Science.gov

Sample records for employing transport layer

  1. Energy transport using natural convection boundary layers

    SciTech Connect

    Anderson, R

    1986-04-01

    Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.

  2. Issues in designing transport layer multicast facilities

    NASA Technical Reports Server (NTRS)

    Dempsey, Bert J.; Weaver, Alfred C.

    1990-01-01

    Multicasting denotes a facility in a communications system for providing efficient delivery from a message's source to some well-defined set of locations using a single logical address. While modem network hardware supports multidestination delivery, first generation Transport Layer protocols (e.g., the DoD Transmission Control Protocol (TCP) (15) and ISO TP-4 (41)) did not anticipate the changes over the past decade in underlying network hardware, transmission speeds, and communication patterns that have enabled and driven the interest in reliable multicast. Much recent research has focused on integrating the underlying hardware multicast capability with the reliable services of Transport Layer protocols. Here, we explore the communication issues surrounding the design of such a reliable multicast mechanism. Approaches and solutions from the literature are discussed, and four experimental Transport Layer protocols that incorporate reliable multicast are examined.

  3. Lithium transport through nanosized amorphous silicon layers.

    PubMed

    Hüger, Erwin; Dörrer, Lars; Rahn, Johanna; Panzner, Tobias; Stahn, Jochen; Lilienkamp, Gerhard; Schmidt, Harald

    2013-03-13

    Lithium migration in nanostructured electrode materials is important for an understanding and improvement of high energy density lithium batteries. An approach to measure lithium transport through nanometer thin layers of relevant electrochemical materials is presented using amorphous silicon as a model system. A multilayer consisting of a repetition of five [(6)LiNbO3(15 nm)/Si (10 nm)/(nat)LiNbO3 (15 nm)/Si (10 nm)] units is used for analysis, where LiNbO3 is a Li tracer reservoir. It is shown that the change of the relative (6)Li/(7)Li isotope fraction in the LiNbO3 layers by lithium diffusion through the nanosized silicon layers can be monitored nondestructively by neutron reflectometry. The results can be used to calculate transport parameters.

  4. Tracer Transport in the Tropical Tropopause Layer

    NASA Astrophysics Data System (ADS)

    Jensen, E. J.; Pfister, L.; Bergman, J. W.; Atlas, E. L.

    2013-12-01

    Trace species such as carbon monoxide, ozone, and very short-lived halocarbons in the Tropical Tropopause Layer (TTL) are important for chemistry and the radiation budget. Also, these species can be used to diagnose transport pathways into and through the TTL. TTL tracer concentrations are controlled primarily by input from extreme deep convective systems that rapidly transport air from the lower troposphere into the TTL, rapid horizontal transport, and slow vertical transport, with the rapid convective transport directly to the uppermost TTL being particularly important for species with short lifetimes. The extreme deep convection overshooting to near the tropical tropopause is poorly represented by convective parameterizations used in global models. Here, we investigate tracer transport using trajectories along with explicit calculations of convective influence. The times and locations of convective influence on the trajectory parcels are determined by tracing the trajectories through two-dimensional, three-hourly fields of convective cloud top height from geostationary satellite and TRMM. The tracer simulations are constrained by measurements from the Aura MLS and ACE-FTS satellites, as well as measurements from recent high-altitude aircraft campaigns. The model is used to evaluate the sensitivity of TTL tracer concentrations to diabatic heating rate (approximately in balance with vertical motion) and the occurrence frequency of extreme convection.

  5. Turbulent transport process in atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Awasaki, T.

    2012-04-01

    The organized motion or the coherent motion can be detected in wind tunnel and water channel experiments and those motions play an important role for the production of turbulent energy and transport of turbulent fluxes. Similar phenomena can be found in the atmospheric surface layer (Gao et al., 1989). The purpose of this study is to clarify the transport structure and process of turbulent fluxes, especially heat, water vapor and carbon dioxide. The organized motions are detected by using the wavelet transform analysis as well as the conventional statistical method such as Fourier spectral analysis. We consider the dependency of transport process by the organized motion to the atmospheric stability in the surface layer. The observation was carried out at the test field of Shionomisaki Wind Effect Laboratory, where two sets of the combination of sonic anemometer thermometer and open path H2O/CO2 analyzer were mounted at 2m and 20m height. The evident ramp and inverse ramp structures can be found in the time series of temperature, water vapor and CO2 in the unstable stability, using the Mexican hut wavelet transform analysis. The co-spectral density in wavelet analysis is considered as the flux at each time scale. The large amount of fluxes is transported at the sudden decrease in scalar ramp structure and the sudden increase in inverse ramp structure in several tens of seconds. The scalar and vertical wind velocity are completely either in phase or out of phase, which means that the turbulent transport by the organized motion occurs at time scales of several tens of seconds. The quadrant analysis of turbulent flux shows that the rate of the transport amount of scalar by ejection and sweep to the total transport flux increases according to the increase of the atmospheric stability. At 2m height, the transport by ejection is dominant in unstable condition, and that by sweep is larger in the stable condition. At 20m height, transport by ejection is larger than that by

  6. 49 CFR 805.735-8 - Employment of family members in transportation and related enterprises.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Employment of family members in transportation and... Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD EMPLOYEE RESPONSIBILITIES AND CONDUCT § 805.735-8 Employment of family members in transportation and related enterprises. (a) No individual will be employed...

  7. 49 CFR 805.735-8 - Employment of family members in transportation and related enterprises.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Employment of family members in transportation and... Transportation (Continued) NATIONAL TRANSPORTATION SAFETY BOARD EMPLOYEE RESPONSIBILITIES AND CONDUCT § 805.735-8 Employment of family members in transportation and related enterprises. (a) No individual will be employed...

  8. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOEpatents

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  9. Turbulent transport across shear layers in magnetically confined plasmas

    SciTech Connect

    Nold, B.; Ramisch, M.; Manz, P.; Birkenmeier, G.; Ribeiro, T. T.; Müller, H. W.; Scott, B. D.; Fuchert, G.; Stroth, U.

    2014-10-15

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.

  10. Liquid water transport in fuel cell gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bazylak, Aimy Ming Jii

    Liquid water management has a major impact on the performance and durability of the polymer electrolyte membrane fuel cell (PEMFC). The gas diffusion layer (GDL) of a PEMFC provides pathways for mass, heat, and electronic transport to and from the catalyst layers and bipolar plates. When the GDL becomes flooded with liquid water, the PEMFC undergoes mass transport losses that can lead to decreased performance and durability. The work presented in this thesis includes contributions that provide insight into liquid water transport behaviour in and on the surface of the GDL, as well as insight into how future GDLs could be designed to enhance water management. The effects of compression on liquid water transport in the GDL and on the microstructure of the GDL are presented. It was found that compressed regions of the GDL provided preferential locations for water breakthrough, while scanning electron microscopy (SEM) imaging revealed irreversible damage to the GDL due to compression at typical fuel cell assembly pressures. The dynamic behaviour of droplet emergence and detachment in a simulated gas flow channel are also presented. It was found that on an initially dry and hydrophobic GDL, small droplets emerged and detached quickly from the GDL surface. However, over time, this water transport regime transitioned into that of slug formation and channel flooding. It was observed that after being exposed to a saturated environment, the GDL surface became increasingly prone to droplet pinning, which ultimately hindered droplet detachment and encouraged slug formation. A pore network model featuring invasion percolation with trapping was employed to evaluate the breakthrough pattern predictions of designed porous media. These designed pore networks consisted of randomized porous media with applied diagonal and radial gradients. Experimental microfluidic pore networks provided validation for the designed networks. Diagonal biasing provided a means of directing water

  11. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of employment as an ore transporter... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.63 Proof of employment as an ore transporter. (a) The Department will accept, as proof of employment for the time...

  12. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  13. Nonlocal thermal transport across embedded few-layer graphene sheets

    SciTech Connect

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; Sumpter, Bobby G.; Qiao, Rui

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  14. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGESBeta

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; Sumpter, Bobby G.; Qiao, Rui

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  15. Electron-Transport Properties of Few-Layer Black Phosphorus.

    PubMed

    Xu, Yuehua; Dai, Jun; Zeng, Xiao Cheng

    2015-06-01

    We perform the first-principles computational study of the effect of number of stacking layers and stacking style of the few-layer black phosphorus (BPs) on the electronic properties, including transport gap, current-voltage (i-v) relation, and differential conductance. Our computation is based on the nonequilibrium Green's function approach combined with density functional theory calculations. Specifically, we compute electron-transport properties of monolayer BP, bilayer BP, and trilayer BP as well as bilayer BPs with AB-, AA-, or AC-stacking. We find that the stacking number has greater influence on the transport gap than the stacking type. Conversely, the stacking type has greater influence on i-v curve and differential conductance than on the transport gap. This study offers useful guidance for determining the number of stacking layers and the stacking style of few-layer BP sheets in future experimental measurements and for potential applications in nanoelectronic devices.

  16. Ion transport through electrolyte/polyelectrolyte multi-layers.

    PubMed

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes.

  17. Ion transport through electrolyte/polyelectrolyte multi-layers

    PubMed Central

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes. PMID:26111456

  18. 49 CFR 40.409 - What does the issuance of a PIE mean to transportation employers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What does the issuance of a PIE mean to transportation employers? 40.409 Section 40.409 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Public Interest Exclusions §...

  19. A multiobjective two-layer transportation network design model

    SciTech Connect

    Figlali, A.; Koc, T.

    1994-12-31

    In this paper, a two-layer transportation network design model with three objectives is presented. The objectives are: (1) to minimize the primary path length (or travelling time) from a predetermined starting node to a predetermined terminus node; (2) to minimize the total distance traversed by the demand to reach the primary path; (3) to minimize the total road construction cost. The problem is formulated as an integer linear programming model and solved as relaxed continuous linear programming model. If fractional values for the variables occur, then a branch and bound algorithm may be employed to obtain 0 or 1 variable values. In the model, three different solution procedure is suggested which depends on the preference position of the decision maker. Such problems are encountered in the applications of the construction of a new rail line between two major cities of a developing country; in the construction of networks of highways and unimproved roads; in the design of airline routes and in the design of energy distribution systems.

  20. Unstirred Water Layers and the Kinetics of Organic Cation Transport

    PubMed Central

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.

    2015-01-01

    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  1. Location Management in a Transport Layer Mobility Architecture

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Ishac, Joseph

    2005-01-01

    Mobility architectures that place complexity in end nodes rather than in the network interior have many advantageous properties and are becoming popular research topics. Such architectures typically push mobility support into higher layers of the protocol stack than network layer approaches like Mobile IP. The literature is ripe with proposals to provide mobility services in the transport, session, and application layers. In this paper, we focus on a mobility architecture that makes the most significant changes to the transport layer. A common problem amongst all mobility protocols at various layers is location management, which entails translating some form of static identifier into a mobile node's dynamic location. Location management is required for mobile nodes to be able to provide globally-reachable services on-demand to other hosts. In this paper, we describe the challenges of location management in a transport layer mobility architecture, and discuss the advantages and disadvantages of various solutions proposed in the literature. Our conclusion is that, in principle, secure dynamic DNS is most desirable, although it may have current operational limitations. We note that this topic has room for further exploration, and we present this paper largely as a starting point for comparing possible solutions.

  2. The Employment of Airships for the Transport of Passengers

    NASA Technical Reports Server (NTRS)

    Nobile, Umberto

    1921-01-01

    It was a conclusion of this detailed study of the practicality of using airships for carrying passengers that, although slow, airships are capable of carrying useful loads over long distances. However, it is noted that there is a certain limit to the advantages of large cubature. Beyond a certain point, the maximum altitude of the airship goes on decreasing, in spite of the fact that the range of action in the horizontal plane and the useful load go on increasing. The possibility of rapid climb is an essential factor of security in aerial navigation in the case of storms, as is velocity. To rise above and run ahead of storms are ways of avoiding them. However, high altitude and high speed are antithetical. This investigation concluded that a maximum velocity of 120 km/h is as far as we ought to go. This figure can only be exceeded by excessive reduction of the altitude of ceiling, range of flight, and useful load. The essential requisites of a public transport service are discussed, as are flight security, regularity of service, competition with other forms of passenger transportation, and the choice between rigid and semi-rigid airships.

  3. Drift-wave transport in the velocity shear layer

    NASA Astrophysics Data System (ADS)

    Rosalem, K. C.; Roberto, M.; Caldas, I. L.

    2016-07-01

    Particle drift driven by electrostatic wave fluctuations is numerically computed to describe the transport in a gradient velocity layer at the tokamak plasma edge. We consider an equilibrium plasma in large aspect ratio approximation with E × B flow and specified toroidal plasma velocity, electric field, and magnetic field profiles. A symplectic map, previously derived for infinite coherent time modes, is used to describe the transport dependence on the electric, magnetic, and plasma velocity shears. We also show that resonant perturbations and their correspondent islands in the Poincaré maps are much affected by the toroidal velocity profiles. Moreover, shearless transport barriers, identified by extremum values of the perturbed rotation number profiles of the invariant curves, allow chaotic trajectories trapped into the plasma. We investigate the influence of the toroidal plasma velocity profile on these shearless transport barriers.

  4. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  5. Anisotropic bias dependent transport property of defective phosphorene layer

    PubMed Central

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  6. Near independence of OLED operating voltage on transport layer thickness

    SciTech Connect

    Swensen, James S.; Wang, Liang; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

    2013-01-01

    We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Å using the N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (α-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

  7. Employability.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This workbook contains seven units designed to help secondary-level vocational education students develop the employability skills necessary to find, keep, and advance in a job. Addressed in the individual units of the workbook are the following topics: assessing individual values, abilities, and interests; finding a job; developing basic…

  8. Solute transport through large uniform and layered soil columns

    NASA Astrophysics Data System (ADS)

    Porro, I.; Wierenga, P. J.; Hills, R. G.

    1993-04-01

    Solute transport experiments are often conducted with homogeneous soils, whereas transport in real situations takes place in heterogeneous soils. An experiment was conducted to compare unsaturated solute transport through uniform and layered soils. Pulse inputs of tritiated water, bromide and chloride were applied under steady flow conditions to the tops of two large (0.95 m diameter by 6 m deep) soil columns. One column was uniformly filled with loamy fine sand and the other filled with alternating 20-cm-thick layers of loamy fine sand and silty clay loam. Soil solution samples were collected during the experiment with suction candles installed at various depths in the columns. Solute transport parameters were estimated by fitting the convection-dispersion equation to the observed breakthrough curves for each solute at various depths in each column. The match between the resulting calibrated curves and the experiment was better for the layered soil column than for the uniform soil column. The results displayed no clear relationship between the dispersion coefficients and depth for any of the tracers for either column. However, dispersivities were greater in the uniform column (3.5 cm) than in the layered column (1.2 cm), while retardation factors for bromide and chloride were similar (0.8 and 0.83, respectively, for the uniform and layered columns). A retardation factor less than one is attributed to anion exclusion. There was evidence of preferential flow in the uniform soil column. The peak concentrations at 5 m depth were greater than those observed at 4 m. Such behavior is inconsistent with one-dimensional flow. Similar results were observed in an experiment performed 3.5 years earlier using the same soil column and approximately the same flow rates, but using a different tracer and associated chemical analysis, different soil saturation prior to the execution of the experiment, and different experimental personnel. This supports the thesis that the anomalous

  9. Transport measurements on monolayer and few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  10. Models for gibberellic acid transport and enzyme production and transport in the aleurone layer of barley.

    PubMed

    O'Brien, Ricky; Fowkes, Nev; Bassom, Andrew P

    2010-11-01

    Gibberellins are growth hormones produced in the embryo of grain released during germination. They promote growth through the production of enzymes in the aleurone layer surrounding the endosperm. These enzymes then diffuse into the endosperm and produce the sugars required by the growing acrospire. Here we model the transport of gibberellins into and along the aleurone layer, the consequent production of enzymes, and their transport into the endosperm. Simple approximate solutions of the governing equations are obtained which suggest that the enzymes are released immediately behind a gibberellin front which travels with almost constant speed along the aleurone layer. The model also suggests that this propagation speed is determined primarily by conditions near the scutellum-aleurone junction, which may enable the embryo to actively control the germination process.

  11. Inverted organic photovoltaic device with a new electron transport layer

    PubMed Central

    2014-01-01

    We demonstrate that there is a new solution-processed electron transport layer, lithium-doped zinc oxide (LZO), with high-performance inverted organic photovoltaic device. The device exhibits a fill factor of 68.58%, an open circuit voltage of 0.86 V, a short-circuit current density of −9.35 cm/mA2 along with 5.49% power conversion efficiency. In addition, we studied the performance of blend ratio dependence on inverted organic photovoltaics. Our device also demonstrates a long stability shelf life over 4 weeks in air. PMID:24674457

  12. Magneto-transport properties in layered manganite crystals

    SciTech Connect

    Kimura, T.; Tomioka, Y.; Okuda, T.; Kuwahara, H.; Asamitsu, A.; Tokura, Y.

    1998-12-31

    Anisotropic charge transport and magnetic properties have been investigated for single crystals of the layered manganite, La{sub 2{minus}2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} (0.3 {le} x {le} 0.5). Remarkable variations in the magnetic structure as well as in the charge-transport properties are observed with changing doping-level x. A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between {approximately} 90 K and {approximately} 270 K, and shows the interplane tunneling magnetoresistance at lower temperatures. These characteristic charge-transport properties are attributed to the interplane magnetic coupling between the adjacent MnO{sub 2} bilayers, and are strongly affected by the application of pressure as well as low magnetic fields through the change in magnetic structure. With increase of the carrier concentration toward x = 0.5, the charge-ordered phase is stabilized and dominates the charge transport and magnetic properties.

  13. Reuse of GaAs substrates for epitaxial lift-off by employing protection layers

    NASA Astrophysics Data System (ADS)

    Lee, Kyusang; Zimmerman, Jeramy D.; Xiao, Xin; Sun, Kai; Forrest, Stephen R.

    2012-02-01

    We demonstrate repeated use of GaAs wafers for multiple growths by employing lattice-matched epitaxial protection layers to preserve the wafer surface in its original condition following their etch removal after growth. The protection layers provide a regrowth surface that eliminates the need for repolishing prior to subsequent growth. Between growths, the protection layers are removed by wet chemical etching. The resulting surface quality is examined using atomic force microscope and energy dispersive spectrometry. We show that the surface roughness, chemical composition, morphology, and electronic properties of the GaAs surface after protection-layer removal are comparable to that of the original substrate surface. We show that p-n junction GaAs solar cells grown on original and reused wafers have nearly identical performance with power conversion efficiencies of ˜23%, under simulated 1 sun illumination, AM1.5 G. The high power conversion efficiency of GaAs solar cells combined with reduced costs associated with multiple parent wafer reuses promise cost competitiveness with incumbent solar cell technologies.

  14. The design and performance of axially symmetrical contoured wall diffusers employing suction boundary layer control

    NASA Technical Reports Server (NTRS)

    Nelson, C. D., Jr.; Hudson, W. G.; Yang, T.

    1974-01-01

    This paper presents a procedure for the design and the performance prediction of axially symmetrical contoured wall diffusers employing suction boundary layer control. An inverse problem approach was used in the potential flow design of the diffuser wall contours. The experimentally observed flow characteristics and the stability of flows within the diffuser are also described. Guidelines for the design of low suction (less than 10 percent of the inlet flow) and thus high effectiveness contoured wall diffusers are also provided based on the results of the experimental program.

  15. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Lohrenz, S.E.; Asper, V.L.

    1997-09-01

    The authors objective was to characterize distributions of chloropigment fluorescence in relation to physical processes in the benthic boundary layer in support of the Department of Energy (DOE) Ocean Margins Program`s (OMP) goal of quantifying carbon transport across the continental shelf. Their approach involved participation in the Ocean Margins Program (OMP) field experiment on the continental shelf off Cape Hatteras by conducting multi-sensor fluorescence measurements of photosynthetic pigments. Specific tasks included (1) pre- and post-deployment calibration of multiple fluorescence sensors in conjunction with Woods Hole personnel; (2) collection and analysis of photosynthetic pigment concentrations and total particulate carbon in water column samples to aid in interpretation of the fluorescence time-series during the field experiment; (3) collaboration in the analysis and interpretation of 1994 and 1996 time-series data in support of efforts to quantify pigment and particulate organic carbon transport on the continental shelf off Cape Hatteras. This third component included analysis of data obtained with a multi-sensor fiber-optic fluorometer in the benthic boundary layer of the inner shelf off Cape Hatteras during summer 1994.

  16. Electron transport in molecular junctions with graphene as protecting layer

    SciTech Connect

    Hüser, Falco; Solomon, Gemma C.

    2015-12-07

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

  17. Electron transport in molecular junctions with graphene as protecting layer

    NASA Astrophysics Data System (ADS)

    Hüser, Falco; Solomon, Gemma C.

    2015-12-01

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

  18. Charge carrier transport properties in layer structured hexagonal boron nitride

    SciTech Connect

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-10-15

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T{sub 0}){sup −α} with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  19. Thermal transport in layered materials for thermoelectrics and thermal management

    NASA Astrophysics Data System (ADS)

    Qui, Bo

    Atomic level thermal transport in layered materials, namely, Bi 2Te3 and graphene is investigated using first principles calculations, lattice dynamics (LD) calculations, molecular dynamics simulations, spectral phonon analysis and empirical modeling. These materials resemble geometrically while differ significantly in the nature of thermal transport. Because of their uniquely low/high thermal conductivities, they are of great interest in thermoelectrics and thermal management applications, respectively. Besides Bi2Te3 and graphene, many other materials in the family of layered materials also exhibit great promises for various applications in thermoelectrics, thermal management, and electronics. In order to investigate the thermal properties of general layered materials, we explore the use of tight-binding molecular dynamics (TBMD) approach, which neither relies on the availability of classical potentials nor demands significant computational resources as ab initio MD approach does. In addition, a general model for the effective phonon group velocities, which is relevant for the lattice thermal transport in general few-layer materials, is developed. First of all, two-body interatomic potentials in the Morse potential form have been developed for bismuth telluride. The density functional theory with local-density approximations is first used to calculate the total energies for many artificially distorted Bi2Te3 configurations to produce the energy surface. Then by fitting to this energy surface and other experimental data, the Morse potential form is parameterized. The fitted empirical interatomic potentials are shown to reproduce the elastic and phonon data well. With the classical interatomic potentials developed, molecular dynamics simulations are performed to predict the thermal conductivity of bulk Bi2Te3 at different temperatures, and the results agree with experimental data well. To facilitate phonon-engineering, we predict the thermal conductivity of Bi2Te3

  20. 41 CFR 109-38.301-1.50 - Authorization for transportation between residence and place of employment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation between residence and place of employment. 109-38.301-1.50 Section 109-38.301-1.50 Public... between residence and place of employment. (a) Government motor vehicles shall not be used for transportation between residence and place of employment by designated contractor personnel except...

  1. Quantum transport simulation of exciton condensate transport physics in a double-layer graphene system

    NASA Astrophysics Data System (ADS)

    Mou, Xuehao; Register, Leonard F.; MacDonald, Allan H.; Banerjee, Sanjay K.

    2015-12-01

    Spatially indirect electron-hole exciton condensates stabilized by interlayer Fock exchange interactions have been predicted in systems containing a pair of two-dimensional semiconductor or semimetal layers separated by a thin tunnel dielectric. The layer degree of freedom in these systems can be described as a pseudospin. Condensation is then analogous to ferromagnetism, and the interplay between collective and quasiparticle contributions to transport is analogous to phenomena that are heavily studied in spintronics. These phenomena are the basis for pseudospintronic device proposals based on possible low-voltage switching between high (nearly shorted) and low interlayer conductance states and on near-perfect Coulomb drag-counterflow current along the layers. In this work, a quantum transport simulator incorporating a nonlocal Fock exchange interaction is presented, and used to model the essential transport physics in, for specificity, a graphene-dielectric-graphene system. Finite-size effects, Coulomb drag-counterflow current, critical interlayer currents beyond which interlayer dc conductance collapses at subthermal voltages, nonlocal coupling between interlayer critical currents in multiple lead devices, and an Andreev-like reflection process are illustrated.

  2. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies; and (4) Records of federally supported, health-related studies of uranium workers. (b) The...-transporting company, or its successor-in-interest; (3) Records of the Social Security Administration... indicating or identifying the claimant's employer and occupation; (7) Records of an academic or...

  3. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agencies; and (4) Records of federally supported, health-related studies of uranium workers. (b) The...-transporting company, or its successor-in-interest; (3) Records of the Social Security Administration... indicating or identifying the claimant's employer and occupation; (7) Records of an academic or...

  4. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... agencies; and (4) Records of federally supported, health-related studies of uranium workers. (b) The...-transporting company, or its successor-in-interest; (3) Records of the Social Security Administration... indicating or identifying the claimant's employer and occupation; (7) Records of an academic or...

  5. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agencies; and (4) Records of federally supported, health-related studies of uranium workers. (b) The...-transporting company, or its successor-in-interest; (3) Records of the Social Security Administration... indicating or identifying the claimant's employer and occupation; (7) Records of an academic or...

  6. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-01

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  7. Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brown, Douglas L.

    1994-01-01

    In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.

  8. Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction

    NASA Astrophysics Data System (ADS)

    Textor, Torsten; Fouda, Moustafa M. G.; Mahltig, Boris

    2010-02-01

    Tollens' reaction is a well-known reaction employed in chemical analyses to detect reducing groups—basically aldehydes. If aldehydes are available in a solution these will reduce silver(I) ions to silver(0). The present paper describes an approach to use a heterogeneous Tollens' reaction to establish thin layers of silver on polyamide surfaces. The polyamide surface is modified with aldehyde functions in a first step employing glutaraldehyde. The resulting polymer material is therefore equipped with reducing groups necessary for the reduction of silver in a next step. The polymer is subsequently treated with Tollens' reagent yielding a yellow/brownish colour typical for the surface plasmon resonance of silver. The extend of the colouring - indicating the amount of silver deposited - varies with both the concentration of the Tollens' reagent and the concentration of the glutaraldehyde solution used for the pre-treatment. The as-prepared samples not only show an excellent antimicrobial activity but also an enormous durability. Polyamide textiles that were treated with the described approach showed unchanged efficiency even after 30 laundry cycles.

  9. [Highly Efficient Bilayer-Structure Yellow-Green OLED with MADN Hole-Transport Layer and the Impedance Spectroscopy Analysis].

    PubMed

    Zhang, Xiao-wen; Mo, Bing-jie; Liu, Li-ming; Wang, Hong-hang; Chen, Er-wei; Xu, Ji-wen; Wang, Hua

    2015-12-01

    Abstract Highly efficient bilayer-structure yellow-green organic light-emitting device (OLED) has been demonstrated based on MADN as hole-transport layer (HTL) and host-guest coped system of [Alq₃: 0.7 Wt% rubrene] as emitting and electron-trans- port layer. The device gives yellow-green emission through incomplete energy transfer from the host of Alq₃ to the guest of ru- brene. An electroluminescent peak of 560 nm, 1931 CIE color coordinates of (0.46, 0.52) and a maximum current efficiency of 7.63 cd · A⁻¹ (which has been enhanced by 30% in comparison with the counterpart having conventional NPB HTL) are ob- served. The hole-transporting characteristics of MADN and NPB have been systematically investigated by constructing hole-only devices and employing impedance spectroscopy analysis. Our results indicate that MADN can be served as an effective hole-trans- port material and its hole-transporting ability is slightly inferior to NPB. This overcomes the shortcoming of hole transporting more quickly than electron in OLED and improves carrier balance in the emitting layer. Consequently, the device current efficien- cy is promoted. In addition, the current efficiency of bilayer-structure OLED with MADN as HTL is comparable to that of conv- entinol trilayer-structure device with MADN as HTL and Alq₃ as electron-transport layer. This indicates that the simplified bi- layer-structure device can be achieved without sacrificing current efficiency. The emitting layer of [Alq: 0.7 Wt% rubrene possesses superior elecron-transporting ability.

  10. [Highly Efficient Bilayer-Structure Yellow-Green OLED with MADN Hole-Transport Layer and the Impedance Spectroscopy Analysis].

    PubMed

    Zhang, Xiao-wen; Mo, Bing-jie; Liu, Li-ming; Wang, Hong-hang; Chen, Er-wei; Xu, Ji-wen; Wang, Hua

    2015-12-01

    Abstract Highly efficient bilayer-structure yellow-green organic light-emitting device (OLED) has been demonstrated based on MADN as hole-transport layer (HTL) and host-guest coped system of [Alq₃: 0.7 Wt% rubrene] as emitting and electron-trans- port layer. The device gives yellow-green emission through incomplete energy transfer from the host of Alq₃ to the guest of ru- brene. An electroluminescent peak of 560 nm, 1931 CIE color coordinates of (0.46, 0.52) and a maximum current efficiency of 7.63 cd · A⁻¹ (which has been enhanced by 30% in comparison with the counterpart having conventional NPB HTL) are ob- served. The hole-transporting characteristics of MADN and NPB have been systematically investigated by constructing hole-only devices and employing impedance spectroscopy analysis. Our results indicate that MADN can be served as an effective hole-trans- port material and its hole-transporting ability is slightly inferior to NPB. This overcomes the shortcoming of hole transporting more quickly than electron in OLED and improves carrier balance in the emitting layer. Consequently, the device current efficien- cy is promoted. In addition, the current efficiency of bilayer-structure OLED with MADN as HTL is comparable to that of conv- entinol trilayer-structure device with MADN as HTL and Alq₃ as electron-transport layer. This indicates that the simplified bi- layer-structure device can be achieved without sacrificing current efficiency. The emitting layer of [Alq: 0.7 Wt% rubrene possesses superior elecron-transporting ability. PMID:26964197

  11. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    USGS Publications Warehouse

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  12. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  13. Real-time dosimeter employed to evaluate the half-value layer in CT

    NASA Astrophysics Data System (ADS)

    McKenney, Sarah E.; Seibert, J. Anthony; Burkett, George W.; Gelskey, Dale; Sunde, Paul B.; Newman, James D.; Boone, John M.

    2014-01-01

    Half-value layer (HVL) measurements on commercial whole body computer tomography (CT) scanners require serial measurements and, in many institutions, the presence of a service engineer. An assembly of aluminum filters (AAF), designed to be used in conjunction with a real-time dosimeter, was developed to provide estimates of the HVL using clinical protocols. Two real-time dose probes, a solid-state and air ionization chamber, were examined. The AAF consisted of eight rectangular filters of high-purity aluminum (Type 1100), symmetrically positioned to form a cylindrical ‘cage’ around the probe's detective volume. The incident x-ray beam was attenuated by varying thicknesses of aluminum filters as the gantry completed a minimum of one rotation. Measurements employing real-time chambers were conducted both in service mode and with a routine abdomen/pelvis protocol for several combinations of x-ray tube potentials and bow tie filters. These measurements were validated against conventional serial HVL measurements. The average relative difference between the HVL measurements using the two methods was less than 5% when using a 122 mm diameter AAF; relative differences were reduced to 1.1% when the diameter was increased to 505 mm, possibly due to reduced scatter contamination. Use of a real-time dose probe and the AAF allowed for time-efficient measurements of beam quality on a clinical CT scanner using clinical protocols.

  14. 49 CFR 372.103 - Motor vehicles employed solely in transporting school children and teachers to or from school.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... school children and teachers to or from school. 372.103 Section 372.103 Transportation Other Regulations... TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS EXEMPTIONS, COMMERCIAL ZONES, AND TERMINAL AREAS Exemptions § 372.103 Motor vehicles employed solely in transporting school children and teachers to or...

  15. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  16. A simple parameterization for the turbulent kinetic energy transport terms in the convective boundary layer derived from large eddy simulation

    NASA Astrophysics Data System (ADS)

    Puhales, Franciano Scremin; Rizza, Umberto; Degrazia, Gervásio Annes; Acevedo, Otávio Costa

    2013-02-01

    In this work a parametrization for the transport terms of the turbulent kinetic energy (TKE) budget equation, valid for a convective boundary layer (CBL) is presented. This is a hard task to accomplish from experimental data, especially because of the difficulty associated to the measurements of pressure turbulent fluctuations, which are necessary to determine the pressure correlation TKE transport term. Thus, employing a large eddy simulation (LES) a full diurnal planetary boundary layer (PBL) cycle was simulated. In this simulation a forcing obtained from experimental data is used, so that the numerical experiment represents a more realistic case than a stationary PBL. For this study all terms of the TKE budget equation were determined for a CBL. From these data, polynomials that describe the TKE transport terms’ vertical profiles were adjusted. The polynomials found are a good description of the LES data, and from them it is shown that a simple formulation that directly relates the transport terms to the TKE magnitude has advantages on other parameterizations commonly used in CBL numerical models. Furthermore, the present study shows that the TKE turbulent transport term dominates over the TKE transport by pressure perturbations and that for most of the CBL these two terms have opposite signs.

  17. Transport of spherical colloids in layered phases of binary mixtures with rod-like particles.

    PubMed

    Piedrahita, Mauricio; Cuetos, Alejandro; Martínez-Haya, Bruno

    2015-05-01

    The transport properties of colloids in anisotropic media constitute a general problem of fundamental interest in experimental sciences, with a broad range of technological applications. This work investigates the transport of soft spherical colloids in binary mixtures with rod-like particles by means of Monte Carlo and Brownian Dynamics simulations. Layered phases are considered, that range from smectic phases to lamellar phases, depending on the molar fraction of the spherical particles. The investigation serves to characterize the distinct features of transport within layers versus those of transport across neighboring layers, both of which are neatly differentiated. The insertion of particles into layers and the diffusion across them occur at a smaller rate than the intralayer diffusion modulated by the formation of transitory cages in its initial stages. Collective events, in which two or more colloids diffuse across layers in a concerted way, are described as a non-negligible process in these fluids.

  18. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

  19. Ultrathin ammonium heptamolybdate films as efficient room-temperature hole transport layers for organic solar cells.

    PubMed

    Qiu, Weiming; Hadipour, Afshin; Müller, Robert; Conings, Bert; Boyen, Hans-Gerd; Heremans, Paul; Froyen, Ludo

    2014-09-24

    Ammonium heptamolybdate (NH4)6Mo7O24·4H2O (AHM) and its peroxo derivatives are analyzed as solution-processed room temperature hole transport layer (HTL) in organic solar cells. Such AHM based HTLs are investigated in devices with three different types of active layers, i.e., solution-processed poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acid methyl ester(P3HT/PC60BM), poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]/[6,6]-phenyl C70-butyric acid methyl ester(PCDTBT/PC70BM) and evaporated small molecule chloro(subphthalocyaninato)boron(III) (SubPc)/C60. By virtue of their high work functions, AHM based HTLs outperform the commonly used poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) HTL for devices employing deep HOMO level active materials. Moreover, devices using AHM based HTLs can achieve higher short circuit current (Jsc) than the ones with evaporated molybdenum oxide(eMoO3), and thus better power conversion efficiency (PCE). In addition, P3HT/PC60BM devices with AHM based HTLs show air stability comparable to those with eMoO3, and much better than the ones with PEDOT:PSS.

  20. Extreme detached dust layers near Martian volcanoes: Evidence for dust transport by mesoscale circulations forced by high topography

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.; Cantor, B. A.; Hayne, P. O.; Kass, D. M.; Kleinböhl, A.; McCleese, D. J.; Piqueux, S.; Schofield, J. T.; Shirley, J. H.

    2015-05-01

    Modeling suggests that thermal circulations over Mars's highest volcanoes transport water vapor and dust from the surface into the middle atmosphere, forming detached layers in these constituents. Intense vertical mixing also takes place in regional and global dust storms, which can generate detached layers that are extreme in both altitude and magnitude. Here we employ observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter, taking advantage of improved vertical coverage in MCS's aerosol retrievals, to discover a new class of extreme detached dust layers (EDDLs). Observed during minimal dust storm activity and furthermore distinguished by their potentially large and measurable horizontal extent (>1000 km), these EDDLs cluster near Olympus Mons and the Tharsis Montes, from which they likely originate. The existence of these EDDLs suggests that vertical mixing by topographic circulations can be much stronger than previously modeled and more frequent than previously observed.

  1. Modeling of the Coastal Boundary Layer and Pollutant Transport in New England

    NASA Astrophysics Data System (ADS)

    Angevine, Wayne M.; Tjernström, Michael; Žagar, Mark

    2006-01-01

    Concentrations of ozone exceeding regulatory standards are regularly observed along the coasts of New Hampshire and Maine in summer. These events are primarily caused by the transport of pollutants from urban areas in Massachusetts and farther south and west. Pollutant transport is most efficient over the ocean. The coastline makes transport processes complex because it makes the structure of the atmospheric boundary layer complex. During pollution episodes, the air over land in daytime is warmer than the sea surface, so air transported from land over water becomes statically stable and the formerly well-mixed boundary layer separates into possibly several layers, each transported in a different direction. This study examines several of the atmospheric boundary layer processes involved in pollutant transport. A three-dimensional model [the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS)] run on grids of 2.5 and 7.5 km is used to examine the winds, thermodynamic structure, and structure of tracer plumes emitted from Boston, Massachusetts, and New York City, New York, in two different real cases—one dominated by large-scale transport (22 23 July 2002) and one with important mesoscale effects (11 14 August 2002). The model simulations are compared with measurements taken during the 2002 New England Air Quality Study. The model simulates the basic structure of the two different episodes well. The boundary layer stability over the cold water is weaker in the model than in reality. The tracer allows for easy visualization of the pollutant transport.

  2. Four-State Sub-12-nm FETs Employing Lattice-Matched II-VI Barrier Layers

    NASA Astrophysics Data System (ADS)

    Jain, F.; Chan, P.-Y.; Suarez, E.; Lingalugari, M.; Kondo, J.; Gogna, P.; Miller, B.; Chandy, J.; Heller, E.

    2013-11-01

    Three-state behavior has been demonstrated in Si and InGaAs field-effect transistors (FETs) when two layers of cladded quantum dots (QDs), such as SiO x -cladded Si or GeO x -cladded Ge, are assembled on the thin tunnel gate insulator. This paper describes FET structures that have the potential to exhibit four states. These structures include: (1) quantum dot gate (QDG) FETs with dissimilar dot layers, (2) quantum dot channel (QDC) with and without QDG layers, (3) spatial wavefunction switched (SWS) FETs with multiple coupled quantum well channels, and (4) hybrid SWS-QDC structures having multiple drains/sources. Four-state FETs enable compact low-power novel multivalued logic and two-bit memory architectures. Furthermore, we show that the performance of these FETs can be enhanced by the incorporation of II-VI nearly lattice-matched layers in place of gate oxides and quantum well/dot barriers or claddings. Lattice-matched high-energy gap layers cause reduction in interface state density and control of threshold voltage variability, while providing a higher dielectric constant than SiO2. Simulations involving self-consistent solutions of the Poisson and Schrödinger equations, and transfer probability rate from channel (well or dot layer) to gate (QD layer) are used to design sub-12-nm FETs, which will aid the design of multibit logic and memory cells.

  3. Physics of Nickel Oxide Hole Transport Layer for Organic Photovoltaics Application

    NASA Astrophysics Data System (ADS)

    Widjonarko, Nicodemus Edwin

    Organic photovoltaics (OPV) offers a potential for solar-electric power generation to be affordable. Crucial to OPV device performance is the incorporation of interlayers, ultra-thin films deposited between the photoactive material and the electrical contacts. These interlayers have various, targeted functionalities: optical window, encapsulation, or electronic bridge. The last category is known as "transport layers'', and is the focus of this thesis. In this thesis, we explore and investigate the physics that leads to improvements in OPV device performance when a transport layer is employed. We focus on the use of non-stoichiometric nickel oxide (NiOx) as a hole transport layer (HTL) in poly(3-hexylthiophene):phenyl-C 61-butryric acid methyl ester (P3HT:PCBM) solar cells. NiOx deposited by physical vapor deposition is chosen for this study because of its successful use as HTL, the ease to engineer its electronic properties by varying deposition parameters, and it leading to improved device lifetime. Our initial studies indicate that the well-known "high work-function'' rule is not adequate to explain the trends observed in the devices. More in-depth studies is required to fully understand the impact of HTL electronic properties on device performance. These series of investigations reveal that band-offsets at the NiOx / P3HT:PCBM interface need to be taken into account in order to explain the observed trends. Non-optimal band-offsets lead to either sigmoidal current-voltage characteristics or reduced photocurrent. The optimal energy level alignment depends on the energy levels of the photo-active material, which are measurable. This means that an HTL material must be optimized for different photoactive material. A simple and practical set of rules are proposed to achieve this optimal energy level alignment for a given photoactive material. The rules not only include the pervasively-used "high work-function'' rule, but also the impacts of band-offsets investigated

  4. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    NASA Astrophysics Data System (ADS)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-01

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (-0.030, +0.001) shifting only from 1000 to 10 000 cd/m2. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq)3 as phosphorescent red dopant in electron transport layer.

  5. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    SciTech Connect

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){sub 3} as phosphorescent red dopant in electron transport layer.

  6. A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air.

    PubMed

    Wissler, Eugene H; Havenith, George

    2009-03-01

    Overall resistances for heat and vapor transport in a multilayer garment depend on the properties of individual layers and the thickness of any air space between layers. Under uncomplicated, steady-state conditions, thermal and mass fluxes are uniform within the garment, and the rate of transport is simply computed as the overall temperature or water concentration difference divided by the appropriate resistance. However, that simple computation is not valid under cool ambient conditions when the vapor permeability of the garment is low, and condensation occurs within the garment. Several recent studies have measured heat and vapor transport when condensation occurs within the garment (Richards et al. in Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002; Havenith et al. in J Appl Physiol 104:142-149, 2008). In addition to measuring cooling rates for ensembles when the skin was either wet or dry, both studies employed a flat-plate apparatus to measure resistances of individual layers. Those data provide information required to define the properties of an ensemble in terms of its individual layers. We have extended the work of previous investigators by developing a rather simple technique for analyzing heat and water vapor transport when condensation occurs within a garment. Computed results agree well with experimental results reported by Richards et al. (Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002) and Havenith et al. (J Appl Physiol 104:142-149, 2008). We discuss application of the method to human subjects for whom the rate of sweat secretion, instead of the partial pressure of water on the skin, is specified. Analysis of a more complicated five-layer system studied by Yoo and Kim (Text Res J 78:189-197, 2008) required an iterative computation based on principles defined in this paper. PMID:19125281

  7. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

    PubMed Central

    2010-01-01

    Background The finite volume solver Fluent (Lebanon, NH, USA) is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. Methods An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) schemes. The fluid has a diffusivity of 3.125 × 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. Results The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140% and 116% was demonstrated

  8. 49 CFR 372.103 - Motor vehicles employed solely in transporting school children and teachers to or from school.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... school children and teachers to or from school. 372.103 Section 372.103 Transportation Other Regulations... Exemptions § 372.103 Motor vehicles employed solely in transporting school children and teachers to or from school. The exemption set forth in 49 U.S.C. 13506(a)(1) shall not be construed as being inapplicable...

  9. Thermal transport across graphene and single layer hexagonal boron nitride

    SciTech Connect

    Zhang, Jingchao E-mail: yyue@whu.edu.cn; Hong, Yang; Yue, Yanan E-mail: yyue@whu.edu.cn

    2015-04-07

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs.

  10. The Benthic Boundary Layer: Transport Processes and Biogeochemistry

    NASA Astrophysics Data System (ADS)

    van Duren, Luca A.; Middelburg, Jack J.

    Interdisciplinary research is certainly one of the current buzzwords that needs to be incorporated in virtually every grant proposal. The idea that integration of different scientific fields is a prerequisite for progress in Earth sciences is now well recognized. The benthic boundary layer (BBL) is one area of research in which physicists, chemists, biologists, geologists, and engineers have worked in close and fruitful cooperation for several decades. The BBL comprises the near-bottom layer of water, the sediment-water interface, and the top layer of sediment that is directly influenced by the overlying water. In 1974, a BBL conference in France resulted in a book titled The Benthic Boundary Layer edited by I.N. McCave. This publication contained contributions from scientists from a wide range of disciplines and gave an overview of the state-of-the-art of BBL research. However, science has moved on in the past 25 years. Significant conceptual and technological progress has been made, and it is definitely time for an update.

  11. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  12. Reducing the contact resistance of SiNW devices by employing a heavily doped carrier injection layer.

    PubMed

    Liu, Donghua; Shi, Zhiwen; Zhang, Lianchang; He, Congli; Zhang, Jing; Cheng, Meng; Yang, Rong; Tian, Xuezeng; Bai, Xuedong; Shi, Dongxia; Zhang, Guangyu

    2012-08-01

    Silicon nanowires (SiNWs) are promising building blocks for future electronic devices. In SiNW-based devices, reducing the contact resistance of SiNW-metal as much as possible is critically important. Here we report a simple fabrication approach for SiNW field effect transistors (FETs) with low contact resistances by employing a heavily doped carrier injection layer wrapped around SiNWs at the contact region. Both n- and p-type SiNW-FET devices with carrier injection layers were investigated, the contact resistances were one order smaller than those without carrier injection layers and only contribute less than 14.8% for n-type devices and 11.4% for p-type devices, respectively, to the total resistance. Such low contact resistance guarantees the device characteristics mainly from the channel region of SiNW-based devices.

  13. Performance evaluation of transport layer protocols for transmitting real-time data over DiffServ networks

    NASA Astrophysics Data System (ADS)

    Noda, Yoko; Sakai, Tatsuhiko; Shigeno, Hiroshi; Matsushita, Yutaka

    2001-07-01

    In this paper, we discuss transport layer protocols to support real-time data transmission overnetworks using Differentiated Services (Diffserv) where bandwidth is guaranteed. Assuming that an application transmits streaming video data over a Diffserv network, we have performed simulation experiments to evaluate performance of real-time transmission using standard internet protocols, UDP and TCP as a transport layer protocol. The application is designed to buffer a portion of the data on the receiver before starting the playback and to operate in a streaming mode. Consequently, when packets are lost over Diffserv networks, TCP shows better performance than UDP. Simulation results show that employment of SACK option for TCP can recover lost packets efficiently and improve performance of real-time transmission. Currently, a growing number of real-time media applications over Internet are being implemented using UDP, because reliable delivery mechanism of TCP can obstruct real-time data transmission that is timing critical. However, in our experimental environment, retransmission and congestion control mechanism of TCP make use of bandwidth guaranteed by Diffserv, and help to provide more reliable delivery of real-time data than UDP without serious impacts on time-sensitive delivery. Therefore, despite of the general belief that TCP is not suitable for time-sensitive delivery, in our experiment, we show that TCP is a transport layer protocol suitable for real-time data transmission over Diffserv networks.

  14. Phonon transport in single-layer boron nanoribbons.

    PubMed

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-11-01

    Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green's function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene's. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.

  15. Phonon transport in single-layer boron nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-11-01

    Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.

  16. Phonon transport in single-layer boron nanoribbons.

    PubMed

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-11-01

    Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green's function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene's. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications. PMID:27669055

  17. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.

  18. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices. PMID:27314610

  19. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  20. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

  1. Surface immobilization of a tetra-ruthenium substituted polyoxometalate water oxidation catalyst through the employment of conducting polypyrrole and the layer-by-layer (LBL) technique.

    PubMed

    Anwar, Nargis; Sartorel, Andrea; Yaqub, Mustansara; Wearen, Kevin; Laffir, Fathima; Armstrong, Gordon; Dickinson, Calum; Bonchio, Marcella; McCormac, Timothy

    2014-06-11

    A tetra Ru-substituted polyoxometalate Na10[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2] (Ru4POM) has been successfully immobilised onto glassy carbon electrodes and indium tin oxide (ITO) coated glass slides through the employment of a conducting polypyrrole matrix and the layer-by-layer (LBL) technique. The resulting Ru4POM doped polypyrrole films showed stable redox behavior associated with the Ru centres within the Ru4POM, whereas, the POM's tungsten-oxo redox centres were not accessible. The films showed pH dependent redox behavior within the pH range 2-5 whilst exhibiting excellent stability towards redox cycling. The layer-by-layer assembly was constructed onto poly(diallyldimethylammonium chloride) (PDDA) modified carbon electrodes by alternate depositions of Ru4POM and a Ru(II) metallodendrimer. The resulting Ru4POM assemblies showed stable redox behavior for the redox processes associated with Ru4POM in the pH range 2-5. The charge transfer resistance of the LBL films was calculated through AC-Impedance. Surface characterization of both the polymer and LBL Ru4POM films was carried out using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Initial investigations into the ability of the Ru4POM LBL films to electrocatalytically oxidise water at pH 7 have also been conducted. PMID:24758586

  2. Layer-by-layer synthesis of metal-containing conducting polymers: caged metal centers for interlayer charge transport.

    PubMed

    Liu, Wenjun; Huang, Weijie; Pink, Maren; Lee, Dongwhan

    2010-09-01

    Metal-templated [2 + 3]-type cocondensation of a pi-extended boronic acid and nioxime furnished a series of cage molecules, which were electropolymerized to prepare metal-containing conducting polymers (MCPs). Despite sharing essentially isostructural organic scaffolds, these materials display metal-dependent electrochemical properties as evidenced by different redox windows observed for M = Co, Fe, Ru. Consecutive electropolymerization using two different monomers furnished bilayer MCPs having different metals in each layer. In addition to functioning as heavy atom markers in cross-sectional analysis by FIB and EDX, redox-active metal centers participate in voltage-dependent interlayer electron transport to give rise to cyclic voltammograms that are distinctively different from those of each layer alone or random copolymers. A simple electrochemical technique can thus be used as a straightforward diagnostic tool to investigate the structural ordering of electrically conductive layered materials. PMID:20690667

  3. Semianalytical Solutions of Radioactive or Reactive Tracer Transport in Layered Fractured Media

    SciTech Connect

    G.J. Moridis; G. S. Bodvarsson

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  4. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    SciTech Connect

    Moridis, G.J.; Bodvarsson, G.S.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  5. Fully nonlinear δf gyrokinetics for scrape-off layer parallel transport

    NASA Astrophysics Data System (ADS)

    Pan, Q.; Told, D.; Jenko, F.

    2016-10-01

    Edge plasmas present a few challenges for gyrokinetic simulations that are absent in tokamak cores. Among them are large fluctuation amplitudes and plasma-wall interactions in the open field line region. In this paper, the widely used core turbulence code GENE, which employs a δf-splitting technique, is extended to simulate open systems with large electrostatic fluctuations. With inclusion and proper discretization of the parallel nonlinear term, it becomes equivalent to a full-f code and the δf-splitting causes no fundamental difficulty in handling large fluctuations. The loss of particles to the wall is accounted for by using a logical sheath boundary, which is implemented in the context of a finite-volume method. The extended GENE code is benchmarked for the well-established one-dimensional parallel transport problem in the scrape-off layer during edge-localized modes. The parallel heat flux deposited onto the divertor target is compared with previous simulation results and shows good agreement.

  6. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  7. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.

    PubMed

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang Michael; Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  8. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    NASA Astrophysics Data System (ADS)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  9. Electroosmosis in Membranes: Effects of Unstirred Layers and Transport Numbers

    PubMed Central

    Barry, P. H.; Hope, A. B.

    1969-01-01

    When a current is passed through a membrane system, differences in transport numbers between the membrane and the adjacent solutions will, in general, result in depletion and enhancement of concentrations at the membrane-solution interfaces. This will be balanced by diffusion back into the bulk solution, diffusion of solute back across the membrane itself, and osmosis resulting from these local concentration gradients. The two main results of such a phenomenon are (1) that there is a current-induced volume flow, which may be mistaken for electroosmosis, and (2) that there will generally develop transient changes in potential difference (PD) across membranes during and after the passage of current through them. PMID:5786317

  10. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing

    PubMed Central

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan

    2016-01-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689

  11. Effects of hole-transporting layers of perovskite-based solar cells

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Kida, Tomoyasu; Takagi, Tatsuru; Oku, Takeo

    2016-02-01

    Fabrication and characterization of the photovoltaic and optical properties, and microstructure of perovskite-based solar cells with lead phthalocyanine (PbPc), zinc phthalocyanine, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], and copper(I) thiocyanate as hole-transporting layers were investigated. X-ray diffraction analysis and energy-dispersive X-ray spectroscopy were used to identify surface morphologies of the crystal structure and the elemental composition. Introducing PbPc into perovskite solar cells extended the retaining period of photovoltaic activity and performance. The effects of the hole-transporting layer on incident photon-to-current efficiency were investigated. The energy diagram and photovoltaic mechanism of the perovskite solar cells with the hole-transporting layer are discussed.

  12. A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Çeçen, A.; Fast, T.; Kumbur, E. C.; Kalidindi, S. R.

    2014-01-01

    The diffusion media (DM) has been shown to be a vital component for performance of polymer electrolyte fuel cells (PEFCs). The DM has a dual-layer structure composed of a macro-substrate referred to as the gas diffusion layer (GDL) coated with a micro-porous layer (MPL). Efficient prediction of the effective transport properties of the DM from its internal structure is essential to optimizing the multifunctional characteristics of this critical component. In this work, a unique data-driven approach to establishing structure-property correlations is introduced and applied to the case of gas diffusion in the GDL and MPL. This new approach provides an automated process to produce unbiased estimators to microstructural variance, in contrast to many process-related (hence biased) parameters employed by prominent correlations in the field. The present approach starts with a rigorous quantification of microstructure in the form of n-point statistics. It is followed by the identification of the key aspects of the internal structure through the use of principle component analysis. A data-driven correlation is established when the principal components are related to effective diffusivity by multivariate linear regression. This data-driven approach is compared to the conventional correlations and shown to achieve a very high accuracy for capturing the diffusive transport in the tested PEFC components.

  13. Transparent polymer solar cells employing a layered light-trapping architecture

    NASA Astrophysics Data System (ADS)

    Betancur, Rafael; Romero-Gomez, Pablo; Martinez-Otero, Alberto; Elias, Xavier; Maymó, Marc; Martorell, Jordi

    2013-12-01

    Organic solar cells have unique properties that make them very attractive as a renewable energy source. Of particular interest are semi-transparent cells, which have the potential to be integrated into building façades yet not completely block light. However, making organic cells transparent limits the metal electrode thickness to a few nanometres, drastically reducing its reflectivity and the device photon-harvesting capacity. Here, we propose and implement an ad hoc path for light-harvesting recovery to bring the photon-to-charge conversion up to almost 80% that of its opaque counterpart. We report semi-transparent PTB7:PC71BM cells that exhibit 30% visible light transmission and 5.6% power conversion efficiency. Non-periodic photonic crystals are used to trap near-infrared and near-ultraviolet photons. By modifying the layer structure it is possible to tune the device colour without significantly altering cell performance.

  14. Highly stable perovskite solar cells with an all-carbon hole transport layer.

    PubMed

    Wang, Feijiu; Endo, Masaru; Mouri, Shinichiro; Miyauchi, Yuhei; Ohno, Yutaka; Wakamiya, Atsushi; Murata, Yasujiro; Matsuda, Kazunari

    2016-06-01

    Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene.

  15. Highly stable perovskite solar cells with an all-carbon hole transport layer.

    PubMed

    Wang, Feijiu; Endo, Masaru; Mouri, Shinichiro; Miyauchi, Yuhei; Ohno, Yutaka; Wakamiya, Atsushi; Murata, Yasujiro; Matsuda, Kazunari

    2016-06-01

    Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene. PMID:27232674

  16. Impacts of Transport Properties of Porous Corrosion Product Layer on Effective Corrosion Rate

    NASA Astrophysics Data System (ADS)

    Li, Xiaobai; Cook, David

    2012-11-01

    Condensing exhaust gases containing H2O, SO3 and NOx cause serious corrosion failure in various industry processes. For example, in modern compact heat cells, corrosion products deposit on top of the heat exchanger cooling fins, blocking the flow passages and drastically decreasing system performance. The transport properties of porous corrosion product layers play important role in determining the corrosion tendency and observed corrosion rate. To understand the corrosion mechanism for Aluminum alloy in sulfuric acid environment, impacts of transport properties of corrosion residual layers are investigated with different numerical models for porous layer diffusivity. The effective corrosion rates resulted from these models are compared to corresponding experimental measurements. A multilayer diffusivity model in which diffusivity depends both on porous layer structure and composition shows excellent agreements with experimental data. This model is currently being used in a multi-scale flow simulation framework to predict corrosion phenomena in heat cells.

  17. Highly stable perovskite solar cells with an all-carbon hole transport layer

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Endo, Masaru; Mouri, Shinichiro; Miyauchi, Yuhei; Ohno, Yutaka; Wakamiya, Atsushi; Murata, Yasujiro; Matsuda, Kazunari

    2016-06-01

    Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene.Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene. Electronic supplementary information (ESI

  18. Laminarization model for turbulent eddy transport in highly accelerated nozzle turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Boldman, D. R.; Todd, C.

    1972-01-01

    A laminarization model which consists of a completely laminar sublayer region near the wall and a turbulent wake region is developed for the turbulent eddy transport in accelerated turbulent boundary layers. This laminarization model is used in a differential boundary layer calculation which was applied to nozzle flows. The resulting theoretical velocity profiles are in good agreement with the experimental nozzle data in the convergent region.

  19. Magneto-transport properties of a random distribution of few-layer graphene patches

    NASA Astrophysics Data System (ADS)

    Iacovella, Fabrice; Trinsoutrot, Pierre; Mitioglu, Anatolie; Conédéra, Véronique; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Vergnes, Hugues; Caussat, Brigitte; Plochocka, Paulina; Escoffier, Walter

    2014-11-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  20. Employment of Mixed Layer Models and Large Eddy Simulations to Determine the Factors Controlling Stratocumulus Cloud Lifetime over the Coast

    NASA Astrophysics Data System (ADS)

    Ghonima, M. S.; Heus, T.; Norris, J. R.; Kleissl, J. P.

    2015-12-01

    Summertime marine boundary layer stratocumulus (Sc) clouds have a strong impact on ecology and infrastructure over the coast of California. Modeling the lifetime of such clouds in global climate models (GCM) or numerical weather prediction models (NWP) is difficult and significant errors are typically observed. For instance, stratocumulus clouds over the coast of southern California in the Weather Research and Forecasting (WRF) model were found to dissipate, on average, 1.9 hours earlier than observed via satellite. In order to determine the factors controlling the Sc lifetime, we have employed large eddy simulations (LES) and a mixed layer model (MLM). Enhancements to previous MLMs include a temperature dependent radiation scheme, a land surface model, and a novel entrainment parameterization scheme for stratocumulus clouds over land in which the entrainment velocity is derived as a function of the surface buoyancy flux and the buoyancy flux integrated over the cloud layer. The advantage of using the MLM is that different mechanisms and feedbacks controlling stratocumulus cloud thickness can be examined rapidly through sensitivity studies. We find that during the night cloud lifetime is modulated by longwave cooling of the boundary layer and entrainment flux warming and drying. During the day, surface shortwave radiative heating drives surface flux therefore increasing the turbulence within the boundary layer and increasing entrainment flux. For wet surface conditions, the increase in latent heat flux moistens the boundary layer and offsets the increase in entrainment flux warming and drying of the boundary layer and clouds persist throughout the day. For dry surface conditions, the combination of increased surface sensible heat flux warming the boundary layer and increased entrainment flux act to dissipate the cloud within a couple of hours after sunrise. For both cases, the sea breeze advects cool ocean air that acts to thicken and prolong the cloud lifetime

  1. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  2. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  3. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  4. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  5. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  6. Quantifying the transport of subcloud layer reactants by shallow cumulus clouds over the Amazon

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.; van Stratum, B. J. H.; Krol, M. C.; Lelieveld, J.

    2013-12-01

    We investigate the vertical transport of atmospheric chemical reactants from the subcloud layer to the cumulus cloud layer driven by shallow convection over the Amazon during the dry season. The dynamical and chemical assumptions needed for mesoscale and global chemistry transport model parametrizations are systematically analyzed using a Large Eddy Simulation model. We quantify the mass flux transport contribution to the temporal evolution of reactants. Isoprene, a key atmospheric compound over the tropical rain forest, decreases by 8.5% h-1 on average and 15% h-1 at maximum due to mass‒flux‒induced removal. We apply mass flux parametrizations for the transport of chemical reactants and obtain satisfactory agreement with numerically resolved transport, except for some reactants like O3, NO, and NO2. The latter is caused by the local partitioning of reactants, influenced by UV radiation extinction by clouds and small‒scale variability of ambient atmospheric compounds. By considering the longer‒lived NOx (NO + NO2), the transport is well represented by the parametrization. Finally, by considering heterogeneous surface exchange conditions, it is demonstrated that the parametrizations are sensitive to boundary conditions due to changes in the boundary layer dynamics.

  7. Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2015-04-14

    In this work, the effects of a titanium (Ti) layer on the charge transport and recombination rates of flexible perovskite solar cells were studied. Ti as an efficient barrier layer was deposited directly on PET-ITO flexible substrates through RF magnetic sputtering using a Ti-source and a pressure of ∼5 mTorr. A Ti coated PET-ITO was used for the fabrication of a flexible perovskite solar cell without using any metal oxide layer. The fabricated flexible perovskite solar cell was composed of a PET-ITO/Ti/perovskite (CH3NH3PbI3)/organic hole transport layer of 2,2',7,7'-tetrakis [N,N'-di-p-methoxyphenylamine]-9,9'-spirobifluorene (spiro-OMeTAD)-Li-TFSI/Ag. A high conversion efficiency of ∼8.39% along with a high short circuit current (JSC) of ∼15.24 mA cm(-2), an open circuit voltage (VOC) of ∼0.830 V and a high fill factor (FF) of ∼0.66 was accomplished by the fabricated flexible perovskite solar cell under a light illumination of ∼100 mW cm(-2) (1.5 AM). Intensity-modulated photocurrent (IMPS)/photovoltage spectroscopy (IMVS) studies demonstrated that the fabricated flexible perovskite solar cell considerably reduced the recombination rate.

  8. Science and Technology and Its Application to the Problems of Pollution, Transportation and Employment. Public Science Policy: Background Readings.

    ERIC Educational Resources Information Center

    Galvin, Donald W.; Jannakos, Nick

    The document covers what government leaders and the science and technology community must do to set up the mechanism and lines of communication required to bring technology to bear on current public problems. It identifies potential applications of new technology to social problems in the areas of pollution, transportation, employment and future…

  9. Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating

    PubMed Central

    Gonnelli, R. S.; Paolucci, F.; Piatti, E.; Sharda, Kanudha; Sola, A.; Tortello, M.; Nair, Jijeesh R.; Gerbaldi, C.; Bruna, M.; Borini, S.

    2015-01-01

    The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·1014 cm−2 has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T2 component – that can be associated with electron-electron scattering – and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy. PMID:25906088

  10. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-01

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m-2 K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the

  11. The effect of interfacial layers on charge transport in organic solar cell

    NASA Astrophysics Data System (ADS)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  12. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers.

    PubMed

    Ikeda, K; Ueda, C; Yamada, K; Nakamura, A; Hatsuda, Y; Kawanishi, S; Nishii, S; Ogawa, M

    2015-07-01

    Human choriocarcinoma has been used as a model to study trophoblast transcellular drug transport in the placenta. Previous models had limitations regarding low molecular weight drug transport through the intracellular gap junction. The purpose of this study was to evaluate placental carrier-mediated transport across a differentiating JEG-3 choriocarcinoma cell (DJEGs) layer model in which the intracellular gap junction was restricted. Cimetidine is the substrate of an efflux transporter, breast cancer resistance protein (BCRP). BCRP highly expressed in the placenta, and its function in the DJEGs model was investigated. In addition, the placental drug transport of another efflux transporter, multidrug resistance-associated proteins (MRPs), and an influx transporter, monocarboxylate transporter (MCT), were examined with various substrates. Cimetidine permeated from the fetal side to the maternal side at significantly high levels and saturated in a dose-dependent manner. The permeability coefficient of a MRP substrate, fluorescein, across the DJEGs model was significantly increased by inhibiting MRP function with probenecid. On the other hand, permeation in the influx direction to the fetal side with a substrate of MCT, valproic acid, had a gentle dose-dependent saturation. These findings suggest that the DJEGs model could be used to evaluate transcellular placental drug transport mediated by major placental transporters.

  13. Assessing the performance of reactant transport layers and flow fields towards oxygen transport: A new imaging method based on chemiluminescence

    NASA Astrophysics Data System (ADS)

    Lopes, Thiago; Ho, Matthew; Kakati, Biraj K.; Kucernak, Anthony R. J.

    2015-01-01

    A new, simple and precise ex-situ optical imaging method is developed which allows indirect measurement of the partial pressure of oxygen (as ozone) within fuel cell components. Images of oxygen distribution are recorded with higher spatial (∼20 μm) and time (40 ms) resolutions. This approach is applied to assess oxygen concentration across the face of a pseudo polymer electrolyte fuel cell (PEFC), with a serpentine design flow field. We show that the amount of light produced is directly proportional to the partial pressure of ozone, in the same way as the local current density in a PEFC is proportional to the partial pressure of bimolecular oxygen. Hence the simulated system provides information relevant to a PEFC with the same geometry operating at the same stoichiometric ratio. This new approach allows direct imaging of flow under lands due to pressure gradients between the adjacent channels and non-laminar flow effects due to secondary flow around U-turns. These are major discoveries of fundamental importance in guiding materials development and in validating modelling studies. We find that contrary to many simulation papers, advection is an important mechanism in both the gas diffusion layer (more properly "reactant transport layer") and the microporous layer. Models which do not include these effects may underestimate reactant transport to the catalyst layer.

  14. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics.

    PubMed

    Xie, Fengxian; Choy, Wallace C H; Wang, Chuandao; Li, Xinchen; Zhang, Shaoqing; Hou, Jianhui

    2013-04-11

    A simple one-step method is reported to synthesize low-temperature solution-processed transition metal oxides (TMOs) of molybdenum oxide and vanadium oxide with oxygen vacancies for a good hole-transport layer (HTL). The oxygen vacancy plays an essential role for TMOs when they are employed as HTLs: TMO films with excess oxygen are highly undesirable for their application in organic electronics.

  15. Investigation of hydrogeologic processes in a dipping layer structure - 2. Transport and biodegradation of organics

    NASA Astrophysics Data System (ADS)

    Alfnes, E.; Breedveld, G. D.; Kinzelbach, W.; Aagaard, P.

    2004-04-01

    Numerical simulation tools have been used to study the dominating processes during transport of aromatic hydrocarbons in the unsaturated soil zone. Simulations were based on field observations at an experimental site located on a glacial delta plain with pronounced layered sedimentary structures. A numerical model for transport in the unsaturated zone, SWMS-3D, has been extended to incorporate coupled multispecies transport, microbial degradation following Monod kinetics and gas diffusive transport of oxygen and hydrocarbons. The flow field parameters were derived from previous work using nonreactive tracers. Breakthrough curves (BTC) from the hydrocarbon field experiment were used to determine sorption parameters and Monod kinetic parameters using a fitting procedure. The numerical simulations revealed that the assumption of homogeneous layers resulted in deviations from the field observations. The deviations were more pronounced with incorporation of reactive transport, compared with earlier work on nonreactive transport. To be able to model reasonable BTC, sorption had to be reduced compared to laboratory experiments. The initial biomass and the maximum utilisation rate could be adjusted to capture both the initial lag phase and the overall degradation rate. Nevertheless, local oxygen limitation is predicted by the model, which was not observed in the field experiment. Incorporation of evaporation and diffusive gas transport of the hydrocarbons did not significantly change the local oxygen demand. The main cause of the observed discrepancies between model and field are attributed to channelling as a result of small-scale heterogeneities such as biopores.

  16. Analytical solution for the advection-dispersion transport equation in layered media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  17. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Damle, Ashok S; Cole, J Vernon

    2008-11-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  18. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R.

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters.

  19. The Role of Wave Cyclones in Transporting Boundary Layer Air to the Free Troposphere During the Spring 2001 NASA / TRACE-P Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Hannan, J. R.; Crawford, J. H.; Sachse, G. W.; Blake, D. R.

    2003-01-01

    Transport of boundary layer air to the free troposphere by cyclones during NASA's Transport and Chemical Evolution over the Pacific (TRACE-P) experiment is investigated. Airstreams responsible for boundary layer venting are diagnosed using results from a high-resolution meteorological model (MM5) together with in situ and remotely sensed chemical data. Hourly wind data from the MM5 are used to calculate three-dimensional grids of backward air trajectories. A reverse domain filling (RDF) technique then is employed to examine the characteristics of airstreams over the computational domain, and to isolate airstreams ascending from the boundary layer to the free troposphere during the previous 36 hours. Two cases are examined in detail. Results show that airstreams responsible for venting the boundary layer differ considerably from those described by classic conceptual models and in the recent literature. In addition, airstreams sampled by the TRACE-P aircraft are found to exhibit large variability in chemical concentrations. This variability is due to differences in the boundary layer histories of individual airstreams with respect to anthropogenic sources over continental Asia and Japan. Complex interactions between successive wave cyclones also are found to be important in determining the chemical composition of the airstreams. Particularly important is the process of post-cold frontal boundary layer air being rapidly transported offshore and recirculated into ascending airstreams of upstream cyclones.

  20. Semianalytical solutions of radioactive or reactive solute transport in variably fractured layered media

    NASA Astrophysics Data System (ADS)

    Moridis, George J.

    2002-12-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the nonflowing matrix account for (1) diffusion, (2) surface diffusion, (3) mass transfer between mobile and immobile water fractions, (4) linear kinetic or equilibrium physical, chemical, or combined sorption or colloid filtration, and (5) radioactive decay or first-order chemical reactions. The tracer transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical and numerical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3H, 99Tc, 237Np, and 239Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  1. Semianalytical solutions of radioactive or reactive transport invariably-fractured layered media: 1. Solutes

    SciTech Connect

    Moridis, George J.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  2. Effect of irradiation by argon ions on hydrogen transport through the surface oxide layer of zirconium

    NASA Astrophysics Data System (ADS)

    Evsin, A. E.; Begrambekov, L. B.; Gumarov, A. I.; Kashapov, N. F.; Luchkin, A. G.; Vakhitov, I. R.; Yanilkin, I. V.; Tagirov, L. R.

    2016-09-01

    Effect of zirconium irradiation by 1 keV Ar+ ions on hydrogen transport through the surface oxide layer is studied. It is shown that deuterium trapping under subsequent irradiation of the Ar-treated sample by deuterium atoms of thermal energies in D2 + 30at.% O2 gas mixture is 2 times less than trapping in the untreated sample. Besides, irradiation of the untreated sample by D-atoms provokes desorption of ≈25% of hydrogen contained therein, whereas hydrogen desorption from the ion-treated zirconium surface does not occur. It is proposed that oxygen depletion of the surface oxide layer, caused by ion bombardment, is a reason of mitigation of the hydrogen transport through this layer in both directions.

  3. Transport numbers in the surface layers of asymmetric membranes from initial time measurements

    SciTech Connect

    Compan, V.; Lopez, M.L. ); Sorensen, T.S. ); Garrido, J. )

    1994-09-08

    The initial time asymmetry potentials of two ultra filtration membranes (cellulose acetate and polysulfone membranes) were measured in electrochemical cells using Ag/AgCl electrodes and NaCl solutions. The concentration in the two electrode chambers differed slightly by a fixed concentration difference. Either the membranes were brought to equilibrium with the left-hand solution and subsequently exposed to the right-hand solution at the right-hand face, or the procedure was reversed. From such measurements it is possible to evaluate the transport numbers corresponding to each of the two surface layers of the membrane under conditions such that the effects of autoprotolysis of water and of foreign ions may be neglected. These measurements permit a description of each of the surface layers of the membranes and make possible an electrochemical characterization of the asymmetry of ultrafiltration membranes. The asymmetry is given by the difference between surface layer transport numbers. 31 refs., 13 figs., 4 tabs.

  4. The boundary layers as the primary transport regions of the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Frank, L. A.; Huang, C. Y.

    1985-01-01

    A comprehensive survey of ISEE and IMP LEPEDEA plasma measurements in the earth's magnetotail reveals that the magnetospheric boundary layer and the plasma sheet boundary layer are the primary transport regions there. These plasma measurements also reveal various components of the plasma sheet, including the central plasma sheet and plasma sheet boundary layer. A significant new result reported here is that of cold- and hot-plasma components that are spatially co-present within the central plasma sheet. Such plasma components cannot be explained merely by temporal variations in spectra involving the entire plasma sheet. Contributions to a low temperature component of the plasma sheet enter directly from the boundary layer located along the magnetotail flanks. Field-aligned flows predominate within the plasma sheet boundary layer which is almost always present and is located near the high- and low-latitude border of the plasma sheet. The plasma sheet boundary layer comprises highly anisotropic ion distributions, including counter-streaming ion beams, that evolve into the hot, isotropic component of the plasma sheet. Tailward acceleration regions generate these ion beams with plasma input from the magnetospheric boundary layer. Antisunward-flowing ion beams, at E/q less than 1 kV and of ionospheric composition, are frequently observed in the plasma sheet boundary layer and in tail lobes. These ion beams are likely accelerated at low altitude over the polar cap and especially along auroral field lines.

  5. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  6. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-03-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates [1-3]. Various approaches including optimizing morphology of the active layers [1,2], introducing new materials as the donor and acceptor [3,4], new device structures such as tandem structure [5,6] have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer [5,7].

  7. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  8. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device.

    PubMed

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-03-02

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal.

  9. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    PubMed Central

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-01-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470

  10. Liquid crystal near-IR laser beam shapers employing photoaddressable alignment layers for high-peak-power applications

    NASA Astrophysics Data System (ADS)

    Marshall, Kenneth L.; Saulnier, Debra; Xianyu, Haiqing; Serak, Svetlana; Tabiryan, Nelson

    2013-09-01

    Large-scale, high-energy Nd:glass laser systems require beam shapers to control the spatial distribution of the incident intensity. Commercially available liquid crystal (LC) electro-optical spatial light modulators (SLM's) are frequently employed for this purpose, but their intrinsic requirement for conductive metal or metal-oxide coatings limits their 1054-nm laser-damage thresholds to 230 mJ/cm2 (2.4 ns, 5 Hz), relegating them for use only in low-fluence areas of the laser system. Previously, we demonstrated that passive near-IR LC beam shapers employing coumarin alignment layers patterned by contact photolithography are capable of high resolution and contrast and can withstand incident 1054-nm laser-fluence levels of <30 J/cm2 (1-ns pulse). An evolutionary step to expand the scope of this simple and robust device would be to identify and incorporate into the device structure photoalignment layers that trigger LC bulk reorientation by undergoing reversible optical switching between two predetermined alignment patterns using low-energy polarized UV/visible incident light and have a high near-IR laser-damage threshold. Such "optically driven" LC beam shapers offer the in-system write/erase flexibility of the electro-optical LC SLM's while eliminating conductive coatings that compromise the laser-damage threshold and electrical interconnects that increase device fragility and complexity. To this end, we have recently identified and evaluated the 1054-nm laser-damage-resistance and coating properties of several commercial azobenzene-based photoswitchable alignment materials. In 1-on-1 and N-on-1 testing, these new materials displayed 1054-nm laser-damage thresholds that compare very favorably to those of previously tested coumarin photoalignment materials (30 to 60 J/cm2).

  11. Implementation of a convective atmospheric boundary layer scheme in a tropospheric chemistry transport model

    NASA Astrophysics Data System (ADS)

    Wang, K.-Y.; Pyle, J. A.; Sanderson, M. G.; Bridgeman, C.

    1999-10-01

    A convective atmospheric boundary layer (ABL) scheme for the transport of trace gases in the lower troposphere has been implemented from the Community Climate Model, Version 2 [Hack et al., 1993] into a tropospheric chemistry transport model [Wang, 1998]. The atmospheric boundary layer scheme includes the calculation of atmospheric radiative transfer, surface energy balance, and land surface temperature and has a specified annual variation of sea surface temperature. The calculated diurnal variation of the height of the boundary layer is similar to the results of Troen and Mahrt [1986] and is in a good agreement with Holtslag and Boville [1993]. The modeled height of the boundary layer shows a seasonal shift between land and sea in the Northern Hemisphere. In summer (June-July-August), the height of the boundary layer is deeper over land (850-2250 m) and shallower over sea (50-850 m); while in winter (December-January-February), it is shallower over land (50-850 m) and deeper over sea (850-2850 m). The coupled ABL-chemical transport model is verified against measurements of radon 222 and methane. Comparison of the coupled model with a non-ABL model indicates significant differences between these model simulations and a better agreement between the coupled model and measurements. There is a significant effect on the trace gas distribution when the ABL model is compared with the non-ABL schemes. For example, the ABL scheme shows more O3 transported from the middle troposphere down to the surface, while more CO is pumped up from the surface into the middle troposphere. The seasonal cycle of modeled CH4 is significantly improved with the inclusion of the new ABL scheme, especially in regions which are not remote from methane sources.

  12. Effects of swell on transport and dispersion of oil plumes within the ocean mixed layer

    NASA Astrophysics Data System (ADS)

    Chen, Bicheng; Yang, Di; Meneveau, Charles; Chamecki, Marcelo

    2016-05-01

    The transport in the ocean mixed layer (OML) of oil plumes originated from deepwater blowouts is studied using large eddy simulations. In particular, we focus on the effects of swell on the modulation of turbulence in the OML and its impact on oil transport. Results show that when the misalignment between the wind and the swell propagation is small, Langmuir cells develop and significantly enhance the vertical dilution of the oil plume. Conversely, when the misalignment is large, vertical dilution is suppressed when compared to the no-swell case. Due to the strong directional shear of the mean flow within the OML, plume depth significantly impacts mean transport direction. The size of oil droplets in the plume also plays an important role in vertical dilution and mean transport direction.

  13. Particle transport and flow modification in planar temporally evolving laminar mixing layers. I. Particle transport under one-way coupling

    NASA Astrophysics Data System (ADS)

    Narayanan, Chidambaram; Lakehal, Djamel

    2006-09-01

    Simulations of two-dimensional, particle-laden mixing layers were performed for particles with Stokes numbers of 0.3, 0.6, 1, and 2 under the assumption of one-way coupling using the Eulerian-Lagrangian method; two-way coupling is addressed in Part II. Analysis of interphase momentum transfer was performed in the Eulerian frame of reference by looking at the balance of fluid-phase mean momentum, mean kinetic energy, modal kinetic energy, and particle-phase mean momentum. The differences in the dominant mechanisms of vertical transport of streamwise momentum between the fluid and particle phases is clearly brought out. In the fluid phase, growth of the mixing layer is due to energy transfer from the mean flow to the unstable Kelvin-Helmholtz modes, and transport of mean momentum by these modes. In contrast, in the particle phase, the primary mechanism of vertical transport of streamwise momentum is convection due to the mean vertical velocity induced by the centrifuging of particles by the spanwise Kelvin-Helmholtz vortices. Although the drag force and the particle-phase modal stress play an important role in the early stages of the evolution of the mixing layer, their role is shown to decrease during the pairing process. After pairing, the particle-phase mean streamwise momentum balance is accounted for by the convection and drag force term. The particle-phase modal stress term is shown to be strongly connected to the fluid phase modal stress with a Stokes-number-dependent time lag in its evolution.

  14. Quantum transport measurement of few-layer WTe2 field effect devices

    NASA Astrophysics Data System (ADS)

    Chen, Jianhao; Liu, Xin; Tian, Shibing; Zhang, Chenglong; Jia, Shuang

    2015-03-01

    We have performed systematic quantum transport measurement on field effect devices fabricated from few-layer WTe2 single crystals. We found that the magnetoresistance of few-layer WTe2 could be very different from that of bulk samples, which may arise from the imbalance of electron and hole carriers in the samples. We shall discuss our findings in more details in light of recent progress in our experiment. This work is supported by National Natural Science Foundation of China (11374021 and 11327406); by China Ministry of Science and Technology under Contract # 2014CB920900 and 2013CB921900; and by the Young 1000-Talent Program of China.

  15. Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer.

    PubMed

    Shin, Hyun; Lee, Jeong-Hwan; Moon, Chang-Ki; Huh, Jin-Suk; Sim, Bomi; Kim, Jang-Joo

    2016-06-01

    Blue-phosphorescent organic light-emitting diodes (OLEDs) with 34.1% external quantum efficiency (EQE) and 79.6 lm W(-1) are demonstrated using a hole-transporting layer and electron-transporting layer with low refractive index values. Using optical simulations, it is predicted that outcoupling efficiencies with EQEs > 60% can be achieved if organic layers with a refractive index of 1.5 are used for OLEDs.

  16. Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer.

    PubMed

    Shin, Hyun; Lee, Jeong-Hwan; Moon, Chang-Ki; Huh, Jin-Suk; Sim, Bomi; Kim, Jang-Joo

    2016-06-01

    Blue-phosphorescent organic light-emitting diodes (OLEDs) with 34.1% external quantum efficiency (EQE) and 79.6 lm W(-1) are demonstrated using a hole-transporting layer and electron-transporting layer with low refractive index values. Using optical simulations, it is predicted that outcoupling efficiencies with EQEs > 60% can be achieved if organic layers with a refractive index of 1.5 are used for OLEDs. PMID:27060851

  17. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    SciTech Connect

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D. E-mail: t.anthopoulos@imperial.ac.uk; Vourlias, George; Patsalas, Panos A.; He, Zhiqun E-mail: t.anthopoulos@imperial.ac.uk

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  18. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    NASA Astrophysics Data System (ADS)

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Vourlias, George; Patsalas, Panos A.; Bradley, Donal D. C.; He, Zhiqun; Anthopoulos, Thomas D.

    2015-06-01

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ˜5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  19. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells

    SciTech Connect

    Wang, Qi; Bi, Cheng; Huang, Jinsong

    2015-05-06

    We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduced device series resistance by three-folds, increasing the device fill factor to 74%, open circuit voltage to 1.09 V without sacrificing the short circuit current. As a result, this study reveals that the high resistivity of currently broadly applied polymer hole transport layer limits the device efficiency, and points a new direction to improve the device efficiency.

  20. On Theory of Dispersive Transport in a Two-Layer Polymer Structure

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.; Morozova, E. V.

    2016-09-01

    Dispersive transport of charge carriers in a two-layer polymer structure is modeled on the basis of the integrodifferential equation of hereditary diffusion. The model of multiple trapping in a bilayer is generalized to the case of an arbitrary density of localized states. With the help of an efficient Monte Carlo algorithm, curves of the transient current are calculated and their features are explained within the framework of a stochastic interpretation of the process.

  1. The impacts of moisture transport on drifting snow sublimation in the saltation layer

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Dai, Xiaoqing; Zhang, Jie

    2016-06-01

    Drifting snow sublimation (DSS) is an important physical process related to moisture and heat transfer that happens in the atmospheric boundary layer, which is of glaciological and hydrological importance. It is also essential in order to understand the mass balance of the Antarctic ice sheets and the global climate system. Previous studies mainly focused on the DSS of suspended snow and ignored that in the saltation layer. Here, a drifting snow model combined with balance equations for heat and moisture is established to simulate the physical DSS process in the saltation layer. The simulated results show that DSS can strongly increase humidity and cooling effects, which in turn can significantly reduce DSS in the saltation layer. However, effective moisture transport can dramatically weaken the feedback effects. Due to moisture advection, DSS rate in the saltation layer can be several orders of magnitude greater than that of the suspended particles. Thus, DSS in the saltation layer has an important influence on the distribution and mass-energy balance of snow cover.

  2. Transport of Water Vapor and Ozone to the Northern Sacramento Valley Boundary Layer

    NASA Astrophysics Data System (ADS)

    Conley, S. A.; Faloona, I. C.; Cooper, O. R.

    2011-12-01

    Ground based studies of atmospheric composition typically suffer from incomplete constraints on the influence of vertical transport on the surface air. While horizontal transport can be explored by multiple surface stations, and chemical processing by the judicious addition of surface measurements, vertical transport is often controlled by the entrainment flux of compounds at the opposite interface: between the atmospheric boundary layer (ABL) and the lower free troposphere (FT.) This entrainment flux is most significantly determined by the difference in concentration between the two layers, a gradient that is nearly always out of reach of traditional measurement techniques, or subject to very sporadic investigation by aircraft. In this work we examine the extent to which surface layer air in the Sacramento valley originated from higher altitudes. Given a strong vertical gradient of ozone and water vapor, the extent to which free tropospheric air is mixed down into the PBL will impact the surface layer mixing ratios of both compounds. Here we use sonde, surface, and radar wind profiler data from several Calnex sites in the Northern Sacramento Valley to estimate the advection and temporal change of water vapor and ozone in the ABL. Performing an ABL water budget analysis with estimates of evapotranspiration from the CIMIS (California Irrigation Management Information System) network, provides the vertical flux of water vapor at the top of the boundary layer and yields an average entrainment velocity for the region. Using the entrainment velocity so derived with the ozone vertical gradient measured during Calnex, we are able to solve for the net photochemical production in a region that frequently exceeds EPA standards. We work towards combining continuous measurements of ozone from an upwind mountain site in Mendocino County (Cahto Peak) along with periodic sampling of ozone profiles in the valley and offshore by aircraft to build a comprehensive picture of the

  3. Modeling reactive transport of reclaimed water through large soil columns with different low-permeability layers

    NASA Astrophysics Data System (ADS)

    Hu, Haizhu; Mao, Xiaomin; Barry, D. A.; Liu, Chengcheng; Li, Pengxiang

    2015-03-01

    The efficacy of different proportions of silt-loam/bentonite mixtures overlying a vadose zone in controlling solute leaching to groundwater was quantified. Laboratory experiments were carried out using three large soil columns, each packed with 200-cm-thick riverbed soil covered by a 2-cm-thick bentonite/silt-loam mixture as the low-permeability layer (with bentonite mass accounting for 12, 16 and 19 % of the total mass of the mixture). Reclaimed water containing ammonium (NH4 +), nitrate (NO3 -), organic matter (OM), various types of phosphorus and other inorganic salts was applied as inflow. A one-dimensional mobile-immobile multi-species reactive transport model was used to predict the preferential flow and transport of typical pollutants through the soil columns. The simulated results show that the model is able to predict the solute transport in such conditions. Increasing the amount of bentonite in the low-permeability layer improves the removal of NH4 + and total phosphorous (TP) because of the longer contact time and increased adsorption capacity. The removal of NH4 + and OM is mainly attributed to adsorption and biodegradation. The increase of TP and NO3 - concentration mainly results from discharge and nitrification in riverbed soils, respectively. This study underscores the role of low-permeability layers as barriers in groundwater protection. Neglect of fingers or preferential flow may cause underestimation of pollution risk.

  4. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport

    PubMed Central

    Rappoldt, Cornelis; Pieters, Gert-Jan J. M.; Adema, Erwin B.; Baaijens, Gerrit J.; Grootjans, Ab P.; van Duijn, Cornelis J.

    2003-01-01

    Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surface water, and the upward flow of warm water induced by nocturnal cooling. Mathematical stability analysis showed that buoyancy flow occurs in a cooling porous layer if the system's Rayleigh number (Ra) exceeds 25. For a temperature difference of 10 K between day and night, a typical Ra value for a peat moss layer is 80, which leads to quickly developing buoyancy cells. Numerical simulation demonstrated that fluid flow leads to a considerable mixing of water. Temperature measurements in a cylindrical peat sample of 50-cm height and 35-cm diameter were in agreement with the theoretical results. The nocturnal flow and the associated mixing of the water represent a mechanism for solute transport in water-saturated parts of peat land and in other types of terrestrializing vegetation. This mechanism may be particularly important in continental wetlands, where Ra values in summer are often much larger than the threshold for fluid flow. PMID:14657381

  5. Vertical Transports by Plumes within the Moderately Convective Marine Atmospheric Surface Layer.

    NASA Astrophysics Data System (ADS)

    Mason, Richard A.; Shirer, Hampton N.; Wells, Robert; Young, George S.

    2002-04-01

    Bursts in the kinematic vertical transports of heat and horizontal momentum in a moderately convective marine atmospheric surface layer are studied by applying the variable interval time averaging (VITA) detection method to principal components analysis (PCA)-decomposed datasets obtained from the Floating Instrumentation Platform (FLIP) moored vessel during the 1995 April-May Pacific Marine Boundary Layer (PMBL) experiment. For convective plumes, a well-defined dimensionless relationship is shown to exist between the vertical transports of heat and horizontal momentum; this relationship cannot be easily deduced if PCA and VITA are not both applied.PCA decomposes a dataset using correlations within that dataset instead of bandpass filtering it to retain energy in a predetermined range of scales; PCA thus respects all scales contributing to the phenomena retained in the dataset. Subsequent use of cross-spectral techniques to group the PCA-decomposed dataset into coherent structure types leads to, among other types of coherent structures, PCA-derived plumes. The VITA method is applied to a decomposed dataset in order to identify updrafts (bursts) and downdrafts (sweeps) in the time series of correlated variables by searching the signal for events that satisfy user-specified criteria. With proper use of PCA, surface-layer plumes can be reassembled in a way that yields the same transport relationships no matter which of the two different detecting variables is used.

  6. Transport gap in vertical devices made of incommensurately misoriented graphene layers

    NASA Astrophysics Data System (ADS)

    Nguyen, V. Hung; Dollfus, P.

    2016-02-01

    By means of atomistic tight-binding calculations, we investigate the transport properties of vertical devices made of two incommensurately misoriented graphene layers. For a given transport direction (Ox-axis), we define two classes of rotated graphene lattice distinguished by difference in lattice symmetry and, hence, in Brillouin zone. In particular, these two classes correspond to two different cases where the position of their Dirac cones in the k y -axis is determined differently, i.e. Ky\\prime={{K}y}=0 or Ky\\prime=-{{K}y}=2π /3{{L}y} (L y is the periodic length along the Oy axis). As a consequence, in devices made of two layers of different lattice classes, the misalignment of Dirac cones between the left and right graphene sections opens a finite energy-gap of conductance that can reach a few hundreds of meV. We also show that strain engineering can be used to further enlarge the transport gap and to diminish the sensitivity of the gap on the twist angle and on the commensurateness of the layer stack.

  7. Growth of large-grain silicon layers by atmospheric iodine vapor transport

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.

    2000-05-01

    A novel growth method for high speed deposition of large-grain polycrystalline silicon layers on foreign substrates is described. The deposited silicon layers with a thickness of 10--40 {micro}m on high temperature glass substrate exhibit good uniformity and large grain sizes up to 20 {micro}m. A typical deposition rate is 3 {micro}m/min for a source/substrate temperature of 1,100/950 C. The growth method is based on iodine vapor transport of silicon at atmospheric pressure with a vertical thermal gradient. A gravity trapping effect allows use of an open-tube system without much loss of the volatile gas species or reduced iodine partial pressure, as is the case in a normal open system involving a carrier gas. The material appears to be an excellent candidate for thin-layer crystalline silicon solar cells.

  8. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    SciTech Connect

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Tallents, G. J.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  9. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.

    PubMed

    Lee, Jeihyun; Park, Soohyung; Lee, Younjoo; Kim, Hyein; Shin, Dongguen; Jeong, Junkyeong; Jeong, Kwangho; Cho, Sang Wan; Lee, Hyunbok; Yi, Yeonjin

    2016-02-21

    Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed.

  10. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.

    PubMed

    Lee, Jeihyun; Park, Soohyung; Lee, Younjoo; Kim, Hyein; Shin, Dongguen; Jeong, Junkyeong; Jeong, Kwangho; Cho, Sang Wan; Lee, Hyunbok; Yi, Yeonjin

    2016-02-21

    Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed. PMID:26821701

  11. Estuarine sediment transport by gravity-driven movement of the nepheloid layer, Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Williams, S.J.; Crocker, J.M.; Doran, E.F.

    2008-01-01

    Interpretation of sidescan-sonar imagery provides evidence that down-slope gravity-driven movement of the nepheloid layer constitutes an important mode of transporting sediment into the basins of north-central Long Island Sound, a major US East Coast estuary. In the Western Basin, this transport mechanism has formed dendritic drainage systems characterized by branching patterns of low backscatter on the seafloor that exceed 7.4 km in length and progressively widen down-slope, reaching widths of over 0.6 km at their southern distal ends. Although much smaller, dendritic patterns of similar morphology are also present in the northwestern part of the Central Basin. Because many contaminants display affinities for adsorption onto fine-grained sediments, and because the Sound is affected by seasonal hypoxia, mechanisms and dispersal pathways by which inorganic and organic sediments are remobilized and transported impact the eventual fate of the contaminants and environmental health of the estuary. ?? Springer-Verlag 2008.

  12. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties. PMID:27257640

  13. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  14. The impact of ice layers on gas transport through firn at the North Greenland Eemian Ice Drilling (NEEM) site, Greenland

    NASA Astrophysics Data System (ADS)

    Keegan, K.; Albert, M. R.; Baker, I.

    2014-10-01

    Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present, which can alter transport dynamics and therefore reduce the accuracy of reconstructed climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. These ice layers were found to have permeability values of 3.0 and 4.0 × 10-10 m2, and are therefore not impermeable layers. However, the shallower ice layer was found to be significantly less permeable than the surrounding firn, and can therefore retard gas transport. Large closed bubbles were found in the deeper ice layer, which will have an altered gas composition than that expected because they were closed near the surface after the water phase was present. The bubbles in this layer represent 12% of the expected closed porosity of this firn layer after the firn-ice transition depth is reached, and will therefore bias the future ice core gas record. The permeability and thickness of the ice layers at the North Greenland Eemian Ice Drilling (NEEM) site suggest that they do not disrupt the firn-air concentration profiles and that they do not need to be accounted for in gas transport models at NEEM.

  15. Design of an Advanced Membrane Electrode Assembly Employing a Double-Layered Cathode for a PEM Fuel Cell.

    PubMed

    Kim, GyeongHee; Eom, KwangSup; Kim, MinJoong; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Cho, EunAe

    2015-12-23

    The membrane electrolyte assembly (MEA) designed in this study utilizes a double-layered cathode: an inner catalyst layer prepared by a conventional decal transfer method and an outer catalyst layer directly coated on a gas diffusion layer. The double-layered structure was used to improve the interfacial contact between the catalyst layer and membrane, to increase catalyst utilization and to modify the removal of product water from the cathode. Based on a series of MEAs with double-layered cathodes with an overall Pt loading fixed at 0.4 mg cm(-2) and different ratios of inner-to-outer Pt loading, the MEA with an inner layer of 0.3 mg Pt cm(-2) and an outer layer of 0.1 mg Pt cm(-2) exhibited the best performance. This performance was better than that of the conventional single-layered electrode by 13.5% at a current density of 1.4 A cm(-2).

  16. Epitaxial 1D electron transport layers for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-09-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport

  17. Charge transport in organic multi-layer devices under electric and optical fields

    NASA Astrophysics Data System (ADS)

    Park, June Hyoung

    2007-12-01

    Charge transport in small organic molecules and conjugated conducting polymers under electric or optical fields is studied by using field effect transistors and photo-voltaic cells with multiple thin layers. With these devices, current under electric field, photo-current under optical field, and luminescence of optical materials are measured to characterize organic and polymeric materials. For electric transport studies, poly(3,4-ethylenedioxythiophene) doped by polystyrenesulfonic acid is used, which is conductive with conductivity of approximately 25 S/cm. Despite their high conductance, field effect transistors based on the films are successfully built and characterized by monitoring modulations of drain current by gate voltage and IV characteristic curves. Due to very thin insulating layers of poly(vinylphenol), the transistors are relative fast under small gate voltage variation although heavy ions are involved in charge transport. In IV characteristic curves, saturation effects can be observed. Analysis using conventional field effect transistor model indicates high mobility of charge carriers, 10 cm2/V·sec, which is not consistent with the mobility of the conducting polymer. It is proposed that the effect of a small density of ions injected via polymer dielectric upon application of gate voltage and the ion compensation of key hopping sites accounts for the operation of the field effect transistors. For the studies of transport under optical field, photovoltaic cells with 3 different dendrons, which are efficient to harvest photo-excited electrons, are used. These dendrons consist of two electron-donors (tetraphenylporphyrin) and one electron-accepter (naphthalenediimide). Steady-state fluorescence measurements show that inter-molecular interaction is dominant in solid dendron film, although intra-molecular interaction is still present. Intra-molecular interaction is suggested by different fluorescence lifetimes between solutions of donor and dendrons. This

  18. Synthesis and characterization of polymer layers for control of fluid transport

    NASA Astrophysics Data System (ADS)

    Vatansever, Fehime

    The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a

  19. Transport and Evolution of Aerosol Above/Below the Boundary Layer in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Corrigan, C.; Ritchie, J.; Pont, V.; Claeys, M.; Sciare, J.; Mallet, M.; Dulac, F.

    2014-12-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities of the ChArMEx/ADRIMED summer 2013 campaign by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the

  20. Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells.

    PubMed

    Wang, Jhong-Yao; Hsu, Fang-Chi; Huang, Jeng-Yeh; Wang, Leeyih; Chen, Yang-Fang

    2015-12-23

    A new approach to largely enhancing light harvesting of solar cells by employing bifunctional polymer nanocomposites as hole-transport layers (HTLs) is proposed. To illustrate our working principle, CH3NH3PbI3-xClx perovskite solar cells are used as examples. Gold nanoparticles (Au-NPs) are added into a conjugated poly(3-hexylthiophene-2,5-diyl) (P3HT) matrix, resulting in a ∼4-fold enhancement in the electrical conductivity and carrier mobility of the native P3HT film. The improved electrical properties are attributed to enhanced polymer chain ordering caused by Au-NPs. By integration of those P3HT:Au-NP films with an optimum loading concentration of 20% into perovskite solar cells as HTLs, this leads to a more than 25% enhancement in the power conversion efficiency (PCE) compared with that of the NP-free one. In addition to the modulated electrical properties of the HTL, the improved performance can also be attributed to the scattering effect from the incorporated Au-NPs, which effectively extends the optical pathway to amplify photon absorption of the photoactive layer. The design principle shown here can be generalized to other organic materials as well, which should be very useful for the further development of high-performance optoelectronic devices.

  1. Dependence of the Carrier Transport Characteristics on the Buried Layer Thickness in Ambipolar Double-Layer Organic Field-Effect Transistors Investigated by Electrical and Optical Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2013-05-01

    By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.

  2. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  3. Vertical electron transport in van der Waals heterostructures with graphene layers

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  4. Ambipolar Transport and Gate-Induced Superconductivity in Layered Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Shi, Wu; Ye, Jianting; Zhang, Yijing; Suzuki, Ryuji; Saito, Yu; Iwasa, Yoshihiro

    2014-03-01

    Transition metal dichalcogenides (TMDs) are well known van der Waals layered materials that are easy to be exfoliated into atomically flat nano scale flakes. Owing to high efficiency of electrical double layer (EDL) dielectrics, thin flakes of TMDs have achieved high performance ambipolar transistor operation and established metallic states with high mobility, which are ideal for inducing superconductivity. Here, we report a comprehensive study of ambipolar transport behaviors in the EDL transistors (EDLTs) of MoS2, MoSe2 and MoTe2 thin flakes down to 2 K. In comparison, MoSe2 EDLT displayed a well-balanced ambipolar transistor operation while the other two showed opposite predominance in electron and hole accumulation, respectively. By modulation of carrier densities, the metal insulator transition (MIT) was observed in both electron and hole transport measurements. Particularly, superconducting transitions were reached after the formation of metallic states in the electron side. The phase diagram of transition temperature-carrier density was established and a dome-shaped structure was confirmed, revealing a universal feature of gate-induce superconductivity in layered band insulators. Present address: University of Groningen.

  5. Vertical electron transport in van der Waals heterostructures with graphene layers

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-21

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  6. Intrinsic transport of h-BN encapsulated few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Arefe, Ghidewon; Kim, Young Duck; Chenet, Daniel; Cui, Xu; Chang, Damien; Hone, James

    2015-03-01

    Few-layer black phosphorus (BP) is an exciting two-dimensional material with ambipolar behavior, large on/off ratio, and high mobility with a direct bandgap. The anisotropic atomic nature of black phosphorus exhibits unique angle dependent electronic and optical features. One of the primary difficulties in fabricating few-layer BP devices to study transport is the reactive nature of the material in ambient conditions as it degrades in the presence of air and moisture. In order to characterize the intrinsic physical properties of BP, we fabricated few-layer BP flakes that are fully encapsulated by hexagonal boron nitride (h-BN) with a clean stacking technique. We also characterized the electrical transport of h-BN encapsulated BP devices that show greatly improved environmental stability and high mobility at low temperature due to the suppression of extrinsic scattering effects such as charge impurities, surface polar optical phonons, and absorbents from air. H-BN encapsulated BP devices will be an essential platform for the observation of new physics from BP and realization of BP based advanced opto-electronic application devices body.

  7. Spin transport in tantalum studied using magnetic single and double layers

    NASA Astrophysics Data System (ADS)

    Montoya, Eric; Omelchenko, Pavlo; Coutts, Chris; Lee-Hone, Nicholas R.; Hübner, René; Broun, David; Heinrich, Bret; Girt, Erol

    2016-08-01

    We report on spin transport in sputter-grown Ta films measured by ferromagnetic resonance. Spin diffusion length and spin mixing conductance are determined from magnetic damping measurements for a varying thickness of Ta layer 0 ≤dTa≤10 nm. The different boundary conditions of single- and double-magnetic-layer heterostructures Py |Ta and Py |Ta | [Py |Fe ] allow us to significantly narrow down the parameter space and test various models. We show that a common approach of using bulk resistivity value in the analysis yields inconsistent spin diffusion length and spin mixing conductance values for magnetic single- and double-layer structures. X-ray diffraction shows that bulk Ta is a combination of β -Ta and bcc-Ta . However, in the region of significant spin transport, ≲2 nm, there is an intermediate region of growth where the Ta lacks long-range structural order, as observed by transmission electron microscopy. Thickness-dependent resistivity measurements confirm that the bulk and intermediate regions have significantly different resistivity values. We find that the data can be well represented if the intermediate region resistivity value is used in the analysis. Additionally, the data can be fit if resistivity has the measured thickness dependence and spin diffusion length is restricted to be inversely proportional to resistivity. Finally, we rule out a model in which spin diffusion length is a constant, while the resistivity has the measured thickness dependence.

  8. Vertical structure of aeolian turbulence in a boundary layer with sand transport

    NASA Astrophysics Data System (ADS)

    Lee, Zoe S.; Baas, Andreas C. W.

    2016-04-01

    Recently we have found that Reynolds shear stress shows a significant variability with measurement height (Lee and Baas, 2016), and so an alternative parameter for boundary layer turbulence may help to explain the relationship between wind forcing and sediment transport. We present data that were collected during a field study of boundary layer turbulence conducted on a North Atlantic beach. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different measurement heights in a tight vertical array between 0.11 and 1.62 metres above the surface. Thanks to the high density installation of sensors a detailed analysis of the boundary layer flow can be conducted using methods more typically used in studies where data is only available from one or just a few measurement heights. We use quadrant analysis to explore the vertical structure of turbulence and track the changes in quadrant signatures with measurement elevation and over time. Results of quadrant analysis, at the 'raw' 50 Hz timescale, demonstrates the tendency for event clustering across all four quadrants, which implies that at-a-point quadrant events are part of larger-scale turbulent structures. Using an HSV colour model, applied to the quadrant analysis data and plotted in series, we create colour maps of turbulence, which can provide a clear visualisation of the clustering of event activity at each height and illustrate the shape of the larger coherent flow structures that are present within the boundary layer. By including a saturation component to the colour model, the most significant stress producing sections of the data are emphasised. This results in a 'banded' colour map, which relates to clustering of quadrant I (Outward Interaction) and quadrant IV (Sweep) activity, separate from clustering of quadrant II (Burst) and quadrant III (Inward Interaction). Both 'sweep-type' and 'burst-type' sequences are shown to have a diagonal structure

  9. Band offset of vanadium-doped molybdenum oxide hole transport layer in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Kuei; Huang, Yi-Chi; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-08-01

    Solution-processed vanadium-doped molybdenum oxide films (V)MoOx films with mole ratios of Mo:V = 1:0, 1:0.05, 1:0.2, 1:0.5, 0:1, are fabricated as hole transport layer (HTL) in organic photovoltaics with active layer blend comprising poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The device structure is ITO/(V)MoOx/P3HT:PCBM/ZnO NP/Al, and the working area is 0.16 cm2. The result shows that the device using V0.05MoOx HTL has the best performance, including power conversion efficiency of 2.16%, Voc of 0.6 V, Jsc of 6.93 mA/cm2, and FF of 51.9%. Using ultraviolet photoelectron spectroscopy (UPS), we can define the energy levels of valence band edge and Fermi level of (V)MoOx films. UPS analysis indicates that V0.05MoOx has the smallest energy band offset between its valence band edge to the HOMO of P3HT, which is advantageous for hole transporting from P3HT to ITO anode via the V0.05MoOx HTL. In addition, V0.05MoOx film shows the lowest electrical resistivity among all (V)MoOx films, which is further beneficial for hole transportation.

  10. Influence of the hole transport layer on the performance of organic light-emitting diodes

    SciTech Connect

    Giebeler, C.; Antoniadis, H.; Bradley, D.D.; Shirota, Y.

    1999-01-01

    We investigate the influence of the hole-transporting layer (HTL) on the performance of bilayer vapor-deposited organic light-emitting diodes. Three different HTL materials were used: m-MTDATA, triphenyl-diamine, and naphthyl-phenyl-diamine. In all cases, Alq{sub 3} was the electron-transporting layer (ETL). We measure and compare the current density-voltage (J{endash}V) and luminance{endash}voltage ({ital L}{endash}{ital V}) characteristics of these devices and we conclude that the operating voltage is controlled by the type of HTL used and the nature of the hole-injecting indium tin oxide/HTL interface. We found that the device quantum efficiency depends not only on the electron transport characteristics of the ETL but also on the energetics of the HTL/ETL interface. Analysis of the J{endash}V characteristics suggests that current flow in bilayer devices cannot be described sufficiently by a single carrier theory; both hole and electron currents should be considered. {copyright} {ital 1999 American Institute of Physics.}

  11. Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers

    SciTech Connect

    Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

    2011-07-01

    There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

  12. Cross-layer restoration with software defined networking based on IP over optical transport networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young

    2015-10-01

    The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.

  13. ANGULAR MOMENTUM TRANSPORT AND VARIABILITY IN BOUNDARY LAYERS OF ACCRETION DISKS DRIVEN BY GLOBAL ACOUSTIC MODES

    SciTech Connect

    Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.

    2012-11-20

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  14. Thermal transport across few-layer boron nitride encased by silica

    SciTech Connect

    Ni, Yuxiang; Dumitricǎ, Traian; Jiang, Jiechao; Meletis, Efstathios

    2015-07-20

    Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO{sub 2}). We report large interfacial thermal resistances, of about 2.2 × 10{sup −8} m{sup 2} K W{sup −1}, which are not sensitive to the number of h-BN layers or the SiO{sub 2} crystallinity. The h-BN/SiO{sub 2} superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.

  15. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  16. Technique for studying ablation-products transport in supersonic boundary layers by using PLIF of naphthalene

    NASA Astrophysics Data System (ADS)

    Combs, C. S.; Lochman, B. J.; Clemens, N. T.

    2016-05-01

    A technique is developed that uses planar laser-induced fluorescence (PLIF) of sublimated gas-phase naphthalene to visualize the transport of ablation products in a high-speed turbulent boundary layer. The naphthalene is molded into a rectangular insert that is mounted flush with the floor of a Mach 5 wind tunnel, where the test gas is air. The naphthalene fluorescence is excited with 266 nm laser light, and broadband detection of the emitted light is used. Using spectroscopic data from a previous study and a first-order approximation for the mean temperature profile across the boundary layer, naphthalene PLIF images collected in a Mach 5 turbulent boundary layer are converted into two-dimensional fields of naphthalene mole fraction with an instantaneous uncertainty of ±20 %. These quantitative naphthalene PLIF images in the Mach 5 boundary layer reveal large-scale naphthalene vapor structures that are regularly ejected out to wall distances of approximately y/ δ = 0.6 for a field of view that spans 3 δ-5 δ downstream of the trailing edge of the naphthalene insert. The magnitude of the calculated naphthalene mole fraction in these structures at y/ δ = 0.2 ranges from approximately 1 to 6 % of the saturation mole fraction at the wind tunnel recovery temperature and static pressure. Mean mole fraction profiles taken at different streamwise locations collapse into one "universal" mole fraction profile when properly normalized and are in agreement with previous scalar dispersion measurements. The results indicate that PLIF of sublimating naphthalene can be an effective tool for studying scalar transport in supersonic and hypersonic flows.

  17. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua

    1998-01-01

    In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next

  18. Ultraviolet Electroluminescence and Blue-Green Phosphorescence using an Organic Diphosphine Oxide Charge Transporting Layer.

    SciTech Connect

    Burrows, Paul E.; Padmaperuma, Asanga B.; Sapochak, Linda S.; Djurovich, Peter I.; Thompson, Mark E.

    2006-05-01

    We report electroluminescence with a peak wavelength at 338 nm from a simple bilayer organic light emitting device (OLED) made using 4,4’-bis(diphenylphosphine oxide) biphenyl (PO1). In an OLED geometry, the material is preferentially electron transporting. Doping the PO1 layer with iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N, C2’)picolinate (FIrpic) gives rise to electrophosphorescence with a peak external quantum efficiency of 7.8% at 0.09 mA/cm2 and 5.8% at 13 mA/cm2. The latter current density is obtained at 6.3 V applied forward bias. This represents a new class of wide-bandgap charge transporting organic materials which may prove useful as host materials for blue electrophosphoresent OLEDs.

  19. Imprinted nonoxidized graphene sheets as an efficient hole transport layer in polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Yuan; Peter Chen, I.-Wen; Chen, Chih-Jung; Chiang, Ray-Kuang; Vu, Hoang-Tuan

    2014-02-01

    Nonoxidized graphene sheets (NGSs) with single- and multilayered structures were generated by direct exfoliation of highly oriented pyrolytic graphite in a water-ethanol mixture with the assistances of pyridinium salt (Py+Br3-) and sonication. Raman spectrum exhibited a low intensity ratio (0.055) of D and G bands, indicating that the NGSs were nearly defect-free. Their application for the fabrication of polymer light-emitting diodes (PLEDs) was also demonstrated. The PLEDs that used an imprinted NGS film as a hole transport layer show a luminance exceeding 13000 cd/m2, which was comparable to that of devices using the typical hole transport material: poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid.

  20. Numerical Computation of Mass Transport in Low Reynolds Number Flows and the Concentration Boundary Layer

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Fuller, Nathaniel J.

    Understanding the physical mechanisms by which an individual cell interacts with its environment often requires detailed information about the fluid in which the cell is immersed. Mass transport between the interior of the cell and the external environment is influenced by the flow of the extracellular fluid and the molecular diffusivity. Analytical calculations of the flow field are challenging in simple geometries, and not generally available in more realistic cases with irregular domain boundaries. Motivated by these problems, we discuss the numerical solution of Stokes equation by implementing a Gauss-Seidel algorithm on a staggered computational grid. The computed velocity profile is used as input to numerically solve the advection-diffusion equation for mass transport. Special attention is paid to the case of two-dimensional flows at large Péclet number. The numerical results are compared with a perturbative analytical treatment of the concentration boundary layer.

  1. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells.

    PubMed

    Zhou, Huiqiong; Zhang, Yuan; Mai, Cheng-Kang; Collins, Samuel D; Nguyen, Thuc-Quyen; Bazan, Guillermo C; Heeger, Alan J

    2014-02-01

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively used as the hole-transporting layer (HTL) in bulk heterojunction (BHJ) solar cells, however, its anisotropic electrical conduction and intrinsic acidic nature generally limit the device performance. Here we demonstrate the application of a water/alcohol soluble CPE (CPE-K) as HTLs in BHJ solar cells, achieving a PCE up to 8.2%. The more superior and uniform vertical electrical conductivity found in CPE-K reduces the series resistance and provides efficient hole extraction. PMID:24170587

  2. Evaluating the transport layer of the ALFA framework for the Intel® Xeon Phi™ Coprocessor

    NASA Astrophysics Data System (ADS)

    Santogidis, Aram; Hirstius, Andreas; Lalis, Spyros

    2015-12-01

    The ALFA framework supports the software development of major High Energy Physics experiments. As part of our research effort to optimize the transport layer of ALFA, we focus on profiling its data transfer performance for inter-node communication on the Intel Xeon Phi Coprocessor. In this article we present the collected performance measurements with the related analysis of the results. The optimization opportunities that are discovered, help us to formulate the future plans of enabling high performance data transfer for ALFA on the Intel Xeon Phi architecture.

  3. Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro.

    PubMed

    Johnson, I T; Gee, J M

    1981-05-01

    The effect of two gel-forming polysaccharide gums, guar gum and Na-carboxymethyl-cellulose (CMC), on glucose transport in vitro was investigated using everted sacs of rat jejunum. The gums were added to the mucosal bathing media to give apparent viscosities in the range of 1-110 Pascal seconds X 10(-3), mPa.s(cP). Serosal glucose transport fell steeply by about 60% as the viscosities of the mucosal media rose to 20mPa.s, and levelled off thereafter. A similar effect was observed in sacs preincubated with guar gum (15 minutes) and exposed to glucose in a subsequent guar-free incubation. Glucose transport with and without the addition of guar gum was found to be sensitive to mucosal stirring, so that, when shaken at 130 oscillations per minute, sacs exposed to guar gum (0.25 %, viscosity c.a. 16 mPa.s (cP) transported glucose at a similar rate to sacs incubated without guar at 80 oscillations per minute. By measuring the time course for the establishment of osmotic induced potentials, it was shown that incubation with guar or CMC led to an increase in the apparent thickness of the unstirred fluid layer overlying the mucosa (guar-free thickness = 317 +/- 15 mu, guar treated thickness = 468 +/- 25 mu). It is suggested that the presence of a polysaccharide gum in the fluid film surrounding the villi increases its viscosity, and thus gives rise to a thickening of the rate-limiting unstirred layer. If such an effect occurs in vivo, this could contribute to the diminished post-prandial glycaemia observed in human subjects fed guar gum. PMID:7250752

  4. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes.

    PubMed

    O'Hern, Sean C; Boutilier, Michael S H; Idrobo, Juan-Carlos; Song, Yi; Kong, Jing; Laoui, Tahar; Atieh, Muataz; Karnik, Rohit

    2014-03-12

    We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 10(12) cm(-2), while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.

  5. Three-dimensional scrape off layer transport in the helically symmetric experiment HSX

    NASA Astrophysics Data System (ADS)

    Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.

    2016-08-01

    The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s‑1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.

  6. Investigation of silver and iodine transport through silicon carbide layers prepared for nuclear fuel element cladding

    NASA Astrophysics Data System (ADS)

    Friedland, E.; van der Berg, N. G.; Malherbe, J. B.; Hancke, J. J.; Barry, J.; Wendler, E.; Wesch, W.

    2011-03-01

    Transport of silver and iodine through polycrystalline SiC layers produced by PBMR (Pty) Ltd. for cladding of TRISO fuel kernels was investigated using Rutherford backscattering analysis and electron microscopy. Fluences of 2 × 10 16 Ag + cm -2 and 1 × 10 16 I + cm -2 were implanted at room temperature, 350 °C and 600 °C with an energy of 360 keV, producing an atomic density of approximately 1.5% at the projected ranges of about 100 nm. The broadening of the implantation profiles and the loss of diffusors through the front surface during vacuum annealing at temperatures up to 1400 °C was determined. The results for room temperature implantations point to completely different transport mechanisms for silver and iodine in highly disordered silicon carbide. However, similar results are obtained for high temperature implantations, although iodine transport is much stronger influenced by lattice defects than is the case for silver. For both diffusors transport in well annealed samples can be described by Fickian grain boundary diffusion with no abnormal loss through the surface as would be expected from the presence of nano-pores and/or micro-cracks. At 1100 °C diffusion coefficients for silver and iodine are below our detection limit of 10 -21 m 2 s -1, while they increase into the 10 -20 m 2 s -1 range at 1300 °C.

  7. Three-dimensional scrape off layer transport in the helically symmetric experiment HSX

    NASA Astrophysics Data System (ADS)

    Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.

    2016-08-01

    The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s-1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.

  8. The design and optimization of two low frequency energy harvesters employing 3C-SiC/AlN/Mo composite layers

    SciTech Connect

    Iqbal, Abid Mohd-Yasin, Faisal Dimitrijev, Sima

    2014-10-24

    This paper presents the design and simulation of twocantilever-based energy harvesters that employs cubic silicon carbide on silicon (3C-SiC-on-Si) wafer as the base material and bottom electrode. Aluminum Nitride (AlN) is employed as the piezoelectric/middle layer due to its excellent material properties and high stability in varying temperature and harsh environment. Molybdenum (Mo) serves as the top layer/electrode. The thickness of the structural layers are optimized through MATLAB and also analyzed via Finite Element Analysis using Intellisuite. Two designs are proposed at low resonant frequency, one with conventional cantilever beam, the other being a T-shaped cantilever beam. Both structures are simulated and their performances are compared.

  9. The design and optimization of two low frequency energy harvesters employing 3C-SiC/AlN/Mo composite layers

    NASA Astrophysics Data System (ADS)

    Iqbal, Abid; Mohd-Yasin, Faisal; Dimitrijev, Sima

    2014-10-01

    This paper presents the design and simulation of twocantilever-based energy harvesters that employs cubic silicon carbide on silicon (3C-SiC-on-Si) wafer as the base material and bottom electrode. Aluminum Nitride (AlN) is employed as the piezoelectric/middle layer due to its excellent material properties and high stability in varying temperature and harsh environment. Molybdenum (Mo) serves as the top layer/electrode. The thickness of the structural layers are optimized through MATLAB and also analyzed via Finite Element Analysis using Intellisuite. Two designs are proposed at low resonant frequency, one with conventional cantilever beam, the other being a T-shaped cantilever beam. Both structures are simulated and their performances are compared.

  10. The design, fabrication and maintenance of semi-trailers employed in the highway transport of weight-concentrated radioactive loads

    SciTech Connect

    Huffman, D.S.

    1991-12-31

    Transportation of weight-concentrated radioactive loads by truck is an essential part of a safe and economical nuclear industry. This proposed standard presents guidance and performance criteria for the safe transport of these weight-concentrated radioactive loads. ANSI N14.30 will detail specific requirements for the design, fabrication, testing, in-service inspections, maintenance and certification of the semi-trailers to be employed in said service. Furthermore, guidelines for a quality assurance program are also enumerated. This standard would apply to any semi-trailer that may or may not be specifically designed to carry weight-concentrated loads. Equipment not suitable per the criteria established in the standard would be removed from service. The nature of the nuclear industry and the need for a positive public perception of the various processes and players, mandates that the highway transportation of weight-concentrated radioactive loads be standardized and made inherently safe. This proposed standard takes a giant step in that direction.

  11. Unusual isotope effect on thermal transport of single layer molybdenum disulphide

    SciTech Connect

    Wu, Xufei; Yang, Nuo; Luo, Tengfei

    2015-11-09

    Thermal transport in single layer molybdenum disulfide (MoS{sub 2}) is critical to advancing its applications. In this paper, we use molecular dynamics simulations with first-principles force constants to study the isotope effect on the thermal transport of single layer MoS{sub 2}. Through phonon modal analysis, we found that isotopes can strongly scatter phonons with intermediate frequencies, and the scattering behavior can be radically different from that predicted by conventional scattering model based on perturbation theory, where Tamura's formula is combined with Matthiessen's rule to include isotope effects. Such a discrepancy becomes smaller for low isotope concentrations. Natural isotopes can lead to a 30% reduction in thermal conductivity for large size samples. However, for small samples where boundary scattering becomes significant, the isotope effect can be greatly suppressed. It was also found that the Mo isotopes, which contribute more to the phonon eigenvectors in the intermediate frequency range, have stronger impact on thermal conductivity than S isotopes.

  12. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  13. Large-eddy simulation of the stable boundary layer and implications for transport and dispersion

    SciTech Connect

    Cederwall, R T; Street, R L

    1999-02-01

    Large-eddy simulation (LES) of the evolving stable boundary layer (SBL) provides unique data sets for assessing the effects of stable stratification on transport and dispersion. The simulations include the initial development of the convective boundary layer (CBL) in the afternoon, followed by the development of an SBL after sunset with a strong, surface-based temperature inversion. The structure of the turbulence is modified significantly by negative buoyancy associated with the temperature inversion. The magnitude of velocity variances is reduced by an order of magnitude compared to that in the CBL, and the vertical velocity variance is damped further as the static stability preferentially damps vertical motions. The advanced subgrid-scale turbulence model allows simulation of intermittently enhanced periods of turbulence in the SBL that am often observed. During these turbulent episodes, mixing is increased within the SBL. Air pollution models that account only for the long-term mean structure of the SBL do not include the effects of these episodes. In contrast, our LES results imply that material released near the surface and mixed to higher elevations would be transported by stronger winds and in different directions, due to the vertical shear of horizontal wind speed and direction. Material released at altitude in the SBL will tend to be mixed downward toward the surface during these turbulent episodes in a fumigation-like scenario at night.

  14. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    NASA Technical Reports Server (NTRS)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  15. Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution.

    PubMed

    Wu, Xuewang; Ni, Yuxiang; Zhu, Jie; Burrows, Nathan D; Murphy, Catherine J; Dumitrica, Traian; Wang, Xiaojia

    2016-04-27

    Ultrafast transient absorption experiments and molecular dynamics simulations are utilized to investigate the thermal transport between aqueous solutions and cetyltrimethylammonium bromide (CTAB)- or polyethylene glycol (PEG)-functionalized gold nanorods (GNRs). The transient absorption measurement data are interpreted with a multiscale heat diffusion model, which incorporates the interfacial thermal conductances predicted by molecular dynamics. According to our observations, the effective thermal conductance of the GNR/PEG/water system is higher than that of the GNR/CTAB/water system with a surfactant layer of the same length. We attribute the enhancement of thermal transport to the larger thermal conductance at the GNR/PEG interface as compared with that at the GNR/CTAB interface, in addition to the water penetration into the hydrophilic PEG layer. Our results highlight the role of the GNR/polymer thermal interfaces in designing biological and composite-based heat transfer applications of GNRs, and the importance of multiscale analysis in interpreting transient absorption data in systems consisting of low interfacial thermal conductances.

  16. Non-Newtonian effects of blood on LDL transport inside the arterial lumen and across multi-layered arterial wall with and without stenosis

    NASA Astrophysics Data System (ADS)

    Deyranlou, Amin; Niazmand, Hamid; Sadeghi, Mahmood-Reza; Mesri, Yaser

    2016-06-01

    Blood non-Newtonian behavior on low-density lipoproteins (LDL) accumulation is analyzed numerically, while fluid-multilayered arteries are adopted for nonstenotic and 30%-60% symmetrical stenosed models. Present model considers non-Newtonian effects inside the lumen and within arterial layers simultaneously, which has not been examined in previous studies. Navier-Stokes equations are solved along with the mass transport convection-diffusion equations and Darcy’s model for species transport inside the luminal flow and across wall layers, respectively. Carreau model for the luminal flow and the modified Darcy equation for the power-law fluid within arterial layers are employed to model blood rheological characteristics, appropriately. Results indicate that in large arteries with relatively high Reynolds number Newtonian model estimates LDL concentration patterns well enough, however, this model seriously incompetent for regions with low WSS. Moreover, Newtonian model for plasma underestimates LDL concentration especially on luminal surface and across arterial wall. Therefore, applying non-Newtonian model seems essential for reaching to a more accurate estimation of LDL distribution in the artery. Finally, blood flow inside constricted arteries demonstrates that LDL concentration patterns along the stenoses inside the luminal flow and across arterial layers are strongly influenced as compared to the nonstenotic arteries. Additionally, among four stenosis severity grades, 40% stenosis is prone to more LDL accumulation along the post-stenotic regions.

  17. Analysis of subgrid-scale vertical transport in convective boundary layers at gray-zone resolutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeyum Hailey; Hong, Song-You

    2013-04-01

    The gray zone of a physics process in numerical models is defined as the range of model resolution in which the process is partly resolved by model dynamics and partly parameterized. In this study, we examine the effects of grid size on resolved and parameterized vertical transport for horizontal grid scales including the gray zone. To assess how stability alters the dependency on grid size, four convective boundary layer (CBL)s with different surface heating and geostrophic winds are considered. For this purpose, reference data for grid-scale (GS) and subgrid-scale (SGS) fields are constructed for 50-4000 mesh sizes by filtering 25-m large-eddy simulations (LES) data. As wind shear becomes stronger, turbulent kinetic energy and the vertical transport of potential temperature and momentum are more resolved for a given grid spacing. A passive scalar with bottom-up diffusion behaves in a similar fashion. For a top-down diffusion scalar, the cospectral peak scale of the scalar flux is larger than the horizontal size of the thermals and increases in time. For the scalar, the entrainment ratio, in conjunction with the shear, influences the mesh-size dependency of GS and SGS transport. The total vertical transport of heat and the bottom-up scalar is decomposed into a non-local mixing owing to the coherent structures and remaining local mixing. The contribution of the resolved parts is larger when roll-like structures are present than when only thermals exist, for both non-local and local fluxes. The grid-size dependency of the non-local flux and its sensitivity to stability predominantly determines the dependency of total (non-local plus local) transport.

  18. First-principles study of graphene under c-HfO2(111) layers: Electronic structures and transport properties

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Ohno, Takahisa

    2016-08-01

    We investigated the electronic properties, stability, and transport of graphene under c-HfO2(111) layers by performing first-principles calculations with special attention to the chemical bonding between graphene and HfO2 surfaces. When the interface of HfO2/graphene is terminated by an O layer, the linear dispersion of graphene is preserved and the degradation of transport is suppressed. For other interface structures, HfO2 is tightly adsorbed on graphene and the transport is strictly limited. In terms of the stability of the interface structures, an O-terminated interface is preferable, which is achieved under an O-deficient condition.

  19. Layered Chalcogenides beyond Graphene: from Electronic Structure Evolution to the Spin Transport

    NASA Astrophysics Data System (ADS)

    Yuan, Hongtao

    2014-03-01

    Recent efforts on graphene-like atomic layer materials, aiming at novel electronic properties and quantum phenomena beyond graphene, have attracted much attention for potential electronics/spintronics applications. Compared to the weak spin-orbit-interaction (SOI) in graphene, metal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way for generating spin polarization based on valleytronics physics. Indeed, such a spin-polarized band structure has been demonstrated theoretically and supported by optical investigations. However, despite these exciting progresses, following two important issues in MX2 community remain elusive: 1. the quantitative band structure of MX2 compounds (where are the valleys -band maxima/minima- locating in the BZ) have not been experimentally confirmed. Especially for those cleaved ultrathin mono- and bi-layer flakes hosting most of recently-reported exotic phenomena at the 2D limit, the direct detection for band dispersion becomes of great importance for valleytronics. 2. Spin transports have seldom been reported even though such a strong SOI system can serve as an ideal platform for the spin polarization and spin transport. In this work, we started from the basic electronic structures of representative MX2, obtained by ARPES, and investigated both the band variation between these compounds and their band evolution from bulk to the monolayer limit. After having a systematic understanding on band structures, we reported a giant Zeeman-type spin-polarization generated and modulated by an external electric field in WSe2 electric-double-layer transistors. The non-magnetic approach for realizing such an intriguing spin splitting not only keeps the system time-reversally invariant but also suggests a new paradigm for manipulating the spin-degrees of freedom of electrons. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  20. An Alkane-Soluble Dendrimer as Electron-Transport Layer in Polymer Light-Emitting Diodes.

    PubMed

    Zhong, Zhiming; Zhao, Sen; Pei, Jian; Wang, Jian; Ying, Lei; Peng, Junbiao; Cao, Yong

    2016-08-10

    Polymer light-emitting diodes (PLEDs) have attracted broad interest due to their solution-processable properties. It is well-known that to achieve better performance, organic light-emitting diodes require multilayer device structures. However, it is difficult to realize multilayer device structures by solution processing for PLEDs. Because most semiconducting polymers have similar solubility in common organic solvents, such as toluene, xylene, chloroform, and chlorobenzene, the deposition of multilayers can cause layers to mix together and damage each layer. Herein, a novel semiorthogonal solubility relationship was developed and demonstrated. For the first time, an alkane-soluble dendrimer is utilized as the electron-transport layer (ETL) in PLEDs via a solution-based process. With the dendrimer ETL, the external quantum efficiency increases more than threefold. This improvement in the device performance is attributed to better exciton confinement, improved exciton energy transfer, and better charge carrier balance. The semiorthogonal solubility provided by alkane offers another process dimension in PLEDs. By combining them with water/alcohol-soluble polyelectrolytes, more exquisite multilayer devices can be fabricated to achieve high device performance, and new device structures can be designed and realized.

  1. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  2. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  3. Tail-ion transport and Knudsen layer formation in the presence of magnetic fields

    SciTech Connect

    Schmit, P. F.; Molvig, Kim; Nakhleh, C. W.

    2013-11-15

    Knudsen layer losses of tail fuel ions could reduce significantly the fusion reactivity of highly compressed cylindrical and spherical targets in inertial confinement fusion (ICF). With the class of magnetized ICF targets in mind, the effect of embedded magnetic fields on Knudsen layer formation is investigated for the first time. The modified energy scaling of ion diffusivity in magnetized hot spots is found to suppress the preferential losses of tail-ions perpendicular to the magnetic field lines to a degree that the tail distribution can be at least partially, if not fully, restored. Two simple threshold conditions are identified leading to the restoration of fusion reactivity in magnetized hot spots. A kinetic equation for tail-ion transport in the presence of a magnetic field is derived, and solutions to the equation are obtained numerically in simulations. Numerical results confirm the validity of the threshold conditions for restored reactivity and identify two different asymptotic regimes of the fusion fuel. While Knudsen layer formation is shown to be suppressed entirely in strongly magnetized cylindrical hot spot cavities, uniformly magnetized spherical cavities demonstrate remnant, albeit reduced, levels of tail-ion depletion.

  4. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    NASA Astrophysics Data System (ADS)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  5. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    SciTech Connect

    Arora, H.; Malinowski, P. E. Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  6. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus.

    PubMed

    Qiao, Jingsi; Kong, Xianghua; Hu, Zhi-Xin; Yang, Feng; Ji, Wei

    2014-07-21

    Two-dimensional crystals are emerging materials for nanoelectronics. Development of the field requires candidate systems with both a high carrier mobility and, in contrast to graphene, a sufficiently large electronic bandgap. Here we present a detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) to predict its electrical and optical properties. This system has a direct bandgap, tunable from 1.51 eV for a monolayer to 0.59 eV for a five-layer sample. We predict that the mobilities are hole-dominated, rather high and highly anisotropic. The monolayer is exceptional in having an extremely high hole mobility (of order 10,000 cm(2) V(-1) s(-1)) and anomalous elastic properties which reverse the anisotropy. Light absorption spectra indicate linear dichroism between perpendicular in-plane directions, which allows optical determination of the crystalline orientation and optical activation of the anisotropic transport properties. These results make few-layer BP a promising candidate for future electronics.

  7. An Alkane-Soluble Dendrimer as Electron-Transport Layer in Polymer Light-Emitting Diodes.

    PubMed

    Zhong, Zhiming; Zhao, Sen; Pei, Jian; Wang, Jian; Ying, Lei; Peng, Junbiao; Cao, Yong

    2016-08-10

    Polymer light-emitting diodes (PLEDs) have attracted broad interest due to their solution-processable properties. It is well-known that to achieve better performance, organic light-emitting diodes require multilayer device structures. However, it is difficult to realize multilayer device structures by solution processing for PLEDs. Because most semiconducting polymers have similar solubility in common organic solvents, such as toluene, xylene, chloroform, and chlorobenzene, the deposition of multilayers can cause layers to mix together and damage each layer. Herein, a novel semiorthogonal solubility relationship was developed and demonstrated. For the first time, an alkane-soluble dendrimer is utilized as the electron-transport layer (ETL) in PLEDs via a solution-based process. With the dendrimer ETL, the external quantum efficiency increases more than threefold. This improvement in the device performance is attributed to better exciton confinement, improved exciton energy transfer, and better charge carrier balance. The semiorthogonal solubility provided by alkane offers another process dimension in PLEDs. By combining them with water/alcohol-soluble polyelectrolytes, more exquisite multilayer devices can be fabricated to achieve high device performance, and new device structures can be designed and realized. PMID:27435357

  8. Ion transport through a charged cylindrical membrane pore contacting stagnant diffusion layers

    NASA Astrophysics Data System (ADS)

    Andersen, Mathias B.; Biesheuvel, P. M.; Bazant, Martin Z.; Mani, Ali

    2012-11-01

    Fundamental understanding of the ion transport in membrane systems by diffusion, electromigration and advection is important in widespread processes such as de-ionization by reverse osmosis and electrodialysis and electro-osmotic micropumps. Here we revisit the classical analysis of a single cylindrical pore, see e.g. Gross and Osterle [J Chem Phys 49, 228 (1968)]. We extend the analysis by including the well-established concept of contacting stagnant diffusion layers on either side of the pore; thus, the pore is not in direct equilibrium with the reservoirs. Inside the pore the ions are assumed to be in quasi-equilibrium in the radial direction with the surface charge on the pore wall and we obtain a 1D model by area-averaging. We demonstrate that in some extreme limits this model reduces to simpler models studied in the literature; see e.g. Yaroshchuk [J Membrane Sci 396, 43 (2012)]. Using our model we present predictions of important transport effects such as variation of transport numbers inside the membrane, onset of limiting current, and transient dynamics described by the method of characteristics.

  9. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics.

    PubMed

    Lin, Hsi-Kuei; Su, Yu-Wei; Chen, Hsiu-Cheng; Huang, Yi-Jiun; Wei, Kung-Hwa

    2016-09-21

    In this study, we enhanced the power conversion efficiency (PCE) of perovskite solar cells by employing an electron transfer layer (ETL) comprising [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) and, to optimize its morphology, a small amount of the block copolymer polystyrene-b-poly(ethylene oxide) (PS-b-PEO), positioned on the perovskite active layer. When incorporating 0.375 wt % PS-b-PEO into PC61BM, the PCE of the perovskite photovoltaic device increased from 9.4% to 13.4%, a relative increase of 43%, because of a large enhancement in the fill factor of the device. To decipher the intricate morphology of the ETL, we used synchrotron grazing-incidence small-angle X-ray scattering for determining the PC61BM cluster size, atomic force microscopy and scanning electron microscopy for probing the surface, and transmission electron microscopy for observing the aggregation of PC61BM in the ETL. We found that the interaction between PS-b-PEO and PC61BM resulted in smaller PC61BM clusters that further aggregated into dendritic structures in some domains, a result of the similar polarities of the PS block and PC61BM; this behavior could be used to tune the morphology of the ETL. The optimal PS-b-PEO-mediated PC61BM cluster size in the ETL was 17 nm, a large reduction from 59 nm for the pristine PC61BM layer. This approach of incorporating a small amount of nanostructured block copolymer into a fullerene allowed us to effectively tune the morphology of the ETL on the perovskite active layer and resulted in enhanced fill factors of the devices and thus their device efficiency.

  10. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics.

    PubMed

    Lin, Hsi-Kuei; Su, Yu-Wei; Chen, Hsiu-Cheng; Huang, Yi-Jiun; Wei, Kung-Hwa

    2016-09-21

    In this study, we enhanced the power conversion efficiency (PCE) of perovskite solar cells by employing an electron transfer layer (ETL) comprising [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) and, to optimize its morphology, a small amount of the block copolymer polystyrene-b-poly(ethylene oxide) (PS-b-PEO), positioned on the perovskite active layer. When incorporating 0.375 wt % PS-b-PEO into PC61BM, the PCE of the perovskite photovoltaic device increased from 9.4% to 13.4%, a relative increase of 43%, because of a large enhancement in the fill factor of the device. To decipher the intricate morphology of the ETL, we used synchrotron grazing-incidence small-angle X-ray scattering for determining the PC61BM cluster size, atomic force microscopy and scanning electron microscopy for probing the surface, and transmission electron microscopy for observing the aggregation of PC61BM in the ETL. We found that the interaction between PS-b-PEO and PC61BM resulted in smaller PC61BM clusters that further aggregated into dendritic structures in some domains, a result of the similar polarities of the PS block and PC61BM; this behavior could be used to tune the morphology of the ETL. The optimal PS-b-PEO-mediated PC61BM cluster size in the ETL was 17 nm, a large reduction from 59 nm for the pristine PC61BM layer. This approach of incorporating a small amount of nanostructured block copolymer into a fullerene allowed us to effectively tune the morphology of the ETL on the perovskite active layer and resulted in enhanced fill factors of the devices and thus their device efficiency. PMID:27574718

  11. Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Su, Heng-Sheng; Chen, Chia-Yi; Lu, Hai-Han; Chen, Hwan-Wen; Chang, Ching-Hung; Jiang, Chang-Han

    2011-07-01

    A full-duplex lightwave transport system employing phase-modulated radio-over-fiber (RoF) and intensity-remodulated CATV signals in two-way transmission is proposed and experimentally demonstrated. The transmission performances of RoF and CATV signals are investigated in bidirectional way, with the assistance of only one optical sideband and optical single sideband (SSB) schemes at the receiving sites. The experimental results show that the limitation on the optical modulation index (OMI) of the downlink RoF signal can be relaxed due to the constant intensity of phase modulation scheme. Impressive transmission performances of bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) were obtained over two 20-km single-mode fiber (SMF) links. This proposed system reveals an outstanding one with economy and convenience to be installed.

  12. The different diffusive transport behaviours of some metals in layers of Peru Basin surface sediment

    NASA Astrophysics Data System (ADS)

    Fritsche, Ulrich; Koschinsky, Andrea; Winkler, Andreas

    Diffusion experiments with a duration of 90 days were carried out with radio tracers in an oxic and a suboxic sediment layer from two deep-sea sediment cores. Diffusion coefficients, breakthrough and time-lag values were determined and the results checked by modelling. Only small differences of diffusive transport were observed for Na and Cs during the four experiments; Na behaved as a perfect conservative tracer, and the somewhat stronger uptake of Cs in one sample was caused by preferential absorption by illite that was enriched in this sample. The significant differences between the four experiments for the diffusion parameters of Mn, Zn, Co, and Cd correlate with the differing chemical compositions of the sediment layers; higher Mn oxide concentrations in the sample led to slower diffusion through the sediment sample and to significant sorption of the diffusing heavy metals. This result confirms the dominating role of Mn oxide phases in controlling the diffusive exchange of heavy metals between deep-sea sediment and bottom water. Sediment resuspension of the oxic surface layer, such as during potential ferromanganese nodule mining in the deep-sea, would be followed by increased diffusive flux of dissolved heavy metals, especially Mn, from suboxic sediment layers to the new disturbed sediment-bottom-water interface. According to our modelling, the Mn flux from the oxic sediment surface of 0.3 mg m -2 yr -1 in the undisturbed state would increase to up to several mg m -2 yr -1 within the first few weeks after disturbance. Depending on the time necessary until a stable oxic and Mn oxide rich layer is again re-established, a total Mn 2+ release of 54 mg m -2 was calculated if the original state is reached within 100 yr, in contrast to only 3.5 mg m -2 for 5 yr of re-establishment. The fluxes of the other heavy metals would be smaller, corresponding to their lower pore water concentrations in the suboxic layer compared to Mn.

  13. Synthesis of transport layers with controlled anisotropy and application thereof to study proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Todd, Devin; Mérida, Walter

    2016-04-01

    We report on a novel method for the synthesis of fibre-based proton exchange membrane (PEM) fuel cell porous transport layers (PTLs) with controllable fibre alignment. We also report the first application of such layers as diagnostics tools to probe the effect of within-plane PTL anisotropy upon PEM fuel cell performance. These structures are realized via adaptation of electrospinning technology. Electrospun layers with progressive anisotropy magnitude are produced and evaluated. This novel approach is distinguished from the state-of-the-art because an equivalent study using commercially available materials is impossible due to lack of structurally similar substrates with different anisotropies. The anisotropy is visualized via scanning electron microscopy, and quantified using electrical resistivity. The capacity is demonstrated to achieve fibre alignment, and the associated impact on transport properties. A framework is presented for assessing the in-situ performance, whereby transport layer orientation versus bipolar plate flow-field geometry is manipulated. While an effect upon the commercial baseline cannot be discerned, electrospun transport layers with greater anisotropy magnitude suggest greater sensitivity to orientation; where greater performance is obtained with fibres cross-aligned to flow-field channels. Our approach of electrospun transport enables deterministic structures by which fuel cell performance can be explained and optimized.

  14. Measurement of a new parameter representing the gas transport properties of the catalyst layers of polymer electrolyte fuel cells.

    PubMed

    Iden, Hiroshi; Ohma, Atsushi; Tokunaga, Tomomi; Yokoyama, Kouji; Shinohara, Kazuhiko

    2016-05-14

    The optimization of the catalyst layers is necessary for obtaining a better fuel cell performance and reducing fuel cell cost. Although the ionomer coverage of the Pt catalyst is said to be a key parameter in this regard, the proportion of Pt either directly or indirectly covered by the ionomer is thought to be an important parameter with regard to gas transport (indirectly covered Pt: its gas transport paths are completely blocked by the ionomer even if it does not directly cover Pt). In this study, a new technique has been developed for evaluating the proportion of Pt covered indirectly or directly by the ionomer, which is defined as the "capped proportion", based on the carbon monoxide (CO) adsorption properties at different temperatures. The validity of the method was thoroughly examined by identifying the CO adsorption properties of the components of the catalyst layers. The capped proportion and oxygen transport resistance in the catalyst layers showed a good correlation, indicating that the capped proportion is a dominant factor of oxygen transport resistance. This technique thus enables the evaluation of the dominant factor of the gas transport properties of the catalyst layers. The method has another significant advantage in that it does not require a membrane electrode assembly, let alone electrochemical measurement, which should be helpful for catalyst layer optimization.

  15. Graphene oxide hole transport layers for large area, high efficiency organic solar cells

    SciTech Connect

    Smith, Chris T. G.; Rhodes, Rhys W.; Beliatis, Michail J.; Imalka Jayawardena, K. D. G.; Rozanski, Lynn J.; Mills, Christopher A.; Silva, S. Ravi P.

    2014-08-18

    Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64 cm{sup 2}), solution processable, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1, 3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:[6,6]-Phenyl C{sub 71} butyric acid methyl ester (PCDTBT:PC{sub 70}BM) organic photovoltaic (OPV) solar cells, incorporating GO hole transport layers (HTL). The power conversion efficiency (PCE) of ∼5% is the highest reported for OPV using this architecture. A comparative study of solution-processable devices has been undertaken to benchmark GO OPV performance with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) HTL devices, confirming the viability of GO devices, with comparable PCEs, suitable as high chemical and thermal stability replacements for PEDOT:PSS in OPV.

  16. Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells

    SciTech Connect

    Treat, Neil D. E-mail: t.anthopoulos@imperial.ac.uk; Stingelin, Natalie; Yaacobi-Gross, Nir; Faber, Hendrik; Perumal, Ajay K.; Bradley, Donal D. C.; Anthopoulos, Thomas D. E-mail: t.anthopoulos@imperial.ac.uk

    2015-07-06

    We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at −5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.

  17. Tungsten injector for scrape-off layer impurity transport experiments in the Tore Supra tokamak

    SciTech Connect

    Kočan, M.; Lunt, T.; Gunn, J. P.; Meyer, O.; Pascal, J.-Y.

    2013-07-15

    This paper describes the design and operation of a new tungsten (W) injection system for impurity transport experiments in the Tore Supra tokamak. The system is mounted on a reciprocating manipulator and injects a controlled amount of gaseous tungsten hexacarbonyl, W(CO){sub 6} at arbitrary depth in the scrape-off layer, using an inertially activated valve. Injected W(CO){sub 6} is dissociated in the plasma, forming a radially localized plume of W atoms. The injector does not require an external gas feed and can perform a large number of injections from an on-board reservoir of W(CO){sub 6}. Some examples of W injections in Tore Supra are included, demonstrating successful operation and discussing some technical issues of the injector prototype.

  18. Graphene oxide hole transport layers for large area, high efficiency organic solar cells

    NASA Astrophysics Data System (ADS)

    Smith, Chris T. G.; Rhodes, Rhys W.; Beliatis, Michail J.; Imalka Jayawardena, K. D. G.; Rozanski, Lynn J.; Mills, Christopher A.; P. Silva, S. Ravi

    2014-08-01

    Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64 cm2), solution processable, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:[6,6]-Phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) organic photovoltaic (OPV) solar cells, incorporating GO hole transport layers (HTL). The power conversion efficiency (PCE) of ˜5% is the highest reported for OPV using this architecture. A comparative study of solution-processable devices has been undertaken to benchmark GO OPV performance with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) HTL devices, confirming the viability of GO devices, with comparable PCEs, suitable as high chemical and thermal stability replacements for PEDOT:PSS in OPV.

  19. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  20. Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus.

    PubMed

    Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai

    2016-02-10

    Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking. PMID:26799596

  1. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation. PMID:27421066

  2. Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus.

    PubMed

    Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai

    2016-02-10

    Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.

  3. Helium transport in the core and stochastic edge layer in LHD

    NASA Astrophysics Data System (ADS)

    Ida, K.; Yoshinuma, M.; Goto, M.; Schmitz, O.; Dai, S.; Bader, A.; Kobayashi, M.; Kawamura, G.; Moon, C.; Nakamura, Y.; The LHD Experiment Group

    2016-07-01

    Radial profiles of the density ratio of helium to hydrogen ions are measured using charge exchange spectroscopy with a two-wavelength spectrometer in the large helical device. Helium transport at the last closed flux surface (LCFS) and stochastic magnetic field layer outside the LCFS as well as in the core plasma is studied for a wide range of helium fractions, i.e. from hydrogen-dominated plasmas up to helium-dominated plasmas. The helium density profile becomes more peaked and inward convection velocity increases in the hydrogen-dominant plasma, while it becomes flat or hollow and the convection velocity is in the outward direction in the helium-dominant plasmas. The density gradient of helium at the LCFS is twice that of hydrogen and becomes steeper as the hydrogen becomes more dominant.

  4. TRANSPORT PROPERTIES IN MISFIT-LAYERED Ca2Co2O5 COMPOUND

    NASA Astrophysics Data System (ADS)

    Lan, Jinle; Zhan, Bin; Lin, Yuan-Hua; Nan, Ce-Wen; Liu, Yao-Chun

    2013-10-01

    The low temperature transport and magnetic properties were investigated in the misfit-layered Ca2Co2O5 compound. The compound exhibits incommensurate spin-density-wave (SDW) state in the dχ-1/dT curve at 20 K, which is confirmed by the resistivity (ρ) characterization. The resistivity shows an upturn from metallic to insulating behavior at TM-I (130 K) and strong Fermi liquid behaviors with ρ T2 relation between TM-I and T*(225 K). The Seebeck coefficient shows abnormal temperature dependence at Tp (40 K), which is suggested to origin from the long order of atomic in [Ca2CoO3] sublayer and spin fluctuation of Co ions. Moreover, large Seebeck coefficient (120 μV/K) and low thermal conductivity (2.5 W/mK) were obtained at room temperature, indicating that it is a promising p-type thermoelectric material for energy conversion.

  5. Effect of collisional temperature isotropisation on ELM parallel transport in a tokamak scrape-off layer

    NASA Astrophysics Data System (ADS)

    Coulette, David; Hirstoaga, Sever A.; Manfredi, Giovanni

    2016-08-01

    We develop a hybrid model to describe the parallel transport in a tokamak scrape-off layer following an edge-localized mode (ELM) event. The parallel dynamics is treated with a kinetic Vlasov-Poisson model, while the evolution of the perpendicular temperature {{T}\\bot} is governed by a fluid equation. The coupling is ensured by isotropising collisions. The model generalises an earlier approach where {{T}\\bot} was constant in space and time (Manfredi et al 2011 Plasma Phys. Control. Fusion 53 015012). Numerical results show that the main effect comes from electron-electron collisions, which limit the decrease of the parallel electron temperature and increase the potential drop in the Debye sheath in front of the surface. Ion-ion collisions have an almost negligible impact. The net effect is an increased peak power load on the target plates.

  6. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  7. Molecular self ordering and charge transport in layer by layer deposited poly (3,3‴-dialkylquarterthiophene) films formed by Langmuir-Schaefer technique

    SciTech Connect

    Pandey, Rajiv K.; Singh, Arun Kumar; Upadhyay, C.; Prakash, Rajiv

    2014-09-07

    The performance of π-conjugated polymer based electronic devices is directly governed by the molecular morphology of polymer aggregation, the extent to which a molecule is electronically coupled (self ordered and interacted) to neighboring molecules, and orientation. The well electronic coupled and crystalline/ordered polymer films have the potential to enhance the charge transport properties up to a benchmark. However, there is insufficient knowledge about the direct formation of large area, oriented, crystalline, and smooth films. In this study, we have presented Langmuir Schaefer technique to obtain the large area, oriented, crystalline, and smooth film of Poly (3,3‴-dialkylquarterthiophene) (PQT-12) polymer. The effect of self ordering and orientation of PQT-12 polymer on optical, morphological, and charge transport properties has been investigated. The prepared films have been characterized by UV-vis spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), selected area diffractions pattern (SAED), and atomic force microscopy (AFM) techniques. UV-vis spectra, TEM, SAED, and AFM images of monolayer films reveal the formation of well ordered and electronically coupled polymer domains. Layer by layer deposited films reveal the change in the orientation, which is confirmed by Raman spectra. Electronic properties and layer dependent charge transport properties are investigated using sandwiched structure Al/PQT-12/ITO Schottky configuration with perpendicular to the deposited films. It is observed that the charge transport properties and device electronic parameters (ideality factor and turn on voltage) are significantly changing with increasing the number of PQT-12 layers. Our study also demonstrates the charge transport between polymer crystallites and cause of deviation of ideal behavior of organic Schottky diodes. It may be further explored for improving the performance of other organic and optoelectronic devices.

  8. { P }{ T }-symmetric transport in non-{ P }{ T }-symmetric bi-layer optical arrays

    NASA Astrophysics Data System (ADS)

    Ramirez-Hernandez, J.; Izrailev, F. M.; Makarov, N. M.; Christodoulides, D. N.

    2016-09-01

    We study transport properties of an array created by alternating (a, b) layers with balanced loss/gain characterized by the key parameter γ. It is shown that for non-equal widths of (a, b) layers, i.e., when the corresponding Hamiltonian is non-{ P }{ T }-symmetric, the system exhibits the scattering properties similar to those of truly { P }{ T }-symmetric models provided that without loss/gain the structure presents the matched quarter stack. The inclusion of the loss/gain terms leads to an emergence of a finite number of spectral bands characterized by real values of the Bloch index. Each spectral band consists of a central region where the transmission coefficient {T}N≥slant 1, and two side regions with {T}N≤slant 1. At the borders between these regions the unidirectional reflectivity occurs. Also, the set of Fabry–Perot resonances with T N = 1 are found in spite of the presence of loss/gain.

  9. Fluorine effects in new indenofluorenedione derivatives for electron transporting layer in OLED devices.

    PubMed

    Lee, Jaehyun; Kim, Beomjin; Park, Youngil; Kim, Seungho; Park, Jongwook

    2014-08-01

    New three indenofluorenedione derivatives were synthesized and proposed for electron transporting layer (ETL). Three compounds are indeno[1,2-b]fluorene-6,12-dione (IF-dione), 2,8-Difluoro-indeno[1,2-b]fluorene-6,12-dione (Mono-F-lF-dione), and 1,2,3,7,8,9-Hexafluoro-indeno[1,2- b]fluorene-6,12-dione (Tri-F-IF-dione). UV-visible (UV-Vis) absorption of three compounds in THF solution state showed different absorption maximum values as follows: 292, 318 and 334 nm (IF-dione), 289, 314 and 329 nm (Mono-F-IF-dione), 285, 319 and 334 nm (Tri-F-IF-dione). Three compounds were inserted between emitting layer (EML) and cathode electrode as an ETL in OLED device: ITO/2-TNATA (60 nm)/NPB (15 nm)/Alq3 (30 nm)/synthesized compounds (30 nm)/LiF (1 nm)/Al (200 nm). I-V characteristics of three devices were investigated at 20 mA/cm2. Operating voltages of three compounds were 7.06 V (IF-dione), 6.42 V (MonoF-IF-dione), 5.36 V (TriF-IF-dione), respectively.

  10. { P }{ T }-symmetric transport in non-{ P }{ T }-symmetric bi-layer optical arrays

    NASA Astrophysics Data System (ADS)

    Ramirez-Hernandez, J.; Izrailev, F. M.; Makarov, N. M.; Christodoulides, D. N.

    2016-09-01

    We study transport properties of an array created by alternating (a, b) layers with balanced loss/gain characterized by the key parameter γ. It is shown that for non-equal widths of (a, b) layers, i.e., when the corresponding Hamiltonian is non-{ P }{ T }-symmetric, the system exhibits the scattering properties similar to those of truly { P }{ T }-symmetric models provided that without loss/gain the structure presents the matched quarter stack. The inclusion of the loss/gain terms leads to an emergence of a finite number of spectral bands characterized by real values of the Bloch index. Each spectral band consists of a central region where the transmission coefficient {T}N≥slant 1, and two side regions with {T}N≤slant 1. At the borders between these regions the unidirectional reflectivity occurs. Also, the set of Fabry-Perot resonances with T N = 1 are found in spite of the presence of loss/gain.

  11. Ozone Transport and Mixing Processes in the Boundary Layer Observed with Lidar during Discover-AQ

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Alvarez, R. J. _II, II; Choukulkar, A.; Brewer, A.; Weickmann, A. M.; Kirgis, G.; Sandberg, S.; Hardesty, M.; Delgado, R.; Long, R.; Brown, S. S.

    2014-12-01

    The final two Discover-AQ air quality studies were conducted in Houston, TX in September 2013 and the Colorado Front Range in July/August 2014. These two regions are characterized by different ozone precursor sources and exhibit unique regional wind flow patterns. During these studies, NOAA deployed its truck-based, scanning TOPAZ ozone lidar to document the vertical structure and temporal evolution of ozone concentrations from near the surface up to about 2.5 km above ground level. In Houston, TOPAZ was located next to a radar wind profiler while during the Colorado campaign, Doppler wind lidars collocated with TOPAZ measured wind profiles and vertical velocity statistics throughout the boundary layer (BL). For both studies, nearby in situ sensors provided continuous observations of surface ozone and NOx. These combinations of remote and in situ sensors lend themselves to study the influence of BL transport and mixing processes on surface-level ozone. In this presentation, we focus on characterizing and quantifying changes in surface ozone due to several BL processes, including the Houston land-sea breeze circulation, the terrain-driven BL flow in the Colorado Front Range area, thunderstorm outflows, BL growth rate and depth, and entrainment of air from the residual layer or lower free troposphere into the BL.

  12. Resolving lubrication layers in immersed boundary method simulations of vesicular transport in dendritic spines

    NASA Astrophysics Data System (ADS)

    Fai, Thomas; Kusters, Remy; Rycroft, Chris

    2015-11-01

    Our understanding of how neuronal connections in the brain are maintained and reorganized is being revolutionized by new experimental and computational techniques. Existing high-resolution 3D images show that neuronal axons often terminate onto micron-sized structures known as dendritic spines, which are characterized by their thin necks and bulbous heads. Vesicles containing membrane receptors must deform significantly to squeeze into the bulbous heads of the spines, but more quantitative estimates of the force and energy required are still lacking. We have used three-dimensional immersed boundary method simulations to capture the fluid dynamics of vesicle transport into spines. We vary the applied force and neck geometry to identify the region in phase space in which the vesicle can squeeze into the spine. These results are compared to pass-stuck diagrams computed previously in the case of vesicles squeezing through open channels with rigid walls. The resulting force estimates are found to be consistent with the physiological density of motor proteins. Resolving the thin lubricating layers between the vesicles and spine poses significant numerical challenges, and we have used elements from lubrication theory to help resolve these boundary layers.

  13. Study of effective transport properties of fresh and aged gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz

    2015-07-01

    Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.

  14. Low-temperature solution-processed graphene oxide derivative hole transport layer for organic solar cells

    NASA Astrophysics Data System (ADS)

    Zheng, Qiao; Fang, Guojia; Cheng, Fei; Lei, Hongwei; Qin, Pingli; Zhan, Caimao

    2013-04-01

    A Mo6+ cation modified graphene oxide (GO) derivative of GO-Mo was synthesized by a low-temperature solution method with different amounts of ammonium heptamolybdate (Mo-precursor) added into the GO solutions. The GO-Mo products were characterized through Raman microspectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy measurements and their photoelectric properties were systematically investigated. Organic bulk heterojunction solar cells with GO-Mo as the hole transport layer (HTL) were fabricated and their performance as a function of the number of GO-Mo layers was also studied. The performance of these devices was much better than that of the device with GO as the HTL. The best performance of the device with a power conversion efficiency of 2.61%, an open-circuit voltage of 0.59 V and a short-circuit current density of 9.02 mA cm-2 were obtained. Finally, the effect of the Mo-precursor weight in the GO solution on the device performance was discussed.

  15. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    SciTech Connect

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  16. Material transport in a convective surface mixed layer under weak wind forcing

    NASA Astrophysics Data System (ADS)

    Mensa, Jean A.; Özgökmen, Tamay M.; Poje, Andrew C.; Imberger, Jörg

    2015-12-01

    Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (| u10 | = 5m s-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(ℓ), than those reported by Okubo (1970), while the wind- and buoyancy-forced case shows a good agreement with Okubo's diffusivity amplitude, and the scaling is consistent with Richardson's 4/3rd law, kD ∼ ℓ4/3. These modeling results provide a framework for measuring material dispersion by mixed layer flows in future observational programs.

  17. Nondestructive detection of gangliosides with lipophilic fluorochromes and their employment for preparative high-performance thin-layer chromatography.

    PubMed

    Müthing, J; Heitmann, D

    1993-01-01

    A simple and effective procedure for the isolation and purification of gangliosides by preparative thin-layer chromatography is described. The method is based on nondestructive visualization of gangliosides on silica gel-precoated thin-layer chromatography plates by staining with uncharged lipophilic fluorochromes. Fluorescent dyes were added in low concentrations into the mobile phase (0.002%, w/v) without any interference of the ganglioside separation. After uv localization, the fluorescent zones were scraped off the plate and the silica gel was extracted with chloroform/methanol/water (30/60/8). In the following step fluorochromes were removed from gangliosides containing crude extracts by anion-exchange chromatography on DEAE-Sepharose. After desalting, impurities were removed by Iatrobeads chromatography. The method described offers an easy to handle and successful preparative thin-layer chromatography strategy to obtain pure gangliosides in microgram and miligram quantities. PMID:8434781

  18. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    PubMed

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.

  19. Turbulent transport regimes and the scrape-off layer heat flux width

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-15

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  20. Flow and suspended particulate transport in a tidal bottom layer, south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; Cacchione, D.A.; Tate, G.B.

    1998-01-01

    Field investigations of the hydrodynamics and the resuspension and transport of particulate matter in a bottom boundary layer were carried out in South San Francisco Bay, California during March-April 1995. The GEOPROBE, an instrumented bottom tripod, and broad-band acousti Doppler current profilers were used in this investigation. The instrument assemblage provided detailed measurements of 1) turbulent mean velocity distribution within 1.5 m of sediment-w interface; 2) characteristics of 3-D tidal current in the water column; 3) friction velocity u* or bottom shear stress and bottom roughness length zo; 4) hydrodynamic conditions conducive for s resuspension; and 5) circulation patterns which are responsible for transporting suspended particulate matter in South San Francisco Bay. An unusual flow event was recorded by the instruments during March 8-11, 1995. A 3-D numerical model was implemented which re qualitatively, the unusual observations and supported the hypothesis that the unusual flow event caused by a combination of wind driven circulation and weak neap tides.

  1. Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xia, Zhonggao; Liang, Jun; Wang, Xinwei; Liu, Yiming; Liu, Chuan; Zhang, Shengdong; Zhou, Hang

    2015-05-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping concentrations. The effect of interfacial defect densities on the solar cell performance was also investigated. Our simulation indicates that, with an optimized Cu2O HTL, high performance perovskite solar cells with efficiencies above 13% could be achieved, which shows the potential of using Cu2O as an alternative HTL over other inorganic materials, such as NiOx and MoOx. This study provides theoretical guidance for developing perovskite solar cells with inorganic hole transporting materials via a printing process.

  2. Transport of trace gases into the Tropical Tropopause Layer: the CAST experiment

    NASA Astrophysics Data System (ADS)

    Harris, N. R.

    2013-12-01

    The transport of trace gases from the lower troposphere into and through the Tropical Tropopause Layer is of fundamental importance in determining the chemical composition of the stratosphere. This occurs in convection which is particularly strong in the West Pacific in Boreal winter. A joint aircraft experiment will take place which involves the NERC CAST (Coordinated Airborne Studies in the Tropics), the NASA ATTREX (Airborne Tropical TRopopause EXperiment) and the NSF/NCAR CONTRAST Convective Transport of Active Species in the Tropics) projects. These will be supplemented by ground-based and sonde measurements made at Palau in CAST and in Biak in the Japanese SOWER experiment. One aim of the combined experiment is to measure the chemical composition of both the inflow and the outflow of the convection. The use of tracers with different lifetimes, including a range of short-lived halocarbons and hydrocarbons, should reveal a great deal about the mass fluxes of air from the lower troposphere to different altitudes in the TTL. This presentation describes the studies examining the composition and structure of the TTL, the plans for the aircraft and ground-based measurements, and the analyses to be used for interpretation. Examples of similar analyses based on the ATTREX measurements made in the East Pacific in February 2013 will be presented. These show the variability in the amount of air transported from the lower troposphere into the TTL calculated by the UK Met Office's NAME dispersion model as well as that model's ability to reproduce tracer distributions in the TTL.

  3. Spreading Layers in Accreting Objects: Role of Acoustic Waves for Angular Momentum Transport, Mixing, and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M.

    2016-01-01

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  4. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2006-09-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that 222Rn short-lived daughters, e.g. 218Po and 214Pb, have relevant radioactive decaying contributions acting as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a discrepancy in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations collapse due to the rapid growth

  5. Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Galmarini, S.

    2007-02-01

    The combined effect of turbulent transport and radioactive decay on the distribution of 222Rn and its progeny in convective atmospheric boundary layers (CBL) is investigated. Large eddy simulation is used to simulate their dispersion in steady state CBL and in unsteady conditions represented by the growth of a CBL within a pre-existing reservoir layer. The exact decomposition of the concentration and flux budget equations under steady state conditions allowed us to determine which processes are responsible for the vertical distribution of 222Rn and its progeny. Their mean concentrations are directly correlated with their half-life, e.g. 222Rn and 210Pb are the most abundant whereas 218Po show the lowest concentrations. 222Rn flux decreases linearly with height and its flux budget is similar to the one of inert emitted scalar, i.e., a balance between on the one hand the gradient and the buoyancy production terms, and on the other hand the pressure and dissipation at smaller scales which tends to destroy the fluxes. While 222Rn exhibits the typical bottom-up behavior, the maximum flux location of the daughters is moving upwards while their rank in the 222Rn progeny is increasing leading to a typical top-down behavior for 210Pb. We also found that the relevant radioactive decaying contributions of 222Rn short-lived daughters (218Po and 214Pb) act as flux sources leading to deviations from the linear flux shape. In addition, while analyzing the vertical distribution of the radioactive decay contributions to the concentrations, e.g. the decaying zone, we found a variation in height of 222Rn daughters' radioactive transformations. Under unsteady conditions, the same behaviors reported under steady state conditions are found: deviation of the fluxes from the linear shape for 218Po, enhanced discrepancy in height of the radioactive transformation contributions for all the daughters. In addition, 222Rn and its progeny concentrations decrease due to the rapid growth of the

  6. Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells.

    PubMed

    Gu, Xing; Cui, Wei; Song, Tao; Liu, Changhai; Shi, Xiaoze; Wang, Suidong; Sun, Baoquan

    2014-02-01

    Thin-layer, two-dimensional NbSe2 nanosheets with lower trap density have been obtained and act as an alternative hole-transporting layer to replace MoO3 in organic solar cells. If poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid methyl ester acts as an active layer, a power conversion efficiency of 8.10 % has been achieved without any further thermal treatment. The properties of this hole-transporting layer were investigated and the improvements in the devices are discussed.

  7. Ultraviolet-enhanced light emitting diode employing individual ZnO microwire with SiO{sub 2} barrier layers

    SciTech Connect

    Xu, Yingtian; Xu, Li; Dai, Jun; Ma, Yan; Chu, Xianwei; Zhang, Yuantao; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2015-05-25

    This paper details the fabrication of n-ZnO single microwire (SMW)-based high-purity ultraviolet light-emitting diodes (UV-LEDs) with an added SiO{sub 2} barrier layer on the p-Si substrate. However, the current-voltage (I-V) curve exhibited non-ideal rectifying characteristics. Under forward bias, both UV and visible emissions could be detected by electroluminescence (EL) measurement. When bias voltage reached 60 V at room temperature, a UV emission spike occurred at 390 nm originating from the n-ZnO SMW. Compared with the EL spectrum of the n-ZnO SMW/p-Si heterojunction device without the SiO{sub 2} barrier layer, we saw improved UV light extraction efficiency from the current-blocking effect of the SiO{sub 2} layer. The intense UV emission in the n-ZnO SMW/SiO{sub 2}/p-Si heterojunction indicated that the SiO{sub 2} barrier layer can restrict the movement of electrons as expected and result in effective electron-hole recombination in ZnO SMW.

  8. Quantifying and Parameterizing the Transport of Sub-Cloud Layer Moisture and Reactants by Shallow Cumulus Clouds over Land

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; van Stratum, B. J.; Vila-Guerau Arellano, J.; Sikma, M.; Krol, M. C.; Lelieveld, J.

    2013-12-01

    We investigate the vertical transport of moisture and atmospheric chemical reactants from the sub-cloud layer to the cumulus cloud layer related to the kinematic mass flux that is driven by shallow convection over land. The dynamical and chemical assumptions needed for mesoscale and global chemistry-transport model parameterizations are systematically analysed using numerical experiments performed by a Large-Eddy Simulation (LES) model. First, we identify and discuss the four primary feedback mechanisms between sub-cloud layer dynamics and mass-flux transport by shallow cumulus clouds for typical mid-latitude conditions. These feedbacks involve mixed-layer drying and heating, changing the moisture variability at the sub-cloud layer top and adjusting entrainment. Based on this analysis and LES experiments, we design parameterizations for cloud properties and mass-flux transport of air and moisture that can be applied to large-scale models. As an intermediate step, we incorporate the parameterizations in a conceptual mixed-layer model, which enables us to study these interplays in more detail. By comparing the results of this model with LES case studies, we show for a wide range of conditions that the new parameterizations enable the model to reproduce the sub-cloud layer dynamics and the four aforementioned feedbacks. However, by considering heterogeneous sensible and latent heat fluxes at the surface, we demonstrate that the parameterizations are sensitive to specific boundary conditions due to changes in the boundary-layer dynamics. Second, we extend the investigation to determine whether the parameterizations are suitable for tropical conditions and to represent the transport of reactants. The numerical experiments in this analysis are inspired by observations over the Amazon during the dry season. Isoprene, a key atmospheric compound over the tropical rain forest, decreases by 8.5 % hr-1 on average and 15 % hr-1 at maximum due to mass-flux induced removal. The

  9. Layering Networked and Symphonic Selves: A Critical Role for e-Portfolios in Employability through Integrative Learning

    ERIC Educational Resources Information Center

    Cambridge, Darren

    2008-01-01

    Purpose: E-portfolios, which document and facilitate learning and performance, have recently attracted interest in the USA, UK, and Europe as means to increase employability and support lifelong learning. This article aims to critically examine these objectives in order to guide the future e-portfolio practice. Design/methodology/approach: Social…

  10. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  11. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be

  12. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  13. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    PubMed Central

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-01-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on. PMID:24500376

  14. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation.

    PubMed

    Wang, F C; Liu, F; Jin, Z M

    2004-01-01

    A general numerical methodology was developed in the present study to analyse the elastohydrodynamic lubrication problem of a compliant layered socket against a rigid ball under steady state rotation representing flexion and extension during walking, with particular reference to artificial hip joint replacements. The general numerical methodology consisted of using the Newton-Raphson method to solve the Reynolds equation, simultaneously with the full elasticity equation using the finite element method in combination with the fast Fourier transform technique. Two specific types of acetabular cup were considered, one with ultra-high molecular weight polyethylene used in current total hip joint replacements, and one with polyurethane proposed for compliant layered 'cushion form bearings' for future developments. The film thickness and the pressure distribution for both cups were obtained under a wide range of operating conditions. The predicted central or average film thicknesses within the contact conjunction were compared with those estimated from various simplified theories available in the literature. A simple analytical methodology was consequently established to estimate the lubricating film thickness in a compliant layered socket, based on the corresponding ball-on-plane model and the consideration of the curvature effect.

  15. Study of large eddy simulation of the effects of boundary layer convection on tracer uplift and transport

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Wang, Rong

    2016-04-01

    Using large eddy model (LEM) and observed data from Dunhuang meteorological station during the intensive period of land-atmosphere interaction field experiment over arid region of North-west China, a series of sensitivity experiments have been performed to investigate the effects of the surface heat flux and wind shear on the strength and the organization of boundary layer convection as well as the growth of the convective boundary layer (CBL). The results show that surface heat flux increases with constant wind shear will give rise to a thicker and warmer CBL, stronger convections and larger thermal eddies due to intense surface turbulence transporting more energy to the upper layer. On the other hand wind shear increases with constant surface heat flux lead to a thicker and warmer CBL because of the entrainment of warm air from the inversion layer to the mixed layer, while the boundary layer convection became weaker with broken thermal eddies. To investigate the quantitative linkage of surface heat flux, wind shear with the tracer uplift rate and transport height, a passive tracer with a constant value of 100 was added at all model levels below the 100 m in all simulations. The least square analysis reveals that the tracer uplift rate increases linearly with the surface heat flux when wind shear is less than 10.5×10-3 s-1 owing to the enhancement of the downward transport of higher momentum. However, the tracer uplift rate decreases with increasing wind shear when the surface heat flux is less than 462.5 W/m2 because of the weakened convection. The passive tracer in the model is also shown to be transported to the higher altitude with increasing surface heat flux and under constant wind shear. However, under a constant surface heat flux, the tracer transport height increases with increasing wind shear only when the shear is above a certain threshold and this threshold depend on the magnitude of surface heat fluxes.

  16. Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Chen, B.; Xu, X. D.; Yang, S.; Zhao, T. L.

    2012-02-01

    The Asian Summer Monsoon (ASM) region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST), which can significantly impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL) to tropopause layer (TL) over this region, particularly from a climatological perspective, remains an issue of uncertainty. In this study, we present the climatological properties of BL-to-TL transport over the ASM region during boreal summer season (June-July-August) from 2001 to 2009. A comprehensive tracking analysis is conducted based on a large ensemble of TST-trajectories departing from the atmospheric BL and arriving at TL. Driven by the winds fields from the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) Global Forecast System, all TST-trajectories are selected from the high resolution datasets generated by the Lagrangian particle transport model FLEXPART using a domain-filling technique. Three key atmospheric boundary layer sources for BL-to-TL transport are identified with their contributions: (i) 38% from the region between tropical Western Pacific region and South China Seas (WP), (ii) 21% from Bay of Bengal and South Asian subcontinent (BOB), and (iii) 12% from the Tibetan Plateau, which includes the South Slope of the Himalayas (TIB). Controlled by the different patterns of atmospheric circulation, the air masses originating from these three source regions are transported along the different tracks into the TL. The spatial distributions of these three source regions remain similarly from year to year. The timescales of transport from BL to TL by the large-scale ascents range from 1 to 7 weeks, contributing up to 60-70% of the overall TST; whereas the transport governed by the deep convection overshooting becomes faster, with timescales of 1-2 days and contributions of 20-30%. These results provide

  17. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  18. Impact of planetary boundary layer turbulence on model climate and tracer transport

    NASA Astrophysics Data System (ADS)

    McGrath-Spangler, E. L.; Molod, A.; Ott, L. E.; Pawson, S.

    2015-07-01

    Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important because it is used to calculate the turbulent length scale that is used in the estimation of turbulent mixing. This study analyzes the impact of using three different PBL depth definitions in this calculation. Two definitions are based on the scalar eddy diffusion coefficient and the third is based on the bulk Richardson number. Over land, the bulk Richardson number definition estimates shallower nocturnal PBLs than the other estimates while over water this definition generally produces deeper PBLs. The near-surface wind velocity, temperature, and specific humidity responses to the change in turbulence are spatially and temporally heterogeneous, resulting in changes to tracer transport and concentrations. Near-surface wind speed increases in the bulk Richardson number experiment cause Saharan dust increases on the order of 1 × 10-4 kg m-2 downwind over the Atlantic Ocean. Carbon monoxide (CO) surface concentrations are modified over Africa during boreal summer, producing differences on the order of 20 ppb, due to the model's treatment of emissions from biomass burning. While differences in carbon dioxide (CO2) are small in the time mean, instantaneous differences are on the order of 10 ppm and these are especially prevalent at high latitude during boreal winter. Understanding the sensitivity of trace gas and aerosol concentration estimates to PBL depth is important for studies seeking to calculate surface fluxes based on near-surface concentrations and for studies projecting future concentrations.

  19. Turbulent Transport in a Strongly Stratified Forced Shear Layer with Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Garaud, Pascale; Kulenthirarajah, Logithan

    2016-04-01

    This work presents numerical results on the transport of heat and chemical species by shear-induced turbulence in strongly stratified, thermally diffusive environments. The shear instabilities driven in this regime are sometimes called “secular” shear instabilities, and can take place when the Richardson number of the flow is large, provided the Péclet number is small. We have identified a set of simple criteria to determine whether these instabilities can take place or not. Generally speaking, we find that they may be relevant whenever the thermal diffusivity of the fluid is very large (typically larger than 1014 cm2 s‑1), which is the case in the outer layers of high-mass stars (M ≥ 10 M⊙), for instance. Using a simple model setup in which the shear is forced by a spatially sinusoidal, constant-amplitude body-force, we have identified several regimes ranging from effectively unstratified to very strongly stratified, each with its own set of dynamical properties. Unless the system is in one of the two extreme regimes (effectively unstratified or completely stable), however, we find that (1) only about 10% of the input power is used toward heat transport, while the remaining 90% is viscously dissipated; (2) that the effective compositional mixing coefficient is well-approximated by the model of Zahn, with D ≃ 0.02κT/J where κT is the thermal diffusivity and J is the Richardson number. These results need to be confirmed, however, with simulations in different model setups and at higher effective Reynolds number.

  20. Turbulent Transport in a Strongly Stratified Forced Shear Layer with Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Garaud, Pascale; Kulenthirarajah, Logithan

    2016-04-01

    This work presents numerical results on the transport of heat and chemical species by shear-induced turbulence in strongly stratified, thermally diffusive environments. The shear instabilities driven in this regime are sometimes called “secular” shear instabilities, and can take place when the Richardson number of the flow is large, provided the Péclet number is small. We have identified a set of simple criteria to determine whether these instabilities can take place or not. Generally speaking, we find that they may be relevant whenever the thermal diffusivity of the fluid is very large (typically larger than 1014 cm2 s-1), which is the case in the outer layers of high-mass stars (M ≥ 10 M⊙), for instance. Using a simple model setup in which the shear is forced by a spatially sinusoidal, constant-amplitude body-force, we have identified several regimes ranging from effectively unstratified to very strongly stratified, each with its own set of dynamical properties. Unless the system is in one of the two extreme regimes (effectively unstratified or completely stable), however, we find that (1) only about 10% of the input power is used toward heat transport, while the remaining 90% is viscously dissipated; (2) that the effective compositional mixing coefficient is well-approximated by the model of Zahn, with D ≃ 0.02κT/J where κT is the thermal diffusivity and J is the Richardson number. These results need to be confirmed, however, with simulations in different model setups and at higher effective Reynolds number.

  1. Impact of planetary boundary layer turbulence on model climate and tracer transport

    NASA Astrophysics Data System (ADS)

    McGrath-Spangler, E. L.; Molod, A.; Ott, L. E.; Pawson, S.

    2014-12-01

    Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important because it is used to calculate the turbulent length scale that is used in the estimation of turbulent mixing. This study analyzes the impact of using three different PBL depth definitions in this calculation. Two definitions are based on the scalar eddy diffusion coefficient and the third is based on the bulk Richardson number. Over land, the bulk Richardson number definition estimates shallower nocturnal PBLs than the other estimates while over water this definition generally produces deeper PBLs. The near surface wind velocity, temperature, and specific humidity responses to the change in turbulence are spatially and temporally heterogeneous, resulting in changes to tracer transport and concentrations. Near surface wind speed increases in the bulk Richardson number experiment cause Saharan dust increases on the order of 1 × 10-4 kg m-2 downwind over the Atlantic Ocean. Carbon monoxide (CO) surface concentrations are modified over Africa during boreal summer, producing differences on the order of 20 ppb, due to the model's treatment of emissions from biomass burning. While differences in carbon dioxide (CO2) are small in the time mean, instantaneous differences are on the order of 10 ppm and these are especially prevalent at high latitude during boreal winter. Understanding the sensitivity of trace gas and aerosol concentration estimates to PBL depth is important for studies seeking to calculate surface fluxes based on near-surface concentrations and to studies projecting future concentrations.

  2. Verification of the multi-layer SNOWPACK model with different water transport schemes

    NASA Astrophysics Data System (ADS)

    Wever, N.; Schmid, L.; Heilig, A.; Eisen, O.; Fierz, C.; Lehning, M.

    2015-12-01

    The widely used detailed SNOWPACK model has undergone constant development over the years. A notable recent extension is the introduction of a Richards equation (RE) solver as an alternative for the bucket-type approach for describing water transport in the snow and soil layers. In addition, continuous updates of snow settling and new snow density parameterizations have changed model behavior. This study presents a detailed evaluation of model performance against a comprehensive multiyear data set from Weissfluhjoch near Davos, Switzerland. The data set is collected by automatic meteorological and snowpack measurements and manual snow profiles. During the main winter season, snow height (RMSE: < 4.2 cm), snow water equivalent (SWE, RMSE: < 40 mm w.e.), snow temperature distributions (typical deviation with measurements: < 1.0 °C) and snow density (typical deviation with observations: < 50 kg m-3) as well as their temporal evolution are well simulated in the model and the influence of the two water transport schemes is small. The RE approach reproduces internal differences over capillary barriers but fails to predict enough grain growth since the growth routines have been calibrated using the bucket scheme in the original SNOWPACK model. However, the agreement in both density and grain size is sufficient to parameterize the hydraulic properties successfully. In the melt season, a pronounced underestimation of typically 200 mm w.e. in SWE is found. The discrepancies between the simulations and the field data are generally larger than the differences between the two water transport schemes. Nevertheless, the detailed comparison of the internal snowpack structure shows that the timing of internal temperature and water dynamics is adequately and better represented with the new RE approach when compared to the conventional bucket scheme. On the contrary, the progress of the meltwater front in the snowpack as detected by radar and the temporal evolution of the vertical

  3. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering.

    PubMed

    Zhao, Jian; Wang, Hongxi; Gao, Renjing; Hu, Ping; Yang, Yintang

    2012-06-01

    To eliminate the effects of motion coupling for measuring cylindrical work pieces, a novel alignment mechanism integrating functions of both leveling and centering is designed and fabricated by introducing multi-layered orthogonal connected flexible hinges as the key supporting and joining elements. Different from traditional leveling mechanisms with many separate parts fabricated together, all of the flexible hinges were integrated in one three-dimensioned machining part without assembling process, and thus synchronously simplifying the structure and reducing assembly errors. Based on the screw theory, the mathematic model of the proposed alignment mechanism is established for any resolution requirements depending on screw characteristics. A millimeter-sized device is fabricated with the alignment precision of 1.0 μm for centering within the range of ±1 mm and 1 in. for leveling within ±1°. The experiment results are in very close agreement to those obtained by simulation, which validate the feasibility of introducing multi-layered orthogonal flexible hinges in the centering and leveling mechanisms. PMID:22755657

  4. Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Liu, Jiewei; Pathak, Sandeep; Stergiopoulos, Thomas; Leijtens, Tomas; Wojciechowski, Konrad; Schumann, Stefan; Kausch-Busies, Nina; Snaith, Henry J

    2015-05-01

    Organic-inorganic halide perovskite solar cells have recently emerged as high-performance photovoltaic devices with low cost, promising for affordable large-scale energy production, with laboratory cells already exceeding 20% power conversion efficiency (PCE). To date, a relatively expensive organic hole-conducting molecule with low conductivity, namely spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'- spirobifluorene), is employed widely to achieve highly efficient perovskite solar cells. Here, we report that by replacing spiro-OMeTAD with much cheaper and highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) we can achieve PCE of up to 14.5%, with PEDOT cast from a toluene based ink. However, the stabilized power output of the PEDOT-based devices is only 6.6%, in comparison to 9.4% for the spiro-OMeTAD-based cells. We deduce that accelerated recombination is the cause for this lower stabilized power output and postulate that reduced levels of p-doping are required to match the stabilized performance of Spiro-OMeTAD. The entirely of the materials employed in the perovskite solar cell are now available at commodity scale and extremely inexpensive.

  5. Photodiode Based on CdO Thin Films as Electron Transport Layer

    NASA Astrophysics Data System (ADS)

    Soylu, M.; Kader, H. S.

    2016-08-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage (I-V) characteristics of the CdO/p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances (R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  6. A Transport Equation Approach to Modeling the Influence of Surface Roughness on Boundary Layer Transition

    NASA Astrophysics Data System (ADS)

    Langel, Christopher Michael

    A computational investigation has been performed to better understand the impact of surface roughness on the flow over a contaminated surface. This thesis highlights the implementation and development of the roughness amplification model in the flow solver OVERFLOW-2. The model, originally proposed by Dassler, Kozulovic, and Fiala, introduces an additional scalar field roughness amplification quantity. This value is explicitly set at rough wall boundaries using surface roughness parameters and local flow quantities. This additional transport equation allows non-local effects of surface roughness to be accounted for downstream of rough sections. This roughness amplification variable is coupled with the Langtry-Menter model and used to modify the criteria for transition. Results from flat plate test cases show good agreement with experimental transition behavior on the flow over varying sand grain roughness heights. Additional validation studies were performed on a NACA 0012 airfoil with leading edge roughness. The computationally predicted boundary layer development demonstrates good agreement with experimental results. New tests using varying roughness configurations are being carried out at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel to provide further calibration of the roughness amplification method. An overview and preliminary results are provided of this concurrent experimental investigation.

  7. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  8. Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team

    2016-05-01

    Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.

  9. Photodiode Based on CdO Thin Films as Electron Transport Layer

    NASA Astrophysics Data System (ADS)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  10. Validation of a multi-layer Green's function code for ion beam transport

    NASA Astrophysics Data System (ADS)

    Walker, Steven; Tweed, John; Tripathi, Ram; Badavi, Francis F.; Miller, Jack; Zeitlin, Cary; Heilbronn, Lawrence

    To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. In consequence, a new version of the HZETRN code capable of simulating high charge and energy (HZE) ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. The computational model consists of the lowest order asymptotic approximation followed by a Neumann series expansion with non-perturbative corrections. The physical description includes energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shift. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments with multi-layer targets. In order to validate the code with space boundary conditions, measured particle fluences are propagated through several thicknesses of shielding using both GRNTRN and the current version of HZETRN. The excellent agreement obtained indicates that GRNTRN accurately models the propagation of HZE ions in the space environment as well as in laboratory settings and also provides verification of the HZETRN propagator.

  11. A first-principles study on the phonon transport in layered BiCuOSe

    NASA Astrophysics Data System (ADS)

    Shao, Hezhu; Tan, Xiaojian; Liu, Guo-Qiang; Jiang, Jun; Jiang, Haochuan

    2016-02-01

    First-principles calculations are employed to investigate the phonon transport of BiCuOSe. Our calculations reproduce the lattice thermal conductivity of BiCuOSe. The calculated grüneisen parameter is 2.4 ~ 2.6 at room temperature, a fairly large value indicating a strong anharmonicity in BiCuOSe, which leads to its ultralow lattice thermal conductivity. The contribution to total thermal conductivity from high-frequency optical phonons, which are mostly contributed by the vibrations of O atoms, is larger than 1/3, remarkably different from the usual picture with very little contribution from high-frequency optical phonons. Our calculations show that both the high group velocities and low scattering processes involved make the high-frequency optical modes contribute considerably to the total lattice thermal conductivity. In addition, we show that the sound velocity and bulk modulus along a and c axes exhibit strong anisotropy, which results in the anisotropic thermal conductivity in BiCuOSe.

  12. A first-principles study on the phonon transport in layered BiCuOSe

    PubMed Central

    Shao, Hezhu; Tan, Xiaojian; Liu, Guo-Qiang; Jiang, Jun; Jiang, Haochuan

    2016-01-01

    First-principles calculations are employed to investigate the phonon transport of BiCuOSe. Our calculations reproduce the lattice thermal conductivity of BiCuOSe. The calculated grüneisen parameter is 2.4 ~ 2.6 at room temperature, a fairly large value indicating a strong anharmonicity in BiCuOSe, which leads to its ultralow lattice thermal conductivity. The contribution to total thermal conductivity from high-frequency optical phonons, which are mostly contributed by the vibrations of O atoms, is larger than 1/3, remarkably different from the usual picture with very little contribution from high-frequency optical phonons. Our calculations show that both the high group velocities and low scattering processes involved make the high-frequency optical modes contribute considerably to the total lattice thermal conductivity. In addition, we show that the sound velocity and bulk modulus along a and c axes exhibit strong anisotropy, which results in the anisotropic thermal conductivity in BiCuOSe. PMID:26878884

  13. A first-principles study on the phonon transport in layered BiCuOSe.

    PubMed

    Shao, Hezhu; Tan, Xiaojian; Liu, Guo-Qiang; Jiang, Jun; Jiang, Haochuan

    2016-01-01

    First-principles calculations are employed to investigate the phonon transport of BiCuOSe. Our calculations reproduce the lattice thermal conductivity of BiCuOSe. The calculated grüneisen parameter is 2.4 ~ 2.6 at room temperature, a fairly large value indicating a strong anharmonicity in BiCuOSe, which leads to its ultralow lattice thermal conductivity. The contribution to total thermal conductivity from high-frequency optical phonons, which are mostly contributed by the vibrations of O atoms, is larger than 1/3, remarkably different from the usual picture with very little contribution from high-frequency optical phonons. Our calculations show that both the high group velocities and low scattering processes involved make the high-frequency optical modes contribute considerably to the total lattice thermal conductivity. In addition, we show that the sound velocity and bulk modulus along a and c axes exhibit strong anisotropy, which results in the anisotropic thermal conductivity in BiCuOSe. PMID:26878884

  14. New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Shahverdi, Hamid Reza

    2015-10-01

    In this work we reported sputter deposited NiOx/Ni double layer as an HTM/contact couple in normal architecture of perovskite solar cell. A perovskite solar cell that is durable for more than 60 days was achieved, with increasing efficiency from 1.3% to 7.28% within 6 days. Moreover, low temperature direct deposition of NiOx layer on perovskite layer was introduced as a potential hole transport material for an efficient cost-effective solar cell applicable for various morphologies of perovskite layers, even for perovskite layers containing pinholes, which is a notable challenge in perovskite solar cells. The angular deposition of NiOx layers by dc reactive magnetron sputtering showed uniform and crack-free coverage of the perovskite layer with no negative impact on perovskite structure that is suitable for nickel back contact layer, surface shielding against moisture, and mechanical damages. Replacing the expensive complex materials in previous perovskite solar cells with low cost available materials introduces cost-effective scalable perovskite solar cells.

  15. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM–ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level. PMID:27429041

  16. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers.

    PubMed

    Hehn, Iris; Schuster, Swen; Wächter, Tobias; Abu-Husein, Tarek; Terfort, Andreas; Zharnikov, Michael; Zojer, Egbert

    2016-08-01

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM-ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level. PMID:27429041

  17. Meeting Skills Needs in a Market-Based Training System: A Study of Employer Perceptions and Responses to Training Challenges in the Australian Transport and Logistics Industry

    ERIC Educational Resources Information Center

    Gekara, Victor O.; Snell, Darryn; Chhetri, Prem; Manzoni, Alex

    2014-01-01

    Many countries are adopting market-based training systems to address industry skills needs. This paper examines the marketisation of Australia's training system and the implications for training provision and outcomes in the Transport and Logistics industry. Drawing on qualitative interviews from industry employers and training providers, we…

  18. Layers

    NASA Astrophysics Data System (ADS)

    Hong, K. J.; Jeong, T. S.; Youn, C. J.

    2014-09-01

    The temperature-dependent photoresponse characteristics of MnAl2S4 layers have been investigated, for the first time, by use of photocurrent (PC) spectroscopy. Three peaks were observed at all temperatures. The electronic origin of these peaks was associated with band-to-band transitions from the valence-band states Γ4( z), Γ5( x), and Γ5( y) to the conduction-band state Γ1( s). On the basis of the relationship between PC-peak energy and temperature, the optical band gap could be well expressed by the expression E g( T) = E g(0) - 2.80 × 10-4 T 2/(287 + T), where E g(0) was estimated to be 3.7920 eV, 3.7955 eV, and 3.8354 eV for the valence-band states Γ4( z), Γ5( x), and Γ5( y), respectively. Results from PC spectroscopy revealed the crystal-field and spin-orbit splitting were 3.5 meV and 39.9 meV. The gradual decrease of PC intensity with decreasing temperature can be explained on the basis of trapping centers associated with native defects in the MnAl2S4 layers. Plots of log J ph, the PC current density, against 1/ T, revealed a dominant trap level in the high-temperature region. By comparing PC and the Hall effect results, we confirmed that this trap level is a shallow donor 18.9 meV below the conduction band.

  19. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the

  20. Transport and deposition of nitrogen oxides and ozone in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Li, Yongxian

    Tropospheric ozone is an important photochemical air pollutant, which increases respiratory-related diseases, decreases crop yields, and causes other environmental problems. This research has focused on the measurement of soil biogenic emissions of nitric oxide (NO), one of the precursors for ozone formation, from intensively managed soils in the Southeast US, and examined the transport and deposition of NOx (NO + NO2) and ozone in the atmospheric surface layer, and the effects of NO emissions and its chemical reactions on ozone flux and deposition to the earth's surface. Emissions of nitric oxide were measured from an intensively managed agricultural soil, in the lower coastal plain of North Carolina (near Plymouth, NC), using a dynamic chamber technique. Measurements of soil NO emissions in several crop canopies were conducted at four different sites in North Carolina during late spring and summer of 1994-1996. The turbulent fluxes of NO2 and O3 at 5 m and 10 m above the ground were measured using the eddy-correlation technique near Plymouth, NC during late spring of 1995 and summer of 1996, concurrent with measurements of soil NO emissions using the dynamic chamber system. Soil NO emission from within the corn field was high averaging approximately 35 ng N/m2/s during the measurement period of 1995. In another study, vertical measurements of ozone were made on a 610 m tall tower located 15 km Southeast of Raleigh, NC during the summers of 1993-1997, as part of an effort by the State of North Carolina to develop a State Implementation Plan (SIP) for ozone control in the Raleigh Metropolitan Statistical Area. A strong correlation was observed between the nighttime and early morning ozone concentrations in the residual layer (CR) above the NBL and the maximum ground level concentration (C o max) the following afternoon. Based on this correlation, an empirical regression equation (Co max = 27.67*exp(0.016 CR)) was developed for predicting maximum ground level ozone

  1. The diffusive transport of gibberellins and abscisic acid through the aleurone layer of germinating barley grain: a mathematical model.

    PubMed

    Bruggeman, F J; Libbenga, K R; Van Duijn, B

    2001-11-01

    A mathematical model of the diffusive transport of abscisic acid (ABA) and gibberellins (GAs) through the aleurone layer of barley (Hordeum vulgare L.) grain is presented. The model consists of two partial differential equations describing the accumulation of phytohormone in the apoplastic and symplasmic compartments of the aleurone layer, both spatially and temporally. The mathematical model contains the morphology of the barley grain and the physicochemical properties of the two phytohormones. A mathematical derivation of the accumulation ratios for the two phytohormones between the symplast and apoplast under equilibrium conditions resulted in different distribution mechanisms for GAs and ABA. A sensitivity analysis of the accumulation ratio for GAs indicated high sensitivity to the apoplastic pH and the membrane potential, whereas the accumulation ratio for ABA proved to be most sensitive to the pH difference between the apoplast and symplast. The diffusive transport time for GAs to the basal site of the aleurone layer as calculated with the mathematical model is within a physiologically plausible timescale according to experimental data from the literature. Abscisic acid cannot be transported by diffusion to the end of the aleurone layer as quickly as GAs, according to model simulations. Therefore, the functional role of ABA in germination is likely to be in the vicinity of the embryo.

  2. Phonon transport in single-layer M o1 -xWxS2 alloy embedded with W S2 nanodomains

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Yang, Ronggui

    2016-08-01

    Two-dimensional (2D) transition metal dichalcogenides have shown numerous interesting physical and chemical properties, making them promising materials for electronic, optoelectronic, and energy applications. Tuning thermal conductivity of 2D materials could expand their applicability in many of these fields. In this paper, we propose a strategy of using alloying and nanodomains to suppress the thermal conductivity of 2D materials. To predict the thermal conductivity of a 2D alloy embedded with nanodomains, we employ the Green's function approach to assess the phonon scattering strength due to alloying and nanodomain embedding. Our first-principles-driven phonon Boltzmann transport equation calculations show that the thermal conductivity of single-layer Mo S2 can be reduced to less than one-tenth of its intrinsic thermal conductivity after alloying with W and introducing nanodomains due to the strong scattering for both high- and low-frequency phonons. Strategies to further reduce thermal conductivity are also discussed.

  3. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    SciTech Connect

    Kellermann, Renate; Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter; Brabec, Christoph J.

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  4. Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.

    PubMed

    Ramasamy, Devaraj; Nasani, Narendar; Brandão, Ana D; Pérez Coll, Domingo; Fagg, Duncan P

    2015-05-01

    The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+δ electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ≪ Gd < no buffer layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers.

  5. Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean

    USGS Publications Warehouse

    McManus, M.A.; Cheriton, O.M.; Drake, P.J.; Holliday, D.V.; Storlazzi, C.D.; Donaghay, P.L.; Greenlaw, C.F.

    2005-01-01

    Thin layers of plankton are recurrent features in a variety of coastal systems. These layers range in thickness from a few centimeters to a few meters. They can extend horizontally for kilometers and have been observed to persist for days. Densities of organisms found within thin layers are far greater than those above or below the layer, and as a result, thin layers may play an important role in the marine ecosystem. The paramount objective of this study was to understand the physical processes that govern the dynamics of thin layers of zooplankton in the coastal ocean. We deployed instruments to measure physical processes and zooplankton distribution in northern Monterey Bay; during an 11 d period of persistent upwelling-favorable winds, 7 thin zooplankton layers were observed. These zooplankton layers persisted throughout daylight hours, but were observed to dissipate during evening hours. These layers had an average vertical thickness of 1.01 m. No layers were found in regions where the Richardson number was <0.25. In general, when the Richardson number is <0.25 the water column is unstable, and incapable of supporting thin layers. Thin zooplankton layers were also located in regions of reduced flow. In addition, our observations show that the vertical depth distribution of thin zooplankton layers is modulated by high-frequency internal waves, with periods of 18 to 20 min. Results from this study clearly show an association between physical structure, physical processes and the presence of thin zooplankton layers in Monterey Bay. With this new understanding we may identify other coastal regions that have a high probability of supporting thin layers. ?? Inter-Research 2005.

  6. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC{sub 71}BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    SciTech Connect

    Ahmad, Zubair Abdullah, Shahino Mah; Sulaiman, Khaulah; Taguchi, Dai; Iwamoto, Mitsumasa

    2015-04-28

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC{sub 71}BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC{sub 71}BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC{sub 71}BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  7. Preparation of a hole transport layer tethered to ITO surface via a self-assembled monolayer with reactive terminal group

    NASA Astrophysics Data System (ADS)

    Hagihara, Yuya; Kim, Seong-Ho; Tanaka, Kuniaki; Advincula, Rigoberto C.; Usui, Hiroaki

    2014-01-01

    Characteristics of a junction between a polymer thin film and an indium-tin oxide (ITO) substrate was controlled by forming covalent chemical bonds at the interface through self-assembled monolayers (SAMs) with reactive terminal groups. For this purpose, SAMs with vinyl, epoxide, and benzophenone terminal groups were formed on ITO substrates, on which a vinyl derivative of a hole transport molecule was vapor-deposited, and then annealed in vacuum. This procedure produced a polymer layer strongly attached to the substrate surface. It was also found that the charge injection from the ITO electrode to the polymer layer can be improved by chemically tethering the interface via the SAMs.

  8. Transport driven plasma flows in the scrape-off layer of ADITYA Tokamak in different orientations of magnetic field

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2014-06-15

    Parallel plasma flows in the scrape-off layer of ADITYA tokamak are measured in two orientations of total magnetic field. In each orientation, experiments are carried out by reversing the direction of the toroidal magnetic field and the plasma current. The transport-driven component is determined by averaging flow Mach numbers, measured in two directions of the toroidal magnetic field and the plasma current for the same orientation. It is observed that there is a significant transport-driven component in the measured flow and the component depends on the field orientation.

  9. Further quantification of the role of internal unstirred layers during the measurement of transport coefficients in giant internodes of Chara by a new stop-flow technique.

    PubMed

    Kim, Yangmin; Ye, Qing; Reinhardt, Hagen; Steudle, Ernst

    2006-01-01

    A new stop-flow technique was employed to quantify the impact of internal unstirred layers on the measurement of the solute permeability coefficient (P(s)) across the plasma membrane of internodes of the giant-celled alga Chara corallina using a cell pressure probe. During permeation experiments with rapidly permeating solutes (acetone, 2-propanol, and dimethylformamide), the solute concentration inside the cell was estimated and the external medium was adjusted to stop solute transport across the membrane, after which responses in turgor were measured. This allowed estimation of the solute concentration right at the membrane. Stop-flow experiments were also simulated with a computer. Both the stop-flow experiments and simulations provided quantitative data about internal concentration gradients and the contribution of unstirred layers to overall measured values of P(meas)(s) for the three solutes. The stop-flow experimental results agreed with stop-flow simulations assuming that solutes diffused into a completely stagnant cell interior. The effects of internal unstirred layers on the underestimation of membrane P(s) declined with decreasing P(s). They were no bigger than 37% in the presence of the most rapidly permeating solute, acetone (P(meas)(s) =4.2 x 10(-6) m s(-1)), and 14% for the less rapidly permeating dimethylformamide (P(meas)(s) =1.6x10(-6) m s(-1)). It is concluded that, even in the case of rapidly permeating solutes such as isotopic water and, even when making pessimistic assumptions about the internal mixing of solutes, an upper limit for the underestimation of P(s) due to internal unstirred layers was 37%. The data are discussed in terms of recent theoretical estimates of the effect of internal unstirred layers and in terms of some recent criticism of cell pressure probe measurements of water and solute transport coefficients. The current stop-flow data are in line with earlier estimations of the role of unstirred layers in the literature on cell

  10. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  11. An experimental study of the turbulent boundary layer on a transport wing in subsonic and transonic flow

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Roos, Frederick W.; Hicks, Raymond M.

    1990-01-01

    The upper surface boundary layer on a transport wing model was extensively surveyed with miniature yaw probes at a subsonic and a transonic cruise condition. Additional data were obtained at a second transonic test condition, for which a separated region was present at mid-semispan, aft of mid-chord. Significant variation in flow direction with distance from the surface was observed near the trailing edge except at the wing root and tip. The data collected at the transonic cruise condition show boundary layer growth associated with shock wave/boundary layer interaction, followed by recovery of the boundary layer downstream of the shock. Measurements of fluctuating surface pressure and wingtip acceleration were also obtained. The influence of flow field unsteadiness on the boundary layer data is discussed. Comparisons among the data and predictions from a variety of computational methods are presented. The computed predictions are in reasonable agreement with the experimental data in the outboard regions where 3-D effects are moderate and adverse pressure gradients are mild. In the more highly loaded mid-span region near the trailing edge, displacement thickness growth was significantly underpredicted, except when unrealistically severe adverse pressure gradients associated with inviscid calculations were used to perform boundary layer calculations.

  12. Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers

    PubMed Central

    Tian, Xiaojuan; Itkis, Mikhail E.; Haddon, Robert C.

    2015-01-01

    The in-plane alignment of graphite nanoplatelets (GNPs) in thin thermal interface material (TIM) layers suppresses the though-plane heat transport thus limiting the performance of GNPs in the geometry normally required for thermal management applications. Here we report a disruption of the GNP in-plane alignment by addition of spherical microparticles. The degree of GNP alignment was monitored by measurement of the anisotropy of electrical conductivity which is extremely sensitive to the orientation of high aspect ratio filler particles. Scanning Electron Microscopy images of TIM layer cross-sections confirmed the suppression of the in-plane alignment. The hybrid filler formulations reported herein resulted in a synergistic enhancement of the through-plane thermal conductivity of GNP/Al2O3 and GNP/Al filled TIM layers confirming that the control of GNP alignment is an important parameter in the development of highly efficient GNP and graphene-based TIMs. PMID:26279183

  13. Dependence of light-emitting and photovoltaic properties of dual-function organic diodes on carrier-transporting layers

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Nyeon; Choi, Mun Soo

    2013-10-01

    Dual-function photovoltaic organic light-emitting diodes (PVOEDs) have been investigated in this work. The PVOLEDs emit light when forward biased and generate electricity when backward biased. This dual function is based on the half-gap junction composed of 5,6,11,12-tetraphenylnaphthacene (rubrene) and C 60. The device structure was optimized through experiments using various organic materials for the electron-transporting layer (ETL) and electron-injection layer (EIL). Through this work, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), C 60 and LiF were selected as the ETL, electron-accepting layer and EIL, respectively. Using this device structure, we obtained a current efficiency of 0.27 cd/A for the light-emitting mode and a power-conversion efficiency of 1.95% for the photovoltaic mode.

  14. TRANSPORT OF HEAT, WATER VAPOR AND CARBON DOXIDE BY LONG PERIOD EDDIES IN THE STABLE BOUNDARY LAYER

    SciTech Connect

    Kurzeja, R.

    2010-07-26

    The vertical transport of heat and trace chemicals for a night in April has been studied with a wavelet analysis and conventional one-hour averages. It was found that for the night of April 20, 2009, turbulent kinetic energy, heat and trace chemicals were transported directed downward from the jet core. The most significant periods for this transport were less than 5 minutes and greater than one hour with intermittent transport taking place in the 5 min to 1 hour time frame. The nocturnal boundary layer is characterized by turbulent intermittency, long period oscillations, and a slow approach to equilibrium, (Mahrt, 1999). Although turbulence is usually maintained by surface friction, downward transport from low-level jets can also play an important role in turbulence maintenance and in the transport of scalars, Mahrt (1999), Banta et al. (2006). The eddy covariance flux measurement technique assumes continuous turbulence which is unusual in the stable boundary because significant flux transport occurs via turbulent eddies whose periods are long compared with the averaging time (Goulden et al., 1996). Systematic error in eddy flux measurements is attributed mainly to the neglect of long period eddies. Banta et al. (2006) noted that observations of turbulence below the low level jet suggested that while upward transport of turbulence kinetic energy (TKE) is common, downward transport from the jet can also occur. They found that in the CASES 99 experiments that turbulence scaled well with the strength of the low-level jet, and that surface cooling was more important than surface roughness. Because nocturnal turbulence is intermittent and non-stationary, the appropriate averaging time for calculation of TKE and EC fluxes is not obvious. Wavelet analysis is, thus, a more suitable analysis tool than conventional Fourier analysis.

  15. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  16. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  17. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    DOE PAGESBeta

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; et al

    2016-04-25

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotopemore » observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from –40.2 to –15.9 ‰ and δ2Hv ranged from –278.7 to –113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol–1) indicate that regional

  18. Morphology and Transport Properties of Novel Polymer Nanocomposites Resulted from Melt Processing of Polyvinylacetate Substrates Coated with Layer-by-Layer Assemblies

    NASA Astrophysics Data System (ADS)

    Soltani, Iman; Spontak, Richard J.

    Novel polymer nanocomposites (PNCs) were processed through layer-by-layer (LBL) deposition of clay and polyethylene terephthalate ionomer layers on polyvinylacetate (PVAc) substrates, followed by repetitive melt pressing of coated samples to crush LBL assemblies into the polymeric matrix. The increase in the clay content in resulted PNCs prepared through similar LBL coatings, relative to previously studied hydrophobic polystyrene-based nanocomposites, postulated superiority of PVAc, with relatively higher hydrophilicity, to interact with LBL assemblies. Also, these PNCs showed relatively good barrier improvement against transport of oxygen and carbon dioxide gases, proposing the scavenging effect of LBL assemblies crushed portions as highly tortuous labyrinths with high aspect ratios, comprising edge-edge flocculated exfoliated clay platelets, observed through transmission electron micrographs. However, combinative morphological investigations through optical microscopy, x-ray diffractometry, and transmission electron microscopy proposed low global dispersion of clay throughout polymeric matrix, conjecturing insufficient intensity of stress applied through cyclic melt pressing, and/or slight thermal degradation of samples via extended times of processing at high temperatures.

  19. Model Simulation of Ionosphere Electron Density with Dynamic Transportation and Mechanism of Sporadic E Layers in Lower Part of Ionosphere

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chu, Y. H.

    2015-12-01

    There are many physical theories responsible for explanation the generation mechanism of sporadic E (Es) plasma irregularities. In middle latitude, it's generally believed that sporadic E layers occur in vertical ion convergent areas driven by horizontal neutral wind shear. The sporadic E layers appear characteristic of abundant metallic ion species (i.e., Fe+, Mg+, Na+), that lifetime are longer than molecular ions by a factor of several orders, have been demonstrated by rocket-borne mass spectrometric measurements. On the basic of the GPS Radio Occultation (RO), using the scintillations of the GPS signal-to-noise ratio and intense fluctuation of excess phase, the global and seasonal sporadic E layers occurrence rates could be retrieved. In our previous study we found there is averaged 10 kilometers shift in height between the COSMIC-retrieved sporadic E layer occurrence rate and the sporadic E occurrence rate modeled from considering the convergence/divergence of Fe+ vertical flux. There are many reasons that maybe result in the altitude differences, e.g., tidal wind with phase shift, electric field driven force, iron species distributions. In this research, the quantitative analyses for electric field drives Es layers translations in vertical direction are presented. The tidal wind driven sporadic E layers have been simulating by modeling several nonmetallic ions (O+(4S), O+(2D), O+(2p), N+, N2+, O2+, NO+) and metallic ions (Fe+, FeO2+, FeN2+, FeO+) with wind shear transportation. The simulation result shows the Fe+ particles accumulate at zonal wind shear convergent regions and form the thin sporadic E layers. With the electric field taking into account, the whole shape of sporadic E layers vertical shift 2~5 km that depending on what magnitude and direction of electric field is added.

  20. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

    PubMed

    Paytan, Adina; Lecher, Alanna L; Dimova, Natasha; Sparrow, Katy J; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D

    2015-03-24

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.

  1. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    PubMed Central

    Paytan, Adina; Lecher, Alanna L.; Dimova, Natasha; Sparrow, Katy J.; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D.

    2015-01-01

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  2. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

    PubMed

    Paytan, Adina; Lecher, Alanna L; Dimova, Natasha; Sparrow, Katy J; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D

    2015-03-24

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  3. Atomic layer deposition of SIO2 on porous alumina membranes: controlling the pore size and transport properties

    NASA Astrophysics Data System (ADS)

    Velleman, Leonora; Traini, Gerry; Evans, Peter J.; Atanacio, Armand; Shapter, Joe G.; Losic, Dusan

    2008-12-01

    Atomic layer deposition (ALD) of SiO2 onto nanoporous alumina (PA) membranes was investigated with the aim of adjusting the pore size and transport properties. PA membranes from commercial sources with a range of pore diameters (20 nm, 100 nm and 200 nm) were used and modified by atomic layer deposition using tris(tert-butoxy)silanol and water as the precursor couple. By adjusting the number of deposition cycles, the thickness of the conformal silica coating was controlled, reducing the effective pore diameter, and subsequently changing the transport properties of the PA membrane. Silica coated PA membranes with desired pore diameters from <5 nm to 100 nm were fabricated. In addition to the pore size, the transport properties and selectivity of fabricated silica coated PA membranes were controlled by chemical functionalisation using a silane with hydrophobic properties. Structural and chemical properties of modified membranes were studied by dynamic secondary ion mass spectrometry (DSIMS) and scanning electron microscopy (SEM). Spectrophotometric methods were used to evaluate the transport properties and selectivity of silica coated membranes by permeation studies of hydrophobic and hydrophilic organic molecules. The resultant silica/PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing and drug delivery.

  4. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-01

    The characterization of Cu/diamond interface thermal conductance (hc) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ˜90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The hc across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The hc is ˜2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in hc. Furthermore, hc was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  5. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    SciTech Connect

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-21

    The characterization of Cu/diamond interface thermal conductance (h{sub c}) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The h{sub c} across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The h{sub c} is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in h{sub c}. Furthermore, h{sub c} was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  6. Turbulent mixing and transport in a thermally stratified interfacial layer in decaying grid turbulence

    NASA Astrophysics Data System (ADS)

    Jayesh, Yoon, Kyunghwan; Warhaft, Z.

    1991-05-01

    A stably stratified mixing layer, sandwiched in between regions of neutral turbulence, was studied in decaying grid turbulence. The layer, which was shearless, was formed by heating the upper half of the flow by means of elements placed at the entrance to the plenum of a large, open circuit low speed wind tunnel 0.91×0.91 m2 in cross section and 9.14 m in length. The hot air above mixed with the cold below forming the stratified layer in between. As the flow evolved and the turbulence decayed, the buoyancy forces increased relative to the inertial forces (i.e., the Richardson number increased) causing the heat flux to collapse. This resulted in a thinning of the mixing layer with downstream distance (rather than growth which occurs for the passive case). Inside the layer the vertical velocity variance diminished and the vertical heat flux correlation coefficient was reduced to zero. Smoke wire photographs showed a wavylike damped region inside the layer, surrounded by the normal, more energetic turbulence outside. Second-order turbulence quantities scaled in the same way with the local Richardson number both along the layer and across it. The two stably stratified cases studied had centerline Froude numbers of 95 and 65 at 40 mesh lengths from the grid. The results are compared to a passive thermal mixing layer and are contrasted with recent experiments concerning a constant temperature gradient in grid turbulence.

  7. Turbulent mixing and transport in a thermally stratified interfacial layer in decaying grid turbulence

    SciTech Connect

    Jayesh; Yoon, K.; Warhaft, Z. )

    1991-05-01

    A stably stratified mixing layer, sandwiched in between regions of neutral turbulence, was studied in decaying grid turbulence. The layer, which was shearless, was formed by heating the upper half of the flow by means of elements placed at the entrance to the plenum of a large, open circuit low speed wind tunnel 0.91{times}0.91 m{sup 2} in cross section and 9.14 m in length. The hot air above mixed with the cold below forming the stratified layer in between. As the flow evolved and the turbulence decayed, the buoyancy forces increased relative to the inertial forces (i.e., the Richardson number increased) causing the heat flux to collapse. This resulted in a thinning of the mixing layer with downstream distance (rather than growth which occurs for the passive case). Inside the layer the vertical velocity variance diminished and the vertical heat flux correlation coefficient was reduced to zero. Smoke wire photographs showed a wavylike damped region inside the layer, surrounded by the normal, more energetic turbulence outside. Second-order turbulence quantities scaled in the same way with the local Richardson number both along the layer and across it. The two stably stratified cases studied had centerline Froude numbers of 95 and 65 at 40 mesh lengths from the grid. The results are compared to a passive thermal mixing layer and are contrasted with recent experiments concerning a constant temperature gradient in grid turbulence.

  8. Propagation and fluid transport of fault-related mineral veins in layered rocks

    NASA Astrophysics Data System (ADS)

    Brenner, S. L.; Gudmundsson, A.

    2003-04-01

    Mineral veins are normally hydrofractures, that is fractures generated by internal fluid pressure, formed by geothermal water. The generation of hydrofractures is, together with the formation of shear fractures, presumably one of the main mechanisms for developing permeability in fractured reservoirs, such as those for petroleum, gas, geothermal or groundwater. We present field data on calcite veins related to normal faults in a Liassic limestone-shale sequence from Kilve at the Somerset Coast, SW-England. The veins are injected into the limestone layers along the faults; most veins are subvertical extension fractures restricted to these layers. Such arrested, stratabound fractures are common in layered fluid reservoirs. When fractures are stratabound, the temporary permeability in a heterogeneous fluid reservoir is much lower than when fractures propagate through many layers (non-stratabound). Numerical models on the effects of mechanical layering, such as abrupt changes in layer stiffness, indicate that soft layers can contribute to the arrest of hydrofractures such as mineral veins. For example, at Kilve, comparatively few veins dissect the soft shale layers. These veins are commonly thinner in the shale than in the limestone layers, partly because they commonly follow inclined shear fractures and are thus inclined to the minimum compressive principal stress. By contrast, numerical models of the aperture variation of vertical hydrofractures with the fluid overpressure as the only loading indicate that the apertures of hydrofractures tend to be smaller in stiff layers than in soft layers. Aperture changes between layers with different mechanical properties suggest that in certain layers in a fluid reservoir preferential flow (flow channelling) may occur. Using analytical models based on the vein length/thickness ratios in the limestone layers, we calculate the fluid overpressure at the time of vein formation. The veins at Kilve presumably formed during normal

  9. Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers.

    PubMed

    Wei, Huai-Xin; Zu, Feng-Shuo; Li, Yan-Qing; Chen, Wen-Cheng; Yuan, Yi; Tang, Jian-Xin; Fung, Man-Keung; Lee, Chun-Sing; Noh, Yong-Young

    2016-02-01

    Mechanisms of charge transport between the interconnector and its neighboring layers in tandem organic photovoltaic cells have been systematically investigated by studying electronic properties of the involving interfaces with photoelectron spectroscopies and performance of the corresponding devices. The results show that charge recombination occurs at HATCN and its neighboring hole transport layers which can be deposited at low temperature. The hole transport layer plays an equal role to the interconnector itself. These insights provide guidance for the identification of new materials and the device architecture for high performance devices.

  10. Downscaling the Sample Thickness to Sub-Micrometers by Employing Organic Photovoltaic Materials as a Charge-Generation Layer in the Time-of-Flight Measurement

    PubMed Central

    Liu, Shun-Wei; Lee, Chih-Chien; Su, Wei-Cheng; Yuan, Chih-Hsien; Lin, Chun-Feng; Chen, Kuan-Ting; Shu, Yi-Sheng; Li, Ya-Ze; Su, Tsung-Hao; Huang, Bo-Yao; Chang, Wen-Chang; Liu, Yu-Hsuan

    2015-01-01

    Time-of-flight (TOF) measurements typically require a sample thickness of several micrometers for determining the carrier mobility, thus rendering the applicability inefficient and unreliable because the sample thicknesses are orders of magnitude higher than those in real optoelectronic devices. Here, we use subphthalocyanine (SubPc):C70 as a charge-generation layer (CGL) in the TOF measurement and a commonly hole-transporting layer, N,N’-diphenyl-N,N’-bis(1,1’-biphenyl)-4,4’-diamine (NPB), as a standard material under test. When the NPB thickness is reduced from 2 to 0.3 μm and with a thin 10-nm CGL, the hole transient signal still shows non-dispersive properties under various applied fields, and thus the hole mobility is determined accordingly. Only 1-μm NPB is required for determining the electron mobility by using the proposed CGL. Both the thicknesses are the thinnest value reported to data. In addition, the flexibility of fabrication process of small molecules can deposit the proposed CGL underneath and atop the material under test. Therefore, this technique is applicable to small-molecule and polymeric materials. We also propose a new approach to design the TOF sample using an optical simulation. These results strongly demonstrate that the proposed technique is valuable tool in determining the carrier mobility and may spur additional research in this field. PMID:25999238

  11. Efficiency improvement of organic solar cells by tuning hole transport layer with germanium oxide.

    PubMed

    Choi, Moon Kee; Kim, Ju-Hyung; Yoon, Hyunsik; Tahk, Dongha; Seo, Soonmin; Shin, Kyusoon; Lee, Hong H

    2012-01-01

    Improving optical property is critical for optimizing the power conversion efficiency of organic solar cells. In the present research, we show that modification of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer with GeO2 leads to 15% improvement of power conversion efficiency in a polymer solar cells through enhancement of short circuit currents. Modified PEDOT:PSS layer with optimized concentration of GeO2 assists active layer absorbing much light by playing a role of optical spacer. Using AFM and grazing incidence X-ray diffraction (GIXD) data, we also present the evidence that an addition of GeO2 does not affect crystallinity of active layer.

  12. Lidar Characterization of Boundary Layer Transport and Mixing for Estimating Urban-Scale Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Hardesty, R. Michael; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Shepson, Paul B.; Cambaliza, Maria; Heimburger, Alexie; Davis, Kenneth J.; Lauvaux, Thomas; Miles, Natasha L.; Sarmiento, Daniel P.; Deng, A. J.; Gaudet, Brian; Karion, Anna; Sweeney, Colm; Whetstone, James

    2016-06-01

    A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.

  13. Low driving voltage in an organic light-emitting diode using MoO3/NPB multiple quantum well structure in a hole transport layer

    NASA Astrophysics Data System (ADS)

    Mu, Xue; Wu, Xiao-Ming; Hua, Yu-Lin; Jiao, Zhi-Qiang; Shen, Li-Ying; Su, Yue-Ju; Bai, Juan-Juan; Bi, Wen-Tao; Yin, Shou-Gen; Zheng, Jia-Jin

    2013-02-01

    The driving voltage of an organic light-emitting diode (OLED) is lowered by employing molybdenum trioxide (MoO3)/N, N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine (NPB) multiple quantum well (MQW) structure in the hole transport layer. For the device with double quantum well (DQW) structure of ITO/ [MoO3 (2.5 nm)/NPB (20 nm)]2/Alq3(50 nm)/LiF (0.8 nm)/Al (120 nm)], the turn-on voltage is reduced to 2.8 V, which is lowered by 0.4 V compared with that of the control device (without MQW structures), and the driving voltage is 5.6 V, which is reduced by 1 V compared with that of the control device at the 1000 cd/m2. In this work, the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure, which is attributed not only to the reduced energy barrier between ITO and NPB, but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.

  14. Turbulent mixing and transport in a thermally stratified interfacial layer in decaying grid turbulence

    NASA Astrophysics Data System (ADS)

    Yoon, Kyunghwan; Warhaft, Z.; Jayesh

    1991-05-01

    A stably stratified mixing layer, sandwiched in between regions of neutral turbulence, was studied in decaying grid turbulence. The layer, which was shearless, was formed by heating the upper half of the flow by means of elements placed at the entrance to the plenum of a large, open circuit low speed wind tunnel 0.91 x 0.91 sq m in cross section and 9.14 m in length. The hot air above mixed with the cold below forming the stratified layer in between. Smoke wire photographs showed a wavelike damped region inside the layer, surrounded by the normal, more energetic turbulence outside. Second-order turbulence quantities scaled in the same way with the local Richardson number both along the layer and across it. The two stably stratified cases studied had centerline Froude numbers of 95 and 65 at 40 mesh lengths from the grid. The results are compared to a passive thermal mixing layer and are contrasted with recent experiments concerning a constant temperature gradient in grid turbulence.

  15. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    PubMed

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel.

  16. Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells

    NASA Astrophysics Data System (ADS)

    Ahmed, Muhammad Imran; Hussain, Zakir; Mujahid, Mohammad; Khan, Ahmed Nawaz; Javaid, Syed Saad; Habib, Amir

    2016-06-01

    Perovskite based solar cells have demonstrated impressive performances. Controlled environment synthesis and expensive hole transport material impede their potential commercialization. We report ambient air synthesis of hole transport layer free devices using ZnO-GO as electron selective contacts. Solar cells fabricated with hole transport layer free architecture under ambient air conditions with ZnO as electron selective contact achieved an efficiency of 3.02%. We have demonstrated that by incorporating GO in ZnO matrix, low resistivity electron selective contacts, critical to improve the performance, can be achieved. We could achieve max efficiency of 4.52% with our completed devices for ZnO: GO composite. Impedance spectroscopy confirmed the decrease in series resistance and an increase in recombination resistance with inclusion of GO in ZnO matrix. Effect of temperature on completed devices was investigated by recording impedance spectra at 40 and 60 oC, providing indirect evidence of the performance of solar cells at elevated temperatures.

  17. Hierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells.

    PubMed

    Lee, Jiyong; Menamparambath, Mini Mol; Hwang, Jae-Yeol; Baik, Seunghyun

    2015-07-20

    The low electrical conductivity of spiro-OMeTAD hole transport layers impedes further enhancements of the power conversion efficiency (PCE) of perovskite solar cells. We embedded multiwalled carbon nanotubes (MWNTs) in spiro-OMeTAD (spiro-OMeTAD/MWNTs) to increase carrier mobility and conductivity. However, direct electrical contact between CH3 NH3 PbI3 and the MWNTs created pathways for undesirable back-electron transfer, owing to the large work function of MWNTs, limiting enhancements of the PCE. A hierarchical structure of pure spiro-OMeTAD and spiro-OMeTAD/MWNTs was designed to block back-electron transfer and fully exploit the enhanced charge transport of spiro-OMeTAD/MWNTs. The enhanced fill factor, short-circuit current density, open-circuit voltage, and PCE (15.1 %) were achieved by using this hierarchical hole transport layer structure (MWNT concentration=2 wt %). The perovskite solar cells were fabricated by a low-temperature solution process, further decreasing their per-Watt cost.

  18. On statistical properties of transport barriers in magnetospheric and laboratory boundary layers

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Budaev, Viacheslav; Zeleniy, Lev; Amata, Ermanno; Kozak, Lyudmila; Buechner, Joerg; Romanov, Stanislav; Blecki, Jan; Balikhin, Michael A.; Lezhen, Liudmila

    Transport barriers at outer magnetospheric boundaries have a dualistic feature: being effec-tive in limitation of the momentum transfer and serving as an effective obstacle, they display the super-diffusive statistical properties and provide partial exchange of plasmas. In tokamaks namely the statistical properties of transport barriers look to control the high and low heating modes, while small size of the barriers prevents their detailed studies. We tend to use magne-tospheric multi-spacecraft data to improve understanding of common physics in the transport barriers. We show examples from Interball-1 and Cluster with quiet solar wind. The inherently turbulent crossings in this equilibrium cases demonstrate ion heating namely in the transport barrier. It agrees with the kinetic energy transformation into the thermal one inside the barrier -the turbulent dissipation of the magnetosheath kinetic energy -as simultaneously with the ion temperature rise, the general velocity component drops from its model prediction. In sense of the momentum transfer the transport turbulent barriers effectively isolate the high-alti-tude cusp from fast-flowing magnetosheath. Contrary to that, several examples from different missions and different plasma parameters demonstrate the super-diffusive transport character. The individual coherent structures inside the barriers, which we call Alfvenic 'collapsons', have similar scale chains to that of high kinetic plasma pressure jets, showing mutual interaction features. We think that the interacting jets and barriers, accompanying by classic and/ or micro-reconnection, have rather general importance for the plasma physics, and for understanding of turbulence and mechanisms of magnetic field generation. These coherent, nonlinear interacting structures, most probably, provide intermittency a long-range correlations inside the transport barriers (c.f. blobs and flow spikes in fusion devices). We recall that very high-amplitude turbulence in

  19. 41 CFR 109-38.301-1.50 - Authorization for transportation between residence and place of employment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Authorization...

  20. A bill to require the Transportation Security Administration to comply with the Uniformed Services Employment and Reemployment Rights Act.

    THOMAS, 112th Congress

    Sen. Lieberman, Joseph I. [ID-CT

    2011-12-14

    12/14/2011 Read twice and referred to the Committee on Commerce, Science, and Transportation. (text of measure as introduced: CR S8604) (All Actions) Notes: For further action, see H.R.3670, which became Public Law 112-171 on 8/16/2012. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. O2-Filled Swimbladder Employs Monocarboxylate Transporters for the Generation of O2 by Lactate-Induced Root Effect Hemoglobin

    PubMed Central

    Umezawa, Takahiro; Kato, Akira; Ogoshi, Maho; Ookata, Kayoko; Munakata, Keijiro; Yamamoto, Yoko; Islam, Zinia; Doi, Hiroyuki; Romero, Michael F.; Hirose, Shigehisa

    2012-01-01

    The swimbladder volume is regulated by O2 transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the “Root effect.” While O2 generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H+/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b. PMID:22496829

  2. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  3. Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering

    PubMed Central

    Jung, Min-Cherl; Raga, Sonia R.; Ono, Luis K.; Qi, Yabing

    2015-01-01

    We fabricated perovskite solar cells using a triple-layer of n-type doped, intrinsic, and p-type doped 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) (n-i-p) as hole transport layer (HTL) by vacuum evaporation. The doping concentration for n-type doped spiro-OMeTAD was optimized to adjust the highest occupied molecular orbital of spiro-OMeTAD to match the valence band maximum of perovskite for efficient hole extraction while maintaining a high open circuit voltage. Time-dependent solar cell performance measurements revealed significantly improved air stability for perovskite solar cells with the n-i-p structured spiro-OMeTAD HTL showing sustained efficiencies even after 840 h of air exposure. PMID:25985417

  4. γ-LiAlO 2 layer on (0 0 0 1) sapphire fabricated by vapor transport equilibration

    NASA Astrophysics Data System (ADS)

    Zhou, Shengming; Xu, Jun; Li, Shuzhi; Yang, Weiqiao; Peng, Guanliang; Zou, Jun; Wang, Yinzhen; Liu, Shiliang; Zhao, Guangjun; Li, Hongjun; Zhou, Guoqing; Hang, Yin

    2004-07-01

    Single-phase γ-LiAlO 2 layer with a preferred (1 0 0) orientation on (0 0 0 1) sapphire substrate is successfully fabricated by vapor transport equilibration (VTE) technique. The VTE-treated surface of (0 0 0 1) sapphire is polycrystalline shown to be a single-phase of γ-LiAlO 2 at low VTE temperature (750-900°C), and becomes highly oriented in [1 0 0] direction at proper VTE temperature of ˜1100°C. The transparence of the obtained γ-LiAlO 2//sapphire(0 0 0 1) is greatly enhanced as the γ-LiAlO 2 layer becomes oriented. These results reveal the possibility of fabricating γ-LiAlO 2(1 0 0)//sapphire(0 0 0 1) composite substrate by VTE for M-plane GaN-based epitaxial film.

  5. Formation of BaSi{sub 2} heterojunction solar cells using transparent MoO{sub x} hole transport layers

    SciTech Connect

    Du, W.; Takabe, R.; Baba, M.; Takeuchi, H.; Toko, K.; Hara, K. O.; Usami, N.; Suemasu, T.

    2015-03-23

    Heterojunction solar cells that consist of 15 nm thick molybdenum trioxide (MoO{sub x}, x < 3) as a hole transport layer and 600 nm thick unpassivated or passivated n-BaSi{sub 2} layers were demonstrated. Rectifying current-voltage characteristics were observed when the surface of BaSi{sub 2} was exposed to air. When the exposure time was decreased to 1 min, an open circuit voltage of 200 mV and a short circuit current density of 0.5 mA/cm{sup 2} were obtained under AM1.5 illumination. The photocurrent density under a reverse bias voltage of −1 V reached 25 mA/cm{sup 2}, which demonstrates the significant potential of BaSi{sub 2} for solar cell applications.

  6. Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells.

    PubMed

    Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng

    2014-08-01

    Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer.

  7. Resonant Pedestal Pressure Reduction Induced by a Thermal Transport Enhancement due to Stochastic Magnetic Boundary Layers in High Temperature Plasmas

    SciTech Connect

    Schmitz, O.; Evans, T.E.; Fenstermacher, M. E.; Unterberg, E. A.; Austin, M. E.; Bray, B. D.; Brooks, N. H.; Frerichs, H.; Groth, M.; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Mordijck, S.; Moyer, R.A.; Osborne, T. H.; Reiter, D.; Samm, U.; Schaffer, M. J.; Unterberg, B.; West, W. P.

    2009-01-01

    Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p(e) in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q(95) resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p(e) reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q(95) resonant character of type-I edge localized mode suppression by RMPs.

  8. Resonant Pedestal Pressure Reduction Induced by a Thermal Transport Enhancement due to Stochastic Magnetic Boundary Layers in High Temperature Plasmas

    SciTech Connect

    Schmitz, O.; Frerichs, H.; Lehnen, M.; Reiter, D.; Samm, U.; Unterberg, B.; Evans, T. E.; Austin, M. E.; Bray, B. D.; Brooks, N. H.; Leonard, A. W.; Osborne, T. H.; Schaffer, M. J.; West, W. P.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Unterberg, E. A.; Jakubowski, M. W.; Mordijck, S.

    2009-10-16

    Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p{sub e} in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q{sub 95} resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p{sub e} reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q{sub 95} resonant character of type-I edge localized mode suppression by RMPs.

  9. Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells.

    PubMed

    Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng

    2014-08-01

    Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. PMID:24984949

  10. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    PubMed

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.

  11. The influence of subgrid surface-layer variability on vertical transport of a chemical species in a convective environment

    NASA Astrophysics Data System (ADS)

    Devine, G. M.; Carslaw, K. S.; Parker, D. J.; Petch, J. C.

    2006-08-01

    We use a 2-D cloud-resolving model over a 256 km domain to examine the influence of subgrid-scale processes on the concentration and vertical transport of a chemical species (dimethyl sulphide, or DMS) in a deep convective marine environment. Two issues are highlighted. Firstly, deriving fluxes using a spatially averaged surface wind representative of a global model reduces the domain-mean DMS concentration by approximately 50%. Emission of DMS from the surface is greater in the CRM because it resolves the localized intense winds embedded in the dynamical structure of convective systems. Secondly, we find that the spatial pattern of DMS concentration in the boundary layer is positively correlated with the pattern of convective updraughts. Using a mean concentration field reduces transport to the upper troposphere by more than 50%. The explanation is that secondary convection occurs preferentially on the edges of cold pools, where DMS concentrations are higher than the domain mean.

  12. Optimum design for effective water transport through a double-layered porous hydrogel inspired by plant leaves

    NASA Astrophysics Data System (ADS)

    Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon

    2014-11-01

    Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.

  13. Lattice Boltzmann method for short-pulsed laser transport in a multi-layered medium

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2015-04-01

    We construct a lattice Boltzmann method (LBM) for transient radiative transfer in one-dimensional multi-layered medium with distinct refractive index in each layer. The left boundary is irradiated normally by a short-pulsed laser. The Fresnel interfaces conditions, which incorporate reflection and refraction, are used at the boundaries and the interfaces. Based on the Fresnel's law and Snell's law, the interfacial intensity formulas are introduced. The collimated and diffuse intensities are treated individually. At a transient time step, the collimated component is first solved by LBM and then embedded into the transient radiative transfer equation as a source term. To keep the consistency of the directions in all the layers, angular interpolation of the intensities at the interfaces is adopted. The transient radiative transfer in a two-layer medium is first investigated, and the time-resolved results are validated by comparing with those by the Monte Carlo method (MCM). Of particular interest, the angular intensities along the slab at different times are presented to illustrate a variety of interesting phenomena, and the discontinuous nature of the intensity at the interfaces is discussed. The effects of various parameters on the time-resolved signals are examined.

  14. Chemical reactions during plasma-enhanced atomic layer deposition of SiO2 films employing aminosilane and O2/Ar plasma at 50 °C

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Kobayashi, Akiko; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru

    2014-01-01

    We report the temporal evolution of surface species observed in situ using attenuated total reflection Fourier transform infrared absorption spectroscopy (ATR-FTIR) during plasma-enhanced atomic layer deposition (PE-ALD) of SiO2 films employing aminosilane and an O2/Ar plasma at a temperature of 50 °C. Reversals in the appearance of IR absorbance features associated with SiO-H, C-Hx, and Si-H proved to coincide with the self-limiting reaction property in ALD. Our IR results indicate that an O2/Ar plasma can both removed CHx groups and transform SiH surface species to SiOH. In addition, SiO2 deposition was confirmed by a continuous increase in Si-O absorbance with each PE-ALD step, which becomes stable after several cycles. On the basis of our results, the mechanism of low temperature SiO2 PE-ALD was discussed.

  15. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.

    PubMed

    Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing

    2012-07-24

    For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%). PMID:22724887

  16. Employing mutually injection-locked FP LDs scheme over full-duplex radio-on-fiber transport systems

    NASA Astrophysics Data System (ADS)

    Lin, Wen-I.; Lu, Hai-Han; Tzeng, Shah-Jye; Chang, Kuo-Hsiang; Hsiao, Yu-Chao

    2009-02-01

    A full-duplex radio-on-fiber (ROF) transport system based on mutually injection-locked Fabry-Perot laser diodes (FP LDs) as light source is proposed and demonstrated. Transmission performances over a 40-km standard single-mode fiber (SMF) for full-duplex transmission were investigated. Good performance of bit error rate (BER) was achieved in our proposed systems. We directly modulate the FP LDs in mutually injection-locked scheme instead of using expensive external modulator and sophisticated optical carrier suppression technique; it reveals an outstanding alternative with advantages in simplicity and cost.

  17. Tunable Electronic Transport Properties of 2D Layered Double Hydroxide Crystalline Microsheets with Varied Chemical Compositions.

    PubMed

    Zhao, Yibing; Hu, Hai; Yang, Xiaoxia; Yan, Dongpeng; Dai, Qing

    2016-09-01

    Transistors based on layered double hydroxides (LDH) single microcrystal are fabricated, whose conductivity of LDH can be tuned by varying metal cations or interlayer anions, but weakly affected by external electric field. The carrier mobility can reach about 1 × 10(-5) cm(2) V(-1) s(-1) , a value comparable to that of organic C60-based transistors. This work paves a way for future electrical applications of LDH. PMID:27416544

  18. Separation of bulk and surface electron transport in metamorphic InAs layers using quantitative mobility spectrum analysis

    SciTech Connect

    Lin, Y.; Arehart, A. R.; Carlin, A. M.; Ringel, S. A.

    2008-08-11

    Electron transport in low dislocation density, strain-relaxed InAs layers grown on metamorphic InAs{sub y}P{sub 1-y}/InP substrates by molecular beam epitaxy was characterized using quantitative mobility spectrum analysis (QMSA) of Hall effect measurements. QMSA applied to systematically varied metamorphic InAs samples reveals high bulk electron mobilities of {approx}20 000 cm{sup 2}/V s at 300 K at a Si doping concentration of 1x10{sup 17} cm{sup -3}, simultaneously with a separate population of much slower electrons having an average mobility of {approx}2400 cm{sup 2}/V s due to parallel conduction within the InAs surface electron accumulation layer. Measurements made on higher doped samples reveal only a single electron population participating in transport due to lowered surface band bending that reduces surface accumulation of electrons in conjunction with the high conductivity of the high mobility metamorphic InAs bulk that overwhelms any remaining surface conductivity in the Hall effect measurements.

  19. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  20. Two-dimensional impurity transport study in stochastic magnetic field layer at low- and high-density discharges of LHD

    NASA Astrophysics Data System (ADS)

    Morita, Shigeru; Oishi, Tetsutarou; Zhang, Hongming; Kobayashi, Masahiro; Goto, Motoshi; Kawamura, Gakushi; Huang, Xianli

    2014-10-01

    Edge stochastic magnetic field layer of Large Helical Device (LHD) consists of short and long open magnetic fields ranging in 10 <= Lc <= 2000 m. When the edge density increases, the friction force along magnetic field is entirely dominant in outer region of the stochastic magnetic layer which leads to the impurity screening. In order to study the parallel impurity transport two-dimensional impurity emissions from several impurity spices have been measured in EUV wavelength range (10-500 Å) and a clear impurity footprint along poloidal X-point trajectory is observed. The poloidal impurity footprint, e.g. CIV, is separated into double trajectories at high-density discharges (ne >= 5×1013cm-3) , whereas it shows single trajectory at low-density discharges (ne <= 2×1013cm-3) . The result clearly indicates the presence of the friction force. The 2-D distribution analyzed by 3-D edge transport code, EMC3-EIRENE is discussed on the friction force and temperature gradient force along magnetic fields. This work was partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No. 11261140328, NRF : No. 2012K2A2A6000443).

  1. Fission Product Transport in TRISO Particle Layers under Operating and Off-Normal Conditions

    SciTech Connect

    Van der Ven, Anton; Was, Gary; Wang, Lumin; Taheri, Mitra

    2014-04-26

    The objective of this project is to determine the diffusivity and chemical behavior of key fission products (ag, Cs, I. Te, Eu and Sr) through SiC and PyC both thermally, under irradiation, and under stress using FP introduction techniques that avoid the pitfalls of past experiments. The experimental approach is to create thin PyC-SiC couples containing the fission product to be studied embedded in the PyC layer. These samples will then be subjected to high temperature exposures in a vacuum and also to irradiation at high temperature, and last, to irradiation under stress at high temperature. The PyC serves as a host layer, providing a means of placing the fission product close to the SiC without damaging the SiC layer by its introduction or losing the FP during heating. Experimental measurements of grain boundary structure and distribution (EBSD, HRTEM, APT) will be used in the modeling effort to determine the qualitative dependence of FP diffusion coefficients on grain boundary orientation, temperature and stress.

  2. Energy transport in the near field of an electric dipole near a layer of material

    NASA Astrophysics Data System (ADS)

    Arnoldus, Henk F.; Berg, Matthew J.

    2015-02-01

    We consider an oscillating electric dipole, embedded in a uniform medium with relative permittivity ? and relative permeability ?. The dipole is located near an interface with a layer with uniform material parameters ? and ?, and the second interface borders a uniform medium with parameters ? and ?. We have obtained the solutions for the electric and magnetic fields in the various regions, without any restrictions on the parameters and for any state of oscillation of the dipole (elliptical, in general). The solution involves a set of auxiliary functions, which are given as integral representations containing the Fresnel coefficients for plane waves. With this solution, the field lines of energy flow can be obtained, and we have considered the flow pattern for the simple case of a dipole oscillating perpendicular to the interface. When the material of the layer is optically thicker than the embedding medium of the dipole, energy flows more or less along straight lines. At an interface, the field lines refract, similar to optical rays. When the layer material is optically thinner, the energy flow lines curve. A portion of the energy that propagates toward the interface bends away from it before reaching the interface. Other field lines of energy flow cross the interface, but then return to the area of the dipole by crossing the interface again. This leads to an oscillation of energy back and forth through the interface. In the neighborhood of this oscillation, a concentric set of vortex tori appears.

  3. The horizontal transport of pollutants from a slope wind layer into the valley core as a function of atmospheric stability

    NASA Astrophysics Data System (ADS)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian

    2016-04-01

    Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most

  4. Transport inhibition of coronal energetic electrons by multiple double layers: application to solar flares and expansion of the corona

    NASA Astrophysics Data System (ADS)

    Li, T.; Drake, J. F.; Swisdak, M. M.

    2012-12-01

    The transport of electrons from a coronal acceleration site to the chromosphere and out to the solar wind is a key issue in understanding the dynamics of solar flares and the expansion of the hot corona. The physics of how these energetic electrons transport from the corona remains poorly understood. Using a particle-in-cell code, we recently simulated an initial system of very hot electrons in contact with cold electrons along the local magnetic field, and found that transport inhibition begins when the hot electrons start to propagate from the source region [1]. This is due to the formation of a large-amplitude, localized electrostatic electric field, in the form of a double layer (DL), which is driven by an ion/return-current-electron streaming instability. The DL provides a potential barrier that suppresses the hot electron transport into the cold electron region, and significantly reduces electron heat flux. The result can help explain the observed prolonged duration of looptop hard X-ray emission. As a continued effort, simulations of increasing sizes are performed. Larger simulations allow the system to evolve for longer time and give rise to more complex dynamics. Instead of a single DL observed in smaller simulations [1], multiple DLs are generated. A succession of many weak DLs, occurring from the corona to the Earth, was considered to make up the interplanetary potential difference in exospheric solar wind models [2]. The observation of multiple DLs in the larger simulations favors this scenario. The dynamics of multiple DLs and the associated transport regulation are being investigated, and the application to solar flares and coronal expansion will be discussed. [1] T.C. Li, J.F. Drake and M. Swisdak, ApJ, in press, 2012 [2] C. Lacombe, et. al., Ann. Geophysicae, 20, 609, 2002

  5. A nonlinear model for the layer between plates in acoustic noncontact transportation

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cao, Wenwu; Zhang, Wenjun

    2014-12-01

    To more accurately describe the noncontact transport behavior of traveling acoustic waves, a nonlinear model is presented in this paper for the squeeze gas film with consideration of gas inertia in the case of a large amplitude motion and low viscosity of the gas. A closed form solution is derived for the vertical and horizontal forces of the film from this model. Our results have shown that the gas inertia has a significant influence on the pressure distribution in the squeeze film, and the inertial force is higher than the viscous force. The predicted levitation and horizontal driving forces are found to be in good agreement with our experimental measurements. Our inertia model provides a powerful tool for the force estimation and its potential benefits could be far reaching. The accurate prediction of these forces is useful to design the system for levitating and transporting planar objects, such as MEMS devices, glass substrates, and IC chips

  6. Nitrate in the atmospheric boundary layer of the tropical South Pacific - Implications regarding sources and transport

    NASA Technical Reports Server (NTRS)

    Savoie, Dennis L.; Prospero, Joseph M.; Merrill, John T.; Uematsu, Mitsuo

    1989-01-01

    Weekly bulk aerosol samples collected at three sites in the tropical South Pacific from 1983 to 1987 are analyzed. The mean nitrate concentrations obtained for the sites range from 0.107 to 0.117 microg/cu m. The results suggest that the region is minimally affected by the transport of soil material and pollutants from the continents. Measurements from sites in the tropical North Pacific show mean nitrate concentrations that are about three times higher than those in the South Pacific, showing that the North Pacific is significantly impacted by the transport of material from Asia and North America. The relationships between the nitrate concentrations to other constituents at American Samoa are discussed, including nonseasalt sulfate, Pb-210, and Be-7.

  7. Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer.

    PubMed

    Zhu, Zonglong; Bai, Yang; Liu, Xiao; Chueh, Chu-Chen; Yang, Shihe; Jen, Alex K-Y

    2016-08-01

    Highly crystalline SnO2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity. PMID:27168338

  8. Numerical Simulation of Transport Phenomena for a Double-Layer Laser Powder Deposition of Single-Crystal Superalloy

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoyang; Qi, Huan

    2014-04-01

    A turbine blade made of single-crystal superalloys has been commonly used in gas turbine and aero engines. As an effective repair technology, laser powder deposition has been implemented to restore the worn turbine blade tips with a near-net shape capability and highly controllable solidified microstructure. Successful blade repair technology for single-crystal alloys requires a continuous epitaxial grain growth in the same direction of the crystalline orientation of the substrate material to the newly deposited layers. This work presents a three-dimensional numerical model to simulate the transport phenomena for a multilayer coaxial laser powder deposition process. Nickel-based single-crystal superalloy Rene N5 powder is deposited on a directional solidified substrate made of nickel-based directional-solidified alloy GTD 111 to verify the simulation results. The effects of processing parameters including laser power, scanning speed, and powder feeding rate on the resultant temperature field, fluid velocity field, molten pool geometric sizes, and the successive layer remelting ratios are studied. Numerical simulation results show that the maximum temperature of molten pool increases over layers due to the reduced heat dissipation capacity of the deposited geometry, which results in an increased molten pool size and fluid flow velocity at the successive deposited layer. The deposited bead geometry agrees well between the simulation and the experimental results. A large part of the first deposition layer, up to 85 pct of bead height, can be remelted during the deposition of the second layer. The increase of scanning speed decreases the ratio of G/ V (temperature gradient/solidification velocity), leading to an increased height ratio of the misoriented grain near the top surface of the previous deposited layer. It is shown that the processing parameters used in the simulation and experiment can produce a remelting ratio R larger than the misoriented grain height ratio

  9. Electron transport through a diazonium-based initiator layer to covalently attached polymer brushes of ferrocenylmethyl methacrylate.

    PubMed

    Lillethorup, Mie; Torbensen, Kristian; Ceccato, Marcel; Pedersen, Steen Uttrup; Daasbjerg, Kim

    2013-11-01

    A versatile method based on electrografting of aryldiazonium salts was used to introduce covalently attached initiators for atom transfer radical polymerization (ATRP) on glassy carbon surfaces. Polymer brushes of ferrocenylmethyl methacrylate were prepared from the surface-attached initiators, and these films were thoroughly analyzed using various techniques, including X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), ellipsometry, and electrochemistry. Of particular interest was the electrochemical characterization of the electron transfer through the diazonium-based initiator layer to the redox centers in the polymer brush films. It was found that the apparent rate constant of electron transfer decreases exponentially with the dry-state thickness of this layer. To investigate the electron transfer in the brushes themselves, scanning electrochemical microscopy (SECM) was applied, thereby allowing the effect from the initiator layer to be excluded. The unusual transition feature of the approach curves recorded suggests that an initial fast charge transfer to the outermost-situated ferrocenyl groups is followed by a slower electron transport involving the neighboring redox units. PMID:24144237

  10. Potential Carbon Transport: Linking Soil Aggregate Stability and Sediment Enrichment for Updating the Soil Active Layer within Intensely Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Abban, B. K.; Wilson, C. G.

    2014-12-01

    Currently, many biogeochemical models lack the mechanistic capacity to accurately simulate soil organic carbon (SOC) dynamics, especially within intensely managed landscapes (IMLs) such as those found in the U.S. Midwest. These modeling limitations originate by not accounting for downslope connectivity of flowpathways initiated and governed by landscape processes and hydrologic forcing, which induce dynamic updates to the soil active layer (generally top 20-30cm of soil) with various sediment size fractions and aggregates being transported and deposited along the downslope. These hydro-geomorphic processes, often amplified in IMLs by tillage events and seasonal canopy, can greatly impact biogeochemical cycles (e.g., enhanced mineralization during aggregate breakdown) and in turn, have huge implications/uncertainty when determining SOC budgets. In this study, some of these limitations were addressed through a new concept, Potential Carbon Transport (PCT), a term which quantifies a maximum amount of material available for transport at various positions of the landscape, which was used to further refine a coupled modeling framework focused on SOC redistribution through downslope/lateral connectivity. Specifically, the size fractions slaked from large and small aggregates during raindrop-induced aggregate stability tests were used in conjunction with rainfall-simulated sediment enrichment ratio (ER) experiments to quantify the PCT under various management practices, soil types and landscape positions. Field samples used in determining aggregate stability and the ER experiments were collected/performed within the historic Clear Creek Watershed, home of the IML Critical Zone Observatory, located in Southeastern Iowa.

  11. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Ago, Hiroki; Takata, Yasuyuki

    2016-02-01

    Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices.

  12. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene

    PubMed Central

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Ago, Hiroki; Takata, Yasuyuki

    2016-01-01

    Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices. PMID:26906476

  13. Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer

    SciTech Connect

    Nachtrieb, R.; LaBombard, B.

    2000-11-01

    {sup 3}He gas was puffed from the wall into Ohmic low confinement-mode discharges of the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1551 (1994)] tokamak and the charged states were measured near the wall with the omegatron ion mass spectrometer. Analysis of the data shows that the concentrations of singly- and doubly-ionized helium near the wall are approximately equal. The electron temperature and density at the omegatron are too low to account for ionization of helium in the local flux tube, therefore the helium is ionized in a hotter region of the edge plasma and is transported to the omegatron. A simple one-dimensional radial transport model reproduces the observed values of charge state flux and density, but only if rapid cross-field transport is included, increasing with distance from the separatrix. A constant cross-field diffusion coefficient of order 2m{sup 2}/s and an outward convection velocity profile increasing to of order 100 m/s in the far scrape-off layer is implied.

  14. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene.

    PubMed

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Ago, Hiroki; Takata, Yasuyuki

    2016-01-01

    Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices. PMID:26906476

  15. Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1988-01-01

    The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

  16. Electron-hole asymmetry of spin injection and transport in single-layer graphene.

    PubMed

    Han, Wei; Wang, W H; Pi, K; McCreary, K M; Bao, W; Li, Yan; Miao, F; Lau, C N; Kawakami, R K

    2009-04-01

    Spin-dependent properties of single-layer graphene (SLG) have been studied by nonlocal spin valve measurements at room temperature. Gate voltage dependence shows that the nonlocal magnetoresistance (MR) is proportional to the conductivity of the SLG, which is the predicted behavior for transparent ferromagnetic-nonmagnetic contacts. While the electron and hole bands in SLG are symmetric, gate voltage and bias dependence of the nonlocal MR reveal an electron-hole asymmetry in which the nonlocal MR is roughly independent of bias for electrons, but varies significantly with bias for holes. PMID:19392401

  17. Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Nian; Liu, Pei; Bai, Sihang; Yu, Zhenhua; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong

    2016-07-01

    A mesoporous SiO2 layer is successfully introduced into the hole transport material free perovskite solar cells by spin-coating a SiO2 paste onto the TiO2 scaffold layer. This SiO2 layer can act as an insulating layer and effectively inhibit the charge recombination between the TiO2 layer and carbon electrode. The variation of power conversion efficiencies with the thickness of SiO2 layer is studied here. Under optimized SiO2 thickness, perovskite solar cell fabricated on the TiO2/SiO2 film shows a superior power conversion efficiency of ∼12% and exhibits excellent long time stability for 30 days.

  18. Electrical and thermal transport properties of layered Bi2YO4Cu2Se2

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Pei, Yanling; Chang, Cheng; Zhang, Xiao; Tan, Xing; Ye, Xinxin; Gong, Shengkai; Lin, Yuanhua; He, Jiaqing; Zhao, Li-Dong

    2016-07-01

    Bi2YO4Cu2Se2 possesses a low thermal conductivity and high electrical conductivity at room temperature, which was considered as a potential thermoelectric material. In this work, we have investigated the electrical and thermal transport properties of Bi2YO4Cu2Se2 system in the temperature range from 300 K to 873 K. We found that the total thermal conductivity decreases from ~1.8 W m-1 K-1 to ~0.9 W m-1 K-1, and the electrical conductivity decreases from ~850 S/cm to ~163 S/cm in the measured temperature range. To investigate how potential of Bi2YO4Cu2Se2 system, we prepared the heavily Iodine doped samples to counter-dope intrinsically high carrier concentration and improve the electrical transport properties. Interestingly, the Seebeck coefficient could be enhanced to ~+80 μV/K at 873 K, meanwhile, we found that a low thermal conductivity of ~0.7 W m-1 K-1 could be achieved. The intrinsically low thermal conductivity in this system is related to the low elastic properties, such as Young's modulus of 70-72 GPa, and Grüneisen parameters of 1.55-1.71. The low thermal conductivity makes Bi2YO4Cu2Se2 system to be a potential thermoelectric material, the ZT value ~0.06 at 873 K was obtained, a higher performance is expected by optimizing electrical transport properties through selecting suitable dopants, modifying band structures or by further reducing thermal conductivity through nanostructuring etc.

  19. Study of particle transport in the boundary layer of an electrostatic precipitator

    SciTech Connect

    Mozumdar, S.

    1986-01-01

    The design and construction of a new, nonintrusive optical instrument for the measurement of particle velocity in the boundary layer of a laboratory model electrostatic precipitator with transparent collector plates is presented. The instrument is a two-color-component laser Doppler velocimeter (LDV). It uses the blue (488.0 nm) and green (514.5 nm) beams from an argon ion laser source. It simultaneously measures two components of particle velocity, one parallel to the axis of the precipitator and the other perpendicular to the collector plate of the precipitator. These measurements are performed by detecting the Doppler frequency shift in the light scattered by the particle. The design is modular and the LDV system can be easily switched between a user selected 30/sup 0/ to 60/sup 0/ off-axis micro-LDV system and a regular LDV system. The micro-LDV instrument was used to study particle velocity in the boundary layer of a laboratory model, wireplate type electrostatic precipitator.

  20. The skaergaard layered series. Part IV. reaction-transport simulations of foundered blocks.

    SciTech Connect

    Sonnenthal, Eric L.; McBirney, Alexander R.

    1996-01-02

    During the middle stages of crystallization of the Skaergaard Layered Series large numbers of blocks became detached from the Upper Border Series and settled into the mush of crystals on the floor. It has been recognized for some time that these blocks now have compositions and textures that differ markedly from those of the units from which they came. They tend to be more plagioclase rich and seem to have lost mafic components to the surrounding gabbro. Numerical simulations coupling crystallization, melting, and heat and mass transfer for a multicomponent system show how the blocks reacted with the mush in which they were emplaced. Enhanced cooling and crystallization of a compositionally stratified mush adjacent to the blocks resulted in patterns of melt compositions similar to those of layering around the blocks. Volume changes during crystallization and melting induced convection of the interstitial melt leading to changes in the bulk compositions of the blocks and the surrounding mush. Inhomogeneities such as inclusions are likely to facilitate the onset of compositional convection in a chemically stratified solidification zone.

  1. Turbulent transport and production/destruction of ozone in a boundary layer over complex terrain

    NASA Technical Reports Server (NTRS)

    Greenhut, Gary K.; Jochum, Anne M.; Neininger, Bruno

    1994-01-01

    The first Intensive Observation Period (IOP) of the Swiss air pollution experiment POLLUMET took place in 1990 in the Aare River Valley between Bern and Zurich. During the IOP, fast response measurements of meteorological variables and ozone concentration were made within the boundary layer aboard a motorglider. In addition, mean values of meteorological variables and the concentrations of ozone and other trace species were measured using other aircraft, pilot balloons, tethersondes, and ground stations. Turbulent flux profiles of latent and sensible heat and ozone are calculated from the fast response data. Terms in the ozone mean concentration budget (time rate of change of mean concentration, horizontal advection, and flux divergence) are calculated for stationary time periods both before and after the passage of a cold front. The source/sink term is calculated as a residual in the budget, and its sign and magnitude are related to the measured concentrations of reactive trace species within the boundary layer. Relationships between concentration ratios of trace species and ozone concentration are determined in order to understand the influence of complex terrain on the processes that produce and destroy ozone.

  2. Multiphase Model of Heat and Mass Transport during Laser Alloying of Iron with Electrodeposited Chromium Layer

    SciTech Connect

    Didenko, T.; Kusinski, J.; Kusinski, G.

    2008-02-15

    The aim of this research was to study the laser alloying process of iron with chromium. In the paper, a multiphase model of mass and heat transfer for the laser alloying is presented. Laser melting of the chromium layer and the substrate was performed using a continuous laser source operated with a TEM{sub 10} mode, with constant beam diameter ({phi}), scanning velocity (V) and varied output beam power. The partial differential equations of the conservation of mass, momentum and energy in the melted pool for multiphase system were solved. The distribution of chromium in iron after laser alloying was obtained by including the Volume of Fluid algorithm in the model. The results of the computations were compared with the experimental evaluation of the microstructure and the chromium concentration, which were based on scanning electron microscopy and x-ray microanalysis (Energy Dispersive Spectroscopy) of the laser alloyed layers. The comparison of computational calculations and experimental results is presented and a good accuracy of the proposed model is shown.

  3. Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells.

    PubMed

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh; Uekert, Taylor; Shahbazian, Brian; Devaraj, Arun; Meng, Ying Shirley

    2016-09-14

    Hybrid organic-inorganic materials for high-efficiency, low-cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-Butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for a re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long-term effects, over 1000 h, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process, and thus this study highlights the need for additive materials with higher boiling points for consistent long-term performance of PSCs. PMID:27547991

  4. Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells.

    PubMed

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh; Uekert, Taylor; Shahbazian, Brian; Devaraj, Arun; Meng, Ying Shirley

    2016-09-14

    Hybrid organic-inorganic materials for high-efficiency, low-cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-Butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for a re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long-term effects, over 1000 h, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process, and thus this study highlights the need for additive materials with higher boiling points for consistent long-term performance of PSCs.

  5. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  6. Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles.

    PubMed

    Jacques, D; Simůnek, J; Mallants, D; van Genuchten, M Th

    2006-12-15

    One possible way of integrating subsurface flow and transport processes with (bio)geochemical reactions is to couple by means of an operator-splitting approach two completely separate codes, one for variably-saturated flow and solute transport and one for equilibrium and kinetic biogeochemical reactions. This paper evaluates the accuracy of the operator-splitting approach for multicomponent systems for typical soil environmental problems involving transient atmospheric boundary conditions (precipitation, evapotranspiration) and layered soil profiles. The recently developed HP1 code was used to solve the coupled transport and chemical equations. For steady-state flow conditions, the accuracy was found to be mainly a function of the adopted spatial discretization and to a lesser extent of the temporal discretization. For transient flow situations, the accuracy depended in a complex manner on grid discretization, time stepping and the main flow conditions (infiltration versus evaporation). Whereas a finer grid size reduced the numerical errors during steady-state flow or the main infiltration periods, the errors sometimes slightly increased (generally less than 50%) when a finer grid size was used during periods with a high evapotranspiration demand (leading to high pressure head gradients near the soil surface). This indicates that operator-splitting errors are most significant during periods with high evaporative boundary conditions. The operator-splitting errors could be decreased by constraining the time step using the performance index (the product of the grid Peclet and Courant numbers) during infiltration, or the maximum time step during evapotranspiration. Several test problems were used to provide guidance for optimal spatial and temporal discretization. PMID:16919364

  7. Effects of the proximity of Au nanoparticles on magnetic and transport properties of LSMO ultrathin layers

    SciTech Connect

    Brivio, S.; Magen Dominguez, Cesar; Sidorenko, A; Petti, D.; Cantoni, M.; Finazzi, M; Ciccacci, F; Renzi, R; Varela del Arco, Maria; Picozzi, S.; Bertacco, R.

    2010-01-01

    The effect of the proximity of Au nanoparticles on the transport and magnetic properties of ultrathin La2/3Sr1/3MnO3 (LSMO) films has been investigated. We find a huge increase of the resistivity of the manganite (by four orders of magnitude for a Au nominal thickness of 2 nm), which is accompanied by a strong decrease of the Curie temperature. A combined scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS) analysis shows that interfaces are coherent and atomically sharp, and that the structural quality is very high. On the other end, a strong reduction of the Mn oxidation state is seen upon Au capping. NMR data show a strong attenuation of the double exchange signal upon formation of Au nanoparticles. Ab-initio calculations indicate a negligible influence of Au on LSMO at an ideal interface, with the LSMO surface magnetic and electronic properties essentially unchanged upon creation of the Au/LSMO interface. In view of these calculations, the experimental results cannot be explained in terms of purely electrostatic effects induced by the proximity of a noble metal. Here we propose that the main driving force underlying the observed change in physical properties is the high reactivity of Au nanoparticles which can locally pump oxygen from the manganite, thus favouring a phase separation ensuing from O inhomogeneity which deteriorates the transport and electrical properties.

  8. Simulation of carrier-facilitated transport of phenanthrene in a layered soil profile.

    PubMed

    Prechtel, Alexander; Knabner, Peter; Schneid, Eckhard; Totsche, Kai Uwe

    2002-06-01

    The appropriate prediction of the fate of the contaminant is an essential step when evaluating the risk of severe groundwater pollutions-in particular in the context of natural attenuation. We numerically study the reactive transport of phenanthrene at the field scale in a multilayer soil profile based on experimental data. The effect of carrier facilitation by dissolved organic carbon is emphasized and incorporated in the model. Previously published simulations are restricted to the saturated zone and/or to homogeneous soil columns at the laboratory scale. A numerical flow and transport model is extended and applied to understand and quantify the relevant processes in the case of a strongly sorbing hydrophobic organic compound that is subject to carrier facilitation in the unsaturated zone. The contaminant migration is investigated on long- and short-term time scales and compared to predictions without carrier facilitation. The simulations demonstrate the importance of carrier facilitation and suggest strongly to take this aspect into account. By carrier facilitation breakthrough times at the groundwater level decreased from 500 to approximately 8 years and concentration peaks increased by two orders of magnitude in the long-term simulation assuming a temporary spill in an initially unpolluted soil with a non-sorbing carrier.

  9. Characterization of Asian Summer Monsoon Transport from the Boundary Layer to Lower Stratosphere: Recent Progress from Model Studies and New Observations

    NASA Astrophysics Data System (ADS)

    Pan, Laura; Honomichl, Shawn; Kinnison, Doug; Bian, Jianchun

    2016-04-01

    The Asian Summer Monsoon (ASM) system is a significant driver for transport between the boundary layer and the upper troposphere/lower stratosphere (UT/LS). Satellite observations, although provide clear evidence of its global impact on seasonal scales, are unable to resolve the details of the transport process. This work summarizes recent progress in characterizing the transport behavior using global chemistry-climate models (CCMs) and in situ observations. NCAR Whole Atmosphere Community Climate Model run in specified dynamics mode (WACCM-SD) is used to characterize the sub-seasonal scale dynamical variability of the monsoon system and the impact on transport of boundary layer tracers into lower stratosphere. The analysis focuses on three elements of the transport: uplifting from the boundary layer, transport to the regions outside of ASM at the UTLS level, and transport into stratosphere in association with the Brewer-Dobson circulation. In situ measurements from six years of sounding studies over the Tibetan plateau are analyzed to complement the model analyses. The profiles of ozone, water vapor, cirrus clouds, together with temperature from the soundings provide important insight into the ASM transport behaviors.

  10. A systematic study of transport, magnetic and thermal properties of layered iridates

    NASA Astrophysics Data System (ADS)

    Korneta, Oleksandr

    A unique feature of the 5d-iridates is that the spin-orbit interaction (SOI) and Coulomb interactions U are of comparable strength and therefore compete vigorously. The relative strength of these interactions stabilizes new exotic ground states that provide a fertile ground for studying new physics. SOI is proportional to Z4 (Z is the atomic number), and it is now recognized that strong SOI can drive novel narrow-gap insulating states in heavy transition metal oxides such as iridates. Indeed, strong SOI necessarily introduces strong lattice degrees of freedom that become critical to new physics in the iridates. This dissertation thoroughly examines a wide array of newly observed novel phenomena induced by adjusting the relative strengths of U and SOI interactions via slight chemical doping and application of hydrostatic pressure in the layered iridates, particularly, BaIrO3 and Sr2IrO4. KEYWORDS: spin-orbit interaction, Mott insulator, iridates, magnetism, pressure

  11. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite.

    PubMed

    Pettes, Michael Thompson; Ji, Hengxing; Ruoff, Rodney S; Shi, Li

    2012-06-13

    At a very low solid concentration of 0.45 ± 0.09 vol %, the room-temperature thermal conductivity (κ(GF)) of freestanding graphene-based foams (GF), comprised of few-layer graphene (FLG) and ultrathin graphite (UG) synthesized through the use of methane chemical vapor deposition on reticulated nickel foams, was increased from 0.26 to 1.7 W m(-1) K(-1) after the etchant for the sacrificial nickel support was changed from an aggressive hydrochloric acid solution to a slow ammonium persulfate etchant. In addition, κ(GF) showed a quadratic dependence on temperature between 11 and 75 K and peaked at about 150 K, where the solid thermal conductivity (κ(G)) of the FLG and UG constituents reached about 1600 W m(-1) K(-1), revealing the benefit of eliminating internal contact thermal resistance in the continuous GF structure.

  12. Statistical analysis and modeling of intermittent transport events in the tokamak scrape-off layer

    SciTech Connect

    Anderson, Johan; Halpern, Federico D.; Ricci, Paolo; Furno, Ivo; Xanthopoulos, Pavlos

    2014-12-15

    The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent events of bursty nature, a feature which raises concerns about the prediction of heat loads on the physical boundaries of the device. It appears thus necessary to delve into the statistical properties of turbulent physical fields such as density, electrostatic potential, and temperature, focusing on the mathematical expression of tails of the probability distribution functions. The method followed here is to generate statistical information from time-traces of the plasma density stemming from Braginskii-type fluid simulations and check this against a first-principles theoretical model. The analysis of the numerical simulations indicates that the probability distribution function of the intermittent process contains strong exponential tails, as predicted by the analytical theory.

  13. Kinetic Monte Carlo of transport processes in Al/AlOx/Au-layers: Impact of defects

    NASA Astrophysics Data System (ADS)

    Weiler, Benedikt; Haeberle, Tobias; Gagliardi, Alessio; Lugli, Paolo

    2016-09-01

    Ultrathin films of alumina were investigated by a compact kMC-model. Experimental jV-curves from Al/AlOx/Au-junctions with plasma- and thermal-grown AlOx were fitted by simulated ones. We found dominant defects at 2.3-2.5 eV below CBM for AlOx with an effective mass mox ∗= 0.35 m0 and a barrier EB ,A l /A l O x≈2.8 eV in agreement with literature. The parameterization is extended to varying defect levels, defect densities, injection barriers, effective masses and the thickness of AlOx. Thus, dominant charge transport processes and implications on the relevance of defects are derived and AlOx parameters are specified which are detrimental for the operation of devices.

  14. Electronic, transport, and optical properties of bulk and mono-layer PdSe{sub 2}

    SciTech Connect

    Sun, Jifeng; Shi, Hongliang; Siegrist, Theo; Singh, David J.

    2015-10-12

    The electronic and optical properties of bulk and monolayer PdSe{sub 2} are investigated using first-principles calculations. Using the modified Becke-Johnson potential, we find semiconductor behavior for both bulk and monolayer PdSe{sub 2} with indirect gap values of 0.03 eV for bulk and 1.43 eV for monolayer, respectively. Our sheet optical conductivity results support this observation and show similar anisotropic feature in the 2D plane. We further study the thermoelectric properties of the 2D PdSe{sub 2} using Blotzmann transport model and find interestingly high Seebeck coefficients (>200 μV/K) for both p- and n-type up to high doping level (∼2 × 10{sup 13} cm{sup −2}) with an anisotropic character in an electrical conductivity suggesting better thermoelectric performance along y direction in the plane.

  15. Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport

    NASA Astrophysics Data System (ADS)

    Long, Gen; Xu, Shuigang; Shen, Junying; Hou, Jianqiang; Wu, Zefei; Han, Tianyi; Lin, Jiangxiazi; Wong, Wing Ki; Cai, Yuan; Lortz, Rolf; Wang, Ning

    2016-09-01

    We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V‑1 s‑1 and 8400 cm2 V‑1 s‑1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.

  16. Electronic, transport, and optical properties of bulk and mono-layer PdSe2

    DOE PAGESBeta

    Sun, Jifeng; Shi, Hongliang; Siegrist, Theo; Singh, David J.

    2015-10-13

    In this study, the electronic and optical properties of bulk and monolayer PdSe2 are investigated using firstprinciples calculations. Using the modified Becke-Johnson potential, we find semiconductor behavior for both bulk and monolayer PdSe2 with indirect gap values of 0.03 eV for bulk and 1.43 eV for monolayer, respectively. Our sheet optical conductivity results support this observation and show similar anisotropic feature in the 2D plane. We further study the thermoelectric properties of the 2D PdSe2 using Blotzmann transport model and find interestingly high Seebeck coefficients (>200 μV/K) for both p- and n-type up to high doping level (–2 x 1013more » cm2) with an anisotropic character in an electrical conductivity suggesting better thermoelectric performance along y direction in the plane.V« less

  17. Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport

    NASA Astrophysics Data System (ADS)

    Long, Gen; Xu, Shuigang; Shen, Junying; Hou, Jianqiang; Wu, Zefei; Han, Tianyi; Lin, Jiangxiazi; Wong, Wing Ki; Cai, Yuan; Lortz, Rolf; Wang, Ning

    2016-09-01

    We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V-1 s-1 and 8400 cm2 V-1 s-1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.

  18. Selective enhancement of intra-chain charge transport to improve ammonia sensing performance in polyaniline layers

    NASA Astrophysics Data System (ADS)

    Shabani, Pejman; Qarehbaqi, Akram; Boroumand, Farhad Akbari

    2016-01-01

    Polyaniline (PAni) is a p-type conductive polymer and its conductivity decreases upon exposure to ammonia. Ammonia molecules affect the intra-chain charge transfer process. The inter-chain resistance is higher than the intra-chain resistance. Thus, the ammonia sensing performance is highly attenuated by the influence of inter-chain resistance. Here, we report a facile method for the selective enhancement of the intra-chain charge transport process in a PAni film. The use of a good solvent such as toluene is demonstrated to increase the PAni molecular length, to reduce the inter-chain transitions, and to improve the ammonia sensing performance of the PAni film. [Figure not available: see fulltext.

  19. Scrape-off layer modeling using coupled plasma and neutral transport codes

    SciTech Connect

    Stotler, D.P.; Coster, D.P.; Ehrdardt, A.B.; Karney, C.F.F.; Petravic, M.; Braams, B.J.

    1992-05-01

    An effort is made to refine the neutral transport model used in the B2 edge plasma code by coupling it to the DEGAS Monte Carlo code. Results are discussed for a simulation of a high recycling divertor. It appears that on the order of 100 iterations between the two codes are required to achieve a converged solution. However, the amount of computer time used in the DEGAS simulations is large, making complete runs impractical for design purposes. On the other hand, the differences in the resulting plasma parameters when compared to the B2 analytic neutrals model indicate that it would be worthwhile to explore techniques for speeding up the control system of codes.

  20. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    PubMed Central

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2016-01-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL. PMID:27277388

  1. Magnetization and magneto-transport staircaselike behavior in layered perovskite Sr2CoO4 at low temperature

    NASA Astrophysics Data System (ADS)

    Li, Qiuhang; Yuan, Xueping; Xing, Lei; Xu, Mingxiang

    2016-06-01

    Polycrystalline layered perovskite Sr2CoO4 sample was synthesized by high temperature and high pressure method. The staircaselike behavior has been observed in the magnetization and resistivity versus field curves of Sr2CoO4 at low temperature. The main features of the steps can be obtained from the measured results: (i) the positions of the external magnetic field at which steps occur are varying in different measurement runs, (ii) the steps only appear at low temperature and disappear with a slight increase of the temperature, (iii) the steps are dependent on the temperature and field sweep rate. Based on the features of the magnetization and magneto-transport staircaselike behavior in Sr2CoO4, the unusual phenomenon can be ascribed to an avalanche of flipping domains in terms of the random field theory.

  2. Magnetization and magneto-transport staircaselike behavior in layered perovskite Sr2CoO4 at low temperature.

    PubMed

    Li, Qiuhang; Yuan, Xueping; Xing, Lei; Xu, Mingxiang

    2016-06-13

    Polycrystalline layered perovskite Sr2CoO4 sample was synthesized by high temperature and high pressure method. The staircaselike behavior has been observed in the magnetization and resistivity versus field curves of Sr2CoO4 at low temperature. The main features of the steps can be obtained from the measured results: (i) the positions of the external magnetic field at which steps occur are varying in different measurement runs, (ii) the steps only appear at low temperature and disappear with a slight increase of the temperature, (iii) the steps are dependent on the temperature and field sweep rate. Based on the features of the magnetization and magneto-transport staircaselike behavior in Sr2CoO4, the unusual phenomenon can be ascribed to an avalanche of flipping domains in terms of the random field theory.

  3. Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.

    2008-01-01

    To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.

  4. Magnetization and magneto-transport staircaselike behavior in layered perovskite Sr2CoO4 at low temperature

    PubMed Central

    Li, Qiuhang; Yuan, Xueping; Xing, Lei; Xu, Mingxiang

    2016-01-01

    Polycrystalline layered perovskite Sr2CoO4 sample was synthesized by high temperature and high pressure method. The staircaselike behavior has been observed in the magnetization and resistivity versus field curves of Sr2CoO4 at low temperature. The main features of the steps can be obtained from the measured results: (i) the positions of the external magnetic field at which steps occur are varying in different measurement runs, (ii) the steps only appear at low temperature and disappear with a slight increase of the temperature, (iii) the steps are dependent on the temperature and field sweep rate. Based on the features of the magnetization and magneto-transport staircaselike behavior in Sr2CoO4, the unusual phenomenon can be ascribed to an avalanche of flipping domains in terms of the random field theory. PMID:27293142

  5. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere.

    PubMed

    Doganov, Rostislav A; O'Farrell, Eoin C T; Koenig, Steven P; Yeo, Yuting; Ziletti, Angelo; Carvalho, Alexandra; Campbell, David K; Coker, David F; Watanabe, Kenji; Taniguchi, Takashi; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2015-04-10

    Ultrathin black phosphorus is a two-dimensional semiconductor with a sizeable band gap. Its excellent electronic properties make it attractive for applications in transistor, logic and optoelectronic devices. However, it is also the first widely investigated two-dimensional material to undergo degradation upon exposure to ambient air. Therefore a passivation method is required to study the intrinsic material properties, understand how oxidation affects the physical properties and enable applications of phosphorene. Here we demonstrate that atomically thin graphene and hexagonal boron nitride can be used for passivation of ultrathin black phosphorus. We report that few-layer pristine black phosphorus channels passivated in an inert gas environment, without any prior exposure to air, exhibit greatly improved n-type charge transport resulting in symmetric electron and hole transconductance characteristics.

  6. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere

    NASA Astrophysics Data System (ADS)

    Doganov, Rostislav A.; O'Farrell, Eoin C. T.; Koenig, Steven P.; Yeo, Yuting; Ziletti, Angelo; Carvalho, Alexandra; Campbell, David K.; Coker, David F.; Watanabe, Kenji; Taniguchi, Takashi; Neto, Antonio H. Castro; Özyilmaz, Barbaros

    2015-04-01

    Ultrathin black phosphorus is a two-dimensional semiconductor with a sizeable band gap. Its excellent electronic properties make it attractive for applications in transistor, logic and optoelectronic devices. However, it is also the first widely investigated two-dimensional material to undergo degradation upon exposure to ambient air. Therefore a passivation method is required to study the intrinsic material properties, understand how oxidation affects the physical properties and enable applications of phosphorene. Here we demonstrate that atomically thin graphene and hexagonal boron nitride can be used for passivation of ultrathin black phosphorus. We report that few-layer pristine black phosphorus channels passivated in an inert gas environment, without any prior exposure to air, exhibit greatly improved n-type charge transport resulting in symmetric electron and hole transconductance characteristics.

  7. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2016-06-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL.

  8. Subsonic Investigation of a Leading-Edge Boundary Layer Control Suction System on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.; Coe, Paul L., Jr.; Owens, D. Bruce; Gile, Brenda E.; Parikh, Pradip G.; Smith, Don

    1999-01-01

    A wind tunnel investigation of a leading edge boundary layer control system was conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.08 to 0.27, with corresponding chord Reynolds numbers of 1.79 x 10(exp 6) to 5.76 x 10(exp 6). Variations in the amount of suction, as well as the size and location of the suction area, were tested with outboard leading edge flaps deflected 0 and 30 deg and trailing-edge flaps deflected 0 and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein.

  9. Magnetization and magneto-transport staircaselike behavior in layered perovskite Sr2CoO4 at low temperature.

    PubMed

    Li, Qiuhang; Yuan, Xueping; Xing, Lei; Xu, Mingxiang

    2016-01-01

    Polycrystalline layered perovskite Sr2CoO4 sample was synthesized by high temperature and high pressure method. The staircaselike behavior has been observed in the magnetization and resistivity versus field curves of Sr2CoO4 at low temperature. The main features of the steps can be obtained from the measured results: (i) the positions of the external magnetic field at which steps occur are varying in different measurement runs, (ii) the steps only appear at low temperature and disappear with a slight increase of the temperature, (iii) the steps are dependent on the temperature and field sweep rate. Based on the features of the magnetization and magneto-transport staircaselike behavior in Sr2CoO4, the unusual phenomenon can be ascribed to an avalanche of flipping domains in terms of the random field theory. PMID:27293142

  10. Deswelling of ultrathin molecular layer-by-layer polyamide water desalination membranes.

    PubMed

    Chan, Edwin P

    2014-05-01

    The selective layer of pressure-induced water desalination membranes is an ultrathin and highly crosslinked aromatic polyamide (PA) film that separates salt from water based on differences in permeability, which is a product of diffusivity and solubility. Characterizing the transport properties of the selective layer is necessary in understanding its permselective performance. However, measuring transport of ultrathin films in general is nontrivial. Here, Poroelastic Relaxation Indentation (PRI) is employed as a simple deswelling technique for measuring the transport properties of these ultrathin selective layers.

  11. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  12. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  13. Transport of ion beam in an annular magnetically expanding helicon double layer thruster

    SciTech Connect

    Zhang, Yunchao Charles, Christine; Boswell, Rod

    2014-06-15

    An ion beam generated by an annular double layer has been measured in a helicon thruster, which sustains a magnetised low-pressure (5.0 × 10{sup −4} Torr) argon plasma at a constant radio-frequency (13.56 MHz) power of 300 W. After the ion beam exits the annular structure, it merges into a solid centrally peaked structure in the diffusion chamber. As the annular ion beam moves towards the inner region in the diffusion chamber, a reversed-cone plasma wake (with a half opening angle of about 30°) is formed. This process is verified by measuring both the radial and axial distributions of the beam potential and beam current. The beam potential changes from a two-peak radial profile (maximum value ∼ 30 V, minimum value ∼ 22.5 V) to a flat (∼28 V) along the axial direction; similarly, the beam current changes from a two-peak to one-peak radial profile and the maximum value decreases by half. The inward cross-magnetic-field motion of the beam ions is caused by a divergent electric field in the source. Cross-field diffusion of electrons is also observed in the inner plume and is determined as being of non-ambipolar origin.

  14. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe{sub 2}

    SciTech Connect

    Pavan Kumar, V.; Varadaraju, U.V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu{sub 1+x}Mn{sub 1−x}Se{sub 2}, (x=0−0.75) a new quaternary layered selenide, are reported. NaCuMnSe{sub 2} crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn{sup 2+} by Cu{sup 2+} is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075. - Graphical abstract: Crystal structure of NaCuMnSe{sub 2}. - Highlights: • A new quaternary layered selenide NaCuMnSe{sub 2} is synthesized. • All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. • Conduction mechanism transforms from thermally activated behavior to 2D variable range hopping with increase in copper concentration.

  15. Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B.; Birdwell, A. Glen; Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V.

    2014-04-01

    We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.

  16. Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.

    PubMed

    Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V

    2014-04-18

    We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence. PMID:24642948

  17. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; Jayaraman, A.; Pandit, A.; Raj, A.; Kumar, H.; Kumar, S.; Singh, A.; Stenchikov, G.; Wienhold, F.; Bian, J.

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  18. Development of a multi-layer diffusion couple to study fission product transport in β-SiC

    NASA Astrophysics Data System (ADS)

    Dwaraknath, S.; Was, G. S.

    2014-01-01

    A multi-layer diffusion couple was designed to study fission product diffusion behavior while avoiding the pitfalls of direct ion implantation. Thin films of highly anisotropic pyrolytic carbon (PyC) were deposited onto CVD β-SiC substrates. The PyC films were subsequently implanted with 400 keV silver, cesium, strontium, europium, or iodine at 22 °C to a dose of 1016 cm-2, such that the implanted species resided wholly within the PyC layer. The samples were then coated with 50 nm of SiC via plasma enhanced CVD (PECVD) to retain the implanted species during post-deposition annealing treatments. The design allows for high spatial resolution tracking of the implanted specie using Rutherford backscattering spectrometry. Annealing at 1100 °C for 10 h resulted in retention of 100% of implanted cesium, strontium, europium and iodine, and 70% of silver. This diffusion couple design provides the opportunity to determine diffusion coefficients of FPs in PyC and SiC and the role of the PyC/SiC interface in FP transport.

  19. The Impact of Grain Alignment of the Electron Transporting Layer on the Performance of Inverted Bulk Heterojunction Solar Cells.

    PubMed

    Murali, Banavoth; Labban, Abdulrahman El; Eid, Jessica; Alarousu, Erkki; Shi, Dong; Zhang, Qiang; Zhang, Xixiang; Bakr, Osman M; Mohammed, Omar F

    2015-10-21

    This report presents a new strategy for improving solar cell power conversion efficiencies (PCEs) through grain alignment and morphology control of the ZnO electron transport layer (ETL) prepared by radio frequency (RF) magnetron sputtering. The systematic control over the ETL's grain alignment and thickness is shown, by varying the deposition pressure and operating substrate temperature during the deposition. Notably, a high PCE of 6.9%, short circuit current density (J(sc)) of 12.8 mA cm(-2), open circuit voltage (V(oc)) of 910 mV, and fill factor of 59% are demonstrated using the poly(benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione):[6,6]-phenyl-C(71) -butyric acid methyl ester polymer blend with ETLs prepared at room temperature exhibiting oriented and aligned rod-like ZnO grains. Increasing the deposition temperature during the ZnO sputtering induces morphological cleavage of the rod-like ZnO grains and therefore reduced conductivity from 7.2 × 10(-13) to ≈1.7 × 10(-14) S m(-1) and PCE from 6.9% to 4.28%. An investigation of the charge carrier dynamics by femtosecond (fs) transient absorption spectroscopy with broadband capability reveals clear evidence of faster carrier recombination for a ZnO layer deposited at higher temperature, which is consistent with the conductivity and device performance.

  20. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation.

    PubMed

    Guan, C; Xie, H J; Wang, Y Z; Chen, Y M; Jiang, Y S; Tang, X W

    2014-01-01

    An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems. PMID:23906856

  1. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature

    NASA Technical Reports Server (NTRS)

    Orlando, A. F.; Moffat, R. J.; Kays, W. M.

    1974-01-01

    The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.

  2. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S; Mane, Rajaram S; Lee, Soo-Hyoung

    2016-03-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs. PMID:26864170

  3. Improved memory characteristics of charge trap memory by employing double layered ZrO2 nanocrystals and inserted Al2O3

    NASA Astrophysics Data System (ADS)

    Tang, Z. J.; Li, R.; Zhang, X. W.; Hu, D.; Zhao, Y. G.

    2016-07-01

    The charge trap memory capacitors incorporating a stacked charge trapping layer consisting of double layered ZrO2 nanocrystals (NCs) and inserted Al2O3 have been fabricated and investigated. It is observed that the memory capacitor with stacked trapping layer exhibits a hysteresis window as large as 14.3 V for ±10 V sweeping gate voltage range, faster program/erase speed, improved endurance performance, and good data retention characteristics with smaller extrapolated ten years charge loss at room temperature and 125 °C compared to single layered NCs. The special energy band alignment and the introduced additional traps of double layered ZrO2 NCs and inserted Al2O3 change the trapping and loss behavior of charges, and jointly contribute to the remarkable memory characteristics. Therefore, the memory capacitor with a stacked charge trapping layer is a promising candidate in future nonvolatile charge trap memory device design and application.

  4. Valley-symmetry-preserved transport in ballistic graphene layers with gate-defined carrier guiding

    NASA Astrophysics Data System (ADS)

    Kim, Minsoo; Choi, Ji-Hae; Lee, Sang-Hoon; Watanabe, Kenji; Taniguchi, Takashi; Jhi, Seung-Hoon; Lee, Hu-Jong

    Zigzag graphene nanoribbons are predicted to exhibit interesting electronic properties stemming from its Dirac band structure. However, to date, investigation of them is highly limited because of the defects and the roughness at the edges, which mix different valley properties of graphene. Here, we report the signature of conservation of valley symmetry in two types of quasi-1D ballistic graphene transport devices; one is a quantum point contact (QPC) and another is an Aharonov-Bohm (AB) interferometer. In measurements, charge carriers were confined in a potential well formed by the dual gates operation and the four-terminal magnetoconductance (MC) was measured with varying the carrier density, dc bias, and temperature. It exhibits the conductance quantization in steps of ΔG = 4e2/ h starting from G = (2, 6), 10 ×e2 / h in a constricted conducting channel of QPC-type devices. This behavior is similar to the one observed in zigzag graphene nanoribbons having edge localized channels. Our tight-binding calculation shows that quasi-1D charge flow on a graphene plane acts a zigzag-type nanoribbon, unless it is perfectly aligned along the armchair direction. In the AB interferometry, we observed h/ e periodic modulation of MC and the zero-field conductance minimum with a negative MC background.

  5. Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers

    PubMed Central

    Chen, Hsin-Wei; Huang, Tzu-Yen; Chang, Ting-Hsiang; Sanehira, Yoshitaka; Kung, Chung-Wei; Chu, Chih-Wei; Ikegami, Masashi; Miyasaka, Tsutomu; Ho, Kuo-Chuan

    2016-01-01

    In this study, hybrid perovskite solar cells are fabricated using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as dopant-free hole-transporting materials (HTMs), and two solution processes (one- and two-step methods, respectively) for preparing methylammonium lead iodide perovskite. By optimizing the concentrations and solvents of MEH-PPV solutions, a power conversion efficiency of 9.65% with hysteresis-less performance is achieved, while the device with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′spirobifluorene (Spiro-OMeTAD) doped with lithium salts and tert-butylpyridine (TBP) exhibits an efficiency of 13.38%. This result shows that non-doped MEH-PPV is a suitable, low-cost HTM for efficient polymer-based perovskite solar cells. The effect of different morphologies of methylammonium lead iodide perovskite on conversion efficiency is also investigated by incident photon-to-electron conversion efficiency (IPCE) curves and electrochemical impedance spectroscopy (EIS). PMID:27698464

  6. Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Wei; Huang, Tzu-Yen; Chang, Ting-Hsiang; Sanehira, Yoshitaka; Kung, Chung-Wei; Chu, Chih-Wei; Ikegami, Masashi; Miyasaka, Tsutomu; Ho, Kuo-Chuan

    2016-10-01

    In this study, hybrid perovskite solar cells are fabricated using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as dopant-free hole-transporting materials (HTMs), and two solution processes (one- and two-step methods, respectively) for preparing methylammonium lead iodide perovskite. By optimizing the concentrations and solvents of MEH-PPV solutions, a power conversion efficiency of 9.65% with hysteresis-less performance is achieved, while the device with 2,2‧,7,7‧-tetrakis(N,N-di-p-methoxyphenylamine)-9,9‧spirobifluorene (Spiro-OMeTAD) doped with lithium salts and tert-butylpyridine (TBP) exhibits an efficiency of 13.38%. This result shows that non-doped MEH-PPV is a suitable, low-cost HTM for efficient polymer-based perovskite solar cells. The effect of different morphologies of methylammonium lead iodide perovskite on conversion efficiency is also investigated by incident photon-to-electron conversion efficiency (IPCE) curves and electrochemical impedance spectroscopy (EIS).

  7. Metallic Transport and Anderson Localization on In Atomic Layers on Silicon

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shiro; Hosomura, Yoshikazu; Matsuda, Iwao; Hobara, Rei; Hasegawa, Shuji

    2008-03-01

    Metallic temperature dependence of electrical resistance have not been observed except extremely limited number of examples[1] below 100K in atomic-scale low-dimensional metal systems due to Anderson localization. Si(111)-√7 x√3 -In surface reconstruction consist of 1.2 ML In atoms. According to ARPES study, the surface is 2D metal with the large Fermi wave number (kF=14nm-1) and the large electron density (4.6x10^14eV-1cm-2), leading to a low resistance [2]. By using variable-temperature micro-four-point probe method [3], low resistance and metallic transport was found down to 10 K. It is quantitatively explained by the ARPES result by using Boltzmann equation R2D=4π^2λm^*e^2kF^2 kBT. By introducing defect, it shows semiconducting temperature dependence of variable range hopping due to Anderson localization. [1]K. Lee, et al. , Nature 441, 65 (2006). [2]E. Rotenberg, et al. , Phys. Rev. Lett. 91, 246404 (2003). [3]T. Tanikawa, et al. , e-J. Surf. Sci. Nanotech. 1, 50 (2003)

  8. Thermoelectric transport in the layered Ca3Co4-xRhxO9 single crystals

    NASA Astrophysics Data System (ADS)

    Ikeda, Yusuke; Saito, Kengo; Okazaki, Ryuji

    2016-06-01

    We have examined an isovalent Rh substitution effect on the transport properties of the thermoelectric oxide Ca3Co4O9 using single-crystalline form. With increasing Rh content x, both the electrical resistivity and the Seebeck coefficient change systematically up to x = 0.6 for Ca3Co4-xRhxO9 samples. In the Fermi-liquid regime where the resistivity behaves as ρ = ρ 0 + A T 2 around 120 K, the A value decreases with increasing Rh content, indicating that the correlation effect is weakened by Rh 4d electrons with extended orbitals. We find that, in contrast to such a weak correlation effect observed in the resistivity of Rh-substituted samples, the low-temperature Seebeck coefficient is increased with increasing Rh content, which is explained with a possible enhancement of a pseudogap associated with the short-range order of spin density wave. In high-temperature range above room temperature, we show that the resistivity is largely suppressed by Rh substitution while the Seebeck coefficient becomes almost temperature-independent, leading to a significant improvement of the power factor in Rh-substituted samples. This result is also discussed in terms of the differences in the orbital size and the associated spin state between Co 3d and Rh 4d electrons.

  9. Electron Beam-Blip Spectroscopic Diagnostics of the Scrape-off-Layer Parallel Transport in C-2

    NASA Astrophysics Data System (ADS)

    Osin, Dmitry; Thompson, Matthew; Garate, Eusebio; TAE Team

    2015-11-01

    C-2 is a microscopically stable, high-performance field-reversed configuration (FRC), where high plasma temperatures with significant fast ion population and record lifetimes were achieved by a combination of tangential neutral beam injection, electrically biased plasma guns at the ends and wall conditioning. FRC confinement depends on the properties of both the open and closed field lines, therefore, understanding the electron transport in the scrape-of-layer (SOL) is critical. To study parallel heat conduction in SOL, a high-energy pulsed electron beam (e-beam) was injected on-axis into C-2 to produce a heat pulse, which causes a fast rise and slower decay of the electron temperature, Te, in the SOL. The heat-blip was observed by means of He-jet spectroscopy. A small fraction of the total deposited e-beam energy is necessary to explain the measured Te increase. The electron thermal conductivity along the magnetic field lines can be inferred from the Te decay. Experiments suggest that a high energy e-beam pulse can serve as a direct diagnostic of heat transport in the SOL.

  10. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  11. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Da-Young; Na, Seok-In; Kim, Seok-Soon

    2016-01-01

    We investigated a graphene oxide (GO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) composite as a promising candidate for the practical application of a 2-D carbonaceous hole transport layer (HTL) to planar heterojunction perovskite solar cells (PeSCs) consisting of a transparent electrode/HTL/perovskite/fullerene/metal electrode. Both the insulating properties of GO and the non-uniform coating of the transparent electrode with GO cause the poor morphology of perovskite induced low power conversion efficiency (PCE) of 6.4%. On the other hand, PeSCs with a GO/PEDOT:PSS composite HTL, exhibited a higher PCE of 9.7% than that of a device fabricated with conventional PEDOT:PSS showing a PCE of 8.2%. The higher performance is attributed to the decreased series resistance (RS) and increased shunt resistance (RSh). The well-matched work-function between GO (4.9 eV) and PEDOT:PSS (5.1 eV) probably results in more efficient charge transport and an overall decrease in RS. The existence of GO with a large bandgap of ~3.6 eV might induce the effective blocking of electrons, leading to an increase of RSh. Moreover, improvement in the long-term stability under atmospheric conditions was observed.

  12. Nano-structural analysis of effective transport paths in fuel-cell catalyst layers by using stochastic material network methods

    NASA Astrophysics Data System (ADS)

    Shin, Seungho; Kim, Ah-Reum; Um, Sukkee

    2016-02-01

    A two-dimensional material network model has been developed to visualize the nano-structures of fuel-cell catalysts and to search for effective transport paths for the optimal performance of fuel cells in randomly-disordered composite catalysts. Stochastic random modeling based on the Monte Carlo method is developed using random number generation processes over a catalyst layer domain at a 95% confidence level. After the post-determination process of the effective connectivity, particularly for mass transport, the effective catalyst utilization factors are introduced to determine the extent of catalyst utilization in the fuel cells. The results show that the superficial pore volume fractions of 600 trials approximate a normal distribution curve with a mean of 0.5. In contrast, the estimated volume fraction of effectively inter-connected void clusters ranges from 0.097 to 0.420, which is much smaller than the superficial porosity of 0.5 before the percolation process. Furthermore, the effective catalyst utilization factor is determined to be linearly proportional to the effective porosity. More importantly, this study reveals that the average catalyst utilization is less affected by the variations of the catalyst's particle size and the absolute catalyst loading at a fixed volume fraction of void spaces.

  13. Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells.

    PubMed

    Chen, Hsiu-Cheng; Lin, Shu-Wei; Jiang, Jian-Ming; Su, Yu-Wei; Wei, Kung-Hwa

    2015-03-25

    In this study, we employed polyethylenimine-doped sol-gel-processed zinc oxide composites (ZnO:PEI) as efficient electron transport layers (ETL) for facilitating electron extraction in inverted polymer solar cells. Using ultraviolet photoelectron spectroscopy, synchrotron grazing-incidence small-angle X-ray scattering and transmission electron microscopy, we observed that ZnO:PEI composite films' energy bands could be tuned considerably by varying the content of PEI up to 7 wt %-the conduction band ranged from 4.32 to 4.0 eV-and the structural order of ZnO in the ZnO:PEI thin films would be enhanced to align perpendicular to the ITO electrode, particularly at 7 wt % PEI, facilitating electron transport vertically. We then prepared two types of bulk heterojunction systems-based on poly(3-hexylthiophene) (P3HT):phenyl-C61-butryric acid methyl ester (PC61BM) and benzo[1,2-b:4,5-b́]dithiophene-thiophene-2,1,3-benzooxadiazole (PBDTTBO):phenyl-C71-butryric acid methyl ester (PC71BM)-that incorporated the ZnO:PEI composite layers. When using a composite of ZnO:PEI (93:7, w/w) as the ETL, the power conversion efficiency (PCE) of the P3HT:PC61BM (1:1, w/w) device improved to 4.6% from a value of 3.7% for the corresponding device that incorporated pristine ZnO as the ETL-a relative increase of 24%. For the PBDTTBO:PC71BM (1:2, w/w) device featuring the same amount of PEI blended in the ETL, the PCE improved to 8.7% from a value of 7.3% for the corresponding device that featured pure ZnO as its ETL-a relative increase of 20%. Accordingly, ZnO:PEI composites can be effective ETLs within organic photovoltaics.

  14. Trace surface-clean palladium nanosheets as a conductivity enhancer in hole-transporting layers to improve the overall performances of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Cao, Jing; Mo, Shiguang; Jing, Xiaojing; Yin, Jun; Li, Jing; Zheng, Nanfeng

    2016-02-01

    Surface-clean Pd nanosheets were synthesized and embedded in a hole transport material (HTM) matrix to improve the conductivity of the HTM layer. Applying only a trace amount of Pd nanosheets readily led to a remarkably enhanced performance of perovskite solar cells (PSCs). This finding provides an effective strategy to build efficient charge-transport materials for improving the overall performance of PSCs.Surface-clean Pd nanosheets were synthesized and embedded in a hole transport material (HTM) matrix to improve the conductivity of the HTM layer. Applying only a trace amount of Pd nanosheets readily led to a remarkably enhanced performance of perovskite solar cells (PSCs). This finding provides an effective strategy to build efficient charge-transport materials for improving the overall performance of PSCs. Electronic supplementary information (ESI) available: Details of the XRD, UV-vis spectra, cross-sectional SEM images and the EQE spectra of the cells. See DOI: 10.1039/c5nr07789c

  15. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    NASA Astrophysics Data System (ADS)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  16. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    DOE PAGESBeta

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam Justin; Ivanov, Ilia N.; Ward, Thomas Zac; Rack, Philip D.; Pudasaini, Pushpa Raj; et al

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuningmore » the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  17. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions.

    PubMed

    Stanford, Michael G; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R; Mandrus, David G; Duscher, Gerd; Rondinone, Adam J; Ivanov, Ilia N; Ward, T Zac; Rack, Philip D

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  18. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    PubMed Central

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  19. Solute transport through fractured rock: Radial diffusion into the rock matrix with several geological layers for an arbitrary length decay chain

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-05-01

    The paper presents a model development to derive a semi-analytical solution to describe reactive solute transport through a single channel in a fracture with cylindrical geometry. The model accounts for advection through the channel, radial diffusion into the adjacent heterogeneous rock matrix comprising different geological layers, adsorption on both the channel surface, and the geological layers of the rock matrix and radioactive decay chain. Not only an arbitrary-length decay chain, but also as many number of the rock matrix layers with different properties as observed in the field can be handled. The solution, which is analytical in the Laplace domain, is transformed back to the time domain numerically e.g. by use of de Hoog algorithm. The solution is verified against experimental data and analytical solutions of limiting cases of solute transport through porous media. More importantly, the relative importance and contribution of different processes on solute transport retardation in fractured rocks are investigated by simulating several cases of varying complexity. The simulation results are compared with those obtained from rectangular model with linear matrix diffusion. It is found that the impact of channel geometry on breakthrough curves increases markedly as the transport distance along the flow channel and away into the rock matrix increase. The effect of geometry is more pronounced for transport of a decay chain when the rock matrix consists of a porous altered layer.

  20. Efficient Planar Perovskite Solar Cells with Reduced Hysteresis and Enhanced Open Circuit Voltage by Using PW12-TiO2 as Electron Transport Layer.

    PubMed

    Huang, Chun; Liu, Canjun; Di, Yunxiang; Li, Wenzhang; Liu, Fangyang; Jiang, Liangxing; Li, Jie; Hao, Xiaojing; Huang, Haitao

    2016-04-01

    An electron transport layer is essential for effective operation of planar perovskite solar cells. In this Article, PW12-TiO2 composite was used as the electron transport layer for the planar perovskite solar cell in the device structure of fluorine-doped tin oxide (FTO)-glass/PW12-TiO2/perovskite/spiro-OMeTAD/Au. A proper downward shift of the conduction band minimum (CBM) enhanced electron extraction from the perovskite layer to the PW12-TiO2 composite layer. Consequently, the common hysteresis effect in TiO2-based planar perovskite solar cells was significantly reduced and the open circuit voltage was greatly increased to about 1.1 V. Perovskite solar cells using the PW12-TiO2 compact layer showed an efficiency of 15.45%. This work can contribute to the studies on the electron transport layer and interface engineering for the further development of perovskite solar cells.

  1. Nitrate and Aluminum Transport Through Soil Layers in a Clear-Cut Watershed

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Murdoch, P. S.; Burns, D. A.

    2002-12-01

    The 24-ha Dry Creek watershed in the Catskill Mountains of New York State was clear-cut during 1997 to evaluate nutrient release to New York City reservoirs due to forest harvesting. The Dry Creek watershed is in the headwaters of the Neversink watershed, which is part of the New York City Reservoir system that supplies drinking water to over 20 million people. Soil water, groundwater seeps, and stream water chemistry were monitored to trace the transport of solutes before and after the timber harvest. Automated sequential zero-tension lysimeters and standard zero-tension lysimeters were installed at depths of 70, 300, and 500 mm to sample soil water in the O, B, and C-horizons, respectively. Pre-cut (water years 1993-1996) mean soil water concentrations from zero tension lysimeters indicate that O-horizon soil water (70 mm depth) had the highest nitrate (NO3-) and monomeric aluminum (Alm) concentrations (73 and 18 μmoles l-1, respectively). During that same time period water from ground-water seeps had lower NO3- and Alm concentrations (22 and 0.88 μmoles l-1, respectively) than any soil waters sampled. During the two years following the clear-cut, groundwater seep NO3- concentrations were 138-123 μmoles l-1 and Alm concentrations were 50-30 μmoles l-1 lower than that measured in soil water. Throughout the same time period, B-horizon soil water had the highest mean NO3- concentration (345 μmoles l-1) while C-horizon soil water had the highest mean Alm concentrations (51 μmoles l-1). But during storms in the first year after the clear-cut O-horizon soil water NO3- and Alm concentrations often peaked at more than twice those measured in the B-horizon. During the second year after the clear-cut, B-horizon storm NO3- concentrations were consistently greater than O-horizon concentrations. During the fourth and fifth years following the clear-cut, soil water NO3- concentrations had dropped below pre-cut concentrations however NO3- in groundwater seeps remained

  2. Fraction and composition of NOy transported in air masses lofted from the North American continental boundary layer

    NASA Astrophysics Data System (ADS)

    Parrish, D. D.; Ryerson, T. B.; Holloway, J. S.; Neuman, J. A.; Roberts, J. M.; Williams, J.; Stroud, C. A.; Frost, G. J.; Trainer, M.; Hübler, G.; Fehsenfeld, F. C.; Flocke, F.; Weinheimer, A. J.

    2004-05-01

    Five field studies have included research aircraft flights over the continental United States and the western North Atlantic Ocean from 1996 through 2000 in spring, summer, and fall seasons. The major source of NOx in this region is fossil fuel combustion, which is localized within the continental boundary layer (CBL). We use CO as a tracer of these anthropogenic emissions to estimate the fraction of the emitted NOx that is exported to the free troposphere (FT), either as NOx itself or as its oxidation products. This export was identified as plumes enhanced in CO above an estimated background by at least 30 ppbv, which account for 20-31% of the air parcels sampled in the FT during the five field studies. These plumes were encountered throughout the FT up to the 8 km ceiling of the aircraft but were primarily located just above the CBL with average altitudes of 3.0-4.1 km above ground level. In the summer over the continent, only 20 ± 5% of the originally emitted nitrogen oxides was transported in those plumes. This fraction is in reasonable accord with model results, but the models include only deep convection and not the shallow CBL venting mechanisms responsible for the observed plumes. During the two field studies in the early fall and in the spring over the western North Atlantic, we find that 9 ± 4% of the NOy was transported, although [2004] suggest that this is an underestimate and that 15 ± 11% is more accurate. Both of these numbers indicate that model results in the literature overestimate the amount of NOy transported from the CBL to the FT. In these five field studies, HNO3 generally accounted for one-half to two-thirds of the NOy, which is in contrast to the dominance by NOx and organic nitrates suggested by models. Over the North Atlantic, this difference is likely due to further photochemical processing of the NOy species within the FT and over the continent due to the different transport mechanism considered in the models.

  3. Structure and residual stress in γ-LiAlO 2 layer fabricated by vapor transport equilibration on (0 0 0 1) sapphire

    NASA Astrophysics Data System (ADS)

    Li, Shuzhi; Yang, Weiqiao; Wang, Yinzhen; Liu, Junfang; Zhou, Shengming; Xu, Jun; Han, Ping; zhang, Rong

    2005-08-01

    γ-LiAlO 2 layers with a highly preferred (1 0 0) orientation were prepared by vapor transport equilibration (VTE) technique on (0 0 0 1) sapphire substrate. Microstructure of the γ-LiAlO 2 layers was studied by XRD and SEM. In the temperature range from 750 to 1100 °C, the residual stress in the γ-LiAlO 2 layers varied from tensile to compressive with the increase of VTE temperature, and the critical point of the change between tensile and compressive stress is around 975 °C.

  4. Microstructure and residual stress in γ-LiAlO 2 layer fabricated by vapor transport equilibration on (1 1 2¯ 0) sapphire

    NASA Astrophysics Data System (ADS)

    Wang, Yinzhen; Yang, Weiqiao; Li, Shuzhi; Peng, Guangliang; Liu, Shiliang; Zou, Jun; Zhou, Shengming; Xu, Jun; zhang, Rong

    2004-09-01

    γ-LiAlO2 layers have been fabricated by vapor transport equilibration (VTE) technique on (1 1 2bar 0) sapphire substrate. Microstructure of γ-LiAlO2 layers is characterized by X-ray diffraction as functions of VTE treatment temperature and sapphire surface roughness, it has been found that the LiAlO2 layers show a (2 0 0) preferred orientation. The effects of the VTE treatment temperature and sapphire surface roughness on the residual stress have been studied. The results show that residual stress in γ-LiAlO2 layers varies from tension to compression with increasing VTE treatment temperature , but the thermal stress is compressive; the values of residual stress in γ-LiAlO2 layers increase with the sapphire surface roughness.

  5. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    SciTech Connect

    Boedo, J. A. Rudakov, D. L.; Myra, J. R.; D'Ippolito, D. A.; Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A.; Soukhanovskii, V. A.; Ahn, J. W.; Canik, J.; Crocker, N.

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}∼ 1.3 MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ≈4×10{sup 21} s{sup −1} in L-mode and are suppressed to ≈0.2×10{sup 21} s{sup −1} in H mode (80%–90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 4–10 cm in diameter, appear first ∼2 cm inside the LCFS at a rate of ∼1×10{sup 21} s{sup −1} and leave that region with radial speeds of ∼3–5 km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ∼150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  6. 3D effects of edge magnetic field configuration on divertor/scrape-off layer transport and optimization possibilities for a future reactor

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Xu, Y.; Ida, K.; Corre, Y.; Feng, Y.; Schmitz, O.; Frerichs, H.; Tabares, F. L.; Evans, T. E.; Coenen, J. W.; Liang, Y.; Bader, A.; Itoh, K.; Yamada, H.; Ghendrih, Ph.; Ciraolo, G.; Tafalla, D.; Lopez-Fraguas, A.; Guo, H. Y.; Cui, Z. Y.; Reiter, D.; Asakura, N.; Wenzel, U.; Morita, S.; Ohno, N.; Peterson, B. J.; Masuzaki, S.

    2015-10-01

    This paper assesses the three-dimensional (3D) effects of the edge magnetic field structure on divertor/scrape-off layer transport, based on an inter-machine comparison of experimental data and on the recent progress of 3D edge transport simulation. The 3D effects are elucidated as a consequence of competition between transports parallel (\\parallel ) and perpendicular (\\bot ) to the magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of the divertor density regime, impurity screening and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Parameterization to measure the 3D effects on the edge transport is attempted for the individual divertor functions. Based on the suggested key parameters, an operation domain of the 3D divertor configuration is discussed for future devices.

  7. The Origin of the Terra Meridiani Sediments: Volatile Transport and the Formation of Sulfate Bearing Layered Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Niles, P.B.

    2008-01-01

    formation process which must have acted over a large area of Mars. The results of this study suggest a mechanism for volatile transport on Mars without invoking an early greenhouse. They also imply a common formation mechanism for most of the sulfate minerals and layered deposits on Mars, which explains their common occurrence.

  8. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  9. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    NASA Astrophysics Data System (ADS)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  10. Toward Revealing the Critical Role of Perovskite Coverage in Highly Efficient Electron-Transport Layer-Free Perovskite Solar Cells: An Energy Band and Equivalent Circuit Model Perspective.

    PubMed

    Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun

    2016-04-20

    Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%. PMID:27020395

  11. Toward Revealing the Critical Role of Perovskite Coverage in Highly Efficient Electron-Transport Layer-Free Perovskite Solar Cells: An Energy Band and Equivalent Circuit Model Perspective.

    PubMed

    Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun

    2016-04-20

    Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%.

  12. Influence of Metal Contacts on Graphene Transport Characteristics and Its Removal with Nano-carbon Interfacial Layer

    NASA Astrophysics Data System (ADS)

    Kanda, Akinobu; Ito, Yu; Katakura, Kenta; Sonoda, Hiroki; Higuchi, Shoma; Tomori, Hikari; Ootuka, Youiti

    Graphene is a promising candidate for the next-generation electronic material. While considerable effort has been devoted to achieve higher mobility in graphene films, relatively little attention has been paid to the effect of metal contacts, which are indispensable to the electric devices. At a graphene/metal interface, mainly due to the difference in work functions, carriers are injected from the metal to graphene. The resulting shift of local Dirac point is not limited at the graphene/metal interface but extends into the graphene channel. This carrier doping affects more significantly the performance of graphene field effect devices with shorter channel, as well as may conceal Dirac physics at the graphene/metal interface. Here, we experimentally investigate the channel length dependence of graphene transport properties in a wide gate-voltage range and extract the effect of metal contact. Several metal species are investigated. We reveal the origin of electron-hole asymmetry and the effect of the chemical interaction between graphene and metal, and derive the effective work function of graphene (4.93 eV). Furthermore, we succeed in reducing the influence of metal contact by inserting a thin nano-carbon layer (amorphous carbon or multilayer graphene (MLG)) at the interface.

  13. Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zastrow, S.; Gooth, J.; Boehnert, T.; Heiderich, S.; Toellner, W.; Heimann, S.; Schulz, S.; Nielsch, K.

    2013-03-01

    Sb2Te3 has recently been an object of intensive research since its promising applicability in thermoelectric, in phase-change memory devices and as a topological insulator. In this work, we report highly textured Sb2Te3 thin films, grown by atomic layer deposition on Si/SiO2 wafers based on the reaction of SbCl3 and (Et3Si)2Te. The low deposition temperature at 80 °C allows the pre-patterning of the Sb2Te3 by standard lithography processes. A platform to characterize the Seebeck coefficient S, the electrical conductivity σ as well as the Hall coefficient RH on the same film has been developed. Comparing all temperature-dependent transport properties, three different conductive regions in the temperature range of 50-400 K are found. Room temperature values of S = 146 × 10-6 VK-1, σ = 104 Sm-1 and mobility µ = 270.5 × 10-4 m2 V-1 s-1 are determined. The low carrier concentration in the range of n = 2.4 × 1018 cm-3 at 300 K quantifies the low defect content of the Sb2Te3 thin films.

  14. Screening of inorganic wide-bandgap p-type semiconductors for high performance hole transport layers in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph

    2011-03-01

    We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.

  15. Solution Synthesized p-Type Copper Gallium Oxide Nanoplates as Hole Transport Layer for Organic Photovoltaic Devices.

    PubMed

    Wang, Jian; Ibarra, Vanessa; Barrera, Diego; Xu, Liang; Lee, Yun-Ju; Hsu, Julia W P

    2015-03-19

    p-Type metal-oxide hole transport layer (HTL) suppresses recombination at the anode and hence improves the organic photovoltaic (OPV) device performance. While NiOx has been shown to exhibit good HTL performance, very thin films (<10 nm) are needed due to its poor conductivity and high absorption. To overcome these limitations, we utilize CuGaO2, a p-type transparent conducting oxide, as HTL for OPV devices. Pure delafossite phase CuGaO2 nanoplates are synthesized via microwave-assisted hydrothermal reaction in a significantly shorter reaction time compared to via conventional heating. A thick CuGaO2 HTL (∼280 nm) in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) devices achieves 3.2% power conversion efficiency, on par with devices made with standard HTL materials. Such a thick CuGaO2 HTL is more compatible with large-area and high-volume printing process.

  16. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes.

    PubMed

    Park, Hyesung; Brown, Patrick R; Bulović, Vladimir; Kong, Jing

    2012-01-11

    In this work, organic photovoltaics (OPV) with graphene electrodes are constructed where the effect of graphene morphology, hole transporting layers (HTL), and counter electrodes are presented. Instead of the conventional poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) PEDOT:PSS HTL, an alternative transition metal oxide HTL (molybdenum oxide (MoO(3))) is investigated to address the issue of surface immiscibility between graphene and PEDOT:PSS. Graphene films considered here are synthesized via low-pressure chemical vapor deposition (LPCVD) using a copper catalyst and experimental issues concerning the transfer of synthesized graphene onto the substrates of OPV are discussed. The morphology of the graphene electrode and HTL wettability on the graphene surface are shown to play important roles in the successful integration of graphene films into the OPV devices. The effect of various cathodes on the device performance is also studied. These factors (i.e., suitable HTL, graphene surface morphology and residues, and the choice of well-matching counter electrodes) will provide better understanding in utilizing graphene films as transparent conducting electrodes in future solar cell applications. PMID:22107487

  17. 49 CFR 28.140 - Employment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Employment Opportunity Commission in 29 CFR part 1613, shall apply to employment in federally conducted... 49 Transportation 1 2011-10-01 2011-10-01 false Employment. 28.140 Section 28.140 Transportation... PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.140 Employment. (a) No...

  18. Employment of a promoter-swapping technique shows that PhoU modulates the activity of the PstSCAB2 ABC transporter in Escherichia coli.

    PubMed

    Rice, Christopher D; Pollard, Jacob E; Lewis, Zachery T; McCleary, William R

    2009-02-01

    Expression of the Pho regulon in Escherichia coli is induced in response to low levels of environmental phosphate (P(i)). Under these conditions, the high-affinity PstSCAB(2) protein (i.e., with two PstB proteins) is the primary P(i) transporter. Expression from the pstSCAB-phoU operon is regulated by the PhoB/PhoR two-component regulatory system. PhoU is a negative regulator of the Pho regulon; however, the mechanism by which PhoU accomplishes this is currently unknown. Genetic studies of phoU have proven to be difficult because deletion of the phoU gene leads to a severe growth defect and creates strong selection for compensatory mutations resulting in confounding data. To overcome the instability of phoU deletions, we employed a promoter-swapping technique that places expression of the phoBR two-component system under control of the P(tac) promoter and the lacO(ID) regulatory module. This technique may be generally applicable for controlling expression of other chromosomal genes in E. coli. Here we utilized P(phoB)::P(tac) and P(pstS)::P(tac) strains to characterize phenotypes resulting from various DeltaphoU mutations. Our results indicate that PhoU controls the activity of the PstSCAB(2) transporter, as well as its abundance within the cell. In addition, we used the P(phoB)::P(tac) DeltaphoU strain as a platform to begin characterizing new phoU mutations in plasmids.

  19. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung

    2016-02-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM

  20. STC-SAB program users manual for the turbulent boundary layer and turbulent separation prediction methods employed in the NASA Langley streamtube curvature computer program

    NASA Technical Reports Server (NTRS)

    Ferguson, D. R.

    1972-01-01

    The streamtube curvature program (STC) has been developed to predict the inviscid flow field and the pressure distribution about nacelles at transonic speeds. The effects of boundary layer are to displace the inviscid flow and effectively change the body shape. Thus, the body shape must be corrected by the displacement thickness in order to calculate the correct pressure distribution. This report describes the coupling of the Stratford and Beavers boundary layer solution with the inviscid STC analysis so that all nacelle pressure forces, friction drag, and incipient separation may be predicted. The usage of the coupled STC-SAB computer program is outlined and the program input and output are defined. Included in this manual are descriptions of the principal boundary layer tables and other revisions to the STC program. The use of the viscous option is controlled by the engineer during program input definition.

  1. Aircraft observations of East-Asian cyclone induced uplift and long-range transport of polluted boundary layer air to the lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinrich; Baumann, Robert; Priola, Lisa; Roiger, Anke; Sailer, Tomas; Wirth, Martin; Schumann, Ulrich

    2013-04-01

    We report on the airborne detection of a large-scale stratified pollution layer in the lowermost stratosphere which contained increased concentrations of sulfur dioxide, reactive nitrogen, water vapour and sulfate aerosols. The measurements were performed over Central Europe with a chemical ionization mass spectrometer and a high spectral resolution Lidar on board the new German research aircraft HALO. Transport model simulations indicate the East-Asian planetary boundary layer (PBL) as the source region of this layer. The PBL air was uplifted by an East Asian warm conveyor belt (WCB) and thereafter experienced mostly horizontal transport and dispersion covering significant part of the northern hemisphere. The pollution layer extent up to 2 km above the thermal tropopause and appears to be trapped in the upper part of the tropopause inversion layer (TIL). Accompanying chemistry and aerosol model simulations indicate efficient SO2 conversion to sulfuric acid during the horizontal transport in the TIL, accelerated by increased OH resulting from the increased water vapour. Low temperature and increased water vapour led to efficient binary H2SO4/H2O nucleation. The uplifted anthropogenic nitrogen oxides experienced OH and particle mediated conversion to HNO3. The layer of sulfate particles formed in the upper part of the TIL was observed in the Lidar backscatter signal. Since mid-latitude East Asia is a region with very large SO2 emissions and a very high frequency of WCBs, SO2 uplift into the lowermost stratosphere from this region may occur frequently, eventually leading very often to corresponding pollution layers in the northern-hemisphere TIL.

  2. A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers.

    PubMed

    Xiao, Wang; Hui, Duan Ya; Zheng, Chen; Yu, Duan; Qiang, Yang Yong; Ping, Chen; Xiang, Chen Li; Yi, Zhao

    2015-01-01

    Atomic layer deposition (ALD) has been widely reported as a novel method for thin film encapsulation (TFE) of organic light-emitting diodes and organic photovoltaic cells. Both organic and inorganic thin films can be deposited by ALD with a variety of precursors. In this work, the performances of Al2O3 thin films and Al2O3/alucone hybrid films have been investigated. The samples with a 50 nm Al2O3 inorganic layer deposited by ALD at a low temperature of 80°C showed higher surface roughness (0.503 ± 0.011 nm), higher water vapor transmission rate (WVTR) values (3.77 × 10(-4) g/m(2)/day), and lower transmittance values (61%) when compared with the Al2O3 (inorganic)/alucone (organic) hybrid structure under same conditions. Furthermore, a bending test upon single Al2O3 layers showed an increased WVTR of 1.59 × 10(-3) g/m(2)/day. However, the film with a 4 nm alucone organic layer inserted into the center displayed improved surface roughness, barrier performance, and transmittance. After the bending test, the hybrid film with 4 nm equally distributed alucone maintained better surface roughness (0.339 ± 0.014 nm) and barrier properties (9.94 × 10(-5) g/m(2)/day). This interesting phenomenon reveals that multilayer thin films consisting of inorganic layers and decentralized alucone organic components have the potential to be useful in TFE applications on flexible optical electronics.

  3. Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites

    SciTech Connect

    Oldenburg, Curtis M.; Unger, Andre J.A.

    2004-03-29

    Geologic carbon dioxide (CO{sub 2}) sequestration is being considered as a way to offset fossil-fuel-related CO{sub 2} emissions to reduce the rate of increase of atmospheric CO{sub 2} concentrations. The accumulation of vast quantities of injected carbon dioxide (CO{sub 2}) in geologic sequestration sites may entail health and environmental risks from potential leakage and seepage of CO{sub 2} into the near-surface environment. We are developing and applying a coupled subsurface and atmospheric surface-layer modeling capability built within the framework of the integral finite difference reservoir simulator TOUGH2. The overall purpose of modeling studies is to predict CO{sub 2} concentration distributions under a variety of seepage scenarios and geologic, hydrologic, and atmospheric conditions. These concentration distributions will provide the basis for determining above-ground and near-surface instrumentation needs for carbon sequestration monitoring and verification, as well as for assessing health, safety, and environmental risks. A key feature of CO{sub 2} is its large density ({rho} = 1.8 kg m{sup -3}) relative to air ({rho} = 1.2 kg m{sup -3}), a property that may allow small leaks to cause concentrations in air above the occupational exposure limit of 4 percent in low-lying and enclosed areas such as valleys and basements where dilution rates are low. The approach we take to coupled modeling involves development of T2CA, a TOUGH2 module for modeling the multicomponent transport of water, brine, CO{sub 2}, gas tracer, and air in the subsurface. For the atmospheric surface-layer advection and dispersion, we use a logarithmic vertical velocity profile to specify constant time-averaged ambient winds, and atmospheric dispersion approaches to model mixing due to eddies and turbulence. Initial simulations with the coupled model suggest that atmospheric dispersion quickly dilutes diffuse CO{sub 2} seepage fluxes to negligible concentrations, and that rainfall

  4. Low Work-function Poly(3,4-ethylenedioxylenethiophene): Poly(styrene sulfonate) as Electron-transport Layer for High-efficient and Stable Polymer Solar Cells

    PubMed Central

    Zhang, Yong; Chen, Lie; Hu, Xiaotian; Zhang, Lin; Chen, Yiwang

    2015-01-01

    Low-work-function poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) modified with polyethylenimine (PEIE) was used as an electron transport layer (ETL) for polymer solar cells (PSCs). A thin layer of PEIE film was spin-coated onto the surface on the PEDOT:PSS films, thus substantially changing their charge selectivity from supporting hole transport to supporting electron transport. It was also found that the PEDOT:PSS/PEIE ETL exhibited higher interfacial contact, a more favorable active morphology, and improved charge mobility. By virtue of these beneficial properties, inverted PSCs based on low-bandgap semiconducting photoactive layers achieved a notably improved power conversion efficiency (PCE) of 7.94%, superior even to the corresponding performance of devices with only a ZnO layer. Surpassing our expectations, compared with the extreme degradation of device stability observed when pure PEDOT:PSS is used, PEIE-modified PEDOT:PSS can considerably suppress device degradation because of the hydrophobic and alkaline nature of PEIE, which not only reduces the hygroscopicity of the PEDOT:PSS but also neutralizes the acidic PEDOT:PSS and thus prevents the corrosion of the ITO cathode. These results demonstrate the potential of PEIE-modified PEDOT:PSS for use as an efficient ETL in commercial printed electronic devices. PMID:26239868

  5. A NEW MODEL FOR MIXING BY DOUBLE-DIFFUSIVE CONVECTION (SEMI-CONVECTION). II. THE TRANSPORT OF HEAT AND COMPOSITION THROUGH LAYERS

    SciTech Connect

    Wood, T. S.; Garaud, P.; Stellmach, S.

    2013-05-10

    Regions of stellar and planetary interiors that are unstable according to the Schwarzschild criterion, but stable according to the Ledoux criterion, are subject to a form of oscillatory double-diffusive (ODD) convection often called ''semi-convection''. In this series of papers, we use an extensive suite of three-dimensional (3D) numerical simulations to quantify the transport of heat and composition by ODD convection, and ultimately propose a new 1D prescription that can be used in stellar and planetary structure and evolution models. The first paper in this series demonstrated that under certain conditions ODD convection spontaneously transitions from an initial homogeneous state of weak wave-breaking turbulence into a staircase of fully convective layers, which results in a substantial increase in the transport of heat and composition. Here, we present simulations of ODD convection in this layered regime, we describe the dynamical behavior of the layers, and we derive empirical scaling laws for the transport through layered convection.

  6. Edge Localized Mode Dynamics and Transport in the Scrape-Off Layer of the DIII-D Tokamak

    SciTech Connect

    Boedo, J A; Rudakov, D L; Hollmann, E; Gray, D S; Burrell, K H; Moyer, R A; McKee, G R; Fonck, R; Stangeby, P C; Evans, T E; Snyder, P B; Leonard, A W; Mahdavi, M A; Schaffer, M J; West, W P; Fenstermacher, M E; Groth, M; Allen, S L; Porter, G D; Wolf, N S; Colchin, R J; Zeng, L; Wang, G; Watkins, J G; Takahashi, T

    2004-12-03

    High temporal and spatial resolution measurements in the boundary of the DIII-D tokamak show that edge localized modes (ELMs) are produced in the low field side, are poloidally localized and are composed of fast bursts ({approx}20 to 40 {micro}s long) of hot, dense plasma on a background of less dense, colder plasma ({approx}5 x 10{sup 18} m{sup {+-}3}, 50 eV) possibly created by the bursts themselves. The ELMs travel radially in the scrapeoff layer (SOL), starting at the separatrix at {approx}450 m/s, and slow down to {approx}150 m/s near the wall, convecting particles and energy to the SOL and walls. The temperature and density in the ELM plasma initially correspond to those at the top of the density pedestal but quickly decay with radius in the SOL. The temperature decay length ({approx}1.2 to 1.5 cm) is much shorter than the density decay length ({approx}3 to 8 cm), and the latter decreases with increasing pedestal (and SOL) density. The local particle and energy flux at the midplane wall during the bursts are 10% to 50% ({approx}1 to 2 x 10{sup 21} m{sup {+-}2} s{sup {+-}1}) and 1% to 2 % ({approx}20 to 30 kW/m{sup 2}) respectively of the LCFS average fluxes, indicating that particles are transported radially much more efficiently than heat. Evidence is presented suggesting toroidal rotation of the ELM plasma in the SOL. The ELM plasma density and temperature increase linearly with discharge/pedestal density up to a Greenwald fraction of {approx}0.6, and then decrease resulting in more benign (grassier) ELMs.

  7. Highly a-axis oriented -LiAlO2 layer on a-plane sapphire fabricated by vapor transport equilibration

    NASA Astrophysics Data System (ADS)

    Zhou, Shengming; Xu, Jun; Li, Shuzhi; Yang, Weiqiao; Zou, Jun; Peng, Guanliang; Liu, Shiliang; Wang, Yinzhen; Li, Hongjun; Zhou, Guoqing; Hang, Yin

    2004-05-01

    A single-phase -LiAlO2 layer with a highly-preferred (100) orientation on sapphire substrate is successfully fabricated by vapor transport equilibration (VTE) technique in Li-rich ambient. The VTE treatment temperature is essential to obtaining the high-quality layer of -LiAlO2, and the optimized temperature is about 1050 °C in the present work. It is promising to fabricate the -LIAlO2(100)//sapphire composite substrate for GaN-based epitaxial film.

  8. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides.

    PubMed

    Mali, Sawanta S; Hong, Chang Kook

    2016-05-19

    There has been fast recent progress in perovskite solar cells (PSCs) towards low cost photovoltaic technology. Organometal mixed halide (MAPbX or FAPbX) perovskites are the most promising light absorbing material sandwiched between the electron transport layer (ETL) and hole transport layer (HTL). These two layers play a critical role in boosting the power conversion efficiency (PCE) and maintaining air stability. However, the device stability is a serious issue in regular as well as p-i-n inverted type perovskite solar cells. This mini-review briefly outlines the state-of-art of p-i-n/n-i-p type planar hybrid perovskite solar cells using MAPbX/FAPbX perovskite absorbing layers. Later, we will focus on recent trends, progress and further opportunities in exploring the air stable hybrid planar structure PSCs.

  9. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides

    NASA Astrophysics Data System (ADS)

    Mali, Sawanta S.; Hong, Chang Kook

    2016-05-01

    There has been fast recent progress in perovskite solar cells (PSCs) towards low cost photovoltaic technology. Organometal mixed halide (MAPbX or FAPbX) perovskites are the most promising light absorbing material sandwiched between the electron transport layer (ETL) and hole transport layer (HTL). These two layers play a critical role in boosting the power conversion efficiency (PCE) and maintaining air stability. However, the device stability is a serious issue in regular as well as p-i-n inverted type perovskite solar cells. This mini-review briefly outlines the state-of-art of p-i-n/n-i-p type planar hybrid perovskite solar cells using MAPbX/FAPbX perovskite absorbing layers. Later, we will focus on recent trends, progress and further opportunities in exploring the air stable hybrid planar structure PSCs.

  10. Operator-splitting errors in coupled reactive transport codes for flow and transport under atmospheric boundary conditions or layered soil profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One possible way of integrating subsurface flow and transport processes with (bio)geochemical reactions is to couple by means of an operator-splitting approach two completely separate codes, one for variably-saturated flow and solute transport and one for equilibrium and kinetic biogeochemical react...

  11. Flexible ITO-free organic solar cells applying aqueous solution-processed V2O5 hole transport layer: An outdoor stability study

    NASA Astrophysics Data System (ADS)

    Lima, F. Anderson S.; Beliatis, Michail J.; Roth, Bérenger; Andersen, Thomas R.; Bortoti, Andressa; Reyna, Yegraf; Castro, Eryza; Vasconcelos, Igor F.; Gevorgyan, Suren A.; Krebs, Frederik C.; Lira-Cantu, Mónica

    2016-02-01

    Solution processable semiconductor oxides have opened a new paradigm for the enhancement of the lifetime of thin film solar cells. Their fabrication by low-cost and environmentally friendly solution-processable methods makes them ideal barrier (hole and electron) transport layers. In this work, we fabricate flexible ITO-free organic solar cells (OPV) by printing methods applying an aqueous solution-processed V2O5 as the hole transport layer (HTL) and compared them to devices applying PEDOT:PSS. The transparent conducting electrode was PET/Ag/PEDOT/ZnO, and the OPV configuration was PET/Ag/PEDOT/ZnO/P3HT:PC60BM/HTL/Ag. Outdoor stability analyses carried out for more than 900 h revealed higher stability for devices fabricated with the aqueous solution-processed V2O5.

  12. Soil Transport Implement

    NASA Technical Reports Server (NTRS)

    Dixon, William; Fan, William; Lloyd, Joey; Pham, Nam-Anh; Stevens, Michael

    1988-01-01

    The design of the Soil Transport Implement (STI) for SKITTER is presented. The purpose of STI is to provide a protective layer of lunar soil for the lunar modules. The objective is to cover the lunar module with a layer of soil approximately two meters thick within a two week period. The amount of soil required to cover the module is roughly 77 dump truck loads or three million earth pounds. A spinning disk is employed to accomplish its task. STI is an autonomous, teleoperated system. The design incorporates the latest advances in composite materials and high strength, light weight alloys to achieve a high strength to weight ratio. The preliminary design should only be used to assess the feasibility of employing a spinning wheel as a soil transport implement. A mathematical model of the spinning wheel was used to evaluate the performance of this design.

  13. Selective transport of ions and molecules across layer-by-layer assembled membranes of polyelectrolytes, p-sulfonato-calix[n]arenes and Prussian Blue-type complex salts.

    PubMed

    Tieke, Bernd; Toutianoush, Ali; Jin, Wanqin

    2005-11-30

    Our recent studies in the field of ultrathin membranes prepared upon layer-by-layer assembly of various polyionic compounds such as polyelectrolytes, calixarenes and polyelectrolytes, and metal hexacyanoferrate salts such as Prussian Blue are reviewed. It is demonstrated that polyelectrolyte multilayers can be used (a) as nanofiltration and reverse osmosis membranes suitable for water softening and seawater desalination and (b) as molecular sieves and ion sieves for size-selective separation of neutral and charged aromatic compounds. Furthermore, hybrid membranes of p-sulfonato-calixarenes and cationic polyelectrolytes showing specific host-guest interactions with permeating ions are described. The membranes exhibit high selectivities for distinct metal ions. Finally, it is demonstrated that purely inorganic membranes of Prussian Blue (PB) and analogues can be prepared upon multiple sequential adsorption of transition metal cations and hexacyanoferrate anions. Due to the porous lattice of PB, the membranes are useful as ion filters able to separate cesium from sodium ions, for example.

  14. Seasonal Ozone Variations in the Isentropic Layer between 330 and 380 K as Observed by SAGE 2: Implications of Extratropical Cross-Tropopause Transport

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.

    1998-01-01

    To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.

  15. Solution-processed inverted organic solar cell using V2O5 hole transport layer and vacuum free EGaIn anode

    NASA Astrophysics Data System (ADS)

    Ongul, Fatih

    2015-12-01

    In this study, the sol-gel V2O5 derived by a hydrothermal method to replace the PEDOT:PSS which is a hole transport layer between organic active layer and two different anodes in inverted organic solar cells with TiO2 as an electron transport layer was investigated. The power conversion efficiencies of inverted organic photovoltaic cells increased approximately twofold with using V2O5 instead of PEDOT:PSS on top of the photoactive layer. It was demonstrated that the power conversion efficiencies of inverted organic solar cells prepared with V2O5 solution which was diluted with isopropanol in certain proportions by volume were decreased by increasing ratio of isopropanol in total volume. It was reported for the first time that the inverted organic photovoltaic cells prepared using V2O5 interlayer and Eutectic Gallium-Indium alloy which was prepared using vacuum free simple brush-painted method and can be used as anode electrode as Ag electrode.

  16. Spin transport in epitaxial magnetic manganite/ruthenate heterostructures with an LaMnO{sub 3} layer

    SciTech Connect

    Petrzhik, A. M. Ovsyannikov, G. A.; Shadrin, A. V.; Khaidukov, Yu. N.; Mustafa, L.

    2014-12-15

    Epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/LaMnO{sub 3}/SrRuO{sub 3} (LSMO/LMO/SRO) heterostructures with an LMO layer 0–35 nm thick are grown by laser ablation on an NdGaO{sub 3} substrate at a high temperature. X-ray diffraction and transmission electron microscopy demonstrate sharp interfaces and epitaxial growth of the LSMO and SRO layers in the heterostructures at an LMO layer thickness of 0–35 nm. SQUID measurements of the magnetic moment of the heterostructures with an LMO layer and the data obtained with reflectometry of polarized neutrons show that the manganite LMO layer is a ferromagnet at a temperature below 150 K and strongly affects the magnetic moment of the heterostructures at low temperatures. The magnetoresistance of the mesostructure created from the heterostructure using lithography and ion etching decreases with increasing LMO layer thickness and weakly depends on the direction of an applied magnetic field. If the LMP layer is absent, a negative magnetoresistance is detected; it is likely to be caused by a negative magnetization of the SRO layer.

  17. Entrainment and Optical Properties of an Elevated Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Marufu, L. T.; Torres, O.; Welton, E. J.; Doddridge, B. G.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently transported to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  18. Engaging Employers?

    ERIC Educational Resources Information Center

    Hillier, Yvonne

    2008-01-01

    A key factor in the successful development of workplace learning is employer engagement (Leitch, 2006; DfES, 2007). However, despite numerous approaches by government in the United Kingdom to bring together employers, providers and learners so that economic success is generated by a skilled and flexible workforce, there continue to be challenges…

  19. Maternal Employment

    ERIC Educational Resources Information Center

    Clark, Sam

    1975-01-01

    The overwhelming evidence from years of research is that maternal employment, by itself, has little influence on the behaviors of children. More relevant issues are: mother's reasons for working, family's acceptance of mother's employment, quality of substitute child care, family's social and emotional health, and economic conditions. (Author/AJ)

  20. Industry Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    This article illustrates projected employment change from an industry perspective over the 2008-2018 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment in which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  1. Industry Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article illustrates projected employment change by industry and industry sector over 2010-20 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment for which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  2. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between

  3. Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS₂ Grown by Vapor Transport.

    PubMed

    McCreary, Amber; Ghosh, Rudresh; Amani, Matin; Wang, Jin; Duerloo, Karel-Alexander N; Sharma, Ankit; Jarvis, Karalee; Reed, Evan J; Dongare, Avinash M; Banerjee, Sanjay K; Terrones, Mauricio; Namburu, Raju R; Dubey, Madan

    2016-03-22

    One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.

  4. Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS₂ Grown by Vapor Transport.

    PubMed

    McCreary, Amber; Ghosh, Rudresh; Amani, Matin; Wang, Jin; Duerloo, Karel-Alexander N; Sharma, Ankit; Jarvis, Karalee; Reed, Evan J; Dongare, Avinash M; Banerjee, Sanjay K; Terrones, Mauricio; Namburu, Raju R; Dubey, Madan

    2016-03-22

    One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain. PMID:26881920

  5. Improving charge transport of P3HT:PCBM organic solar cell using MoO3 nanoparticles as an interfacial buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hyoung; Park, Eung-Kyu; Kim, Ji-Hwan; Cho, Hyeong Jun; Lee, Dong-Hoon; Kim, Yong-Sang

    2016-05-01

    In this work, P3HT:PCBM based organic solar cells (OSCs) were fabricated. We investigated the protection of PEDOT:PSS from active layer using the solution processed molybdenum oxide nanoparticles layer (MoO3 NPs, ≤100 nm). The device structure was ITO/ZnO/P3HT: PCBM/MoO3/PEDOT:PSS/Ag. A thin film MoO3 NPs was spin-coated and it acts as a hole transporting layer between the active layer and PEDOT:PSS. The MoO3 NPs based device showed an improved short circuit current compared without MoO3 NP layer. The pristine OSCs showed short circuit current density ( J sc ) of 11.56 mA/cm2 and PCE of 3.70% under AM 1.5G (100 mW/cm2). MoO3 NPs based device showed an increased PCE of 4.11% with J sc of 12.74 mA/cm2. MoO3 NPs also decreased the charge recombination and resistance of the OSCs. [Figure not available: see fulltext.

  6. Improving the performance of organic solar cells using an electron transport layer of B4PyMPM self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Ji, Chan-Hyuk; Oh, Il-Soo; Oh, Se-Young

    2015-09-01

    The electron transport (ETL) layer improves power conversion efficiency (PCE) in organic photovoltaic cells (OPVs) through the incorporation of the cathode interfacial layers. Here, we introduce [bis-4,6-(3,5-di-4-pyridylphenyl)-2-methylpyrimidine] (B4PyMPM) as an n-type buffer layer consisting of a self-organized layer with a horizontal configuration in bulk heterojunction OPVs. It is demonstrated that self-organization of this B4PyMPM compound in which molecules adopt a horizontal orientation parallel to the organic semiconducting substrate induces a large local interfacial electric field that results in a significant enhancement of exciton dissociation. The device using B4PyMPM as an ETL layers has a significantly high open circuit voltage ( V oc = 0.64 V), good short circuit current ( J sc = 8.24 mA/cm2), good fill factor ( FF = 0.65) and good PCE (3.42%). The physical properties of the device have also been studied from the measurements of impedance spectroscopy and photocurrent, which directly show the mechanisms occurring inside OPVs. [Figure not available: see fulltext.

  7. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  8. Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation

    PubMed Central

    Kenjereš, Saša; de Loor, Alexander

    2014-01-01

    A high concentration of low-density lipoprotein (LDL) is recognized as one of the principal risk factors for development of atherosclerosis. This paper reports on modelling and simulations of the coupled mass (LDL concentration) and momentum transport through the arterial lumen and the multi-layered arterial wall of an anatomically realistic carotid bifurcation. The mathematical model includes equations for conservation of mass, momentum and concentration, which take into account a porous layer structure, the biological membranes and reactive source/sink terms in different layers of the arterial wall, as proposed in Yang & Vafai (2006). A four-layer wall model of an arterial wall with constant thickness is introduced and initially tested on a simple cylinder geometry where realistic layer properties are specified. Comparative assessment with previously published results demonstrated proper implementation of the mathematical model. Excellent agreement for the velocity and LDL concentration distributions in the arterial lumen and in the artery wall are obtained. Then, an anatomically realistic carotid artery bifurcation is studied. This is the main novelty of the presented research. We find a strong dependence between underlying blood flow pattern (and consequently the wall shear stress distributions) and the uptake of the LDL concentration in the artery wall. The radial dependency of interactions between the diffusion, convection and chemical reactions within the multi-layered artery wall is crucial for accurate predictions of the LDL concentration in the media. It is shown that a four-layer wall model produced qualitatively good agreement with the experimental results of Meyer et al. (1996) in predicting levels of LDL within the media of a rabbit aorta under identical transmural pressure conditions. Finally, it is demonstrated that the adopted model represents a good initial platform for future numerical investigations of the initial stage of atherosclerosis for

  9. Transport Properties of Anatase-TiO2 Polycrystalline-Thin-Film Field-Effect Transistors with Electrolyte Gate Layers

    NASA Astrophysics Data System (ADS)

    Horita, Ryohei; Ohtani, Kyosuke; Kai, Takahiro; Murao, Yusuke; Nishida, Hiroya; Toya, Taku; Seo, Kentaro; Sakai, Mio; Okuda, Tetsuji

    2013-11-01

    We have fabricated anatase-TiO2 polycrystalline-thin-film field-effect transistors (FETs) with poly(vinyl alcohol) (PVA), ion-liquid (IL), and ion-gel (IG) gate layers, and have tried to improve the response to gate voltage by varying the concentration of mobile ions in these electrolyte gate layers. The increase in the concentration of mobile ions by doping NaOH into the PVA gate layer or reducing the gelator in the IG gate layer markedly increases the drain-source current and reduces the driving gate voltage, which show that the mobile ions in the PVA, IL, and IG gate layers cause the formation of electric double layers (EDLs), which act as nanogap capacitors. In these TiO2-EDL-FETs, the slow formation of EDLs and the oxidation reaction at the interface between the surface of the TiO2 film and the electrolytes cause unideal FET properties. In the optimized IL and IG TiO2-EDL-FETs, the driving gate voltage is less than 1 V and the ON/OFF ratios of the transfer characteristics are about 1×104 at RT, and the nearly metallic state is realized at the interface purely by applying a gate voltage.

  10. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a

  11. Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superficial layers of the primary visual cortex

    PubMed Central

    Rockoff, Emily C; Balaram, Pooja; Kaas, Jon H

    2015-01-01

    Blobs are a modular component of the primary visual cortex (area 17) of all primates, but not of other mammals closely related to primates. They are characterized as an even distribution of patches, puffs, or blobs of dense cytochrome oxidase (CO) expression in layer III of area 17, and are now known to differ from surrounding, nonblob cortex in thalamic, intrinsic, and extrastriate connections. Previous studies have also recognized a blob-like pattern of myelin-dense patches in layer III of area 17 of primates, and more recently the vesicular glutamate transporter (VGLUT)-2 isoform of the VGLUT family has been found to selectively distribute to layer III patches in a similar blob-like pattern. Here, we sought to determine if the blob-like patterns all identify the same modular structures in area 17 of primates by staining alternate brain sections cut parallel to the surface of area 17 of a prosimian primate (Otolemur garnettii) for CO, myelin, and VGLUT2. By aligning the sections from the three preparations, we provide clear evidence that the three preparations all identify the same modular blob structures. The results provide a further understanding of the functional nature of the blobs by demonstrating that their higher level of CO activity is related to thalamic inputs from the lateral geniculate nucleus that use VGLUT2 as their main glutamate transporter, and via myelinated axons. PMID:26097384

  12. Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Kayyalha, Morteza; Maassen, Jesse; Lundstrom, Mark; Shi, Li; Chen, Yong P.

    2016-10-01

    Over the past few years, there has been a growing interest in layered transition metal dichalcogenides such as molybdenum disulfide (MoS2). Most studies so far have focused on the electronic and optoelectronic properties of single-layer MoS2, whose band structure features a direct bandgap, in sharp contrast to the indirect bandgap of thicker MoS2. In this paper, we present a systematic study of the thickness-dependent electrical and thermoelectric properties of few-layer MoS2. We observe that the electrical conductivity ( σ) increases as we reduce the thickness of MoS2 and peaks at about two layers, with six-times larger conductivity than our thickest sample (23-layer MoS2). Using a back-gate voltage, we modulate the Fermi energy ( E F ) of the sample where an increase in the Seebeck coefficient ( S ) is observed with decreasing gate voltage ( E F ) towards the subthreshold (OFF state) of the device, reaching as large as 500 μ V / K in a four-layer MoS2. While previous reports have focused on a single-layer MoS2 and measured Seebeck coefficient in the OFF state, which has vanishing electrical conductivity and thermoelectric power factor ( P F = S 2 σ ), we show that MoS2-based devices in their ON state can have P F as large as > 50 /μ W cm K 2 in the two-layer sample. The P F increases with decreasing thickness and then drops abruptly from double-layer to single-layer MoS2, a feature we suggest as due to a change in the energy dependence of the electron mean-free-path according to our theoretical calculation. Moreover, we show that care must be taken in thermoelectric measurements in the OFF state to avoid obtaining erroneously large Seebeck coefficients when the channel resistance is very high. Our study paves the way towards a more comprehensive examination of the thermoelectric performance of two-dimensional (2D) semiconductors.

  13. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  14. Stochastic microstructural modeling of fuel cell gas diffusion layers and numerical determination of transport properties in different liquid water saturation levels

    NASA Astrophysics Data System (ADS)

    Tayarani-Yoosefabadi, Z.; Harvey, D.; Bellerive, J.; Kjeang, E.

    2016-01-01

    Gas diffusion layer (GDL) materials in polymer electrolyte membrane fuel cells (PEMFCs) are commonly made hydrophobic to enhance water management by avoiding liquid water blockage of the pores and facilitating reactant gas transport to the adjacent catalyst layer. In this work, a stochastic microstructural modeling approach is developed to simulate the transport properties of a commercial carbon paper based GDL under a range of PTFE loadings and liquid water saturation levels. The proposed novel stochastic method mimics the GDL manufacturing process steps and resolves all relevant phases including fiber, binder, PTFE, liquid water, and gas. After thorough validation of the general microstructure with literature and in-house data, a comprehensive set of anisotropic transport properties is simulated for the reconstructed GDL in different PTFE loadings and liquid water saturation levels and validated through a comparison with in-house ex situ experimental data and empirical formulations. In general, the results show good agreement between simulated and measured data. Decreasing trends in porosity, gas diffusivity, and permeability is obtained by increasing the PTFE loading and liquid water content, while the thermal conductivity is found to increase with liquid water saturation. Using the validated model, new correlations for saturation dependent GDL properties are proposed.

  15. Transport and distribution of bacteria and diatoms in the aqueous surface micro-layer of a salt marsh

    USGS Publications Warehouse

    Harvey, Ronald W.; Lion, Leonard W.; Young, Lily Y.

    1983-01-01

    The effects of tide and wind upon the distribution and transport of bacteria and diatoms in the aqueous surface microlayers of a Massachusetts and San Francisco Bay salt marsh were examined. The compression of the surface films by both tide and wind resulted in significant enrichments of bacterioneuston. At the San Francisco Bay site, significant numbers of diatoms were transported within the microlayer over a tidal cycle.

  16. Simulation of ion transport in layered cuprate La{sub 2}SrCu{sub 2}O{sub 6}

    SciTech Connect

    Galin, M. Z.; Mazo, G. N.; Ivanov-Schitz, A. K.

    2010-03-15

    Oxygen diffusion in layered cuprate La{sub 2}SrCu{sub 2}O{sub 6} has been simulated by the molecular dynamics method in the temperature range of 300-2500 K. The lattice is found to transform at temperatures above 1550 K; this transformation is accompanied by a change in the pair correlation functions. The abrupt change in the oxygen diffusion coefficient in the range of 1500-1550 K may indicate the presence of a phase transition to the superionic state. The motion of oxygen anions could be traced at the microscopic level. It has been proven for the first time that the La{sub 2}SrCu{sub 2}O{sub 6} crystal lattice allows, along with displacements of O1 ions within the CuO{sub 2} layer, their migration from the crystallographic positions to the intermediate unoccupied O3 positions. The motion of O2 anions is also fairly complicated: they move not only in their layer over the O2 positions but they also jump to the neighboring layer to occupy the O1 positions. The oxygen diffusion coefficient in layered cuprate La{sub 2}SrCu{sub 2}O{sub 6} exceeds that in cuprates with perovskite structure and structure of the K{sub 2}NiF{sub 4} type (at the same temperatures), which indicates that this material has good prospects for electrodes with mixed ionic-electronic conductivity.

  17. Inverted organic solar cells using a solution-processed TiO2/CdSe electron transport layer to improve performance

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxiao; Xiong, Zhicheng; Wang, Wen; Zhang, Luming; Wu, Sujuan; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Liu, Jun-Ming

    2016-04-01

    In the present work, cadmium selenide (CdSe) nanoparticles are deposited directly on TiO2 film to fabricate the TiO2/CdSe interlayer by a chemical bath deposition method. The inverted organic solar cells using poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk heterojunction as an active layer and TiO2/CdSe interlayer as an electron transport layer (ETL) are fabricated in air. A series of microstructural, photo-electronic, and electrochemical characterizations on these cells are performed. The TiO2/CdSe structure with respect to either the TiO2 layer or the CdSe layer as the ETL exhibits significantly enhanced external quantum efficiency (EQE) in the visible region. The photoluminescence (PL) measurement shows that the exciton dissociation in the TiO2/CdSe structure is more effective than that in either the TiO2 or CdSe structure. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) implies that the charge recombination in the TiO2/CdSe structure can be suppressed with respect to that in either the CdSe or TiO2 structure. The photovoltaic performances of the cells with the TiO2/CdSe ETL are clearly improved compared with the reference cells only with the TiO2 layer or CdSe layer as the ETL.

  18. Numerical upper bounds on convective heat transport in a layer of fluid of finite Prandtl number: Confirmation of Howard's analytical asymptotic single-wave-number bound

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.

    2005-10-01

    By means of the Howard-Busse method of the optimum theory of turbulence we investigate numerically the upper bounds on the Nusselt number in a heated-from-below horizontal layer of fluid of finite Prandtl number for the case of rigid boundaries. The bounds are obtained by the solutions of the Euler-Lagrange equations of a variational problem possessing up to three wave numbers. The obtained results are compared to the numerical results for the case of fluid layer with stress-free boundaries [N. K. Vitanov and F. H. Busse, "Upper bounds on heat transport in a horizontal fluid layer with stress-free boundaries," ZAMP 48, 310 (1997)] as well as to the numerical and analytical asymptotic results obtained by Howard ["Heat transport by turbulent convection," J. Fluid Mech. 17, 405 (1963)], Busse ["On Howard's upper bound for heat transport by turbulent convection," J. Fluid Mech. 37, 457 (1969)], and Strauss ["On the upper bounding approach to thermal convection at moderate Rayleigh numbers, II. Rigid boundaries," Dyn. Atm. Oceans 1, 77 (1976)]. We show that for low and intermediate Rayleigh numbers the numerical bounds are positioned below the analytical asymptotic bounds obtained by Howard and Busse. For large Rayleigh numbers the numerical bounds tend to approach the analytical asymptotic bounds. We confirm numerically the bound obtained by Howard for the case of one-wave-number solution of the Euler-Lagrange equations. As the region of validity of the results of the analytical asymptotic theory for solutions of the Euler-Lagrange equations with two and three wave numbers lies in the area of very high Rayleigh numbers the values of the second and third wave numbers are different from their analytical asymptotic values for the values of the Rayleigh number reached by the numerical computation.

  19. Employment of High-Performance Thin-Layer Chromatography for the Quantification of Oleuropein in Olive Leaves and the Selection of a Suitable Solvent System for Its Isolation with Centrifugal Partition Chromatography.

    PubMed

    Boka, Vasiliki-Ioanna; Argyropoulou, Aikaterini; Gikas, Evangelos; Angelis, Apostolis; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros

    2015-11-01

    A high-performance thin-layer chromatographic methodology was developed and validated for the isolation and quantitative determination of oleuropein in two extracts of Olea europaea leaves. OLE_A was a crude acetone extract, while OLE_AA was its defatted residue. Initially, high-performance thin-layer chromatography was employed for the purification process of oleuropein with fast centrifugal partition chromatography, replacing high-performance liquid-chromatography, in the stage of the determination of the distribution coefficient and the retention volume. A densitometric method was developed for the determination of the distribution coefficients, KC = CS/CM. The total concentrations of the target compound in the stationary phase (CS) and in the mobile phase (CM) were calculated by the area measured in the high-performance thin-layer chromatogram. The estimated Kc was also used for the calculation of the retention volume, VR, with a chromatographic retention equation. The obtained data were successfully applied for the purification of oleuropein and the experimental results confirmed the theoretical predictions, indicating that high-performance thin-layer chromatography could be an important counterpart in the phytochemical study of natural products. The isolated oleuropein (purity > 95%) was subsequently used for the estimation of its content in each extract with a simple, sensitive and accurate high-performance thin-layer chromatography method. The best fit calibration curve from 1.0 µg/track to 6.0 µg/track of oleuropein was polynomial and the quantification was achieved by UV detection at λ 240 nm. The method was validated giving rise to an efficient and high-throughput procedure, with the relative standard deviation % of repeatability and intermediate precision not exceeding 4.9% and accuracy between 92% and 98% (recovery rates). Moreover, the method was validated for robustness, limit of quantitation, and limit of detection. The amount of oleuropein for

  20. Simulation of ion transport in layered cuprates La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}

    SciTech Connect

    Savvin, S. N.; Mazo, G. N.; Ivanov-Schitz, A. K.

    2008-03-15

    The processes of oxygen diffusion in La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}} phases have been simulated for the first time by the molecular-dynamics method. Calculations were performed for the temperature range 300-2500 K. The behavior of the radial pair correlation functions, which characterize the degree of order of O1 ions in CuO{sub 2} layers, indicates that O{sup 2-} anions form a weakly correlated subsystem within a CuO{sub 2} layer. To quantitatively confirm the conclusions about the predominantly two-dimensional character of ion transport and different mobilities of O1 and O2 particles in the cuprates under study, the pair oxygen diffusion coefficients in the La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}} lattice were calculated. It is shown that oxygen diffusion occurs through the conventional hopping mechanism mainly in CuO{sub 2} layers; correspondingly, the diffusion coefficient for equatorial ions (O1) exceeds that for apical oxygen anions (O2) by an order of magnitude. The motion of oxygen anions was traced at the microscopic level through analysis of the particle transport trajectories. It has been proven for the first time that diffusion of O1 ions in the ab plane in a nonstoichiometric LaSrCuO{sub 3.61} sample occurs through jumps to the nearest position or along CuO{sub 2} layers; in a more complicated way, it may occur through unoccupied O2 lattice sites.

  1. Simulation of ion transport in layered cuprates La{sub 2{sub -}}{sub x}Sr{sub x}CuO{sub 4-{delta}}

    SciTech Connect

    Savvin, S. N.; Mazo, G. N.; Ivanov-Schitz, A. K.

    2008-03-15

    The processes of oxygen diffusion in La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}} phases have been simulated for the first time by the molecular-dynamics method. Calculations were performed for the temperature range 300-2500 K. The behavior of the radial pair correlation functions, which characterize the degree of order of O1 ions in CuO{sub 2} layers, indicates that O{sup 2-} anions form a weakly correlated subsystem within a CuO{sub 2} layer. To quantitatively confirm the conclusions about the predominantly two-dimensional character of ion transport and different mobilities of O1 and O2 particles in the cuprates under study, the pair oxygen diffusion coefficients in the La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}} lattice were calculated. It is shown that oxygen diffusion occurs through the conventional hopping mechanism mainly in CuO{sub 2} layers; correspondingly, the diffusion coefficient for equatorial ions (O1) exceeds that for apical oxygen anions (O2) by an order of magnitude. The motion of oxygen anions was traced at the microscopic level through analysis of the particle transport trajectories. It has been proven for the first time that diffusion of O1 ions in the ab plane in a nonstoichiometric LaSrCuO{sub 3.61} sample occurs through jumps to the nearest position or along CuO{sub 2} layers; in a more complicated way, it may occur through unoccupied O2 lattice sites.

  2. The interaction of the sea breezes with the boundary layer along the Red Sea coast and its effect on the dust transport

    NASA Astrophysics Data System (ADS)

    Khan, Basit Ali; Stenchikov, Georgiy; Abualnaja, Yasser

    2013-04-01

    Sea and land breezes are common meteorological phenomena in most coastal regions of the world. The thermally induced mesoscale circulation of sea breezes modifies the planetary boundary layer (PBL) by forming a convective internal boundary layer (CIBL), which can trap dust and other pollutants in the thin convective layer while the return flow can transport dust and pollutants from the land towards the sea. We used the Advanced Research WRF (ARW) modeling system to study the structure and dynamics of sea breezes in the middle region of the Red Sea (around 25°N) on the western coast of Saudi Arabia. Results showed the existence of two thermal circulations on both the western and eastern coasts of the Red Sea. The modeling results are consistent with observations from buoys and meteorological towers along the Saudi Arabian coast and suggest that the onset of the sea breeze in this area typically occurs at about 0800 Local Standard Time (LST). The sea breeze decays after 1700 LST, although the timing of the onset and decay could be affected by the sea-land thermal gradient, topography, the sea-land orientation and the direction and strength of the wind. The depth of the predicted inflow layer reaches one kilometer while the height of sea breeze head may reach three kilometers. The rocky mountain range of Al-Sarawat, along the Saudi coast line, restricts the inland propagation of the sea breeze and significantly affects the structure of the flow. We conducted a detailed process analysis of our simulation results to understand the sea breeze and PBL interaction and its effect on local meteorology and dust transport.

  3. Entrainment and Optical Properties of an Elevated Canadian Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Doddridge, B. G.; Marufu, L. T.; Torres, O.; Welton, E. J.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently mixed to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  4. Enhanced performance of polymer solar cell with ZnO nanoparticle electron transporting layer passivated by in situ cross-linked three-dimensional polymer network

    NASA Astrophysics Data System (ADS)

    Wu, Zhongwei; Song, Tao; Xia, Zhouhui; Wei, Huaixin; Sun, Baoquan

    2013-12-01

    An in situ cross-linked three-dimensional polymer network has been developed to passivate ZnO nanoparticles as an electron transporting layer (ETL) to improve the performance of inverted organic solar cells. The passivated ZnO ETL-based devices achieve efficiencies of 3.26% for poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and 7.37% for poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  5. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer.

    PubMed

    Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y

    2015-01-27

    An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. PMID:25449020

  6. A Comparison of Sediment Transport Measurements and a Bottom Boundary Layer Model on a Hardbottom Surface Offshore of Myrtle Beach, South Carolina

    NASA Astrophysics Data System (ADS)

    Cziraki, E.; Wren, P.

    2008-12-01

    Two instrumented bottom-mounted quadrapod frames have been deployed on the shoreface and inner- continental shelf of Long Bay, SC offshore of Myrtle Beach in an effort to measure and quantify the cross- and along-shore suspended sediment transport and examine sediment deposition dispersal on nearshore hardbottom habitats. The inshore instrument frame is located 850 meters offshore on an extensive hardbottom surface and the second instrumented frame is secured to a hardbottom surface at a distance of approximately 2.5 km offshore. The nearshore instrumentation includes a downward-looking RDI/Teledyne 1200 kHz Pulse-Coherent Acoustic Doppler Current Profiler (PC-ADCP), an upward-looking Nortek Acoustic Wave and Current profiler (AWAC), and a multi-frequency Aquatec Acoustic Backscatter Sensor. The inner- shelf instrumentation includes a Sontek Acoustic Doppler Velocimeter (ADV), a Sequoia LISST-100X, an upward looking RDI 1200 kHz ACDP with wave capabilities, and an Imaginex profiling sonar. Sediment samples have also been collected and analyzed for composition and grain size distribution. Continuous and simultaneous in-situ measurements of directional wave spectra, bottom wave and current velocities, suspended sediment concentration profiles, grain-size distributions, and seabed elevation changes have been collected since July 2008. Additionally, measured near-bottom wave orbital velocities, current velocities at 50 cmab, and sediment grain size data have been input into a bottom boundary layer model (Styles and Glenn, 2002). Model generated profiles of current speed, suspended sediment concentration, and sediment transport due to wave-current interactions have been compared to the measured current, suspended sediment concentration and transport profiles in order to calibrate and verify the bottom boundary layer model over the hardbottom surface. Measured sediment flux and direction over the hardbottom areas have been compared to the BBL model output during several

  7. Mass-transport-controlled, large-area, uniform deposition of carbon nanofibers and their application in gas diffusion layers of fuel cells.

    PubMed

    Tang, Xian; Xie, Zhiyong; Huang, Qizhong; Chen, Guofen; Hou, Ming; Yi, Baolian

    2015-05-01

    The effect of mass transport on the growth characteristics of large-area vapor-grown carbon nanofibers (CNFs) was investigated by adjusting the substrate deposition angle (α). The catalyst precursor solution was coated onto one side of a 2D porous carbon paper substrate via a decal printing method. The results showed that the CNFs were grown on only one side of the substrate and α was found to significantly affect the growth uniformity. At α = 0°, the growth thickness, the density, the microstructure and the yield of the CNF film were uniform across the substrate surface, whereas the growth uniformity decreased with increasing α, suggesting that the large-area CNF deposition processes were mass-transport-controlled. Computational fluid dynamics simulations of the gas diffusion processes revealed the homogeneous distributions of the carbon-source-gas concentration, pressure, and velocity near the substrate surface at α = 0°, which were the important factors in achieving the mass-transport-limited uniform CNF growth. The homogeneity of the field distributions decreased with increasing α, in accordance with the variation in the growth uniformity with α. When used as a micro-porous layer, the uniform CNF film enabled higher proton exchange membrane fuel cell performance in comparison with commercial carbon black by virtue of its improved electronic and mass-transport properties confirmed by the electrochemical impedance spectroscopy results. PMID:25865711

  8. Analysis of in-flight boundary-layer state measurements on a subsonic transport wing in high-lift configuration

    NASA Technical Reports Server (NTRS)

    vanDam, C. P.; Los, S. M.; Miley, S. J.; Yip, L. P.; Banks, D. W.; Roback, V. E.; Bertelrud, A.

    1995-01-01

    Flight experiments on NASA Langley's B737-100 (TSRV) airplane have been conducted to document flow characteristics in order to further the understanding of high-lift flow physics, and to correlate and validate computational predictions and wind-tunnel measurements. The project is a cooperative effort involving NASA, industry, and universities. In addition to focusing on in-flight measurements, the project includes extensive application of various computational techniques, and correlation of flight data with computational results and wind-tunnel measurements. Results obtained in the most recent phase of flight experiments are analyzed and presented in this paper. In-flight measurements include surface pressure distributions, measured using flush pressure taps and pressure belts on the slats, main element, and flap elements; surface shear stresses, measured using Preston tubes; off-surface velocity distributions, measured using shear-layer rakes; aeroelastic deformations of the flap elements, measured using an optical positioning system; and boundary-layer transition phenomena, measured using hot-film anemometers and an infrared imaging system. The analysis in this paper primarily focuses on changes in the boundary-layer state that occurred on the slats, main element, and fore flap as a result of changes in flap setting and/or flight condition. Following a detailed description of the experiment, the boundary-layer state phenomenon will be discussed based on data measured during these recent flight experiments.

  9. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung

    2016-06-01

    NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01601d

  10. Occupational Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    When choosing a career, jobseekers often want to know which occupations offer the best prospects. Generally, occupations that have rapid job growth, many new jobs, or many job openings--and good wages--promise better opportunities. This article shows how employment in particular occupations is projected to change over the 2008-2018 decade. The…

  11. Occupational Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    When choosing a career, jobseekers often want to know which occupations offer the best prospects. Generally, occupations that have rapid job growth, many new jobs, or many job openings--and good wages--promise better opportunities. This paper shows how employment in particular occupations is projected to change from 2010 to 2020. It presents…

  12. Microscopic Investigations into the Effect of Surface Treatment of Cathode and Electron Transport Layer on the Performance of Inverted Organic Solar Cells.

    PubMed

    Gupta, Shailendra Kumar; Jindal, Rajeev; Garg, Ashish

    2015-08-01

    Surface treatments of various layers in organic solar cells play a vital role in determining device characteristics. In this manuscript, we report on the influence of surface treatment of indium tin oxide (ITO) electrode and electron transport layer (ETL), ZnO, on the photovoltaic performance of inverted organic solar cells (IOSC) and their correlation with the surface chemistry and surface potential as studied using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM), using the device structure glass/ITO/ZnO/P3HT: PCBM/MoO3/(Au or Ag) (P3HT, poly(3-hexylthiophene-2,5-diyl), and PCBM, phenyl-C61-butyric acid methyl ester). Our results show that although ozonization of ITO leads to an improvement in the device power conversion efficiency, the ozonization of a subsequent ZnO layer results in a decreased performance mainly because of a decrease in the fill factor (FF). However, subsequent methanol (CH3OH) treatment of ZnO layer on an ozonized ITO electrode shows substantial improvement with device efficiencies exceeding ∼4% along with superior reproducibility of the devices. Furthermore, a detailed analysis of the surface wettability, chemistry, and surface potential using contact angle measurements, XPS, and KPFM attribute the improvements to the elimination of surface defects and the changes in the surface potential. Finally, impedance analysis suggests that methanol treatment of the ZnO layers leads to the development of a favorable nanophase structure with higher conductivity, which is otherwise indiscernible using microscopic methods.

  13. Observation of hole injection boost via two parallel paths in Pentacene thin-film transistors by employing Pentacene: 4, 4″-tris(3-methylphenylphenylamino) triphenylamine: MoO{sub 3} buffer layer

    SciTech Connect

    Yan, Pingrui; Liu, Ziyang; Liu, Dongyang; Wang, Xuehui; Yue, Shouzhen; Zhao, Yi; Zhang, Shiming

    2014-11-01

    Pentacene organic thin-film transistors (OTFTs) were prepared by introducing 4, 4″-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA): MoO{sub 3}, Pentacene: MoO{sub 3}, and Pentacene: m-MTDATA: MoO{sub 3} as buffer layers. These OTFTs all showed significant performance improvement comparing to the reference device. Significantly, we observe that the device employing Pentacene: m-MTDATA: MoO{sub 3} buffer layer can both take advantage of charge transfer complexes formed in the m-MTDATA: MoO{sub 3} device and suitable energy level alignment existed in the Pentacene: MoO{sub 3} device. These two parallel paths led to a high mobility, low threshold voltage, and contact resistance of 0.72 cm{sup 2}/V s, −13.4 V, and 0.83 kΩ at V{sub ds} = − 100 V. This work enriches the understanding of MoO{sub 3} doped organic materials for applications in OTFTs.

  14. Native Oxide Transport and Removal During Atomic Layer Deposition of TiO2 Films on GaAs(100) Surfaces.

    PubMed

    Henegar, Alex J; Cook, Andrew J; Dang, Phillip; Gougousi, Theodosia

    2016-01-27

    In this work, we studied the evolution and transport of the native oxides during the atomic layer deposition (ALD) of TiO2 on GaAs(100) from tetrakis dimethyl amino titanium and H2O. Arsenic oxide transport through the TiO2 film and removal during the ALD process was investigated using transmission Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Experiments were designed to decouple these processes by utilizing their temperature dependence. A 4 nm TiO2 layer was initially deposited on a native oxide surface at 100 °C. Ex situ XPS confirmed that this step disturbed the interface minimally. An additional 3 nm TiO2 film was subsequently deposited at 150 to 250 °C with and without an intermediate thermal treatment step at 250 °C. Arsenic and gallium oxide removal was confirmed during this second deposition, leading to the inevitable conclusion that these oxides traversed at least 4 nm of film so as to react with the precursor and its surface reaction/decomposition byproducts. XPS measurements confirmed the relocation of both arsenic and gallium oxides from the interface to the bulk of the TiO2 film under normal processing conditions. These results explain the continuous native oxide removal observed for alkyl-amine precursor-based ALD processes on III-V surfaces and provide further insight into the mechanisms of film growth.

  15. Observation of dopant-profile independent electron transport in sub-monolayer TiOx stacked ZnO thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Saha, D.; Misra, P.; Das, Gangadhar; Joshi, M. P.; Kukreja, L. M.

    2016-01-01

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiOx in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurement revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiOx structures in the emerging field of transparent oxide electronics.

  16. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors

    NASA Astrophysics Data System (ADS)

    Barreteau, C.; Michon, B.; Besnard, C.; Giannini, E.

    2016-06-01

    Silicon and Germanium monopnictides SiP, SiAs, GeP and GeAs form a family of 2D layered semiconductors. We have succeeded in growing bulk single crystals of these compounds by melt-growth under high pressure (0.5-1 GPa) in a cubic anvil hot press. Large (mm-size), shiny, micaceous crystals of GeP, GeAs and SiAs were obtained, and could be exfoliated into 2D flakes. Small and brittle crystals of SiP were yielded by this method. High-pressure sintered polycrystalline SiP and GeAs have also been successfully used as a precursor in the Chemical Vapor Transport growth of these crystals in the presence of I2 as a transport agent. All compounds are found to crystallize in the expected layered structure and do not undergo any structural transition at low temperature, as shown by Raman spectroscopy down to T=5 K. All materials exhibit a semiconducting behavior. The electrical resistivity of GeP, GeAs and SiAs is found to depend on temperature following a 2D-Variable Range Hopping conduction mechanism. The availability of bulk crystals of these compounds opens new perspectives in the field of 2D semiconducting materials for device applications.

  17. Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer.

    PubMed

    Meng, Yanhong; Hu, Zhanhao; Ai, Na; Jiang, Zhixiong; Wang, Jian; Peng, Junbiao; Cao, Yong

    2014-04-01

    In the application of traditional bulk heterojunction polymer solar cells, to prevent the etching of ITO by the acidic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and thereby improve the device stability, pH-neutral PEDOT:PSS is introduced as the hole transport layer (HTL). After treating the neutral PEDOT:PSS with UV-ozone and with an oxygen plasma, the average power conversion efficiency (PCE) of the device increases from 3.44% to 6.60%. Such surface treatments reduce the energy level offset between the HTL and the active layer, which increases the open circuit voltage and enhances hole transportation, leading to the PCE improvement. Moreover, the devices with the neutral PEDOT:PSS HTL are more stable in air than those with the acidic PEDOT:PSS HTL. The PCE of the devices with the acidic PEDOT:PSS HTL decreases by 20% after 7 days and 45% after 50 days under ambient conditions, whereas the PCE of the devices with the pH-neutral PEDOT:PSS HTL decreases by only 9 and 20% after 7 and 50 days, respectively. X-ray photoelectron spectroscopy shows that the acidic PEDOT:PSS etches the indium from the indium-tin-oxide (ITO) electrode, which is responsible for the degradation of the device. In comparison, the diffusion of the indium is much slower in the devices with the pH-neutral PEDOT:PSS HTL. PMID:24611433

  18. Improving the stability of bulk heterojunction solar cells by incorporating pH-neutral PEDOT:PSS as the hole transport layer.

    PubMed

    Meng, Yanhong; Hu, Zhanhao; Ai, Na; Jiang, Zhixiong; Wang, Jian; Peng, Junbiao; Cao, Yong

    2014-04-01

    In the application of traditional bulk heterojunction polymer solar cells, to prevent the etching of ITO by the acidic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and thereby improve the device stability, pH-neutral PEDOT:PSS is introduced as the hole transport layer (HTL). After treating the neutral PEDOT:PSS with UV-ozone and with an oxygen plasma, the average power conversion efficiency (PCE) of the device increases from 3.44% to 6.60%. Such surface treatments reduce the energy level offset between the HTL and the active layer, which increases the open circuit voltage and enhances hole transportation, leading to the PCE improvement. Moreover, the devices with the neutral PEDOT:PSS HTL are more stable in air than those with the acidic PEDOT:PSS HTL. The PCE of the devices with the acidic PEDOT:PSS HTL decreases by 20% after 7 days and 45% after 50 days under ambient conditions, whereas the PCE of the devices with the pH-neutral PEDOT:PSS HTL decreases by only 9 and 20% after 7 and 50 days, respectively. X-ray photoelectron spectroscopy shows that the acidic PEDOT:PSS etches the indium from the indium-tin-oxide (ITO) electrode, which is responsible for the degradation of the device. In comparison, the diffusion of the indium is much slower in the devices with the pH-neutral PEDOT:PSS HTL.

  19. Seasonal variability of upper-layer geostrophic transport in the tropical Indian Ocean during 1992 1996 along TOGA-I XBT tracklines

    NASA Astrophysics Data System (ADS)

    Murty, V. S. N.; Sarma, M. S. S.; Lambata, B. P.; Gopalakrishna, V. V.; Pednekar, S. M.; Suryachandra Rao, A.; Luis, A. J.; Kaka, A. R.; Rao, L. V. G.

    2000-08-01

    Upper layer (0-400 m) geostrophic volume transport associated with the major current systems of the tropical Indian Ocean along the near-meridional TOGA-India XBT tracklines from Mumbai to Mauritius during 1992-1996 is discussed. The transport of the eastward flowing Indian Monsoon Current (IMC) varies between 9 and 14 Sv (1 Sv=10 6 m 3 s -1) during southwest monsoon. The westward flowing North Equatorial Current (NEC) transports about 8 Sv during boreal winter. The westward flowing south equatorial current (SEC) has its lowest transport (10-12 Sv) during austral fall and spring and highest transport (18-21 Sv) during austral winter and summer. The northern boundary of the SEC extends equatorward as far north as for 4-5°S during southwest monsoon from its usual location of 8-10°S. The eastward flowing South Equatorial Counter Current (SECC) exhibits highest transport (37 Sv) during peak austral summer (January) and between 5 and 20 Sv during the rest of the year. In March and May, eastward undercurrents are noticed near the equator. In June and July, the undercurrents are present south of Sri Lanka away from the equator. The equatorial flow in the zonal belts 1-2°N and 1-2°S exhibits westward transport of 6-20 Sv during January-February. This broad westward flow and the SECC constitute an anticlockwise equatorial gyre during boreal winter. In addition to the above current systems, signatures of a warm-core anticyclonic eddy centered at 8°N, 72.5°E and a cold-core cyclonic eddy centered at 10.5°N, 72.5°E are also noticed in February and October, respectively, off the southwest coast of India. The volume transport associated with the warm-core eddy is about 10 Sv directed equatorward and that with the cold-core eddy is 2.5 Sv directed poleward.

  20. Power and Charge Deposition and Electron Transport in Disordered SiO2 Layers Under Electron Bombardment

    NASA Astrophysics Data System (ADS)

    Wilson, Gregory; Dennison, J. R.; Jensen, Amberly; Dekany, Justin

    2013-03-01

    Power and charge deposition in multilayer dielectrics from electron bombardment is dependent on the flux and energy-dependent electron penetration depth of the electron beam. Using the Continuous Slow Down Approximation (CSDA), a composite analytical formula has been developed to approximate the electron range which can be related to the dose rate, deposited power and Radiation Induced Conductivity (RIC). Based on the constituent layer geometry and material, the deposited charge can also be inferred. Three separate pulsed electron beam experiments were conducted to measure charge deposition, power dependent cathodoluminescence and RIC. The power and charge deposition experiments measured the net surface potential, electrode currents and electron induced luminescence of disordered SiO2 multilayer dielectrics with a grounded or floating conductive middle layer, using beam energies from 200 eV to 25 keV at <40 K to room temperature. These results showed that the power and charge deposition's dependence on electron beam flux and incident energy compare favorably with the model predictions. The RIC experiments measured electrode currents using disordered SiO2 layers from <40 K to >320 K with dose rates from 10-5 Gy/s to 10-1 Gy/s. The onset of RIC in the energy-dependant depth of the RIC region provides an explanation for observed retrograde charging. This work supported by the NASA Goddard Space Flight Center and an NRC Senior Research Fellowship at AFRL.