles calculations of thermal conductivity remain challenging, primarily due to the high computational cost of anharmonic interatomic force constant (IFC) calculations. Meanwhile, the related anharmonic phenomenon of thermal expansion is much more tractable, being computable from the Grüneisen parameters associated with phonon frequency shifts due to crystal deformations. In this work, we propose an approach for computing the largest cubic IFCs from the Grüneisen parameter data. This allows an approximate determination of the thermal conductivity via a much less expensive route. The key insight is that although the Grüneisen parameters cannot possibly contain all the information on the cubic IFCs, being derivable from spatially uniform deformations, they can still unambiguously and accurately determine the largest and most physically relevant ones. By fitting the anisotropic Grüneisen parameter data along judiciously designed deformations, we can deduce (i.e., reverse-engineer) the dominant cubic IFCs and estimate three-phonon scattering amplitudes. We illustrate our approach by explicitly computing the largest cubic IFCs and thermal conductivity of graphene, especially for its out-of-plane (flexural) modes that exhibit anomalously large anharmonic shifts and thermal conductivity contributions. Our calculations on graphene not only exhibit reasonable agreement with established density-functional theory results, but they also present a pedagogical opportunity for introducing an elegant analytic treatment of the Grüneisen parameters of generic two-band models. Our approach can be readily extended to more complicated crystalline materials with nontrivial anharmonic lattice effects.

  9. Atomistic material behavior at extreme pressures

    DOE PAGES

    Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.

    2016-08-05

    Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less

  10. Helium Purge Flow Prevention of Atmospheric Contamination of the Cryogenically Cooled Optics of Orbiting Infrared Telescopes: Calculation of He-O Differential Cross Section,

    DTIC Science & Technology

    1981-06-05

    interactions. Aquilanti and coworkers were able to obtain two analytic forms for the interatomic potential --a Lennard - Jones (12, 6) and an exp(a, 6) function...Sec. UI.D 38 ences between the 3R and 3E- potential functions which described the interac- tions of ground-state oxygen and helium atoms. Instead, for...AO-AIOI 152 AEROSPACE CORP EL SEUMOO CA CHEMISTRY AND PHYSICS LAD r/6 17 HELIUM PLRE FLOW PREVENTION OF ATMOSPHERIC CONTAMINATION OF TAR fTCiO )JN81

  11. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  12. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  13. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  14. Calculations of lattice vibrational mode lifetimes using Jazz: a Python wrapper for LAMMPS

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, H.; Daw, M. S.

    2015-06-01

    Jazz is a new python wrapper for LAMMPS [1], implemented to calculate the lifetimes of vibrational normal modes based on forces as calculated for any interatomic potential available in that package. The anharmonic character of the normal modes is analyzed via the Monte Carlo-based moments approximation as is described in Gao and Daw [2]. It is distributed as open-source software and can be downloaded from the website http://jazz.sourceforge.net/.

  15. Conformational analysis of bis(methylthio)methane and diethyl sulfide molecules in the liquid phase: reverse Monte Carlo studies using classical interatomic potential functions.

    PubMed

    Gereben, Orsolya; Pusztai, László

    2013-11-13

    Series of flexible molecule reverse Monte Carlo calculations, using bonding and non-bonding interatomic potential functions (FMP-RMC), were performed starting from previous molecular dynamics results that had applied the OPLS-AA and EncadS force fields. During RMC modeling, the experimental x-ray total scattering structure factor was approached. The discrepancy between experimental and calculated structure factors, in comparison with the molecular dynamics results, decreased substantially in each case. The room temperature liquid structure of bis(methylthio)methane is excellently described by the FMP-RMC simulation that applied the EncadS force field parameters. The main conformer was found to be AG with 55.2%, followed by 37.2% of G(+)G(+) (G(-)G(-)) and 7.6% of AA; the stability of the G(+)G(+) (G(-)G(-)) conformer is most probably caused by the anomer effect. The liquid structure of diethyl sulfide can be best described by applying the OPLS-AA force field parameters during FMP-RMC simulation, although in this case the force field parameters were found to be not fully compatible with experimental data. Here, the two main conformers are AG (50.6%) and the AA (40%). In addition to findings on the actual real systems, a fairly detailed comparison between traditional and FMP-RMC methodology is provided.

  16. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys

    NASA Astrophysics Data System (ADS)

    Nahhas, M. K.; Groh, S.

    2018-02-01

    In this study, the structure, the energetic, and the strength of a { 10 1 bar 1 } < 11 2 bar 0 > symmetric tilt grain boundary in magnesium and magnesium binary alloys were analyzed in the framework of (semi-)empirical potentials. Following a systematic investigation of the transferability and accuracy of the interatomic potentials, atomistic calculations of the grain boundary energy, the grain boundary sliding energy, and the grain boundary strength were performed in pure magnesium and in binary MgX alloys (X = Al, Ca, Gd, Li, Sn, Y, Ag, Nd, and Pb). The data gained in this study were analyzed to identify the most critical material parameters controlling the strength of the grain boundary, and their consequence on atomic shuffling motions occurring at the grain boundary. From the methodology perspective, the role of in-plane and out-of plane relaxation on the grain boundary sliding energy curves was investigated. In pure magnesium, the results showed that in-plane relaxation is critical in activating b2{ 10 1 bar 1 } twinning dislocation resulting in grain boundary migration. In the alloy systems, however, grain boundary migration was disabled as a consequence of the pinning of the grain boundary by segregated elements. Finally, while the grain boundary energy, the shape of the grain boundary sliding energy curves, and the grain boundary sliding energy are critical parameters controlling the grain boundary strength in pure magnesium, only the grain boundary energy and the segregation energy of the alloying elements at the grain boundary were identified as critical material parameters in the alloys system.

  17. Enhanced Thermal Diffusion of Li in Graphite by Alternating Vertical Electric Field: A Hybrid Quantum-Classical Simulation Study

    NASA Astrophysics Data System (ADS)

    Ohba, Nobuko; Ogata, Shuji; Tamura, Tomoyuki; Kobayashi, Ryo; Yamakawa, Shunsuke; Asahi, Ryoji

    2012-02-01

    Enhancing the diffusivity of the Li ion in a Li-graphite intercalation compound that has been used as a negative electrode in the Li-ion rechargeable battery, is important in improving both the recharging speed and power of the battery. In the compound, the Li ion creates a long-range stress field around itself by expanding the interlayer spacing of graphite. We advance the hybrid quantum-classical simulation code to include the external electric field in addition to the long-range stress field by first-principles simulation. In the hybrid code, the quantum region selected adaptively around the Li ion is treated using the real-space density-functional theory for electrons. The rest of the system is described with an empirical interatomic potential that includes the term relating to the dispersion force between the C atoms in different layers. Hybrid simulation runs for Li dynamics in graphite are performed at 423 K under various settings of the amplitude and frequency of alternating electric fields perpendicular to C-layers. We find that the in-plane diffusivity of the Li ion is enhanced significantly by the electric field if the amplitude is larger than 0.2 V/Å within its order and the frequency is as high as 1.7 THz. The microscopic mechanisms of the enhancement are explained.

  18. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.

    PubMed

    Carrez, Philippe; Ferré, Denise; Cordier, Patrick

    2007-03-01

    The dynamics of the Earth's interior is largely controlled by mantle convection, which transports radiogenic and primordial heat towards the surface. Slow stirring of the deep mantle is achieved in the solid state through high-temperature creep of rocks, which are dominated by the mineral MgSiO3 perovskite. Transformation of MgSiO3 to a 'post-perovskite' phase may explain the peculiarities of the lowermost mantle, such as the observed seismic anisotropy, but the mechanical properties of these mineralogical phases are largely unknown. Plastic flow of solids involves the motion of a large number of crystal defects, named dislocations. A quantitative description of flow in the Earth's mantle requires information about dislocations in high-pressure minerals and their behaviour under stress. This property is currently out of reach of direct atomistic simulations using either empirical interatomic potentials or ab initio calculations. Here we report an alternative to direct atomistic simulations based on the framework of the Peierls-Nabarro model. Dislocation core models are proposed for MgSiO3 perovskite (at 100 GPa) and post-perovskite (at 120 GPa). We show that in perovskite, plastic deformation is strongly influenced by the orthorhombic distortions of the unit cell. In silicate post-perovskite, large dislocations are relaxed through core dissociation, with implications for the mechanical properties and seismic anisotropy of the lowermost mantle.

  19. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan

    2018-04-01

    We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

  20. Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Hodille, E. A.; Ferro, Y.; Nordlund, K.

    2018-04-01

    An analytical interatomic bond order potential for the Be-O system is presented. The potential is fitted and compared to a large database of bulk BeO and point defect properties obtained using density functional theory. Its main applications include simulations of plasma-surface interactions involving oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes and nanosheets. We apply the potential in a study of oxygen irradiation of Be surfaces, and observe the early stages of an oxide layer forming on the Be surface. Predicted thermal and elastic properties of BeO nanotubes and nanosheets are simulated and compared with published ab initio data.

  1. A study of microkinetic adjustments required to match shock wave experiments and Monte Carlo Direct Simulation for a wide Mach number range

    NASA Technical Reports Server (NTRS)

    Pham-Van-diep, Gerald C.; Muntz, E. Phillip; Erwin, Daniel A.

    1990-01-01

    Shock wave thickness predictions from Monte Carlo Direct Simulations, using differential scattering and the Maitland-Smith-Aziz interatomic potential, underpredict experiments as shock Mach numbers increase above about 4. Examination of several sources of data has indicated that at relatively high energies the repulsive portion of accepted potentials such as the Maitland-Smith-Aziz may be too steep. An Exponential-6 potential due to Ross, based on high energy molecular beam scattering data and shock velocity measurements in liquid argon, has been combined with the lower energy portion of the Maitland-Smith-Aziz potential. When this hybrid potential is used in Monte Carlo Direct Simulations, agreement with experiments is improved over the previous predictions using the pure Maitland-Smith-Aziz form.

  2. Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms

    NASA Astrophysics Data System (ADS)

    Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi

    2018-05-01

    Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.

  3. Observation of fast and slow interatomic Coulombic decay in argon dimers induced by electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Miteva, Tsveta; Kolorenč, Přemysl; Gokhberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Dorn, Alexander

    2017-09-01

    We investigate the interatomic Coulombic decay (ICD) in argon dimers induced by electron-impact ionization (E0=90 eV ) using a multiparticle coincidence experiment in which the momentum vectors and, consequently, the kinetic energies for electrons and fragment ions are determined. The signature of the ICD process is obtained from a correlation map between ejected electron energy and kinetic energy release (KER) for Ar++Ar+ fragment ions where low-energy ICD electrons can be identified. Furthermore, two types of ICD processes, termed fast and slow interatomic decay, are separated by the ICD initial-state energies and projectile energy losses. The dependence of the energies of emitted low-energy ICD electrons on the initial-state energy is studied. ICD electron energy spectra and KER spectra are obtained separately for fast and slow decay processes where the KER spectra for the slow decay channel are strongly influenced by nuclear motion. The KER and ICD electron energy spectra are well reproduced by ab initio calculations.

  4. Interatomic Coulombic decay cascades in multiply excited neon clusters

    PubMed Central

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  5. Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact

    PubMed Central

    Ren, Xueguang; Jabbour Al Maalouf, Elias; Dorn, Alexander; Denifl, Stephan

    2016-01-01

    In weakly bound systems like liquids and clusters electronically excited states can relax in inter-particle reactions via the interplay of electronic and nuclear dynamics. Here we report on the identification of two prominent examples, interatomic Coulombic decay (ICD) and radiative charge transfer (RCT), which are induced in argon dimers by electron collisions. After initial ionization of one dimer constituent ICD and RCT lead to the ionization of its neighbour either by energy transfer to or by electron transfer from the neighbour, respectively. By full quintuple-coincidence measurements, we unambiguously identify ICD and RCT, and trace the relaxation dynamics as function of the collisional excited state energies. Such interatomic processes multiply the number of electrons and shift their energies down to the critical 1–10 eV range, which can efficiently cause chemical degradation of biomolecules. Therefore, the observed relaxation channels might contribute to cause efficient radiation damage in biological systems. PMID:27000407

  6. Symmetry and novelty in the electronic and geometric structure of nanoalloys:. the case of Ag27Cu7

    NASA Astrophysics Data System (ADS)

    Ortigoza, M. Alcántara; Rahman, T. S.

    2008-04-01

    Nanoparticles of bimetallic alloys have been shown to possess composition dependent characteristics which distinguish themselves from the corresponding bulk alloys. Taking the 34-atom nanoalloy of Ag and Cu (Ag27Cu7), we show using first principles electronic structure calculations that this core-shell alloy indeed has perfect D5h symmetry and consists of only 6 non-equivalent (2 Cu and 4 Ag) atoms. Analysis of the interatomic bond lengths and detailed electronic structure further reveal that the Cu atoms play a major role in controlling the characteristics of the nanoalloy. The higher cohesive energy, together with shorter bond length for Cu, compared to Ag, conspire to produce a hierarchy in the relative strengths of the Ag - Cu, Ag - Ag, and Cu - Cu bonds and corresponding interatomic bond lengths, point to the uniqueness in the characteristics of this nanoalloy. Charge density plots of Ag27Cu7 provide further insights into the relative strengths of the various interatomic bonds.

  7. Dynamical Correlation In Some Liquid Alkaline Earth Metals Near Melting

    NASA Astrophysics Data System (ADS)

    Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Jani, A. R.

    2010-12-01

    The study of dynamical variables: velocity autocorrelation function (VACF) and power spectrum of liquid alkaline earth metals (Ca, Sr, and Ba) have been presented based on the static harmonic well approximation. The effective interatomic potential for liquid metals is computed using our well recognized model potential with the exchange correlation functions due to Hartree, Taylor, Ichimaru and Utsumi, Farid et al. and Sarkar et al. It is observed that the VACF computed using Sarkar et al. gives the good agreement with available molecular dynamics simulation (MD) results [Phys Rev. B 62, 14818 (2000)]. The shoulder of the power spectrum depends upon the type of local field correlation function used.

  8. Study of the high-pressure helium phase diagram using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Koci, L.; Ahuja, R.; Belonoshko, A. B.; Johansson, B.

    2007-01-01

    The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range.

  9. Simulation of defects in fusion plasma first wall materials

    NASA Astrophysics Data System (ADS)

    T, Troev; N, Nankov; T, Yoshiie

    2014-06-01

    Numerical calculations of radiation damages in beryllium, alpha-iron and tungsten irradiated by fusion neutrons were performed using molecular dynamics (MD) simulations. The displacement cascades efficiency has been calculated using the Norgett-Robinson-Torrens (NRT) formula, the universal pair-potential of Ziegler-Biersack-Littmark (ZBL) and the EAM inter-atomic potential. The pair potential overestimates the defects production by a factor of 2. The ZBL pair potential results and the EAM are comparable at higher primary knock-on atom (PKA) energies (E > 100 keV). We found that the most common types of defects are single vacancies, di-vacancies, interstitials and small number of interstitial clusters. On the bases of calculated results, the behavior of vacancies, empty nano-voids and nano-voids with hydrogen and helium were discussed.

  10. Covalence of atoms in the heavier transition metals*

    PubMed Central

    Pauling, Linus

    1977-01-01

    The observed magnetic properties of the heavier transition metals permit them to have larger metallic valences than their iron-group congeners. With 0.72 metallic orbital, as found for the iron-group metals, the maximum metallic valence and minimum interatomic distance would occur for 8.28 transargononic electrons. The curves of observed interatomic distances for the close-packed metals of the second and third long periods have minima at this point, supporting the assignment of high valences to these metals. Values of the single-bond radii corresponding to these valences are calculated. PMID:16592407

  11. Thermal and elastic properties of solid neon

    NASA Astrophysics Data System (ADS)

    Acocella, Dominic; Horton, George K.; Cowley, E. Roger

    2000-04-01

    We apply the improved effective potential Monte Carlo (IEP) and the improved self-consistent (ISC) theories to study the thermal and elastic properties of natural solid Ne. As a first orientation, we use the (12-6) Lennard-Jones (LJ) potential for first-neighbor forces only. The two parameters in the potential are determined from the 0 K lattice spacing and the sublimation energy of the crystal. We also create a realistic interatomic potential for the Ne dimer based on our study of the existing literature. When supplemented by many-body contributions, this potential is also used with ISC and IEP. The results are then compared with the experimental data in the literature. We conclude that our realistic potential which we regard as the best currently available is not significantly superior in accounting for the experimental data to the LJ potential, though both give a decent account of the experimental data.

  12. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Song, Jeong-Hoon

    2014-08-01

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  13. Thermal conductivity of ternary III-V semiconductor alloys: The role of mass difference and long-range order

    NASA Astrophysics Data System (ADS)

    Mei, S.; Knezevic, I.

    2018-03-01

    Thermal transport in bulk ternary III-V arsenide (III-As) semiconductor alloys was investigated using equilibrium molecular dynamics with optimized Albe-Tersoff empirical interatomic potentials. Existing potentials for binary AlAs, GaAs, and InAs were optimized to match experimentally obtained acoustic-phonon dispersions and temperature-dependent thermal conductivity. Calculations of thermal transport in ternary III-Vs commonly employ the virtual-crystal approximation (VCA), where the structure is assumed to be a random alloy and all group-III atoms (cations) are treated as if they have an effective weighted-average mass. Here, we showed that it is critical to treat atomic masses explicitly and that the thermal conductivity obtained with explicit atomic masses differs considerably from the value obtained with the average VCA cation mass. The larger the difference between the cation masses, the poorer the VCA prediction for thermal conductivity. The random-alloy assumption in the VCA is also challenged because X-ray diffraction and transmission electron microscopy show order in InGaAs, InAlAs, and GaAlAs epilayers. We calculated thermal conductivity for three common types of order (CuPt-B, CuAu-I, and triple-period-A) and showed that the experimental results for In0.53Ga0.47As and In0.52Al0.48As, which are lattice matched to the InP substrate, can be reproduced in molecular dynamics simulation with 2% and 8% of random disorder, respectively. Based on our results, thermal transport in ternary III-As alloys appears to be governed by the competition between mass-difference scattering, which is much more pronounced than the VCA suggests, and the long-range order that these alloys support.

  14. Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

  15. Elucidation of the atomic-scale mechanism of the anisotropic oxidation rate of 4H-SiC between the (0001) Si-face and ( 000 1 ¯ ) C-face by using a new Si-O-C interatomic potential

    NASA Astrophysics Data System (ADS)

    Takamoto, So; Yamasaki, Takahiro; Ohno, Takahisa; Kaneta, Chioko; Hatano, Asuka; Izumi, Satoshi

    2018-05-01

    Silicon carbide (SiC) is an attractive semiconductor material for applications in power electronic devices. However, fabrication of a high-quality SiC/SiO2 interface has been a challenge. It is well-known that there is a great difference in the oxidation rate between the Si-face and the C-face and that the quality of oxide on the Si-face is greater than that on the C-face. However, the atomistic mechanism of the thermal oxidation of SiC remains to be solved. In this paper, a new Si-O-C interatomic potential was developed to reproduce the kinetics of the thermal oxidation of SiC. Using this newly developed potential, large-scale SiC oxidation simulations at various temperatures were performed. The results showed that the activation energy of the Si-face is much larger than that of the C-face. In the case of the Si-face, a flat and aligned interface structure including Si1+ was created. Based on the estimated activation energies of the intermediate oxide states, it is proposed that the stability of the flat interface structure is the origin of the high activation energy of the oxidation of the Si-face. In contrast, in the case of the C-face, it is found that the Si atom at the interface is easily pulled up by the O atoms. This process generates the disordered interface and decreases the activation energy of the oxidation. It is also proposed that many excess C atoms are created in the case of the C-face.

  16. Improved prediction of heat of mixing and segregation in metallic alloys using tunable mixing rule for embedded atom method

    NASA Astrophysics Data System (ADS)

    Divi, Srikanth; Agrahari, Gargi; Ranjan Kadulkar, Sanket; Kumar, Sanjeet; Chatterjee, Abhijit

    2017-12-01

    Capturing segregation behavior in metal alloy nanoparticles accurately using computer simulations is contingent upon the availability of high-fidelity interatomic potentials. The embedded atom method (EAM) potential is a widely trusted interatomic potential form used with pure metals and their alloys. When limited experimental data is available, the A-B EAM cross-interaction potential for metal alloys AxB 1-x are often constructed from pure metal A and B potentials by employing a pre-defined ‘mixing rule’ without any adjustable parameters. While this approach is convenient, we show that for AuPt, NiPt, AgAu, AgPd, AuNi, NiPd, PtPd and AuPd such mixing rules may not even yield the correct alloy properties, e.g., heats of mixing, that are closely related to the segregation behavior. A general theoretical formulation based on scaling invariance arguments is introduced that addresses this issue by tuning the mixing rule to better describe alloy properties. Starting with an existing pure metal EAM potential that is used extensively in literature, we find that the mixing rule fitted to heats of mixing for metal solutions usually provides good estimates of segregation energies, lattice parameters and cohesive energy, as well as equilibrium distribution of metals within a nanoparticle using Monte Carlo simulations. While the tunable mixing rule generally performs better than non-adjustable mixing rules, the use of the tunable mixing rule may still require some caution. For e.g., in Pt-Ni system we find that the segregation behavior can deviate from the experimentally observed one at Ni-rich compositions. Despite this the overall results suggest that the same approach may be useful for developing improved cross-potentials with other existing pure metal EAM potentials as well. As a further test of our approach, mixing rule estimated from binary data is used to calculate heat of mixing in AuPdPt, AuNiPd, AuPtNi, AgAuPd and NiPtPd. Excellent agreement with experiments is observed for AuPdPt.

  17. A multiscale model for charge inversion in electric double layers

    NASA Astrophysics Data System (ADS)

    Mashayak, S. Y.; Aluru, N. R.

    2018-06-01

    Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.

  18. Dislocation core structures of tungsten with dilute solute hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Li, Qiulin; Li, Chengliang; Shu, Guogang; Xu, Ben; Liu, Wei

    2017-12-01

    In this paper, a combination of quantum mechanical and interatomic potential-based atomistic calculations are used to predict the core structures of screw and edge dislocations in tungsten in the presence of a particular concentration of hydrogen atoms. These configurations of the core structures are the results of two competing energies: the interaction between the partial dislocations and the corresponding generalized stacking fault energy in between the two partial dislocations, which are presented in this work. With this, we can precisely predict the configurations of the hydrogen-doped dislocation core structures.

  19. Multiscale Modeling of Non-crystalline Ceramics (Glass) (FY11)

    DTIC Science & Technology

    2012-01-01

    interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 2006, 110 (24), 11780–11795. 9. van Beest , B. W. H.; Kramer, G. J...DIRECTOR US ARMY RESEARCH LAB IMNE ALC HRR 2800 POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIO LL 2800 POWDER MILL RD...ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIO MT 2800 POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL D 2800

  20. Nanopowder synthesis based on electric explosion technology

    NASA Astrophysics Data System (ADS)

    Kryzhevich, D. S.; Zolnikov, K. P.; Korchuganov, A. V.; Psakhie, S. G.

    2017-10-01

    A computer simulation of the bicomponent nanoparticle formation during the electric explosion of copper and nickel wires was carried out. The calculations were performed in the framework of the molecular dynamics method using many-body potentials of interatomic interaction. As a result of an electric explosion of dissimilar metal wires, bicomponent nanoparticles having different stoichiometry and a block structure can be formed. It is possible to control the process of destruction and the structure of the formed bicomponent nanoparticles by varying the distance between the wires and the loading parameters.

  1. THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, A; Caro, M; Lopasso, E M

    2005-04-14

    The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based onmore » other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.« less

  2. Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khon, Yury A., E-mail: khon@ispms.tsc.ru; Kaminskii, Petr P., E-mail: ppk@ispms.tsc.ru

    2015-10-27

    New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.

  3. A comprehensive study of Interatomic Coulombic Decay in argon dimers: Extracting R-dependent absolute decay rates from the experiment

    DOE PAGES

    Rist, J.; Miteva, T.; Gaire, B.; ...

    2016-09-15

    In this paper we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model.

  4. Evaluation of melting point of UO 2 by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Arima, Tatsumi; Idemitsu, Kazuya; Inagaki, Yaohiro; Tsujita, Yuichi; Kinoshita, Motoyasu; Yakub, Eugene

    2009-06-01

    The melting point of UO 2 has been evaluated by molecular dynamics simulation (MD) in terms of interatomic potential, pressure and Schottky defect concentration. The Born-Mayer-Huggins potentials with or without a Morse potential were explored in the present study. Two-phase simulation whose supercell at the initial state consisted of solid and liquid phases gave the melting point comparable to the experimental data using the potential proposed by Yakub. The heat of fusion was determined by the difference in enthalpy at the melting point. In addition, MD calculations showed that the melting point increased with pressure applied to the system. Thus, the Clausius-Clapeyron equation was verified. Furthermore, MD calculations clarified that an addition of Schottky defects, which generated the local disorder in the UO 2 crystal, lowered the melting point.

  5. Conducting a thermal conductivity survey

    NASA Technical Reports Server (NTRS)

    Allen, P. B.

    1985-01-01

    A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.

  6. Non-collinear magnetism with analytic Bond-Order Potentials

    NASA Astrophysics Data System (ADS)

    Ford, Michael E.; Pettifor, D. G.; Drautz, Ralf

    2015-03-01

    The theory of analytic Bond-Order Potentials as applied to non-collinear magnetic structures of transition metals is extended to take into account explicit rotations of Hamiltonian and local moment matrix elements between locally and globally defined spin-coordinate systems. Expressions for the gradients of the energy with respect to the Hamiltonian matrix elements, the interatomic forces and the magnetic torques are derived. The method is applied to simulations of the rotation of magnetic moments in α iron, as well as α and β manganese, based on d-valent orthogonal tight-binding parametrizations of the electronic structure. A new weighted-average terminator is introduced to improve the convergence of the Bond-Order Potential energies and torques with respect to tight-binding reference values, although the general behavior is qualitatively correct for low-moment expansions.

  7. Molecular-dynamics study of solid-liquid interface migration in fcc metals

    NASA Astrophysics Data System (ADS)

    Mendelev, M. I.; Rahman, M. J.; Hoyt, J. J.; Asta, M.

    2010-10-01

    In order to establish a link between various structural and kinetic properties of metals and the crystal-melt interfacial mobility, free-solidification molecular-dynamics simulations have been performed for a total of nine embedded atom method interatomic potentials describing pure Al, Cu and Ni. To fully explore the space of materials properties three new potentials have been developed. The new potentials are based on a previous description of Al, but in each case the liquid structure, the melting point and/or the latent heat are varied considerably. The kinetic coefficient, μ, for all systems has been compared with several theoretical predictions. It is found that at temperatures close to the melting point the magnitude of μ correlates well with the value of the diffusion coefficient in the liquid.

  8. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Fujikake, So; Deringer, Volker L.; Lee, Tae Hoon; Krynski, Marcin; Elliott, Stephen R.; Csányi, Gábor

    2018-06-01

    We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite, and disordered carbon nanostructures, based on reference density functional theory data. Rather than treating the full Li-C system, we demonstrate how the energy and force differences arising from Li intercalation can be modeled and then added to a (prexisting and unmodified) GAP model of pure elemental carbon. Furthermore, we show the benefit of using an explicit pair potential fit to capture "effective" Li-Li interactions and to improve the performance of the GAP model. This provides proof-of-concept for modeling guest atoms in host frameworks with machine-learning based potentials and in the longer run is promising for carrying out detailed atomistic studies of battery materials.

  9. Unified interatomic potential and energy barrier distributions for amorphous oxides.

    PubMed

    Trinastic, J P; Hamdan, R; Wu, Y; Zhang, L; Cheng, Hai-Ping

    2013-10-21

    Amorphous tantala, titania, and hafnia are important oxides for biomedical implants, optics, and gate insulators. Understanding the effects of oxide doping is crucial to optimize performance in these applications. However, no molecular dynamics potentials have been created to date that combine these and other oxides that would allow computational analyses of doping-dependent structural and mechanical properties. We report a novel set of computationally efficient, two-body potentials modeling van der Waals and covalent interactions that reproduce the structural and elastic properties of both pure and doped amorphous oxides. In addition, we demonstrate that the potential accurately produces energy barrier distributions for pure and doped samples. The distributions can be directly compared to experiment and used to calculate physical quantities such as internal friction to understand how doping affects material properties. Future analyses using these potentials will be of great value to determine optimal doping concentrations and material combinations for myriad material science applications.

  10. Transverse discrete breathers in unstrained graphene

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Lobzenko, Ivan P.; Korznikova, Elena A.; Soboleva, Elvira G.; Dmitriev, Sergey V.; Zhou, Kun; Marjaneh, Aliakbar Moradi

    2017-02-01

    Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.

  11. Development of a Modified Embedded Atom Force Field for Zirconium Nitride Using Multi-Objective Evolutionary Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Badri; Sasikumar, Kiran; Mei, Zhi-Gang

    2016-07-07

    Zirconium nitride (ZrN) exhibits exceptional mechanical, chemical, and electrical properties, which make it attractive for a wide range of technological applications, including wear-resistant coatings, protection from corrosion, cutting/shaping tools, and nuclear breeder reactors. Despite its broad usability, an atomic scale understanding of the superior performance of ZrN, and its response to external stimuli, for example, temperature, applied strain, and so on, is not well understood. This is mainly due to the lack of interatomic potential models that accurately describe the interactions between Zr and N atoms. To address this challenge, we develop a modified embedded atom method (MEAM) interatomic potentialmore » for the Zr–N binary system by training against formation enthalpies, lattice parameters, elastic properties, and surface energies of ZrN (and, in some cases, also Zr3N4) obtained from density functional theory (DFT) calculations. The best set of MEAM parameters are determined by employing a multiobjective global optimization scheme driven by genetic algorithms. Our newly developed MEAM potential accurately reproduces structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of Zr–N compounds, in excellent agreement with DFT calculations and experiments. As a representative application, we employed molecular dynamics simulations based on this MEAM potential to investigate the atomic scale mechanisms underlying fracture of bulk and nanopillar ZrN under applied uniaxial strains, as well as the impact of strain rate on their mechanical behavior. These simulations indicate that bulk ZrN undergoes brittle fracture irrespective of the strain rate, while ZrN nanopillars show quasi-plasticity owing to amorphization at the crack front. The MEAM potential for Zr–N developed in this work is an invaluable tool to investigate atomic-scale mechanisms underlying the response of ZrN to external stimuli (e.g, temperature, pressure etc.), as well as other interesting phenomena such as precipitation.« less

  12. Examination of the Atomic Pair Distribution Function (PDF) of SiC Nanocrystals by In-situ High Pressure Diffraction

    NASA Technical Reports Server (NTRS)

    Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Zhao, Y.; Palosz, B.; Palosz, W.

    2003-01-01

    Key properties of nanocrystals are determined by their real atomic structure, therefore a reasonable understanding and meaningful interpretation of their properties requires a realistic model of the structure. In this paper we present an evidence of a complex response of the lattice distances to external pressure indicating a presence of a complex structure of Sic nanopowders. The experiments were performed on nanocrystalline Sic subjected to hydrostatic or isostatic pressure using synchrotron and neutron powder diffraction. Elastic properties of the samples were examined based on X-ray diffraction data using a Diamond Anvil Cell (DAC) in HASYLAB at DESY. The dependence'of the lattice parameters and of the Bragg reflections width with pressure exhibits a ha1 nature of the properties (compressibilities) of the powders and indicates a complex structure of the grains. We interpreted tws behaviour as originating from different elastic properties of the grain interior and surface. Analysis of the dependence of individual interatomic distances on pressure was based on in-situ neutron diffraction measurements done with HbD diffractometer at LANSCE in Los Alamos National Laboratory with the Paris-Edinburgh cell under pressures up to 8 GPa (Qmax = 26/A). Interatomic distances were obtained by PDF analysis using the PDFgetN program. We have found that the interatomic distances undergo a complex, non-monotonic changes. Even under substantial pressures a considerable relaxation of the lattice may take place: some interatomic distances increase with an increase in pressure. We relate this phenomenon to: (1), changes of the microstructure of the densified material, in particular breaking of its fractal chain structure and, (2), its complex structure resembling that of a material composed of two phases, each with its distinct elastic properties.

  13. Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations

    NASA Astrophysics Data System (ADS)

    Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay

    2017-04-01

    Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic potential. The other sets of interatomic potentials («Zircon 2, Zircon 3») differed from the first in that parameters was found with the help of quantum-chemical calculations of the structure «ab initio».The surface energies for different faces of zircon were calculated using Metadise code (Watson et al., 1996) at P4-3000 personal computer with Windows XP operating system. The computation time for one simple form was from 30 minutes to 12 hours. Calculations have shown that depending on the chosen model the surface energy of zircons faces several changes. For example, Esurf of face (331) obtained using models of potentials «Zircon 2», «Zircon 3» sufficiently similar (2.82 and 3.01 J/mol2 respectively). Meaning of Esurf of this face, calculated on the basis of set «Zircon 1» significantly lower (1,54 J/mol2). With regard to the face (100), it has low surface energies when selecting all three models, with a minimum value (1,14 J/mol2) in the model «Zircon 1». References: Gromalova N.A., Eremin N.N., Urusov V.S. Atomistic computer modeling of the crystal-morpology of corundum group minerals // Zapiski RMO. V. 144. №4. 2015. p. 84-92. Watson G.W., Kelsey E.T., de Leeuw N.H., Harris D.J, Parker S.C. Atomistic simulation of dislocations, surfaces and interfaces in MgO. Journal of the Chemical Society Faraday Transactions. 1996. V.92 P. 433-438.

  14. Electronic interaction anisotropy between open-shell lanthanide atoms and helium from cold collision experiment

    NASA Astrophysics Data System (ADS)

    Krems, R. V.; Buchachenko, A. A.

    2005-09-01

    Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.

  15. Size and habit evolution of PETN crystals - a lattice Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L A; Maiti, A; Gee, R

    2006-02-28

    Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphologymore » as a function of the rate of particle addition relative to diffusion.« less

  16. Theoretical study of electron correlation effects in transition metal dimers

    NASA Technical Reports Server (NTRS)

    Das, G. P.; Jaffe, R. L.

    1984-01-01

    Introduction of partially localized orbitals is shown to reduce the number of terms needed to describe the bonding in transition metal clusters. Using this formalism, it is possible to compute the various intra- and inter-atomic electron correlation contributions to the bond energy. Calculations demonstrate the relative importance of several kinds of electron correlation terms involving the 3p, 3d, and 4s electrons. Improved interaction potentials are obtained for the dimers V(2) and Cr(2) when additional correlation is added to the CAS SCF results of Walch, Bauschlicher, Roos, and Nelin (1983).

  17. Virial Coefficients for the Liquid Argon

    NASA Astrophysics Data System (ADS)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  18. Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Kubicki, J. D.; Stolper, E. M.

    1993-01-01

    Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g).

  19. Formation of 2D nanoparticles with block structure in simultaneous electric explosion of conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhevich, Dmitrij S., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Zolnikov, Konstantin P., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Abdrashitov, Andrei V.

    2014-11-14

    A molecular dynamics simulation of nanoparticle formation in simultaneous electric explosion of conductors is performed. Interatomic interaction is described using potentials calculated in the framework of the embedded atom method. High-rate heating results in failure of the conductors with the formation of nanoparticles. The influence of the heating rate, temperature distribution over the specimen cross-section and the distance between simultaneously exploded conductors on the structure of formed nanoparticles is studied. The calculation results show that the electric explosion of conductors allows the formation of nanoparticles with block structure.

  20. Pair-correlation function of a metastable helium Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz

    2004-02-01

    The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.

  1. Charge optimized many-body potential for aluminum.

    PubMed

    Choudhary, Kamal; Liang, Tao; Chernatynskiy, Aleksandr; Lu, Zizhe; Goyal, Anuj; Phillpot, Simon R; Sinnott, Susan B

    2015-01-14

    An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the [Formula: see text] direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.

  2. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon, E-mail: fu5@mailbox.sc.edu, E-mail: jhsong@cec.sc.edu

    2014-08-07

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifiesmore » the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.« less

  3. Interatomic Potentials for Structure Simulation of Alkaline-Earth Cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremin, N.N.; Leonyuk, L.I.; Urusov, V.S.

    2001-05-01

    A specific potential model of interionic interactions was derived in which the crystal structures of alkaline-earth cuprates were satisfactorily described and some of their physical properties were predicted. It was found that a harmonic three-particle O-Cu-O potential and some Morse-type contributions to the simple Buckingham-type Cu-O repulsive potential enable one to improve essentially the results of crystal structure modeling for cuprates. The obtained potential set seems to be well transferable for different cuprates, despite the variety in linkages of the CuO{sub 4} groups. In the present work this potential set model was applied in the crystal structure modeling for Ca{submore » 2}CuO{sub 3}, CaCuO{sub 2}, SrCuO{sub 3}, (Sr{sub 1.19}Ca{sub 0.73})Cu{sub 2}O{sub 4}, and BaCuO{sub 2}. Some elastic and energetic properties of the compounds under question were predicted.« less

  4. On the interatomic potentials for noble gas mixtures

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyoko; Allnatt, A. R.; Meath, William J.

    1982-07-01

    Recently, a relatively simple scheme for the construction of isotropic intermolecular potentials has been proposed and tested for the like species interactions involving He, Ne, Ar, Kr and H 2. The model potential has an adjustable parameter which controls the balance between its exchange and Coulomb energy components. The representation of the Coulomb energy contains a damped multipolar dispersion energy series (which is truncated through O( R-10) and provides additional flexibility through adjustment of the dispersion energy coefficients, particularly C8 and C10, within conservative error estimates. In this paper the scheme is tested further by application to interactions involving unlike noble gas atoms where the parameters in the potential model are determined by fitting mixed second virial coefficient data as a function of temperature. Generally the approach leads to potential of accuracy comparable to the best available literature potentials which are usually determined using a large base of experimental and theoretical input data. Our results also strongly indicate the need of high quality virial data.

  5. Transferable tight binding model for strained group IV and III-V heterostructures

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua; Povolotskyi, Micheal; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    Modern semiconductor devices have reached critical device dimensions in the range of several nanometers. For reliable prediction of device performance, it is critical to have a numerical efficient model that are transferable to material interfaces. In this work, we present an empirical tight binding (ETB) model with transferable parameters for strained IV and III-V group semiconductors. The ETB model is numerically highly efficient as it make use of an orthogonal sp3d5s* basis set with nearest neighbor inter-atomic interactions. The ETB parameters are generated from HSE06 hybrid functional calculations. Band structures of strained group IV and III-V materials by ETB model are in good agreement with corresponding HSE06 calculations. Furthermore, the ETB model is applied to strained superlattices which consist of group IV and III-V elements. The ETB model turns out to be transferable to nano-scale hetero-structure. The ETB band structures agree with the corresponding HSE06 results in the whole Brillouin zone. The ETB band gaps of superlattices with common cations or common anions have discrepancies within 0.05eV.

  6. Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions

    NASA Astrophysics Data System (ADS)

    Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.

    2018-04-01

    The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.

  7. Reconstruction of interatomic vectors by principle component analysis of nuclear magnetic resonance data in multiple alignments

    NASA Astrophysics Data System (ADS)

    Hus, Jean-Christophe; Bruschweiler, Rafael

    2002-07-01

    A general method is presented for the reconstruction of interatomic vector orientations from nuclear magnetic resonance (NMR) spectroscopic data of tensor interactions of rank 2, such as dipolar coupling and chemical shielding anisotropy interactions, in solids and partially aligned liquid-state systems. The method, called PRIMA, is based on a principal component analysis of the covariance matrix of the NMR parameters collected for multiple alignments. The five nonzero eigenvalues and their eigenvectors efficiently allow the approximate reconstruction of the vector orientations of the underlying interactions. The method is demonstrated for an isotropic distribution of sample orientations as well as for finite sets of orientations and internuclear vectors encountered in protein systems.

  8. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  9. The relation between the Gross Pitaevskii and Bogoliubov descriptions of a dilute Bose gas

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-07-01

    I formulate a 'pseudo-paradox' in the theory of a dilute Bose gas with repulsive interactions: the standard expression for the ground state energy within the Gross-Pitaevskii (GP) approximation is lower than that in the Bogoliubov approximation, and hence, by the standard variational argument, the former should prima facie be a better approximation than the latter to the true ground state—a conclusion which is of course opposite to the established wisdom concerning this problem. It is shown that the pseudo-paradox is (unsurprisingly) resolved by a correct transcription of the two-body scattering theory to the many-body case; however, contrary to what appears to be a widespread belief, the resolution has nothing to do with any spurious ultraviolet divergences which result from the replacement of the true interatomic potential by a delta-function pseudopotential. Rather, it relates to an infrared divergence which has the consequence that (a) the most obvious form of the GP 'approximation' actually does not correspond to any well-defined ansatz for the many-body wavefunction, and (b) that the 'best shot' at such a wavefunction always produces an energy which exceeds, or at best equals, that calculated in the Bogoliubov approximation. In fact, the necessity of the latter may be seen as a consequence of the need to reduce the Fock term in the energy, which is absent in the two-particle problem but dominant in the many-body case; it does this by increasing the density correlations, at distances less than or approximately equal to the correlation length \\xi , above the value extrapolated from the two-body case. As a by-product I devise an alternative formulation of the Bogoliubov approximation which does not require the explicit replacement of the true interatomic potential by a delta-function pseudopotential.

  10. Induced dipole-dipole coupling between two atoms at a migration resonance

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Mian, Mahmood

    2018-05-01

    Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.

  11. Resonance dispersion interaction of alkali metal atoms in Rydberg states

    NASA Astrophysics Data System (ADS)

    Kamenski, A. A.; Mokhnenko, S. N.; Ovsyannikov, V. D.

    2017-06-01

    With the use of second-order perturbation theory in the long-range interatomic interaction for the degenerate states of two Rydberg atoms we have obtained a general formula for the dependence of atomic interaction energy on the interatomic distance R in the presence of the Förster resonance. Inside of the ‘Förster sphere’ (R < RF) this dependence transforms to the formula for electric dipole interaction energy ΔEd - d = C3/R3 and for R > RF it transforms to the formula for the van der Waals interaction energy ΔEVdW = -C6/R6. The van der Waals constant C6 is represented as an expansion in terms of irreducible components which define the dependence on the interatomic axis orientation relative to the quantisation axis of projections M of the total angular momentum J. The numerical values of the irreducible components of tensor C6 were calculated for rubidium atoms in the same Rydberg states |nlJM> with large quantum numbers n. We present the calculated resonance interaction energy of two rubidium atoms in the states |43D5/2M>, whose total energy exceeds by only 8 MHz the total energy of one of the atoms in the state |45P3/2M> and of the other in the state |41F7/2M>.

  12. ATK-ForceField: a new generation molecular dynamics software package

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt

    2017-12-01

    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  13. Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Fernández, J. R.

    2015-12-01

    Interaction for both pure Al and Al-U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al-U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

  14. Ab initio study of the electrostatic multipole nature of torsional potentials in CH3SSCH3, CH3SSH, and HOOH

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.

    1991-01-01

    The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.

  15. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model

    NASA Astrophysics Data System (ADS)

    Sun, Shoutian; Ramu Ramachandran, Bala; Wick, Collin D.

    2018-02-01

    New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl’s surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.

  16. Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model.

    PubMed

    Sun, Shoutian; Ramachandran, Bala Ramu; Wick, Collin D

    2018-02-21

    New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.

  17. Optimal utilization of total elastic scattering cross section data for the determination of interatomic potentials

    NASA Technical Reports Server (NTRS)

    Bernstein, R. B.; Labudde, R. A.

    1972-01-01

    The problem of inversion is considered in relation to absolute total cross sections Q(v) for atom-atom collisions and their velocity dependence, and the glory undulations and the transition to high velocity behavior. There is a limit to the amount of information available from Q(v) even when observations of good accuracy (e.g., + or - 0.25%) are in hand over an extended energy range (from thermal energies upward by a factor of greater than 1000 in relative kinetic energy). Methods were developed for data utilization, which take full advantage of the accuracy of the experimental Q(v) measurements.

  18. Final Report for DE-FG02-99ER45795

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, John Warren

    The research supported by this grant focuses on atomistic studies of defects, phase transitions, electronic and magnetic properties, and mechanical behaviors of materials. We have been studying novel properties of various emerging nanoscale materials on multiple levels of length and time scales, and have made accurate predictions on many technologically important properties. A significant part of our research has been devoted to exploring properties of novel nano-scale materials by pushing the limit of quantum mechanical simulations, and development of a rigorous scheme to design accurate classical inter-atomic potentials for larger scale atomistic simulations for many technologically important metals and metalmore » alloys.« less

  19. Thermo physical Properties of Multiferroic Rare Earth Manganite GdMnO3

    NASA Astrophysics Data System (ADS)

    Choithrani, Renu; Gaur, N. K.

    2008-04-01

    We have investigated the thermophysical properties of multiferroic rare earth manganite GdMnO3 in the temperature range 15 K⩽T⩽300 K. We have applied interatomic potential to study the Specific heat (C) as a function of temperature. The calculated Specific heat values are closer to the available experimental data. At room temperature, the orthorhombic GdMnO3 phase is indicative of a strong Jahn-Teller distortion. In addition, we have reported the cohesive energy (φ), molecular force constant (f), compressibility (β), Restrahalen frequency (ν0), Debye temperature (ΘD) and Groneisen parameter (γ) at temperature 15 K⩽T⩽300 K.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Suresh, E-mail: ajay-phy@rediffmail.com; Tiwari, R. K.; Gupta, D. C.

    In this paper, we present the expressions relating the inter atomic force constants like as bond-stretching force constant (α in N/m) and bond-bending force constant (β in N/m) for the binary (zinc blende structure) and ternary (chalcopyrite structure) semiconductors with the product of ionic charges (PIC) and crystal ionicity (f{sub i}). Interatomic force constants of these compounds exhibit a linear relationship; when plot a graph between Interatomic force constants and the nearest neighbor distance d (Å) with crystal ionicity (f{sub i}), but fall on different straight lines according to the product of ionic charges of these compounds. A fairly goodmore » agreement has been found between the observed and calculated values of the α and β for binary and ternary tetrahedral semiconductors.« less

  1. Interatomic relaxation processes induced in neon dimers by electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Yan, S.; Zhang, P.; Stumpf, V.; Gokhberg, K.; Zhang, X. C.; Xu, S.; Li, B.; Shen, L. L.; Zhu, X. L.; Feng, W. T.; Zhang, S. F.; Zhao, D. M.; Ma, X.

    2018-01-01

    We report an experimental observation of the interatomic Coulombic decay (ICD) and radiative charge-transfer (RCT) processes in a Ne dimer (e ,2 e ) following a 380-eV electron impact. By detecting the N e+-N e+ cation pair and one of the emitted electrons in coincidence, the fingerprint of the ICD process initiated by the inner-valence ionization of Ne is obtained. Furthermore, the experimental results and ab initio calculations together unambiguously confirm the occurrence of the RCT process, and we show that most of the low-energy electrons produced in ionization of the Ne dimers are due to the ICD, which strongly suggests the importance of the ICD in causing radiation damage in a biological medium.

  2. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippi, Claudia, E-mail: c.filippi@utwente.nl; Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr; Moroni, Saverio, E-mail: moroni@democritos.it

    2016-05-21

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, inmore » both all-electron and pseudopotential calculations.« less

  3. Near-field excitation exchange between motionless point atoms located near the conductive surface

    NASA Astrophysics Data System (ADS)

    Kuraptsev, Aleksei S.; Sokolov, Igor M.

    2018-04-01

    On the basis of quantum microscopic approach we study the excitation dynamics of two motionless point atoms located near the perfectly conducting mirror. We have analyzed the spontaneous decay rate of individual atoms near the mirror as well as the strength of dipole-dipole interaction between different atoms. It is shown that the spontaneous decay rate of an excited atom significantly depends on the distance from this atom to the mirror. In the case when the interatomic separation is less or comparable with the wavelength of resonant radiation, the spontaneous decay dynamics of an excited atom is described by multi-exponential law. It depends both the interatomic separation and the spatial orientation of diatomic quasimolecule.

  4. Analytic Interatomic Forces in the Random Phase Approximation

    NASA Astrophysics Data System (ADS)

    Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg

    2017-03-01

    We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.

  5. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE PAGES

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James; ...

    2016-10-25

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  6. Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang -Yang; Cooper, Michael William D.; McClellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defectmore » type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO 2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  7. Comparative study of displacement cascades simulated with 'magnetic' potentials and Mendelev-type potential in α-Fe

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2017-04-01

    Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.

  8. Amorphous tantala and its relationship with the molten state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderman, Oliver L.G.; Benmore, C. J.; Neuefeind, Joerg C.

    The structure factors of molten Ta 2O 5 and Nb 2O 5 have been measured by high-energy x-ray and pulsed neutron diffraction. These are compared to transmission-mode x-ray diffraction through a self-supported 15-μm ion-beam sputtered amorphous tantala film. Atomistic models derived from the diffraction data by means of empirical potential structure refinement reveal that tantala and niobia liquids are very close to isomorphous, as confirmed by measurement of a molten mixture, Ta 0.8Nb 1.2O 5. Nonetheless, peak Nb-O bond lengths are about 1% shorter than those for Ta-O, at temperatures, T*=T/T melt, scaled to the melting points. Mean coordination numbersmore » are n MO≃5.6(1),n OM≃2.23(4) in the liquid state, and n TaO≃6.6(2),n OTa≃2.63(8) in the solid. The liquids are built from five- and six-fold M-O polyhedra which connect principally by corner sharing, with a minority of edge sharing; a-Ta 2O 5 on the other hand has a local structure more akin to the crystalline polymorphs, built primarily from six- and seven-fold polyhedra, with a larger degree of edge sharing. The structural differences between liquid and amorphous Ta 2O 5, coupled with observations of increasing peak bond lengths upon cooling, are consistent with the interpretation that the amorphous film reaches a supercooled liquidlike metastable equilibrium during deposition. In other words, the amorphous film shares a common progenitor state with a hypothetical glass quenched from a fragile melt. In addition, we show that recent classical interatomic potentials do not fully reproduce the diffraction data, and infer that inclusion of attractive (non-Coulombic) Ta-Ta interactions is important, particularly for obtaining the correct degree of edge sharing, coordination numbers, and densities. In conclusion, nanoscale inhomogeneity of the amorphous film is confirmed by the observation of small-angle x-ray scattering.« less

  9. Amorphous tantala and its relationship with the molten state

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Benmore, C. J.; Neuefeind, J.; Coillet, E.; Mermet, A.; Martinez, V.; Tamalonis, A.; Weber, R.

    2018-04-01

    The structure factors of molten T a2O5 and N b2O5 have been measured by high-energy x-ray and pulsed neutron diffraction. These are compared to transmission-mode x-ray diffraction through a self-supported 15-μm ion-beam sputtered amorphous tantala film. Atomistic models derived from the diffraction data by means of empirical potential structure refinement reveal that tantala and niobia liquids are very close to isomorphous, as confirmed by measurement of a molten mixture, T a0.8N b1.2O5 . Nonetheless, peak Nb-O bond lengths are about 1 % shorter than those for Ta-O, at temperatures, T*=T /Tmelt , scaled to the melting points. Mean coordination numbers are nM O≃5.6 (1 ) ,nO M≃2.23 (4 ) in the liquid state, and nTaO≃6.6 (2 ) ,nOTa≃2.63 (8 ) in the solid. The liquids are built from five- and six-fold M -O polyhedra which connect principally by corner sharing, with a minority of edge sharing; a-T a2O5 on the other hand has a local structure more akin to the crystalline polymorphs, built primarily from six- and seven-fold polyhedra, with a larger degree of edge sharing. The structural differences between liquid and amorphous T a2O5 , coupled with observations of increasing peak bond lengths upon cooling, are consistent with the interpretation that the amorphous film reaches a supercooled liquidlike metastable equilibrium during deposition. In other words, the amorphous film shares a common progenitor state with a hypothetical glass quenched from a fragile melt. In addition, we show that recent classical interatomic potentials do not fully reproduce the diffraction data, and infer that inclusion of attractive (non-Coulombic) Ta-Ta interactions is important, particularly for obtaining the correct degree of edge sharing, coordination numbers, and densities. Nanoscale inhomogeneity of the amorphous film is confirmed by the observation of small-angle x-ray scattering.

  10. Amorphous tantala and its relationship with the molten state

    DOE PAGES

    Alderman, Oliver L.G.; Benmore, C. J.; Neuefeind, Joerg C.; ...

    2018-04-01

    The structure factors of molten Ta 2O 5 and Nb 2O 5 have been measured by high-energy x-ray and pulsed neutron diffraction. These are compared to transmission-mode x-ray diffraction through a self-supported 15-μm ion-beam sputtered amorphous tantala film. Atomistic models derived from the diffraction data by means of empirical potential structure refinement reveal that tantala and niobia liquids are very close to isomorphous, as confirmed by measurement of a molten mixture, Ta 0.8Nb 1.2O 5. Nonetheless, peak Nb-O bond lengths are about 1% shorter than those for Ta-O, at temperatures, T*=T/T melt, scaled to the melting points. Mean coordination numbersmore » are n MO≃5.6(1),n OM≃2.23(4) in the liquid state, and n TaO≃6.6(2),n OTa≃2.63(8) in the solid. The liquids are built from five- and six-fold M-O polyhedra which connect principally by corner sharing, with a minority of edge sharing; a-Ta 2O 5 on the other hand has a local structure more akin to the crystalline polymorphs, built primarily from six- and seven-fold polyhedra, with a larger degree of edge sharing. The structural differences between liquid and amorphous Ta 2O 5, coupled with observations of increasing peak bond lengths upon cooling, are consistent with the interpretation that the amorphous film reaches a supercooled liquidlike metastable equilibrium during deposition. In other words, the amorphous film shares a common progenitor state with a hypothetical glass quenched from a fragile melt. In addition, we show that recent classical interatomic potentials do not fully reproduce the diffraction data, and infer that inclusion of attractive (non-Coulombic) Ta-Ta interactions is important, particularly for obtaining the correct degree of edge sharing, coordination numbers, and densities. In conclusion, nanoscale inhomogeneity of the amorphous film is confirmed by the observation of small-angle x-ray scattering.« less

  11. Rapid insights from remote sensing in the geosciences

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio

    2015-03-01

    The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Admin. under Contract DE-AC04-94AL85000.

  12. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  13. Gap discrete breathers in strained boron nitride

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Korznikova, Elena A.; Chetverikov, Alexander P.; Zhou, Kun; Dmitriev, Sergey V.

    2017-11-01

    Linear and nonlinear dynamics of hexagonal boron nitride (h-BN) lattice is studied by means of molecular dynamics simulations with the use of the Tersoff interatomic potentials. It is found that sufficiently large homogeneous elastic strain along zigzag direction opens a wide gap in the phonon spectrum. Extended vibrational mode with boron and nitrogen sublattices vibrating in-plane as a whole in strained h-BN has frequency within the phonon gap. This fact suggests that a nonlinear spatially localized vibrational mode with frequencies in the phonon gap, called discrete breather (also often termed as intrinsic localized mode), can be excited. Properties of the gap discrete breathers in strained h-BN are contrasted with that for analogous vibrational mode found earlier in strained graphene. It is found that h-BN modeled with the Tersoff potentials does not support transverse discrete breathers.

  14. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.

    2017-11-01

    The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.

  15. A Gaussian Approximation Potential for Silicon

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  16. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  17. Interatomic Coulombic Decay: The Mechanism for Rapid Deexcitation of Hollow Atoms.

    PubMed

    Wilhelm, Richard A; Gruber, Elisabeth; Schwestka, Janine; Kozubek, Roland; Madeira, Teresa I; Marques, José P; Kobus, Jacek; Krasheninnikov, Arkady V; Schleberger, Marika; Aumayr, Friedrich

    2017-09-08

    The impact of a highly charged ion onto a solid gives rise to charge exchange between the ion and target atoms, so that a slow ion gets neutralized in the vicinity of the surface. Using highly charged Ar and Xe ions and the surface-only material graphene as a target, we show that the neutralization and deexcitation of the ions proceeds on a sub-10 fs time scale. We further demonstrate that a multiple Interatomic Coulombic Decay (ICD) model can describe the observed ultrafast deexcitation. Other deexcitation mechanisms involving nonradiative decay and quasimolecular orbital formation during the impact are not important, as follows from the comparison of our experimental data with the results of first-principles calculations. Our method also enables the estimation of ICD rates directly.

  18. Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid

    NASA Technical Reports Server (NTRS)

    Jalan, V.; Taylor, E. J.

    1983-01-01

    A correlation between the nearest-neighbor distance and the oxygen reduction activity of various platinum alloys is reported. It is proposed that the distance between nearest-neighbor Pt atoms on the surface of a supported catalyst is not ideal for dual site absorption of O2 or 'HO2' and that the introduction of foreign atoms which reduce the Pt nearest-neighbor spacing would result in higher oxygen reduction activity. This may allow the critical 0-0 bond interatomic distance and hence the optimum Pt-Pt separation for bond rupture to be determined from quantum chemical calculations. A composite analysis shows that the data on supported Pt alloys are consistent with Appleby's (1970) data on bulk metals with respect to specific activity, activation energy, preexponential factor, and percent d-band character.

  19. Structural properties and glass transition in Aln clusters

    NASA Astrophysics Data System (ADS)

    Sun, D. Y.; Gong, X. G.

    1998-02-01

    We have studied the structural and dynamical properties of several Aln clusters by the molecular-dynamics method combined with simulated annealing. The well-fitted glue potential is used to describe the interatomic interaction. The obtained atomic structures for n=13, 55, and 147 are in agreement with results from ab initio calculations. Our results have demonstrated that the disordered cluster Al43 can be considered as a glass cluster. The obtained thermal properties of glass cluster Al43 are clearly different from the results for high-symmetry clusters, its melting behavior has properties similar to those of a glass solid. The present studies also show that the surface melting behavior does not exist in the studied Aln clusters.

  20. The application of inverse Broyden's algorithm for modeling of crack growth in iron crystals.

    PubMed

    Telichev, Igor; Vinogradov, Oleg

    2011-07-01

    In the present paper we demonstrate the use of inverse Broyden's algorithm (IBA) in the simulation of fracture in single iron crystals. The iron crystal structure is treated as a truss system, while the forces between the atoms situated at the nodes are defined by modified Morse inter-atomic potentials. The evolution of lattice structure is interpreted as a sequence of equilibrium states corresponding to the history of applied load/deformation, where each equilibrium state is found using an iterative procedure based on IBA. The results presented demonstrate the success of applying the IBA technique for modeling the mechanisms of elastic, plastic and fracture behavior of single iron crystals.

  1. Thermodynamically accessible titanium clusters TiN, N = 2-32.

    PubMed

    Lazauskas, Tomas; Sokol, Alexey A; Buckeridge, John; Catlow, C Richard A; Escher, Susanne G E T; Farrow, Matthew R; Mora-Fonz, David; Blum, Volker W; Phaahla, Tshegofatso M; Chauke, Hasani R; Ngoepe, Phuti E; Woodley, Scott M

    2018-05-10

    We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2-32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange-correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank-Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster.

  2. Monte Carlo simulation of elongating metallic nanowires in the presence of surfactants

    NASA Astrophysics Data System (ADS)

    Gimenez, M. Cecilia; Reinaudi, Luis; Leiva, Ezequiel P. M.

    2015-12-01

    Nanowires of different metals undergoing elongation were studied by means of canonical Monte Carlo simulations and the embedded atom method representing the interatomic potentials. The presence of a surfactant medium was emulated by the introduction of an additional stabilization energy, represented by a parameter Q. Several values of the parameter Q and temperatures were analyzed. In general, it was observed for all studied metals that, as Q increases, there is a greater elongation before the nanowire breaks. In the case of silver, linear monatomic chains several atoms long formed at intermediate values of Q and low temperatures. Similar observations were made for the case of silver-gold alloys when the medium interacted selectively with Ag.

  3. Mechanism for transient migration of xenon in UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.

    2011-04-11

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO{sub 2} nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediatedmore » diffusion on the uranium sublattice.« less

  4. Molecular dynamics modeling of helium bubbles in austenitic steels

    NASA Astrophysics Data System (ADS)

    Jelea, A.

    2018-06-01

    The austenitic steel devices from pressurized water reactors are continuously subjected to neutron irradiation that produces crystalline point defects and helium atoms in the steel matrix. These species evolve into large defects such as dislocation loops and helium filled bubbles. This paper analyzes, through molecular dynamics simulations with recently developed interatomic potentials, the impact of the helium/steel interface on the helium behavior in nanosize bubbles trapped in an austenitic steel matrix. It is shown that the repulsive helium-steel interactions induce higher pressures in the bubble compared to bulk helium at the same temperature and average density. A new equation of state for helium is proposed in order to take into account these interface effects.

  5. Simulation of uniaxial deformation of hexagonal crystals (Mg, Be)

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Kesarev, A. G.

    2017-12-01

    Molecular dynamics (MD) simulations were performed for the nanocompression loading of nanocrystalline magnesium and beryllium modeled by an interatomic potential of the embedded atom method (EAM). It is shown that the main deformation modes are prismatic slip and twinning for magnesium, and only prismatic slip for beryllium. The formation of stable configurations of dislocation grids in magnesium and beryllium was observed. Dislocation networks are formed in the habit plane of the twin in a magnesium nanocrystall. Some dislocation reactions are suggested to explain the appearance of such networks. Shockley partial dislocations in a beryllium nanocrystall form grids in the slip plane. A strong anisotropy between slip systems was observed, which is in agreement with experimental data.

  6. Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds.

    PubMed

    Wang, Wenlong; Kevrekidis, P G

    2015-03-01

    We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a "crystalline" configuration to that of a disordered state that can be characterized as a soliton "gas." As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. We define an "empirical" order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the "thermally" (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.

  7. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  8. Proposed truncated Cu-Hf tight-binding potential to study the crystal-to-amorphous phase transition

    NASA Astrophysics Data System (ADS)

    Cui, Yuanyuan; Li, Jiahao; Dai, Ye; Liu, Baixin

    2010-09-01

    Proposed truncated Cu-Hf tight-binding potential was constructed by fitting the physical properties of Cu, Hf, and their stable compounds, i.e., Cu5Hf, Cu8Hf3, Cu10Hf7, and CuHf2. Based on the constructed potentials, molecular dynamics simulations were carried out to compare the relative stability of the crystalline solid solution and the disordered state. Simulation results not only reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing when the solute atoms exceeding the critical concentration, but also predict that the glass forming range (GFR) of the Cu-Hf system is 21-77 at. % Cu, which covers the GFRs determined by various metallic glass-producing techniques. Ion beam mixing experiments of the Cu-Hf system were conducted using 200 keV xenon ions and the results show that a uniform amorphous phase can be obtained in the Cu23Hf77 sample, matching well with the GFR determined by the interatomic potential, which, in turn, provides additional evidence to the relevance of the constructed Cu-Hf potential.

  9. The effect of low temperature thermal annealing on the magnetic properties of Heusler Ni-Mn-Sn melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Llamazares, J. L. Sánchez; Quintana-Nedelcos, A.; Ríos-Jara, D.; Sánchez-Valdes, C. F.; García-Fernández, T.; García, C.

    2016-03-01

    We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni50.6Mn36.3Sn13.1 as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L21-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures ( 3-6 K) but to a significant rise of 73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances.

  10. An initial analysis of short- and medium-range correlations potential non-Pt catalysts in CoNx

    NASA Astrophysics Data System (ADS)

    Peterson, Joe

    2009-10-01

    A potential show stopper for the development of fuel cells for the commercial automotive industry is the design of low-cost catalysts. The best catalysts are based on platinum, which is a rare and expensive noble metal. Our group has been involved in the characterization of potential materials for non-Pt catalysts. In this presentation, I will present some preliminary neutron scattering data from a nanocrystalline powder sample of CoNx. It is apparent that the diffraction data cannot be analyzed with standard Riedveld refinement, and we have to invoke pair distribution function (PDF) analysis. The PDF provides insight into short-range correlations, as it measures the probabilities of short- and mid-range interatomic distances in a material. The analysis reveals a strong incoherent scattering response, which is indicative of the presence of hydrogen in the sample. After correcting for the incoherent scattering, one obtains the normalized scattering function S(Q), whose Fourier transform yields the PDF.

  11. An initial analysis of short- and medium-range correlations potential non-Pt catalysts in CoNx

    NASA Astrophysics Data System (ADS)

    Peterson, Joe

    2010-03-01

    A potential show stopper for the development of fuel cells for the commercial automotive industry is the design of low-cost catalysts. The best catalysts are based on platinum, which is a rare and expensive noble metal. Our group has been involved in the characterization of potential materials for non-Pt catalysts. In this presentation, I will present some preliminary neutron scattering data from a nanocrystalline powder sample of CoNx. It is apparent that the diffraction data cannot be analyzed with standard Riedveld refinement, and we have to invoke pair distribution function (PDF) analysis. The PDF provides insight into short-range correlations, as it measures the probabilities of short- and mid-range interatomic distances in a material. The analysis reveals a strong incoherent scattering response, which is indicative of the presence of hydrogen in the sample. After correcting for the incoherent scattering, one obtains the normalized scattering function S(Q), whose Fourier transform yields the PDF.

  12. Formation of fivefold axes in the FCC-metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Myasnichenko, Vladimir S.; Starostenkov, Mikhail D.

    2012-11-01

    Formation of atomistic structures of metallic Cu, Au, Ag clusters and bimetallic Cu-Au clusters was studied with the help of molecular dynamics using the many-body tight-binding interatomic potential. The simulation of the crystallization process of clusters with the number of atoms ranging from 300 to 1092 was carried out. The most stable configurations of atoms in the system, corresponding to the minimum of potential energy, was found during super-fast cooling from 1000 K. Atoms corresponding to fcc, hcp, and Ih phases were identified by the method of common neighbor analysis. Incomplete icosahedral core can be discovered at the intersection of one of the Ih axes with the surface of monometallic cluster. The decahedron-shaped structure of bimetallic Cu-Au cluster with seven completed icosahedral cores was obtained. The principles of the construction of small bimetallic clusters with icosahedral symmetry and increased fractal dimensionality were offered.

  13. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    PubMed Central

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  14. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi Changwen; Jun, Sukky; Kouris, Demitris A.

    2008-02-15

    The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less

  15. Lattice model calculation of elastic and thermodynamic properties at high pressure and temperature. [for alkali halides in NaCl lattice

    NASA Technical Reports Server (NTRS)

    Demarest, H. H., Jr.

    1972-01-01

    The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.

  16. Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, A. E.; Ruiz Hernandez, S. E.; Leeuw, N. H. de, E-mail: DeLeeuwN@Cardiff.ac.uk

    2015-08-15

    Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO{sub 2} potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO{sub 2}. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uraniummore » clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th{sub (1−x)}U{sub x}O{sub 2} which generated values in very good agreement with experimental data.« less

  17. Nitroxoline Molecule: Planar or Not? A Story of Battle between π-π Conjugation and Interatomic Repulsion.

    PubMed

    Tikhonov, Denis S; Sharapa, Dmitry I; Otlyotov, Arseniy A; Solyankin, Peter M; Rykov, Anatolii N; Shkurinov, Alexander P; Grikina, Olga E; Khaikin, Leonid S

    2018-02-15

    The conformational properties of the nitro group in nitroxoline (8-hydroxy-5-nitroquinoline, NXN) were investigated in the gas phase by means of gas electron diffraction (GED) and quantum chemical calculations, and also with solid-state analysis performed using terahertz time-domain spectroscopy (THz-TDS). The results of the GED refinement show that in the equilibrium structure the NO 2 group is twisted by angle ϕ = 8 ± 3° with respect to the 8-hydroxyoquinoline plane. This is the result of interatomic repulsion of oxygen in the NO 2 group from the closest hydrogen, which overcomes the energy gain from the π-π conjugation of the nitro group and aromatic system of 8-hydroxyoquinoline. The computation of equilibrium geometry using MP2/cc-pVXZ (X = T, Q) shows a large overestimation of the ϕ value, while DFT with the cc-pVTZ basis set performs reasonably well. On the other hand, DFT computations with double-ζ basis sets yield a planar structure of NXN. The refined potential energy surface of the torsion vibration the of nitro group in the condensed phase derived from the THz-TDS data indicates the NXN molecule to be planar. This result stays in good agreement with the previous X-ray structure determination. The strength of the π-system conjugation for the NO 2 group and 8-hydroxyoquinoline is discussed using NBO analysis, being further supported by comparison of the refined semiexperimental gas-phase structure of NXN from GED with other nitrocompounds.

  18. Potential and kinetic energetic analysis of phonon modes in varied molecular solids

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent

    2015-03-01

    We calculate partitioned kinetic and potential energies of the phonon modes in molecular solids to illuminate the dynamical behavior of the constituent molecules. This enables analysis of the relationship between the characteristics of sets of phonon modes, molecular structure and chemical reactivity by partitioning the kinetic energy into the translational, rotational and vibrational motions of groups of atoms (including molecules), and the potential energy into the energy contained within interatomic interactions. We consider three solids of differing size and rigidity: naphthalene (C1 0 H6), nitromethane (CH3NO2)andα-HMX(C4H8N8O8). Naphthalene and nitromethane mostly act in the semi-rigid manner often expected in molecular solids. HMX exhibits behavior that is significantly less-rigid. While there are definite correlations between the kinetic and potential energetic analyses, there are also differences, particularly in the excitation of chemical bonds by low-frequency lattice modes. This suggests that in many cases computational and experimental methods dependent on atomic displacements may not identify phonon modes active in chemical reactivity.

  19. Modeling of point defects and rare gas incorporation in uranium mono-carbide

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Van Brutzel, L.

    2007-02-01

    An embedded atom method (EAM) potential has been established for uranium mono-carbide. This EAM potential was fitted on structural properties of metallic uranium and uranium mono-carbide. The formation energies of point defects, as well as activation energies for self migration, have been evaluated in order to cross-check the suitability of the potential. Assuming that the carbon vacancies are the main defects in uranium mono-carbide compounds, the migration paths and energies are consistent with experimental data selected by Catlow[C.R.A. Catlow, J. Nucl. Mater. 60 (1976) 151]. The insertion and migration energies for He, Kr and Xe have also been evaluated with available inter-atomic potentials [H.H. Andersen, P. Sigmund, Nucl. Instr. and Meth. B 38 (1965) 238]. Results show that the most stable defect configuration for rare gases is within uranium vacancies. The migration energy of an interstitial Xe is 0.5 eV, in agreement with the experimental value of 0.5 eV [Hj. Matzke, Science of advanced LMFBR fuels, Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, 1986].

  20. Dislocation nucleation from symmetric tilt grain boundaries in body-centered cubic vanadium

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2018-05-01

    We perform molecular dynamics (MD) simulations with two interatomic potentials to study dislocation nucleation from six symmetric tilt grain boundaries (GB) using bicrystal models in body-centered cubic vanadium. The influences of the misorientation angle are explored in the context of activated slip systems, critical resolved shear stress (CRSS), and GB energy. It is found that for four GBs, the activated slip systems are not those with the highest Schmid factor, i.e., the Schmid law breaks down. For all misorientation angles, the bicrystal is associated with a lower CRSS than their single crystalline counterparts. Moreover, the GB energy decreases in compressive loading at the yield point with respect to the undeformed configuration, in contrast to tensile loading.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grochola, A.; Kowalczyk, P.; Szczepkowski, J.

    Comprehensive spectroscopic studies of hot and ultracold samples of NaCs molecules were combined to complete the investigation of the (3){Omega}=1 <- X {sup 1}{Sigma}{sup +} transition for the NaCs molecule. Polarization labeling, photoassociation, and pulsed laser depletion spectroscopy were used to collect data on rovibrational levels of the (3){Omega}=1 state [here described as the c {sup 3}{Sigma}{sup +} state in Hund's case (a) notation]. The highest observed level was v=72 located {approx}5 GHz below the atomic asymptote Na(3 {sup 2}S{sub 1/2}) + Cs(6 {sup 2}P{sub 3/2}). Approximately 1400 levels were used to construct the potential energy curve of the (3){Omega}=1more » state for the full range of interatomic distances.« less

  2. A molecular dynamics study of melting and dissociation of tungsten nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Wang, Jun; Fu, Baoqin

    2015-12-15

    Molecular dynamics simulations were conducted to study the melting and dissociation of free tungsten nanoparticles. For the various interatomic potentials applied, the melting points of the tungsten nanoparticles increased with increasing nanoparticle diameter. Combining these results with the melting point of bulk tungsten in the experiment, the melting point of nanoparticles with diameters ranging from 4 to 12 nm could be determined. As the temperature increases, free nanoparticles are subject to dissociation phenomena. The dissociation rate was observed to follow Arrhenius behavior, and the Meyer–Neldel rule was obeyed. These results are useful in understanding the behavior of tungsten dust generatedmore » in nuclear fusion devices as well as for the preparation, formation, and application of tungsten powders.« less

  3. Monte Carlo simulation of elongating metallic nanowires in the presence of surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gimenez, M. Cecilia; Reinaudi, Luis, E-mail: luis.reinaudi@unc.edu.ar; Leiva, Ezequiel P. M.

    2015-12-28

    Nanowires of different metals undergoing elongation were studied by means of canonical Monte Carlo simulations and the embedded atom method representing the interatomic potentials. The presence of a surfactant medium was emulated by the introduction of an additional stabilization energy, represented by a parameter Q. Several values of the parameter Q and temperatures were analyzed. In general, it was observed for all studied metals that, as Q increases, there is a greater elongation before the nanowire breaks. In the case of silver, linear monatomic chains several atoms long formed at intermediate values of Q and low temperatures. Similar observations weremore » made for the case of silver-gold alloys when the medium interacted selectively with Ag.« less

  4. A charge-optimized many-body potential for the U-UO2-O2 system

    NASA Astrophysics Data System (ADS)

    Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.

    2013-12-01

    Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2 → UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.

  5. Local structures around the substituted elements in mixed layered oxides

    PubMed Central

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-01-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008

  6. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less

  7. Magnetism and exchange interaction of small rare-earth clusters; Tb as a representative

    PubMed Central

    Peters, Lars; Ghosh, Saurabh; Sanyal, Biplab; van Dijk, Chris; Bowlan, John; de Heer, Walt; Delin, Anna; Di Marco, Igor; Eriksson, Olle; Katsnelson, Mikhail I.; Johansson, Börje; Kirilyuk, Andrei

    2016-01-01

    Here we follow, both experimentally and theoretically, the development of magnetism in Tb clusters from the atomic limit, adding one atom at a time. The exchange interaction is, surprisingly, observed to drastically increase compared to that of bulk, and to exhibit irregular oscillations as a function of the interatomic distance. From electronic structure theory we find that the theoretical magnetic moments oscillate with cluster size in exact agreement with experimental data. Unlike the bulk, the oscillation is not caused by the RKKY mechanism. Instead, the inter-atomic exchange is shown to be driven by a competition between wave-function overlap of the 5d shell and the on-site exchange interaction, which leads to a competition between ferromagnetic double-exchange and antiferromagnetic super-exchange. This understanding opens up new ways to tune the magnetic properties of rare-earth based magnets with nano-sized building blocks. PMID:26795239

  8. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  9. Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Zn, Cu, Co, Ni) metal-organic framework polymers: X-ray photoelectron spectroscopy, QTAIM and ELF study

    NASA Astrophysics Data System (ADS)

    Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.

    2017-12-01

    Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.

  10. Safety and licensing of a small modular gas-cooled reactor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.W.; Kelley, A.P. Jr.

    A modular side-by-side high-temperature gas-cooled reactor (SBS-HTGR) is being developed by Interatom/Kraftwerk Union (KWU). The General Electric Company and Interatom/KWU entered into a proprietary working agreement to continue develop jointly of the SBS-HTGR. A study on adapting the SBS-HTGR for application in the US has been completed. The study investigated the safety characteristics and the use of this type of design in an innovative approach to licensing. The safety objective guiding the design of the modular SBS-HTGR is to control radionuclide release by the retention of fission products within the fuel particles with minimal reliance on active design features. Themore » philosophy on which this objective is predicated is that by providing a simple safety case, the safety criteria can be demonstrated as being met with high confidence through conduct of a full-scale module safety test.« less

  11. The MOLDY short-range molecular dynamics package

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.

  12. Summary report on UO 2 thermal conductivity model refinement and assessment studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James

    Uranium dioxide (UO 2) is the most commonly used fuel in light water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, therefore, governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models were replaced with models that incorporate explicit thermal conductivity degradation mechanisms during fuel burn-up. This approach is able to represent the degradation of thermal conductivity due to eachmore » individual defect type, rather than the overall burn-up measure typically used which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO 2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham type interatomic potential and a potential that combines the many-body embedded atom method potential with Morse-Buckingham pair potentials. Potential parameters for UO 2+x and ZrO 2 are developed for the latter potential. Physical insights from the resonant phonon-spin scattering mechanism due to spins on the magnetic uranium ions have been introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel performance codes. The model is validated by comparison to low-temperature experimental measurements on single crystal hyper-stoichiometric UO 2+x samples and high-temperature literature data. Ongoing works include investigation of the effect of phase separation to UO 2+U 4O 9 on the low temperature thermal conductivity of UO 2+x, and modeling of thermal conductivity using the Green-Kubo method. Ultimately, this work will enable more accurate fuel performance simulations as well as extension to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

  13. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials

    NASA Astrophysics Data System (ADS)

    Imbalzano, Giulio; Anelli, Andrea; Giofré, Daniele; Klees, Sinja; Behler, Jörg; Ceriotti, Michele

    2018-06-01

    Machine learning of atomic-scale properties is revolutionizing molecular modeling, making it possible to evaluate inter-atomic potentials with first-principles accuracy, at a fraction of the costs. The accuracy, speed, and reliability of machine learning potentials, however, depend strongly on the way atomic configurations are represented, i.e., the choice of descriptors used as input for the machine learning method. The raw Cartesian coordinates are typically transformed in "fingerprints," or "symmetry functions," that are designed to encode, in addition to the structure, important properties of the potential energy surface like its invariances with respect to rotation, translation, and permutation of like atoms. Here we discuss automatic protocols to select a number of fingerprints out of a large pool of candidates, based on the correlations that are intrinsic to the training data. This procedure can greatly simplify the construction of neural network potentials that strike the best balance between accuracy and computational efficiency and has the potential to accelerate by orders of magnitude the evaluation of Gaussian approximation potentials based on the smooth overlap of atomic positions kernel. We present applications to the construction of neural network potentials for water and for an Al-Mg-Si alloy and to the prediction of the formation energies of small organic molecules using Gaussian process regression.

  14. Reexamination of the interaction of atoms with a LiF(001) surface

    NASA Astrophysics Data System (ADS)

    Miraglia, J. E.; Gravielle, M. S.

    2017-02-01

    Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.

  15. Atomistic simulations of materials: Methods for accurate potentials and realistic time scales

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush

    This thesis deals with achieving more realistic atomistic simulations of materials, by developing accurate and robust force-fields, and algorithms for practical time scales. I develop a formalism for generating interatomic potentials for simulating atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. This is done by fitting against an extensive database of ab initio results, as well as to experimental measurements for mixed oxide nuclear fuels. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies. A hybrid stochastic and deterministic algorithm is proposed that while maintaining fully atomistic resolution, allows one to achieve milliseconds and longer time scales for several thousands of atoms. The method exploits the rare event nature of the dynamics like other such methods, but goes beyond them by (i) not having to pick a scheme for biasing the energy landscape, (ii) providing control on the accuracy of the boosted time scale, (iii) not assuming any harmonic transition state theory (HTST), and (iv) not having to identify collective coordinates or interesting degrees of freedom. The method is validated by calculating diffusion constants for vacancy-mediated diffusion in iron metal at low temperatures, and comparing against brute-force high temperature molecular dynamics. We also calculate diffusion constants for vacancy diffusion in tantalum metal, where we compare against low-temperature HTST as well. The robustness of the algorithm with respect to the only free parameter it involves is ascertained. The method is then applied to perform tensile tests on gold nanopillars on strain rates as low as 100/s, bringing out the perils of high strain-rate molecular dynamics calculations. We also calculate temperature and stress dependence of activation free energy for surface nucleation of dislocations in pristine gold nanopillars under realistic loads. While maintaining fully atomistic resolution, we reach the fraction-of-a-second time scale regime. It is found that the activation free energy depends significantly and nonlinearly on the driving force (stress or strain) and temperature, leading to very high activation entropies for surface dislocation nucleation.

  16. Efficient Monte Carlo Methods for Biomolecular Simulations.

    NASA Astrophysics Data System (ADS)

    Bouzida, Djamal

    A new approach to efficient Monte Carlo simulations of biological molecules is presented. By relaxing the usual restriction to Markov processes, we are able to optimize performance while dealing directly with the inhomogeneity and anisotropy inherent in these systems. The advantage of this approach is that we can introduce a wide variety of Monte Carlo moves to deal with complicated motions of the molecule, while maintaining full optimization at every step. This enables the use of a variety of collective rotational moves that relax long-wavelength modes. We were able to show by explicit simulations that the resulting algorithms substantially increase the speed of the simulation while reproducing the correct equilibrium behavior. This approach is particularly intended for simulations of macromolecules, although we expect it to be useful in other situations. The dynamic optimization of the new Monte Carlo methods makes them very suitable for simulated annealing experiments on all systems whose state space is continuous in general, and to the protein folding problem in particular. We introduce an efficient annealing schedule using preferential bias moves. Our simulated annealing experiments yield structures whose free energies were lower than the equilibrated X-ray structure, which leads us to believe that the empirical energy function used does not fully represent the interatomic interactions. Furthermore, we believe that the largest discrepancies involve the solvent effects in particular.

  17. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Han; Zhang, Linfeng; Han, Jiequn; E, Weinan

    2018-07-01

    Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.

  18. Loosely-Bound Diatomic Molecules.

    ERIC Educational Resources Information Center

    Balfour, W. J.

    1979-01-01

    Discusses concept of covalent bonding as related to homonuclear diatomic molecules. Article draws attention to the existence of bound rare gas and alkaline earth diatomic molecules. Summarizes their molecular parameters and offers spectroscopic data. Strength and variation with distance of interatomic attractive forces is given. (Author/SA)

  19. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  20. Direct photoassociation of halo molecules in ultracold 86 Sr

    NASA Astrophysics Data System (ADS)

    Aman, J. A.; Hill, Joshua; Killian, T. C.

    2017-04-01

    We investigate the creation of 1S0 +1S0 halo molecules in strontium 86 through direct photoassociation in an optical dipole trap. We drive two photon Raman transitions near-resonance with a molecular level of the 1S0 +3P1 interatomic potential as the intermediate state. This provides large Frank-Condon factors and allows us to observe resonances for the creation of halo molecules through higher order Raman processes. The halo molecule is bound by EB 85 kHz at low excitation-laser intensity, but experiments show large AC Stark shifts of the molecular binding energy. These conditions suggest that STIRAP should be very effective for improving molecular conversion efficiency. Further experiments in a 3D lattice will explore molecular lifetimes and collision rates. Travel support provided by Shell Corporation.

  1. Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming, E-mail: dhm@xju.edu.cn

    2016-06-15

    The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. The differences ofmore » the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.« less

  2. A study on carbon nanotube bridge as a electromechanical memory device

    NASA Astrophysics Data System (ADS)

    Kang, Jeong Won; Ha Lee, Jun; Joo Lee, Hoong; Hwang, Ho Jung

    2005-04-01

    A nanoelectromechanical (NEM) nanotube random access memory (NRAM) device based on carbon nanotube (CNT) was investigated using atomistic simulations. For the CNT-based NEM memory, the mechanical properties of the CNT-bridge and van der Waals interactions between the CNT-bridge and substrate were very important. The critical amplitude of the CNT-bridge was 16% of the length of the CNT-bridge. As molecular dynamics time increased, the CNT-bridge went to the steady state under the electrostatic force with the damping of the potential and the kinetic energies of the CNT-bridge. The interatomic interaction between the CNT-bridge and substrate, value of the CNT-bridge slack, and damping rate of the CNT-bridge were very important for the operation of the NEM memory device as a nonvolatile memory.

  3. The generation of piezoelectricity and flexoelectricity in graphene by breaking the materials symmetries.

    PubMed

    Javvaji, Brahmanandam; He, Bo; Zhuang, Xiaoying

    2018-06-01

    Graphene is a non-piezoelectric material. Engineering the piezoelectricity in graphene is possible with the help of impurities, defects and structural modifications. This study reports the mechanism of strain induced polarization and the estimation of piezoelectric and flexoelectric coefficients for graphene system. The combination of charge-dipole potential and the strong many-body potential is employed for describing the inter-atomic interactions. The breaking of symmetry in graphene material is utilized to generate the polarization. Pristine graphene, graphene with circular defect, graphene with triangular defect and trapezium-shaped graphene are considered. Molecular dynamics simulations are performed for straining the graphene atomic systems. The optimization of charge-dipole potential functions measure the polarization for these systems. Pristine and circular defect graphene systems show a constant polarization with strain. The polarization is varying with strain for a triangular defected and trapezium-shaped graphene system. The local atomic deformation produces a change in polarization with respect to the strain gradient. Estimated piezo and flexo coefficients motivate the usage of graphene in electro-mechanical devices.

  4. Machine learnt bond order potential to investigate the low thermal conductivity of stanene nanostructures

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Narayanan, Badri; Kinaci, Alper; Sasikumar, Kiran; Gray, Stephen; Chan, Maria; Sankaranarayanan, Subramanian

    The growth of stanene on a Bi2Te3\\ substrate has engendered a great deal of interest, in part due to stanene's predicted exotic properties. In particular, stanene shows promise in topological insulation, large-gap 2D quantum spin hall states, lossless electrical conduction, enhanced thermoelectricity, and topological superconductivity. However, atomistic investigations of growth mechanisms (needed to guide synthesis), phonon transport (crucial for designing thermoelectrics), and thermo-mechanical behavior of stanene are scarce. This paucity is primarily due to the lack of inter-atomic potentials that can accurately capture atomic interactions in stanene. To address this, we have developed a machine learnt bond-order potential (BOP) based on Tersoff's formalism that can accurately capture bond breaking/formation events, structure, energetics, thermodynamics, thermal conductivity, and mechanical properties of single layer tin, using a training set derived from density functional theory calculations. Finally, we employed our newly developed BOP to study anisotropy in thermal conductivity of stanene sheets, temperature induced rippling, as well as dependence of anharmonicity and thermal conductivity on temperature.

  5. Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO 2

    DOE PAGES

    Lan, Tian; Li, Chen W.; Hellman, O.; ...

    2015-08-11

    Although the rutile structure of TiO 2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO 2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic tomore » quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less

  6. Thermostructural behaviour of Ni-Cr materials: modelling of bulk and nanoparticle systems.

    PubMed

    Ortiz-Roldan, Jose M; Rabdel Ruiz-Salvador, A; Calero, Sofía; Montero-Chacón, Francisco; García-Pérez, Elena; Segurado, Javier; Martin-Bragado, Ignacio; Hamad, Said

    2015-06-28

    The thermostructural properties of Ni-Cr materials, as bulk and nanoparticle (NP) systems, have been predicted with a newly developed interatomic potential, for Ni/Cr ratios from 100/0 to 60/40. The potential, which has been fitted using experimental data and further validated using Density Functional Theory (DFT), describes correctly the variation with temperature of lattice parameters and the coefficient of thermal expansion, from 100 K to 1000 K. Using this potential, we have performed Molecular Dynamics (MD) simulations on bulk Ni-Cr alloys of various compositions, for which no experimental data are available. Similarly, NPs with diameters of 3, 5, 7, and 10 nm were studied. We found a very rapid convergence of NP properties with the size of the systems, showing already the 5 nm NPs with a thermostructural behaviour similar to the bulk. MD simulations of two 5 nm NPs show very little sintering and thermally induced damage, for temperatures between 300 K and 1000 K, suggesting that materials formed by agglomeration of Ni-Cr NPs meet the thermostructural stability requirements for catalysis applications.

  7. The generation of piezoelectricity and flexoelectricity in graphene by breaking the materials symmetries

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; He, Bo; Zhuang, Xiaoying

    2018-06-01

    Graphene is a non-piezoelectric material. Engineering the piezoelectricity in graphene is possible with the help of impurities, defects and structural modifications. This study reports the mechanism of strain induced polarization and the estimation of piezoelectric and flexoelectric coefficients for graphene system. The combination of charge-dipole potential and the strong many-body potential is employed for describing the inter-atomic interactions. The breaking of symmetry in graphene material is utilized to generate the polarization. Pristine graphene, graphene with circular defect, graphene with triangular defect and trapezium-shaped graphene are considered. Molecular dynamics simulations are performed for straining the graphene atomic systems. The optimization of charge-dipole potential functions measure the polarization for these systems. Pristine and circular defect graphene systems show a constant polarization with strain. The polarization is varying with strain for a triangular defected and trapezium-shaped graphene system. The local atomic deformation produces a change in polarization with respect to the strain gradient. Estimated piezo and flexo coefficients motivate the usage of graphene in electro-mechanical devices.

  8. Space-filling, multifractal, localized thermal spikes in Si, Ge and ZnO

    NASA Astrophysics Data System (ADS)

    Ahmad, Shoaib; Abbas, Muhammad Sabtain; Yousuf, Muhammad; Javeed, Sumera; Zeeshan, Sumaira; Yaqub, Kashif

    2018-04-01

    The mechanism responsible for the emission of clusters from heavy ion irradiated solids is proposed to be thermal spikes. Collision cascade-based theories describe atomic sputtering but cannot explain the consistently observed experimental evidence for significant cluster emission. Statistical thermodynamic arguments for thermal spikes are employed here for qualitative and quantitative estimation of the thermal spike-induced cluster emission from Si, Ge and ZnO. The evolving cascades and spikes in elemental and molecular semiconducting solids are shown to have fractal characteristics. Power law potential is used to calculate the fractal dimension. With the loss of recoiling particles' energy the successive branching ratios get smaller. The fractal dimension is shown to be dependent upon the exponent of the power law interatomic potential D = 1/2m. Each irradiating ion has the probability of initiating a space-filling, multifractal thermal spike that may sublime a localized region near the surface by emitting clusters in relative ratios that depend upon the energies of formation of respective surface vacancies.

  9. MC3, Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawkwell, Marc Jon

    2016-09-09

    The MC3 code is used to perform Monte Carlo simulations in the isothermal-isobaric ensemble (constant number of particles, temperature, and pressure) on molecular crystals. The molecules within the periodic simulation cell are treated as rigid bodies, alleviating the requirement for a complex interatomic potential. Intermolecular interactions are described using generic, atom-centered pair potentials whose parameterization is taken from the literature [D. E. Williams, J. Comput. Chem., 22, 1154 (2001)] and electrostatic interactions arising from atom-centered, fixed, point partial charges. The primary uses of the MC3 code are the computation of i) the temperature and pressure dependence of lattice parameters andmore » thermal expansion coefficients, ii) tensors of elastic constants and compliances via the Parrinello and Rahman’s fluctuation formula [M. Parrinello and A. Rahman, J. Chem. Phys., 76, 2662 (1982)], and iii) the investigation of polymorphic phase transformations. The MC3 code is written in Fortran90 and requires LAPACK and BLAS linear algebra libraries to be linked during compilation. Computationally expensive loops are accelerated using OpenMP.« less

  10. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys

    DOE PAGES

    Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.

    2016-05-18

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material’s structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of materialmore » defects, and we compare the material behavior displayed with expectations from experiment and theory. In conclusion, we also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.« less

  11. Formation of graphene on BN substrate by vapor deposition method and size effects on its structure

    NASA Astrophysics Data System (ADS)

    Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo

    2018-04-01

    We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.

  12. Multiscale Modeling of UHTC: Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  13. Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity

    NASA Astrophysics Data System (ADS)

    Huang, Bing; von Lilienfeld, O. Anatole

    2016-10-01

    The predictive accuracy of Machine Learning (ML) models of molecular properties depends on the choice of the molecular representation. Inspired by the postulates of quantum mechanics, we introduce a hierarchy of representations which meet uniqueness and target similarity criteria. To systematically control target similarity, we simply rely on interatomic many body expansions, as implemented in universal force-fields, including Bonding, Angular (BA), and higher order terms. Addition of higher order contributions systematically increases similarity to the true potential energy and predictive accuracy of the resulting ML models. We report numerical evidence for the performance of BAML models trained on molecular properties pre-calculated at electron-correlated and density functional theory level of theory for thousands of small organic molecules. Properties studied include enthalpies and free energies of atomization, heat capacity, zero-point vibrational energies, dipole-moment, polarizability, HOMO/LUMO energies and gap, ionization potential, electron affinity, and electronic excitations. After training, BAML predicts energies or electronic properties of out-of-sample molecules with unprecedented accuracy and speed.

  14. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale

    NASA Astrophysics Data System (ADS)

    Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico

    2018-01-01

    A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.

  15. Investigations of interatomic interaction in InAs-InAs1-xSbx heterostructures on a base of x-ray diffractometry

    NASA Astrophysics Data System (ADS)

    Babjuck, T. I.; Buntar, A. G.; Shevtchuk, L. S.

    2001-06-01

    Hetero-transitions on a base of InAs and AnSb compounds permitted to obtain cheap light diodes and detectors with the atmosphere maximal transparency region sensibility. There is assumed simultaneously, that the phon radiation in InAs-InAs1-xSbx is not large, which positively effects on receiver parameters. Changing the composition of InAs-InAs1- xSbx solution, one may obtain the structure with the width of forbidden zone of the want of 0.35 to 0,1 eV. There is developed the heterostructures crystalline lattice parameters determining method (for substrate and film) with the DRON-3M x-ray diffractometer. There was found the nonlinear dependence of the heterostructures lattice parameter on the composition. Investigations of interatomic interaction in dependence on composition and also on the forbidden zone width Eg(x) have show, that solid solutions InAs-InAs1- xSbx may be used for the obtaining of infra-red receiver.

  16. Interatomic Coulombic Decay Mediated by Ultrafast Superexchange Energy Transfer.

    PubMed

    Miteva, Tsveta; Kazandjian, Sévan; Kolorenč, Přemysl; Votavová, Petra; Sisourat, Nicolas

    2017-08-25

    Inner-valence ionized states of atoms and molecules live shorter if these species are embedded in an environment due to the possibility for ultrafast deexcitation known as interatomic Coulombic decay (ICD). In this Letter we show that the lifetime of these ICD active states decreases further when a bridge atom is in proximity to the two interacting monomers. This novel mechanism, termed superexchange ICD, is an electronic correlation effect driven by the efficient energy transfer via virtual states of the bridge atom. The superexchange ICD is discussed in detail on the example of the NeHeNe trimer. We demonstrate that the decay width of the Ne^{+}(2s^{-1})  ^{2}Σ_{g}^{+} resonance increases 6 times in the presence of the He atom at a distance of 4 Å between the two Ne atoms. Using a simple model, we provide a qualitative explanation of the superexchange ICD and we derive analytical expressions for the dependence of the decay width on the distance between the neon atoms.

  17. Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions

    DOE PAGES

    Vukmirovic, Miomir B.; Teeluck, Krishani M.; Liu, Ping; ...

    2017-08-08

    We prepared atomically dispersed catalyst consisting of Pt atoms arranged in a c(2 × 2) array on RuO2(110) substrate. A large interatomic distance of Pt atoms in a c(2 × 2) phase precludes the reactants to interact with more than one Pt atoms. A strong bond of Pt atoms with RuO2 prevents agglomeration of Pt atoms to form 2D-islands or 3D-clusters. The activities of single Pt atom catalyst for the oxygen reduction and hydrogen oxidation reactions were determined and compared with those of bulk Pt. It has lower catalytic activity for the oxygen reduction reaction and similar activity for hydrogenmore » oxidation reaction compared to Pt(111). This was explained by a large calculated up-shift of the dband center of Pt atoms and larger Pt-Pt interatomic distance than that of Pt(111). Our information is of considerable interest for further development of electrocatalysis.« less

  18. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    2017-12-21

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  19. Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharmawardhana, C.C.; Misra, A.; Aryal, S.

    2013-10-15

    Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion showsmore » that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.« less

  20. Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction.

    PubMed

    Spagnolli, G; Semeghini, G; Masi, L; Ferioli, G; Trenkwalder, A; Coop, S; Landini, M; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M

    2017-06-09

    We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.

  1. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  2. Quantum Computational Studies of Electron Transfer in Respiratory Complex III and its Application for Designing New Mitocan Drugs

    NASA Astrophysics Data System (ADS)

    Hagras, Muhammad Ahmed

    Electron transfer occurs in many biological systems which are imperative to sustain life; oxidative phosphorylation in prokaryotes and eukaryotes, and photophosphorylation in photosynthetic and plant cells are well-balanced and complementary processes. Investigating electron transfer in those natural systems provides detailed knowledge of the atomistic events that lead eventually to production of ATP, or harvesting light energy. Ubiquinol:cytochrome c oxidoreductase complex (also known as bc 1 complex, or respiratory complex III) is a middle player in the electron transport proton pumping orchestra, located in the inner-mitochondrial membrane in eukaryotes or plasma membrane in prokaryotes, which converts the free energy of redox reactions to electrochemical proton gradient across the membrane, following the fundamental chemiosmotic principle discovered by Peter Mitchell 1. In humans, the malfunctioned bc1 complex plays a major role in many neurodegenerative diseases, stress-induced aging, and cancer development, because it produces most of the reactive oxygen species, which are also involved in cellular signaling 2. The mitochondrial bc1 complex has an intertwined dimeric structure comprised of 11 subunits in each monomer, but only three of them have catalytic function, and those are the only domains found in bacterial bc1 complex. The core subunits include: Rieske domain, which incorporates iron-sulfur cluster [2Fe-2S]; trans-membrane cytochrome b domain, incorporating low-potential heme group (heme b L) and high-potential heme group (heme b H); and cytochrome c1 domain, containing heme c1 group and two separate binding sites, Qo (or QP) site where the hydrophobic electron carrier ubihydroquinol QH2 is oxidized, and Qi (or QN) site where ubiquinone molecule Q is reduced 3. Electrons and protons in the bc1 complex flow according to the proton-motive Q-cycle proposed by Mitchell, which includes a unique electron flow bifurcation at the Qo site. At this site, one electron of a bound QH2 molecule transfers to [2Fe-2S] cluster of the Rieske domain, docked at the proximal docking site, and another electron transfers to heme b L , which subsequently passes it to heme bH , and finally to Q or SQ molecule bound at the Qi-site 4. Rieske domain undergoes a domain movement 22 A to bind at the distal docking site, where [2Fe-2S] cluster passes its electron to heme c1, which in turn passes it to heme c of the water-soluble cytochrome c carrier 3c, 5 (which shuttles it to cytochrome c oxidase, complex IV). In the current compiled work presented in the subsequent chapters, we deployed a stacking tiers hierarchy where each chapter's work presents a foundation for the next one. In chapter 1, we first present different methods to calculate tunneling currents in proteins including a new derivation method for the inter-atomic tunneling current method. In addition, we show the results of the inter-atomic tunneling current theory on models based on heme bL-heme bH redox pair system in bc1 complex. Afterwards, in chapter 2, we examine the electron tunneling pathways 6 between different intra-monomeric and inter-monomeric redox centers of bc1 complex, including its electron carriers - ubiquinol, ubiquinone, and cytochrome c molecules, using the well-studied coarse-grained interatomic method of the tunneling current theory 7. Going through the different tunneling pathways in bc1 complex, we discovered a pair of internal switches that modulate the electron transfer rate which we discuss in full details in chapter 3. Motivated by the discovery of those internal switches, we discuss in chapter 4 the discovery of a new binding pocket (designated as NonQ-site or NQ-site for short) in bc 1 complex which is located at the opposite side of the enzyme with respect to Qo site. In contrast to Qo site, however, the NQ-site penetrates deeply in the cytochrome b domain and reaches very closely the LH region. Hence the NQ-site provides a suitable binding pocket for ligands that can influence the orientation of Phe90 residue, and hence modulate the corresponding ET rate between heme b L and heme bH. Finally we present in chapter 5 our unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins.

  3. Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeve, Samuel Temple; Strachan, Alejandro, E-mail: strachan@purdue.edu

    We use functional, Fréchet, derivatives to quantify how thermodynamic outputs of a molecular dynamics (MD) simulation depend on the potential used to compute atomic interactions. Our approach quantifies the sensitivity of the quantities of interest with respect to the input functions as opposed to its parameters as is done in typical uncertainty quantification methods. We show that the functional sensitivity of the average potential energy and pressure in isothermal, isochoric MD simulations using Lennard–Jones two-body interactions can be used to accurately predict those properties for other interatomic potentials (with different functional forms) without re-running the simulations. This is demonstrated undermore » three different thermodynamic conditions, namely a crystal at room temperature, a liquid at ambient pressure, and a high pressure liquid. The method provides accurate predictions as long as the change in potential can be reasonably described to first order and does not significantly affect the region in phase space explored by the simulation. The functional uncertainty quantification approach can be used to estimate the uncertainties associated with constitutive models used in the simulation and to correct predictions if a more accurate representation becomes available.« less

  4. Uranium phase diagram from first principles

    NASA Astrophysics Data System (ADS)

    Yanilkin, Alexey; Kruglov, Ivan; Migdal, Kirill; Oganov, Artem; Pokatashkin, Pavel; Sergeev, Oleg

    2017-06-01

    The work is devoted to the investigation of uranium phase diagram up to pressure of 1 TPa and temperature of 15 kK based on density functional theory. First of all the comparison of pseudopotential and full potential calculations is carried out for different uranium phases. In the second step, phase diagram at zero temperature is investigated by means of program USPEX and pseudopotential calculations. Stable and metastable structures with close energies are selected. In order to obtain phase diagram at finite temperatures the preliminary selection of stable phases is made by free energy calculation based on small displacement method. For remaining candidates the accurate values of free energy are obtained by means of thermodynamic integration method (TIM). For this purpose quantum molecular dynamics are carried out at different volumes and temperatures. Interatomic potentials based machine learning are developed in order to consider large systems and long times for TIM. The potentials reproduce the free energy with the accuracy 1-5 meV/atom, which is sufficient for prediction of phase transitions. The equilibrium curves of different phases are obtained based on free energies. Melting curve is calculated by modified Z-method with developed potential.

  5. Diffusion of small Cu islands on the Ni(111) surface: A self-learning kinetic Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Acharya, Shree Ram; Shah, Syed Islamuddin; Rahman, Talat S.

    2017-08-01

    We elucidate the diffusion kinetics of a heteroepitaxial system consisting of two-dimensional small (1-8 atoms) Cu islands on the Ni(111) surface at (100-600) K using the Self-Learning Kinetic Monte Carlo (SLKMC-II) method. Study of the statics of the system shows that compact CuN (3≤N≤8) clusters made up of triangular units on fcc occupancy sites are the energetically most stable structures of those clusters. Interestingly, we find a correlation between the height of the activation energy barrier (Ea) and the location of the transition state (TS). The Ea of processes for Cu islands on the Ni(111) surface are in general smaller than those of their counterpart Ni islands on the same surface. We find this difference to correlate with the relative strength of the lateral interaction of the island atoms in the two systems. While our database consists of hundreds of possible processes, we identify and discuss the energetics of those that are the most dominant, or are rate-limiting, or most contributory to the diffusion of the islands. Since the Ea of single- and multi-atom processes that convert compact island shapes into non-compact ones are larger (with a significantly smaller Ea for their reverse processes) than that for the collective (concerted) motion of the island, the later dominate in the system kinetics - except for the cases of the dimer, pentamer and octamer. Short-jump involving one atom, long jump dimer-shearing, and long-jump corner shearing (via a single-atom) are, respectively, the dominating processes in the diffusion of the dimer, pentamer and octamer. Furthermore single-atom corner-rounding are the rate-limiting processes for the pentamer and octamer islands. Comparison of the energetics of selected processes and lateral interactions obtained from semi-empirical interatomic potentials with those from density functional theory show minor quantitative differences and overall qualitative agreement.

  6. Crystal structure prediction supported by incomplete experimental data

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Naoto; Adachi, Daiki; Akashi, Ryosuke; Todo, Synge; Tsuneyuki, Shinji

    2018-05-01

    We propose an efficient theoretical scheme for structure prediction on the basis of the idea of combining methods, which optimize theoretical calculation and experimental data simultaneously. In this scheme, we formulate a cost function based on a weighted sum of interatomic potential energies and a penalty function which is defined with partial experimental data totally insufficient for conventional structure analysis. In particular, we define the cost function using "crystallinity" formulated with only peak positions within the small range of the x-ray-diffraction pattern. We apply this method to well-known polymorphs of SiO2 and C with up to 108 atoms in the simulation cell and show that it reproduces the correct structures efficiently with very limited information of diffraction peaks. This scheme opens a new avenue for determining and predicting structures that are difficult to determine by conventional methods.

  7. Atomic quantum corrals for Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong Hongwei; Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190; Wu Biao

    2010-11-15

    We consider the dynamics of Bose-Einstein condensates in a corral-like potential. Compared to the electronic quantum corrals, the atomic quantum corrals have the advantages of allowing direct and convenient observation of the wave dynamics, together with adjustable interaction strength. Our numerical study shows that these advantages not only allow exploration of the rich dynamical structures in the density distribution but also make the corrals useful in many other aspects. In particular, the corrals for atoms can be arranged into a stadium shape for the experimental visualization of quantum chaos, which has been elusive with electronic quantum corrals. The density correlationmore » is used to describe quantitatively the dynamical quantum chaos. Furthermore, we find that the interatomic interaction can greatly enhance the dynamical quantum chaos, for example, inducing a chaotic behavior even in circle-shaped corrals.« less

  8. A database of new zeolite-like materials.

    PubMed

    Pophale, Ramdas; Cheeseman, Phillip A; Deem, Michael W

    2011-07-21

    We here describe a database of computationally predicted zeolite-like materials. These crystals were discovered by a Monte Carlo search for zeolite-like materials. Positions of Si atoms as well as unit cell, space group, density, and number of crystallographically unique atoms were explored in the construction of this database. The database contains over 2.6 M unique structures. Roughly 15% of these are within +30 kJ mol(-1) Si of α-quartz, the band in which most of the known zeolites lie. These structures have topological, geometrical, and diffraction characteristics that are similar to those of known zeolites. The database is the result of refinement by two interatomic potentials that both satisfy the Pauli exclusion principle. The database has been deposited in the publicly available PCOD database and in www.hypotheticalzeolites.net/database/deem/. This journal is © the Owner Societies 2011

  9. Entropic vs. elastic models of fragility of glass-forming liquids: Two sides of the same coin?

    NASA Astrophysics Data System (ADS)

    Sen, Sabyasachi

    2012-10-01

    The two most influential atomistic models that have been proposed in the literature to explain the temperature dependent activation energy of viscous flow of a glass-forming liquid, i.e., its fragility, are the configurational entropy model of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965), 10.1063/1.1696442] and the elastic "shoving" model of Dyre et al. [J. Non-Cryst. Solids 352, 4635 (2006), 10.1016/j.jnoncrysol.2006.02.173]. Here we demonstrate a qualitative equivalence between these two models starting from the well-established general relationships between the interatomic potentials, elastic constants, structural rearrangement, and entropy in amorphous materials. The unification of these two models provides important predictions that are consistent with experimental observations and shed new light into the problem of glass transition.

  10. Excited hydrogen bonds in the molecular mechanism of muscle contraction.

    PubMed

    Bespalova, S V; Tolpygo, K B

    1991-11-21

    The mechanism of muscle contraction is considered. The hydrolysis of an ATP molecule is assumed to produce the excitation of hydrogen bonds A--H...B between electronegative atoms A and B, which are contained in the myosin head and actin filament. This excitation energy epsilon f depends on the interatomic distance AB = R and generates the tractive force f = -delta epsilon f/delta R, that makes atoms AB approach each other. The swing of the myosin head results in macroscopic mutual displacement of actin and myosin polymers. The motion of the actin filament under the action of this force is studied. The conditions under which a considerable portion of the excitation energy converts into the potential tension energy of the actin filament are analysed, and the probability of higher muscle efficiency existence is discussed.

  11. Molecular dynamics of shock loading of metals with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belak, J.F.

    1997-12-31

    The finite rise time of shock waves in metals is commonly attributed to dissipative or viscous behavior of the metal. This viscous or plastic behavior is commonly attributed to the motion of defects such as dislocations. Despite this intuitive understanding, the experimental observation of defect motion or nucleation during shock loading has not been possible due to the short time scales involved. Molecular dynamics modeling with realistic interatomic potentials can provide some insight into defect motion during shock loading. However, until quite recently, the length scale required to accurately represent a metal with defects has been beyond the scope ofmore » even the most powerful supercomputers. Here, the author presents simulations of the shock response of single defects and indicate how simulation might provide some insight into the shock loading of metals.« less

  12. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, JOhn W.; Daw, Murray S.; Bauschlicher, Charles W.

    2011-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 are candidate materials for applications in extreme environments because of their high melting point, good mechanical properties and reasonable oxidation resistance. Unlike many ceramics, these materials have high thermal conductivity which can be advantageous, for example, to reduce thermal shock. Recently, we developed Tersoff style interatomic potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current. Results at room temperature and at elevated temperatures will be reported.

  13. Cooperatively coupled motion with superradiant and subradiant atoms

    NASA Astrophysics Data System (ADS)

    Lin, Guin-Dar; Lin, Kuan-Ting; Tang, Er-Siang

    2017-04-01

    We investigate the coupled motion of cooperative atoms subjected to the Doppler dissipative force. The dipole-dipole interaction introduces mutual decay channel and splits the super-radiant and sub-radiant states. The Doppler force is thus modified due to the collective emission and coupled recoil. Such a cooperative effect is more evident when the inter-atom separation is less than or comparable to a wavelength. In an optical molasses, we find that, along the axis of two atoms, there presents an effective potential with mechanically stable and unstable regions alternatively as their separation increases. Taking the cooperative Lamb shift into account, we map out the stability diagram and investigate the blockade effect. We thank the support from MOST of Taiwan under Grant No. 105-2112-M-002-015-MY3 and National Taiwan University under Grant No. NTU-ERP-105R891401.

  14. Hetero-diffusion of Au epitaxy on stepped Ag(110) surface: Study of the jump rate and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Benlattar, M.; El koraychy, E.; Kotri, A.; Mazroui, M.

    2017-12-01

    We have used molecular dynamics simulations combined with an interatomic potential derived from the embedded atom method, to investigate the hetero-diffusion of Au adatom near a stepped Ag(110) surface with the height of one monoatomic layer. The activation energies for different diffusion processes, which occur on the terrace and near the step edge, are calculated both by molecular statics and molecular dynamics simulations. Static energies are found by the drag method, whereas the dynamic barriers are computed at high temperature from the Arrhenius plots. Our numerical results reveal that the jump process requires very high activation energy compared to the exchange process either on the terrace or near the step edge. In this work, other processes, such as upward and downward diffusion at step edges, have also been discussed.

  15. Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng

    2018-04-01

    The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.

  16. Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James

    2015-06-01

    Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.

  17. An analytical bond-order potential for carbon

    DOE PAGES

    Zhou, Xiaowang; Ward, Donald K.; Foster, Michael E.

    2015-05-27

    Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, themore » potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. The potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. An unlimited number of structures not included in the potential parameterization are encountered, thus the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We also demonstrate that our potential reasonably captures the property trends of important carbon phases. As a result, stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.« less

  18. An analytical bond-order potential for carbon.

    PubMed

    Zhou, X W; Ward, D K; Foster, M E

    2015-09-05

    Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. Most importantly, the potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. Because an unlimited number of structures not included in the potential parameterization are encountered, the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We demonstrate that our potential reasonably captures the property trends of important carbon phases. Stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure. © 2015 Wiley Periodicals, Inc.

  19. Interatomic Coulombic Decay Effects in Theoretical DNA Recombination Systems Involving Protein Interaction Sites

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.

    2015-03-01

    DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  20. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.

    PubMed

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-08-22

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.

  1. Dzyaloshinskii-Moriya interaction and magnetic anisotropies in Uranium compounds

    NASA Astrophysics Data System (ADS)

    Sandratskii, L. M.

    2018-05-01

    We report on the first-principles study of complex noncollinear magnetic structures in Uranium compounds. We contrast two cases. The first is the periodic magnetic structure of U2Pd2In with exactly orthogonal atomic moments, the second is an incommensurate plane spiral structure of UPtGe where the angle between atomic moments of nearest neighbors is also close to 90°. We demonstrate that the hierarchy of magnetic interactions leading to the formation of the magnetic structure is opposite in the two cases. In U2Pd2In, the magnetic anisotropy plays the leading role, followed by the Dzyaloshinskii-Moriya interaction (DMI) interaction specifying the chirality of the structure. Here, the interatomic exchange interaction does not play important role. In UPtGe the hierarchy of the interactions is opposite. The leading interaction is the interatomic exchange interaction responsible for the formation of the incommensurate spiral structure followed by the DMI responsible for the selected chirality of the helix. The magnetic anisotropy is very weak that is a prerequisite for keeping the distortion of the helical structure weak.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingchao, E-mail: zhang@unl.edu, E-mail: yyue@whu.edu.cn; Hong, Yang; Yue, Yanan, E-mail: zhang@unl.edu, E-mail: yyue@whu.edu.cn

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulatemore » the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs.« less

  3. On macromolecular refinement at subatomic resolution with interatomic scatterers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2007-11-01

    Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented bymore » additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.« less

  4. Universal amorphous-amorphous transition in GexSe100-x glasses under pressure

    NASA Astrophysics Data System (ADS)

    Yildirim, Can; Micoulaut, Matthieu; Boolchand, Punit; Kantor, Innokenty; Mathon, Olivier; Gaspard, Jean-Pierre; Irifune, Tetsuo; Raty, Jean-Yves

    2016-06-01

    Pressure induced structural modifications in vitreous GexSe100-x (where 10 ≤ x ≤ 25) are investigated using X-ray absorption spectroscopy (XAS) along with supplementary X-ray diffraction (XRD) experiments and ab initio molecular dynamics (AIMD) simulations. Universal changes in distances and angle distributions are observed when scaled to reduced densities. All compositions are observed to remain amorphous under pressure values up to 42 GPa. The Ge-Se interatomic distances extracted from XAS data show a two-step response to the applied pressure; a gradual decrease followed by an increase at around 15-20 GPa, depending on the composition. This increase is attributed to the metallization event that can be traced with the red shift in Ge K edge energy which is also identified by the principal peak position of the structure factor. The densification mechanisms are studied in details by means of AIMD simulations and compared to the experimental results. The evolution of bond angle distributions, interatomic distances and coordination numbers are examined and lead to similar pressure-induced structural changes for any composition.

  5. Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure

    PubMed Central

    Xu, Gu; Li, Guifang; LI, Xianya; Liang, Yi; Feng, Zhechuan

    2017-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts. PMID:28181529

  6. Subsonic and Supersonic Effects in Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.

  7. Ab Initio Values of the Thermophysical Properties of Helium as Standards

    PubMed Central

    Hurly, John J.; Moldover, Michael R.

    2000-01-01

    Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form. PMID:27551630

  8. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics.

    PubMed

    Yao, Kun; Herr, John E; Toth, David W; Mckintyre, Ryker; Parkhill, John

    2018-02-28

    Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas. In this manuscript we construct a hybrid model chemistry consisting of a nearsighted neural network potential with screened long-range electrostatic and van der Waals physics. This trained potential, simply dubbed "TensorMol-0.1", is offered in an open-source Python package capable of many of the simulation types commonly used to study chemistry: geometry optimizations, harmonic spectra, open or periodic molecular dynamics, Monte Carlo, and nudged elastic band calculations. We describe the robustness and speed of the package, demonstrating its millihartree accuracy and scalability to tens-of-thousands of atoms on ordinary laptops. We demonstrate the performance of the model by reproducing vibrational spectra, and simulating the molecular dynamics of a protein. Our comparisons with electronic structure theory and experimental data demonstrate that neural network molecular dynamics is poised to become an important tool for molecular simulation, lowering the resource barrier to simulating chemistry.

  9. A compact and accurate semi-global potential energy surface for malonaldehyde from constrained least squares regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizukami, Wataru, E-mail: wataru.mizukami@bristol.ac.uk; Tew, David P., E-mail: david.tew@bristol.ac.uk; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk

    2014-10-14

    We present a new approach to semi-global potential energy surface fitting that uses the least absolute shrinkage and selection operator (LASSO) constrained least squares procedure to exploit an extremely flexible form for the potential function, while at the same time controlling the risk of overfitting and avoiding the introduction of unphysical features such as divergences or high-frequency oscillations. Drawing from a massively redundant set of overlapping distributed multi-dimensional Gaussian functions of inter-atomic separations we build a compact full-dimensional surface for malonaldehyde, fit to explicitly correlated coupled cluster CCSD(T)(F12*) energies with a root mean square deviations accuracy of 0.3%–0.5% up tomore » 25 000 cm{sup −1} above equilibrium. Importance-sampled diffusion Monte Carlo calculations predict zero point energies for malonaldehyde and its deuterated isotopologue of 14 715.4(2) and 13 997.9(2) cm{sup −1} and hydrogen transfer tunnelling splittings of 21.0(4) and 3.2(4) cm{sup −1}, respectively, which are in excellent agreement with the experimental values of 21.583 and 2.915(4) cm{sup −1}.« less

  10. QMD and classical MD simulation of alpha boron and boron-carbide behavior under pressure

    NASA Astrophysics Data System (ADS)

    Yanilkin, Alexey; Korotaev, Pavel; Kuksin, Alexey; Pokatashkin, Pavel

    2015-06-01

    Boron and some boron-rich compounds are super-hard and light-weighted material with a wide range of different applications. Nevertheless, the question of its behavior under pressure is still open. In the present work we study the equation of state (EOS), stability and deformation of α-B and B4C under high pressure within quantum and classical molecular dynamics (QMD and MD). Based on QMD results the finite temperature EOSs are revealed. CBC chain bending, amorphization and recrystallization of B4C are investigated under hydrostatic, uniform and uniaxial compression. The influence of nonhydrostatic loading is discussed. Angular dependent interatomic potentials are derived by force-matching method. The properties of α-B and B4C, obtained by classical potential, are verified. Structure, bulk modulus, pressure-volume relation, Gruneisen and thermal expansion coefficients are in good agreement with both ab initio and experimental data. These potentials are used to study shock wave propagation in a single crystal of α-B and B4C. Two mechanisms of shear deformation are observed: stacking fault formation and local amorphization. The crystallographic orientations of defects are in a good agreement with experiments.

  11. Charge optimized many body (COMB) potentials for Pt and Au.

    PubMed

    Antony, A C; Akhade, S A; Lu, Z; Liang, T; Janik, M J; Phillpot, S R; Sinnott, S B

    2017-06-07

    Interatomic potentials for Pt and Au are developed within the third generation charge optimized many-body (COMB3) formalism. The potentials are capable of reproducing phase order, lattice constants, and elastic constants of Pt and Au systems as experimentally measured or calculated by density functional theory. We also fit defect formation energies, surface energies and stacking fault energies for Pt and Au metals. The resulting potentials are used to map a 2D contour of the gamma surface and simulate the tensile test of 16-grain polycrystalline Pt and Au structures at 300 K. The stress-strain behaviour is investigated and the primary slip systems {1 1 1}〈1 [Formula: see text] 0〉 are identified. In addition, we perform high temperature (1800 K for Au and 2300 K for Pt) molecular dynamics simulations of 30 nm Pt and Au truncated octahedron nanoparticles and examine morphological changes of each particle. We further calculate the activation energy barrier for surface diffusion during simulations of several nanoseconds and report energies of [Formula: see text] eV for Pt and [Formula: see text] eV for Au. This initial parameterization and application of the Pt and Au potentials demonstrates a starting point for the extension of these potentials to multicomponent systems within the COMB3 framework.

  12. Angular spectra of rainbow scattering at glancing keV He + bombardment of NiAl(1 0 0) surface with transverse energies in the range 1-10 eV

    NASA Astrophysics Data System (ADS)

    Danailov, Daniel M.

    2007-11-01

    Previous simulations of glancing incidence ion-surface interaction have demonstrated that classical dynamics using the row-model have successfully reproduced multimodal azimuthal and polar spectra. These studies have also shown considerable sensitivity to the form of the interatomic potential thus making it a strong test of the validity of such potentials and even allow deduction of the ion-surface potentials. In these simulations the individual pairwise interactions between the projectile and the target atoms have been replaced by cylindrical potentials. Comparison to numerous experimental studies have confirmed the existence of rainbow scattering phenomena and successfully tested the validity of the cylindrical potential used in these simulations. The use of cylindrical potentials avoids stochastic effects due to thermal displacements and allows faster computer simulations leading to reliable angular distributions. In the present work we extend the row-model to consider scattering from binary alloys. Using He+ scattered at glancing incidence from NiAl surfaces, Al or Ni terminated, a faster method has been developed to easily and accurately quantize not only the maximum deflection azimuthal angle but all the singular points in the angular distribution. It has been shown that the influence of the surface termination on the rainbow angle and the inelastic losses is small.

  13. Structure-based conformational preferences of amino acids

    PubMed Central

    Koehl, Patrice; Levitt, Michael

    1999-01-01

    Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion. PMID:10535955

  14. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco

    2018-06-01

    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.

  15. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    NASA Astrophysics Data System (ADS)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  16. Effect of wetting on nucleation and growth of D2 in confinement

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Shin, S. J.; Kozioziemski, B. J.; Chernov, A. A.

    2018-04-01

    We have performed a computational study to determine how the wetting of liquid deuterium to the walls of the material influences nucleation. We present the development of a pair-wise interatomic potential that includes zero-point motion of molecular deuterium. Deuterium is used in this study because of its importance to inertial confinement fusion and the potential to generate a superfluid state if the solidification can be suppressed. Our simulations show that wetting dominates undercooling compared to the pore geometries. We observe a transition from heterogeneous nucleation at the confining wall to homogeneous nucleation at the bulk of the liquid (and intermediate cases) as the interaction with the confining wall changes from perfect wetting to non-wetting. When nucleation is heterogeneous, the temperature needed for solidification changes by 4 K with decreasing deuterium-wall interaction, but it remains independent (and equal to the one from bulk samples) when homogeneous nucleation dominates. We find that growth and quality of the resulting microstructure also depends on the magnitude of liquid deuterium-wall interaction strength.

  17. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  18. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  19. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    NASA Astrophysics Data System (ADS)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E.; Levashov, Pavel R.

    2017-02-01

    We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  20. Accurate atomistic potentials and training sets for boron-nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac

    Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.

  1. Multiscale Modeling of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2: Application to Lattice Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  2. Spin Polarization Spectroscopy of Alkali-Noble Gas Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Mironov, Andrey E.; Goldshlag, William; Eden, J. Gary

    2017-06-01

    We report a new laser spectroscopic technique capable of detecting weak state-state interactions in diatomic molecules. Specifically, a weak interaction has been observed between the 6pσ antibonding orbital of the CsXe (B ^2Σ^+_{1/2}) state and a 5dσ MO associated with a 5dΛ (Λ = 0, 1) state. Thermal Cs-rare gas collision pairs are photoexcited by a circularly-polarized optical field having a wavelength within the B ^2Σ^+_{1/2} \\longleftarrow X ^2Σ^+_{1/2} (free\\longleftarrowfree) continuum. Subsequent dissociation of the B ^2Σ^+_{1/2} transient diatomic selectively populates the F= 4, 5 hyperfine levels of the Cs 6p ^2P_{3/2} state, and circularly-polarized (σ^+) amplified spontaneous emission (ASE) is generated on the Cs D_2 line. The dependence of Cs 6p spin polarization on the Cs(6p)-Xe internuclear separation (R), clearly shows an interaction between the CsXe(B ^2Σ^+_{1/2}) state and a 5dΛ (Λ = 0, 1) potential of the diatomic molecule.

  3. Growth Mechanism and Origin of High s p3 Content in Tetrahedral Amorphous Carbon

    NASA Astrophysics Data System (ADS)

    Caro, Miguel A.; Deringer, Volker L.; Koskinen, Jari; Laurila, Tomi; Csányi, Gábor

    2018-04-01

    We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high s p3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high s p3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high s p3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.

  4. POTENTIOLOGY (noun): study focusing on the development of new interatomic pair potential forms; sometimes pursued in an obsessive compulsive manner [The New Yorel Dictionary (2002, unpublished)].} IN SPECTROSCOPY: IT MATTERS

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.

    2009-06-01

    Spectroscopists have long attempted to summarize what they know about small molecules in terms of a knowledge of potential energy curves or surfaces. For most of the past century, this involved deducing polynomial-expansion force-field coefficients from energy level expressions fitted to experimental data, or for diatomic molecules, by generating tables of many-digit RKR turning points from such expressions. In recent years, however, it has become increasingly common either to use high-level ab initio calculations to compute the desired potentials, or to determine parametrized global analytic potential functions from direct fits to spectroscopic data. In the former case, this invoked a need for robust, flexible, compact, and `portable' analytic potentials for summarizing the information contained in the (sometimes very large numbers of) ab initio points, and making them `user friendly'. In the latter case, the same properties are required for potentials used in the least-squares fitting procedure. In both cases, there is also a cardinal need for potential function forms that extrapolate sensibly, beyond the range of the experimental data or ab initio points. This talk will describe some recent developments in this area, and make a case for what is arguably the `best' general-purpose analytic potential function form now available. Applications to both diatomic molecules and simple polyatomic molecules will be discussed. footnote

  5. The Problem of Empirical Redundancy of Constructs in Organizational Research: An Empirical Investigation

    ERIC Educational Resources Information Center

    Le, Huy; Schmidt, Frank L.; Harter, James K.; Lauver, Kristy J.

    2010-01-01

    Construct empirical redundancy may be a major problem in organizational research today. In this paper, we explain and empirically illustrate a method for investigating this potential problem. We applied the method to examine the empirical redundancy of job satisfaction (JS) and organizational commitment (OC), two well-established organizational…

  6. Hydrogen bonds in concreto and in computro

    NASA Astrophysics Data System (ADS)

    Stouten, Pieter F. W.; Kroon, Jan

    1988-07-01

    Molecular dynamics simulations of liquid water and liquid methanol have been carried out. For both liquids an effective pair potential was used. The models were fitted to the heat of vaporization, pressure and various radial distribution functions resulting from diffraction experiments on liquids. In both simulations 216 molecules were put in a cubic periodical ☐. The system was loosely coupled to a temperature bath and to a pressure bath. Following an initial equilibration period relevant data were sampled during 15 ps. The distributions of oxygen—oxygen distances in hydrogen bonds obtained from the two simulations are essentially the same. The distribution obtained from crystal data is somewhat different: the maximum has about the same position, but the curve is much narrower, which can be expected merely from the fact that diffraction experiments only supply average atomic positions and hence average interatomic distances. When thermal motion is taken into account a closer likeness is observed.

  7. Molecular-dynamic study of the influence of temperature on the process of metallic nanocrystals fracture

    NASA Astrophysics Data System (ADS)

    Demianenko, A. M.; Golovnev, I. F.; Golovneva, E. I.

    2017-10-01

    The behavior of the fracture processes of a metal nanostructure under deformation in the temperature range 0-550 K was investigated by the molecular dynamics method. An ideal copper crystal was used as a sample in the form of a rectangular parallelepiped with the number of crystalline cells nx = 50, ny = nz = 5 along the corresponding axes. The deformation was carried out by uniaxial stretching of the sample between two clamps (movable and fixed) with a constant speed. The stretching rate varied from 50 to 500 m/s. To describe the interatomic interaction, the Voter many-body EAM potential was used. The effect of temperature on macro characteristics of fracture (the fracture place, the number of fragments formed, the stress on the clamps), and also on the kinetic characteristics (fracture rate, time of formation of maximum stress values on the clamps, mass transfer phenomena and formation of the fracture neck) were revealed.

  8. Correlation of molecular valence- and K-shell photoionization resonances with bond lengths

    NASA Technical Reports Server (NTRS)

    Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.

    1989-01-01

    The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.

  9. Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Castin, N.; Becquart, C. S.; Malerba, L.

    2011-05-01

    An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of copper-vacancy clusters in Fe. This information, which cannot be obtained directly from experimental measurements, is needed to parameterise models describing the nanostructure evolution under irradiation of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC method has been improved by employing artificial intelligence techniques for the regression of the activation energies required by the model as input. These energies are calculated allowing for the effects of local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as possible and the nudged-elastic-band method. The model validation was based on comparison with available ab initio calculations for verification of the used cohesive model, as well as with other models and theories.

  10. What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?

    NASA Astrophysics Data System (ADS)

    Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed

    2017-02-01

    Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.

  11. Building Complex Kondo Impurities by Manipulating Entangled Spin Chains.

    PubMed

    Choi, Deung-Jang; Robles, Roberto; Yan, Shichao; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Gauyacq, Jean-Pierre; Lorente, Nicolás; Ternes, Markus; Loth, Sebastian

    2017-10-11

    The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu 2 N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.

  12. High-density amorphous ice: A path-integral simulation

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.; Ramírez, Rafael

    2012-09-01

    Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.

  13. Bose-Einstein Condensation of a Stochastic Liquid

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Jan

    The Bogoliubov-Lee-Huang theory of superfluid 4He is modified by introducing an effective temperature scale (which accounts for the deep well of the interatomic potential) and by incorporating into the Hamiltonian a stochastic term Vl, which simulates liquidity of HeI and liquidity of the normal and superfluid component of HeII. Vl depends on two independent random angles αn, αs ∈ [0, π], which characterize the locally ordered motion of the two fluids (the normal fluid and superfluid) comprising HeII. The resulting thermodynamics improves the thermodynamic functions and excitation spectrum Ep(αn, αs) of the superfluid phase, obtained previously, leaving the heat capacity CV (T) of the normal phase, with a minimum at Tmin > 2.17K, unchanged. The theoretical velocity of sound in HeII, equal to the initial slope of Ep(π, π), agrees with experiment.

  14. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  15. Ab Initio Studies of Metal Hexaboride Materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron-terminations produce the lowest energies for di-cations of CaB6, SrB6 and BaB6, while tri-valent LaB6 minimizes its surface energy by arranging the metal ions in parallel rows on the surface. Studies involving hydrogen suggest that a single molecule per surface unit-cell is possible, and evidence is given for a dissociative adsorption pathway. Ternary mixtures of metal hexaborides containing two alkaline-earth cations in each crystal are also investigated with electronic structure methods. Multiple geometries are used to understand how spatial arrangements of cations within the mixture can affect properties related to stability. Bond-lengths within the boron framework are found to be heavily dependent upon the local cation environment, and energies taken at absolute zero suggest certain stoichiometries naturally lead to phase splitting.

  16. Surface Electrochemistry of Metals

    DTIC Science & Technology

    1993-04-30

    maxima along the 12 directions of open channels .vhich are also the interatomic directions). Elastic scattering angular distributions always contain... scatterer geometric relationships for such samples. Distributions from ordered atomic bilayers reveal that the Auger signal from the underlayer is attenuated...are developing a theoretical model and computational code which include both elastic scattering and inhomogeneous inelastic scattering . We seek

  17. Topological properties of the electron density of solids and molecules. Recent developments in Oviedo.

    PubMed

    Luaña, Víctor; Costales, Aurora; Mori-Sánchez, Paula; Blanco, Miguel A; Martín Pendás, A

    2004-09-01

    Some of the latest advances in the analysis of electron density are reviewed, including: (a) topological indices that provide a useful characterization of the global properties of the density; (b) specific results on some prototypical metal and low heteropolarity systems; and (c) calculation of the local curvature of the interatomic surface.

  18. Spin Polarization of Rb and Cs n p P2 3/2 (n =5 , 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule

    NASA Astrophysics Data System (ADS)

    Mironov, A. E.; Hewitt, J. D.; Eden, J. G.

    2017-03-01

    We report the selective population of Rb or Cs n p P2 3/2 (n =5 , 6; F =4 , 5) hyperfine states by the photodissociation of a transient, alkali-rare gas diatomic molecule. Circularly polarized (σ-), amplified spontaneous emission (ASE) on the D2 line of Rb or Cs (780.0 and 852.1 nm, respectively) is generated when Rb-Xe or Cs-Xe ground state collision pairs are photoexcited by a σ+-polarized optical field having a wavelength within the D2 blue satellite continuum, associated with the B Σ2 1/2 +←X Σ2 1/2 + (free←free ) transition of the diatomic molecule. The degree of spin polarization of Cs (6 p P3/2 2 ), specifically, is found to be dependent on the interatomic distance (R ) at which the excited complex is born, a result attributed to the structure of the B Σ2 1/2 + state. For Cs-Xe atomic pairs, tuning the wavelength of the optical field from 843 to 848 nm varies the degree of circular polarization of the ASE from 63% to almost unity because of the perturbation, in the 5 ≤R ≤6 Å interval, of the Σ2 1/2 + potential by a d σ molecular orbital associated with a higher Λ 2 electronic state. Monitoring only the Cs 6 p P3/2 2 spin polarization reveals a previously unobserved interaction of CsXe (B Σ2 1/2 + ) with the lowest vibrational levels of a Λ 2 state derived from Cs (5 d )+Xe . By inserting a molecular intermediate into the alkali atom excitation mechanism, these experiments realize electronic spin polarization through populating no more than two n p P2 3/2 hyperfine states, and demonstrate a sensitive spectroscopic probe of R -dependent state-state interactions and their impact on interatomic potentials.

  19. Structure prediction of nanoclusters; a direct or a pre-screened search on the DFT energy landscape?

    PubMed

    Farrow, M R; Chow, Y; Woodley, S M

    2014-10-21

    The atomic structure of inorganic nanoclusters obtained via a search for low lying minima on energy landscapes, or hypersurfaces, is reported for inorganic binary compounds: zinc oxide (ZnO)n, magnesium oxide (MgO)n, cadmium selenide (CdSe)n, and potassium fluoride (KF)n, where n = 1-12 formula units. The computational cost of each search is dominated by the effort to evaluate each sample point on the energy landscape and the number of required sample points. The effect of changing the balance between these two factors on the success of the search is investigated. The choice of sample points will also affect the number of required data points and therefore the efficiency of the search. Monte Carlo based global optimisation routines (evolutionary and stochastic quenching algorithms) within a new software package, viz. Knowledge Led Master Code (KLMC), are employed to search both directly and after pre-screening on the DFT energy landscape. Pre-screening includes structural relaxation to minimise a cheaper energy function - based on interatomic potentials - and is found to improve significantly the search efficiency, and typically reduces the number of DFT calculations required to locate the local minima by more than an order of magnitude. Although the choice of functional form is important, the approach is robust to small changes to the interatomic potential parameters. The computational cost of initial DFT calculations of each structure is reduced by employing Gaussian smearing to the electronic energy levels. Larger (KF)n nanoclusters are predicted to form cuboid cuts from the rock-salt phase, but also share many structural motifs with (MgO)n for smaller clusters. The transition from 2D rings to 3D (bubble, or fullerene-like) structures occur at a larger cluster size for (ZnO)n and (CdSe)n. Differences between the HOMO and LUMO energies, for all the compounds apart from KF, are in the visible region of the optical spectrum (2-3 eV); KF lies deep in the UV region at 5 eV and shows little variation. Extrapolating the electron affinities found for the clusters with respect to size results in the qualitatively correct work functions for the respective bulk materials.

  20. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of Central Florida, Orlando, in March 2010. Several speakers at this meeting were invited to contribute to the special section in this issue. As is clear from the articles in this special section, the phenomenon of vibrations at surfaces continues to be a dynamic field of investigation. In fact, there is a resurgence of effort because the insights provided by surface dynamics are still fundamental to the development of an understanding of the microscopic factors that control surface structure formation, diffusion, reaction and structural stability. Examination of dynamics at surfaces thus complements and supplements the wealth of information that is obtained from real-space techniques such as scanning tunneling microscopy. Vibrational dynamics is, of course, not limited to surfaces. Surfaces are important since they provide immediate deviation from the bulk. They display how lack of symmetry can lead to new structures, new local atomic environments and new types of dynamical modes. Nanoparticles, large molecules and nanostructures of all types, in all kinds of local environments, provide further examples of regions of reduced symmetry and coordination, and hence display characteristic vibrational modes. Given the tremendous advance in the synthesis of a variety of nanostructures whose functionalization would pave the way for nanotechnology, there is even greater need to engage in experimental and theoretical techniques that help extract their vibrational dynamics. Such knowledge would enable a more complete understanding and characterization of these nanoscale systems than would otherwise be the case. The papers presented here provide excellent examples of the kind of information that is revealed by vibrations at surfaces. Vibrations at surface contents Poisoning and non-poisoning oxygen on Cu(410)L Vattuone, V Venugopal, T Kravchuk, M Smerieri, L Savio and M Rocca Modifying protein adsorption by layers of glutathione pre-adsorbed on Au(111)Anne Vallée, Vincent Humblot, Christophe Méthivier, Paul Dumas and Claire-Marie Pradier Relating temperature dependence of atom scattering spectra to surface corrugationW W Hayes and J R Manson Effects of the commensurability and disorder on friction for the system Xe/CuA Franchini, V Bortolani, G Santoro and K Xheka Switching ability of nitro-spiropyran on Au(111): electronic structure changes as a sensitive probe during a ring-opening reactionChristopher Bronner, Gunnar Schulze, Katharina J Franke, José Ignacio Pascual and Petra Tegeder High-resolution phonon study of the Ag(100) surfaceK L Kostov, S Polzin and W Widdra On the interpretation of IETS spectra of a small organic molecule Karina Morgenstern

  1. On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.

    PubMed

    Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri

    2015-12-01

    Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.

  2. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.

  3. FY06 L2C2 HE program report Zaug et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaug, J M; Crowhurst, J C; Howard, W M

    2008-08-01

    The purpose of this project is to advance the improvement of LLNL thermochemical computational models that form the underlying basis or input for laboratory hydrodynamic simulations. Our general work approach utilizes, by design, tight experimental-theoretical research interactions that allow us to not empirically, but rather more scientifically improve LLNL computational results. The ultimate goal here is to confidently predict through computer models, the performance and safety parameters of currently maintained, modified, and newly designed stockpile systems. To attain our goal we make relevant experimental measurements on candidate detonation products constrained under static high-pressure and temperature conditions. The reduced information frommore » these measurements is then used to construct analytical forms that describe the potential surface (repulsive energy as a function of interatomic separation distance) of single and mixed fluid or detonation product species. These potential surface shapes are also constructed using input from well-trusted shock wave physics and assorted thermodynamic data available in the open literature. Our potential surfaces permit one to determine the equations of state (P,V,T), the equilibrium chemistry, phase, and chemical interactions of detonation products under a very wide range of extreme pressure temperature conditions. Using our foundation of experimentally refined potential surfaces we are in a position to calculate, with confidence, the energetic output and chemical speciation occurring from a specific combustion and/or detonation reaction. The thermochemical model we developed and use for calculating the equilibrium chemistry, kinetics, and energy from ultrafast processes is named 'Cheetah'. Computational results from our Cheetah code are coupled to laboratory ALE3D hydrodynamic simulation codes where the complete response behavior of an existing or proposed system is ultimately predicted. The Cheetah thermochemical code is also used by well over 500 U.S. government DoD and DOE community users who calculate the chemical properties of detonated high explosives, propellants, and pyrotechnics. To satisfy the growing needs of LLNL and the general user community we continue to improve the robustness of our Cheetah code. The P-T range of current speed of sound experiments will soon be extended by a factor of four and our recently developed technological advancements permit us to, for the first time, study any chemical specie or fluid mixture. New experiments will focus on determining the miscibility or coexistence curves of detonation product mixtures. Our newly constructed ultrafast laser diagnostics will permit us to determine what chemical species exist under conditions approaching Chapman-Jouguet (CJ) detonation states. Furthermore we will measure the time evolution of candidate species and use our chemical kinetics data to develop new and validate existing rate laws employed in future versions of our Cheetah thermochemical code.« less

  4. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  5. Searching for globally optimal functional forms for interatomic potentials using genetic programming with parallel tempering.

    PubMed

    Slepoy, A; Peters, M D; Thompson, A P

    2007-11-30

    Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.

  6. Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study

    NASA Astrophysics Data System (ADS)

    Setoodeh, A. R.; Badjian, H.

    2017-12-01

    The most stable form of boron nitride polymorph naming hexagonal boron nitride sheet has recently been widely concerned like graphite due to its interesting features such as electrical insulation and high thermal conductivity. In this study, the molecular dynamic simulations are implemented to investigate the mechanical properties of single-layer graphene sheets under tensile and compressive loadings in the absence and presence of boron-nitride coating layers. In this introduced hybrid nanostructure, the benefit of combining both individual interesting features of graphene and boron-nitride sheets such as exceptional mechanical and electrical properties can be simultaneously achieved for future potential application in nano devices. The influences of chiral indices, boundary conditions and presence of mono-atomic vacancy defects as well as coating dimension on the mechanical behavior of the resulted hybrid structure are reported. The interatomic forces between the atoms are modeled by employing the AIREBO and Tersoff-Brenner potentials for carbon-carbon and boron-nitrogen atoms in each layer, respectively. Furthermore, the van der Waal interlayer forces of carbon-boron and carbon-nitrogen are estimated by the Lennard-Jones potential field. Besides the potential improvement in electrical and physical properties of the nanostructure, it is demonstrated that the buckling load capacity of the fully coated graphene sheet with 3% concentration of mono-atomic vacancy defects noticeably enhances by amounts of 24.1%.

  7. The NRL Program on Electroactive Polymers.

    DTIC Science & Technology

    1980-09-15

    cell of a point in an aggregate involves selecting the smallest cell formed by planes perpendicularly bisecting all the point to neighbor vectors . Such...plane perpendicular to the interatomic vector is located nearer the smaller atom by bisecting the distance between the sur- faces of spheres whose...density waves (and consequent novel excitations such as solitons (6)). The physical structure as well as the chemical bonding of such polymeric

  8. Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems

    ERIC Educational Resources Information Center

    Magnasco, Valerio

    2008-01-01

    Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…

  9. Development of interatomic potential of Ge(1- x - y )Si x Sn y ternary alloy semiconductors for classical lattice dynamics simulation

    NASA Astrophysics Data System (ADS)

    Tomita, Motohiro; Ogasawara, Masataka; Terada, Takuya; Watanabe, Takanobu

    2018-04-01

    We provide the parameters of Stillinger-Weber potentials for GeSiSn ternary mixed systems. These parameters can be used in molecular dynamics (MD) simulations to reproduce phonon properties and thermal conductivities. The phonon dispersion relation is derived from the dynamical structure factor, which is calculated by the space-time Fourier transform of atomic trajectories in an MD simulation. The phonon properties and thermal conductivities of GeSiSn ternary crystals calculated using these parameters mostly reproduced both the findings of previous experiments and earlier calculations made using MD simulations. The atomic composition dependence of these properties in GeSiSn ternary crystals obtained by previous studies (both experimental and theoretical) and the calculated data were almost exactly reproduced by our proposed parameters. Moreover, the results of the MD simulation agree with the previous calculations made using a time-independent phonon Boltzmann transport equation with complicated scattering mechanisms. These scattering mechanisms are very important in complicated nanostructures, as they allow the heat-transfer properties to be more accurately calculated by MD simulations. This work enables us to predict the phonon- and heat-related properties of bulk group IV alloys, especially ternary alloys.

  10. Probing periodic potential of crystals via strong-field re-scattering

    NASA Astrophysics Data System (ADS)

    You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu

    2018-06-01

    Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.

  11. Range parameters of slow gold ions implanted into light targets

    NASA Astrophysics Data System (ADS)

    Kuzmin, V.

    2009-08-01

    Interatomic potentials for Au-C, Au-B, Au-N and Au-Si systems, calculated with density-functional theory (DFT) methods, have been used to evaluate the range parameters of gold in B, Si, BN and SiC films at energies of about 10-400 keV. The potentials have been employed to describe scattering angles of a projectile and to calculate the nuclear stopping powers and the higher moments of the energy, transferred in single collisions. Utilizing these findings the range parameters have been obtained by the standard transport theory and by Monte-Carlo simulations. A velocity proportional electronic stopping was included into the consideration. The approach developed corresponds completely to the standard classical scheme of the calculation of range parameters. Good agreement between the computed range parameters and available experimental data allow us to conclude that correlation effects between the nuclear and electronic stopping can be neglected in the energy range in question. Moreover, it is proven for the first time that the model by Grande, et al. [P.L. Grande, F.C. Zawislak, D. Fink, M. Behar, Nucl. Instr. and Meth. B 61 (1991) 282], which relies on the importance of correlation effects, contains inherent contradictions.

  12. Computer simulation studies of the growth of strained layers by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Faux, D. A.; Gaynor, G.; Carson, C. L.; Hall, C. K.; Bernholc, J.

    1990-08-01

    Two new types of discrete-space Monte Carlo computer simulation are presented for the modeling of the early stages of strained-layer growth by molecular-beam epitaxy. The simulations are more economical on computer resources than continuous-space Monte Carlo or molecular dynamics. Each model is applied to the study of growth onto a substrate in two dimensions with use of Lennard-Jones interatomic potentials. Up to seven layers are deposited for a variety of lattice mismatches, temperatures, and growth rates. Both simulations give similar results. At small lattice mismatches (<~4%) the growth is in registry with the substrate, while at high mismatches (>~6%) the growth is incommensurate with the substrate. At intermediate mismatches, a transition from registered to incommensurate growth is observed which commences at the top of the crystal and propagates down to the first layer. Faster growth rates are seen to inhibit this transition. The growth mode is van der Merwe (layer-by-layer) at 2% lattice mismatch, but at larger mismatches Volmer-Weber (island) growth is preferred. The Monte Carlo simulations are assessed in the light of these results and the ease at which they can be extended to three dimensions and to more sophisticated potentials is discussed.

  13. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  14. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  15. Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.

    1975-01-01

    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  16. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. I. Backbone potentials of coarse-grained polypeptide chains

    NASA Astrophysics Data System (ADS)

    Sieradzan, Adam K.; Makowski, Mariusz; Augustynowicz, Antoni; Liwo, Adam

    2017-03-01

    A general and systematic method for the derivation of the functional expressions for the effective energy terms in coarse-grained force fields of polymer chains is proposed. The method is based on the expansion of the potential of mean force of the system studied in the cluster-cumulant series and expanding the all-atom energy in the Taylor series in the squares of interatomic distances about the squares of the distances between coarse-grained centers, to obtain approximate analytical expressions for the cluster cumulants. The primary degrees of freedom to average about are the angles for collective rotation of the atoms contained in the coarse-grained interaction sites about the respective virtual-bond axes. The approach has been applied to the revision of the virtual-bond-angle, virtual-bond-torsional, and backbone-local-and-electrostatic correlation potentials for the UNited RESidue (UNRES) model of polypeptide chains, demonstrating the strong dependence of the torsional and correlation potentials on virtual-bond angles, not considered in the current UNRES. The theoretical considerations are illustrated with the potentials calculated from the ab initio potential-energy surface of terminally blocked alanine by numerical integration and with the statistical potentials derived from known protein structures. The revised torsional potentials correctly indicate that virtual-bond angles close to 90° result in the preference for the turn and helical structures, while large virtual-bond angles result in the preference for polyproline II and extended backbone geometry. The revised correlation potentials correctly reproduce the preference for the formation of β-sheet structures for large values of virtual-bond angles and for the formation of α-helical structures for virtual-bond angles close to 90°.

  17. A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya

    2010-05-01

    In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.

  18. Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws.

    PubMed

    Lehoucq, R B; Sears, Mark P

    2011-09-01

    The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.

  19. Homoepitaxial growth of non-polar AlN crystals using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Leathersich, Jeff; Suvarna, Puneet; Tungare, Mihir; Shahedipour-Sandvik, F. (Shadi)

    2013-11-01

    Homoepitaxial growth of AlN on (11-20) a-plane and (1-100) m-plane under varying deposition temperatures and aluminum to nitrogen flux ratios was carried out using molecular dynamics (MD) simulations with a Tersoff based interatomic potential. The results indicate that much thicker overgrown films are obtained on m-plane as compared to the a-plane, for the same temperature, N:Al flux, and number of precursor atoms. Crystallinity of the depositions improves as the temperature is increased above 1000 K, accompanied with a better stoichiometry due to increased adatom mobility. Improvement in crystal quality with a N:Al ratio greater than 1 is seen because N atoms desorb more easily than Al atoms. Increasing the N:Al ratio too high limits Al adatom mobility as well as causes site blocking for Al atoms and degrades the deposition quality. The optimum value for N:Al flux ratio was found to be between 1.2 and 1.8 for the deposition temperatures tested based on crystallinity and stoichiometry.

  20. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence.

    PubMed

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-12

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  1. Effect of interstitial and substitution alloying elements on the intrinsic stacking fault energy of nanocrystalline fcc-iron by atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Mina; Mohammadzadeh, Roghayeh

    2017-11-01

    The stacking fault energy (SFE) is an important parameter in the deformation mechanism of face centered cubic (fcc) iron-based alloy. In this study, the effect of interstitial (C and N) and substitution (Nb and Ti) alloying elements on the intrinsic SFE (ISFE) of nanocrystalline iron were investigated via molecular dynamics (MD) simulation. The modified embedded atom method (MEAM) inter-atomic potential was used in the MD simulations. The results demonstrate a strong dependence of ISFE with addition of interstitial alloying elements but only a mild increase in ISFE with addition of substitution alloying elements in the composition range of 0 < {CNb, CTi} < 3 (at%). Moreover, it is shown that alloying of fcc iron with N decreases ISFE, whereas it increases significantly by addition of carbon element [0 < {CC, CN} < 3.5 (at%)]. The simulation method employed in this work shows reasonable agreement with some published experimental/calculated data.

  2. Clustering on Magnesium Surfaces - Formation and Diffusion Energies.

    PubMed

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.

  3. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  4. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGES

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  5. Hydrogen migration modeling in a symmetric tilt boundary of the Iron-Chromium system

    NASA Astrophysics Data System (ADS)

    Ramunni, V. P.

    2018-03-01

    Previous experimental studies of H permeation in 9%Cr-Fe alloys have found a permeation coefficient 10 times lower and a diffusion coefficient 200 times lower than in pure annealed Fe. In an effort to shed some light on the microscopic origin of these findings, we perform an extensive study of Fe, Cr, and H migration in a high-angle symmetric tilt grain boundary in bcc Fe, both via vacancy and interstitial mechanism. This is undertaken in the framework of transition state theory with the relevant energies obtained from classical interatomic potentials, and partially from Density Functional Theory calculations, in order to check the consistency of structures. Trapping sites for H and possible migration paths are explored. We find that the presence of Cr and its migration via vacancy and interstitials creates the conditions in produce stable preferential trapping sites for H in the grain boundary, that delay the H migration, thereby explaining the experimental results.

  6. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  7. The E3Σ1+ (63S1)←A3Π0+(53P1) transition in CdAr revisited: The spectrum and new analysis of the E3Σ1+ Rydberg state interatomic potential.

    PubMed

    Urbańczyk, T; Krośnicki, M; Kędziorski, A; Koperski, J

    2018-05-05

    Revisited study of the E 3 Σ 1 + (6 3 S 1 )←A 3 Π 0+ (5 3 P 1 ) transition in CdAr using both theoretical and experimental approach is presented. Systematic detection of the E 3 Σ 1 + in ,υ'←A 3 Π 0+ ,υ″=6 transition frequencies with higher accuracy and spectrally narrower laser extended and improved analysis and simulation of the LIF excitation spectrum. More consistent characterization of the E 3 Σ 1 + in -Rydberg state inner well using inversed perturbation approach methodology was achieved. Free←bound transitions in the E 3 Σ 1 + in ←A 3 Π 0+ ,υ″=6 excitation were taken into account in the analysis and simulation of the recorded spectrum. The updated spectroscopic characterization of the A 3 Π 0+ state was also revisited. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Brien, C. J.; Barr, C. M.; Price, P. M.

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  9. The Rotational Spectra of IO X(sub 1) (sup 2)pi(sub 3/2), v <= 13 and X(sub 2) (sup 2)pi(sub 1/2), v <= 9

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Cohen, Edward A.

    2000-01-01

    The rotational spectra of IO in vibrational states up to v = 13 in the X(sub 1) (sup 2)pi(sub 3/2) state and up to v = 9 in the X2 (sup 2)pi(sub 1/2) state have been observed in an O2 discharge over molecular I2. In addition, I(18)O has been observed for both the X(sub 1) and X(sub 2) states up to v = 5. All data have been analyzed simultaneously with fixed isotopic ratios among the constants. This extends the data set for the X(sub 1) state described last year at this meeting and provides the first high resolution data for the X(sub 2) state and for I(18)O. An extensive set of parameters has been derived. These will be interpreted in terms of the electronic structure and the interatomic potential.

  10. FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar, A., E-mail: amitshan2009@gmail.com; Rai, D.P.; Chettri, Sandeep

    2016-08-15

    We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconductingmore » nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.« less

  11. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence

    NASA Astrophysics Data System (ADS)

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-01

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu50 Au50 , and Cu25 Au75 nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N -body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  12. Wear resistance of metals and alloys; Proceedings of the Conference, Chicago, IL, Sept. 24-30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsbury, G.R.

    1988-01-01

    Techniques for characterizing and improving the wear properties of metals and composites are discussed in reviews and reports. Topics addressed include the use of interatomic potentials to study the relationship between abrasive wear and other mechanical properties, gas-detonation powder spraying of diamond coatings, a fluidized-bed test method for erosion resistance, the wear behavior of Al and Al-Si-Cu alloys, and abrasive wear of bronze and ZA alloys with and without lubrication. Consideration is given to continuously cast vs sand-cast Zn-Al alloys for bearings, sintered 6061 Al-alloy-based particulate composites with dry lubricants, Cu-based particulate composites, high-temperature friction and wear of X-750 andmore » X-188 superalloys for low-heat-rejection engines, a new metallurgical conception of wear-resistant steels, and the effect of matrix microstructure on the abrasion resistance of high-Cr white cast irons. Extensive graphs and micrographs are provided.« less

  13. The E3Σ1+ (63S1) ← A3Π0+(53P1) transition in CdAr revisited: The spectrum and new analysis of the E3Σ1+ Rydberg state interatomic potential

    NASA Astrophysics Data System (ADS)

    Urbańczyk, T.; Krośnicki, M.; Kędziorski, A.; Koperski, J.

    2018-05-01

    Revisited study of the E3Σ1+ (63S1) ← A3Π0+(53P1) transition in CdAr using both theoretical and experimental approach is presented. Systematic detection of the E3Σ1+in,υ' ← A3Π0+,υ″ = 6 transition frequencies with higher accuracy and spectrally narrower laser extended and improved analysis and simulation of the LIF excitation spectrum. More consistent characterization of the E3Σ1+in-Rydberg state inner well using inversed perturbation approach methodology was achieved. Free ← bound transitions in the E3Σ1+in ← A3Π0+,υ″ = 6 excitation were taken into account in the analysis and simulation of the recorded spectrum. The updated spectroscopic characterization of the A3Π0+ state was also revisited.

  14. Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt{110}. I. Quantitative structural study of the clean (1 × 2) surface

    NASA Astrophysics Data System (ADS)

    Masson, F.; Rabalais, J. W.

    1991-08-01

    The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS) is used for quantitative structural characterization of the reconstructed (1 × 2) missing-row Pt{110} clean surface. The results are presented as scans of scattered intensity versus incident angle at two scattering angles and are interpreted in terms of simple classical concepts (shadowing, blocking, focusing). Measured critical incident and exit angles corresponding to interatomic spacings unaffected by reconstruction are used to calibrate the screening constant of the interaction potential employed in the trajectory simulations. Analysis of the surface reconstruction is performed by combining experimental data and calibrated computations. The results indicate a contraction of the first-to-second interlayer spacing (-0.22 ± 0.07 Å, i.e., -16 ± 5%), a buckling of amplitude 0.19 ± 0.13 Å in the third layer and, possibly, a row-pairing in the second layer. These observations are in agreement with LEED, MEIS, GXRD, and RHEED experiments.

  15. 1,3,5-trinitro-1,3,5-triazine decomposition and chemisorption on Al(111) surface: first-principles molecular dynamics study.

    PubMed

    Umezawa, Naoto; Kalia, Rajiv K; Nakano, Aiichiro; Vashista, Priya; Shimojo, Fuyuki

    2007-06-21

    We have investigated the decomposition and chemisorption of a 1,3,5-trinitro-1,3,5-triazine (RDX) molecule on Al(111) surface using molecular dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). The real-space DFT calculations are based on higher-order finite difference and norm-conserving pseudopotential methods. Strong attractive forces between oxygen and aluminum atoms break N-O and N-N bonds in the RDX and, subsequently, the dissociated oxygen atoms and NO molecules oxidize the Al surface. In addition to these Al surface-assisted decompositions, ring cleavage of the RDX molecule is also observed. These reactions occur spontaneously without potential barriers and result in the attachment of the rest of the RDX molecule to the surface. This opens up the possibility of coating Al nanoparticles with RDX molecules to avoid the detrimental effect of oxidation in high energy density material applications.

  16. NEXUS/Physics: An interdisciplinary repurposing of physics for biologists

    NASA Astrophysics Data System (ADS)

    Redish, E. F.; Bauer, C.; Carleton, K. L.; Cooke, T. J.; Cooper, M.; Crouch, C. H.; Dreyfus, B. W.; Geller, B. D.; Giannini, J.; Gouvea, J. S.; Klymkowsky, M. W.; Losert, W.; Moore, K.; Presson, J.; Sawtelle, V.; Thompson, K. V.; Turpen, C.; Zia, R. K. P.

    2014-05-01

    In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life-science students, with the goal of helping students build general, multi-discipline scientific competencies. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this: it extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy and includes a serious discussion of random vs coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.

  17. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  18. Liquid-liquid phase transition and anomalous diffusion in simulated liquid GeO 2

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van; Anh, Nguyen Huynh Tuan; Zung, Hoang

    2007-03-01

    We perform molecular dynamics (MD) simulation of diffusion in liquid GeO 2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm 3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO 2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid-liquid phase transition in simulated liquid GeO 2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO 2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm 3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.

  19. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE PAGES

    O’Brien, C. J.; Barr, C. M.; Price, P. M.; ...

    2017-10-31

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  20. Exact solution of a one-dimensional model of strained epitaxy on a periodically modulated substrate

    NASA Astrophysics Data System (ADS)

    Tokar, V. I.; Dreyssé, H.

    2005-03-01

    We consider a one-dimensional lattice gas model of strained epitaxy with the elastic strain accounted for through a finite number of cluster interactions comprising contiguous atomic chains. Interactions of this type arise in the models of strained epitaxy based on the Frenkel-Kontorova model. Furthermore, the deposited atoms interact with the substrate via an arbitrary periodic potential of period L . This model is solved exactly with the use of an appropriately adopted technique developed recently in the theory of protein folding. The advantage of the proposed approach over the standard transfer-matrix method is that it reduces the problem to finding the largest eigenvalue of a matrix of size L instead of 2L-1 , which is vital in the case of nanostructures where L may measure in hundreds of interatomic distances. Our major conclusion is that the substrate modulation always facilitates the size calibration of self-assembled nanoparticles in one- and two-dimensional systems.

  1. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Mel'nikov, I. N.

    2018-01-01

    The molecular dynamics (MD) method was used for prediction of properties of copper under shock-wave compression and clarification of the melting region of crystal copper. The embedded atom potential was used for the interatomic interaction. Parameters of Hugonoit adiabats of solid and liquid phases of copper calculated by the semiempirical Grüneisen equation of state are consistent with the results of MD simulations and experimental data. MD simulation allows to visualize the structure of cooper on the atomistic level. The analysis of the radial distribution function and the standard deviation by MD modeling allows to predict the melting area behind the shock wave front. These MD simulation data are required to verify the wide-range equation of state of metals. The melting parameters of copper based on MD simulations and semiempirical equations of state are consistent with experimental and theoretical data, including the region of the melting point of copper.

  2. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations.

    PubMed

    Sosso, Gabriele C; Miceli, Giacomo; Caravati, Sebastiano; Giberti, Federico; Behler, Jörg; Bernasconi, Marco

    2013-12-19

    Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

  3. An Investigation of the Interatomic Bonding Characteristics of a Ti - 51at.% Al Alloy by X-Ray Diffraction

    DTIC Science & Technology

    1991-06-01

    GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence

  4. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.

    PubMed

    Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi

    2016-02-16

    In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.

  5. Analysis of fcc metals fracture behaviour: Fracture behaviour of fcc metals: brittle/ductile behaviour criteria : with ab-initio, embedded atom and pseudopotential parameterization for Au, Ir and Al. analysis for Au, Ir and Al.

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.; Katsnelson, M. I.; Mryasov, Oleg N.; Freeman, A. J.; Trefilov, M. V.

    1998-03-01

    Theoretical analysis of the fracture behaviour of fcc Au, Ir and Al have been performed within various brittle/ductile criteria (BDC) with ab-initio, embedded atom (EAM), and pseudopotential parameterizations. We systematically examined several important aspects of the fracture behaviour: (i) dislocation structure, (ii) energetics of the cleavage decohesion and (iii) character of the interatomic interactions. Unit dislocation structures were analyzed within a two dimensional generalization of the Peierls-Nabarro model with restoring forces determined from ab-initio total energy calculations and found to be split with well defined highly mobile partials for all considered metals. We find from ab-initio and pseudopotential that in contrast with most of fcc metals, cleavage decohesion curve for Al appreciably differs from UBER relation. Finally, using ab-initio, EAM and pseudopotential parameterizations, we demonstrate that (i) Au (as a typical example of a ductile metal) is well described within existing BDC's, (ii) anomalous cleavage-like crack propagation of Ir is driven predominantly by it's high elastic modulus and (iii) Al is not described within BDC due to it's long-range interatomic interactions (and hence requires adjustments of the brittle/ductile criteria).

  6. Two Stages of Impact Fracture of Polycrystalline ZnS and ZnSe Compounds

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Dunaev, A. A.; Chmel', A. E.

    2018-04-01

    Mechanoluminescence (ML) in ductile solids is caused by the motion of charged dislocations in the deformable material. Interatomic bond ruptures followed by electronic structure reconfiguration are the main source of ML in brittle bodies. We studied ML in ceramics composed of mixed ionic/covalent ZnS and ZnSe compounds, which are generated during impact loading higher than the limit deformation. Depending on synthesis method and thermal treatment, the resulting ceramics had different size and geometry of grains and intergrain boundary structure, which presumably may have a significant effect on the dislocation glide. In both materials, the time sweeps of ML pulses have two well-resolved peaks. The position of the peaks along the time axis is substantially dependent on the size of ceramic-forming grains and, to a smaller extent, on the barrier properties of intergrain boundaries. The first peak is associated with plastic deformation preceding disintegration of the crystal structure. The second peak emerges upon crack nucleation as interatomic bonds are ruptured and the material is undergoing local deformation in tips of propagating cracks. The distributions of ML pulse amplitudes (the dependences between the number of pulses and their amplitude) calculated for both peaks individually follow the power law, which demonstrates that the electronic processes having different excitation mechanisms (dislocation motion vs bond rupture) are correlated.

  7. Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys FeCu, FeMn, FeNi, and FeCr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaks, V. G.; Khromov, K. Yu., E-mail: khromov-ky@nrcki.ru; Pankratov, I. R.

    2016-07-15

    The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu,more » FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.« less

  8. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2017-02-09

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.

  9. The adsorption of argon on ZnO at 77K

    NASA Astrophysics Data System (ADS)

    Marinelli, Francis; Grillet, Yves; Pellenq, Roland J.-M.

    We have studied the adsorption of argon onto ZnO surfaces at 77K by means of quasiequilibrium adsorption volumetry coupled with high resolution microcalorimetry and Grand Canonical Monte-Carlo (GCMC) simulations. The adsorbate/surface adsorption potential function (PN type) used in the simulations, was determined on the basis of ab initio calculations (corrected for dispersion interactions). The first aspect of this work was to test the ability of a standard solid-state Hartree-Fock technique coupled with a perturbative semiempirical approach in deriving a reliable adsorption potential function. The dispersion part of the adsorbate/surface interatomic potential was derived by using perturbation theory-based equations while the repulsive and induction interactions were derived from periodic HartreeFock (CRYSTAL92) calculations. GCMC simulations based on this adsorption potential allow one to calculate adsorption isotherms and isosteric heat versus loading curves as well as singlet distribution functions at 77K for each type of ZnO (neutral and polar) faces. The combined analysis of the simulation data for all surfaces gives a good insight of the adsorption mechanism of argon onto ZnO surfaces at 77K in agreement with experiment. As far as neutral surfaces are concerned, it is shown that adsorption first takes place within the 'troughs' which cover ZnO neutral surfaces. At low chemical potentials, these semi-channels are preferential adsorption sites in which we could detect a nearly one-dimensional adsorbate freezing in a commensurate phase at 77K. The polar O faces are the most favourable surfaces for adsorption at higher chemical potentials.

  10. Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si3N4

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.; Rulis, Paul; Ouyang, Lizhi; Aryal, Sitaram; Misra, Anil.

    2010-06-01

    Microstructures such as intergranular glassy films (IGFs) are ubiquitous in many structural ceramics. They control many of the important physical properties of polycrystalline ceramics and can be influenced during processing to modify the performance of devices that contain them. In recent years, there has been intense research, both experimentally and computationally, on the structure and properties of IGFs. Unlike grain boundaries or dislocations with well-defined crystalline planes, the atomic scale structure of IGFs, their fundamental electronic interactions, and their bonding characteristics are far more complicated and not well known. In this paper, we present the results of theoretical simulations using ab initio methods on an IGF model in β-Si3N4 with prismatic crystalline planes. The 907-atom model has a dimension of 14.533Å×15.225Å×47.420Å . The IGF layer is perpendicular to the z axis, 16.4Å wide, and contains 72 Si, 32 N, and 124 O atoms. Based on this model, the mechanical and elastic properties, the electronic structure, the interatomic bonding, the localization of defective states, the distribution of electrostatic potential, and the optical dielectric function are evaluated and compared with crystalline β-Si3N4 . We have also performed a theoretical tensile experiment on this model by incrementally extending the structure in the direction perpendicular to the IGF plane until the model fully separated. It is shown that fracture occurs at a strain of 9.42% with a maximum stress of 13.9 GPa. The fractured segments show plastic behavior and the formation of surfacial films on the β-Si3N4 . These results are very different from those of a previously studied basal plane model [J. Chen , Phys. Rev. Lett. 95, 256103 (2005)10.1103/PhysRevLett.95.256103] and add insights to the structure and behavior of IGFs in polycrystalline ceramics. The implications of these results and the need for further investigations are discussed.

  11. Molecular dynamics simulations of damage production by thermal spikes in Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Pedro; Pelaz, Lourdes; Santos, Ivan

    2012-02-01

    Molecular dynamics simulation techniques are used to analyze damage production in Ge by the thermal spike process and to compare the results to those obtained for Si. As simulation results are sensitive to the choice of the inter-atomic potential, several potentials are compared in terms of material properties relevant for damage generation, and the most suitable potentials for this kind of analysis are identified. A simplified simulation scheme is used to characterize, in a controlled way, the damage generation through the local melting of regions in which energy is deposited. Our results show the outstanding role of thermal spikes inmore » Ge, since the lower melting temperature and thermal conductivity of Ge make this process much more efficient in terms of damage generation than in Si. The study is extended to the modeling of full implant cascades, in which both collision events and thermal spikes coexist. Our simulations reveal the existence of bigger damaged or amorphous regions in Ge than in Si, which may be formed by the melting and successive quenching induced by thermal spikes. In the particular case of heavy ion implantation, defect structures in Ge are not only bigger, but they also present a larger net content in vacancies than in Si, which may act as precursors for the growth of voids and the subsequent formation of honeycomb-like structures.« less

  12. Computational identification of structural factors affecting the mutagenic potential of aromatic amines: study design and experimental validation.

    PubMed

    Slavov, Svetoslav H; Stoyanova-Slavova, Iva; Mattes, William; Beger, Richard D; Brüschweiler, Beat J

    2018-07-01

    A grid-based, alignment-independent 3D-SDAR (three-dimensional spectral data-activity relationship) approach based on simulated 13 C and 15 N NMR chemical shifts augmented with through-space interatomic distances was used to model the mutagenicity of 554 primary and 419 secondary aromatic amines. A robust modeling strategy supported by extensive validation including randomized training/hold-out test set pairs, validation sets, "blind" external test sets as well as experimental validation was applied to avoid over-parameterization and build Organization for Economic Cooperation and Development (OECD 2004) compliant models. Based on an experimental validation set of 23 chemicals tested in a two-strain Salmonella typhimurium Ames assay, 3D-SDAR was able to achieve performance comparable to 5-strain (Ames) predictions by Lhasa Limited's Derek and Sarah Nexus for the same set. Furthermore, mapping of the most frequently occurring bins on the primary and secondary aromatic amine structures allowed the identification of molecular features that were associated either positively or negatively with mutagenicity. Prominent structural features found to enhance the mutagenic potential included: nitrobenzene moieties, conjugated π-systems, nitrothiophene groups, and aromatic hydroxylamine moieties. 3D-SDAR was also able to capture "true" negative contributions that are particularly difficult to detect through alternative methods. These include sulphonamide, acetamide, and other functional groups, which not only lack contributions to the overall mutagenic potential, but are known to actively lower it, if present in the chemical structures of what otherwise would be potential mutagens.

  13. Autonomous Vehicles Require Socio-Political Acceptance—An Empirical and Philosophical Perspective on the Problem of Moral Decision Making

    PubMed Central

    Bergmann, Lasse T.; Schlicht, Larissa; Meixner, Carmen; König, Peter; Pipa, Gordon; Boshammer, Susanne; Stephan, Achim

    2018-01-01

    Autonomous vehicles, though having enormous potential, face a number of challenges. As a computer system interacting with society on a large scale and human beings in particular, they will encounter situations, which require moral assessment. What will count as right behavior in such situations depends on which factors are considered to be both morally justified and socially acceptable. In an empirical study we investigated what factors people recognize as relevant in driving situations. The study put subjects in several “dilemma” situations, which were designed to isolate different and potentially relevant factors. Subjects showed a surprisingly high willingness to sacrifice themselves to save others, took the age of potential victims in a crash into consideration and were willing to swerve onto a sidewalk if this saved more lives. The empirical insights are intended to provide a starting point for a discussion, ultimately yielding societal agreement whereby the empirical insights should be balanced with philosophical considerations. PMID:29541023

  14. Autonomous Vehicles Require Socio-Political Acceptance-An Empirical and Philosophical Perspective on the Problem of Moral Decision Making.

    PubMed

    Bergmann, Lasse T; Schlicht, Larissa; Meixner, Carmen; König, Peter; Pipa, Gordon; Boshammer, Susanne; Stephan, Achim

    2018-01-01

    Autonomous vehicles, though having enormous potential, face a number of challenges. As a computer system interacting with society on a large scale and human beings in particular, they will encounter situations, which require moral assessment. What will count as right behavior in such situations depends on which factors are considered to be both morally justified and socially acceptable. In an empirical study we investigated what factors people recognize as relevant in driving situations. The study put subjects in several "dilemma" situations, which were designed to isolate different and potentially relevant factors. Subjects showed a surprisingly high willingness to sacrifice themselves to save others, took the age of potential victims in a crash into consideration and were willing to swerve onto a sidewalk if this saved more lives. The empirical insights are intended to provide a starting point for a discussion, ultimately yielding societal agreement whereby the empirical insights should be balanced with philosophical considerations.

  15. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  16. Hierarchical optimization for neutron scattering problems

    DOE PAGES

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...

    2016-03-14

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  17. Hierarchical optimization for neutron scattering problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  18. Accuracy of existing atomic potentials for the CdTe semiconductor compound

    NASA Astrophysics Data System (ADS)

    Ward, D. K.; Zhou, X. W.; Wong, B. M.; Doty, F. P.; Zimmerman, J. A.

    2011-06-01

    CdTe and CdTe-based Cd1-xZnxTe (CZT) alloys are important semiconductor compounds that are used in a variety of technologies including solar cells, radiation detectors, and medical imaging devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-scale defects that form during crystal growth and manufacturing processes. Molecular dynamics simulations offer an effective approach to study the formation and interaction of atomic scale defects in these crystals, and provide insight on how to minimize their concentrations. The success of such a modeling effort relies on the accuracy and transferability of the underlying interatomic potential used in simulations. Such a potential must not only predict a correct trend of structures and energies of a variety of elemental and compound lattices, defects, and surfaces but also capture correct melting behavior and should be capable of simulating crystalline growth during vapor deposition as these processes sample a variety of local configurations. In this paper, we perform a detailed evaluation of the performance of two literature potentials for CdTe, one having the Stillinger-Weber form and the other possessing the Tersoff form. We examine simulations of structures and the corresponding energies of a variety of elemental and compound lattices, defects, and surfaces compared to those obtained from ab initio calculations and experiments. We also perform melting temperature calculations and vapor deposition simulations. Our calculations show that the Stillinger-Weber parameterization produces the correct lowest energy structure. This potential, however, is not sufficiently transferrable for defect studies. Origins of the problems of these potentials are discussed and insights leading to the development of a more transferrable potential suitable for molecular dynamics simulations of defects in CdTe crystals are provided.

  19. Embedded-atom-method study of structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Asta, Mark; Morgan, Dane; Hoyt, J. J.; Sadigh, Babak; Althoff, J. D.; de Fontaine, D.; Foiles, S. M.

    1999-06-01

    Structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys have been studied by Monte Carlo and molecular-dynamics simulations based upon three different embedded-atom method (EAM) interatomic potentials, namely those due to Foiles and Daw (FD) [J. Mater. Res. 2, 5 (1987)], Voter and Chen (VC) [in Characterization of Defects in Materials, edited by R. W. Siegel et al. MRS Symposia Proceedings. No. 82 (Materials Research Society, Pittsburgh, 1987), p.175] and Ludwig and Gumbsch (LG) [Model. Simul. Mater. Sci. Eng. 3, 533 (1995)]. We present detailed comparisons between calculated results and experimental data for structure factors, atomic volumes, enthalpies of mixing, activities, and viscosities. Calculated partial structure factors are found to be in semiquantitative agreement with published neutron scattering measurements for Ni20Al80 alloys, indicating that short-range order in the liquid phase is qualitatively well described. Calculated thermodynamic properties of mixing are found to agree very well with experimental data for Ni compositions greater than 75 atomic %, while for alloys richer in Al the magnitudes of the enthalpies and entropies of mixing are significantly underestimated. The VC and LG potentials give atomic densities and viscosities in good agreement with experiment for Ni-rich compositions, while FD potentials consistently underestimate both properties at all concentrations. The results of this study demonstrate that VC and LG potentials provide a realistic description of the thermodynamic and atomic transport properties for NixAl1-x liquid alloys with x>=0.75, and point to the limitations of EAM potentials for alloys richer in Al.

  20. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  1. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  2. Molecular dynamics with rigid bodies: Alternative formulation and assessment of its limitations when employed to simulate liquid water

    NASA Astrophysics Data System (ADS)

    Silveira, Ana J.; Abreu, Charlles R. A.

    2017-09-01

    Sets of atoms collectively behaving as rigid bodies are often used in molecular dynamics to model entire molecules or parts thereof. This is a coarse-graining strategy that eliminates degrees of freedom and supposedly admits larger time steps without abandoning the atomistic character of a model. In this paper, we rely on a particular factorization of the rotation matrix to simplify the mechanical formulation of systems containing rigid bodies. We then propose a new derivation for the exact solution of torque-free rotations, which are employed as part of a symplectic numerical integration scheme for rigid-body dynamics. We also review methods for calculating pressure in systems of rigid bodies with pairwise-additive potentials and periodic boundary conditions. Finally, simulations of liquid phases, with special focus on water, are employed to analyze the numerical aspects of the proposed methodology. Our results show that energy drift is avoided for time step sizes up to 5 fs, but only if a proper smoothing is applied to the interatomic potentials. Despite this, the effects of discretization errors are relevant, even for smaller time steps. These errors induce, for instance, a systematic failure of the expected equipartition of kinetic energy between translational and rotational degrees of freedom.

  3. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rist, J.; Miteva, T.; Gaire, B.

    In this paper we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model.

  5. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms.

    PubMed

    Petković, Milena; Nakarada, Đura; Etinski, Mihajlo

    2018-05-25

    Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less

  7. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions

    DOE PAGES

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; ...

    2017-01-30

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less

  8. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale.

    PubMed

    Monaco, Giulio; Mossa, Stefano

    2009-10-06

    The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties that are, however, anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite a longstanding debate, remain poorly understood. By using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: The elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length scale of approximately 10 interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This reduction turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of approximately 1 THz in the vibrational density of states or at temperatures of approximately 10 K in the specific heat.

  9. Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions

    NASA Astrophysics Data System (ADS)

    Mhamdi, A.; Trinter, F.; Rauch, C.; Weller, M.; Rist, J.; Waitz, M.; Siebert, J.; Metz, D.; Janke, C.; Kastirke, G.; Wiegandt, F.; Bauer, T.; Tia, M.; Cunha de Miranda, B.; Pitzer, M.; Sann, H.; Schiwietz, G.; Schöffler, M.; Simon, M.; Gokhberg, K.; Dörner, R.; Jahnke, T.; Demekhin, Ph. Â. V.

    2018-05-01

    We present a joint experimental and theoretical study of resonant interatomic Coulombic decay (RICD) in HeNe employing high resolution cold target recoil ion momentum spectroscopy and ab initio electronic structure and nuclear dynamics calculations. In particular, laboratory- and molecular-frame angular emission distributions of RICD electrons are examined in detail. The exciting-photon energy-dependent anisotropy parameter β (ω ) , measured for decay events that populate bound HeNe+ ions, is in agreement with the calculations performed for the ground ionic state X2Σ1/2 + . A contribution from the a2Π3 /2 final ionic state is found to be negligible. For the He +Ne+ fragmentation channel, the observed laboratory-frame angular distribution of RICD electrons is explained by a slow homogeneous dissociation of bound vibrational levels of the final ionic state A2Π1 /2 into vibrational continua of the lower lying states X2Σ1/2 + and a2Π3 /2 . Our calculations predict that the angular distributions of RICD electrons in the body-fixed dipole plane provide direct access to the electronic character (i.e., symmetry) of intermediate vibronic resonances. However, because of the very slow dissociation of the A2Π1 /2 state, the molecular-frame angular distributions of RICD electrons in the He +Ne+ fragmentation channel are inaccessible to our coincidence experiment.

  10. NASA Astrophysics Data System (ADS)

    2017-11-01

    To deal with these problems investigators usually rely on a calibration method that makes use of a substance with an accurately known set of interatomic distances. The procedure consists of carrying out a diffraction experiment on the chosen calibrating substance, determining the value of the distances with use of the nominal (meter) value of the voltage, and then correcting the nominal voltage by an amount that produces the distances in the calibration substance. Examples of gases that have been used for calibration are carbon dioxide, carbon tetrachloride, carbon disulfide, and benzene; solids such as zinc oxide smoke (powder) deposited on a screen or slit have also been used. The question implied by the use of any standard molecule is, how accurate are the interatomic distance values assigned to the standard? For example, a solid calibrant is subject to heating by the electron beam, possibly producing unknown changes in the lattice constants, and polyatomic gaseous molecules require corrections for vibrational averaging ("shrinkage") effects that are uncertain at best. It has lately been necessary for us to investigate this matter in connection with on-going studies of several molecules in which size is the most important issue. These studies indicated that our usual method for retrieval of data captured on film needed improvement. The following is an account of these two issues - the accuracy of the distances assigned to the chosen standard molecule, and the improvements in our methods of retrieving the scattered intensity data.

  11. Milestone report on MD potential development for uranium silicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Zhang, Yongfeng; Hales, Jason Dean

    2016-03-01

    This report summarizes the progress on the interatomic potential development of triuranium-disilicide (U 3Si 2) for molecular dynamics (MD) simulations. The development is based on the Tersoff type potentials for single element U and Si. The Si potential is taken from the literature and a Tersoff type U potential is developed in this project. With the primary focus on the U 3Si 2 phase, some other U-Si systems such as U 3Si are also included as a test of the transferability of the potentials for binary U-Si phases. Based on the potentials for unary U and Si, two sets ofmore » parameters for the binary U-Si system are developed using the Tersoff mixing rules and the cross-term fitting, respectively. The cross-term potential is found to give better results on the enthalpy of formation, lattice constants and elastic constants than those produced by the Tersoff mixing potential, with the reference data taken from either experiments or density functional theory (DFT) calculations. In particular, the results on the formation enthalpy and lattice constants for the U 3Si 2 phase and lattice constants for the high temperature U 3Si (h-U 3Si) phase generated by the cross-term potential agree well with experimental data. Reasonable agreements are also reached on the elastic constants of U 3Si 2, on the formation enthalpy for the low temperature U 3Si (m-U 3Si) and h-U 3Si phases, and on the lattice constants of m-U 3Si phase. All these phases are predicted to be mechanically stable. The unary U potential is tested for three metallic U phases (α, β, γ). The potential is found capable to predict the cohesive energies well against experimental data for all three phases. It matches reasonably with previous experiments on the lattice constants and elastic constants of αU.« less

  12. Stochastic Formalism for Thermally Driven Distribution Frontier: A Nonempirical Approach to the Potential Escape Problem

    NASA Astrophysics Data System (ADS)

    Akashi, Ryosuke; Nagornov, Yuri S.

    2018-06-01

    We develop a non-empirical scheme to search for the minimum-energy escape paths from the minima of the potential surface to unknown saddle points nearby. A stochastic algorithm is constructed to move the walkers up the surface through the potential valleys. This method employs only the local gradient and diagonal part of the Hessian matrix of the potential. An application to a two-dimensional model potential is presented to demonstrate the successful finding of the paths to the saddle points. The present scheme could serve as a starting point toward first-principles simulation of rare events across the potential basins free from empirical collective variables.

  13. Violent Crime in Post-Civil War Guatemala: Causes and Policy Implications

    DTIC Science & Technology

    2015-03-01

    on field research and case studies in Honduras, Bolivia, and Argentina. Bailey’s Security Trap theory is comprehensive in nature and derived from... research question. The second phase uses empirical data and comparative case studies to validate or challenge selected arguments that potentially...Contextual relevancy, historical inference, Tools: Empirics and case conclusions empirical data studies Figme2. Sample Research Methodology E

  14. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  15. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patanen, M.; Benkoula, S.; Nicolas, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  16. Effect of Static Strains on Diffusion

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Grimes, H. H.

    1961-01-01

    A theory is developed that gives the diffusion coefficient in strained systems as an exponential function of the strain. This theory starts with the statistical theory of the atomic jump frequency as developed by Vineyard. The parameter determining the effect of strain on diffusion is related to the changes in the inter-atomic forces with strain. Comparison of the theory with published experimental results for the effect of pressure on diffusion shows that the experiments agree with the form of the theoretical equation in all cases within experimental error.

  17. Molecular structure, interatomic interactions and vibrational analysis of 1,4-diazabicyclo[3.2.1]octane parent ring system

    NASA Astrophysics Data System (ADS)

    Britvin, Sergey N.; Rumyantsev, Andrey M.; Zobnina, Anastasia E.; Padkina, Marina V.

    2017-02-01

    Molecular structure of 1,4-diazabicyclo[3.2.1]octane, a parent ring of TAN1251 family of alkaloids, is herein characterized for the first time in comparison with the structure of nortropane (8-azabicyclo[3.2.1]octane), the parent framework of tropane ring system. The methods of study involve X-ray structural analysis, DFT geometry optimizations with infrared frequency calculations followed by natural bond orbital (NBO) analysis, and vibrational analysis of infrared spectrum.

  18. Tunneling of Two Interacting Fermions

    NASA Astrophysics Data System (ADS)

    Ishmukhamedov, Ilyas; Ishmukhamedov, Altay

    2018-04-01

    We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.

  19. Harmonic and anharmonic oscillations investigated by using a microcomputer-based Atwood's machine

    NASA Astrophysics Data System (ADS)

    Pecori, Barbara; Torzo, Giacomo; Sconza, Andrea

    1999-03-01

    We describe how the Atwood's machine, interfaced to a personal computer through a rotary encoder, is suited for investigating harmonic and anharmonic oscillations, exploiting the buoyancy force acting on a body immersed in water. We report experimental studies of oscillators produced by driving forces of the type F=-kxn with n=1,2,3, and F=-k sgn(x). Finally we suggest how this apparatus can be used for showing to the students a macroscopic model of interatomic forces.

  20. Ab initio and empirical energy landscapes of (MgF2)n clusters (n = 3, 4).

    PubMed

    Neelamraju, S; Schön, J C; Doll, K; Jansen, M

    2012-01-21

    We explore the energy landscape of (MgF(2))(3) on both the empirical and ab initio level using the threshold algorithm. In order to determine the energy landscape and the dynamics of the trimer we investigate not only the stable isomers but also the barriers separating these isomers. Furthermore, we study the probability flows in order to estimate the stability of all the isomers found. We find that there is reasonable qualitative agreement between the ab initio and empirical potential, and important features such as sub-basins and energetic barriers follow similar trends. However, we observe that the energies are systematically different for the less compact clusters, when comparing empirical and ab initio energies. Since the underlying motivation of this work is to identify the possible clusters present in the gas phase during a low-temperature atom beam deposition synthesis of MgF(2), we employ the same procedure to additionally investigate the energy landscape of the tetramer. For this case, however, we use only the empirical potential.

  1. State of the art for ab initio vs empirical potentials for HeH+ (2e-), BeH+ (4e-), BeH (5e-), Li2 (6e-) and BH (6e-)

    NASA Astrophysics Data System (ADS)

    Dattani, Nike

    For large internuclear distances, the potential energy between two atoms is known analytically, based on constants that are calculated from atomic ab initio rather than molecular ab initio. This analytic form can be built into models for molecular potentials that are fitted to spectroscopic data. Such empirical potentials constitute the most accurate molecular potentials known. For HeH+, and BeH+, the long-range form of the potential is based only on the polarizabilities for He and H respectively, for which we have included up to 4th order QED corrections. For BeH, the best ab initio potential matches all but one observed vibrational spacing to < 1 cm- accuracy, and for Li2 the discrepancy in the spacings is < 0.08 cm-1 for all vibrational levels. But experimental methods such as photoassociation require the absolute energies, not spacings, and these are still several in several cm-1 disagreement. So empirical potentials are still the only reliable way to predict energies for few-electron systems. We also give predictions for various unobserved ''halo nucleonic molecules'' containing the ''halo'' isotopes: 6,8He, 11Li, 11,14Be and 8 , 17 , 19B.

  2. Overview of lower length scale model development for accident tolerant fuels regarding U3Si2 fuel and FeCrAl cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng

    2016-09-01

    U3Si2 and FeCrAl have been proposed as fuel and cladding concepts, respectively, for accident tolerance fuels with higher tolerance to accident scenarios compared to UO2. However, a lot of key physics and material properties regarding their in-pile performance are yet to be explored. To accelerate the understanding and reduce the cost of experimental studies, multiscale modeling and simulation are used to develop physics-based materials models to assist engineering scale fuel performance modeling. In this report, the lower-length-scale efforts in method and material model development supported by the Accident Tolerance Fuel (ATF) high-impact-problem (HIP) under the NEAMS program are summarized. Significantmore » progresses have been made regarding interatomic potential, phase field models for phase decomposition and gas bubble formation, and thermal conductivity for U3Si2 fuel, and precipitation in FeCrAl cladding. The accomplishments are very useful by providing atomistic and mesoscale tools, improving the current understanding, and delivering engineering scale models for these two ATF concepts.« less

  3. Misfit dislocation patterns of Mg-Nb interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youxing; Shao, Shuai; Liu, Xiang-Yang

    The role of heterogeneous interfaces in improving mechanical properties of polycrystalline aggregates and laminated composites has been well recognized with interface structure being of fundamental importance in designing composites containing multiple interfaces. In this paper, taking the Mg (hexagonal close-packed (hcp))/Nb (body-centered cubic (bcc)) interface as an example, we develop Mg-Nb interatomic potentials for predicting atomic configurations of Mg/Nb interfaces. We systematically characterize interface dislocations of Mg/Nb interfaces with Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) orientation relationships and propose a generalized procedure of characterizing interface structure by combining atomistic simulation and interface dislocation theory, which is applicable for not only hcp/bccmore » interfaces, but also other systems with complicated interface dislocation configurations.Here, in Mg/Nb, interface dislocation networks of two types of interfaces are significantly different although they originate from partial dislocations of similar character: the NW interface is composed of three sets of partial dislocations, while the KS interface is composed of four sets of interface dislocations - three sets of partial dislocations and one set of full dislocations that forms from the reaction of two close partial dislocations.« less

  4. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE PAGES

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  5. Features of structural changes in the near-surface aluminum layer under various schemes of ion implantation

    NASA Astrophysics Data System (ADS)

    Kryzhevich, Dmitrij S.; Zolnikov, Konstantin P.; Korchuganov, Aleksandr V.

    2017-10-01

    The molecular dynamics simulation of structural rearrangements in the surface layer of aluminum samples under ion implantation of various intensities was carried out. The features of the internal structure and the crystallographic orientation of the irradiated crystallite were taken into account. To describe the interatomic interaction many-body potentials obtained in the framework of the embedded atom method were used. Irradiation of the {100} surface results in much less number of formed defects than irradiation of the {110} and {111} ones. When irradiating surfaces with beams of relatively low energy grains remain unchanged in the surface region and the formation of stacking faults was not observed. At a high intensity of irradiation, the near-surface layer of the crystallite melts. In the absence of heat removal, the centers of crystallization become grains lying on the boundary of the solid and liquid phases. Those grains increase due to the adjustment of the atoms of the liquid phase to their lattice. As a result, the grain size in the near-surface region increases.

  6. Clustering on Magnesium Surfaces – Formation and Diffusion Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less

  7. 369 TFlop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminarayan, Sriram; Germann, Timothy C; Kadau, Kai

    2008-01-01

    The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementationmore » of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.« less

  8. Statistical properties and condensate fluctuation of attractive Bose gas with finite number of particles

    NASA Astrophysics Data System (ADS)

    Bera, Sangita; Lekala, Mantile Leslie; Chakrabarti, Barnali; Bhattacharyya, Satadal; Rampho, Gaotsiwe Joel

    2017-09-01

    'We study the condensate fluctuation and several statistics of weakly interacting attractive Bose gas of 7 Li atoms in harmonic trap. Using exact recursion relation we calculate canonical ensemble partition function and study the thermal evolution of the condensate. As 7 Li condensate is associated with collapse, the number of condensate atom is truly finite and it facilitates to study the condensate in mesoscopic region. Being highly correlated, we utilize the two-body correlated basis function to get the many-body effective potential which is further used to calculate the energy levels. Taking van der Waals interaction as interatomic interaction we calculate several quantities like condensate fraction N, root-mean-square fluctuation δn0 and different orders of central moments. We observe the effect of finite size on the calculation of condensate fluctuations and the effect of attractive interaction over the noninteracting limit. We observe the depletion of the condensate with increase in temperature. The calculated moments nicely exhibit the mesoscopic effect. The sharp fall in the root-mean-square fluctuation near the critical point signifies the possibility of phase transition.

  9. Peculiarities of structural transformations in metal nanoparticles at high speed collisions

    NASA Astrophysics Data System (ADS)

    Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.

    2018-01-01

    A molecular dynamics simulation of nanosized particle collision under the electrical explosion of metal wires of different types was conducted. Interatomic interactions were described on the base of the embedded atom method. Used potentials allowed describing with high accuracy many mechanical and physical properties which are very important for the simulations of nanoparticle collisions with high velocities. The dynamics of the nanosized particle formation at the electric pulse explosion of metal wires of different types was studied. Features of particle collisions on the example of nanoscale particles of copper and nickel, whose velocities varied from 50 to 1500 m/s were investigated. The peculiarities of structural transformations in the colliding particles depending on the velocity of collision were determined. The intervals of collision velocities in which interaction between particles is elastic or leads to the formation of structural defects or melting were calculated. The analysis of the structure and distribution of chemical elements over the cross section of the particles which were synthesized under simultaneous explosions of different metal wires was carried out.

  10. Thermal properties of graphene from path-integral simulations

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-03-01

    Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.

  11. Understanding the EF-hand closing pathway using non-biased interatomic potentials.

    PubMed

    Dupuis, L; Mousseau, Normand

    2012-01-21

    The EF-hand superfamily of proteins is characterized by the presence of calcium binding helix-loop-helix structures. Many of these proteins undergo considerable motion responsible for a wide range of properties upon binding but the exact mechanism at the root of this motion is not fully understood. Here, we use an unbiased accelerated multiscale simulation scheme, coupled with two force fields - CHARMM-EEF1 and the extended OPEP - to explore in details the closing pathway, from the unbound holo state to the closed apo state, of two EF-hand proteins, the Calmodulin and Troponin C N-terminal nodules. Based on a number of closing simulations for these two sequences, we show that the EF-hand β-scaffold, identified as crucial by Grabarek for the EF-hand opening driven by calcium binding, is also important in closing the EF-hand. We also show the crucial importance of the phenylalanine situated at the end of first EF-hand helix, and identify an intermediate state modulating its behavior, providing a detailed picture of the closing mechanism for these two representatives of EF-hand proteins. © 2012 American Institute of Physics

  12. Displacement damage and predicted non-ionizing energy loss in GaAs

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Nanjun; Hernandez-Rivera, Efrain; Huang, Danhong; LeVan, Paul D.

    2017-03-01

    Large-scale molecular dynamics (MD) simulations, along with bond-order interatomic potentials, have been applied to study the defect production for lattice atom recoil energies from 500 eV to 20 keV in gallium arsenide (GaAs). At low energies, the most surviving defects are single interstitials and vacancies, and only 20% of the interstitial population is contained in clusters. However, a direct-impact amorphization in GaAs occurs with a high degree of probability during the cascade lifetime for Ga PKAs (primary knock-on atoms) with energies larger than 2 keV. The results reveal a non-linear defect production that increases with the PKA energy. The damage density within a cascade core is evaluated, and used to develop a model that describes a new energy partition function. Based on the MD results, we have developed a model to determine the non-ionizing energy loss (NIEL) in GaAs, which can be used to predict the displacement damage degradation induced by space radiation on electronic components. The calculated NIEL predictions are compared with the available data, thus validating the NIEL model developed in this study.

  13. Visualization of the ultrafast structural phase transitions in warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, Mianzhen

    2017-10-01

    It is still a great challenge to obtain real-time atomistic-scale information on the structural phase transitions that lead to warm dense matter state. Recent advances in ultrafast electron diffraction (UED) techniques have opened up exciting prospects to unravel the mechanisms of solid-liquid phase transitions under these extreme non-equilibrium conditions. Here we report on precise measurements of melt time dependency on laser excitation energy density that resolve for the first time the transition from heterogeneous to homogeneous melting. This transition appears in both polycrystalline and single-crystal gold nanofilms with distinct measurable differences. These results test predictions from molecular-dynamics simulations with different interatomic potential models. These data further deliver accurate structure factor data to large wavenumbers that allow us to constrain electron-ion equilibration constants. Our results demonstrate electron-phonon coupling strength much weaker than DFT calculations, and contrary to previous results, provide evidence for bond softening. This work is supported by DOE Office of Science, Fusion Energy Science under FWP 100182, and the DOE BES Accelerator and Detector R&D program.

  14. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3

    PubMed Central

    Lu, Ying-Bo; Kong, Xianghua; Chen, Xiaobin; Cooke, David G.; Guo, Hong

    2017-01-01

    Carrier mobility is one of the most important parameters for semiconducting materials and their use in optoelectronic devices. Here we report a systematic first principles analysis of the acoustic phonon scattering mechanism that limits the mobility of CH3NH3PbI3 (MAPbI3) perovskites. Due to the unique hybrid organic-inorganic structure, the mechanical, electronic and transport properties are dominated by the same factor, i.e. the weak interatomic bond and the easy rotation of methylammonium (MA) molecules under strain. Both factors make MAPbI3 soft. Rotation of MA molecule induces a transverse shift between Pb and I atoms, resulting in a very low deformation potential and a strong piezoelectricity in MAPbI3. Hence the carrier mobility of pristine MAPbI3 is limited by the piezoelectric scattering, which is consistent to the form of its temperature dependence. Our calculations suggest that in the pristine limit, a high mobility of about several thousand cm2 V−1 S−1 is expected for MAPbI3. PMID:28150743

  15. A cluster expansion model for predicting activation barrier of atomic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit, E-mail: achatter@iitk.ac.in

    2013-06-15

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEBmore » results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog.« less

  16. Pressure-induced transformations in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Garcez, K. M. S.; Antonelli, A.

    2014-02-01

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  17. Learning a force field for the martensitic phase transformation in Zr

    NASA Astrophysics Data System (ADS)

    Zong, Hongxiang; Pilania, Ghanshyam; Ramprasad, Rampi; Lookman, Turab

    Atomic simulations provide an effective means to understand the underlying physics of martensitic transformations under extreme conditions. However, this is still a challenge for certain phase transforming metals due to the lack of an accurate classical force field. Quantum molecular dynamics (QMD) simulations are accurate but expensive. During the course of QMD simulations, similar configurations are constantly visited and revisited. Machine Learning can effectively learn from past visits and, therefore, eliminate such redundancies. In this talk, we will discuss the development of a hybrid ML-QMD method in which on-demand, on-the-fly quantum mechanical (QM) calculations are performed to accelerate calculations of interatomic forces at much lower computational costs. Using Zirconium as a model system for which accurate atomisctic potentials are currently unvailable we will demonstrate the feasibility and effectiveness of our approach. Specifically, the computed structural phase transformation behavior within the ML-QMD approach will be compared with available experimental results. Furthermore, results on phonons, stacking fault energies, and activation barriers for the homogeneous martensitic transformation in Zr will be presented.

  18. Simulation of Carbon Production from Material Surfaces in Fusion Devices

    NASA Astrophysics Data System (ADS)

    Marian, J.; Verboncoeur, J.

    2005-10-01

    Impurity production at carbon surfaces by plasma bombardment is a key issue for fusion devices as modest amounts can lead to excessive radiative power loss and/or hydrogenic D-T fuel dilution. Here results of molecular dynamics (MD) simulations of physical and chemical sputtering of hydrocarbons are presented for models of graphite and amorphous carbon, the latter formed by continuous D-T impingement in conditions that mimic fusion devices. The results represent more extensive simulations than we reported last year, including incident energies in the 30-300 eV range for a variety of incident angles that yield a number of different hydrocarbon molecules. The calculated low-energy yields clarify the uncertainty in the complex chemical sputtering rate since chemical bonding and hard-core repulsion are both included in the interatomic potential. Also modeled is hydrocarbon break-up by electron-impact collisions and transport near the surface. Finally, edge transport simulations illustrate the sensitivity of the edge plasma properties arising from moderate changes in the carbon content. The models will provide the impurity background for the TEMPEST kinetic edge code.

  19. The quantum structure of anionic hydrogen clusters

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2018-03-01

    A flexible and polarizable interatomic potential has been developed to model hydrogen clusters interacting with one hydrogen anion, (H2)nH-, in a broad range of sizes n = 1-54 and parametrized against coupled cluster quantum chemical calculations. Using path-integral molecular dynamics simulations at 1 K initiated from the putative classical global minima, the equilibrium structures are found to generally rely on icosahedral shells with the hydrogen molecules pointing toward the anion, producing geometric magic numbers at sizes n = 12, 32, and 44 that are in agreement with recent mass spectrometry measurements. The energetic stability of the clusters is also connected with the extent of vibrational delocalization, measured here by the fluctuations among inherent structures hidden in the vibrational wave function. As the clusters grow, the outer molecules become increasingly free to rotate, and strong finite size effects are also found between magic numbers, associated with more prominent vibrational delocalization. The effective icosahedral structure of the 44-molecule cluster is found to originate from quantum nuclear effects as well, the classical structure showing no particular symmetry.

  20. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

Top