Science.gov

Sample records for employing transport layer

  1. W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes

    NASA Astrophysics Data System (ADS)

    Xiao, Yuqing; Cheng, Nian; Kondamareddy, Kiran Kumar; Wang, Changlei; Liu, Pei; Guo, Shishang; Zhao, Xing-Zhong

    2017-02-01

    Doping of TiO2 by metal elements for the scaffold layer of the perovskite solar cells has been proved to be one of the effective methods to improve the power conversion efficiency. In the present work, we report the impact of doping of TiO2 nanoparticles with different amounts of tungsten (W) on the photovoltaic properties of hole transport material free perovskite solar cells (PSCs) that employ carbon counter electrode. Light doping with W (less than 1000 ppm) improves the power conversion efficiencies (PCEs) of solar cells by promoting the electron conductivity in the TiO2 layer which facilitates electron transfer and collection. With the incorporation of W, average efficiency of PSCs is increased from 9.1% for the un-doped samples to 10.53% for the 1000 ppm W-doped samples, mainly originates from the increase of short circuit current density and fill factor. Our champion cell exhibits an impressive PCE of 12.06% when using the 1000 ppm W-doped TiO2 films.

  2. Modeling Transport Layer Protocols

    NASA Astrophysics Data System (ADS)

    Sasnauskas, Raimondas; Weingaertner, Elias

    In a layered communication architecture, transport layer protocols handle the data exchange between processes on different hosts over potentially lossy communication channels. Typically, transport layer protocols are either connection-oriented or are based on the transmission of individual datagrams. Well known transport protocols are the connection-oriented Transmission Control Protocol (TCP) [372] and the User Datagram Protocol (UDP) [370] as well as the Stream Control Transmission Protocol (SCTP) [340] and DCCP, the Datagram Congestion Control Protocol [259]. In this chapter, we focus on the modeling process of the transport layer. While we mostly use TCP and UDP as a base of comparison from this point, we emphasize that the methodologies discussed further on are conferrable to virtually any transport layer in any layered communication architecture.

  3. Aeolian transport layer.

    PubMed

    Almeida, Murilo P; Andrade, José S; Herrmann, Hans J

    2006-01-13

    We investigate the airborne transport of particles on a granular surface by the saltation mechanism through numerical simulation of particle motion coupled with turbulent flow. We determine the saturated flux q(s) and show that its behavior is consistent with classical empirical relations obtained from wind tunnel measurements. Our results also allow one to propose and explain a new relation valid for small fluxes, namely, q(s) = a(u*-u(t))alpha, where u* and u(t) are the shear and threshold velocities of the wind, respectively, and the scaling exponent is alpha approximately 2. We obtain an expression for the velocity profile of the wind distorted by the particle motion due to the feedback and discover a novel dynamical scaling relation. We also find a new expression for the dependence of the height of the saltation layer as a function of the wind velocity.

  4. Scalar transport in plane mixing layers

    NASA Astrophysics Data System (ADS)

    Vanormelingen, J.; Van den Bulck, E.

    This paper describes the application of the Eulerian, single-point, single-time joint-scalar probability density function (PDF) equation for predicting the scalar transport in mixing layer with a high-speed and a low-speed stream. A finite-volume procedure is applied to obtain the velocity field with the k-ɛ closure being used to describe turbulent transport. The scalar field is represented through the modelled evolution equation for the scalar PDF and is solved using a Monte Carlo simulation. The PDF equation employs gradient transport modelling to represent the turbulent diffusion, and the molecular mixing term is modelled by the LMSE closure. There is no source term for chemical reaction as only an inert mixing layer is considered here. The experimental shear layer data published by Batt is used to validate the computational results despite the fact that comparisons between experiments and computational results are difficult because of the high sensitivity of the shear layer to initial conditions and free stream turbulence phenomena. However, the bimodal shape of the RMS scalar fluctuation as was measured by Batt can be reproduced with this model, whereas standard gradient diffusion calculations do not predict the dip in this profile. In this work for the first time an explanation is given for this phenomenon and the importance of a micromixing model is stressed. Also it is shown that the prediction of the PDF shape by the LMSE model is very satisfactory.

  5. Energy transport using natural convection boundary layers

    SciTech Connect

    Anderson, R

    1986-04-01

    Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.

  6. Issues in designing transport layer multicast facilities

    NASA Technical Reports Server (NTRS)

    Dempsey, Bert J.; Weaver, Alfred C.

    1990-01-01

    Multicasting denotes a facility in a communications system for providing efficient delivery from a message's source to some well-defined set of locations using a single logical address. While modem network hardware supports multidestination delivery, first generation Transport Layer protocols (e.g., the DoD Transmission Control Protocol (TCP) (15) and ISO TP-4 (41)) did not anticipate the changes over the past decade in underlying network hardware, transmission speeds, and communication patterns that have enabled and driven the interest in reliable multicast. Much recent research has focused on integrating the underlying hardware multicast capability with the reliable services of Transport Layer protocols. Here, we explore the communication issues surrounding the design of such a reliable multicast mechanism. Approaches and solutions from the literature are discussed, and four experimental Transport Layer protocols that incorporate reliable multicast are examined.

  7. Guide to transportation-demand management plans for employers

    SciTech Connect

    Anderson, S.M.; Gerwig, K.L.; Shirazi, E.

    1988-09-01

    This guide is designed to introduce employers, transportation agencies, consultants, government officials and others to the elements of transportation demand management (TDM) plans. TDM plans use a variety of strategies to orchestrate employees' commute-related activities, including use of carpools, vanpools, bicycles, and buses, use of variable work hours to spread or reduce peak hour congestion, and telecommuting (working from home or a satellite office). The guide contains a description of the typical elements in a TDM plan, including an assessment of the current employee transportation program, methods for measuring vehicle occupancy, strategies for program improvement, and implementing and monitoring the transportation program. The procedure is illustrated for a fictitious employer in the Los Angeles Central Business District.

  8. Aeolian Sand Transport by Boundary Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Baas, A. C.

    2007-12-01

    The erratic and intermittent nature of wind-driven sand transport challenges our current transport models, which lack physical mechanisms for explaining and taking into account this spatio-temporal variability. This paper presents a collective overview of results from investigations into the nature of spatio-temporal variability in sand transport generally, and the formation and behaviour of aeolian streamers specifically. This includes three principal studies. First, the results of field investigations into the formation and behaviour of aeolian streamers in coastal and desert environments, where spatio-temporal transport variability and associated turbulence characteristics were assessed with an extensive instrument array. Streamers were measured with a transverse array of Safires, while the wind field and associated turbulent structures were monitored with cup-anemometry and a rake of hot-film probes. Second, these field data were used to assess the statistical trends in transport variability as a function of spanwise scale of measurement and the temporal scale of time-averaging transport rates. Third, spectral wavelet analysis of high-frequency collocated wind speed (hot- film probes) and transport flux (Safires) time-series revealed distinct forcing-response regimes at different temporal scales. The transitions between these regimes and their ranges compare favourably with physically meaningful scales, such as the minimum temporal scale of saltation response to wind speed fluctuations, and the integral time-scale of the observed internal boundary layer turbulence dynamics. The paper concludes with a tentative conceptual framework that attempts to integrate the results and insights from these studies towards an improved understanding of aeolian sediment transport processes.

  9. Stacking-dependent transport properties in few-layers graphene

    NASA Astrophysics Data System (ADS)

    Lima, Matheus Paes; Padilha, José Eduardo; Pontes, Renato Borges; Fazzio, Adalberto; Silva, Antônio José Roque da

    2017-01-01

    By performing ab initio electronic structure and transport calculations, we investigated the effects of the stacking order (Bernal (AB) and rhombohedral (ABC)) as well as the number of layers, in the electronic structure and charge transport of few-layers graphene (FLG). We observed that for the ABC stack the transport properties are derived from surface states close to the Fermi level connected to dispersive states with an exponential penetration towards the inner layers, whereas for the AB stacking the transport is distributed over all layers. We present a simple model for the resistances as a function of the number of layers which contemplates the different contribution of the surface and inner layers for the transport. However, even if the stackings AB and ABC present completely different electronic and transport properties, both present the same cohesive energies, showing the absence of a thermodynamical preference for a given kind of stacking.

  10. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOEpatents

    Wang, Qingwu [Chelmsford, MA; Li, Wenguang [Andover, MA; Jiang, Hua [Methuen, MA

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  11. Turbulent transport across shear layers in magnetically confined plasmas

    SciTech Connect

    Nold, B.; Ramisch, M.; Manz, P.; Birkenmeier, G.; Ribeiro, T. T.; Müller, H. W.; Scott, B. D.; Fuchert, G.; Stroth, U.

    2014-10-15

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process.

  12. Compact Layer Free Perovskite Solar Cells with a High-Mobility Hole-Transporting Layer.

    PubMed

    Zhu, Qianqian; Bao, Xichang; Yu, Jianhua; Zhu, Dangqiang; Qiu, Meng; Yang, Renqiang; Dong, Lifeng

    2016-02-03

    A high-mobility diketopyrrolopyrrole-based copolymer (P) was employed in compact layer free CH3NH3PbI3 perovskite solar cells as a hole-transporting layer (HTL). By using the P-HTL, the 6.62% device efficiency with conventional poly-3-hexylthiophene was increased to 10.80% in the simple device configuration (ITO/CH3NH3PbI3/HTL/MoO3/Ag). With improved short circuit current density, open circuit voltage, and fill factor, the higher power conversion efficiency of P-HTL device is ascribed to the higher carrier mobility, more suitable energy level, and lower interfacial charge recombination. Advantages of applying P-HTL to perovskite solar cells, such as low cost, low-temperature processing, and excellent performance with simple cell structure, exhibit a possibility for commercial applications.

  13. Wave mediated angular momentum transport in astrophysical boundary layers

    NASA Astrophysics Data System (ADS)

    Hertfelder, Marius; Kley, Wilhelm

    2015-07-01

    Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular momentum (AM) or the vertical structure. Aims: It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not operating owing to the increasing angular velocity Ω(r) with radius. We will therefore search for an appropriate mechanism and examine its efficiency and implications. Methods: We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system (r,ϕ) for a thin, vertically integrated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the α-model; in the BL there is no viscosity term included. Results: We find that our setup is unstable to the sonic instability which sets in shortly after the simulations have been started. Acoustic waves are generated and traverse the domain, developing weak shocks in the vicinity of the BL. Furthermore, the system undergoes recurrent outbursts where the activity in the disk increases strongly. The instability and the waves do not die out for over 2000 orbits. Conclusions: There is indeed a purely hydrodynamical mechanism that enables AM transport in the BL. It is efficient and wave mediated; however, this renders it a non-local transport method, which means that models of a effective local viscosity like the α-viscosity are probably not applicable in the BL. A variety of further implications of the non-local AM transport are discussed.

  14. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of employment as an ore transporter... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.63 Proof of employment as an ore transporter. (a) The Department will accept, as proof of employment for the time period...

  15. Ambipolar charge transport in "traditional" organic hole transport layers.

    PubMed

    Khademi, S; Song, J Y; Wyatt, P B; Kreouzis, T; Gillin, W P

    2012-05-02

    Organic semiconductors are often labeled as electron or hole transport materials due to the primary role they perform in devices. However, despite these labels we have shown using time-of-flight that two of the traditional "hole transport materials" TPD and NPB are actually excellent electron transporters the electron transport properties of which are comparable to those for holes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nonlocal thermal transport across embedded few-layer graphene sheets

    SciTech Connect

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; Sumpter, Bobby G.; Qiao, Rui

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  17. Nonlocal thermal transport across embedded few-layer graphene sheets.

    PubMed

    Liu, Ying; Huxtable, Scott T; Yang, Bao; Sumpter, Bobby G; Qiao, Rui

    2014-12-17

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g. the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. The nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  18. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  19. Ionic transport in passivation layered on the lithium electrode

    NASA Astrophysics Data System (ADS)

    Nimon, Eugeny S.; Churikov, Alexei V.; Shirokov, Alexander V.; Lvov, Arlen L.; Chuvashkin, Anatoly N.

    1993-04-01

    The processes of ionic transport in passivating layers on the surface of the lithium electrode in solutions based on thionyl chloride, propylene carbonate and gamma -butyrolactone have been studied by means of pulse electrochemical methods. The data obtained are quantitatively described by a model which takes into account transport of both the intrinsic mobile lithium ions of the passivating layer and lithium ions injected into the passivating layer from the electrode or from the electrolyte solution under anodic or cathodic current directions, respectively. The values of mobility and concentration of mobile lithium ions in passivating layers formed on lithium in various solutions under open-circuit conditions have been determined.

  20. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  1. Ion transport through electrolyte/polyelectrolyte multi-layers

    NASA Astrophysics Data System (ADS)

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-06-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes.

  2. Ion transport through electrolyte/polyelectrolyte multi-layers

    PubMed Central

    Femmer, Robert; Mani, Ali; Wessling, Matthias

    2015-01-01

    Ion transport of multi-ionic solutions through layered electrolyte and polyelectrolyte structures are relevant in a large variety of technical systems such as micro and nanofluidic devices, sensors, batteries and large desalination process systems. We report a new direct numerical simulation model coined EnPEn: it allows to solve a set of first principle equations to predict for multiple ions their concentration and electrical potential profiles in electro-chemically complex architectures of n layered electrolytes E and n polyelectrolytes PE. EnPEn can robustly capture ion transport in sub-millimeter architectures with submicron polyelectrolyte layers. We proof the strength of EnPEn for three yet unsolved architectures: (a) selective Na over Ca transport in surface modified ion selective membranes, (b) ion transport and water splitting in bipolar membranes and (c) transport of weak electrolytes. PMID:26111456

  3. Facilitating mass transport in gas diffusion layer of PEMFC by fabricating micro-porous layer with dry layer preparation

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Haifeng; Zhang, Huamin; Yi, Baolian

    For a proton exchange membrane fuel cell (PEMFC), dry layer preparation was optimized and applied to fabricate a micro-porous layer (MPL) for a gas diffusion layer (GDL). The MPLs fabricated by dry layer preparation and the conventional wet layer preparation were compared by physical and electrochemical methods. The PEMFC using dry layer MPLs showed better performance than that using wet layer MPLs, especially when the cells were operated under conditions of high oxygen utilization rate and high humidification temperature of air. The mass transport properties of the GDLs with the dry layer MPLs were also better than with the wet layer MPLs, and were found to be related to the pore size distribution in GDLs. The differences in surface morphology and pore size distribution for the GDLs with the dry layer and wet layer MPLs were investigated and analyzed. The dry layer preparation for MPLs was found to be more beneficial for forming meso-pores (pore size in the range of 0.5-15 μm), which are important and advantageous for facilitating gas transport in the GDLs. Moreover, the GDLs with the dry layer MPLs exhibited better electronic conductivity and more stable hydrophobicity than those with the wet layer MPLs. The reproducibility of the dry layer preparation for MPLs was also satisfying.

  4. Instability of Vertical Current Transport in Layered Structures

    NASA Astrophysics Data System (ADS)

    Wang, Jiannong

    2000-03-01

    Many interesting phenomena related to interface electronic structure of layered structures have been found, including stable sawtooth-like current-voltage characteristic, unstable current self-oscillations, and chaos in the vertical electron transport. While many studies of current self-oscillation have been focused on the effect of changing the carrier concentration, we show that a transverse magnetic field and the sample temperature can also control the transition from stable to unstable current transport. We show that the unstable current self-oscillation is due to the generation of a limit cycle around an unstable steady state solution which, in turn, is due to the negative differential resistance (NDR) existed at layer interfaces. This new insight both generalizes and unifies our understanding of the instability in current transport through layer structures. We also show that a dynamic dc voltage band emerges in the transition from stable to unstable current transport.

  5. Mass transport in a thin layer of power-law mud under surface waves

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Bai, Yuchuan; Xu, Dong

    2017-02-01

    The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.

  6. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  7. Unstirred Water Layers and the Kinetics of Organic Cation Transport

    PubMed Central

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.

    2015-01-01

    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  8. Location Management in a Transport Layer Mobility Architecture

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Ishac, Joseph

    2005-01-01

    Mobility architectures that place complexity in end nodes rather than in the network interior have many advantageous properties and are becoming popular research topics. Such architectures typically push mobility support into higher layers of the protocol stack than network layer approaches like Mobile IP. The literature is ripe with proposals to provide mobility services in the transport, session, and application layers. In this paper, we focus on a mobility architecture that makes the most significant changes to the transport layer. A common problem amongst all mobility protocols at various layers is location management, which entails translating some form of static identifier into a mobile node's dynamic location. Location management is required for mobile nodes to be able to provide globally-reachable services on-demand to other hosts. In this paper, we describe the challenges of location management in a transport layer mobility architecture, and discuss the advantages and disadvantages of various solutions proposed in the literature. Our conclusion is that, in principle, secure dynamic DNS is most desirable, although it may have current operational limitations. We note that this topic has room for further exploration, and we present this paper largely as a starting point for comparing possible solutions.

  9. Chloride transport in layered soil systems with hydraulic trap effect.

    PubMed

    Badv, K; Mahooti, A A

    2005-08-01

    The natural and engineered hydraulic trap systems in sanitary-engineered solid waste landfills were investigated using three layer one dimensional laboratory models. The models consisted of a top reservoir containing a sodium chloride source solution, a compacted upper silt layer as a primary liner, a coarse sand layer as a secondary leachate collection system or a hydraulic control layer, a compacted lower silt layer as a secondary liner, and a bottom water reservoir as a groundwater aquifer. In the first test, the natural hydraulic trap system (upward flow through the lower silt layer) was modeled. In this case, the contaminant transport mechanisms through the upper silt layer were downward advection and diffusion, and through the lower silt layer, diffusion was downward and advection was upward. The results showed that the implementation of the natural hydraulic control system could effectively reduce chloride transport to the bottom reservoir. In the second test, the natural and engineering hydraulic trap systems were simulated (upward flow from the bottom reservoir to the upper reservoir). In the third test, the engineered hydraulic trap system (downward flow through the upper silt layer and upward flow through the lower silt layer) was modeled. The results showed that the natural and engineered hydraulic trap systems have an important effect in reducing chloride migration toward the underlying aquifer. In all experiments the chloride concentrations in the silt and coarse sand layers and top and bottom reservoirs were measured and the observed concentrations were compared with concentrations calculated by a theoretical model. A good agreement was obtained between the observed and theoretical data confirming the acceptable accuracy of the experimental methodologies, observations, and the theoretical model.

  10. 49 CFR 40.409 - What does the issuance of a PIE mean to transportation employers?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What does the issuance of a PIE mean to... What does the issuance of a PIE mean to transportation employers? (a) As an employer, you are deemed to have notice of the issuance of a PIE when it appears on the List mentioned in § 40.401(a) or the...

  11. Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation.

    PubMed

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin; Yang, Ri-Long

    2017-03-29

    Layered materials with open interlayer channels enable various applications such as tissue engineering, ionic and molecular sieving, and electrochemical devices. However, most reports focus on the two-dimensional nanosheets-assembled layered materials, whose interlayer spacing is limited at the nanometer scale. Herein, we demonstrate that one-dimensional inorganic nanowires are the ideal building blocks for the construction of layered materials with open interlayer channels as well, which has not aroused much attention before. It is found that the relatively long inorganic nanowires are capable of assembling into free-standing layered paper with open interlayer channels during the filtration process. The spacings of interlayer channels between adjacent layers are up to tens of micrometers, which are much larger than those of the two-dimensional nanosheets-assembled layered materials. But the closed interlayer channels are observed when the relatively short inorganic nanowires are used as building blocks. The mechanism based on the relationship between the structural variation and the nanowires used is proposed, including the surface charge amplified effect, surface charge superimposed effect, and pillarlike supporting effect. According to the proposed mechanism, we have successfully fabricated a series of layered paper sheets whose architectures (including interlayer channels of cross section and pores on the surface) show gradient changes. The as-prepared layered paper sheets are employed as the valves for controlling water transportation. Tunable water transportation is achieved by the synergistic effect between in-plane interlayer channels (horizontal transportation) from the open to the closed states, and through-layer pores (vertical transportation) without surface modification or intercalation of any guest species.

  12. Nonlinear Surface Transport in the Thin Double-Layer Limit

    NASA Astrophysics Data System (ADS)

    Chu, Kevin; Bazant, Martin

    2006-03-01

    At high applied electric fields, ionic transport within the double layer plays a significant role in the overall response of electrokinetic systems. It is well-known that surface transport processes, including surface electromigration, surface diffusion and surface advection, may impact the strength of electrokinetic phenomena by affecting both the zeta-potential and the magnitude of the tangential electric field. Therefore, it is important to include these effects when formulating the effective boundary conditions for the equations that govern electrokinetic flow outside of the double layer. In this talk, we discuss the application of a general formulation of ``surface conservation laws'' for diffuse boundary layers to derive effective boundary conditions that capture the physics of electrokinetic surface transport. Previous analyses (e.g. Deryagin & Dukhin 1969) are only valid for weak applied fields and are based on a linearization of the concentration and potential about a reference solution, but our results are fully nonlinear and hold at large applied fields as long as the double layer is sufficiently thin. We compare our nonlinear surface transport theory with existing linear analogues and apply it to the canonical problem of induced-charge electro-osmosis around a metal sphere or cylinder in a strong DC field.

  13. Aircraft systems design studies employing advanced transport technologies

    NASA Technical Reports Server (NTRS)

    Downie, B.; Pearce, C.; Quartero, C.; Taylor, A.

    1972-01-01

    System and design integration studies are presented to define and assess the application of the advanced technology most likely to result in a superior next generation, high subsonic/sonic conventional takeoff and landing transport aircraft system. It is concluded that the new technologies can be directed toward the achievement of improved economy and performance. These benefits may be used to compensate for the penalties associated with reduced noise requirements anticipated to make future aircraft ecologically acceptable.

  14. Characterization of transport phenomena in porous transport layers using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Hasanpour, S.; Hoorfar, M.; Phillion, A. B.

    2017-06-01

    Among different methods available for estimating the transport properties of porous transport layers (PTLs) of polymer electrolyte membrane fuel cells, X-ray micro computed tomography (X-μCT) imaging in combination with image-based numerical simulation has been recognized as a viable tool. In this study, four commercially-available single-layer and dual-layer PTLs are analyzed using this method in order to compare and contrast transport properties between different PTLs, as well as the variability within a single sheet. Complete transport property datasets are created for each PTL. The simulation predictions indicate that PTLs with high porosity show considerable variability in permeability and effective diffusivity, while PTLs with low porosity do not. Furthermore, it is seen that the Tomadakis-Sotirchos (TS) analytical expressions for porous media match the image-based simulations when porosity is relatively low but predict higher permeability and effective diffusivity for porosity values greater than 80%. Finally, the simulations show that cracks within MPL of dual-layer PTLs have a significant effect on the overall permeability and effective diffusivity of the PTLs. This must be considered when estimating the transport properties of dual-layer PTLs. These findings can be used to improve macro-scale models of product and reactant transport within fuel cells, and ultimately, fuel cell efficiency.

  15. Modeling Metallic Ion Transport During the Lifetime of an Intermediate Layer

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Earle, G. D.

    2001-05-01

    Intermediate layers are one of several phenomena that occur at midlatitudes in the nighttime E region. These ionization layers which typically form on the bottomside of the F region, are frequently observed by the Arecibo Incoherent Scatter Facility. Although their occurrence is relatively common, they exhibit diverse structure. Their altitude of formation, vertical thickness, and motion show significant nightly variations. Layer structure is influenced by a number of factors including composition, electric fields, and fluctuations in the neutral wind field. A numerical simulation has been employed to investigate the effects of composition on layer development. Specifically, the simulation, named LEAD (Layer Evolution And Dynamics), explores the transport of metallic ions during the formation and subsequent motion of a layer due to a time varying meridional wind field. We discuss the relative molecular/metallic ratio inside the layer during its evolution, the time scales for metallic ion dominance within the layer, and the motion of metallic ions in the adjacent altitude regions. We present animated results from LEAD which allow detailed inspection of ion composition variations throughout the process of layer evolution and descent.

  16. The Employment of Airships for the Transport of Passengers

    NASA Technical Reports Server (NTRS)

    Nobile, Umberto

    1921-01-01

    It was a conclusion of this detailed study of the practicality of using airships for carrying passengers that, although slow, airships are capable of carrying useful loads over long distances. However, it is noted that there is a certain limit to the advantages of large cubature. Beyond a certain point, the maximum altitude of the airship goes on decreasing, in spite of the fact that the range of action in the horizontal plane and the useful load go on increasing. The possibility of rapid climb is an essential factor of security in aerial navigation in the case of storms, as is velocity. To rise above and run ahead of storms are ways of avoiding them. However, high altitude and high speed are antithetical. This investigation concluded that a maximum velocity of 120 km/h is as far as we ought to go. This figure can only be exceeded by excessive reduction of the altitude of ceiling, range of flight, and useful load. The essential requisites of a public transport service are discussed, as are flight security, regularity of service, competition with other forms of passenger transportation, and the choice between rigid and semi-rigid airships.

  17. Drift-wave transport in the velocity shear layer

    NASA Astrophysics Data System (ADS)

    Rosalem, K. C.; Roberto, M.; Caldas, I. L.

    2016-07-01

    Particle drift driven by electrostatic wave fluctuations is numerically computed to describe the transport in a gradient velocity layer at the tokamak plasma edge. We consider an equilibrium plasma in large aspect ratio approximation with E × B flow and specified toroidal plasma velocity, electric field, and magnetic field profiles. A symplectic map, previously derived for infinite coherent time modes, is used to describe the transport dependence on the electric, magnetic, and plasma velocity shears. We also show that resonant perturbations and their correspondent islands in the Poincaré maps are much affected by the toroidal velocity profiles. Moreover, shearless transport barriers, identified by extremum values of the perturbed rotation number profiles of the invariant curves, allow chaotic trajectories trapped into the plasma. We investigate the influence of the toroidal plasma velocity profile on these shearless transport barriers.

  18. Effective transport rates and transport-induced melting and solidification in mushy layers

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2011-01-01

    Mushy layers are known to occur in magma chambers, sea-ice, and metal castings. They are often modeled as a porous layer in which a fluid and solid matrix exist in thermal and compositional equilibria. In nonreactive porous media, both advective and diffusive transport rates for heat and solute differ. In mushy layers, however, the temperature and composition of the fluid phase are constrained by the liquidus relationship giving rise to effective transport rates that are intermediate between those for heat and solute in passive porous layers. The transport of heat and solute, even if the invading fluid is itself in equilibrium, is also accompanied by a degree of solidification or melting due to the difference in the transport rates for these two quantities. In this paper, analytical expressions for the effective velocity and diffusivity in a mushy layer and for the degree of melting or solidification accompanying the passage of a front with a different temperature and composition are derived and compared with the predictions of a numerical model and found to be in very good agreement. Characteristic parameters for a few mushy systems are calculated and appropriate transport and melting/freezing regimes are indicated.

  19. Thermal transport in suspended and supported few-layer graphene.

    PubMed

    Wang, Ziqian; Xie, Rongguo; Bui, Cong Tinh; Liu, Dan; Ni, Xiaoxi; Li, Baowen; Thong, John T L

    2011-01-12

    We report thermal conductivity (κ) measurements from 77 to 350 K on both suspended and supported few-layer graphene using a thermal-bridge configuration. The room temperature value of κ is comparable to that of bulk graphite for the largest flake, but reduces significantly for smaller flakes. The presence of a substrate lowers the value of κ, but the effect diminishes for the thermal transport in the top layers away from the substrate. For the suspended sample, the temperature dependence of κ follows a power law with an exponent of 1.4 ± 0.1, suggesting that the flexural phonon modes contribute significantly to the thermal transport of the suspended graphene. The measured values of κ are generally lower than those from theoretical studies. We attribute this deviation to the phonon-boundary scattering at the graphene-contact interfaces, which is shown to significantly reduce the apparent measured thermal conductance of graphene.

  20. Near independence of OLED operating voltage on transport layer thickness

    SciTech Connect

    Swensen, James S.; Wang, Liang; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

    2013-01-01

    We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Å using the N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (α-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

  1. Heavy Particle Transport in the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Richter, D. H.

    2016-12-01

    To describe the emission and transport of dust in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission and saltation process with the larger-scale atmospheric uptake and turbulent flux. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large particles can be described in a simplified Eulerian framework such as Monin-Obukhov similarity theory. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow.

  2. Monte Carlo model of light transport in multi-layered tubular organs

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Zhang, Ning

    2017-02-01

    We present a Monte Carlo static light migration model (Endo-MCML) to simulate endoscopic optical spectroscopy for tubular organs such as esophagus and colon. The model employs multi-layered hollow cylinder which emitting and receiving light both from the inner boundary to meet the conditions of endoscopy. Inhomogeneous sphere can be added in tissue layers to model cancer or other abnormal changes. The 3D light distribution and exit angle would be recorded as results. The accuracy of the model has been verified by Multi-layered Monte Carlo(MCML) method and NIRFAST. This model can be used for the forward modeling of light transport during endoscopically diffuse optical spectroscopy, light scattering spectroscopy, reflectance spectroscopy and other static optical detection or imaging technologies.

  3. Inverted perovskite solar cells based on lithium-functionalized graphene oxide as an electron-transporting layer.

    PubMed

    Nouri, Esmaiel; Mohammadi, Mohammad Reza; Lianos, Panagiotis

    2017-02-04

    Perovskite solar cells with an inverted p-i-n architecture were constructed under ambient conditions by employing materials of lower cost than standard cells. Thus, graphene oxide was used as a hole transporting material and Li-modified graphene oxide as an electron transporting material, while Al was used as a counter electrode. A maximum solar conversion efficiency of 10.2% was achieved by adding a Ti-based sol on the top of the Li-modified graphene oxide layer.

  4. Charge transport anisotropy in a pentacene transistor with an underlying photo-alignment layer

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tatsuhiko; Okura, Takehiro; Kondo, Yuuki; Fujieda, Ichiro

    2011-02-01

    Improving molecular packing of semiconductor materials in the vicinity of an insulating layer is of primary interest for efficient charge transport in an organic thin-film transistor. Self-assembled monolayers (SAMs) are often employed for this purpose. In other cases, a thin alignment layer is placed on a gate insulator in an attempt to order organic molecules along a specific direction. We fabricated bottom-gate, top-contact pentacene transistors with an underlying photo-alignment layer as follows. Azobenzene-polyamic acid was spin-coated on SiO2 and was irradiating with linearly polarized ultraviolet light at various energy densities. The material was converted to polyimide by heating and a thin pentacene layer was evaporated on it. Finally, source and drain electrodes were formed by sputtering gold through a shadow mask. The transistors fabricated with the polarization perpendicular to the current direction in the channel showed higher field-effect mobility and the maximum value was 1.0cm2/Vs. This is close to the value reported for the conventional pentacene transistors having SAMs. The mobility decreased as the irradiation energy density increased. Hence, we attribute the anisotropy introduced by the photo-alignment layer to degradation in charge transport in the specific direction.

  5. Micro-porous layer stochastic reconstruction and transport parameter determination

    NASA Astrophysics Data System (ADS)

    El Hannach, Mohamed; Singh, Randhir; Djilali, Ned; Kjeang, Erik

    2015-05-01

    The Micro-Porous Layer (MPL) is a porous, thin layer commonly used in fuel cells at the interfaces between the catalyst layers and gas diffusion media. It is generally made from spherical carbon nanoparticles and PTFE acting as hydrophobic agent. The scale and brittle nature of the MPL structure makes it challenging to study experimentally. In the present work, a 3D stochastic model is developed to virtually reconstruct the MPL structure. The carbon nanoparticle and PTFE phases are fully distinguished by the algorithm. The model is shown to capture the actual structural morphology of the MPL and is validated by comparing the results to available experimental data. The model shows a good capability in generating a realistic MPL successfully using a set of parameters introduced to capture specific morphological features of the MPL. A numerical model that resolves diffusive transport at the pore scale is used to compute the effective transport properties of the reconstructed MPLs. A parametric study is conducted to illustrate the capability of the model as an MPL design tool that can be used to guide and optimize the functionality of the material.

  6. Dust transportation in bounday layers on complex areas

    NASA Astrophysics Data System (ADS)

    Karelsky, Kirill; Petrosyan, Arakel

    2017-04-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high

  7. SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2012-09-20

    During flares and coronal mass ejections, energetic electrons from coronal sources typically have very long lifetimes compared to the transit times across the systems, suggesting confinement in the source region. Particle-in-cell simulations are carried out to explore the mechanisms of energetic electron transport from the corona to the chromosphere and possible confinement. We set up an initial system of pre-accelerated hot electrons in contact with ambient cold electrons along the local magnetic field and let it evolve over time. Suppression of transport by a nonlinear, highly localized electrostatic electric field (in the form of a double layer) is observed after a short phase of free-streaming by hot electrons. The double layer (DL) emerges at the contact of the two electron populations. It is driven by an ion-electron streaming instability due to the drift of the back-streaming return current electrons interacting with the ions. The DL grows over time and supports a significant drop in temperature and hence reduces heat flux between the two regions that is sustained for the duration of the simulation. This study shows that transport suppression begins when the energetic electrons start to propagate away from a coronal acceleration site. It also implies confinement of energetic electrons with kinetic energies less than the electrostatic energy of the DL for the DL lifetime, which is much longer than the electron transit time through the source region.

  8. Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchao; Wang, Xinyu; Hong, Yang; Xiong, Qingang; Jiang, Jin; Yue, Yanan

    2017-01-01

    In this work, thermal transport at the junction of an asymmetric layer hexagonal boron-nitride (h-BN) heterostructure is explored using a non-equilibrium molecular dynamics method. A thermal contact resistance of 3.6 × 10-11 K · m2 W-1 is characterized at a temperature of 300 K with heat flux from the trilayer to monolayer regions. The mismatch in the flexural phonon modes revealed by power spectra analysis provides the driving force for the calculated thermal resistance. A high thermal rectification efficiency of 360% is calculated at the layer junction surpassing that of graphene. Several modulators, i.e. the system temperature, contact pressure and lateral dimensions, are applied to manipulate the thermal conductance and rectification across the interfaces. The predicted thermal rectification sustains positive correlations with temperature and phonon propagation lengths with little change to the coupling strength.

  9. Transport measurements on monolayer and few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  10. Effects of double-layer polarization on ion transport.

    PubMed

    Hainsworth, A H; Hladky, S B

    1987-01-01

    It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin.

  11. Effects of double-layer polarization on ion transport.

    PubMed Central

    Hainsworth, A H; Hladky, S B

    1987-01-01

    It has been proposed that changes in ionic strength will alter the shape of current-voltage relations for ion transport across a lipid membrane. To investigate this effect, we measured currents across glyceryl monooleate membranes at applied potentials between 10 and 300 mV using either gramicidin and 1 mM NaCl or valinomycin and 1 mM KCl. A bridge circuit with an integrator as null detector was used to separate the capacitative and ionic components of the current. The changes in the current-voltage relations when ionic strength is varied between 1 and 100 mM are compared with predictions of Gouy-Chapman theory for the effects of these variations on polarization of the electrical diffuse double-layer. Double-layer polarization accounts adequately for the changes observed using membranes made permeable by either gramicidin or valinomycin. PMID:2432953

  12. Investigation of hole transport layer in relation to the properties of organic solar cells.

    PubMed

    Chou, Dei-Wei; Huang, Chien-Jung; Tsai, Chi-Chu; Meen, Teen-Hang; Chen, Wen-Ray; Yang, Cheng-Fu

    2012-04-01

    Organic solar cells based on a blend of copper phthalocyanine and bulk fullerene are fabricated with a double hole transport layer system. The double hole transport layer was composed of poly3,4-ethylenedioxythiophene:polystyrenesulfonate, and copper phthalocyanine and inserted between the anode and active layer. The double hole transport layer system utilizes advantages of both layer. The poly3,4-ethylenedioxythiophene:polystyrenesulfonate layer modifies the surface morphology of the ITO anode and the copper phthalocyanine layer enhances hole transport. In order to enhance the conductivity of the modification layer, the optimal amount of glycerol is doped into poly3,4-ethylenedioxythiophene:polystyrenesulfonate. Furthermore, the photovoltaic characteristics are further improved. Insertion of the double hole transport layer with a 4 nm-thick copper phthalocyanine layer resulted in open circuit voltage, short current, and power conversion efficiency as high as 0.46 V, 8.8 mA/cm2 and 1.37%, respectively.

  13. Single and Few Layer Silicene: Structural, Electronic and Transport Properties

    NASA Astrophysics Data System (ADS)

    Carey, J. David; Roome, Nathanael

    Single layer silicene has weaker π bonding that graphene resulting in buckling of the Si atoms in different sub-lattices. Despite the loss of planarity, a linear bandstructure emerges where we find a Fermi velocity of about 5.3 x 105 m/s. Determination of the phonon dispersion characteristics reveals a Γ point optical phonon with an energy of 69 meV and a K point optical phonon with an energy of 62 meV. In graphene these phonons play important role in scattering electrons, and in Raman spectroscopy, but have larger energies of 194 and 166 meV, respectively. The lower phonon energies in silicene, arising from the higher atomic masses, would be expected to scatter carriers efficiently and limit carrier mobility. We have calculated, however, that the electron-optical phonon coupling matrix elements are about a factor of 25 times smaller than in graphene and this important result will help with the further development of silicene based devices due to reduced phonon scattering. The two stable stacking configurations of bilayer silicene, AA and AB, now have to account of the position of the atomic buckling in the two layers, leading to four possible atomic configurations with the buckling between the layers being in- or out-of-phase with each other. We find that in contrast to graphene, the two stable configurations are based on AA type stacking being about 70 meV per atom more stable than AB stacking. The potential for elemental layered materials beyond graphene for device applications will also be discussed. Single and Few Layer Silicene: Structural, Electronic and Transport Properties.

  14. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Lohrenz, S.E.; Asper, V.L.

    1997-09-01

    The authors objective was to characterize distributions of chloropigment fluorescence in relation to physical processes in the benthic boundary layer in support of the Department of Energy (DOE) Ocean Margins Program`s (OMP) goal of quantifying carbon transport across the continental shelf. Their approach involved participation in the Ocean Margins Program (OMP) field experiment on the continental shelf off Cape Hatteras by conducting multi-sensor fluorescence measurements of photosynthetic pigments. Specific tasks included (1) pre- and post-deployment calibration of multiple fluorescence sensors in conjunction with Woods Hole personnel; (2) collection and analysis of photosynthetic pigment concentrations and total particulate carbon in water column samples to aid in interpretation of the fluorescence time-series during the field experiment; (3) collaboration in the analysis and interpretation of 1994 and 1996 time-series data in support of efforts to quantify pigment and particulate organic carbon transport on the continental shelf off Cape Hatteras. This third component included analysis of data obtained with a multi-sensor fiber-optic fluorometer in the benthic boundary layer of the inner shelf off Cape Hatteras during summer 1994.

  15. Electron transport in molecular junctions with graphene as protecting layer

    SciTech Connect

    Hüser, Falco; Solomon, Gemma C.

    2015-12-07

    We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

  16. New PCBM/carbon based electron transport layer for perovskite solar cells.

    PubMed

    Mamun, Abdullah Al; Ava, Tanzila Tasnim; Zhang, Kai; Baumgart, Helmut; Namkoong, Gon

    2017-07-21

    Carbon is inherently abundant in nature and relatively inexpensive, which can potentially reduce the manufacturing cost of solar cells. In recent years, carbon has been used as a hole transport layer or counter electrode in perovskite solar cells. Herein, we demonstrate that carbon can also be used as a charge transport layer capable of enhancing the energy conversion efficiency of a CH3NH3PbI3-xClx solar cell when carbon is combined with PCBM. Particularly, we have been able to deposit an ultra-flat carbon layer using an e-beam irradiation method, which exhibited much better conductivity than the competitive PCBM/C60 layer. In addition, quantitative analysis of interfacial charge dynamics shows that the quenching efficiency of PCBM/carbon is comparable to that of PCBM/C60 but better interface defect passivation and improved series and shunt resistances were observed when PCBM/carbon was employed. For the photovoltaic performance, the reference perovskite solar cell fabricated from the widely used PCBM/C60 has a power conversion efficiency (PCE) of 14% while the perovskite solar cell with PCBM/carbon has an increased PCE of 16%. Our results demonstrate the potential of the use of cost-effective carbon for perovskite solar cells, which could reduce production costs.

  17. Charge carrier transport properties in layer structured hexagonal boron nitride

    SciTech Connect

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-10-15

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T{sub 0}){sup −α} with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  18. Influence of Cemented Layers on Contaminant Transport in Mine Tailings

    NASA Astrophysics Data System (ADS)

    Ptacek, C.; Blowes, D.; Jambor, J.; Moncur, M.; Gunsinger, M.; Doerr, N.

    2004-12-01

    Exposure of sulfide-mine tailings to atmospheric oxygen leads to the initiation of a series of reactions, including sulfide oxidation, acid neutralization and metal attenuation reactions. As oxygen ingresses into the tailings, the oxidation front moves downward and inward from the edges of the tailings surface. At or near the acid neutralization front, secondary phases can accumulate, leading to the formation of hardpan layers. Field studies were conducted at three mine sites to evaluate the role of cemented layers in influencing contaminant transport from oxidized tailings. Detailed field measurements were made, including collection of water and gas samples from the vadose and groundwater zones. Cores were collected for mineralogical and chemical analyses to evaluate the extent of sulfide mineral oxidation and accumulation of secondary phases. Calculations of mineral saturation indices were made using ion-pair and ion-interaction models that were modified to account for the very high solute concentrations observed in the tailings pore waters. At a site that has been oxidizing for 25 years, a massive Fe(III)-bearing hardpan, containing gypsum, goethite and jarosite, has formed over the last 15 years. At a site that has been oxidizing for 35 years, an Fe(III)-bearing hardpan is also present. At a site that has been oxidizing for 70 years, a massive Fe(II)-bearing hardpan containing melanterite and gypsum is present below the zone of active oxidation. Above this zone, there are discontinuous Fe(III)-bearing cemented layers that are likely oxidized remnants of the original Fe(II) hardpan. Calculated mineral saturation indices are consistent with the observed accumulations of secondary phases. Transient perched water table conditions have developed above the massive Fe(II) hardpan, leading to the lateral transport of sulfide oxidation products along the hardpan and the formation of seepage zones above the permanent water table. Chemical extractions and mineralogical

  19. Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

    NASA Astrophysics Data System (ADS)

    Pessah, Martin E.; Chan, Chi-kwan

    2013-04-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves in configurations that are stable to the standard MRI. Employing the shearing-sheet framework, we show that transient amplification of shearing MHD waves can generate magnetic energy without leading to a substantial generation of hydromagnetic stresses. While these results are in agreement with numerical simulations, they emphasize the need to better understand the mechanism for angular momentum transport in the inner disk regions on more solid grounds.

  20. Costs and benefits of employment transportation for low-wage workers: an assessment of job access public transportation services.

    PubMed

    Thakuriah Vonu, Piyushimita; Persky, Joseph; Soot, Siim; Sriraj, P S

    2013-04-01

    This paper focuses on an evaluation of public transportation-based employment transportation (ET) services to transport low-wage workers to jobs in the US. We make an attempt to capture a more comprehensive range of intended and unintended outcomes of ET services than those traditionally considered in the case of public transportation services. Using primary data from 23 locations across the country, we present a framework to evaluate how transportation improvements, in interaction with labor markets, can affect users' short-run economic welfare, users' long-run human capital accumulation and non-users' short-run economic welfare. These services were partially funded by a specialized program - the Job Access and Reverse Commute (JARC) program - which was consolidated into larger transit funding programs by recent legislation. In the sites examined, we found that low wage users benefited from self-reported increased access to jobs, improvements in earnings potential, as well as from savings in transport cost and time. Simulations show the potential of users to accrue long-term worklife benefits. At the same time, users may have accrued changes in leisure time as a result of transitioning from unemployment to employment, and generated a range of societal impacts on three classes of non-users: the general tax-paying public, the general commuting public in the service operating area and other low-wage workers in local labor markets.

  1. Reynolds number influences on turbulent boundary layer momentum transport

    NASA Astrophysics Data System (ADS)

    Priyadarshana, Paththage A.

    There are many engineering applications at Reynolds numbers orders of magnitude higher than existing turbulent boundary layer studies. Currently, the mechanisms for turbulent transport and the Reynolds number dependence of these mechanisms are not well understood. This dissertation presents Reynolds number influences on velocity and vorticity statistics, Reynolds shear stress, and velocity-vorticity correlations for turbulent boundary layers. Well resolved hot-wire data for this study were acquired in the atmospheric surface layer at the SLTEST facility in western Utah. It is shown that during near neutral thermal stability, the flow behaves as a canonical zero pressure gradient turbulent boundary layer, in which the Reynolds number based on momentum thickness, Rtheta, is approximately 2 x 106. The present study also provides information regarding the effects of wall roughness over a limited range of roughness. It is observed that with increasing Rtheta, the inner normalized streamwise intensity increases. This statistic is less sensitive to wall roughness away from the roughness sublayer. In contrast, the inner normalized wall normal intensity is less sensitive to the variation of Rtheta, and it is significantly sensitive to wall roughness. Outside the viscous sublayer, the inner normalized vorticity intensity is less sensitive to both Rtheta and roughness. A primary observation of the Reynolds stress study is that the predominant motions underlying the Reynolds shear stress undergo a significant shift from large to intermediate scales as Rtheta becomes large, irrespective of surface roughness. Quadrant analysis shows that types of motions contributing to the Reynolds stress change significantly at comparable wall normal locations with increasing Rtheta. The mean wall normal gradients of the Reynolds shear stress and the turbulent kinetic energy have direct connections to the transport mechanisms of the turbulent boundary layer. These gradients can be expressed in

  2. The design and performance of axially symmetrical contoured wall diffusers employing suction boundary layer control

    NASA Technical Reports Server (NTRS)

    Nelson, C. D., Jr.; Hudson, W. G.; Yang, T.

    1974-01-01

    This paper presents a procedure for the design and the performance prediction of axially symmetrical contoured wall diffusers employing suction boundary layer control. An inverse problem approach was used in the potential flow design of the diffuser wall contours. The experimentally observed flow characteristics and the stability of flows within the diffuser are also described. Guidelines for the design of low suction (less than 10 percent of the inlet flow) and thus high effectiveness contoured wall diffusers are also provided based on the results of the experimental program.

  3. Electronic spin transport and spin precession in single graphene layers at room temperature

    NASA Astrophysics Data System (ADS)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.

    2007-08-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The `non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2K, 77K and room temperature. We extract a spin relaxation length between 1.5 and 2μm at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.

  4. An Azaacene Derivative as Promising Electron-Transport Layer for Inverted Perovskite Solar Cells.

    PubMed

    Gu, Pei-Yang; Wang, Ning; Wu, Anyang; Wang, Zilong; Tian, Miaomiao; Fu, Zhisheng; Sun, Xiao Wei; Zhang, Qichun

    2016-08-05

    It is highly desirable to develop novel n-type organic small molecules as an efficient electron-transport layer (ETL) for the replacement of PCBM to obtain high-performance metal-oxide-free, solution-processed inverted perovskite solar cells (PSCs) because this type of solar cells with a low-temperature and solution-based process would make their fabrication more feasible and practical. In this research, the new azaacene QCAPZ has been synthesized and employed as non-fullerene ETL material for inverted PSCs through a solution-based process without the need for additional dopants or additives. The as-fabricated inverted PSCs show a power conversion efficiency up to 10.26 %. Our results clearly suggest that larger azaacenes could be promising electron-transport materials to achieve high-performance solution-processed inverted PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Combined core/boundary layer transport simulations in tokamaks

    SciTech Connect

    Prinja, A.K.; Schafer, R.F. Jr.; Conn, R.W.; Howe, H.C.

    1986-04-01

    Significant new numerical results are presented from self-consistent core and boundary or scrape-off layer plasma simulations with 3-D neutral transport calculations. For a symmetric belt limiter it is shown that, for plasma conditions considered here, the pump limiter collection efficiency increases from 11% to 18% of the core efflux as a result of local reionization of blade deflected neutrals. This hitherto unobserved effect causes a significant amplification of upstream ion flux entering the pump limiter. Results from coupling of an earlier developed two-zone edge plasma model ODESSA to the PROCTR core plasma simulation code indicates that intense recycling divertor operation may not be possible because of stagnation of upstream flow velocity. This results in a self-consistent reduction of density gradient in an intermediate region between the central plasma and separatrix, and a concomitant reduction of core-efflux. There is also evidence of increased recycling at the first wall.

  6. Effects of oxygen on exciton transport in zinc phthalocyanine layers

    NASA Astrophysics Data System (ADS)

    Kerp, H. R.; van Faassen, E. E.

    2000-12-01

    The effect of oxygen on the photovoltaic properties of organic solar cells consisting of zinc phthalocyanine and a perylene pigment has been investigated. Under solar illumination, it was possible to raise the short-circuit current by a factor of 1.5 when increasing the partial O 2 pressure threefold from atmospheric pressure in a surrounding gas atmosphere consisting of different oxygen:nitrogen ratios with a total pressure of 1 bar. On the other hand, the exciton diffusion length in ZnPc was observed to decrease at higher oxygen pressures, from which we conclude that the range of exciton transport in the ZnPc layer is limited by the presence of ionic impurities such as O 2-.

  7. Stereospecific micellar electrokinetic chromatography assay of methionine sulfoxide reductase activity employing a multiple layer coated capillary.

    PubMed

    Zhu, Qingfu; El-Mergawy, Rabab G; Heinemann, Stefan H; Schönherr, Roland; Jáč, Pavel; Scriba, Gerhard K E

    2013-09-01

    A micellar electrokinetic chromatography method for the analysis of the l-methionine sulfoxide diastereomers employing a successive multiple ionic-polymer layer coated fused-silica capillary was developed and validated in order to investigate the stereospecificity of methionine sulfoxide reductases. The capillary coating consisted of a first layer of hexadimethrine and a second layer of dextran sulfate providing a stable strong cathodic EOF and consequently highly repeatable analyte migration times. The methionine sulfoxide diastereomers, methionine as product as well as β-alanine as internal standard were derivatized by dabsyl chloride and separated using a 35 mM sodium phosphate buffer, pH 8.0, containing 25 mM SDS as BGE and a separation voltage of 25 kV. The method was validated in the range of 0.15-2.0 mM with respect to linearity and precision. The LODs of the analytes ranged between 0.04 and 0.10 mM. The assay was subsequently applied to determine the stereospecificity of methionine sulfoxide reductases as well as the enzyme kinetics of human methionine sulfoxide reductase A. Monitoring the decrease of the l-methionine-(S)-sulfoxide Km = 411.8 ± 33.8 μM and Vmax = 307.5 ± 10.8 μM/min were determined.

  8. Vertical transport of water in the Martian boundary layer

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    We are continuing our examination of the transport of H2O through the martian boundary layer, and we have written a one-dimensional numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the planetary boundary layer (PBL). Our goal is to explore the mechanisms of H2O exchange, and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum, as well as radiation, sensible heat flux, and advection for heat. The model differs from Flasar and Goody by use of appropriate Viking-based physical constants and inclusion of the radiative effects of atmospheric dust. We specify the pressure gradient force or compute it from a simple slope model. The subsurface model accounts for conduction of heat and diffusion of H2O through a porous adsorbing medium in response to diurnal forcing. The model is initialized with depth-independent H2O concentrations (2 kg M(exp -3)) in the regolith, and a dry atmosphere. The model terminates when the atmospheric H2O column abundance stabilizes at 0.1 percent per sol.

  9. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    PubMed Central

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  10. One-Dimensional Electron Transport Layers for Perovskite Solar Cells.

    PubMed

    Thakur, Ujwal K; Kisslinger, Ryan; Shankar, Karthik

    2017-04-29

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  11. Atomic layer deposition of NiO hole-transporting layers for polymer solar cells

    NASA Astrophysics Data System (ADS)

    Hsu, Che-Chen; Su, Heng-Wei; Hou, Cheng-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-09-01

    NiO is an attractive hole-transporting material for polymer solar cells (PSCs) owing to its excellent stability and electrical/optical properties. This study demonstrates, for the first time, fabrication of uniform, defect-free, and conformal NiO ultra-thin films for use as hole-transporting layers (HTLs) in PSCs by atomic layer deposition (ALD) through optimization of the ALD processing parameters. The morphological, optical, and electrical properties of ALD NiO films were determined to be favorable for their HTL application. As a result, PSCs containing an ALD NiO HTL with an optimized thickness of 4 nm achieved a power conversion efficiency (PCE) of 3.4%, which was comparable to that of a control device with a poly(3,4-ethylenedioxy-thiophene):poly(styrene-sulfonate) HTL. The high quality and manufacturing scalability of ALD NiO films demonstrated here will facilitate the adoption of NiO HTLs in PSCs.

  12. Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells.

    PubMed

    Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Li, Chang-Zhi; Zhang, Yunhai; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren

    2016-12-21

    Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C60-bis) in an inverted p-i-n architecture. The devices with an ultrathin C60-bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C60-bis, due to a favorable energy level alignment between the CH3NH3PbI3 and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C60-bis become better under indoor humidity conditions.

  13. Calculation of effective transport properties of partially saturated gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-02-01

    A large number of currently available Computational Fluid Dynamics numerical models of Polymer Electrolyte Membrane Fuel Cells (PEMFC) are based on the assumption that porous structures are mainly considered as thin and homogenous layers, hence the mass transport equations in structures such as Gas Diffusion Layers (GDL) are usually modelled according to the Darcy assumptions. Application of homogenous models implies that the effects of porous structures are taken into consideration via the effective transport properties of porosity, tortuosity, permeability (or flow resistance), diffusivity, electric and thermal conductivity. Therefore, reliable values of those effective properties of GDL play a significant role for PEMFC modelling when employing Computational Fluid Dynamics, since these parameters are required as input values for performing the numerical calculations. The objective of the current study is to calculate the effective transport properties of GDL, namely gas permeability, diffusivity and thermal conductivity, as a function of liquid water saturation by using the Lattice-Boltzmann approach. The study proposes a method of uniform water impregnation of the GDL based on the "Fine-Mist" assumption by taking into account the surface tension of water droplets and the actual shape of GDL pores.

  14. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-06

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  15. Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brown, Douglas L.

    1994-01-01

    In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.

  16. Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer.

    PubMed

    Kim, Hyunsu; Noh, Jin-Seo; Roh, Jong Wook; Chun, Dong Won; Kim, Sungman; Jung, Sang Hyun; Kang, Ho Kwan; Jeong, Won Yong; Lee, Wooyoung

    2011-12-01

    A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe) and high magnetization (900-1,000 emu/cm(3)) characteristic of L 10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach.

  17. Inter-layer edge tunneling and transport properties in separately contacted double-layer quantum-Hall systems

    NASA Astrophysics Data System (ADS)

    Yoshioka, Daijiro

    1998-01-01

    A theory of transport in the quantum-Hall regime is developed for separately contacted double-layer electron systems. Inter-layer tunneling provides a channel for equilibration of the distribution functions in the two layers at the edge states. Resistances and transresistances for various configurations of the electrodes are calculated as functions of the inter-layer tunneling amplitude. Induced current in one of the layer by a current in the other is also calculated. It is shown that reflection at the leads causes change in the results for some electrode configurations. The results obtained in this work is consistent with recent experiments.

  18. Convective transport of electric charge within the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, Giles; Silva, Hugo; Silgado, Rui; Melgao, Marta

    2017-04-01

    Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also of major importance in determining the electrical charge structure of the lower atmosphere. This paper presents rare experimental measurements of vertical profiles of charge measured during fair weather conditions by specially instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. Space charge was measured directly using a sensitive electrometer, rather than the conventional method of deriving it from electric field measurements. The high frequency of balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller levels of charge (up to 20pC m-3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was much more complex, showing a dependence on lofting of surface aerosol due to daytime convection. This produced charge up to 92pC m-3 up to 500m above the surface. The diurnal variation in the integrated column of charge above the measurement site was also found to track closely with the diurnal variation in near surface charge as measured by an electric field mill at the same site, confirming the importance of the link between surface charge generation processes and aloft. Co-located lidar backscatter measurements were also made during the measurement campaign and will be discussed here in the context of the effect of aerosol on the vertical charge profile.

  19. ELM transport in the JET scrape-off layer

    NASA Astrophysics Data System (ADS)

    Pitts, R. A.; Andrew, P.; Arnoux, G.; Eich, T.; Fundamenski, W.; Huber, A.; Silva, C.; Tskhakaya, D.; EFDA Contributors, JET

    2007-11-01

    This contribution summarizes a number of aspects of the experimental and modelling programme at JET aimed at improving the characterization and understanding of edge localized mode (ELM) transport in the scrape-off layer (SOL). Divertor target energy deposition asymmetries favouring the inner target for the ion B × ∇B drift directed towards the X-point are observed with infra-red (IR) thermography. Similar trends are seen in the ELM resolved energy radiated in the divertor volume. Particle-in-cell kinetic calculations of the parallel ELM heat transport have been made for a range of ELM energies, revealing the detailed time response of target sheath heat transmission factors and indicating that electrons deposit ~30% of the ELM energy. The simulation results are in good agreement with experimental measurements of the integral energy deposited at the outer target up to the peak in target heat loads. A transient model of ELM filament energy evolution has been developed at JET and is able to reproduce a number of experimental observations, including the high ion energies observed in the far SOL using an electrostatic retarding field electrostatic analyser (RFA) and estimates of ELM heat fluxes deposited on main chamber limiters. During the ELM, the RFA and a second, SOL turbulence probe, clearly show the presence of coherent spikes in the hot ion flux, the plasma flux and the electron temperature. Field aligned structures have also been seen for the first time on JET in the power deposition on main wall limiters and upper dump plate surfaces using a new wide angle IR camera system. The probe signals are interpreted as the arrival of interspaced plasma filaments, with successive filaments carrying less energy. They are also consistent with the ELM out flux entering the SOL primarily on the outboard side and launching a sound wave disturbance along field lines.

  20. Unconventional magneto-transport in novel layered cobalt oxides

    NASA Astrophysics Data System (ADS)

    Terasaki, Ichiro

    2008-03-01

    Among strongly correlated transition-metal oxides, cobalt oxides are known to have unique features arising from the spin-state degree of freedom tightly coupled with Co valence. The Co^4+ ion in the low spin-state is responsible for anomalous metallic states such as large thermopower in NaxCoO2 and unconventional superconductivity in hydrated NaxCoO2. The Co^2+ ion favors the high-spin state, which makes magnetic insulators. The Co^3+ ion is most interesting in the sense that the low-, intermediate- and high-spin states are nearly degenerate, where a spin-state crossover/transition occurs with temperature or pressure. Recently we have discovered two complex layered cobalt oxides, which exhibit unprecedented transport originated from interplay between charge, orbital and spin-states. The first one is SrCo6O11, in which the Co-O Kagome lattice and two-types of Co-O pillars are stacked along the c axis [1]. The conduction electrons in the Kagome lattice interact with Ising spins in the pillars, and shows two-step plateau in the magnetoresistance along the c axis. The second one is Sr3YCo4O10.5, which exhibits a ferromagnetic insulating state below 340 K. Various substitutions of Sr, Y and Co sites dramatically suppress this ferromagnetic state, and concomitantly modify the magneto- and thermoelectric transport. We will discuss the structure-property relationship based on structure analyses. The main part of this work was done in collaboration with S. Ishiwata, W. Kobayashi, and M. Takano. [1] S. Ishiwata et al., Chem. Mater. 17, 2789 (2005) ; Phys. Rev. Lett. 98, 217201 (2007) [2] W. Kobayashi et al. Phys. Rev. B 72, 104408 (2005) ; S. Ishiwata et al. Phys. Rev. B75, 220406(R) (2002)

  1. [Highly Efficient Bilayer-Structure Yellow-Green OLED with MADN Hole-Transport Layer and the Impedance Spectroscopy Analysis].

    PubMed

    Zhang, Xiao-wen; Mo, Bing-jie; Liu, Li-ming; Wang, Hong-hang; Chen, Er-wei; Xu, Ji-wen; Wang, Hua

    2015-12-01

    Abstract Highly efficient bilayer-structure yellow-green organic light-emitting device (OLED) has been demonstrated based on MADN as hole-transport layer (HTL) and host-guest coped system of [Alq₃: 0.7 Wt% rubrene] as emitting and electron-trans- port layer. The device gives yellow-green emission through incomplete energy transfer from the host of Alq₃ to the guest of ru- brene. An electroluminescent peak of 560 nm, 1931 CIE color coordinates of (0.46, 0.52) and a maximum current efficiency of 7.63 cd · A⁻¹ (which has been enhanced by 30% in comparison with the counterpart having conventional NPB HTL) are ob- served. The hole-transporting characteristics of MADN and NPB have been systematically investigated by constructing hole-only devices and employing impedance spectroscopy analysis. Our results indicate that MADN can be served as an effective hole-trans- port material and its hole-transporting ability is slightly inferior to NPB. This overcomes the shortcoming of hole transporting more quickly than electron in OLED and improves carrier balance in the emitting layer. Consequently, the device current efficien- cy is promoted. In addition, the current efficiency of bilayer-structure OLED with MADN as HTL is comparable to that of conv- entinol trilayer-structure device with MADN as HTL and Alq₃ as electron-transport layer. This indicates that the simplified bi- layer-structure device can be achieved without sacrificing current efficiency. The emitting layer of [Alq: 0.7 Wt% rubrene possesses superior elecron-transporting ability.

  2. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    USGS Publications Warehouse

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  3. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  4. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOEpatents

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  5. Interfacial engineering of electron transport layer using Caesium Iodide for efficient and stable organic solar cells

    NASA Astrophysics Data System (ADS)

    Upama, Mushfika Baishakhi; Elumalai, Naveen Kumar; Mahmud, Md Arafat; Wright, Matthew; Wang, Dian; Xu, Cheng; Haque, Faiazul; Chan, Kah Howe; Uddin, Ashraf

    2017-09-01

    Polymer solar cells (PSCs) have gained immense research interest in the recent years predominantly due to low-cost, solution process-ability, and facile device fabrication. However, achieving high stability without compromising the power conversion efficiency (PCE) serves to be an important trade-off for commercialization. In line with this, we demonstrate the significance of incorporating a CsI/ZnO bilayer as electron transport layer (ETL) in the bulk heterojunction PSCs employing low band gap polymer (PTB7) and fullerene (PC71BM) as the photo-active layer. The devices with CsI/ZnO interlayer exhibited substantial enhancement of 800% and 12% in PCE when compared to the devices with pristine CsI and pristine ZnO as ETL, respectively. Furthermore, the UV and UV-ozone induced degradation studies revealed that the devices incorporating CsI/ZnO bilayer possess excellent decomposition stability (∼23% higher) over the devices with pristine ZnO counterparts. The incorporation of CsI between ITO and ZnO was found to favorably modify the energy-level alignment at the interface, contributing to the charge collection efficiency as well as protecting the adjacent light absorbing polymer layers from degradation. The mechanism behind the improvement in PCE and stability is analyzed using the electrochemical impedance spectroscopy and dark I-V characteristics.

  6. 49 CFR 372.103 - Motor vehicles employed solely in transporting school children and teachers to or from school.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... school children and teachers to or from school. 372.103 Section 372.103 Transportation Other Regulations... Exemptions § 372.103 Motor vehicles employed solely in transporting school children and teachers to or from... motor vehicles being used at the time of operation in the transportation of schoolchildren and...

  7. 49 CFR 372.103 - Motor vehicles employed solely in transporting school children and teachers to or from school.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... school children and teachers to or from school. 372.103 Section 372.103 Transportation Other Regulations... Exemptions § 372.103 Motor vehicles employed solely in transporting school children and teachers to or from... motor vehicles being used at the time of operation in the transportation of schoolchildren and...

  8. 49 CFR 372.103 - Motor vehicles employed solely in transporting school children and teachers to or from school.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... school children and teachers to or from school. 372.103 Section 372.103 Transportation Other Regulations... Exemptions § 372.103 Motor vehicles employed solely in transporting school children and teachers to or from... motor vehicles being used at the time of operation in the transportation of schoolchildren and...

  9. 49 CFR 372.103 - Motor vehicles employed solely in transporting school children and teachers to or from school.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... school children and teachers to or from school. 372.103 Section 372.103 Transportation Other Regulations... Exemptions § 372.103 Motor vehicles employed solely in transporting school children and teachers to or from... motor vehicles being used at the time of operation in the transportation of schoolchildren and...

  10. Modeling of Oxygen Transport Across Tumor Multicellular Layers

    PubMed Central

    Braun, Rod D.; Beatty, Alexis L.

    2007-01-01

    Purpose Tumor oxygen level plays a major role in the response of tumors to different treatments. The purpose of this study was to develop a method of determining oxygen transport properties in a recently developed 3-D model of tumor parenchyma, the multicellular layer (MCL). Methods OCM-1 human choroidal melanoma cells were grown as 3-D MCL on collagen-coated culture plate inserts. A recessed-cathode oxygen microelectrode was used to measure oxygen tension (PO2) profiles across 8 different MCL from the free surface to the insert membrane. The profiles were fitted to four different one-dimensional diffusion models: 1-, 2-, and 3-region models with uniform oxygen consumption (q) in each region and a modified 3-region model with a central region where q=0 and PO2=0. Results Depending upon the presence of a central region of anoxia, the PO2 profiles were fitted best by either the two-region model or the modified 3-region model. Consumption of tumor cells near the insert membrane was higher than that of cells close to the free surface (33.1 ± 13.6 x 10−4 vs. 11.8 ± 6.7 x 10−4 mm Hg/μm2, respectively). Conclusions The model is useful for determining oxygenation and consumption in MCL, especially for cell lines that cannot be grown as spheroids. In the future, this model will permit the study of parameters important in tumor oxygenation in vitro. PMID:17196225

  11. High-Performance Polymer Solar Cells Employing Rhodamines as Cathode Interfacial Layers.

    PubMed

    Li, Wang; Liu, Zhiyang; Yang, Rongjuan; Guan, Qian; Jiang, Weigang; Islam, Amjad; Lei, Tao; Hong, Ling; Peng, Ruixiang; Ge, Ziyi

    2017-08-16

    The development of simple and water-/alcohol-soluble interfacial materials is crucial for the cost-effective fabrication process of polymer solar cells (PSCs). Herein, highly efficient PSCs are reported employing water-/alcohol-soluble and low-cost rhodamines as cathode interfacial layers (CILs). The results reveal that rhodamine-based CILs can reduce the work function of the Al cathode and simultaneously increase the open-circuit voltage, current density, fill factor, and power conversion efficiency (PCE) of PSCs. The solution-processed rhodamine-based PSCs demonstrated a remarkable PCE of 10.39%, which is one of the best efficiencies reported for thieno[3,4-b]thiophene/benzodithiophene:[6,6]-phenyl C71-butyric acid methyl ester-based PSCs so far. The efficiency is also 42.3% higher than that of the vacuum-deposited Ca-based device (PCE of 7.30%) and 21.5% higher than that of the complicated solution-processable polymeric electrolyte poly[(9,9-bis(3-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]-based device (PCE of 8.55%). Notably, rhodamines are very economical and have been extensively used as dyes in industries. Our work indicates that rhodamines have shown a strong potential as CILs compared to their counterparts in the large-area fabrication process of PSCs.

  12. Real-time dosimeter employed to evaluate the half-value layer in CT

    NASA Astrophysics Data System (ADS)

    McKenney, Sarah E.; Seibert, J. Anthony; Burkett, George W.; Gelskey, Dale; Sunde, Paul B.; Newman, James D.; Boone, John M.

    2014-01-01

    Half-value layer (HVL) measurements on commercial whole body computer tomography (CT) scanners require serial measurements and, in many institutions, the presence of a service engineer. An assembly of aluminum filters (AAF), designed to be used in conjunction with a real-time dosimeter, was developed to provide estimates of the HVL using clinical protocols. Two real-time dose probes, a solid-state and air ionization chamber, were examined. The AAF consisted of eight rectangular filters of high-purity aluminum (Type 1100), symmetrically positioned to form a cylindrical ‘cage’ around the probe's detective volume. The incident x-ray beam was attenuated by varying thicknesses of aluminum filters as the gantry completed a minimum of one rotation. Measurements employing real-time chambers were conducted both in service mode and with a routine abdomen/pelvis protocol for several combinations of x-ray tube potentials and bow tie filters. These measurements were validated against conventional serial HVL measurements. The average relative difference between the HVL measurements using the two methods was less than 5% when using a 122 mm diameter AAF; relative differences were reduced to 1.1% when the diameter was increased to 505 mm, possibly due to reduced scatter contamination. Use of a real-time dose probe and the AAF allowed for time-efficient measurements of beam quality on a clinical CT scanner using clinical protocols.

  13. Real-time dosimeter employed to evaluate the half-value layer in CT

    PubMed Central

    McKenney, Sarah E.; Seibert, J. Anthony; Burkett, George W.; Gelskey, Dale; Sunde, Paul B.; Newman, James D.; Boone, John M.

    2015-01-01

    Half-value layer (HVL) measurements on commercial whole body CT scanners require serial measurements and, in many institutions, the presence of a service engineer. An assembly of aluminum filters (AAF), designed to be used in conjunction with a real-time dosimeter, was developed to provide estimates of the HVL using clinical protocols. Two real-time dose probes, a solid-state and air ionization chamber, were examined. The AAF consisted of eight rectangular filters of high purity aluminum (Type 1100), symmetrically positioned to form a cylindrical “cage” around the probe’s detective volume. The incident x-ray beam was attenuated by varying thicknesses of aluminum filters as the gantry completed a minimum of one rotation. Measurements employing real-time chambers were conducted both in service mode and with a routine abdomen/pelvis protocol for several combinations of x-ray tube potentials and bow tie filters. These measurements were validated against conventional serial HVL measurements. The average relative difference between the HVL measurements using the two methods was less than 5% when using a 122 mm diameter AAF; relative differences were reduced to 1.1% when the diameter was increased to 505 mm, possibly due to a reduced scatter contamination. Use of a real-time dose probe and the AAF allowed for time-efficient measurements of beam quality on a clinical CT scanner using clinical protocols. PMID:24351935

  14. Color stabilization in white organic light emitting devices utilizing trapping layers inserted in both an electron transport layer and an emitting layer.

    PubMed

    Kwack, Byoung Chan; Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan; Seo, Ji Hyun; Kim, Young Kwan

    2008-10-01

    The electrical and the optical properties of white organic light emitting devices (OLEDs) utilizing trapping layers inserted into both an electron transport layer (ETL) and an emitting layer (EML) were investigated. The current density of OLEDs with an ETL containing a 5,6,11,12-tetraphenylnaphthacene (rubrene) layer was slightly smaller than those of other devices. The luminance-current density and luminance efficiency-current density of the OLEDs with rubrene layers embedded in only an ETL or an EML were similar to the blue reference device. While the electroluminescence (EL) spectrum for the OLEDs with a rubrene layer in the ETL in the low voltage range showed the white color, that with rubrene layers in both the EML and the ETL exhibited white color, regardless of the applied voltage. The Commission International de l'Eclairage coordinates of the white OLEDs became stabilized by inserting rubrene layers into both the EML and the ETL.

  15. Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes

    NASA Astrophysics Data System (ADS)

    Hsu, Min-Hsiang; Yu, Peichen; Huang, Jen-Hsien; Chang, Chia-Hua; Wu, Chien-Wei; Cheng, Yu-Chih; Chu, Chih-Wei

    2011-02-01

    In this paper, we present evidence of balanced electron and hole transport in polymer-fullerene based solar cells by means of embedded indium-tin-oxide nanoelectrodes. Enabled by a controllable electrochemical deposition, the individual nanoelectrodes are uniformly enclosed by a poly(3,4-ethylenedioxythiophene) hole-conducting layer, allowing a relatively short route for holes to reach the anode and hence increasing the effective hole mobility. Consequently, the power conversion efficiency and photogenerated current are maximized with a deposition condition of 50 μC, where the ratio of the electron to hole mobility is nearly unity.

  16. [Occupational loss of hearing in the workers employed in the railroad transportation].

    PubMed

    Pankova, V B

    2009-01-01

    The prevalence of occupational deafness and factors contributing to its development are considered in the context of the present-day structure and causes of hearing disturbances in the subjects employed in railway transportation occupations. Special emphasis is laid on expert examination of their professional suitability. The most professions and operational areas in the railroad sector are identified as fraught with the highest risk of development of occupational deafness. Specific features of this pathology are considered with reference to the patients' age and duration of occupation in the railroad sector. Drawbacks in organization of periodic prophylactic medical examination are analysed; the most challenging tasks for the development of preventive measures against negative effects of occupational noise on the subjects employed in the railroad sector are discussed.

  17. Geometrical implication of ion transporters employing an ellipsoidal hollow structure in pseudo-solid electrolytes.

    PubMed

    Kim, Youngjin; Park, Jong Hyuk; Jung, Jihoon; Lee, Sang-Soo

    2015-02-14

    We demonstrate facilitated ion transport in oligomer electrolytes by introducing TiO2 hollow particles of ellipsoidal and spherical shapes. It was found that the TiO2 hollow particles of ellipsoidal shape are much more effective in constructing ionic diffusion paths for the Grotthuss mechanism, resulting in highly enhanced diffusion coefficients of ions such as I(-) and I3(-) in oligomer electrolytes. Compared to the hollow spheres of the TiO2 component, the ellipsoidal hollow particles of the TiO2 component provide 11% larger ionic diffusion coefficients, because of their geometry with a relatively small diffusion resistance. Since the facilitated ion transport can render fast redox reactions at both photo and counter electrodes, the solid state dye-sensitized solar cells employing oligomer electrolytes based on the TiO2 hollow ellipsoids exhibit highly improved photovoltaic performances including highly improved energy-conversion efficiency without destabilizing the cell.

  18. Radio-over-fiber transport system employing free-space optical communication scheme with parabolic reflector

    NASA Astrophysics Data System (ADS)

    Das, Anindya S.; Patra, Ardhendu S.

    2015-01-01

    A bidirectional radio over fiber (ROF) transport system in combination with optical free space transmission schemes based on WDM, external light injection and optical add-drop multiplexing techniques is proposed and demonstrated. A diverging lens at the fiber end and a parabolic reflector at the receiver end are designed to employ optical free space transmission scheme in the configuration which transmits data-stream of 1~10 Gbps at 12.5 GHz. Excellent BER values and impressive eye diagrams for both down/uplink have shown that our proposed system is convenient and suitable for 80 km optical and 10 m optical free space transmission.

  19. Applicants' preference for impression management tactic in employment interviews by Transportation Security Administration.

    PubMed

    Scudder, Joseph N; Lamude, Kevin G

    2009-04-01

    Following past findings on employment interviews, this study hypothesized applicants would have a preference for using self-promoting tactics of impression management over other focuses. Self-reports of impression management tactics were collected from 124 applicants who had interviews for screener positions with the Transportation Security Administration. Contrary to the hypothesis, analysis indicated participants reported they used more ingratiation tactics attempting to praise the interviewer than self-promotion tactics which focused on their own accomplishments. Special qualifications for security jobs which required well-developed perceptual abilities and the controlling structure of the interview context were perhaps responsible for present results differing from prior findings.

  20. Nanostructured Ultrathin Carbazole Polymer Layers for Improved Hole-Transport and Injection Properties on ITO

    NASA Astrophysics Data System (ADS)

    Advincula, Rigoberto

    2010-03-01

    This talk will focus on strategies to modify Indium Tin Oxide (ITO) surfaces, an important substrate for display and photovoltaic devices using macromolecular grafting, layer-by-layer, and electrodeposition methods of carbazole derivatives. An important consequence is the improved morphology of rough ITO surfaces and better interfacial adhesion. This involves the use of surface initiated polymerization (SIP) to directly modify and graft carbazole containing layers. Alternatively, layer-by-layer deposition of hole-transport and injecting layers allow for controlled layer thickness and layer ordering. Lastly, the use of electropolymerizable conjugated polymer network precursors allow for a highly cross-linked films with improved stability and charge carrier transport. The use of surface sensitive analytical methods is key to defining structure-property relationships. Several device configurations and performance will be described.

  1. A simple parameterization for the turbulent kinetic energy transport terms in the convective boundary layer derived from large eddy simulation

    NASA Astrophysics Data System (ADS)

    Puhales, Franciano Scremin; Rizza, Umberto; Degrazia, Gervásio Annes; Acevedo, Otávio Costa

    2013-02-01

    In this work a parametrization for the transport terms of the turbulent kinetic energy (TKE) budget equation, valid for a convective boundary layer (CBL) is presented. This is a hard task to accomplish from experimental data, especially because of the difficulty associated to the measurements of pressure turbulent fluctuations, which are necessary to determine the pressure correlation TKE transport term. Thus, employing a large eddy simulation (LES) a full diurnal planetary boundary layer (PBL) cycle was simulated. In this simulation a forcing obtained from experimental data is used, so that the numerical experiment represents a more realistic case than a stationary PBL. For this study all terms of the TKE budget equation were determined for a CBL. From these data, polynomials that describe the TKE transport terms’ vertical profiles were adjusted. The polynomials found are a good description of the LES data, and from them it is shown that a simple formulation that directly relates the transport terms to the TKE magnitude has advantages on other parameterizations commonly used in CBL numerical models. Furthermore, the present study shows that the TKE turbulent transport term dominates over the TKE transport by pressure perturbations and that for most of the CBL these two terms have opposite signs.

  2. A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization

    NASA Astrophysics Data System (ADS)

    Yu, Zhenhua; Qi, Fei; Liu, Pei; You, Sujian; Kondamareddy, Kiran Kumar; Wang, Changlei; Cheng, Nian; Bai, Sihang; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2016-03-01

    A novel composite nanostructured titanium dioxide (TiO2) based electron-transport layer (ETL) is designed by combining size blended nanoparticles (SBNP) and nanoarrays (NA) for efficient perovskite solar cell (PSC) applications. The composite nanostructured (SBNP + NA) ETL is successfully employed in hole-conductor free PSCs, there by achieving a stable device with a maximum efficiency of 13.5%. The improvement in the performance is attributed to the better charge transport and lower recombination in the SBNP + NA ETL. Despite the stable high efficiency, SBNP + NA ETL based PSCs are advantageous owing to their low cost, ease of all-solution fabrication process in an open environment and good reproducibility.A novel composite nanostructured titanium dioxide (TiO2) based electron-transport layer (ETL) is designed by combining size blended nanoparticles (SBNP) and nanoarrays (NA) for efficient perovskite solar cell (PSC) applications. The composite nanostructured (SBNP + NA) ETL is successfully employed in hole-conductor free PSCs, there by achieving a stable device with a maximum efficiency of 13.5%. The improvement in the performance is attributed to the better charge transport and lower recombination in the SBNP + NA ETL. Despite the stable high efficiency, SBNP + NA ETL based PSCs are advantageous owing to their low cost, ease of all-solution fabrication process in an open environment and good reproducibility. Electronic supplementary information (ESI) available: Details of the experimental section and ESI figures. See DOI: 10.1039/c5nr09045h

  3. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

  4. Ultrathin ammonium heptamolybdate films as efficient room-temperature hole transport layers for organic solar cells.

    PubMed

    Qiu, Weiming; Hadipour, Afshin; Müller, Robert; Conings, Bert; Boyen, Hans-Gerd; Heremans, Paul; Froyen, Ludo

    2014-09-24

    Ammonium heptamolybdate (NH4)6Mo7O24·4H2O (AHM) and its peroxo derivatives are analyzed as solution-processed room temperature hole transport layer (HTL) in organic solar cells. Such AHM based HTLs are investigated in devices with three different types of active layers, i.e., solution-processed poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acid methyl ester(P3HT/PC60BM), poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]/[6,6]-phenyl C70-butyric acid methyl ester(PCDTBT/PC70BM) and evaporated small molecule chloro(subphthalocyaninato)boron(III) (SubPc)/C60. By virtue of their high work functions, AHM based HTLs outperform the commonly used poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) HTL for devices employing deep HOMO level active materials. Moreover, devices using AHM based HTLs can achieve higher short circuit current (Jsc) than the ones with evaporated molybdenum oxide(eMoO3), and thus better power conversion efficiency (PCE). In addition, P3HT/PC60BM devices with AHM based HTLs show air stability comparable to those with eMoO3, and much better than the ones with PEDOT:PSS.

  5. A nano-grid structure made of perovskite SrTiO3 nanowires for efficient electron transport layers in inverted polymer solar cells.

    PubMed

    Kim, Jeong Won; Suh, Yo-han; Lee, Chang-Lyoul; Kim, Yong Seok; Kim, Won Bae

    2015-03-14

    A nano-grid structure of perovskite SrTiO3 NWs is developed for a novel electron transport layer in inverted polymer solar cells. Due to the excellent charge transporting properties of the SrTiO3 nano-grid structure, the device employing this nanostructure showed ∼32% enhanced photovoltaic performance, compared to the solar cell using a TiO2 thin film.

  6. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    NASA Astrophysics Data System (ADS)

    Lee, Hae Ri; Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won; Lee, Kwan-Young; Oh, Si Hyoung

    2017-01-01

    Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO4 and LiMg0.5Mn1.5O4 layers on the surface of LiAl0.1Mn1.9O4. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  7. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    NASA Astrophysics Data System (ADS)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-01

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (-0.030, +0.001) shifting only from 1000 to 10 000 cd/m2. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq)3 as phosphorescent red dopant in electron transport layer.

  8. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    SciTech Connect

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){sub 3} as phosphorescent red dopant in electron transport layer.

  9. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

    PubMed Central

    2010-01-01

    Background The finite volume solver Fluent (Lebanon, NH, USA) is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. Methods An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) schemes. The fluid has a diffusivity of 3.125 × 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. Results The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140% and 116% was demonstrated

  10. 49 CFR 372.103 - Motor vehicles employed solely in transporting school children and teachers to or from school.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... school children and teachers to or from school. 372.103 Section 372.103 Transportation Other Regulations... Exemptions § 372.103 Motor vehicles employed solely in transporting school children and teachers to or from school. The exemption set forth in 49 U.S.C. 13506(a)(1) shall not be construed as being inapplicable to...

  11. Thermal transport across graphene and single layer hexagonal boron nitride

    SciTech Connect

    Zhang, Jingchao E-mail: yyue@whu.edu.cn; Hong, Yang; Yue, Yanan E-mail: yyue@whu.edu.cn

    2015-04-07

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs.

  12. Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer.

    PubMed

    Wu, Yi-Lin; Chen, Chien-Yu; Huang, Yi-Hsiang; Lu, Yin-Jui; Chou, Cheng-Hsu; Wu, Chung-Chih

    2014-08-01

    In this work, we conducted studies of tandem organic light-emitting devices (OLEDs) based on the connecting structure consisting of n-doped electron-transport layer (n-ETL)/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN)/hole-transport layer. We investigated effects of different n-ETL materials and different HATCN thicknesses on characteristics of tandem OLEDs. Results show that the tandem OLEDs with n-BPhen and a 20 nm layer of HATCN in the connecting structure exhibited the best performance. With these, highly efficient and bright green phosphorescent two-emitting-unit tandem OLEDs, with drive voltages significantly lower than twice that of the single-unit benchmark device and current efficiencies higher than twice that of the single-unit benchmark device, were demonstrated.

  13. Modeling pollutant transport in the atmosphere boundary layer

    SciTech Connect

    O`Steen, B.L.

    1990-12-31

    The two basic methods for modeling the atmospheric transport of pollutants (diagnostic and prognostic) are examined along with the current models utilized at SRS for emergency response (WINDS). The ability of a limited-area (mesoscale) model, nested within a synoptic scale model, to represent a wide range of flow behavior, makes it the method of choice for predicting pollutant transport. Such a mesoscale model can provide an invaluable research tool and, with a periodic processing strategy for wind field calculation and/or sufficient computer capability, can be utilized in an emergency response capacity. Various models are compared.

  14. Modeling pollutant transport in the atmosphere boundary layer

    SciTech Connect

    O'Steen, B.L.

    1990-01-01

    The two basic methods for modeling the atmospheric transport of pollutants (diagnostic and prognostic) are examined along with the current models utilized at SRS for emergency response (WINDS). The ability of a limited-area (mesoscale) model, nested within a synoptic scale model, to represent a wide range of flow behavior, makes it the method of choice for predicting pollutant transport. Such a mesoscale model can provide an invaluable research tool and, with a periodic processing strategy for wind field calculation and/or sufficient computer capability, can be utilized in an emergency response capacity. Various models are compared.

  15. The Benthic Boundary Layer: Transport Processes and Biogeochemistry

    NASA Astrophysics Data System (ADS)

    van Duren, Luca A.; Middelburg, Jack J.

    Interdisciplinary research is certainly one of the current buzzwords that needs to be incorporated in virtually every grant proposal. The idea that integration of different scientific fields is a prerequisite for progress in Earth sciences is now well recognized. The benthic boundary layer (BBL) is one area of research in which physicists, chemists, biologists, geologists, and engineers have worked in close and fruitful cooperation for several decades. The BBL comprises the near-bottom layer of water, the sediment-water interface, and the top layer of sediment that is directly influenced by the overlying water. In 1974, a BBL conference in France resulted in a book titled The Benthic Boundary Layer edited by I.N. McCave. This publication contained contributions from scientists from a wide range of disciplines and gave an overview of the state-of-the-art of BBL research. However, science has moved on in the past 25 years. Significant conceptual and technological progress has been made, and it is definitely time for an update.

  16. Fluorene Conjugated Polymer/Nickel Oxide Nanocomposite Hole Transport Layer Enhances the Efficiency of Organic Photovoltaic Devices.

    PubMed

    Chiou, Guan-Chiun; Lin, Ming-Wei; Lai, Yu-Ling; Chang, Chiao-Kai; Jiang, Jian-Ming; Su, Yu-Wei; Wei, Kung-Hwa; Hsu, Yao-Jane

    2017-01-25

    A nanocomposite layer comprising the conjugated polymer poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)fluorene] (PFN) and nickel oxide (NiOx) has been employed as the hole transport layer (HTL) in organic photovoltaics (OPVs) featuring PBDTTBO-C8 and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the active layer. The optimal device incorporating the PFN:NiOx nanocomposite as the HTLs displayed a power conversion efficiency (PCE) to 6.2%, up from 4.5% for the corresponding device incorporating pristine NiOx as the HTL layer: a nearly 40% improvement in PCE. X-ray photoelectron spectroscopy (XPS) was used to determine the types of chemical bonding, ultraviolet photoelectron spectroscopy (UPS) to measure the change in work function, and atomic force microscopy (AFM) to examine the morphology of the composite layers. The growth of nickel trioxide, Ni2O3, in the PFN:NiOx layer played a key role in producing the p-doping effect and in tuning the work function, thereby improving the overall device performance.

  17. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  18. High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering.

    PubMed

    Huang, Qianqian; Pan, Jiangyong; Zhang, Yuning; Chen, Jing; Tao, Zhi; He, Chao; Zhou, Kaifeng; Tu, Yan; Lei, Wei

    2016-11-14

    Here, we report on the hybrid hole transport materials 4,4'-bis-(carbazole-9-yl)biphenyl (CBP) or poly-N-vinylcarbazole (PVK) doped into poly(4-butyl-phenyl-diphenyl-amine) (Poly-TPD) as the hybrid hole transport layer (HTL) to tailor the energy band alignment between hole injection layer (HIL) and quantum dot (QD) light emitting layer in order to realize efficient quantum dot light emitting diodes (QLEDs) in all solution-processed fabrication. Compared to the pristine Poly-TPD based device, it is found that the electroluminescence (EL) performance of QLEDs can be significantly improved by 1.5 fold via addition of CBP into Poly-TPD, which can be attributed to the lowered highest occupied molecular orbital (HOMO) level of Poly-TPD to reduce the energy barrier between HTL and valance band (VB) of QDs. Thus, after doping small molecules into polymer under optimized proportion (Poly-TPD:CBP = 2:1 by weight), the hole transport rate can be balanced, facilitating the carrier injection from HTL to QDs and enhancing the efficiency of QLEDs. As a result, a maximum luminance, a maximum current efficiency and a maximum power efficiency of 7600 cd/m2, 5.41 cd/A and 4.25 lm/W can be obtained based on this variety of hybrid HTL employed QLEDs.

  19. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.

  20. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells.

    PubMed

    Li, Shao-Sian; Tu, Kun-Hua; Lin, Chih-Cheng; Chen, Chun-Wei; Chhowalla, Manish

    2010-06-22

    The utilization of graphene oxide (GO) thin films as the hole transport and electron blocking layer in organic photovoltaics (OPVs) is demonstrated. The incorporation of GO deposited from neutral solutions between the photoactive poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) layer and the transparent and conducting indium tin oxide (ITO) leads to a decrease in recombination of electrons and holes and leakage currents. This results in a dramatic increase in the OPV efficiencies to values that are comparable to devices fabricated with PEDOT:PSS as the hole transport layer. Our results indicate that GO could be a simple solution-processable alternative to PEDOT:PSS as the effective hole transport and electron blocking layer in OPV and light-emitting diode devices.

  1. Transport Processes in the Coastal Atmospheric Boundary Layer

    DTIC Science & Technology

    2016-06-07

    Earth Sciences, Uppsala University, and from the US west coast, from the Coastal Waves 1996 project, collected by Drs David Rogers and Clive Dorman...e.g. marine aerosols will be used in numerical simulations to asess the transport mechansisms on time-scales from hours up to days . Some of this work...been studied (Ragothaman et al. 1999). RESULTS One day from the Blekinge coastal experiment in Sweden was simulated. Here the coastal flow encounters a

  2. Phonon transport in single-layer boron nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-11-01

    Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.

  3. Structural design of a double-layered porous hydrogel for effective mass transport.

    PubMed

    Kim, Hyejeong; Kim, Hyeon Jeong; Huh, Hyung Kyu; Hwang, Hyung Ju; Lee, Sang Joon

    2015-03-01

    Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport.

  4. Formation of Al/B4C Surface Nano-composite Layers on 7075 Al Alloy Employing Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Kashani-Bozorg, S. F.; Jazayeri, K.

    2009-06-01

    Al/B4C surface nano-composite layers was achieved on commercial 7075 Al substrate employing friction stir processing technique. Agglomeration of B4C particles was occurred after a single pass. The dispersion of B4C particles was found to be affected by the number of FSP passes. A distribution of nano-size B4C particle was achieved after four passes. Moreover, the increasing in number of FSP passes causes a decreasing in matrix grain size of the surface nano-composite layer. The micro hardness of the surface nano-composite layer improves by almost two times as compared to that of the as-received substrate; this is attributed to the finer matrix grains and dispersion of nano-sized B4C particles.

  5. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

  6. A charge carrier transport model for donor-acceptor blend layers

    SciTech Connect

    Fischer, Janine Widmer, Johannes; Koerner, Christian; Vandewal, Koen; Leo, Karl; Kleemann, Hans; Tress, Wolfgang; Riede, Moritz

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.

  7. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    NASA Astrophysics Data System (ADS)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  8. Vorticity Transport in a Two Layer, Double Gyre Ocean Basin

    NASA Astrophysics Data System (ADS)

    Kaiser, Bryan; Clayson, Carol Anne; Jayne, Steve

    2016-11-01

    The double gyre ocean circulations predicted by strongly frictional, barotropic, linearized ocean models qualitatively agree with the patterns of large scale gyres in the world ocean. However, nonlinear ocean models featuring less intense eddy diffusion parameterization can converge to an infinite number of statistically stationary circulations, depending on the parameterization of dissipation of energy and vorticity. Patterns of vorticity flux and dissipation in a barotropic ocean have been examined previous studies; in this work the inclusion of the first baroclinic mode is examined. The first vertical mode permits the model to be split into two layers, the top approximating the thermocline and the bottom approximating the abyssal circulation. The separation into two layers not only adds realism and but also removes the nonphysical direct restraint of the upper ocean by bottom friction. Steady state circulations for various boundary conditions, sources and sinks of vorticity, and Reynolds numbers are simulated using a parallel pseudo-spectral quasi-geostrophic flow solver and mechanisms of vorticity flux and dissipation are discussed.

  9. Semianalytical Solutions of Radioactive or Reactive Tracer Transport in Layered Fractured Media

    SciTech Connect

    G.J. Moridis; G. S. Bodvarsson

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  10. Quasi Ballistic Transport in Few-Layer Black Phosphorous

    SciTech Connect

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-10-20

    Two dimensional materials provide an intriguing platform to investigate rich physical phenomena which could ultimately lead to the development of innovative nanotechnologies (1-17). Semiconducting black phosphorous (BP) with high carrier mobility (18-20), anisotropic transport (21, 22) and tunable bandgap (23, 24) is the most recent addition to this exotic class of two dimensional materials. In this article we experimentally demonstrate room temperature quasi ballistic transport of both holes and electrons in ionic liquid gated black phosphorous (BP) field effect transistors (FET) with sub-100nm channel length. The carrier mean free path (mfp) was found to be 15nm for the holes and 5nm for the electrons. By improving the carrier injection through superior electrostatic gate control (EOT=1.5nm), highly symmetric ambipolar conduction with record high hole current of ~0.78mA/µm and electron current of ~0.68mA/µm are achieved for VDD=0.2V. The extracted record low contact resistance of 220Ω-µm is similar to the state of the art Si technology. This is also the best contact resistance value achieved for any two dimensional metal-semiconductor interfaces. Finally, we provide an analytical framework to compare the experimental results with ballistic simulations which includes quantum capacitance considerations.

  11. Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer

    NASA Astrophysics Data System (ADS)

    Huangfu, Minzan; Shen, Yue; Zhu, Gongbo; Xu, Kai; Cao, Meng; Gu, Feng; Wang, Linjun

    2015-12-01

    This study is the first to report the preparation of Copper iodide (CuI) thick films by means of convenient airbrush process and their application as inorganic hole transport layers (HTL) in organo-lead halide perovskite-based solar cells. CuI thick films exhibit high conductivity, wide-band-gap and solution-processable. Organo-lead halide perovskite solar cells with different thickness of mesoporous layers and CuI hole transport layers were fabricated. Performance of the cells were mainly controlled by the thickness of TiO2 mesoporous layers. Under optimized conditions, a power conversion efficiency of 5.8% has been achieved with short-circuit current density JSC of 22.3 mA/cm2, open-circuit voltage VOC of 614 mV and fill factor of 42%. However, the VOC remains low in comparison with the state of the art perovskite-based solar cells, which is attributed to the high recombination in CuI devices as determined by impedance spectroscopy.

  12. Improved ambient-stable perovskite solar cells enabled by a hybrid polymeric electron-transporting layer

    SciTech Connect

    Zhu, Zonglong; Chueh, Chu -Chen; Zhang, Guangye; Huang, Fei; Yan, He; Jen, Alex K. -Y.

    2016-08-26

    In this study, an efficient inverted perovskite solar cell with decent ambient stability is successfully demonstrated by employing an n-type polymer, poly{[N,N’-bis(2-octyldodecyl)- 1,4,5,8-naphthalene diimide-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)} (N2200), as the electron-transporting layer (ETL). The device performance can be further enhanced from a power conversion efficiency (PCE) of 15 to 16.8% by tailoring the electronic properties of N2200 with a polymeric additive, poly[9,9-bis(6’- (N,N’-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane- 3-ethyloxy)-hexyl) fluorene] (PFN-Ox). More importantly, the device derived from this hybrid ETL can maintain good ambient stability inherent from the pristine N2200 ETL, for which 60–70% of initial PCE can be retained after being stored in air with 10–20% humidity for 45 days.

  13. Improved ambient-stable perovskite solar cells enabled by a hybrid polymeric electron-transporting layer

    DOE PAGES

    Zhu, Zonglong; Chueh, Chu -Chen; Zhang, Guangye; ...

    2016-08-26

    In this study, an efficient inverted perovskite solar cell with decent ambient stability is successfully demonstrated by employing an n-type polymer, poly{[N,N’-bis(2-octyldodecyl)- 1,4,5,8-naphthalene diimide-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)} (N2200), as the electron-transporting layer (ETL). The device performance can be further enhanced from a power conversion efficiency (PCE) of 15 to 16.8% by tailoring the electronic properties of N2200 with a polymeric additive, poly[9,9-bis(6’- (N,N’-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane- 3-ethyloxy)-hexyl) fluorene] (PFN-Ox). More importantly, the device derived from this hybrid ETL can maintain good ambient stability inherent from the pristine N2200 ETL, for which 60–70% of initial PCE can be retained after being stored in air with 10–20% humiditymore » for 45 days.« less

  14. Improved Ambient-Stable Perovskite Solar Cells Enabled by a Hybrid Polymeric Electron-Transporting Layer.

    PubMed

    Zhu, Zonglong; Chueh, Chu-Chen; Zhang, Guangye; Huang, Fei; Yan, He; Jen, Alex K-Y

    2016-09-22

    In this work, an efficient inverted perovskite solar cell with decent ambient stability is successfully demonstrated by employing an n-type polymer, poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalene diimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (N2200), as the electron-transporting layer (ETL). The device performance can be further enhanced from a power conversion efficiency (PCE) of 15 to 16.8 % by tailoring the electronic properties of N2200 with a polymeric additive, poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-Ox). More importantly, the device derived from this hybrid ETL can maintain good ambient stability inherent from the pristine N2200 ETL, for which 60-70 % of initial PCE can be retained after being stored in air with 10-20 % humidity for 45 days. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improved ambient-stable perovskite solar cells enabled by a hybrid polymeric electron-transporting layer

    SciTech Connect

    Zhu, Zonglong; Chueh, Chu -Chen; Zhang, Guangye; Huang, Fei; Yan, He; Jen, Alex K. -Y.

    2016-08-26

    In this study, an efficient inverted perovskite solar cell with decent ambient stability is successfully demonstrated by employing an n-type polymer, poly{[N,N’-bis(2-octyldodecyl)- 1,4,5,8-naphthalene diimide-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)} (N2200), as the electron-transporting layer (ETL). The device performance can be further enhanced from a power conversion efficiency (PCE) of 15 to 16.8% by tailoring the electronic properties of N2200 with a polymeric additive, poly[9,9-bis(6’- (N,N’-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane- 3-ethyloxy)-hexyl) fluorene] (PFN-Ox). More importantly, the device derived from this hybrid ETL can maintain good ambient stability inherent from the pristine N2200 ETL, for which 60–70% of initial PCE can be retained after being stored in air with 10–20% humidity for 45 days.

  16. A Two-Layered Model for Dynamic Supply Chain Management Considering Transportation Constraint

    NASA Astrophysics Data System (ADS)

    Tanimizu, Yoshitaka; Harada, Kana; Ozawa, Chisato; Iwamura, Koji; Sugimura, Nobuhiro

    This research proposes a two-layered model for dynamic supply chain management considering transportation constraint. The model provides a method for suppliers to estimate suitable prices and delivery times of products based on not only production schedules but also transportation plans in consideration of constraints about shipping times and loading capacities for transportation. A prototype of dynamic supply chain simulation system was developed and some computational experiments were carried out in order to verify the effectiveness of the model. The prototype system is available to determine suitable shipping times and loading capacities of transportation vehicles.

  17. Expression of digestive enzymes and nutrient transporters in Eimeria acervulina-challenged layers and broilers.

    PubMed

    Su, S; Miska, K B; Fetterer, R H; Jenkins, M C; Wong, E A

    2014-05-01

    Avian coccidiosis is a disease caused by intestinal protozoa in the genus Eimeria. Clinical signs of coccidiosis include intestinal lesions and reduced feed efficiency and BW gain. This growth reduction may be due to changes in expression of digestive enzymes and nutrient transporters in the intestine. The objective of this study was to examine the differential expression of digestive enzymes, transporters of amino acids, peptides, sugars, and minerals, and an antimicrobial peptide in the small intestine of Eimeria acervulina-infected broilers and layers. Uninfected broilers and layers, in general, expressed these genes at comparable levels. Some differences included 3-fold and 2-fold greater expression of the peptide transporter PepT1 and the antimicrobial peptide LEAP2 (liver expressed antimicrobial peptide 2), respectively, in the jejunum of layers compared with broilers and 17-fold greater expression of LEAP2 in the duodenum of broilers compared with layers. In the duodenum of Eimeria-infected broilers and layers, there was downregulation of aminopeptidase N; sucrase-isomaltase; the neutral, cationic, and anionic amino acid transporters b(o,+)AT/rBAT, B(o)AT, CAT2, and EAAT3; the sugar transporter GLUT2; the zinc transporter ZnT1; and LEAP2. In the jejunum of infected layers there was downregulation of many of the same genes as in the duodenum plus downregulation of PepT1, b(o,+)AT/rBAT, and the y(+) L system amino acid transporters y(+) LAT1 and y(+) LAT2. In the ileum of infected layers there was downregulation of CAT2, y(+)LAT1, the L type amino acid transporter LAT1, and the sugar transporter GLUT1, and upregulation of APN, PepT1, the sodium glucose transporter SGLT4, and LEAP2. In E. acervulina-infected broilers, there were no gene expression changes in the jejunum and ileum. These changes in intestinal digestive enzyme and nutrient transporter gene expression may result in a decrease in the efficiency of protein digestion, uptake of important amino acids

  18. Influence of Dielectric Layers on Charge Transport through Diketopyrrolopyrrole-Containing Polymer Films: Dielectric Polarizability vs Capacitance.

    PubMed

    Lee, Jiyoul; Chung, Jong Won; Yoon, Gyu Bok; Lee, Moo Hyung; Kim, Do Hwan; Park, Jozeph; Lee, Jin-Kyun; Kang, Moon Sung

    2016-11-09

    Field-effect mobility of a polymer semiconductor film is known to be enhanced when the gate dielectric interfacing with the film is weakly polarizable. Accordingly, gate dielectrics with lower dielectric constant (k) are preferred for attaining polymer field-effect transistors (PFETs) with larger mobilities. At the same time, it is also known that inducing more charge carriers into the polymer semiconductor films helps in enhancing their field-effect mobility, because the large number of traps presented in such a disorder system can be compensated substantially. In this sense, it may seem that employing higher k dielectrics is rather beneficial because capacitance is proportional to the dielectric constant. This, however, contradicts with the statement above. In this study, we compare the impact of the two, i.e., the polarizability and the capacitance of the gate dielectric, on the transport properties of poly[(diketopyrrolopyrrole)-alt-(2,2'-(1,4-phenylene)bisthiophene)] (PDPPTPT) semiconductor layers in an FET architecture. For the study, three different dielectric layers were employed: fluorinated organic CYTOP (k = ∼2), poly(methyl methacrylate) (k = ∼4), and relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) (k = ∼60). The beneficial influence of attaining more carriers in the PDPPTPT films on their charge transport properties was consistently observed from all three systems. However, the more dominant factor determining the large carrier mobility was the low polarizability of the gate dielectric rather than its large capacitance; field-effect mobilities of PDPPTPT films were always larger when lower k dielectric was employed than when higher k dielectric was used. The higher mobilities obtained when using lower k dielectrics could be attributed to the suppressed distribution of the density of localized states (DOS) near the transport level and to the resulting enhanced electronic coupling between the macromolecules.

  19. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  20. A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization.

    PubMed

    Yu, Zhenhua; Qi, Fei; Liu, Pei; You, Sujian; Kondamareddy, Kiran Kumar; Wang, Changlei; Cheng, Nian; Bai, Sihang; Liu, Wei; Guo, Shishang; Zhao, Xing-zhong

    2016-03-21

    A novel composite nanostructured titanium dioxide (TiO2) based electron-transport layer (ETL) is designed by combining size blended nanoparticles (SBNP) and nanoarrays (NA) for efficient perovskite solar cell (PSC) applications. The composite nanostructured (SBNP + NA) ETL is successfully employed in hole-conductor free PSCs, there by achieving a stable device with a maximum efficiency of 13.5%. The improvement in the performance is attributed to the better charge transport and lower recombination in the SBNP + NA ETL. Despite the stable high efficiency, SBNP + NA ETL based PSCs are advantageous owing to their low cost, ease of all-solution fabrication process in an open environment and good reproducibility.

  1. Fabrication of Nano-Composite Surface Layers on Aluminium Employing Friction Stir Processing Technique

    SciTech Connect

    Bozorg, S. F. K.; Zarghani, A. S.; Zarei-Hanzaki, A.

    2010-03-11

    Al/Al{sub 2}O{sub 3} nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al{sub 2}O{sub 3} powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al{sub 2}O{sub 3} particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al{sub 2}O{sub 3} particles.

  2. Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells.

    PubMed

    Elumalai, Naveen Kumar; Jin, Tan Mein; Chellappan, Vijila; Jose, Rajan; Palaniswamy, Suresh Kumar; Jayaraman, Sundaramurthy; Raut, Hemant Kumar; Ramakrishna, Seeram

    2013-10-09

    Inverted bulk heterojunction organic solar cells having device structure ITO/ZnO/poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM) /MoO3/Ag were fabricated with high photoelectric conversion efficiency and stability. Three types of devices were developed with varying electron transporting layer (ETL) ZnO architecture. The ETL in the first type was a sol-gel-derived particulate film of ZnO, which in the second and third type contained additional ZnO nanowires of varying concentrations. The length of the ZnO nanowires, which were developed by the electrospinning technique, extended up to the bulk of the photoactive layer in the device. The devices those employed a higher loading of ZnO nanowires showed 20% higher photoelectric conversion efficiency (PCE), which mainly resulted from an enhancement in its fill factor (FF). Charge transport characteristic of the device were studied by transient photovoltage decay and charge extraction by linearly increasing voltage techniques. Results show that higher PCE and FF in the devices employed ZnO nanowire plantations resulted from improved charge collection efficiency and reduced recombination rate.

  3. Spin Transport in Single Layer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Aji, Vivek

    Inversion symmetry breaking and strong spin orbit coupling in two dimensional transition metal dichalcogenides leads to interesting new phenomena such as the valley hall and spin hall effects. The nontrivial Berry curvature of the bands yields transverse spin currents in applied field. In this talk we characterize the spin transport in hole-doped systems. Due to the large spin-splitting, time-reversal invariance, and the large separation of hole pockets in momentum space, spin flip scattering involves inter-valley processes with large momentum. As such, one expects large spin life times and a large spin hall angle. We analyze the robustness of the phenomena to various scattering processes and explore the viability of transition metal dichalcogenides for spintronic applications. We acknowledge the support of the NSF via Grant NSF DMR-1506707.

  4. Electroosmosis in Membranes: Effects of Unstirred Layers and Transport Numbers

    PubMed Central

    Barry, P. H.; Hope, A. B.

    1969-01-01

    When a current is passed through a membrane system, differences in transport numbers between the membrane and the adjacent solutions will, in general, result in depletion and enhancement of concentrations at the membrane-solution interfaces. This will be balanced by diffusion back into the bulk solution, diffusion of solute back across the membrane itself, and osmosis resulting from these local concentration gradients. The two main results of such a phenomenon are (1) that there is a current-induced volume flow, which may be mistaken for electroosmosis, and (2) that there will generally develop transient changes in potential difference (PD) across membranes during and after the passage of current through them. PMID:5786317

  5. Multifunctional Inverse Opal-Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells.

    PubMed

    Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui

    2015-09-01

    A novel multifunctional inverse opal-like TiO2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.

  6. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing

    PubMed Central

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan

    2016-01-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689

  7. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.

    PubMed

    Cheng, Chi; Jiang, Gengping; Garvey, Christopher J; Wang, Yuanyuan; Simon, George P; Liu, Jefferson Z; Li, Dan

    2016-02-01

    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.

  8. Effects of hole-transporting layers of perovskite-based solar cells

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Kida, Tomoyasu; Takagi, Tatsuru; Oku, Takeo

    2016-02-01

    Fabrication and characterization of the photovoltaic and optical properties, and microstructure of perovskite-based solar cells with lead phthalocyanine (PbPc), zinc phthalocyanine, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], and copper(I) thiocyanate as hole-transporting layers were investigated. X-ray diffraction analysis and energy-dispersive X-ray spectroscopy were used to identify surface morphologies of the crystal structure and the elemental composition. Introducing PbPc into perovskite solar cells extended the retaining period of photovoltaic activity and performance. The effects of the hole-transporting layer on incident photon-to-current efficiency were investigated. The energy diagram and photovoltaic mechanism of the perovskite solar cells with the hole-transporting layer are discussed.

  9. A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Çeçen, A.; Fast, T.; Kumbur, E. C.; Kalidindi, S. R.

    2014-01-01

    The diffusion media (DM) has been shown to be a vital component for performance of polymer electrolyte fuel cells (PEFCs). The DM has a dual-layer structure composed of a macro-substrate referred to as the gas diffusion layer (GDL) coated with a micro-porous layer (MPL). Efficient prediction of the effective transport properties of the DM from its internal structure is essential to optimizing the multifunctional characteristics of this critical component. In this work, a unique data-driven approach to establishing structure-property correlations is introduced and applied to the case of gas diffusion in the GDL and MPL. This new approach provides an automated process to produce unbiased estimators to microstructural variance, in contrast to many process-related (hence biased) parameters employed by prominent correlations in the field. The present approach starts with a rigorous quantification of microstructure in the form of n-point statistics. It is followed by the identification of the key aspects of the internal structure through the use of principle component analysis. A data-driven correlation is established when the principal components are related to effective diffusivity by multivariate linear regression. This data-driven approach is compared to the conventional correlations and shown to achieve a very high accuracy for capturing the diffusive transport in the tested PEFC components.

  10. Transport spectroscopy in bilayer graphene using double layer heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Kayoung; Jung, Jeil; Fallahazad, Babak; Tutuc, Emanuel

    2017-09-01

    We provide a comprehensive study of the chemical potential of bilayer graphene in a wide range of carrier density, at zero and high magnetic (B)-fields, and at different transverse electric (E)-fields, using high quality double bilayer graphene heterostructures. Using a direct thermodynamic transport spectroscopic technique, we probe the chemical potential as a function of carrier density in six samples. The data clearly reveal the non-parabolicity and electron-hole asymmetry of energy-momentum dispersion in bilayer graphene. The tight-binding hopping amplitudes, t 0, t 1, and t 4, renormalized by electron-electron interaction are extracted from the chemical potential versus density dependence. A diverse set of electron-electron interaction driven phenomena were also clearly discerned at zero and high B-fields. We measure the gaps at integer fillings with orbital index N  =  0, 1, and discuss about the dependence of the N  =  0, 1 quantum Hall phases on the carrier density (or filling factor), E-field, and B-field.

  11. Highly stable perovskite solar cells with an all-carbon hole transport layer.

    PubMed

    Wang, Feijiu; Endo, Masaru; Mouri, Shinichiro; Miyauchi, Yuhei; Ohno, Yutaka; Wakamiya, Atsushi; Murata, Yasujiro; Matsuda, Kazunari

    2016-06-09

    Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene.

  12. Magneto-transport properties of a random distribution of few-layer graphene patches

    SciTech Connect

    Iacovella, Fabrice; Mitioglu, Anatolie; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Plochocka, Paulina; Escoffier, Walter; Trinsoutrot, Pierre; Vergnes, Hugues; Caussat, Brigitte

    2014-11-21

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  13. Activated Transport in the Separate Layers that Form the νT=1 Exciton Condensate

    NASA Astrophysics Data System (ADS)

    Wiersma, R. D.; Lok, J. G.; Kraus, S.; Dietsche, W.; von Klitzing, K.; Schuh, D.; Bichler, M.; Tranitz, H.-P.; Wegscheider, W.

    2004-12-01

    We observe the total filling factor νT=1 quantum Hall state in a bilayer two-dimensional electron system with virtually no tunneling. We find thermally activated transport in the balanced system with a monotonic increase of the activation energy with decreasing d/ℓB below 1.65. In the imbalanced system we find activated transport in each of the layers separately, yet the activation energies show a striking asymmetry around the balance point, implying a different excitation spectrum for the separate layers forming the condensed state.

  14. Magneto-transport properties of a random distribution of few-layer graphene patches

    NASA Astrophysics Data System (ADS)

    Iacovella, Fabrice; Trinsoutrot, Pierre; Mitioglu, Anatolie; Conédéra, Véronique; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Vergnes, Hugues; Caussat, Brigitte; Plochocka, Paulina; Escoffier, Walter

    2014-11-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  15. Diffusion across a layered medium and relation to transport in thermonuclear plasmas

    SciTech Connect

    Lopes Cardozo, N.J.; Peters, M.

    1995-11-01

    The generic characteristics of diffusion in a medium exhibiting strong variations of the diffusivity are considered. The varying diffusivity is parametrized by alternating layers of high and low diffusivity. The limiting case is considered that the insulating layers determine the net transport. Some salient features of tokamak transport, such as the fact that perturbative experiments yield a higher diffusivity than a steady-state power balance, are shown to be a natural result of the inhomogeneity. The importance of a possible inhomogeneous diffusivity for the comparison of measurements with theoretical expressions for the diffusivity is discussed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  16. Highly stable perovskite solar cells with an all-carbon hole transport layer

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Endo, Masaru; Mouri, Shinichiro; Miyauchi, Yuhei; Ohno, Yutaka; Wakamiya, Atsushi; Murata, Yasujiro; Matsuda, Kazunari

    2016-06-01

    Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene.Nano-carbon materials (carbon nanotubes, graphene, and graphene oxide) have potential application for photovoltaics because of their excellent optical and electronic properties. Here, we demonstrate that a single-walled carbon nanotubes/graphene oxide buffer layer greatly improves the photovoltaic performance of organo-lead iodide perovskite solar cells. The carbon nanotubes/graphene oxide buffer layer works as an efficient hole transport/electron blocking layer. The photovoltaic conversion efficiency of 13.3% was achieved in the organo-lead iodide perovskite solar cell due to the complementary properties of carbon nanotubes and graphene oxide. Furthermore, the great improvement of photovoltaic performance stability in the perovskite solar cells using carbon nanotubes/graphene oxide/polymethyl methacrylate was demonstrated in comparison with that using a typical organic hole transport layer of 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene. Electronic supplementary information (ESI

  17. Effect of hole injection layer/hole transport layer polymer and device structure on the properties of white OLED.

    PubMed

    Cho, Ho Young; Park, Eun Jung; Kim, Jin-Hoo; Park, Lee Soon

    2008-10-01

    Copolymers containing carbazole and aromatic amine unit were synthesized by using Pd-catalyzed polycondensation reaction. The polymers were characterized in terms of their molecular weight and thermal stability and their UV and PL properties in solution and film state. The band gap energy of the polymers was also determined by the UV absorption and HOMO energy level data. The polymers had high HOMO energy level of 5.19-5.25 eV and work function close to that of ITO. The polymers were thus tested as hole injection/transport layer in the white organic light emitting diodes (OLED) by using 4,4'-bis(2,2-diphenyl-ethen-1-yl)diphenyl (DPVBi) as blue emitting material and 5,6,11,12-tetraphenylnaphthacene (Rubrene) as orange emitting dopant. The synthesized polymer, poly bis[6-bromo-N-(2-ethylhexyl)-carbazole-3-yl] was found to be useful as hole injection layer/hole transport layer (HIL/HTL) multifunctional material with high luminance efficiency and stable white color coordinate in the wide range of applied voltage.

  18. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  19. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  20. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  1. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  2. 41 CFR 102-34.210 - May I use a Government motor vehicle for transportation between places of employment and mass...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... motor vehicle for transportation between places of employment and mass transit facilities? 102-34.210... of employment and mass transit facilities? Yes, you may use a Government motor vehicle for transportation between places of employment and mass transit facilities under the following conditions: (a)...

  3. Using A Lagrangian Chemistry Transport Model To Investigate Transport and Transformation of Pollutants From The European Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Arnold, S. R.; Chipperfield, M. P.; O'Connor, F. M.; Methven, J.; Law, K. S.; Pyle, J. A.

    The transport of pollutants and pollutant precursors from the continental boundary layer to the mid/upper troposphere has been recognised for some time as being po- tentially critical for the photochemistry of this region. Rapid transport by convective systems can transport fresh boundary layer air to the UT in a matter of hours. The ozone production potential of an uplifted air mass may continue to be significant as it is transported far away from its PBL source, due to the increased lifetimes of ozone precursors in the free troposphere. An understanding of the mechanisms which trans- fer boundary layer air to the free troposphere, and the subsequent chemical and mixing processes acting on this air, is therefore vital in order to gain an understanding of the ozone budget of the UT region. Here we use a Lagrangian chemistry transport model (CiTTyCAT) to investigate the chemistry of air masses observed during the NERC supported EXPORT (European eXport of Precursors of Ozone by long-Range Transport) and ACTO (Atmospheric Chemistry and Transport of Ozone) campaigns. The model uses 3 dimensional tra- jectories calculated from large-scale winds output from the ECMWF. The chemical model is initialised using 3D global fields from the TOMCAT CTM, and comprises 80 species and over 200 gas-phase reactions. Surface emissions and deposition pro- cesses are included along the trajectories. The main advantage of the Lagrangian method is the ability to follow individual air masses and study the evolution of chemistry in air masses which have been uplifted by different transport events. The lack of sub-grid transport processes (convection, tur- bulent mixing) in the Lagragian advection has allowed the identification of observed air masses where these processes appear to be important. The relative importance of mixing processes has been derived from tracer correlations in the campaign data. The Lagrangian model allows mixing to be investigateded in a controlled fashion and its 1

  4. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch's layer.

    PubMed

    Cheruvu, Narayan P S; Kompella, Uday B

    2006-10-01

    To determine the influence of the choroid-Bruch's layer and solute lipophilicity on in vitro transscleral drug permeability in bovine and porcine eyes. The in vitro permeability of two VEGF inhibitory drugs, budesonide and celecoxib, which are lipophilic and neutral at physiologic pH, and of three marker solutes, 3H-mannitol (hydrophilic, neutral), sodium fluorescein (hydrophilic, anionic), and rhodamine 6G (lipophilic, cationic), were determined across freshly excised scleras, with or without the underlying choroid-Bruch's layer. Select studies were performed using porcine sclera with and without choroid-Bruch's layer. Neural retina was removed by exposure of the eyecup to isotonic buffer and wherever required, the retinal pigment epithelial (RPE) layer of the preparation was disrupted and removed by exposure to hypertonic buffer. Because of the poor solubility of celecoxib and budesonide, permeability studies were conducted with 5% wt/vol of hydroxypropyl-beta-cyclodextrin (HPbetaCD). For other solutes, permeability studies were conducted, with and without HPbetaCD. Partitioning of the solutes into bovine sclera and choroid-Bruch's layer was also determined. The calculated log (distribution coefficient) values were -2.89, -0.68, 2.18, 3.12, and 4.02 for mannitol, sodium fluorescein, budesonide, celecoxib, and rhodamine 6G, respectively. Removal of RPE was confirmed by transmission electron microscopy and differences in the transport of mannitol. The order of the permeability coefficients (Papp) across sclera and sclera-choroid-Bruch's layers in bovine and porcine models was 3H-mannitol > fluorescein > budesonide > celecoxib > rhodamine 6G, with HPbetaCD, and 3H-mannitol > fluorescein > rhodamine 6G, without HPbetaCD. The presence of choroid-Bruch's layer reduced the bovine scleral permeability by 2-, 8-, 16-, 36-, and 50-fold and porcine tissue permeability by 2-, 7-, 15-, 33-, and 40-fold, respectively, for mannitol, sodium fluorescein, budesonide, celecoxib

  5. Quantifying the transport of subcloud layer reactants by shallow cumulus clouds over the Amazon

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.; van Stratum, B. J. H.; Krol, M. C.; Lelieveld, J.

    2013-12-01

    We investigate the vertical transport of atmospheric chemical reactants from the subcloud layer to the cumulus cloud layer driven by shallow convection over the Amazon during the dry season. The dynamical and chemical assumptions needed for mesoscale and global chemistry transport model parametrizations are systematically analyzed using a Large Eddy Simulation model. We quantify the mass flux transport contribution to the temporal evolution of reactants. Isoprene, a key atmospheric compound over the tropical rain forest, decreases by 8.5% h-1 on average and 15% h-1 at maximum due to mass‒flux‒induced removal. We apply mass flux parametrizations for the transport of chemical reactants and obtain satisfactory agreement with numerically resolved transport, except for some reactants like O3, NO, and NO2. The latter is caused by the local partitioning of reactants, influenced by UV radiation extinction by clouds and small‒scale variability of ambient atmospheric compounds. By considering the longer‒lived NOx (NO + NO2), the transport is well represented by the parametrization. Finally, by considering heterogeneous surface exchange conditions, it is demonstrated that the parametrizations are sensitive to boundary conditions due to changes in the boundary layer dynamics.

  6. Coherent Structures in the Turbulent Atmospheric Boundary Layer: modulation by static stability and role in transport

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Li, D.; Shah, S.

    2012-12-01

    Understanding the turbulent transport of momentum, scalars, and particles in the atmospheric boundary layer is important in many disciplines such as meteorology, hydrology, and desert morphodynamics. At present, similarity theories that rely on a significant degree of empiricism remain the main approach to understand and model these fluxes. One of the hurdles to developing more fundamental and robust theories is our lack of understanding of the topology and dynamics of turbulent coherent structures, which perform these fluxes, and how they are modulated by atmospheric stability. Using field data sets and numerical simulations of atmospheric surface layer flows under a range of stabilities, we revisit these links between coherent structures, atmospheric stability, and turbulent transport. The results confirm that the topology of the coherent structures is very sensitive to stability. The findings point to a gradual transformation of the structures from hairpin vortices under neutral stability, to thermals under unstable conditions, and to more horizontal structures under stable conditions. Under unstable conditions, this change then induces a decorrelation of the momentum and scalar fluxes in the surface layer: the eddies transporting heat and momentum become distinct leading to an increase in the transport efficiency of heat and a decrease in the transport efficiency of momentum. Under stable conditions, the reduction in the transport of momentum to the surface leads to reductions in the friction velocity and the turbulent kinetic energy (TKE) production. The effect of reduced production can be more important than the effect of direct TKE destruction in the stable ABL.

  7. Transportation & Work: Exploring Car Usage and Employment Outcomes in the LSAL Data. NCSALL Occasional Paper

    ERIC Educational Resources Information Center

    Sullivan, Kerri

    2003-01-01

    This analysis addresses the role of car usage in employment outcomes such as employment status, average weekly wages, and weeks worked per year. It postulates that car ownership is an important employment tool for adults of low educational attainment in Portland, even in the context of other factors such as social networks/resources (social…

  8. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-01

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m-2 K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the

  9. The effect of interfacial layers on charge transport in organic solar cell

    NASA Astrophysics Data System (ADS)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  10. Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating

    PubMed Central

    Gonnelli, R. S.; Paolucci, F.; Piatti, E.; Sharda, Kanudha; Sola, A.; Tortello, M.; Nair, Jijeesh R.; Gerbaldi, C.; Bruna, M.; Borini, S.

    2015-01-01

    The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·1014 cm−2 has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T2 component – that can be associated with electron-electron scattering – and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy. PMID:25906088

  11. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers.

    PubMed

    Ikeda, K; Ueda, C; Yamada, K; Nakamura, A; Hatsuda, Y; Kawanishi, S; Nishii, S; Ogawa, M

    2015-07-01

    Human choriocarcinoma has been used as a model to study trophoblast transcellular drug transport in the placenta. Previous models had limitations regarding low molecular weight drug transport through the intracellular gap junction. The purpose of this study was to evaluate placental carrier-mediated transport across a differentiating JEG-3 choriocarcinoma cell (DJEGs) layer model in which the intracellular gap junction was restricted. Cimetidine is the substrate of an efflux transporter, breast cancer resistance protein (BCRP). BCRP highly expressed in the placenta, and its function in the DJEGs model was investigated. In addition, the placental drug transport of another efflux transporter, multidrug resistance-associated proteins (MRPs), and an influx transporter, monocarboxylate transporter (MCT), were examined with various substrates. Cimetidine permeated from the fetal side to the maternal side at significantly high levels and saturated in a dose-dependent manner. The permeability coefficient of a MRP substrate, fluorescein, across the DJEGs model was significantly increased by inhibiting MRP function with probenecid. On the other hand, permeation in the influx direction to the fetal side with a substrate of MCT, valproic acid, had a gentle dose-dependent saturation. These findings suggest that the DJEGs model could be used to evaluate transcellular placental drug transport mediated by major placental transporters.

  12. Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2015-04-14

    In this work, the effects of a titanium (Ti) layer on the charge transport and recombination rates of flexible perovskite solar cells were studied. Ti as an efficient barrier layer was deposited directly on PET-ITO flexible substrates through RF magnetic sputtering using a Ti-source and a pressure of ∼5 mTorr. A Ti coated PET-ITO was used for the fabrication of a flexible perovskite solar cell without using any metal oxide layer. The fabricated flexible perovskite solar cell was composed of a PET-ITO/Ti/perovskite (CH3NH3PbI3)/organic hole transport layer of 2,2',7,7'-tetrakis [N,N'-di-p-methoxyphenylamine]-9,9'-spirobifluorene (spiro-OMeTAD)-Li-TFSI/Ag. A high conversion efficiency of ∼8.39% along with a high short circuit current (JSC) of ∼15.24 mA cm(-2), an open circuit voltage (VOC) of ∼0.830 V and a high fill factor (FF) of ∼0.66 was accomplished by the fabricated flexible perovskite solar cell under a light illumination of ∼100 mW cm(-2) (1.5 AM). Intensity-modulated photocurrent (IMPS)/photovoltage spectroscopy (IMVS) studies demonstrated that the fabricated flexible perovskite solar cell considerably reduced the recombination rate.

  13. Employment of Mixed Layer Models and Large Eddy Simulations to Determine the Factors Controlling Stratocumulus Cloud Lifetime over the Coast

    NASA Astrophysics Data System (ADS)

    Ghonima, M. S.; Heus, T.; Norris, J. R.; Kleissl, J. P.

    2015-12-01

    Summertime marine boundary layer stratocumulus (Sc) clouds have a strong impact on ecology and infrastructure over the coast of California. Modeling the lifetime of such clouds in global climate models (GCM) or numerical weather prediction models (NWP) is difficult and significant errors are typically observed. For instance, stratocumulus clouds over the coast of southern California in the Weather Research and Forecasting (WRF) model were found to dissipate, on average, 1.9 hours earlier than observed via satellite. In order to determine the factors controlling the Sc lifetime, we have employed large eddy simulations (LES) and a mixed layer model (MLM). Enhancements to previous MLMs include a temperature dependent radiation scheme, a land surface model, and a novel entrainment parameterization scheme for stratocumulus clouds over land in which the entrainment velocity is derived as a function of the surface buoyancy flux and the buoyancy flux integrated over the cloud layer. The advantage of using the MLM is that different mechanisms and feedbacks controlling stratocumulus cloud thickness can be examined rapidly through sensitivity studies. We find that during the night cloud lifetime is modulated by longwave cooling of the boundary layer and entrainment flux warming and drying. During the day, surface shortwave radiative heating drives surface flux therefore increasing the turbulence within the boundary layer and increasing entrainment flux. For wet surface conditions, the increase in latent heat flux moistens the boundary layer and offsets the increase in entrainment flux warming and drying of the boundary layer and clouds persist throughout the day. For dry surface conditions, the combination of increased surface sensible heat flux warming the boundary layer and increased entrainment flux act to dissipate the cloud within a couple of hours after sunrise. For both cases, the sea breeze advects cool ocean air that acts to thicken and prolong the cloud lifetime

  14. Impact of Soil Layering on Evaporation Driven Flow and Transport in Arid Soils

    NASA Astrophysics Data System (ADS)

    Nie, W.; Nicholl, M. J.; Young, M. H.; Yu, Z.

    2008-12-01

    Coupling between soil development, hydrologic processes, and plant growth in arid regions is not well understood. Here, we integrate field, lab and numerical investigations to study the impact of soil layering on evaporation driven flow and transport in arid soils. Specifically, two hypotheses are proposed: 1) soil horizon development may significantly impact evaporation rate and spatio-temporal chemical species redistribution in arid soils; 2) differences in layering between soils beneath plant canopies and nearby interspace (bare soils) may significantly influence evaporation-driven upward water flow and solute transport. Field samples were collected from two 1-m deep soil pits in Eldorado Valley, approximately 50 km from Las Vegas, Nevada. One soil pit was located beneath a creosote bush, the other from the adjacent interspace. The overall concentrations of K+, Na+, Ca2+, Mg2+, SO42-, and soluble salts in soils under plant canopy are much higher than those from the interspace. Salts accumulated at depths from 60 to 90 cm under the canopy; in contrast, the salt concentrations in bare soils were more uniform and may accumulate in relatively deeper layers. Soil samples taken from the pits will be packed into layered and non- layered columns, respectively, to examine the effects of soil layering on evaporation flow and transport. Evaporation rate, soil-water matric/osmotic potential, and temperature gradients in each column will be continuously monitored. Upward flow and transport in different soil layering under various conditions will be simulated using the HYDRUS model. It is expected that less soil horizon development will lead to higher evaporation rates, resulting in lower volumetric water content and higher accumulation of salts in the uppermost soil horizons.

  15. Tandem colloidal quantum dot solar cells employing a graded recombination layer

    NASA Astrophysics Data System (ADS)

    Wang, Xihua; Koleilat, Ghada I.; Tang, Jiang; Liu, Huan; Kramer, Illan J.; Debnath, Ratan; Brzozowski, Lukasz; Barkhouse, D. Aaron R.; Levina, Larissa; Hoogland, Sjoerd; Sargent, Edward H.

    2011-08-01

    Tuning of the electronic bandgap in colloidal quantum dots (CQDs) by changing their size enables the spectral response of CQD-based photodetectors and photovoltaic devices to be tailored. Multi-junction solar cells made from a combination of CQDs of differing sizes and thus bandgaps are a promising means by which to increase the energy harvested from the Sun's broad spectrum. Here, we report the first CQD tandem solar cells using the size-effect tuning of a single CQD material, PbS. We use a graded recombination layer to provide a progression of work functions from the hole-accepting electrode in the bottom cell to the electron-accepting electrode in the top cell, allowing matched electron and hole currents to meet and recombine. Our tandem solar cell has an open-circuit voltage of 1.06 V, equal to the sum of the two constituent single-junction devices, and a solar power conversion efficiency of up to 4.2%.

  16. Investigation of hydrogeologic processes in a dipping layer structure - 2. Transport and biodegradation of organics

    NASA Astrophysics Data System (ADS)

    Alfnes, E.; Breedveld, G. D.; Kinzelbach, W.; Aagaard, P.

    2004-04-01

    Numerical simulation tools have been used to study the dominating processes during transport of aromatic hydrocarbons in the unsaturated soil zone. Simulations were based on field observations at an experimental site located on a glacial delta plain with pronounced layered sedimentary structures. A numerical model for transport in the unsaturated zone, SWMS-3D, has been extended to incorporate coupled multispecies transport, microbial degradation following Monod kinetics and gas diffusive transport of oxygen and hydrocarbons. The flow field parameters were derived from previous work using nonreactive tracers. Breakthrough curves (BTC) from the hydrocarbon field experiment were used to determine sorption parameters and Monod kinetic parameters using a fitting procedure. The numerical simulations revealed that the assumption of homogeneous layers resulted in deviations from the field observations. The deviations were more pronounced with incorporation of reactive transport, compared with earlier work on nonreactive transport. To be able to model reasonable BTC, sorption had to be reduced compared to laboratory experiments. The initial biomass and the maximum utilisation rate could be adjusted to capture both the initial lag phase and the overall degradation rate. Nevertheless, local oxygen limitation is predicted by the model, which was not observed in the field experiment. Incorporation of evaporation and diffusive gas transport of the hydrocarbons did not significantly change the local oxygen demand. The main cause of the observed discrepancies between model and field are attributed to channelling as a result of small-scale heterogeneities such as biopores.

  17. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics.

    PubMed

    Xie, Fengxian; Choy, Wallace C H; Wang, Chuandao; Li, Xinchen; Zhang, Shaoqing; Hou, Jianhui

    2013-04-11

    A simple one-step method is reported to synthesize low-temperature solution-processed transition metal oxides (TMOs) of molybdenum oxide and vanadium oxide with oxygen vacancies for a good hole-transport layer (HTL). The oxygen vacancy plays an essential role for TMOs when they are employed as HTLs: TMO films with excess oxygen are highly undesirable for their application in organic electronics.

  18. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers

    NASA Astrophysics Data System (ADS)

    Gopal, Ashwini; Hoshino, Kazunori; Kim, Sunmin; Zhang, Xiaojing

    2009-06-01

    We present a colloidal quantum dot based light emitting diode (QD-LED) which utilizes the p-type silicon substrate as the hole transporting layer. A microcontact printing technique was introduced to pattern self-assembled CdSe/ZnS QD films, which allowed creation of an LED with well-defined geometry suitable for monolithic integration on silicon substrates. Our QD-LED consists of multi-layers of inorganic materials: a combination of Au (thickness: 5 nm) and Ag (12 nm) as the cathode, a ZnO:SnO2 mixture (ratio 3:1, 40 nm) as the electron transporting layer, CdSe/ZnS QDs as the light emission layer, 1 nm SiO2 as an energy barrier layer, and p-type silicon as the hole transporting layer. These printed QD-LEDs are capable of multi-color emission peaked at wavelengths of 576 nm, 598 nm, and 622 nm, corresponding to sizes of the embedded QDs with the diameters of 8.4 nm, 9.0 nm, and 9.8 nm respectively. The optimal thickness of the quantum dot layers needed for light emission is characterized using atomic force microscopy: for 8.4 nm QDs, the value is 33 nm (± 5 nm) or ~4 ML (monolayers). Larger turn on voltages were measured (2, 4 and 5 V) for the smaller average particle diameters (9.8 nm, 9.0 nm and 8.4 nm, respectively). The mixture ratio of Zn and Sn was optimized (40% Zn and 25% Sn) to maintain proper hole-electron recombination at the QD layer and avoid the yellowish-white emission from ZnO/SnO2.

  19. Thiamine transport in thiamine-deficient rats. Role of the unstirred water layer.

    PubMed

    Hoyumpa, A M; Nichols, S; Schenker, S; Wilson, F A

    1976-06-17

    As part of a systematic study of alcoholism and thiamine absorption, the effect of diet-induced thiamine deficiency and the role of the unstirred water layer on the thiamine transport were investigated. Using 3H-labeled dextran as a marker of adherent mucosal volume, jejunal uptake of 14C-labeled thiamine hydrochloride was measured, in vitro, in thiamine-deficient rats and pair-fed controls. Uptake of low thiamine concentrations (0.2 and 0.5 muM) was greater in the thiamine-deficient rats than in the controls. In contrast, uptake rates for high thiamine concentrations (20 and 50 muM) were similar in both groups. While Jmax was unaltered, Km was decreased in thiamine deficiency, suggesting a decrease in unstirred water layer thickness. Accordingly, the thickness of the water layer was measured in both groups of animals and correlated with Jmax and Km under unstirred and stirred conditions. Without stirring, there was no difference in Jmax between the two groups. In contrast, both Km and the water layer were reduced in the thiamine-deficient rats. With stirring, Jmax was not affected, but both Km and the water layer thickness were reduced to similar values in both groups. Reversal of thiamine deficiency resulted in the return of thiamine uptake and the unstirred water layer thickness to control values. These data support the concept of a dual system of thiamine transport and emphasize the role of the unstirred water layer as an important determinant of transport kinetics not only under physiologic situations but also in diet-induced rat thiamine deficiency, a model for a clinical patholigical state. The decrease in the unstirred water layer thickness in thiamine deficiency may be also viewed as a possible adaptive mechanism to facilitate absorption of meager supplies of thiamine.

  20. Analytical solution for the advection-dispersion transport equation in layered media

    USDA-ARS?s Scientific Manuscript database

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  1. Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell

    SciTech Connect

    Damle, Ashok S; Cole, J Vernon

    2008-12-01

    A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

  2. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1973-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. In the microscopic model of the atom, three electronic levels are accounted for. By using an asymptotic technique, the shock morphology is found on a continuum flow basis. This procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer. The results show four main interesting points: (1) on structuring the transport shock, ionization and excitation rates must be included in the formulation, since the flow is not frozen with respect to the population of the different electronic levels; (2) an electron temperature precursor appears at the beginning of the transport shock; (3) the collisional layer is rationally reduced to quadrature for special initial conditions, which (4) are obtained from new Rankine-Hugoniot relations for the inner shock.

  3. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1973-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. In the microscopic model of the atom, three electronic levels are accounted for. By using an asymptotic technique, the shock morphology is found on a continuum flow basis. This procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer. The results show four main interesting points: (1) on structuring the transport shock, ionization and excitation rates must be included in the formulation, since the flow is not frozen with respect to the population of the different electronic levels; (2) an electron temperature precursor appears at the beginning of the transport shock; (3) the collisional layer is rationally reduced to quadrature for special initial conditions, which (4) are obtained from new Rankine-Hugoniot relations for the inner shock.

  4. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R.

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters.

  5. On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers

    NASA Astrophysics Data System (ADS)

    Pharoah, J. G.; Karan, K.; Sun, W.

    This paper reviews the approach taken in the literature to model the effective transport coefficients - mass diffusivity, electrical conductivity, thermal conductivity and hydraulic permeability - of carbon-fibre based porous electrode of polymer electrolyte membrane fuel cells (PEMFCs). It is concluded that current PEMFC model do not account for the inherent anisotropic microstructure of the fibrous electrodes. Simulations using a 2-D PEMFC cathode model show that neglecting the anisotropic nature and associated transport coefficients of the porous electrodes significantly influences both the nature and the magnitude of the model predictions. This emphasizes the need to appropriately characterize the relevant anisotropic properties of the fibrous electrode.

  6. The Role of Wave Cyclones in Transporting Boundary Layer Air to the Free Troposphere During the Spring 2001 NASA / TRACE-P Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Hannan, J. R.; Crawford, J. H.; Sachse, G. W.; Blake, D. R.

    2003-01-01

    Transport of boundary layer air to the free troposphere by cyclones during NASA's Transport and Chemical Evolution over the Pacific (TRACE-P) experiment is investigated. Airstreams responsible for boundary layer venting are diagnosed using results from a high-resolution meteorological model (MM5) together with in situ and remotely sensed chemical data. Hourly wind data from the MM5 are used to calculate three-dimensional grids of backward air trajectories. A reverse domain filling (RDF) technique then is employed to examine the characteristics of airstreams over the computational domain, and to isolate airstreams ascending from the boundary layer to the free troposphere during the previous 36 hours. Two cases are examined in detail. Results show that airstreams responsible for venting the boundary layer differ considerably from those described by classic conceptual models and in the recent literature. In addition, airstreams sampled by the TRACE-P aircraft are found to exhibit large variability in chemical concentrations. This variability is due to differences in the boundary layer histories of individual airstreams with respect to anthropogenic sources over continental Asia and Japan. Complex interactions between successive wave cyclones also are found to be important in determining the chemical composition of the airstreams. Particularly important is the process of post-cold frontal boundary layer air being rapidly transported offshore and recirculated into ascending airstreams of upstream cyclones.

  7. Interrelated structures of the transport shock and collisional relaxation layer in a multitemperature, multilevel ionized gas

    NASA Technical Reports Server (NTRS)

    Vinolo, A. R.; Clarke, J. H.

    1972-01-01

    The gas dynamic structures of the transport shock and the downstream collisional relaxation layer are evaluated for partially ionized monatomic gases. Elastic and inelastic collisional nonequilibrium effects are taken into consideration. Three electronic levels are accounted for in the microscopic model of the atom. Nonequilibrium processes with respect to population of levels and species plus temperature are considered. By using an asymptotic technique the shock morphology is found on a continuum flow basis. The asymptotic procedure gives two distinct layers in which the nonequilibrium effects to be considered are different. A transport shock appears as the inner solution to an outer collisional relaxation layer in which the gas reaches local equilibrium. A family of numerical examples is displayed for different flow regimes. Argon and helium models are used in these examples.

  8. Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported

    NASA Astrophysics Data System (ADS)

    Rajapakshe, Chamara; Zhang, Zhibo; Yorks, John E.; Yu, Hongbin; Tan, Qian; Meyer, Kerry; Platnick, Steven; Winker, David M.

    2017-06-01

    From June to October, low-level clouds in the southeast (SE) Atlantic often underlie seasonal aerosol layers transported from African continent. Previously, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar observations have been used to estimate the relative vertical location of the above-cloud aerosols (ACA) to the underlying clouds. Here we show new observations from NASA's Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm observations reveal that the bottom of the ACA layer is much lower than previously estimated based on CALIPSO 532 nm observations. For about 60% of CATS nighttime ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying cloud. Our results are important for future studies of the microphysical indirect and semidirect effects of ACA in the SE Atlantic region.

  9. High performance of inverted polymer solar cells with cobalt oxide as hole-transporting layer

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong; Peng, Qing; Zhu, Weiguo; Lei, Gangtie

    2015-05-01

    Cobalt oxide (II, III) (CoOx) was inserted as efficient hole-transporting interlayer between the active layer and top electrode in inverted polymer solar cells (PSCs) with titanium (diisopropoxide) bis(2, 4-pentanedionate) (TIPD) as an electron selective layer. The work function of CoOx was measured by Kelvin probe and the device performances with different thicknesses of cobalt oxide were studied. The device with CoOx exhibited a remarkable improvement in power conversion efficiency compared with that without CoOx, which indicated that CoOx efficiently prevented the recombination of charge carriers at the organic/top electrode interface. The performance improvement was attributed to the fact that the CoOx thin film can module the Schottky barrier and form an ohmic contact at the organic/metal interface, which makes it a promising hole-transporting layer.

  10. Transport numbers in the surface layers of asymmetric membranes from initial time measurements

    SciTech Connect

    Compan, V.; Lopez, M.L. ); Sorensen, T.S. ); Garrido, J. )

    1994-09-08

    The initial time asymmetry potentials of two ultra filtration membranes (cellulose acetate and polysulfone membranes) were measured in electrochemical cells using Ag/AgCl electrodes and NaCl solutions. The concentration in the two electrode chambers differed slightly by a fixed concentration difference. Either the membranes were brought to equilibrium with the left-hand solution and subsequently exposed to the right-hand solution at the right-hand face, or the procedure was reversed. From such measurements it is possible to evaluate the transport numbers corresponding to each of the two surface layers of the membrane under conditions such that the effects of autoprotolysis of water and of foreign ions may be neglected. These measurements permit a description of each of the surface layers of the membranes and make possible an electrochemical characterization of the asymmetry of ultrafiltration membranes. The asymmetry is given by the difference between surface layer transport numbers. 31 refs., 13 figs., 4 tabs.

  11. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy

    2016-12-01

    Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.

  12. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  13. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-03-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates [1-3]. Various approaches including optimizing morphology of the active layers [1,2], introducing new materials as the donor and acceptor [3,4], new device structures such as tandem structure [5,6] have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer [5,7].

  14. High work-function hole transport layers by self-assembly using a fluorinated additive

    DOE PAGES

    Mauger, Scott A.; Li, Jun; Özmen, Özge Tüzün; ...

    2013-10-30

    The hole transport polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) derives many of its favorable properties from a PSS-rich interfacial layer that forms spontaneously during coating. Since PEDOT:PSS is only usable as a blend it is not possible to study PEDOT:PSS without this interfacial layer. Through the use of the self-doped polymer sulfonated poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl) (S-P3MEET) and a polyfluorinated ionomer (PFI) it is possible to compare transparent conducting organic films with and without interfacial layers and to understand their function. Using neutron reflectometry, we show that PFI preferentially segregates at the top surface of the film during coating and forms a thermally stable surfacemore » layer. Because of this distribution we find that even small amounts of PFI increase the electron work function of the HTL. We also find that annealing at 150°C and above reduces the work function compared to samples heated at lower temperatures. Using near edge x-ray absorption fine structure spectroscopy and gas chromatography we show that this reduction in work function is due to S-P3MEET being doped by PFI. Organic photovoltaic devices with S-P3MEET/PFI hole transport layers yield higher power conversion efficiency than devices with pure S-P3MEET or PEDOT:PSS hole transport layers. Additionally, devices with a doped interface layer of S-P3MEET/PFI show superior performance to those with un-doped S-P3MEET.« less

  15. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  16. High work-function hole transport layers by self-assembly using a fluorinated additive

    SciTech Connect

    Mauger, Scott A.; Li, Jun; Özmen, Özge Tüzün; Yang, Andy Y.; Friedrich, Stephan; Rail, M. Diego; Berben, Louise A.; Moulé, Adam J.

    2013-10-30

    The hole transport polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) derives many of its favorable properties from a PSS-rich interfacial layer that forms spontaneously during coating. Since PEDOT:PSS is only usable as a blend it is not possible to study PEDOT:PSS without this interfacial layer. Through the use of the self-doped polymer sulfonated poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl) (S-P3MEET) and a polyfluorinated ionomer (PFI) it is possible to compare transparent conducting organic films with and without interfacial layers and to understand their function. Using neutron reflectometry, we show that PFI preferentially segregates at the top surface of the film during coating and forms a thermally stable surface layer. Because of this distribution we find that even small amounts of PFI increase the electron work function of the HTL. We also find that annealing at 150°C and above reduces the work function compared to samples heated at lower temperatures. Using near edge x-ray absorption fine structure spectroscopy and gas chromatography we show that this reduction in work function is due to S-P3MEET being doped by PFI. Organic photovoltaic devices with S-P3MEET/PFI hole transport layers yield higher power conversion efficiency than devices with pure S-P3MEET or PEDOT:PSS hole transport layers. Additionally, devices with a doped interface layer of S-P3MEET/PFI show superior performance to those with un-doped S-P3MEET.

  17. Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers

    NASA Astrophysics Data System (ADS)

    Stratakis, Emmanuel; Savva, Kyriaki; Konios, Dimitrios; Petridis, Constantinos; Kymakis, Emmanuel

    2014-05-01

    A facile, fast, non-destructive and roll-to-roll compatible photochemical method for simultaneous partial reduction and doping of graphene oxide (GO) films through ultraviolet laser irradiation in the presence of a Cl2 precursor gas is demonstrated. The photochemical chlorinated GO-Cl films were fully characterized by XPS and Raman measurements, in which grafting of chloride to the edges and the basal plane of GO was confirmed. By tuning the laser exposure time, it is possible to control the doping and reduction levels and therefore to tailor the work function (WF) of the GO-Cl layers from 4.9 eV to a maximum value of 5.23 eV. These WF values match with the HOMO level of most polymer donors employed in OPV devices. Furthermore, high efficiency poly(2,7-carbazole) derivative (PCDTBT):fullerene derivative (PC71BM) based OPVs with GO-Cl as the hole transporting layer (HTL) were demonstrated with a power conversion efficiency (PCE) of 6.56% which is 17.35% and 19.48% higher than that of the pristine GO and PEDOT:PSS based OPV devices, respectively. The performance enhancement was attributed to more efficient hole transportation due to the energy level matching between the GO-Cl and the polymer donor.

  18. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-04-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  19. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells.

    PubMed

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-01-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  20. Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics

    DOE PAGES

    Subbiah, Anand S.; Mahuli, Neha; Agarwal, Sumanshu; ...

    2017-07-21

    Hybrid perovskite photovoltaic devices heavily rely on the use of organic (rather than inorganic) charge-transport layers on top of a perovskite absorber layer because of difficulties in depositing inorganic materials on top of these fragile absorber layers. However, in comparison to the unstable and expensive organic transport materials, inorganic charge-transport layers provide improved charge transport and stability to the device architecture. Here, we report photovoltaic devices using all-inorganic transport layers in a planar p-i-n junction device configuration using formamidinium lead tribromide (FAPbBr3) as an absorber. Efficient planar devices are obtained through atomic layer deposition of nickel oxide and sputtered zincmore » oxide as hole- and electron-transport materials, respectively. Using only inorganic charge-transport layers resulted in planar FAPbBr3 devices with a power conversion efficiency of 6.75% at an open-circuit voltage of 1.23 V. In conclusion, the transition of planar FAPbBr3 devices making from all-organic towards all-inorganic charge-transport layers is studied in detail.« less

  1. Incorporating layer- and local-scale heterogeneities in numerical simulation of unsaturated flow and tracer transport.

    PubMed

    Pan, Feng; Ye, Ming; Zhu, Jianting; Wu, Yu-Shu; Hu, Bill X; Yu, Zhongbo

    2009-01-26

    This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.

  2. Incorporating layer- and local-scale heterogeneities in numerical simulation of unsaturated flow and tracer transport

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Ye, Ming; Zhu, Jianting; Wu, Yu-Shu; Hu, Bill X.; Yu, Zhongbo

    2009-01-01

    This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.

  3. Variable and Conflicting Shear Stress Estimates Inside an Aeolian Boundary Layer with Active Sand Transport

    NASA Astrophysics Data System (ADS)

    Baas, A. C. W.; Lee, Z. S.

    2015-12-01

    This contribution presents a comparison between two methods for measuring shear stress in an atmospheric internal boundary layer over a beach surface under optimum conditions, using wind velocities measured synchronously at 13 heights over a 1.7 m vertical array using ultrasonic anemometry. The Reynolds decomposition technique determines at-a-point shear stresses at each measurement height, while the Law-of-the-Wall yields a single boundary layer estimate based on fitting a logarithmic velocity profile through the array data. Analysis reveals significant inconsistencies between estimates derived from the two methods, on both a whole-event basis and as time-series. Despite a near-perfect fit of the Law-of-the-Wall, the point estimates of Reynolds shear stress vary greatly between heights, calling into question the assumed presence of a constant stress layer. A comparison with simultaneously measured sediment transport finds no relationship between transport activity and the discrepancies in shear stress estimates. Results do show, however, that Reynolds shear stress measured nearer the bed exhibits slightly better correlation with sand transport rate. The findings serve as a major cautionary message to the interpretation and application of single-height measurements of Reynolds shear stress and their equivalence to Law-of-the-Wall derived estimates, and these concerns apply widely to boundary layer flows in general.

  4. Analysis of water transport in a five-layer model of PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Falin; Chang, Min-Hsing; Fang, Chi-Fu

    The water transport in a proton exchange membrane fuel cell (PEMFC) is investigated in this study. A five-layer theoretical model is proposed that includes anode and cathode gas diffusion layers (GDLs), catalyst layers (CLs), and the layer of proton exchange membrane. Especially, the volume of membrane is assumed to be variable with its water content and this effect on water transport is examined. Both steady and transient transport phenomena are considered by changing several crucial system parameters such as the relative humidity of reactant gas, the porosity of GDL, and the membrane thickness. The results show that if the humidification of the reactant gases is sufficient, the water management would be better for larger porosities of GDLs or a thinner membrane, and the resistance and overvoltage of the membrane can be reduced significantly as well. Furthermore, it is found that the membrane swelling effect will increase the water content of the membrane especially in the region close to the cathode interface, and lengthen the response time for a PEMFC to reach steady state as switching between two different operating conditions in comparison with the case ignoring this effect.

  5. Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer.

    PubMed

    Xia, Fei; Wu, Qiliang; Zhou, Pengcheng; Li, Yi; Chen, Xiang; Liu, Qing; Zhu, Jun; Dai, Songyuan; Lu, Yalin; Yang, Shangfeng

    2015-06-24

    An amphiphilic surfactant, oleamide, was applied to dope the PCBM electron transport layer (ETL) of inverted structure perovskite solar cells (ISPSCs), resulting in a dramatic efficiency enhancement. Under the optimized oleamide doping ratio of 5.0 wt %, the power conversion efficiency of the CH3NH3PbIxCl(3-x) perovskite-based ISPSC device is enhanced from 10.05% to 12.69%, and this is primarily due to the increases of both fill factor and short-circuit current. According to the surface morphology study of the perovskite/PCBM bilayer film, oleamide doping improves the coverage of PCBM ETL onto the perovskite layer, and this is beneficial for the interfacial contact between the perovskite layer and the Ag cathode and consequently the electron transport from perovskite to the Ag cathode. Such an improved electron transport induced by oleamide doping is further evidenced by the impedance spectroscopic study, revealing the prohibited electron-hole recombination at the interface between the perovskite layer and the Ag cathode.

  6. Development of Layered Sediment Structure and its Effects on Pore Water Transport and Hyporheic Exchange

    SciTech Connect

    Packman, Aaron I.; Marion, Andrea; Zaramella, Mattia; Chen, Cheng; Gaillard, Jean-François; Keane, Denis T.

    2008-04-15

    Hyporheic exchange is known to provide an important control on nutrient and contaminant fluxes across the stream-subsurface interface. Similar processes also mediate interfacial transport in other permeable sediments. Recent research has focused on understanding the mechanics of these exchange processes and improving estimation of exchange rates in natural systems. While the structure of sediment beds obviously influences pore water flow rates and patterns, little is known about the interplay of typical sedimentary structures, hyporheic exchange, and other transport processes in fluvial/alluvial sediments. Here we discuss several processes that contribute to local-scale sediment heterogeneity and present results that illustrate the interaction of overlying flow conditions, the development of sediment structure, pore water transport, and stream-subsurface exchange. Layered structures are shown to develop at several scales within sediment beds. Surface sampling is used to analyze the development of an armor layer in a sand-and-gravel bed, while innovative synchrotron-based X-ray microtomography is used to observe patterns of grain sorting within sand bedforms. We show that layered bed structures involving coarsening of the bed surface increase interfacial solute flux but produce an effective anisotropy that favors horizontal pore water transport while limiting vertical penetration.

  7. Epitaxial 1D electron transport layers for high-performance perovskite solar cells.

    PubMed

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-10-07

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.

  8. Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer

    SciTech Connect

    Edri, Eran; Frei, Heinz

    2015-12-07

    Dense phase silica layers with thickness of a few nanometers featuring embedded organic molecular wires of type p-oligo(phenylenevinylene) are shown by visible light sensitized electrochemical measurements to transport charges across the insulating membrane. Here, we find that such hybrid materials combination allows electronic charge transport only through the wires, while blocking molecular transport. Embodiment of the wire molecules in the silica was accomplished by atomic layer deposition under mild temperature conditions. Grown on Co oxide films for water oxidation, with the wire molecules covalently anchored on the oxide surface, the layer functions as a proton conducting separation membrane. Characterization by XPS, FT-IR and STEM/EDX confirms the integrity of the silica-encapsulated organic wires. Cyclic voltammetry with redox couple of selected potential relative to the energy levels of the wire molecules shows that the membrane is free of pinholes. The new type of membrane allows separation of incompatible redox reaction environments on the length scale of nanometers while enabling controlled electron transport between them. Finally, this opens up the coupling of carbon dioxide reduction with water oxidation, the essential reactions of artificial photosynthesis, in an integrated nanoscale photosystem.

  9. Effect of benthic boundary layer transport on the productivity of Mono Lake, California

    PubMed Central

    Bruce, Louise C; Jellison, Robert; Imberger, Jörg; Melack, John M

    2008-01-01

    The significance of the transport of nutrient-rich hypolimnetic water via the benthic boundary layer (BBL) to the productivity of Mono Lake was studied using a coupled hydrodynamic and ecological model validated against field data. The coupled model enabled us to differentiate between the role of biotic components and hydrodynamic forcing on the internal recycling of nutrients necessary to sustain primary productivity. A 4-year period (1991–1994) was simulated in which recycled nutrients from zooplankton excretion and bacterially-mediated mineralization exceeded sediment fluxes as the dominant source for primary productivity. Model outputs indicated that BBL transport was responsible for a 53% increase in the flux of hypolimnetic ammonium to the photic zone during stratification with an increase in primary production of 6% and secondary production of 5%. Although the estimated impact of BBL transport on the productivity of Mono Lake was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active. PMID:18710583

  10. Effect of benthic boundary layer transport on the productivity of Mono Lake, California.

    PubMed

    Bruce, Louise C; Jellison, Robert; Imberger, Jörg; Melack, John M

    2008-08-19

    The significance of the transport of nutrient-rich hypolimnetic water via the benthic boundary layer (BBL) to the productivity of Mono Lake was studied using a coupled hydrodynamic and ecological model validated against field data. The coupled model enabled us to differentiate between the role of biotic components and hydrodynamic forcing on the internal recycling of nutrients necessary to sustain primary productivity. A 4-year period (1991-1994) was simulated in which recycled nutrients from zooplankton excretion and bacterially-mediated mineralization exceeded sediment fluxes as the dominant source for primary productivity. Model outputs indicated that BBL transport was responsible for a 53% increase in the flux of hypolimnetic ammonium to the photic zone during stratification with an increase in primary production of 6% and secondary production of 5%. Although the estimated impact of BBL transport on the productivity of Mono Lake was not large, significant nutrient fluxes were simulated during periods when BBL transport was most active.

  11. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    PubMed Central

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-01-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470

  12. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-03-01

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal.

  13. Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device.

    PubMed

    Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian

    2016-03-02

    We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal.

  14. Particle transport and flow modification in planar temporally evolving laminar mixing layers. I. Particle transport under one-way coupling

    NASA Astrophysics Data System (ADS)

    Narayanan, Chidambaram; Lakehal, Djamel

    2006-09-01

    Simulations of two-dimensional, particle-laden mixing layers were performed for particles with Stokes numbers of 0.3, 0.6, 1, and 2 under the assumption of one-way coupling using the Eulerian-Lagrangian method; two-way coupling is addressed in Part II. Analysis of interphase momentum transfer was performed in the Eulerian frame of reference by looking at the balance of fluid-phase mean momentum, mean kinetic energy, modal kinetic energy, and particle-phase mean momentum. The differences in the dominant mechanisms of vertical transport of streamwise momentum between the fluid and particle phases is clearly brought out. In the fluid phase, growth of the mixing layer is due to energy transfer from the mean flow to the unstable Kelvin-Helmholtz modes, and transport of mean momentum by these modes. In contrast, in the particle phase, the primary mechanism of vertical transport of streamwise momentum is convection due to the mean vertical velocity induced by the centrifuging of particles by the spanwise Kelvin-Helmholtz vortices. Although the drag force and the particle-phase modal stress play an important role in the early stages of the evolution of the mixing layer, their role is shown to decrease during the pairing process. After pairing, the particle-phase mean streamwise momentum balance is accounted for by the convection and drag force term. The particle-phase modal stress term is shown to be strongly connected to the fluid phase modal stress with a Stokes-number-dependent time lag in its evolution.

  15. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-transporting company, or its successor-in-interest; (3) Records of the Social Security Administration... rights to any type of benefits (which will be accepted only to prove the fact of and duration of...

  16. Solution of transport equations in layered media with refractive index mismatch using the PN-method.

    PubMed

    Phillips, Kevin G; Jacques, Steven L

    2009-10-01

    The PN-method is a spectral discretization technique used to obtain numerical solutions to the radiative transport equation. To the best of our knowledge, the PN-method has yet to be generalized to the case of refractive index mismatch in layered slabs used to numerically simulate skin. Our main contribution is the application of a collocation method that takes into account refractive index mismatch at layer interfaces. The stability, convergence, and accuracy of the method are established. Example calculations demonstrating the flexibility of the method are performed.

  17. The Effect of the Scattering Layer in Dye-Sensitized Solar Cells Employing a Cobalt-Based Aqueous Gel Electrolyte.

    PubMed

    Xiang, Wanchun; Chen, Dehong; Caruso, Rachel A; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone

    2015-11-01

    We developed an aqueous gel electrolyte based on the [Co(bpy)3](2+/3+) (bpy=2,2'-bipyridine) redox mediator for use in n-type dye-sensitized solar cells. Application of this electrolyte in combination with titania nanoparticle-based photoanodes and mesoporous titania bead scattering layers resulted in devices with efficiencies of 4.1% under simulated AM 1.5 sunlight, compared with 3.5% for devices using scattering layers made from a commercial paste. This difference was largely a result of a 25% improvement in the short-circuit current density and was ascribed to lower diffusion resistance for the gel electrolyte within mesoporous TiO2 beads, as confirmed by electrochemical impedance spectroscopy. Transient photocurrent measurements identified mass-diffusion problems for DSCs employing the commercial TiO2 paste. Moreover, under continuous 1 sun illumination, the devices based on an aqueous gel electrolyte displayed higher stability relative to those assembled with the corresponding liquid electrolyte.

  18. Efficiency enhancement of blue phosphorescent organic light-emitting diodes using mixed electron transport layer

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Il; Yoon, Ju-An; Kim, Nam Ho; Kim, Jin Wook; Lee, Ho Won; Kim, Young Kwan; He, Gufeng; Kim, Woo Young

    2015-01-01

    Blue phosphorescent organic light-emitting diodes (OLED) using mixed electron transport layer (ETL) were fabricated with the device structure of ITO/NPB/mCP:Firpic-8%/TPBi:BCP or TPBi:3TPYMB/Liq/Al to observe mixed ETL's influence on their electrical and optical characteristics. OLED device with mixed ETL of TPBi with BCP or 3TPYMB significantly improved its current efficiency to 30.4 and 34.2 cd/A comparing to 19.8 cd/A of single ETL with BCP only. We examined mixed ETL's capability of electron transport and triplet exciton confinement enhancing phosphorescent OLED's luminance and luminous efficiency.

  19. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC71BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Abdullah, Shahino Mah; Taguchi, Dai; Sulaiman, Khaulah; Iwamoto, Mitsumasa

    2015-04-01

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC71BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC71BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC71BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  20. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells

    DOE PAGES

    Wang, Qi; Bi, Cheng; Huang, Jinsong

    2015-05-06

    We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduced device series resistance by three-folds, increasing the device fill factor to 74%, open circuit voltage to 1.09 V without sacrificing the short circuit current. As a result, this study reveals that the high resistivity of currently broadly applied polymer hole transport layer limits the device efficiency, and points a new direction to improve the device efficiency.

  1. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells

    SciTech Connect

    Wang, Qi; Bi, Cheng; Huang, Jinsong

    2015-05-06

    We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduced device series resistance by three-folds, increasing the device fill factor to 74%, open circuit voltage to 1.09 V without sacrificing the short circuit current. As a result, this study reveals that the high resistivity of currently broadly applied polymer hole transport layer limits the device efficiency, and points a new direction to improve the device efficiency.

  2. TiO2 Anatase Solutions for Electron Transporting Layers in Organic Photovoltaic Cells.

    PubMed

    El Kass, Moustafa; Brohan, Luc; Gautier, Nicolas; Béchu, Solène; David, Céline; Lemaitre, Noëlla; Berson, Solenn; Richard-Plouet, Mireille

    2017-09-06

    Reflux of a solution of [Ti8 O12 (H2 O)24 ]Cl8 ⋅HCl⋅7 H2 O as titanium precursor at 120 °C for 24 h leads to a transparent colloidal solution of nanosized crystallized anatase TiO2 . The adjustment of the particle size and composition of the dispersant is monitored through the initial water content while controlling the conversion of propylene carbonate into propylene glycol during reflux. The solutions were processed as thin films to produce electron transporting layers in hybrid bulk heterojunction solar cells, by using a blend of P3HT:PCBM polymers as absorbers, in inverted architectures. The solutions obtained by reflux were demonstrated to produce suitable electron transporting layers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    SciTech Connect

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D. E-mail: t.anthopoulos@imperial.ac.uk; Vourlias, George; Patsalas, Panos A.; He, Zhiqun E-mail: t.anthopoulos@imperial.ac.uk

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  4. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    NASA Astrophysics Data System (ADS)

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Vourlias, George; Patsalas, Panos A.; Bradley, Donal D. C.; He, Zhiqun; Anthopoulos, Thomas D.

    2015-06-01

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ˜5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  5. Investigation on polymer solar cells by using calcium as an Electron Transportation Layer

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Guo, Ying; Yan, Huimin; Zhu, Bingjie; Li, Guohua

    2015-10-01

    This work investigated the transportation and recombination mechanisms of carriers in organic photovoltaic by using calcium (Ca 10 to 50 nm) as the Electron Transportation Layer (ETL). Compared with the sample without ETL layer, the Fermi Energy Level (EF) moved at least 0.4 eV towards the Lowest Unoccupied Molecular Orbit (LUMO) of P3HT after Ca was inserted. Ca-S bonds at the interface resulted in the shift of Highest Occupied Molecular Orbit (HOMO) which increased Voc to 0.58 V. Meanwhile, the shift of HOMO and low work function of Ca decreased the recombination possibility (from 1.38% to 0.403%), which resulted in 1% improvement of Fill Factor (FF). The experimental results were coincide with theoretical explanation. Additionally, the existence of accumulative error during the thermal evaporation cannot be neglected. This is the main reason for the decrease of Iscand FF.

  6. Phosphorescent white organic light-emitting diodes by electron transporting layer engineering.

    PubMed

    Lee, Seok Jae; Koo, Ja Ryong; Lee, Dong Hyung; Lee, Ho Won; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2014-10-01

    The authors describe the fabrication of white organic light-emitting diodes (WOLEDs) with dual electron transporting layers (D-ETL) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanhroline/ 4,7-diphenyl-1,10-phenanthroline (BPhen) and bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato) aluminum/BPhen. Stepwise D-ETL easily transports electrons easily to the emitting layer and reduces the leakage of electrons. Therefore, WOLEDs with D-ETL show higher external quantum efficiency (EQE) when compared to a control WOLED with a single ETL device. The optimized WOLEDs showed a peak EQE of 13.0%, luminous efficiency of 27.4 cd/A, and Commission Internationale de L'Eclairage coordinates of (0.40, 0.39) at 1000 cd/m2.

  7. Viscous dissipation effects on thermophoretically augmented aerosol particle transport across laminar boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1985-01-01

    The effect of viscous dissipation on mass transport across nonisothermal low-mass-loading laminar boundary layers of dusty gas is investigated theoretically by means of numerical simulations. The derivation of the model is outlined, and numerical results are presented in extensive graphs and characterized in detail. The dissipation effects are found to be significant, increasing total particle-deposition rates; the intensity of the effects depends on the ratio of wall temperature to mainstream static temperature.

  8. On Theory of Dispersive Transport in a Two-Layer Polymer Structure

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.; Morozova, E. V.

    2016-09-01

    Dispersive transport of charge carriers in a two-layer polymer structure is modeled on the basis of the integrodifferential equation of hereditary diffusion. The model of multiple trapping in a bilayer is generalized to the case of an arbitrary density of localized states. With the help of an efficient Monte Carlo algorithm, curves of the transient current are calculated and their features are explained within the framework of a stochastic interpretation of the process.

  9. The impacts of moisture transport on drifting snow sublimation in the saltation layer

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Dai, Xiaoqing; Zhang, Jie

    2016-06-01

    Drifting snow sublimation (DSS) is an important physical process related to moisture and heat transfer that happens in the atmospheric boundary layer, which is of glaciological and hydrological importance. It is also essential in order to understand the mass balance of the Antarctic ice sheets and the global climate system. Previous studies mainly focused on the DSS of suspended snow and ignored that in the saltation layer. Here, a drifting snow model combined with balance equations for heat and moisture is established to simulate the physical DSS process in the saltation layer. The simulated results show that DSS can strongly increase humidity and cooling effects, which in turn can significantly reduce DSS in the saltation layer. However, effective moisture transport can dramatically weaken the feedback effects. Due to moisture advection, DSS rate in the saltation layer can be several orders of magnitude greater than that of the suspended particles. Thus, DSS in the saltation layer has an important influence on the distribution and mass-energy balance of snow cover.

  10. Prostate Cancer Cells in Different Androgen Receptor Status Employ Different Leucine Transporters.

    PubMed

    Otsuki, Hideo; Kimura, Toru; Yamaga, Takashi; Kosaka, Takeo; Suehiro, Jun-Ichi; Sakurai, Hiroyuki

    2017-02-01

    Leucine stimulates cancer cell proliferation through the mTOR pathway, therefore, inhibiting leucine transporters may be a novel therapeutic target for cancer. L-type amino acid transporter (LAT) 1, a Na(+) -independent amino acid transporter, is highly expressed in many tumor cells. However, leucine transporter(s) in different stages of prostate cancer, particularly in the stages of castration resistance with androgen receptor (AR) expression, is unclear. LNCaP and DU145 and PC-3 cell lines were used as a model of androgen dependent, and metastatic prostate cancer. A new "LN-cr" cell line was established after culturing LNCaP cells for 6 months under androgen-free conditions, which is considered a model of castration resistant prostate cancer (CRPC) with androgen AR expression. The expression of leucine transporters was investigated with quantitative PCR and immunofluorescence. Uptake of (14) C Leucine was examined in the presence or absence of BCH (a pan-LAT inhibitor), JPH203 (an LAT1-specific inhibitor), or Na(+) . Cell growth was assessed with MTT assay. siRNA studies were performed to evaluate the indispensability of y(+) LAT2 on leucine uptake and cell viability in LN-cr. Cell viability showed a 90% decrease in the absence of leucine in all four cell lines. LNCaP cells principally expressed LAT3, and their leucine uptake was more than 90% Na(+) -independent. BCH, but not JPH203, inhibited leucine uptake, and cell proliferation (IC50BCH :15 mM). DU145 and PC-3 cells predominantly expressed LAT1. Leucine uptake and cell growth were suppressed by BCH or JPH203 in a dose-dependent manner (IC50BCH : ∼20 mM, IC50JPH203 : ∼5 µM). In LN-cr cells, Na(+) -dependent uptake of leucine was 3.8 pmol/mgprotein/min, while, Na(+) -independent uptake was only 0.52 (P < 0.05). Leucine uptake of LN-cr was largely (∼85%) Na(+) -dependent. y(+) LAT2 expression was confirmed in LN-cr. Knockdown of y(+) LAT2 lead to significant leucine uptake inhibition (40%) and

  11. Modeling reactive transport of reclaimed water through large soil columns with different low-permeability layers

    NASA Astrophysics Data System (ADS)

    Hu, Haizhu; Mao, Xiaomin; Barry, D. A.; Liu, Chengcheng; Li, Pengxiang

    2015-03-01

    The efficacy of different proportions of silt-loam/bentonite mixtures overlying a vadose zone in controlling solute leaching to groundwater was quantified. Laboratory experiments were carried out using three large soil columns, each packed with 200-cm-thick riverbed soil covered by a 2-cm-thick bentonite/silt-loam mixture as the low-permeability layer (with bentonite mass accounting for 12, 16 and 19 % of the total mass of the mixture). Reclaimed water containing ammonium (NH4 +), nitrate (NO3 -), organic matter (OM), various types of phosphorus and other inorganic salts was applied as inflow. A one-dimensional mobile-immobile multi-species reactive transport model was used to predict the preferential flow and transport of typical pollutants through the soil columns. The simulated results show that the model is able to predict the solute transport in such conditions. Increasing the amount of bentonite in the low-permeability layer improves the removal of NH4 + and total phosphorous (TP) because of the longer contact time and increased adsorption capacity. The removal of NH4 + and OM is mainly attributed to adsorption and biodegradation. The increase of TP and NO3 - concentration mainly results from discharge and nitrification in riverbed soils, respectively. This study underscores the role of low-permeability layers as barriers in groundwater protection. Neglect of fingers or preferential flow may cause underestimation of pollution risk.

  12. Simulation and Parameterization of the Turbulent Transport in the Hurricane Boundary Layer by Large Eddies

    NASA Astrophysics Data System (ADS)

    Zhu, P.

    2008-05-01

    Hurricane boundary layer (HBL) processes, especially, the structure of the coherent large eddy circulations (LECs) and their induced vertical transport, are not well understood. This paper introduces a large eddy simulation (LES) framework in a weather hindcasting mode developed from a multiple scale nested Weather Research & Forecasting (WRF) model. Using the WRF-LES, this study investigated the structure of the HBL LECs and the associated vertical transport during the landfall of Hurricane Ivan (2004). The simulation shows that the HBL LECs exist in a mean stable environment and consist of well defined updraft and downdraft. Statistically, the HBL LECs are only slightly skewed with the updrafts and downdrafts relatively evenly distributed spatially. The inversion base basically envelopes the upper boundary of LECs. The trough in between two adjacent LECs is where most entrainment takes place, whereas the crest of the LECs is where boundary layer air detrains out of the HBL. In such a way, LECs directly connect the surface, the HBL, and the main body of a hurricane vortex and enhance the exchange of energy, moisture, and momentum between them. It is found that the current boundary layer schemes significantly under-estimate the resolved turbulent fluxes due to the fact that the effects of LECs have not been included in the parameterizations. Based on the statistical structure of LECs simulated by the WRF-LES, this paper proposes a conceptual updraft-downdraft model that can potentially be implemented in weather forecasting models to parameterize the fluxes induced by the HBL LEC transport.

  13. Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs

    NASA Astrophysics Data System (ADS)

    Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.

    2016-01-01

    Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.

  14. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.; Tallents, G. J.

    2015-02-01

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 1016 Wcm-2 is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe5+ and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  15. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    SciTech Connect

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Tallents, G. J.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  16. 49 CFR 40.409 - What does the issuance of a PIE mean to transportation employers?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ensure that any service agents you are using or planning to use are not subject to a PIE. (b) As an employer who is using a service agent concerning whom a PIE is issued, you must stop using the services of the service agent no later than 90 days after the Department has published the decision in the Federal...

  17. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.63 Proof of... Public Health Service (PHS) in the course of any health studies of uranium workers during or including the period 1942-1990; (2) Records of a uranium worker census performed by the PHS at various...

  18. Thermal and transport properties of pristine single-layer hexagonal boron nitride: A first principles investigation

    NASA Astrophysics Data System (ADS)

    Illera, Sergio; Pruneda, Miguel; Colombo, Luciano; Ordejón, Pablo

    2017-09-01

    Molecular dynamics is used in combination with density functional theory to determine the thermal transport properties of the single-layer hexagonal boron nitride (SL h -BN) from ab initio calculations. Within this approach, the possible anisotropy in the thermal conductivity of SL h -BN was studied. For samples with finite length (of the order of 20 nm), we find a significant dependence of the conductivity on the transport direction. We make a direct comparison of the results obtained for two-dimensional (2D) layers and for nanoribbons with similar size, and show that, as a consequence of edge scattering, the ribbon geometry induces a significant decrease in the conductivity, and produces a strong change in the anisotropy. For the zigzag and armchair transport directions, the dependence of the thermal conductivity on the system length was also obtained, as well as its value in the 2D bulk limit case. A very small anisotropy was found for the limit of long samples, in contrast with the finite length ones. This is explained analyzing the dependence of the average square group velocities on the transport direction and the phonon frequency.

  19. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Grover, Rakhi; Srivastava, Ritu; Dagar, Janardan; Kamalasanan, M. N.; Mehta, D. S.

    2014-08-01

    Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3 nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices.

  20. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes

    SciTech Connect

    Grover, Rakhi; Srivastava, Ritu Dagar, Janardan; Kamalasanan, M. N.; Mehta, D. S.

    2014-08-14

    Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3 nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices.

  1. Comparison of scrape-off layer transport in inner and outer wall limited JET plasmas

    NASA Astrophysics Data System (ADS)

    Silva, C.; Arnoux, G.; Devaux, S.; Frigione, D.; Groth, M.; Horacek, J.; Lomas, P. J.; Marsen, S.; Matthews, G.; Pitts, R. A.; JET-EFDA Contributors

    2013-07-01

    The JET scrape-off layer has been characterized with a reciprocating probe in inner wall, IW, and outer wall, OW, limited plasmas. Broad SOL profiles are observed for IW limited plasmas with power e-folding length substantially larger (by a factor of ˜5-7.5) than in OW limited plasmas. The properties of the fluctuations in the SOL parameters indicate larger turbulent transport for IW limited plasmas. The striking differences observed between IW and OW limited plasmas on the power e-folding length, parallel flow, turbulent transport as well as the characteristics of the fluctuations support the existence of a poloidally localized region of enhanced radial transport near the outboard midplane. The dependence of the SOL power e-folding length on the main plasma parameters was also investigated for IW limited plasmas and a modest negative dependence on both the plasma current and the line-averaged density found.

  2. Estuarine sediment transport by gravity-driven movement of the nepheloid layer, Long Island Sound

    NASA Astrophysics Data System (ADS)

    Poppe, L. J.; McMullen, K. Y.; Williams, S. J.; Crocker, J. M.; Doran, E. F.

    2008-08-01

    Interpretation of sidescan-sonar imagery provides evidence that down-slope gravity-driven movement of the nepheloid layer constitutes an important mode of transporting sediment into the basins of north-central Long Island Sound, a major US East Coast estuary. In the Western Basin, this transport mechanism has formed dendritic drainage systems characterized by branching patterns of low backscatter on the seafloor that exceed 7.4 km in length and progressively widen down-slope, reaching widths of over 0.6 km at their southern distal ends. Although much smaller, dendritic patterns of similar morphology are also present in the northwestern part of the Central Basin. Because many contaminants display affinities for adsorption onto fine-grained sediments, and because the Sound is affected by seasonal hypoxia, mechanisms and dispersal pathways by which inorganic and organic sediments are remobilized and transported impact the eventual fate of the contaminants and environmental health of the estuary.

  3. Turbulent momentum transport in core tokamak plasmas and penetration of scrape-off layer flows

    NASA Astrophysics Data System (ADS)

    Abiteboul, J.; Ghendrih, Ph; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Latu, G.; Passeron, C.; Sarazin, Y.; Strugarek, A.; Thomine, O.; Zarzoso, D.

    2013-07-01

    The turbulent transport of toroidal angular momentum in the core of a tokamak plasma is investigated in global, full-f gyrokinetic simulations, performed with the GYSELA code in the flux-driven regime. During the initial turbulent phase, a front of positive Reynolds stress propagates radially, generating intrinsic toroidal rotation from a vanishing initial profile. This is also accompanied by a propagating front of turbulent heat flux. In the statistical steady-state regime, turbulent transport exhibits large-scale avalanche-like events which are found to transport both heat and momentum, and similar statistical properties are obtained for both fluxes. The impact of scrape-off layer flows is also investigated by modifying the boundary conditions in the simulations. The observed impact is radially localized for L-mode like poloidal profiles of parallel velocity at the edge, while a constant velocity at the edge can modify the core toroidal rotation profile in a large fraction of the radial domain.

  4. Estuarine sediment transport by gravity-driven movement of the nepheloid layer, Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Williams, S.J.; Crocker, J.M.; Doran, E.F.

    2008-01-01

    Interpretation of sidescan-sonar imagery provides evidence that down-slope gravity-driven movement of the nepheloid layer constitutes an important mode of transporting sediment into the basins of north-central Long Island Sound, a major US East Coast estuary. In the Western Basin, this transport mechanism has formed dendritic drainage systems characterized by branching patterns of low backscatter on the seafloor that exceed 7.4 km in length and progressively widen down-slope, reaching widths of over 0.6 km at their southern distal ends. Although much smaller, dendritic patterns of similar morphology are also present in the northwestern part of the Central Basin. Because many contaminants display affinities for adsorption onto fine-grained sediments, and because the Sound is affected by seasonal hypoxia, mechanisms and dispersal pathways by which inorganic and organic sediments are remobilized and transported impact the eventual fate of the contaminants and environmental health of the estuary. ?? Springer-Verlag 2008.

  5. Fabrication and characterization of perovskite based solar cells using phthalocyanine and naphthalocyanine as hole-transporting layer

    NASA Astrophysics Data System (ADS)

    Okada, Yuki; Suzuki, Atsushi; Yamasaki, Yasuhiro; Oku, Takeo

    2017-01-01

    Organic-inorganic hybrid heterojunction solar cells containing CH3NH3PbI3 perovskite compound were fabricated using TiO2 as an electronic transporting layer and spirobifluorence as a hole-transporting layer. The purpose of the present study is to investigate a role of the hole-transporting layer on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells. The X-ray diffraction identified crystal structures of the perovskite layer in the solar cells. Optical microscopy showed different surface morphologies, and the perovskite structures on the TiO2 mesoporous structure depended on addition of phthalocyanine into the hole-transporting layer. The photovoltaic properties and hole-transporting behavior was depending on carrier mobility, electron structures of the perovskite crystal and band gaps related with the photovoltaic parameters. Energy diagram and photovoltaic mechanism of the perovskite solar cells using hole-transporting layers were discussed by experimental results. Perovskite based solar cells using phthalocyanines as hole-transporting layers have advantages to provide a high photovoltaic performance with a wide region of optical absorption.

  6. A nano-grid structure made of perovskite SrTiO3 nanowires for efficient electron transport layers in inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Won; Suh, Yo-Han; Lee, Chang-Lyoul; Kim, Yong Seok; Kim, Won Bae

    2015-02-01

    A nano-grid structure of perovskite SrTiO3 NWs is developed for a novel electron transport layer in inverted polymer solar cells. Due to the excellent charge transporting properties of the SrTiO3 nano-grid structure, the device employing this nanostructure showed ~32% enhanced photovoltaic performance, compared to the solar cell using a TiO2 thin film.A nano-grid structure of perovskite SrTiO3 NWs is developed for a novel electron transport layer in inverted polymer solar cells. Due to the excellent charge transporting properties of the SrTiO3 nano-grid structure, the device employing this nanostructure showed ~32% enhanced photovoltaic performance, compared to the solar cell using a TiO2 thin film. Electronic supplementary information (ESI) available: Experimental details, HR-TEM images with EDX atomic ratio analysis, FE-SEM images, transmittance spectra and light absorbance spectra. See DOI: 10.1039/c4nr06720g

  7. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  8. Efficient and Stable Vacuum-Free-Processed Perovskite Solar Cells Enabled by a Robust Solution-Processed Hole Transport Layer.

    PubMed

    Chang, Chih-Yu; Tsai, Bo-Chou; Hsiao, Yu-Cheng

    2017-05-09

    Here, efficient and stable vacuum-free processed perovskite solar cells (PSCs) are demonstrated by employing solutionprocessed molybdenum tris-[1-(trifluoroethanoyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-COCF3 )3 )-doped poly(3,4-ethylenedioxythiophene) (PEDOT) film as hole transport layer (HTL). Our results indicate that the incorporation of Mo(tfd-COCF3 )3 dopant can induce p-doping through charge transfer from the highest occupied molecular orbital (HOMO) level of the PEDOT host to the electron affinity of Mo(tfd-COCF3 )3 , leading to an increase in conductivity by more than three orders of magnitude. With this newly developed p-doped film as HTL in planar heterojunction PSCs, a high power conversion efficiency (PCE) up to 18.47 % can be achieved, which exceeds that of the device with commonly used HTL 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-spirobifluorene (spiro-OMeTAD). Taking the advantage of the high conductivity of this doped film, a prominent PCE as high as 15.58 % is also demonstrated even when a large HTL thickness of 220 nm is used. Importantly, the high quality film of this HTL is capable of acting as an effective passivation layer to keep the underlying perovskite layer intact during solution-processed Ag-nanoparticles layer deposition. The resulting vacuum-free PSCs deliver an impressive PCE of 14.81 %, which represents the highest performance ever reported for vacuum-free PSCs. Furthermore, the resulting devices show good ambient stability without encapsulation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The impact of ice layers on gas transport through firn at the North Greenland Eemian Ice Drilling (NEEM) site, Greenland

    NASA Astrophysics Data System (ADS)

    Keegan, K.; Albert, M. R.; Baker, I.

    2014-10-01

    Typically, gas transport through firn is modeled in the context of an idealized firn column. However, in natural firn, imperfections are present, which can alter transport dynamics and therefore reduce the accuracy of reconstructed climate records. For example, ice layers have been found in several firn cores collected in the polar regions. Here, we examined the effects of two ice layers found in a NEEM, Greenland firn core on gas transport through the firn. These ice layers were found to have permeability values of 3.0 and 4.0 × 10-10 m2, and are therefore not impermeable layers. However, the shallower ice layer was found to be significantly less permeable than the surrounding firn, and can therefore retard gas transport. Large closed bubbles were found in the deeper ice layer, which will have an altered gas composition than that expected because they were closed near the surface after the water phase was present. The bubbles in this layer represent 12% of the expected closed porosity of this firn layer after the firn-ice transition depth is reached, and will therefore bias the future ice core gas record. The permeability and thickness of the ice layers at the North Greenland Eemian Ice Drilling (NEEM) site suggest that they do not disrupt the firn-air concentration profiles and that they do not need to be accounted for in gas transport models at NEEM.

  10. Dye-sensitized solar cells employing a SnO2-TiO2 core-shell structure made by atomic layer deposition.

    PubMed

    Karlsson, Martin; Jõgi, Indrek; Eriksson, Susanna K; Rensmo, Håkan; Boman, Mats; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    This paper describes the synthesis and characterization of core-shell structures, based on SnO2 and TiO2, for use in dye-sensitized solar cells (DSC). Atomic layer deposition is employed to control and vary the thickness of the TiO2 shell. Increasing the TiO2 shell thickness to 2 nm improved the device performance of liquid electrolyte-based DSC from 0.7% to 3.5%. The increase in efficiency originates from a higher open-circuit potential and a higher short-circuit current, as well as from an improvement in the electron lifetime. SnO2-TiO2 core-shell DSC devices retain their photovoltage in darkness for longer than 500 seconds, demonstrating that the electrons are contained in the core material. Finally core-shell structures were used for solid-state DSC applications using the hole transporting material 2,2',7,7',-tetrakis(N, N-di-p-methoxyphenyl-amine)-9,9',-spirofluorene. Similar improvements in device performance were obtained for solid-state DSC devices.

  11. Epitaxial 1D electron transport layers for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-09-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport

  12. Triple-layer configuration for stable high-speed lubricated pipeline transport

    NASA Astrophysics Data System (ADS)

    Sarmadi, Parisa; Hormozi, Sarah; Frigaard, Ian A.

    2017-04-01

    Lubricated transport of heavy viscous oils is a popular technology in the pipelining industry, where pumping pressures can be reduced significantly by concentrating the strain rate in a lubricating layer. However, the interface between the lubricating layer and heavy oil is vulnerable to any perturbations in the system as well as transients due to start up, shut down, temperature change, etc. We present a method in which we purposefully position an unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective is to reduce the frictional pressure gradient while avoiding interfacial instability. We study this methodology in both concentric and eccentric configurations and show its feasibility for a wide range of geometric and flow parameters found in oil pipelining. The eccentric configuration benefits the transport process via generating lift forces to balance the density differences among the layers. We use classical lubrication theory to estimate the leading order pressure distribution in the lubricating layer and calculate the net force on the skin. We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop, the flow rates of skin and lubricant fluids, and the net force on the skin. We show that the viscosity ratio and the radius of the core fluid are the main parameters that control the pressure drop and consumptions of outer fluids, respectively. The shape of the skin and the eccentricity mainly affect the lubrication pressure. These predictions are essential in designing a stable transport process. Finally, we estimate the yield stress required in order that the skin remain unyielded and ensure interfacial stability.

  13. The essential role of the poly(3-hexylthiophene) hole transport layer in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wenqiang; Tan, Furui; Gu, Yuzong

    2015-01-01

    The compact and oriented TiO2 films are prepared by a solvothermal method, and used as electron transporting layers in perovskite CH3NH3PbI3-xClx based solar cells incorporating poly(3-hexylthiophene-2,5-diyl) (P3HT) as the hole transporting material layer. The devices with P3HT exhibit a substantial increase in power conversion efficiency, open circuit voltage, and fill factor, compared with the reference device without P3HT. Impedance spectroscopy measurements demonstrate that the present P3HT layer decreases the internal resistance in solar cells and allows the interface between oriented TiO2 and CH3NH3PbI3-xClx to form more perfect in electronics. It is also found that the electron lifetime in the devices with P3HT is much longer than that of the device without P3HT. Thus, the charge collection efficiency of the device with P3HT is markedly enhanced, compared with the devices without P3HT. Analysis of the energy levels of the involved materials indicates that the P3HT film between the CH3NH3PbI3-xClx layer and the Au electrode provides a better energy level matching for efficient transporting holes to the anode. Meanwhile, the stability of such P3HT solar cells is enhanced because of the compact and oriented TiO2 film preventing the possible interaction between TiO2 and perovskite as time went on.

  14. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    SciTech Connect

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-10-24

    A necessary prerequisite of cloud formation, aerosol particles represent one of the largest uncertainties in computer simulations of climate change1,2, in part because of a poor understanding of processes under natural conditions3,4. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions5-7. Cloud condensation nuclei (CCN) in clean Amazonia are mostly produced by the growth of smaller particles in the boundary layer8-10, whereas these smaller particles themselves 31 appear to be produced elsewhere5,11. Key questions are in what part of the atmosphere they might 32 be produced and what could be the transport processes that deliver them to the boundary layer, where they grow into CCN. Here, using recent aircraft measurements above central Amazonia, we show high concentrations of small particles in the lower free troposphere. The particle size spectrum shifts towards larger sizes with decreasing altitude, implying particle growth as air descends from the free troposphere towards Earth's surface. Complementary measurements at ground sites show that free tropospheric air having high concentrations of small particles (diameters of less than 50 nm) is transported into the boundary layer during precipitation events, both by strong convective downdrafts and by weaker downward motions in the trailing stratiform region. This vertical transport helps maintain the population of small particles and ultimately CCN in the boundary layer, thereby playing an important role in controlling the climate state under natural conditions. In contrast, this mechanism becomes masked under polluted conditions, which sometimes prevail at times in Amazonia as well as over other tropical continental regions5,12.

  15. Synthesis and characterization of polymer layers for control of fluid transport

    NASA Astrophysics Data System (ADS)

    Vatansever, Fehime

    The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a

  16. Measurements and theory for transport layer structure in intense bed-load

    NASA Astrophysics Data System (ADS)

    Fraccarollo, L.; Capart, H.

    2012-04-01

    We focus on sediment laden flows driven by turbulent open-channel flows where the bed surface is fully mobilized and nonetheless the thickness of the bedload layer is conveniently smaller than the flow depth. This regime presents dynamic and kinematic features which persist in the range of applied Shields stress between about 0.3 and 3. Below the lower limit the moving grains do not develop significant stresses compared to the applied ones; above the upper limit, debris-flow type frictional contacts develop in a non negligible portion of the bedload layer. We report laboratory experiments in which, using high-speed cameras and a laser light sheet, detailed profiles of granular velocity and concentration have been measured. We checked that the transversal bed profile is flat and that the sidewall measurements are representative of the interior domain. The profiles provide new information on transport layer structure and its relation to the applied Shields stress. Contrary to expectations, we find that intense bed-load layers respond to changes in flow conditions by adjusting their granular concentration at the base. Two mechanisms account for the resulting behavior: stresses generated by immersed granular collisions, and equilibration by density stratification. Without parameter adjustment, the deduced constitutive relations capture the responses of velocity, concentration, and layer thickness in the above reported ten-fold increase Shields-stress range. Away from this intermediate range, in both directions, we show how the flow features rapidly change and the theoretical inferences decay.

  17. Sources and Transport of Aerosol above the Boundary Layer over the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Veronique; Claeys, Marine; Sciare, Jean; Mallet, Marc; Dulac, François; Mihalopoulos, Nikos

    2015-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  18. Transport and Evolution of Aerosol Above/Below the Boundary Layer in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Corrigan, C.; Ritchie, J.; Pont, V.; Claeys, M.; Sciare, J.; Mallet, M.; Dulac, F.

    2014-12-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities of the ChArMEx/ADRIMED summer 2013 campaign by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the

  19. Steering the Properties of MoOx Hole Transporting Layers in OPVs and OLEDs: Interface Morphology vs. Electronic Structure.

    PubMed

    Marchal, Wouter; Verboven, Inge; Kesters, Jurgen; Moeremans, Boaz; De Dobbelaere, Christopher; Bonneux, Gilles; Elen, Ken; Conings, Bert; Maes, Wouter; Boyen, Hans Gerd; Deferme, Wim; Van Bael, Marlies; Hardy, An

    2017-01-30

    The identification, fine-tuning, and process optimization of appropriate hole transporting layers (HTLs) for organic solar cells is indispensable for the production of efficient and sustainable functional devices. In this study, the optimization of a solution-processed molybdenum oxide (MoOx) layer fabricated from a combustion precursor is carried out via the introduction of zirconium and tin additives. The evaluation of the output characteristics of both organic photovoltaic (OPV) and organic light emitting diode (OLED) devices demonstrates the beneficial influence upon the addition of the Zr and Sn ions compared to the generic MoOx precursor. A dopant effect in which the heteroatoms and the molybdenum oxide form a chemical identity with fundamentally different structural properties could not be observed, as the additives do not affect the molybdenum oxide composition or electronic band structure. An improved surface roughness due to a reduced crystallinity was found to be a key parameter leading to the superior performance of the devices employing modified HTLs.

  20. Steering the Properties of MoOx Hole Transporting Layers in OPVs and OLEDs: Interface Morphology vs. Electronic Structure

    PubMed Central

    Marchal, Wouter; Verboven, Inge; Kesters, Jurgen; Moeremans, Boaz; De Dobbelaere, Christopher; Bonneux, Gilles; Elen, Ken; Conings, Bert; Maes, Wouter; Boyen, Hans Gerd; Deferme, Wim; Van Bael, Marlies; Hardy, An

    2017-01-01

    The identification, fine-tuning, and process optimization of appropriate hole transporting layers (HTLs) for organic solar cells is indispensable for the production of efficient and sustainable functional devices. In this study, the optimization of a solution-processed molybdenum oxide (MoOx) layer fabricated from a combustion precursor is carried out via the introduction of zirconium and tin additives. The evaluation of the output characteristics of both organic photovoltaic (OPV) and organic light emitting diode (OLED) devices demonstrates the beneficial influence upon the addition of the Zr and Sn ions compared to the generic MoOx precursor. A dopant effect in which the heteroatoms and the molybdenum oxide form a chemical identity with fundamentally different structural properties could not be observed, as the additives do not affect the molybdenum oxide composition or electronic band structure. An improved surface roughness due to a reduced crystallinity was found to be a key parameter leading to the superior performance of the devices employing modified HTLs. PMID:28772483

  1. Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells.

    PubMed

    Wang, Jhong-Yao; Hsu, Fang-Chi; Huang, Jeng-Yeh; Wang, Leeyih; Chen, Yang-Fang

    2015-12-23

    A new approach to largely enhancing light harvesting of solar cells by employing bifunctional polymer nanocomposites as hole-transport layers (HTLs) is proposed. To illustrate our working principle, CH3NH3PbI3-xClx perovskite solar cells are used as examples. Gold nanoparticles (Au-NPs) are added into a conjugated poly(3-hexylthiophene-2,5-diyl) (P3HT) matrix, resulting in a ∼4-fold enhancement in the electrical conductivity and carrier mobility of the native P3HT film. The improved electrical properties are attributed to enhanced polymer chain ordering caused by Au-NPs. By integration of those P3HT:Au-NP films with an optimum loading concentration of 20% into perovskite solar cells as HTLs, this leads to a more than 25% enhancement in the power conversion efficiency (PCE) compared with that of the NP-free one. In addition to the modulated electrical properties of the HTL, the improved performance can also be attributed to the scattering effect from the incorporated Au-NPs, which effectively extends the optical pathway to amplify photon absorption of the photoactive layer. The design principle shown here can be generalized to other organic materials as well, which should be very useful for the further development of high-performance optoelectronic devices.

  2. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. II. MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    We perform global unstratified three-dimensional magnetohydrodynamic simulations of an astrophysical boundary layer (BL)-an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf-with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times larger than the angular momentum current due to MRI. Our results suggest that angular momentum transport in the BL and its vicinity is a global phenomenon occurring through dissipation of waves and shocks. This point of view is quite different from the standard picture of transport by a local anomalous turbulent viscosity. In addition to angular momentum transport, we also study magnetic field amplification within the BL. We find that the field is indeed amplified in the BL, but only by a factor of a few, and remains subthermal.

  3. Characterization of scrape-off layer transport in JET limiter plasmas

    NASA Astrophysics Data System (ADS)

    Silva, C.; Arnoux, G.; Devaux, S.; Frigione, D.; Groth, M.; Horacek, J.; Lomas, P. J.; Marsen, S.; Matthews, G.; Meneses, L.; Pitts, R. A.; Contributors, JET-EFDA

    2014-08-01

    The JET scrape-off layer (SOL) has been characterized with a reciprocating probe in inner wall (IW), and outer wall (OW), limited plasmas. Experiments revealed that SOL profiles are substantially broader (by a factor of ˜5-7.5 in the power e-folding length) for IW limited than in OW limited plasmas. Results are consistent with the larger radial turbulent transport found for IW limited plasmas. Major differences are observed between IW and OW limited plasmas on the density and electron temperature e-folding lengths, parallel flow, radial turbulent transport as well as on the temporal and spatial characteristics of the fluctuations. Experimental findings on JET suggest that the differences in the SOL characteristics for both configurations are due to a combination of a poloidal asymmetry in radial transport with a reduced cross-field transport across the last closed flux surface associated with the confinement improvement observed for OW limited plasmas. The dependence of the SOL power e-folding length on the main plasma parameters was also investigated for IW limited plasmas and a modest negative dependence on both the plasma current and the line-averaged density found. Finally, it is shown that the SOL radial transport and the amplitude of the fluctuations increase with plasma current and decrease with line-averaged density for IW limited plasmas.

  4. Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations.

    PubMed Central

    Barry, P H

    1998-01-01

    Since the late 1960s it has been known that the passage of current across a membrane can give rise to local changes in salt concentration in unstirred layers or regions adjacent to that membrane, which in turn give rise to the development of slow transient diffusion potentials and osmotic flows across those membranes. These effects have been successfully explained in terms of transport number discontinuities at the membrane-solution interface, the transport number of an ion reflecting the proportion of current carried by that ion. Using the standard definitions for transport numbers and the regular diffusion equations, these polarization or transport number effects have been analyzed and modeled in a number of papers. Recently, the validity of these equations has been questioned. This paper has demonstrated that, by going back to the Nernst-Planck flux equations, exactly the same resultant equations can be derived and therefore that the equations derived directly from the transport number definitions and standard diffusion equations are indeed valid. PMID:9635743

  5. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  6. Turbulent transport in the atmospheric boundary layer with application to wind farm dynamics

    NASA Astrophysics Data System (ADS)

    Waggy, Scott B.

    With the recent push for renewable energy sources, wind energy has emerged as a candidate to replace some of the power produced by traditional fossil fuels. Recent studies, however, have indicated that wind farms may have a direct effect on local meteorology by transporting water vapor away from the Earth's surface. Such turbulent transport could result in an increased drying of soil, and, in turn, negatively affect the productivity of land in the wind farm's immediate vicinity. This numerical study will analyze four scenarios with the goal of understanding turbulence transport in the wake of a turbine: the neutrally-stratified boundary layer with system rotation, the unstably-stratified atmospheric boundary layer, and wind turbine simulations of these previous two cases. For this work, the Ekman layer is used as an approximation of the atmospheric boundary layer and the governing equations are solved using a fully-parallelized direct numerical simulation (DNS). The in-depth studies of the neutrally and unstably-stratified boundary layers without introducing wind farm effects will act to provide a concrete background for the final study concerning turbulent transport due to turbine wakes. Although neutral stratification rarely occurs in the atmospheric boundary layer, it is useful to study the turbulent Ekman layer under such conditions as it provides a limiting case when unstable or stable stratification are weak. In this work, a thorough analysis was completed including turbulent statistics, velocity and pressure autocorrelations, and a calculation of the full turbulent energy budget. The unstably-stratified atmospheric boundary layer was studied under two levels of heating: moderate and vigorous. Under moderate stratification, both buoyancy and shearing contribute significantly to the turbulent dynamics. As the level of stratification increases, the role of shearing is shown to diminish and is confined to the near-wall region only. A recent, multi

  7. Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Yang, Songwang; Sun, Hong; Zhang, Lu; Peng, Jiajun; Liang, Ziqi; Wang, Zhong-Sheng

    2017-06-01

    To improve the electron transfer at the interface between the perovskite film and the electron-transporting-material (ETM) layer, CoSe doped [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is employed as the ETM layer for the inverted planar perovskite solar cell with NiO as the hole-transporting-material layer. Introduction of CoSe (5.8 wt%) into the PCBM layer improves the conductivity of the ETM layer and decreases the photoluminescence intensity, thus enhancing the interfacial electron extraction and reducing the electron transfer resistance at the perovskite/ETM interface. As a consequence, the power conversion efficiency is enhanced from 11.43% to 14.91% by 30% due to the noted increases in short-circuit current density from 17.95 mA cm-2 to 19.85 mA cm-2 and fill factor from 0.60 to 0.70. This work provides a new strategy to improve the performance of inverted perovskite solar cells.

  8. Perovskite Solar Cells Employing Dopant-Free Organic Hole Transport Materials with Tunable Energy Levels.

    PubMed

    Liu, Yongsheng; Hong, Ziruo; Chen, Qi; Chen, Huajun; Chang, Wei-Hsuan; Yang, Yang Michael; Song, Tze-Bin; Yang, Yang

    2016-01-20

    Conjugated small-molecule hole-transport materials (HTMs) with tunable energy levels are designed and synthesized for efficient perovskite solar cells. A champion device with efficiency of 16.2% is demonstrated using a dopant-free DERDTS-TBDT HTM, while the DORDTS-DFBT-HTM-based device shows an inferior performance of 6.2% due to its low hole mobility and unmatched HOMO level with the valence band of perovskite film. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-11-01

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  10. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    PubMed

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  11. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    DOE PAGES

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; ...

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less

  12. Intrinsic transport of h-BN encapsulated few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Arefe, Ghidewon; Kim, Young Duck; Chenet, Daniel; Cui, Xu; Chang, Damien; Hone, James

    2015-03-01

    Few-layer black phosphorus (BP) is an exciting two-dimensional material with ambipolar behavior, large on/off ratio, and high mobility with a direct bandgap. The anisotropic atomic nature of black phosphorus exhibits unique angle dependent electronic and optical features. One of the primary difficulties in fabricating few-layer BP devices to study transport is the reactive nature of the material in ambient conditions as it degrades in the presence of air and moisture. In order to characterize the intrinsic physical properties of BP, we fabricated few-layer BP flakes that are fully encapsulated by hexagonal boron nitride (h-BN) with a clean stacking technique. We also characterized the electrical transport of h-BN encapsulated BP devices that show greatly improved environmental stability and high mobility at low temperature due to the suppression of extrinsic scattering effects such as charge impurities, surface polar optical phonons, and absorbents from air. H-BN encapsulated BP devices will be an essential platform for the observation of new physics from BP and realization of BP based advanced opto-electronic application devices body.

  13. Vertical electron transport in van der Waals heterostructures with graphene layers

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-21

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  14. A review on transport layer protocol performance for delivering video on an adhoc network

    NASA Astrophysics Data System (ADS)

    Suherman; Suwendri; Al-Akaidi, Marwan

    2017-09-01

    The transport layer protocol is responsible for the end to end data transmission. Transmission control protocol (TCP) provides a reliable connection and user datagram protocol (UDP) offers fast but unguaranteed data transfer. Meanwhile, the 802.11 (wireless fidelity/WiFi) networks have been widely used as internet hotspots. This paper evaluates TCP, TCP variants and UDP performances for video transmission on an adhoc network. The transport protocol - medium access cross-layer is proposed by prioritizing TCP acknowledgement to reduce delay. The NS-2 evaluations show that the average delays increase linearly for all the evaluated protocols and the average packet losses grow logarithmically. UDP produces the lowest transmission delay; 5.4% and 5.8% lower than TCP and TCP variant, but experiences the highest packet loss. Both TCP and TCP Vegas maintain packet loss as low as possible. The proposed cross-layer successfully decreases TCP and TCP Vegas delay about 0.12 % and 0.15%, although losses remain similar.

  15. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    SciTech Connect

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  16. Vertical electron transport in van der Waals heterostructures with graphene layers

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-04-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  17. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  18. Spin transport in tantalum studied using magnetic single and double layers

    NASA Astrophysics Data System (ADS)

    Montoya, Eric; Omelchenko, Pavlo; Coutts, Chris; Lee-Hone, Nicholas R.; Hübner, René; Broun, David; Heinrich, Bret; Girt, Erol

    2016-08-01

    We report on spin transport in sputter-grown Ta films measured by ferromagnetic resonance. Spin diffusion length and spin mixing conductance are determined from magnetic damping measurements for a varying thickness of Ta layer 0 ≤dTa≤10 nm. The different boundary conditions of single- and double-magnetic-layer heterostructures Py |Ta and Py |Ta | [Py |Fe ] allow us to significantly narrow down the parameter space and test various models. We show that a common approach of using bulk resistivity value in the analysis yields inconsistent spin diffusion length and spin mixing conductance values for magnetic single- and double-layer structures. X-ray diffraction shows that bulk Ta is a combination of β -Ta and bcc-Ta . However, in the region of significant spin transport, ≲2 nm, there is an intermediate region of growth where the Ta lacks long-range structural order, as observed by transmission electron microscopy. Thickness-dependent resistivity measurements confirm that the bulk and intermediate regions have significantly different resistivity values. We find that the data can be well represented if the intermediate region resistivity value is used in the analysis. Additionally, the data can be fit if resistivity has the measured thickness dependence and spin diffusion length is restricted to be inversely proportional to resistivity. Finally, we rule out a model in which spin diffusion length is a constant, while the resistivity has the measured thickness dependence.

  19. Vertical structure of aeolian turbulence in a boundary layer with sand transport

    NASA Astrophysics Data System (ADS)

    Lee, Zoe S.; Baas, Andreas C. W.

    2016-04-01

    Recently we have found that Reynolds shear stress shows a significant variability with measurement height (Lee and Baas, 2016), and so an alternative parameter for boundary layer turbulence may help to explain the relationship between wind forcing and sediment transport. We present data that were collected during a field study of boundary layer turbulence conducted on a North Atlantic beach. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different measurement heights in a tight vertical array between 0.11 and 1.62 metres above the surface. Thanks to the high density installation of sensors a detailed analysis of the boundary layer flow can be conducted using methods more typically used in studies where data is only available from one or just a few measurement heights. We use quadrant analysis to explore the vertical structure of turbulence and track the changes in quadrant signatures with measurement elevation and over time. Results of quadrant analysis, at the 'raw' 50 Hz timescale, demonstrates the tendency for event clustering across all four quadrants, which implies that at-a-point quadrant events are part of larger-scale turbulent structures. Using an HSV colour model, applied to the quadrant analysis data and plotted in series, we create colour maps of turbulence, which can provide a clear visualisation of the clustering of event activity at each height and illustrate the shape of the larger coherent flow structures that are present within the boundary layer. By including a saturation component to the colour model, the most significant stress producing sections of the data are emphasised. This results in a 'banded' colour map, which relates to clustering of quadrant I (Outward Interaction) and quadrant IV (Sweep) activity, separate from clustering of quadrant II (Burst) and quadrant III (Inward Interaction). Both 'sweep-type' and 'burst-type' sequences are shown to have a diagonal structure

  20. Band offset of vanadium-doped molybdenum oxide hole transport layer in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Kuei; Huang, Yi-Chi; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-08-01

    Solution-processed vanadium-doped molybdenum oxide films (V)MoOx films with mole ratios of Mo:V = 1:0, 1:0.05, 1:0.2, 1:0.5, 0:1, are fabricated as hole transport layer (HTL) in organic photovoltaics with active layer blend comprising poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The device structure is ITO/(V)MoOx/P3HT:PCBM/ZnO NP/Al, and the working area is 0.16 cm2. The result shows that the device using V0.05MoOx HTL has the best performance, including power conversion efficiency of 2.16%, Voc of 0.6 V, Jsc of 6.93 mA/cm2, and FF of 51.9%. Using ultraviolet photoelectron spectroscopy (UPS), we can define the energy levels of valence band edge and Fermi level of (V)MoOx films. UPS analysis indicates that V0.05MoOx has the smallest energy band offset between its valence band edge to the HOMO of P3HT, which is advantageous for hole transporting from P3HT to ITO anode via the V0.05MoOx HTL. In addition, V0.05MoOx film shows the lowest electrical resistivity among all (V)MoOx films, which is further beneficial for hole transportation.

  1. Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers

    NASA Astrophysics Data System (ADS)

    Calaf, Marc; Parlange, Marc B.; Meneveau, Charles

    2011-12-01

    Wind harvesting is fast becoming an important alternative source of energy. As wind farms become larger, they begin to attain scales at which two-way interactions with the atmospheric boundary layer (ABL) must be taken into account. Several studies have shown that there is a quantifiable effect of wind farms on the local meteorology, mainly through changes in the land-atmosphere fluxes of heat and moisture. In particular, the observed trends suggest that wind farms increase fluxes at the surface and this could be due to increased turbulence in the wakes. Conversely, simulations and laboratory experiments show that underneath wind farms, the friction velocity is decreased due to extraction of momentum by the wind turbines, a factor that could decrease scalar fluxes at the surface. In order to study this issue in more detail, a suite of large eddy simulations of an infinite (fully developed) wind turbine array boundary layer, including scalar transport from the ground surface without stratification, is performed. Results show an overall increase in the scalar fluxes of about 10%-15% when wind turbines are present in the ABL, and that the increase does not strongly depend upon wind farm loading as described by the turbines' thrust coefficient and the wind turbines spacings. A single-column analysis including scalar transport shows that the presence of wind farms can be expected to increase slightly the scalar transport from the bottom surface and that this slight increase is due to a delicate balance between two strong opposing trends.

  2. Chromatic-stability white organic light emitting diodes based on phosphorescence doped electron transport layer

    NASA Astrophysics Data System (ADS)

    Zhou, Pengchao; Wang, Feifei; Lin, Hong; Li, Xifeng; Tong, Liang; Wei, Na; Gao, Zhixiang; Wei, Bin

    2014-04-01

    The influence of fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] doped into electron transport layer was investigated by a series of electron-only devices, and the mechanism of the reduced field-dependent electron-transporting properties was also discussed. Utilizing the method of optimized doping concentration, a hybrid white organic light emitting diode with high efficiency, low efficiency roll-off and stable spectra was fabricated. Organic layer doped Ir(ppy)3 serves two functions: emit supernumerary green light with excess holes when the applied bias are low; weaken electron-transport ability when the bias increase. Both the two functions can improve the carrier balance and confine the exciton recombination region. For Device B, the maximum current efficiency and power efficiency reach 37.4 cd/A and 28.6 lm/W, respectively. The Commision Internationale de l’Éclairage (CIE) coordinates vary slightly from (0.48, 0.43) at 1.1 cd/m2 to (0.46, 0.43) at 18,600 cd/m2.

  3. Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency.

    PubMed

    Kim, Guan-Woo; Kang, Gyeongho; Malekshahi Byranvand, Mahdi; Lee, Gang-Young; Park, Taiho

    2017-08-23

    We demonstrate a simple and facile way to improve the efficiency and moisture stability of perovskite solar cells using commercially available hole transport materials, 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) and poly(3-hexylthiophene) (P3HT). The hole transport layer (HTL) composed of mixed spiro-OMeTAD and P3HT exhibited favorable vertical phase separation. The hydrophobic P3HT was more distributed near the surface (the air atmosphere), whereas the hydrophilic spiro-OMeTAD was more distributed near the perovskite layer. This vertical separation resulted in improved moisture stability by effectively blocking moisture in air. In addition, the optimized composition of spiro-OMeTAD and P3HT improved the efficiency of the solar cells by enabling fast intramolecular charge transport. In addition, a suitable energy level alignment facilitated charge transfer. A device fabricated using the mixed HTL exhibited enhanced performance, demonstrating 18.9% power conversion efficiency and improved moisture stability.

  4. Elevated Ozone Levels in Denmark: Analysis Employing Trajectory and Chemical Transport Modelling

    NASA Astrophysics Data System (ADS)

    Mahura, A.; Gross, A.; Petrova, I.

    2009-09-01

    In our study, among 9 Danish measurement sites, 3 sites having long-term ozone measurement (with a time resolution of 1 hour and starting in early 1990s) records were selected - Ulborg (DK31; 56.28°N, 8.43°E) and Frederiksborg (DK32; 55.97°N, 12.33°E) and Lille Valby (DK41; 55.69°N, 12.13°E) located on Jutland Peninsula and Zealand Island of Denmark, respectively. After pre-screening of the time series (covering almost 15 year period and including almost 543 thousand valid observations), the measurements with high ozone level (using threshold as 150 µg/m3) were selected accounting in total for 508 cases for these 3 locations. Among these, 42 (for DK41) and 59 (for DK31 and DK32) cases showed very high ozone concentrations (i.e. above 180 µg/m3). For all these cases, at first, the trajectory modelling approach was applied in order to estimate atmospheric transport pathway of air mass arrival at the measurement sites and potential source regions from where the elevated ozone level can be associated. In our study the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model using REANALYSIS meteorological dataset (global, 1948-present) was run to calculate a set of backward trajectories (in total 508, with duration of 5 day backward in time and arriving at altitude of 100 m) and divide into groups with respect to potential source regions and dominating atmospheric transport pathways using cluster analysis technique. Several relatively long-term episodes with continuous elevated ozone were identified in the analyzed time series; in particular, for DK31 - 7 episodes (having longest duration and observed in Jun 1996 and Jun 2000), DK32 - 5 (Jul 1992 and Jun 2000), and DK41 - 4 (Jul 1992 and Jun 2000). For selected episodes the off-line Eulerian Chemistry-Aerosol-Cloud (CAC) model was run over the European domain. As meteorological driver, the High Resolution Limited Area Model (HIRLAM) generated output with 3D meteorological fields was used

  5. Architecture of the Interface between the Perovskite and Hole-Transport Layers in Perovskite Solar Cells.

    PubMed

    Moriya, Masahiro; Hirotani, Daisuke; Ohta, Tsuyoshi; Ogomi, Yuhei; Shen, Qing; Ripolles, Teresa S; Yoshino, Kenji; Toyoda, Taro; Minemoto, Takashi; Hayase, Shuzi

    2016-09-22

    The interface between the perovskite (PVK, CH3 NH3 PbI3 ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO2 /mesoporous TiO2 /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.6-14.5 % to 15.1-17.6 %. TFBA (10 ppm) was added in the PVK solution before coating. Owing to the low surface tension of TFBA, TFBA rose to the surface of the PVK layer spontaneously during spin-coating to make a thin organic layer. The PVK grain boundaries also seemed to be passivated with the addition of TFBA. However, large differences in Urbach energies and valence band energy level were not observed for the PVK layer with and without the addition of TFBA. The charge recombination time constant between the PVK and the Spiro-MeOTAD became slower (from 8.4 to 280 μsec) after 10 ppm of TFBA was added in the PVK. The experimental results using TFBA conclude that insertion of a very thin layer at the interface between PVK and Spiro-MeOTAD is effective for suppressing charge recombination and increasing photovoltaic performances.

  6. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  7. Multi-dimensional Simulations of Core Collapse Supernovae employing Ray-by-Ray Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Mezzacappa, A.; Liebendoerfer, M.; Messer, O. E. B.; Blondin, J. M.; Bruenn, S. W.

    2001-12-01

    Decades of research on the mechanism which causes core collapse supernovae has evolved a paradigm wherein the shock that results from the formation of the proto-neutron star stalls, failing to produce an explosion. Only when the shock is re-energized by the tremendous neutrino flux that is carrying off the binding energy of this proto-neutron star can it drive off the star's envelope, creating a supernova. Work in recent years has demonstrated the importance of multi-dimensional hydrodynamic effects like convection to successful simulation of an explosion. Further work has established the necessity of accurately characterizing the distribution of neutrinos in energy and direction. This requires discretizing the neutrino distribution into multiple groups, adding greatly to the computational cost. However, no supernova simulations to date have combined self-consistent multi-group neutrino transport with multi-dimensional hydrodynamics. We present preliminary results of our efforts to combine these important facets of the supernova mechanism by coupling self-consistent ray-by-ray multi-group Boltzmann and flux-limited diffusion neutrino transport schemes to multi-dimensional hydrodynamics. This research is supported by NASA under contract NAG5-8405, by the NSF under contract AST-9877130, and under a SciDAC grant from the DoE Office of Science High Energy and Nuclear Physics Program. Work at Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  8. Analysis of quadratic nonlinearities in hydrodynamic transport systems employing numerical simulations

    NASA Astrophysics Data System (ADS)

    Bicken, Gurcan

    This dissertation deals with the analysis and identification of quadratic non-linearities in hydrodynamic transport problems arising in engineering and science. As representative application areas, homogenous oscillations of electron and ion plasmas in a 1-D periodic domain and the forced voltage-current dynamics of a semiconductor device are considered. The time series data obtained from numerical solutions of the associated hydrodynamic equations are used for the spectral analysis of the quadratic nonlinearities in these respective systems. More specifically, electron plasma oscillations are analyzed using power spectra and cross-bicoherency spectra to gain insight into the quadratic interactions predicted by a simple model of the energy transfer that cascades from lower modes to higher modes within a small amplitude range of oscillations. The efficiency of the bicoherency function in detecting the quadratic wave interactions from the complex time series of the mode amplitudes is observed. The difference in the modal interactions for isentropic and isothermal plasma models are investigated based on numerical 'experiments' simulating the modal dynamics in each case. Furthermore, the concentration oscillations of cold ion plasmas in a Lagrangian frame are analyzed for different Debye lengths. The detailed effects of linear and nonlinear mechanisms in the hydrodynamic model on the power spectra of the oscillations are investigated. Second-order Volterra models are considered for approximating the dynamics of input-output systems with quadratic nonlinear terms. The linear and quadratic kernels of the Volterra model are estimated using multi- tone inputs and least-squares minimization. The implications of the non-orthogonality of the model are investigated in detail. To circumvent the negative effects of non-orthogonality on the accuracy of the kernel estimation, an 'odd-even' separation technique is utilized in the kernel estimation. This approach for estimating an

  9. Thermal Transport Phenomena in the Quasi-laminarization Process of Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Castillo, Luciano; Araya, Guillermo; Hussain, Fazle

    2014-11-01

    Direct Numerical Simulation of a spatially evolving turbulent boundary layer subject to strong favorable pressure gradient (SFPG) with eventual quasi-laminarization has been performed to include the thermal field. In this talk, the following questions will be addressed: i) to which extend the Reynolds analogy is satisfied during flow laminarization? ii) can the thermal boundary layer under quasi-laminarization be described as two quasi-independent inner/outer regions? To the best of our knowledge, documented investigation regarding heat transfer phenomena associated with quasi-laminarization process of spatially developing boundary layers is rather scarce. In order to introduce realistic thermal inlet fluctuations in a SFPG we employed the multi-scale technique for thermal boundary layers devised by Araya and Castillo PoF (2013). Such methodology enable us to more effective capture the pressure gradient and thermal field than using a single scaling approach. It is shown that the Reynolds normal stresses for the streamwise component remains frozen in space while the wall-normal and spanwise components continue to decrease as the flow moves downstream and never becomes laminar due to the survival of the upstream turbulence during dissipation on viscous time scales.

  10. Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies

    NASA Astrophysics Data System (ADS)

    Zhu, Ping

    2008-09-01

    Hurricane boundary layer (HBL) processes, especially the structure of the coherent large eddy circulations (LECs) and their induced vertical transport, are not well understood. This paper introduces a large eddy simulation (LES) framework in a weather hindcasting mode developed from a multiple scale nested Weather Research and Forecasting (WRF) model. Using the WRF-LES, this study investigated the structure of the HBL LECs and the associated vertical transport during the landfall of Hurricane Ivan (2004). The simulation shows that the HBL LECs exist in a mean stable environment and consist of well-defined updraft and downdraft. Statistically, the HBL LECs are only slightly skewed with the updrafts and downdrafts relatively evenly distributed spatially. The inversion base basically envelopes the upper boundary of LECs. The trough in between two adjacent LECs is where most entrainment takes place, whereas the crest of the LECs is where boundary layer air detrains out of the HBL. In such a way, LECs directly connect the surface, the HBL, and the main body of a hurricane vortex and enhance the exchange of energy, moisture, and momentum between them. It is found that the current boundary layer schemes significantly underestimate the resolved turbulent fluxes due to the fact that the effects of LECs have not been included in the parameterizations. On the basis of the statistical structure of LECs simulated by the WRF-LES, this paper proposes a conceptual updraft-downdraft model that can potentially be implemented in weather forecasting models to parameterize the fluxes induced by the HBL LEC transport.

  11. High-Mobility Transport Anisotropy in Few-Layer MoO3 and Its Origin.

    PubMed

    Zhang, Wei-Bing; Qu, Qian; Lai, Kang

    2017-01-18

    The novel two-dimensional semiconductors with high carrier mobility and excellent stability are essential to the next-generation high-speed and low-power nanoelectronic devices. Because of the natural abundance, intrinsic gap, and chemical stability, metal oxides were also recently suggested as potential candidates for electronic materials. However, their carrier mobilities are typically on the order of tens of square centimeters per volt per second, much lower than that for commonly used silicon. By using first-principles calculations and deformation potential theory, we have predicted few-layer MoO3 as chemically stable wide-band-gap semiconductors with a considerably high acoustic-phonon-limited carrier mobility above 3000 cm(2) V(-1) s(-1), which makes them promising candidates for both electron- and hole-transport applications. Moreover, we also find a large in-plane anisotropy of the carrier mobility with a ratio of about 20-30 in this unusual system. Further analysis indicates that, because of the unique charge density distribution of whole valence electrons and the states near the band edge, both the elastic modulus and deformation potential are strongly directionally dependent. Also, the predicted high-mobility transport anisotropy of few-layer MoO3 can be attributed to the synergistic effect of the anisotropy of the elastic modulus and deformation potential. Our results not only give an insightful understanding for the high carrier mobility observed in few-layer MoO3 systems but also reveal the importance of the carrier-transport direction to the device performance.

  12. Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers

    SciTech Connect

    Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

    2011-07-01

    There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

  13. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Welstead, Jason R.; Felder, James L.

    2016-01-01

    A single-aisle commercial transport concept with a turboelectric propulsion system architecture was developed assuming entry into service in 2035 and compared to a similar technology conventional configuration. The turboelectric architecture consisted of two underwing turbofans with generators extracting power from the fan shaft and sending it to a rear fuselage, axisymmetric, boundary layer ingesting fan. Results indicate that the turbo- electric concept has an economic mission fuel burn reduction of 7%, and a design mission fuel burn reduction of 12% compared to the conventional configuration. An exploration of the design space was performed to better understand how the turboelectric architecture changes the design space, and system sensitivities were run to determine the sensitivity of thrust specific fuel consumption at top of climb and propulsion system weight to the motor power, fan pressure ratio, and electrical transmission efficiency of the aft boundary layer ingesting fan.

  14. A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells.

    PubMed

    Gao, Xianfeng; Li, Jianyang; Gollon, Sam; Qiu, Ming; Guan, Dongsheng; Guo, Xiaoru; Chen, Junhong; Yuan, Chris

    2017-02-15

    The electron transport layer (ETL) plays a critical role in high efficiency perovskite solar cells. In this study, an anodic TiO2 nanotube film was transformed into a TiO2 nanotube network film, which maintained its advantage as an efficient ETL for perovskite solar cells. Compared with the mesoporous TiO2 nanoparticle ETL, the TiO2 nanotube network ETL can increase the efficiency of perovskite solar cells by 26.6%, which is attributed to its superior charge collection property and light trapping ability. The results confirm the importance of optimizing the electron collecting layer and suggest another way to design and fabricate novel perovskite solid state solar cells, potentially by using a TiO2 nanotube network film as an alternative high efficiency electrode.

  15. Nb2O5 as a new electron transport layer for double junction polymer solar cells.

    PubMed

    Siddiki, Mahbube K; Venkatesan, Swaminathan; Qiao, Qiquan

    2012-04-14

    Nb(2)O(5) as a new electron transport layer (ETL) was used for double junction polymer solar cells. The Nb(2)O(5) ETL was prepared by spin coating a Nb(2)O(5) sol-gel solution onto the active layer of the optical front subcell. The double junction devices using Nb(2)O(5) ETL exhibit an open circuit voltage (V(oc)) of 1.30 V, which is close to the sum of the s of the individual subcells. The current density-voltage (J-V) simulation showed that the double junction device performance using Nb(2)O(5) as ETL could be significantly increased by reducing the series resistance (R(se)) and matching the current densities of the individual subcells.

  16. Thermal transport across few-layer boron nitride encased by silica

    SciTech Connect

    Ni, Yuxiang; Dumitricǎ, Traian; Jiang, Jiechao; Meletis, Efstathios

    2015-07-20

    Two dimensional hexagonal boron nitride (h-BN) attracted attention for use in applications. Using equilibrium molecular dynamics, we examine the phonon transport in few-layer h-BN encased by silica (SiO{sub 2}). We report large interfacial thermal resistances, of about 2.2 × 10{sup −8} m{sup 2} K W{sup −1}, which are not sensitive to the number of h-BN layers or the SiO{sub 2} crystallinity. The h-BN/SiO{sub 2} superlattices exhibit ultra-low thermal conductivities across layers, as low as 0.3 W/m K. They are structurally stable up to 2000 K while retaining the low-thermal conductivity attributes. Our simulations indicate that incorporation of h-BN layers and nanoparticles in silica could establish thermal barriers and heat spreading paths, useful for high performance coatings and electronic device applications.

  17. Cross-layer restoration with software defined networking based on IP over optical transport networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young

    2015-10-01

    The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.

  18. Angular Momentum Transport and Variability in Boundary Layers of Accretion Disks Driven by Global Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2012-11-01

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  19. ANGULAR MOMENTUM TRANSPORT AND VARIABILITY IN BOUNDARY LAYERS OF ACCRETION DISKS DRIVEN BY GLOBAL ACOUSTIC MODES

    SciTech Connect

    Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.

    2012-11-20

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  20. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network.

    PubMed

    Yang, Bin; Zhang, Jianfeng

    2017-06-28

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme.

  1. Crystal structure and electrical transport properties of single layered perovskite LaSrCoO4

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Shukla, D. K.; Rahman, F.; Majid, S.; Tarachand; Okram, G. S.; Phase, D. M.

    2016-10-01

    We present here investigations on the influence of structure on electrical transport properties of polycrystalline LaSrCoO4 that is single layered perovskite with K2NiF4 type structure synthesized using solid state reaction route. Using Reitveld refinement of X-ray diffraction (XRD) data, it is found that the sample is in single phase with tetragonal structure (space group I4/mmm). Electrical resistivity performed in the temperature range 140-300K shows semiconducting character of the sample. Considerable contrasts in the Co-O bond length is associated with the intermediate spin (IS) state of Co ion that correlates the structural and transport properties. Detailed analysis indicates that the temperature dependent electrical resistivity follows the three-dimensional variable range hopping (VRH) model in low temperature region below 225K. The high temperature (225-300K) resistivity data has been found to follow the thermally activated behaviour.

  2. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C.; Kim, Jin Young; Heeger, Alan J.

    2015-06-01

    Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT:PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells.

  3. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells.

    PubMed

    Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C; Kim, Jin Young; Heeger, Alan J

    2015-06-17

    Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells.

  4. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network

    PubMed Central

    Yang, Bin; Zhang, Jianfeng

    2017-01-01

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme. PMID:28657588

  5. Numerical Computation of Mass Transport in Low Reynolds Number Flows and the Concentration Boundary Layer

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Fuller, Nathaniel J.

    Understanding the physical mechanisms by which an individual cell interacts with its environment often requires detailed information about the fluid in which the cell is immersed. Mass transport between the interior of the cell and the external environment is influenced by the flow of the extracellular fluid and the molecular diffusivity. Analytical calculations of the flow field are challenging in simple geometries, and not generally available in more realistic cases with irregular domain boundaries. Motivated by these problems, we discuss the numerical solution of Stokes equation by implementing a Gauss-Seidel algorithm on a staggered computational grid. The computed velocity profile is used as input to numerically solve the advection-diffusion equation for mass transport. Special attention is paid to the case of two-dimensional flows at large Péclet number. The numerical results are compared with a perturbative analytical treatment of the concentration boundary layer.

  6. Ultraviolet Electroluminescence and Blue-Green Phosphorescence using an Organic Diphosphine Oxide Charge Transporting Layer.

    SciTech Connect

    Burrows, Paul E.; Padmaperuma, Asanga B.; Sapochak, Linda S.; Djurovich, Peter I.; Thompson, Mark E.

    2006-05-01

    We report electroluminescence with a peak wavelength at 338 nm from a simple bilayer organic light emitting device (OLED) made using 4,4’-bis(diphenylphosphine oxide) biphenyl (PO1). In an OLED geometry, the material is preferentially electron transporting. Doping the PO1 layer with iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N, C2’)picolinate (FIrpic) gives rise to electrophosphorescence with a peak external quantum efficiency of 7.8% at 0.09 mA/cm2 and 5.8% at 13 mA/cm2. The latter current density is obtained at 6.3 V applied forward bias. This represents a new class of wide-bandgap charge transporting organic materials which may prove useful as host materials for blue electrophosphoresent OLEDs.

  7. Evaluating the transport layer of the ALFA framework for the Intel® Xeon Phi™ Coprocessor

    NASA Astrophysics Data System (ADS)

    Santogidis, Aram; Hirstius, Andreas; Lalis, Spyros

    2015-12-01

    The ALFA framework supports the software development of major High Energy Physics experiments. As part of our research effort to optimize the transport layer of ALFA, we focus on profiling its data transfer performance for inter-node communication on the Intel Xeon Phi Coprocessor. In this article we present the collected performance measurements with the related analysis of the results. The optimization opportunities that are discovered, help us to formulate the future plans of enabling high performance data transfer for ALFA on the Intel Xeon Phi architecture.

  8. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells.

    PubMed

    Zhou, Huiqiong; Zhang, Yuan; Mai, Cheng-Kang; Collins, Samuel D; Nguyen, Thuc-Quyen; Bazan, Guillermo C; Heeger, Alan J

    2014-02-01

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively used as the hole-transporting layer (HTL) in bulk heterojunction (BHJ) solar cells, however, its anisotropic electrical conduction and intrinsic acidic nature generally limit the device performance. Here we demonstrate the application of a water/alcohol soluble CPE (CPE-K) as HTLs in BHJ solar cells, achieving a PCE up to 8.2%. The more superior and uniform vertical electrical conductivity found in CPE-K reduces the series resistance and provides efficient hole extraction.

  9. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3

    NASA Astrophysics Data System (ADS)

    Lee, Sungmin; Choi, Ki-Young; Lee, Sangik; Park, Bae Ho; Park, Je-Geun

    2016-08-01

    We have investigated the tunneling transport of mono- and few-layers of MnPS3 by using conductive atomic force microscopy. Due to the band alignment of indium tin oxide/MnPS3/Pt-Ir tip junction, the key features of both Schottky junction and Fowler-Nordheim tunneling (FNT) were observed for all the samples with varying thickness. Using the FNT model and assuming the effective electron mass (0.5 me) of MnPS3, we estimate the tunneling barrier height to be 1.31 eV and the dielectric breakdown strength as 5.41 MV/cm.

  10. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua

    1998-01-01

    In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next

  11. Investigation of silver and iodine transport through silicon carbide layers prepared for nuclear fuel element cladding

    NASA Astrophysics Data System (ADS)

    Friedland, E.; van der Berg, N. G.; Malherbe, J. B.; Hancke, J. J.; Barry, J.; Wendler, E.; Wesch, W.

    2011-03-01

    Transport of silver and iodine through polycrystalline SiC layers produced by PBMR (Pty) Ltd. for cladding of TRISO fuel kernels was investigated using Rutherford backscattering analysis and electron microscopy. Fluences of 2 × 10 16 Ag + cm -2 and 1 × 10 16 I + cm -2 were implanted at room temperature, 350 °C and 600 °C with an energy of 360 keV, producing an atomic density of approximately 1.5% at the projected ranges of about 100 nm. The broadening of the implantation profiles and the loss of diffusors through the front surface during vacuum annealing at temperatures up to 1400 °C was determined. The results for room temperature implantations point to completely different transport mechanisms for silver and iodine in highly disordered silicon carbide. However, similar results are obtained for high temperature implantations, although iodine transport is much stronger influenced by lattice defects than is the case for silver. For both diffusors transport in well annealed samples can be described by Fickian grain boundary diffusion with no abnormal loss through the surface as would be expected from the presence of nano-pores and/or micro-cracks. At 1100 °C diffusion coefficients for silver and iodine are below our detection limit of 10 -21 m 2 s -1, while they increase into the 10 -20 m 2 s -1 range at 1300 °C.

  12. Three-dimensional scrape off layer transport in the helically symmetric experiment HSX

    NASA Astrophysics Data System (ADS)

    Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.

    2016-08-01

    The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s-1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.

  13. Highly efficient uniform ZnO nanostructures for an electron transport layer of inverted organic solar cells.

    PubMed

    Kim, Sarah; Kim, Chul-Hyun; Lee, Sang Kyu; Jeong, Jun-Ho; Lee, Jihye; Jin, Sung-Ho; Shin, Won Suk; Song, Chang Eun; Choi, Jun-Hyuk; Jeong, Jong-Ryul

    2013-07-11

    A highly uniform and predesigned ZnO nanostructure fabricated by single step direct nanoimprinting was used as the efficient electron transport layer (ETL) in inverted bulk heterojunction organic solar cells. Improved photovoltaic cell efficiency with long-term stability can be observed due to the large interface between the active layer and nanostructured ZnO ETL.

  14. Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-Cycle-Life Lithium-Ion Batteries.

    PubMed

    Jung, Ji-Won; Ryu, Won-Hee; Shin, Jungwoo; Park, Kyusung; Kim, Il-Doo

    2015-07-28

    Amorphous silicon (a-Si) has been intensively explored as one of the most attractive candidates for high-capacity and long-cycle-life anode in Li-ion batteries (LIBs) primarily because of its reduced volume expansion characteristic (∼280%) compared to crystalline Si anodes (∼400%) after full Li(+) insertion. Here, we report one-dimensional (1-D) electrospun Si-based metallic glass alloy nanofibers (NFs) with an optimized composition of Si60Sn12Ce18Fe5Al3Ti2. On the basis of careful compositional tailoring of Si alloy NFs, we found that Ce plays the most important role as a glass former in the formation of the metallic glass alloy. Moreover, Si-based metallic glass alloy NFs were wrapped by reduced graphene oxide sheets (specifically Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO), which can prevent the direct exposure of a-Si alloy NFs to the liquid electrolyte and stabilize the solid-electrolyte interphase (SEI) layers on the surfaces of rGO sheets while facilitating electron transport. The metallic glass nanofibers exhibited superior electrochemical cell performance as an anode: (i) Si60Sn12Ce18Fe5Al3Ti2 NFs show a high specific capacity of 1017 mAh g(-1) up to 400 cycles at 0.05C with negligible capacity loss as well as superior cycling performance (nearly 99.9% capacity retention even after 2000 cycles at 0.5C); (ii) Si60Sn12Ce18Fe5Al3Ti2 NFs@rGO reveals outstanding rate behavior (569.77 mAh g(-1) after 2000 cycles at 0.5C and a reversible capacity of around 370 mAh g(-1) at 4C). We demonstrate the potential suitability of multicomponent a-Si alloy NFs as a long-cycling anode material.

  15. The design, fabrication and maintenance of semi-trailers employed in the highway transport of weight-concentrated radioactive loads

    SciTech Connect

    Huffman, D.S.

    1991-12-31

    Transportation of weight-concentrated radioactive loads by truck is an essential part of a safe and economical nuclear industry. This proposed standard presents guidance and performance criteria for the safe transport of these weight-concentrated radioactive loads. ANSI N14.30 will detail specific requirements for the design, fabrication, testing, in-service inspections, maintenance and certification of the semi-trailers to be employed in said service. Furthermore, guidelines for a quality assurance program are also enumerated. This standard would apply to any semi-trailer that may or may not be specifically designed to carry weight-concentrated loads. Equipment not suitable per the criteria established in the standard would be removed from service. The nature of the nuclear industry and the need for a positive public perception of the various processes and players, mandates that the highway transportation of weight-concentrated radioactive loads be standardized and made inherently safe. This proposed standard takes a giant step in that direction.

  16. Unusual isotope effect on thermal transport of single layer molybdenum disulphide

    SciTech Connect

    Wu, Xufei; Yang, Nuo; Luo, Tengfei

    2015-11-09

    Thermal transport in single layer molybdenum disulfide (MoS{sub 2}) is critical to advancing its applications. In this paper, we use molecular dynamics simulations with first-principles force constants to study the isotope effect on the thermal transport of single layer MoS{sub 2}. Through phonon modal analysis, we found that isotopes can strongly scatter phonons with intermediate frequencies, and the scattering behavior can be radically different from that predicted by conventional scattering model based on perturbation theory, where Tamura's formula is combined with Matthiessen's rule to include isotope effects. Such a discrepancy becomes smaller for low isotope concentrations. Natural isotopes can lead to a 30% reduction in thermal conductivity for large size samples. However, for small samples where boundary scattering becomes significant, the isotope effect can be greatly suppressed. It was also found that the Mo isotopes, which contribute more to the phonon eigenvectors in the intermediate frequency range, have stronger impact on thermal conductivity than S isotopes.

  17. What Supergranule Flow Models Tell Us About the Sun's Surface Shear Layer and Magnetic Flux Transport

    NASA Technical Reports Server (NTRS)

    Hathaway, David

    2011-01-01

    Models of the photospheric flows due to supergranulation are generated using an evolving spectrum of vector spherical harmonics up to spherical harmonic wavenumber l1500. Doppler velocity data generated from these models are compared to direct Doppler observations from SOHO/MDI and SDO/HMI. The models are adjusted to match the observed spatial power spectrum as well as the wavenumber dependence of the cell lifetimes, differential rotation velocities, meridional flow velocities, and relative strength of radial vs. horizontal flows. The equatorial rotation rate as a function of wavelength matches the rotation rate as a function of depth as determined by global helioseismology. This leads to the conclusions that the cellular structures are anchored at depths equal to their widths, that the surface shear layer extends to at least 70 degrees latitude, and that the poleward meridional flow decreases in amplitude and reverses direction at the base of the surface shear layer (approx.35 Mm below the surface). Using the modeled flows to passively transport magnetic flux indicates that the observed differential rotation and meridional flow of the magnetic elements are directly related to the differential rotation and meridional flow of the convective pattern itself. The magnetic elements are transported by the evolving boundaries of the supergranule pattern (where the convective flows converge) and are unaffected by the weaker flows associated with the differential rotation or meridional flow of the photospheric plasma.

  18. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  19. Non-Newtonian effects of blood on LDL transport inside the arterial lumen and across multi-layered arterial wall with and without stenosis

    NASA Astrophysics Data System (ADS)

    Deyranlou, Amin; Niazmand, Hamid; Sadeghi, Mahmood-Reza; Mesri, Yaser

    2016-06-01

    Blood non-Newtonian behavior on low-density lipoproteins (LDL) accumulation is analyzed numerically, while fluid-multilayered arteries are adopted for nonstenotic and 30%-60% symmetrical stenosed models. Present model considers non-Newtonian effects inside the lumen and within arterial layers simultaneously, which has not been examined in previous studies. Navier-Stokes equations are solved along with the mass transport convection-diffusion equations and Darcy’s model for species transport inside the luminal flow and across wall layers, respectively. Carreau model for the luminal flow and the modified Darcy equation for the power-law fluid within arterial layers are employed to model blood rheological characteristics, appropriately. Results indicate that in large arteries with relatively high Reynolds number Newtonian model estimates LDL concentration patterns well enough, however, this model seriously incompetent for regions with low WSS. Moreover, Newtonian model for plasma underestimates LDL concentration especially on luminal surface and across arterial wall. Therefore, applying non-Newtonian model seems essential for reaching to a more accurate estimation of LDL distribution in the artery. Finally, blood flow inside constricted arteries demonstrates that LDL concentration patterns along the stenoses inside the luminal flow and across arterial layers are strongly influenced as compared to the nonstenotic arteries. Additionally, among four stenosis severity grades, 40% stenosis is prone to more LDL accumulation along the post-stenotic regions.

  20. Analysis of subgrid-scale vertical transport in convective boundary layers at gray-zone resolutions

    NASA Astrophysics Data System (ADS)

    Shin, Hyeyum Hailey; Hong, Song-You

    2013-04-01

    The gray zone of a physics process in numerical models is defined as the range of model resolution in which the process is partly resolved by model dynamics and partly parameterized. In this study, we examine the effects of grid size on resolved and parameterized vertical transport for horizontal grid scales including the gray zone. To assess how stability alters the dependency on grid size, four convective boundary layer (CBL)s with different surface heating and geostrophic winds are considered. For this purpose, reference data for grid-scale (GS) and subgrid-scale (SGS) fields are constructed for 50-4000 mesh sizes by filtering 25-m large-eddy simulations (LES) data. As wind shear becomes stronger, turbulent kinetic energy and the vertical transport of potential temperature and momentum are more resolved for a given grid spacing. A passive scalar with bottom-up diffusion behaves in a similar fashion. For a top-down diffusion scalar, the cospectral peak scale of the scalar flux is larger than the horizontal size of the thermals and increases in time. For the scalar, the entrainment ratio, in conjunction with the shear, influences the mesh-size dependency of GS and SGS transport. The total vertical transport of heat and the bottom-up scalar is decomposed into a non-local mixing owing to the coherent structures and remaining local mixing. The contribution of the resolved parts is larger when roll-like structures are present than when only thermals exist, for both non-local and local fluxes. The grid-size dependency of the non-local flux and its sensitivity to stability predominantly determines the dependency of total (non-local plus local) transport.

  1. The design and optimization of two low frequency energy harvesters employing 3C-SiC/AlN/Mo composite layers

    SciTech Connect

    Iqbal, Abid Mohd-Yasin, Faisal Dimitrijev, Sima

    2014-10-24

    This paper presents the design and simulation of twocantilever-based energy harvesters that employs cubic silicon carbide on silicon (3C-SiC-on-Si) wafer as the base material and bottom electrode. Aluminum Nitride (AlN) is employed as the piezoelectric/middle layer due to its excellent material properties and high stability in varying temperature and harsh environment. Molybdenum (Mo) serves as the top layer/electrode. The thickness of the structural layers are optimized through MATLAB and also analyzed via Finite Element Analysis using Intellisuite. Two designs are proposed at low resonant frequency, one with conventional cantilever beam, the other being a T-shaped cantilever beam. Both structures are simulated and their performances are compared.

  2. Numerical study on exciton transport and light emission for organic light emitting diodes with an emission layer.

    PubMed

    Kim, K S; Hwang, Y W; Won, T Y

    2013-12-01

    This paper reports the results of a numerical study on carrier injection and exciton transport in an organic light emitting diode (OLED) structure based on tris (8-hydroxyquinolinato) aluminum (Alq3). Because charge accumulation at the interfaces between the emission layer (EML) and transport layer are believed to increase the recombination rate, which also increases the exciton density, a numerical study was performed on the effect of inserting an EML in the bilayer structure. In the first case considered, the lowest unoccupied molecular orbital (LUMO) of the EML was aligned with the LUMO of the hole transport layer (HTL), whereas the highest occupied molecular orbital (HOMO) of the EML was aligned with the HOMO of the electron transport layer (ETL). In the second case, the LUMO of the EML was aligned with the LUMO of the ETL and the HOMO of the EML was aligned with the HOMO of the HTL. In case of a charge-blocking device, most of the recombination appeared to occur at both edges of the EML because the electric field exhibited a peak in these areas. On the other hand, in the case of the charge-confining device, the electric field was confined at the interface between the EML and ETL. This paper also discussed the effect of the insertion of a doping layer as transport layer.

  3. Electrostatic transport in L-mode scrape-off layer plasmas of Tore Supra tokamak. II. Transport by fluctuations

    SciTech Connect

    Fedorczak, N.; Tynan, G. R.; Gunn, J. P.; Pascal, J.-Y.; Ghendrih, Ph.; Monier-Garbet, P.; Oost, G. van

    2012-07-15

    The turbulent transport of particles is investigated using rake probes at the top of the scrape-off layer (SOL) of circular ohmically heated L-mode plasmas in the Tore Supra tokamak [G. Giruzzi et al., Nucl. Fusion 49, 104010 (2009)]. Both radial and poloidal non-linear fluxes are estimated by means of two reciprocating arrays separated toroidally by 120 Degree-Sign . The time average of the radial (poloidal) flux is positive (negative) through the whole SOL profile. The respective effective transport velocity are about {sub t} Almost-Equal-To 30m s{sup -1} and {sub t} Almost-Equal-To -60m s{sup -1} close to the last closed flux surface. Both components present a standard deviation about 10 times higher than their respective mean amplitude, and time-distributions highly skewed toward values of the same sign as their mean values. The existence of a nonlinear poloidal flux is associated with the local tilt of filament eddies due to electric and magnetic shear. At the last closed flux surface, where plasma filaments experience their early life, the orientation of the velocity field is consistent with structure dynamics which originate from the outboard midplane and spread along field lines toward the rest of the poloidal section. The localized tilt of the eddy structures corresponds to the effect of the magnetic shear. Further into the SOL, the orientation of the velocity field evolves along radius in agreement with a simple model of propagating filaments progressively tilted by an electric shear. The combined effects of electric and magnetic shear on the eddy tilting have potentially a crucial impact on the existence of a Reynolds stress {sub t} component, which is strongly poloidally asymmetric at the edge of tokamak plasmas.

  4. Modeling contaminant transport and biodegradation in a layered porous media system

    NASA Astrophysics Data System (ADS)

    Wood, Brian D.; Dawson, Clint N.; Szecsody, Jim E.; Streile, Gary P.

    1994-06-01

    The transport and biodegradation of an organic compound (quinoline) were studied in a meter-scale system of layered porous media. A two-dimensional laboratory experiment was conducted in a saturated system with two hydraulic layers with a ratio of conductivities of 1:13. A solution containing dissolved quinoline was injected as a front at one end of the system, and the aqueous-phase concentrations of quinoline, its first degradation product (2-hydroxyquinoline), and oxygen were monitored over time at several spatial locations. Results from a set of ancillary batch and small-column experiments were used to generate a mathematical model for the microbial kinetics; these kinetics described the time rate of change of the concentrations of the two organic compounds (quinoline and 2-hydroxyquinoline), the electron acceptor (oxygen), and microbial biomass. This independently developed kinetic model was incorporated into a two-dimensional numerical model for flow and transport, so that simulations of the laboratory system could be conducted and the results compared with observed data. An analysis of the applicability of single-phase and multiple-phase models for the description of the microbial kinetics was conducted. The results of this analysis indicated that for some cases, it is not necessary to explicitly model the mass transfer between the aqueous phase and the biomass phase. A single-phase model was used for simulating the laboratory system described here. Favorable comparisons between the laboratory and simulation data suggested that a single-phase model was appropriate for describing the microbially mediated reactions in this system. A method for incorporating the effects of metabolic lag into microbial kinetics is described. Metabolic lag was explicitly accounted for in the degradation kinetics for this system; the inclusion of metabolic lag proved to be important for describing transient concentration pulses that were observed in the low-conductivity layer.

  5. Tail-ion transport and Knudsen layer formation in the presence of magnetic fields

    SciTech Connect

    Schmit, P. F.; Molvig, Kim; Nakhleh, C. W.

    2013-11-15

    Knudsen layer losses of tail fuel ions could reduce significantly the fusion reactivity of highly compressed cylindrical and spherical targets in inertial confinement fusion (ICF). With the class of magnetized ICF targets in mind, the effect of embedded magnetic fields on Knudsen layer formation is investigated for the first time. The modified energy scaling of ion diffusivity in magnetized hot spots is found to suppress the preferential losses of tail-ions perpendicular to the magnetic field lines to a degree that the tail distribution can be at least partially, if not fully, restored. Two simple threshold conditions are identified leading to the restoration of fusion reactivity in magnetized hot spots. A kinetic equation for tail-ion transport in the presence of a magnetic field is derived, and solutions to the equation are obtained numerically in simulations. Numerical results confirm the validity of the threshold conditions for restored reactivity and identify two different asymptotic regimes of the fusion fuel. While Knudsen layer formation is shown to be suppressed entirely in strongly magnetized cylindrical hot spot cavities, uniformly magnetized spherical cavities demonstrate remnant, albeit reduced, levels of tail-ion depletion.

  6. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    NASA Astrophysics Data System (ADS)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  7. Improved planar perovskite solar cells using the modified hole transporting layer and solvent annealing

    NASA Astrophysics Data System (ADS)

    Pang, Shangzheng; Zhang, Chunfu; Chen, Dazheng; Hao, Yue

    2017-06-01

    Organometal trihalide perovskites have been demonstrated as excellent light absorbers for high efficiency solar cell [1]. In this work, Glass/ITO/PEDOT:PSS/Perovskite/PCBM/Ag planar heterojunction structure was designed and investigated. For the reference cell, the efficiency of 12.5 % was achieved. An relative low J sc was exhibited at the result, mainly owing to the low conductivity of the electric transport layer - PEDOT:PSS. By controlling the amount of DMSO doped in PEDOT:PSS, a superior device was obtained with the efficiency of 13.6% although the roughness of the PEDOT:PSS layer was also increasing with doping DMSO. Furthermore, another key factor for a perovskite solar cell is the high crystallization of the perovskite layer[2]. Solvent annealing was adopted to improve the crystallization in this work. With dropping IPA around the solar cell and annealing for 20 minute, a surprising characteristics of the device with the efficiency of 15%, V OC of 0.99 V, Fill Factor of 67.9%, J SC of 22.3mA/cm2 was obtained.

  8. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus

    PubMed Central

    Qiao, Jingsi; Kong, Xianghua; Hu, Zhi-Xin; Yang, Feng; Ji, Wei

    2014-01-01

    Two-dimensional crystals are emerging materials for nanoelectronics. Development of the field requires candidate systems with both a high carrier mobility and, in contrast to graphene, a sufficiently large electronic bandgap. Here we present a detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) to predict its electrical and optical properties. This system has a direct bandgap, tunable from 1.51 eV for a monolayer to 0.59 eV for a five-layer sample. We predict that the mobilities are hole-dominated, rather high and highly anisotropic. The monolayer is exceptional in having an extremely high hole mobility (of order 10,000 cm2 V−1 s−1) and anomalous elastic properties which reverse the anisotropy. Light absorption spectra indicate linear dichroism between perpendicular in-plane directions, which allows optical determination of the crystalline orientation and optical activation of the anisotropic transport properties. These results make few-layer BP a promising candidate for future electronics. PMID:25042376

  9. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    NASA Astrophysics Data System (ADS)

    Arora, H.; Malinowski, P. E.; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-04-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm2 at a bias voltage of -2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 1012 Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiOx as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  10. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    SciTech Connect

    Arora, H.; Malinowski, P. E. Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  11. The influence of a very large wind farm on turbulent transport in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Abkar, M.; Porté-Agel, F.

    2012-04-01

    Predicting wind and turbulent transport of heat, water vapor and pollutants through wind farms is of great importance for wind engineering, wind energy and environmental applications. It requires detailed knowledge of atmospheric boundary-layer (ABL) over a wide range of spatial and temporal scales. The complexity of such flows makes it difficult to obtain all the needed information through field experiments alone, and often necessitates high-resolution eddy-resolving numerical tools such as large-eddy simulation (LES). In this study, Large-eddy simulation is used to simulate atmospheric boundary-layer flow through a very large wind farm. To do this, tuning-free Lagrangian scale-dependent dynamic models (Stoll and Porte-Agel 2006) are used to model the subgrid-scale fluxes and the turbine-induced forces are parameterized using the actuator disk model (Wu and Porte-Agel 2011). The effect of large arrays of wind turbines on local/regional fluxes of momentum and scalar quantities under different stability conditions is assessed. Also, it will be shown how wind farms can change the vertical distribution of momentum and scalar fluxes inside the ABL. Particular attention is placed on the growth of the boundary layer height due to the presence of the wind turbines.

  12. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  13. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  14. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  15. Evaluation of water transport in PEMFC gas diffusion layers using image analysis

    NASA Astrophysics Data System (ADS)

    Daino, Michael Mario

    Liquid water transport through the gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) was investigated through three interrelated studies utilizing the tools of image processing. First, a new framework and model for the digital generation and characterization of the microstructure of GDL materials with localized binder and polytetrafluoroethylene (PTFE) distributions were developed using 3D morphological imaging processing. The new generation technique closely mimics manufacturing processes and produces realistic 3D phase-differentiated digital microstructures in a cost- and time- effective manner. The generated distributions of hydrophobic (PTFE) and hydrophilic (carbon) regions representative of commercial GDL materials provides water transport modeling efforts with more accurate geometries to improve PEMFC water management. Second, through-plane transport in an operating PEMFC was investigated by developing and testing a transparent (visible and infrared) fuel cell. Visible observations and subsequent video processing revealed condensation of microdroplets on the GDL and implied the existence of condensation within the GDL. Temperature gradients across the cathode GDL under realistic operating conditions were obtained in a noninvasive manner using infrared imaging and subsequent image analysis. Recommendations for improving accuracy of PEMFC temperature measurements using infrared imaging were made. The final contribution of this work was the measurement and analysis of water breakthrough dynamics across GDL materials with and without microporous layers (MPLs). Dynamic breakthrough events, or recurrent breakthroughs, were observed for all GDL material investigated indicating the breakdown and re-build of water paths through the GDL caused by an intermittent water drainage process from the GDL surface. GDL materials without an MPL exhibited a dynamic breakthrough location phenomenon and significantly elevated water saturations. The results

  16. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells.

    PubMed

    Liang, Xiaoyong; Bai, Sai; Wang, Xin; Dai, Xingliang; Gao, Feng; Sun, Baoquan; Ning, Zhijun; Ye, Zhizhen; Jin, Yizheng

    2017-02-28

    Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and properties of charge transporting layers based on oxide nanocrystals hold the key to boosting the efficiency and lifetime of all-solution-processed light-emitting diodes and solar cells, and thereby realizing an unprecedented generation of high-performance, low-cost, large-area and flexible optoelectronic devices. This review aims to bridge two research fields, chemistry of colloidal oxide nanocrystals and interfacial engineering of optoelectronic devices, focusing on the relationship between chemistry of colloidal oxide nanocrystals, processing and properties of charge transporting layers and device performance. Synthetic chemistry of colloidal oxide nanocrystals, ligand chemistry that may be applied to colloidal oxide nanocrystals and chemistry associated with post-deposition treatments are discussed to highlight the ability of optimizing processing and optoelectronic properties of charge transporting layers. Selected examples of solution-processed solar cells and light-emitting diodes with oxide-nanocrystal charge transporting layers are examined. The emphasis is placed on the correlation between the properties of oxide-nanocrystal charge transporting layers and device performance. Finally, three major challenges that need to be addressed in the future are outlined. We anticipate that this review will spur new material design and simulate new chemistry for colloidal oxide nanocrystals, leading to charge transporting layers and solution-processed optoelectronic devices beyond the state-of-the-art.

  17. The impact of thermal conductivity and diffusion rates on water vapor transport through gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Burlatsky, Sergei F.; Atrazhev, Vadim V.; Gummalla, Mallika; Condit, Dave A.; Liu, Fuqiang

    Proper water management in a hydrogen-fueled polymer electrolyte membrane (PEM) fuel cell is critical for performance and durability. A mathematical model has been developed to elucidate the effect of thermal conductivity and water vapor diffusion coefficient in the gas diffusion layers (GDLs). The fraction of product water removed in the vapor phase through the GDL as a function of GDL properties/set of material and component parameters and operating conditions has been calculated. The current model enables identification of conditions wherein condensation occurs in each GDL component. The model predicts the temperature gradient across various components of a PEM fuel cell, providing insight into the overall mechanism of water transport in a given cell design. The water condensation conditions and transport mode in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDLs and water transport scenarios are defined in this work, based on water condensation in the GDL and fraction of water that the GDL removes through the vapor phase, respectively.

  18. Bottom fine sediment boundary layer and transport processes at the mouth of the Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Shi, John Z.; Zhang, S. Y.; Hamilton, L. J.

    2006-07-01

    SummaryImproved understanding of fine sediment transport processes within turbid estuaries has been of interest to both the coastal engineer and coastal oceanographer. The continuous measurement of fine suspended sediment concentration profiles is central to the study of transport processes. With this in mind, we utilise acoustic backscatter measurements to infer continuous vertical profiles of suspended sediment concentration. The acoustic profiling method has the advantage that it senses suspended sediment concentrations remotely and non-intrusively with a high degree of temporal and spatial resolution. Observational studies were undertaken to obtain more insight into the importance of bottom fine sediment boundary layer and transport processes to the seaward part of the North Passage in the Changjiang Estuary, China. Field measurements were made in October 1994 during spring, moderate and neap tides, respectively. Time series data of tidal elevations, current speed, and directions were measured. Vertical profiling of fine suspension concentration was made hourly by an acoustic suspended sediment monitor. Three dominant physical processes were identified: (1) the near-bed periodic resuspension by the tidal currents via tidal pumping; (2) the asymmetric stratifications due to fine suspension; and (3) the exchange of sediment between the bed and water column. The study also has its regional significance in estuarine morphodynamics, regulation of navigational channel, and water quality at the North Passage in the Changjiang Estuary.

  19. Ion transport through a charged cylindrical membrane pore contacting stagnant diffusion layers

    NASA Astrophysics Data System (ADS)

    Andersen, Mathias B.; Biesheuvel, P. M.; Bazant, Martin Z.; Mani, Ali

    2012-11-01

    Fundamental understanding of the ion transport in membrane systems by diffusion, electromigration and advection is important in widespread processes such as de-ionization by reverse osmosis and electrodialysis and electro-osmotic micropumps. Here we revisit the classical analysis of a single cylindrical pore, see e.g. Gross and Osterle [J Chem Phys 49, 228 (1968)]. We extend the analysis by including the well-established concept of contacting stagnant diffusion layers on either side of the pore; thus, the pore is not in direct equilibrium with the reservoirs. Inside the pore the ions are assumed to be in quasi-equilibrium in the radial direction with the surface charge on the pore wall and we obtain a 1D model by area-averaging. We demonstrate that in some extreme limits this model reduces to simpler models studied in the literature; see e.g. Yaroshchuk [J Membrane Sci 396, 43 (2012)]. Using our model we present predictions of important transport effects such as variation of transport numbers inside the membrane, onset of limiting current, and transient dynamics described by the method of characteristics.

  20. Full-duplex lightwave transport systems employing phase-modulated RoF and intensity-remodulated CATV signals.

    PubMed

    Li, Chung-Yi; Su, Heng-Sheng; Chen, Chia-Yi; Lu, Hai-Han; Chen, Hwan-Wen; Chang, Ching-Hung; Jiang, Chang-Han

    2011-07-18

    A full-duplex lightwave transport system employing phase-modulated radio-over-fiber (RoF) and intensity-remodulated CATV signals in two-way transmission is proposed and experimentally demonstrated. The transmission performances of RoF and CATV signals are investigated in bidirectional way, with the assistance of only one optical sideband and optical single sideband (SSB) schemes at the receiving sites. The experimental results show that the limitation on the optical modulation index (OMI) of the downlink RoF signal can be relaxed due to the constant intensity of phase modulation scheme. Impressive transmission performances of bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) were obtained over two 20-km single-mode fiber (SMF) links. This proposed system reveals an outstanding one with economy and convenience to be installed.

  1. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics.

    PubMed

    Lin, Hsi-Kuei; Su, Yu-Wei; Chen, Hsiu-Cheng; Huang, Yi-Jiun; Wei, Kung-Hwa

    2016-09-21

    In this study, we enhanced the power conversion efficiency (PCE) of perovskite solar cells by employing an electron transfer layer (ETL) comprising [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) and, to optimize its morphology, a small amount of the block copolymer polystyrene-b-poly(ethylene oxide) (PS-b-PEO), positioned on the perovskite active layer. When incorporating 0.375 wt % PS-b-PEO into PC61BM, the PCE of the perovskite photovoltaic device increased from 9.4% to 13.4%, a relative increase of 43%, because of a large enhancement in the fill factor of the device. To decipher the intricate morphology of the ETL, we used synchrotron grazing-incidence small-angle X-ray scattering for determining the PC61BM cluster size, atomic force microscopy and scanning electron microscopy for probing the surface, and transmission electron microscopy for observing the aggregation of PC61BM in the ETL. We found that the interaction between PS-b-PEO and PC61BM resulted in smaller PC61BM clusters that further aggregated into dendritic structures in some domains, a result of the similar polarities of the PS block and PC61BM; this behavior could be used to tune the morphology of the ETL. The optimal PS-b-PEO-mediated PC61BM cluster size in the ETL was 17 nm, a large reduction from 59 nm for the pristine PC61BM layer. This approach of incorporating a small amount of nanostructured block copolymer into a fullerene allowed us to effectively tune the morphology of the ETL on the perovskite active layer and resulted in enhanced fill factors of the devices and thus their device efficiency.

  2. Campylobacter fetus Surface Layer Proteins Are Transported by a Type I Secretion System

    PubMed Central

    Thompson, Stuart A.; Shedd, Omer L.; Ray, Kevin C.; Beins, Michael H.; Jorgensen, Jesse P.; Blaser, Martin J.

    1998-01-01

    The virulence of Campylobacter fetus, a bacterial pathogen of ungulates and humans, is mediated in part by the presence of a paracrystalline surface layer (S-layer) that confers serum resistance. The subunits of the S-layer are S-layer proteins (SLPs) that are secreted in the absence of an N-terminal signal sequence and attach to either type A or B C. fetus lipopolysaccharide in a serospecific manner. Antigenic variation of multiple SLPs (encoded by sapA homologs) of type A strain 23D occurs by inversion of a promoter-containing DNA element flanked by two sapA homologs. Cloning and sequencing of the entire 6.2-kb invertible region from C. fetus 23D revealed a probable 5.6-kb operon of four overlapping genes (sapCDEF, with sizes of 1,035, 1,752, 1,284, and 1,302 bp, respectively) transcribed in the opposite direction from sapA. The four genes also were present in the invertible region of type B strain 84-107 and were virtually identical to their counterparts in the type A strain. Although SapC had no database homologies, SapD, SapE, and SapF had predicted amino acid homologies with type I protein secretion systems (typified by Escherichia coli HlyBD/TolC or Erwinia chrysanthemi PrtDEF) that utilize C-terminal secretion signals to mediate the secretion of hemolysins, leukotoxins, or proteases from other bacterial species. Analysis of the C termini of four C. fetus SLPs revealed conserved structures that are potential secretion signals. A C. fetus sapD mutant neither produced nor secreted SLPs. E. coli expressing C. fetus sapA and sapCDEF secreted SapA, indicating that the sapCDEF genes are sufficient for SLP secretion. C. fetus SLPs therefore are transported to the cell surface by a type I secretion system. PMID:9851986

  3. Structural, optical, and electrical-transport properties of Al-P-O inorganic layer coated on flexible stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Kim, Moojin; Min, Jinhyuk; Kwak, Yongsu; Kim, Doori; Kim, Kyoung-Bo; Song, Jonghyun

    2017-03-01

    We coated inorganic layer containing oxygen, aluminium, phosphorus, and negligible sodium (APO) on stainless steel (STS) by using slot-die coating method and studied its application prospects as a substrate for flexible devices. The APO layer was compositionally uniform in overall area with an amorphous crystal structure. Surface morphology characterization of STS exhibited an improved flatness after the APO layer coating process. The optical property characterization of the APO film carried out by measuring optical reflectance spectrum and refractive index. We also investigated the electrical-transport mechanism in the APO layer. These experimental observations imply the possibility of potential application of APO-STS as a substrate for flexible devices.

  4. Large-eddy transport in the surface layer over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Mauder, M.; Eder, F.; De Roo, F.; Brugger, P.; Schmid, H. P. E.; Rotenberg, E.; Yakir, D.

    2015-12-01

    Surface heterogeneity and complex terrain invalidate to a certain extent basic assumptions behind the classical turbulence theory. One important classical concept is Townsend's hypothesis, which postulates that outer layer scale and inner layer scale turbulence do not interact. However, there is little knowledge to what extent large-scale eddies can affect near-surface fluxes. We shall investigate the relevance of large-eddy transport in the surface layer by an integrated approach combining field measurements and numerical simulations. Doppler lidar and tower-based turbulence measurements were conducted at the Yatir forest in Israel, which is surrounded by semi-arid shrubland. Vertical profiles of vertical and horizontal wind speed and direction were determined from Doppler lidar data. Eddy-covariance measurements were conducted at two sites. In addition, idealized large-eddy simulations (LES) were performed. A virtual control volume method allowed us to disentangle all components of the total surface flux. The daytime sensible heat flux over the forest was almost twice as large as over the surrounding shrubland. These very large differences in surface heating generated a secondary circulation, which was detected by the Doppler lidar measurements. Persistent updrafts were detected above the forest. Tower measurements at the shrubland site showed generally larger low-frequency contributions in spectra and co-spectra, and the energy balance ratio over the forest was 1.00, while it was only 0.81 at the shrubland site. LES results indicate that advection is the main cause for the lack of energy balance closure at the shrubland site. Over the forest, an equally large advective flux (in the opposite direction as over the shrubland) is almost completely balanced by horizontal flux divergence. We conclude that secondary circulations indeed exist over the Yatir forest, and that they can be detected from Doppler lidar data. Against the prediction of Townsend's hypothesis

  5. Synthesis of transport layers with controlled anisotropy and application thereof to study proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Todd, Devin; Mérida, Walter

    2016-04-01

    We report on a novel method for the synthesis of fibre-based proton exchange membrane (PEM) fuel cell porous transport layers (PTLs) with controllable fibre alignment. We also report the first application of such layers as diagnostics tools to probe the effect of within-plane PTL anisotropy upon PEM fuel cell performance. These structures are realized via adaptation of electrospinning technology. Electrospun layers with progressive anisotropy magnitude are produced and evaluated. This novel approach is distinguished from the state-of-the-art because an equivalent study using commercially available materials is impossible due to lack of structurally similar substrates with different anisotropies. The anisotropy is visualized via scanning electron microscopy, and quantified using electrical resistivity. The capacity is demonstrated to achieve fibre alignment, and the associated impact on transport properties. A framework is presented for assessing the in-situ performance, whereby transport layer orientation versus bipolar plate flow-field geometry is manipulated. While an effect upon the commercial baseline cannot be discerned, electrospun transport layers with greater anisotropy magnitude suggest greater sensitivity to orientation; where greater performance is obtained with fibres cross-aligned to flow-field channels. Our approach of electrospun transport enables deterministic structures by which fuel cell performance can be explained and optimized.

  6. Measurement of a new parameter representing the gas transport properties of the catalyst layers of polymer electrolyte fuel cells.

    PubMed

    Iden, Hiroshi; Ohma, Atsushi; Tokunaga, Tomomi; Yokoyama, Kouji; Shinohara, Kazuhiko

    2016-05-14

    The optimization of the catalyst layers is necessary for obtaining a better fuel cell performance and reducing fuel cell cost. Although the ionomer coverage of the Pt catalyst is said to be a key parameter in this regard, the proportion of Pt either directly or indirectly covered by the ionomer is thought to be an important parameter with regard to gas transport (indirectly covered Pt: its gas transport paths are completely blocked by the ionomer even if it does not directly cover Pt). In this study, a new technique has been developed for evaluating the proportion of Pt covered indirectly or directly by the ionomer, which is defined as the "capped proportion", based on the carbon monoxide (CO) adsorption properties at different temperatures. The validity of the method was thoroughly examined by identifying the CO adsorption properties of the components of the catalyst layers. The capped proportion and oxygen transport resistance in the catalyst layers showed a good correlation, indicating that the capped proportion is a dominant factor of oxygen transport resistance. This technique thus enables the evaluation of the dominant factor of the gas transport properties of the catalyst layers. The method has another significant advantage in that it does not require a membrane electrode assembly, let alone electrochemical measurement, which should be helpful for catalyst layer optimization.

  7. a Comprehensive Model of Global Transport and Localized Layering of Metallic Ions in the Upper Atmosphere.

    NASA Astrophysics Data System (ADS)

    Carter, Leonard Nelson, Jr.

    1995-01-01

    The physics and chemistry of atmospheric metallic ions have been an active area of research for many years; however, a number of issues remain unresolved. Numerical models have been developed and used to establish and validate theories of metallic ion dynamics. While agreement with observational measurements has generally been satisfactory, these models have embodied highly simplified pictures of the total physical system, usually focusing on a single aspect of metallic dynamics. The model described herein is considered the first to simulate all phases of the life cycle of metallic ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral atoms to ions through photoionization and charge exchange with ambient ions. Global ion transport arising from daytime electric fields and poleward/downward diffusion along geomagnetic field lines, localized transport and layer formation through descending convergent nulls in the thermospheric tidal wind field, and finally annihilation by chemical neutralization and compound formation are treated. The end result of this developmental effort is a model that has not only shown good agreement with observations, but has also shed new light on the interdependencies of the physical and chemical processes affecting atmospheric metallics. The model has been used, in both one- and two -dimensional versions, to simulate ion dynamics in the vertical dimension (at Arecibo, PR, 19^circ N, 67^circW), and in the vertical and meridional dimensions from the equator to 45^circN, ranging over a 90 to 4000 km altitude span. Model output analysis confirms the dominant role of both global and local transport to the ions' life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the formation of dense ion layers in the 90-150 km height region. The model also

  8. Front surface field formation for majority carriers by functional p-NiO layer employed Si solar cell

    NASA Astrophysics Data System (ADS)

    Patel, Dipal B.; Kim, Hong-Sik; Patel, Malkeshkumar; Chauhan, Khushbu R.; Park, Jeong Eun; Lim, Donggun; Kim, Joondong

    2016-09-01

    An optically transparent and electrically conductive p-NiO layer was deposited on a conventional n-Si/p-Si solar cell, which improved the device performance. The transmittance and reflectance properties of the p-NiO layer were found to be much better than the SiNx layer in the visible light region. Impedance spectroscopic study under varying bias and illumination conditions was carried out to understand the underlying mechanisms governing the device performance. An AC signal analysis revealed that the p-NiO layer acted as a front surface field region for majority charge carriers. In addition, the p-NiO layer significantly improved Si solar cell performances due to the improved properties of parasitic resistances. The optically transparent NiO layered Si device (p-NiO/n-Si/p-Si) spontaneously enhanced the electrical properties, resulting in the substantially improved fill factor value of 74% from 34.3% of the bare n-Si/p-Si device. The existence of a front surface field increased the lifetime of carriers to 92 μs for the p-NiO/n-Si/p-Si solar cell compared to only 43 μs for an n-Si/p-Si cell. We may suggest a functional NiO layer to the efficient designs for Si solar cells.

  9. Facile Approach to Preparing a Vanadium Oxide Hydrate Layer as a Hole-Transport Layer for High-Performance Polymer Solar Cells.

    PubMed

    Cong, Hailin; Han, Dongwei; Sun, Bingbing; Zhou, Dongying; Wang, Chen; Liu, Ping; Feng, Lai

    2017-05-31

    We demonstrate a facile and green approach to preparing a vanadium oxide hydrate (VOx·nH2O) layer to serve as the hole-transport layer (HTL) in high-performance polymer solar cells (PSCs). The VOx·nH2O layer was in situ prepared by a combined H2O2 and ultraviolet-ozone (UVO) processing on a VOx layer. The as-prepared VOx·nH2O layer featured a work function of 5.0 ± 0.1 eV, high transmittance, and better interface properties compared to those of the generally prepared VOx (UVO or thermal annealing) layers. PSCs based on poly[(ethylhexyl-thiophenyl)-benzodithiophene-(ethylhexyl)-thienothiophene]/[6,6]-phenyl-C71-butyric acid methyl ester using the VOx·nH2O layer as the HTL yielded high power conversion efficiencies (PCEs) up to 8.11%, outperforming the devices with VOx layers (PCE of 6.79% for the UVO-processed VOx layer and 6.10% for the thermally annealed VOx layer) and conventional polyethylenedioxythiophene-polystyrenesulfonate (PEDOT:PSS) layers (PCE of 7.67%). The improved PCE was attributed to the enhanced JSC and/or fill factor, which mainly correlate to the improved interfacial contact between the photoactive layer and the indium tin oxide/HTL or cathode when using the VOx·nH2O layer as the HTL. A similar improvement in the PCE was also observed for the PSCs based on poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester. In addition, PSCs with a VOx·nH2O layer as the HTL showed a higher stability than that of those with a PEDOT:PSS layer. Hence, it would be possible to use this simply and in situ prepared VOx·nH2O layer as an inexpensive HTL for high-performance PSCs.

  10. Helium transport in the core and stochastic edge layer in LHD

    NASA Astrophysics Data System (ADS)

    Ida, K.; Yoshinuma, M.; Goto, M.; Schmitz, O.; Dai, S.; Bader, A.; Kobayashi, M.; Kawamura, G.; Moon, C.; Nakamura, Y.; The LHD Experiment Group

    2016-07-01

    Radial profiles of the density ratio of helium to hydrogen ions are measured using charge exchange spectroscopy with a two-wavelength spectrometer in the large helical device. Helium transport at the last closed flux surface (LCFS) and stochastic magnetic field layer outside the LCFS as well as in the core plasma is studied for a wide range of helium fractions, i.e. from hydrogen-dominated plasmas up to helium-dominated plasmas. The helium density profile becomes more peaked and inward convection velocity increases in the hydrogen-dominant plasma, while it becomes flat or hollow and the convection velocity is in the outward direction in the helium-dominant plasmas. The density gradient of helium at the LCFS is twice that of hydrogen and becomes steeper as the hydrogen becomes more dominant.

  11. Conduction mechanism change with transport oxide layer thickness in oxide hetero-interface diode

    NASA Astrophysics Data System (ADS)

    Nam, Bu-il; Park, Jong Seo; Lim, Keon-Hee; Ahn, Yong-keon; Lee, Jinwon; Park, Jun-woo; Cho, Nam-Kwang; Lee, Donggun; Lee, Han-Bo-Ram; Kim, Youn Sang

    2017-07-01

    An effective and facile strategy is proposed to demonstrate an engineered oxide hetero-interface of a thin film diode with a high current density and low operating voltage. The electrical characteristics of an oxide hetero-interface thin film diode are governed by two theoretical models: the space charge-limited current model and the Fowler-Nordheim (F-N) tunneling model. Interestingly, the dominant mechanism strongly depends on the insulator thickness, and the mechanism change occurs at a critical thickness. This paper shows that conduction mechanisms of oxide hetero-interface thin film diodes depend on thicknesses of transport oxide layers and that current densities of these can be exponentially increased through quantum tunneling in the diodes with the thicknesses less than 10 nm. These oxide hetero-interface diodes have great potential for low-powered transparent nanoscale applications.

  12. Graphene oxide hole transport layers for large area, high efficiency organic solar cells

    SciTech Connect

    Smith, Chris T. G.; Rhodes, Rhys W.; Beliatis, Michail J.; Imalka Jayawardena, K. D. G.; Rozanski, Lynn J.; Mills, Christopher A.; Silva, S. Ravi P.

    2014-08-18

    Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64 cm{sup 2}), solution processable, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1, 3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:[6,6]-Phenyl C{sub 71} butyric acid methyl ester (PCDTBT:PC{sub 70}BM) organic photovoltaic (OPV) solar cells, incorporating GO hole transport layers (HTL). The power conversion efficiency (PCE) of ∼5% is the highest reported for OPV using this architecture. A comparative study of solution-processable devices has been undertaken to benchmark GO OPV performance with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) HTL devices, confirming the viability of GO devices, with comparable PCEs, suitable as high chemical and thermal stability replacements for PEDOT:PSS in OPV.

  13. Understanding the Role of the Electron-Transport Layer in Highly Efficient Planar Perovskite Solar Cells.

    PubMed

    Liu, Jiang; Wang, Gang; Luo, Kun; He, Xulin; Ye, Qinyan; Liao, Cheng; Mei, Jun

    2017-03-17

    Solar cells based on perovskite absorbers are rapidly emerging as attractive candidates for photovoltaics development. Understanding the role of the electron-transport layer (ETL) is very important to obtain highly efficient perovskite solar cells. Herein, the effect of the ETL on device performance in planar perovskite solar cells is investigated in detail, and the band bending in different situations is discussed. The ET barrier is shown to be responsible for the poor fill factor (FF) of J-V curves. Introduction of a thin bathocuproine interlayer increases the interface inversion and results in an increase of FF from 56 to 76 %. Some experimental and theoretical results verify these conclusions. Furthermore, this study can provide an interface-engineering strategy to improve device performance.

  14. Tungsten injector for scrape-off layer impurity transport experiments in the Tore Supra tokamak

    SciTech Connect

    Kočan, M.; Lunt, T.; Gunn, J. P.; Meyer, O.; Pascal, J.-Y.

    2013-07-15

    This paper describes the design and operation of a new tungsten (W) injection system for impurity transport experiments in the Tore Supra tokamak. The system is mounted on a reciprocating manipulator and injects a controlled amount of gaseous tungsten hexacarbonyl, W(CO){sub 6} at arbitrary depth in the scrape-off layer, using an inertially activated valve. Injected W(CO){sub 6} is dissociated in the plasma, forming a radially localized plume of W atoms. The injector does not require an external gas feed and can perform a large number of injections from an on-board reservoir of W(CO){sub 6}. Some examples of W injections in Tore Supra are included, demonstrating successful operation and discussing some technical issues of the injector prototype.

  15. Implementation of non-equilibrium vertex corrections in KKR: transport through disordered layers

    NASA Astrophysics Data System (ADS)

    Franz, Christian; Czerner, Michael; Heiliger, Christian

    2013-10-01

    The theoretical description of modern nanoelectronic devices requires a quantum mechanical treatment and often involves disorder, e.g. from alloys. Therefore, the ab initio theory of transport using non-equilibrium Green’s functions is extended to the case of disorder described by the coherent potential approximation. This requires the calculation of non-equilibrium vertex corrections. We implement the vertex corrections in a Korringa-Kohn-Rostoker multiple scattering scheme. In order to verify our implementation and to demonstrate the accuracy and applicability we investigate a system of an iron-cobalt alloy layer embedded in copper. The results obtained with the coherent potential approximation are compared to supercell calculations. It turns out that vertex corrections play an important role for this system.

  16. Effect of collisional temperature isotropisation on ELM parallel transport in a tokamak scrape-off layer

    NASA Astrophysics Data System (ADS)

    Coulette, David; Hirstoaga, Sever A.; Manfredi, Giovanni

    2016-08-01

    We develop a hybrid model to describe the parallel transport in a tokamak scrape-off layer following an edge-localized mode (ELM) event. The parallel dynamics is treated with a kinetic Vlasov-Poisson model, while the evolution of the perpendicular temperature {{T}\\bot} is governed by a fluid equation. The coupling is ensured by isotropising collisions. The model generalises an earlier approach where {{T}\\bot} was constant in space and time (Manfredi et al 2011 Plasma Phys. Control. Fusion 53 015012). Numerical results show that the main effect comes from electron-electron collisions, which limit the decrease of the parallel electron temperature and increase the potential drop in the Debye sheath in front of the surface. Ion-ion collisions have an almost negligible impact. The net effect is an increased peak power load on the target plates.

  17. Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer.

    PubMed

    Li, Xiaodong; Wang, Ying-Chiao; Zhu, Liping; Zhang, Wenjun; Wang, Hai-Qiao; Fang, Junfeng

    2017-09-08

    Here, we report that the performance of perovskite solar cells (PSCs) can be improved by aggregation control in polyelectrolytes interlayer. Through counterions tailoring and solvent optimization, the strong aggregation of polyelectrolytes P3CT-Na can be broken up by P3CT-CH3NH2. When using P3CT-CH3NH2 to replace P3CT-Na as hole transport layer, the average efficiency is greatly improved from 16.9 to 18.9% (highest 19.6%). Importantly, efficiency over 15% is obtained in 1 cm(2) devices with P3CT-CH3NH2, ∼50% higher than that with P3CT-Na (10.3%). Our work demonstrates the important role of aggregation control in polyelectrolytes interlayer, providing new opportunities to promote its application in PSCs.

  18. Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells

    SciTech Connect

    Treat, Neil D. E-mail: t.anthopoulos@imperial.ac.uk; Stingelin, Natalie; Yaacobi-Gross, Nir; Faber, Hendrik; Perumal, Ajay K.; Bradley, Donal D. C.; Anthopoulos, Thomas D. E-mail: t.anthopoulos@imperial.ac.uk

    2015-07-06

    We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at −5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.

  19. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  20. Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; Alastuey, A.; Alonso-Pérez, S.; Querol, X.; Cuevas, E.; Abreu-Afonso, J.; Viana, M.; Pérez, N.; Pandolfi, M.; de La Rosa, J.

    2011-07-01

    An analysis of chemical composition data of particulate matter samples (TSP, PM10 and PM2.5) collected from 2002 to 2008 in the North Atlantic free troposphere at the Izaña Global Atmospheric Watch (GAW) observatory (Tenerife, Canary Islands) shows that desert dust is very frequently mixed with particulate pollutants in the Saharan Air Layer (SAL). The study of this data set with Median Concentrations At Receptor (MCAR) plots allowed the identification of the potential source regions of the dust and particulate pollutants. Areas located at the south of the southern slope of the Atlas mountains emerge as the most frequent source of the soil desert dust advected to the northern edge of the SAL in summer. Industrial emissions occurring in Northern Algeria, Eastern Algeria, Tunisia and the Atlantic coast of Morocco appear as the most important source of the nitrate, ammonium and a fraction of sulphate (at least 60 % of the sulphate <10 μm transported from some regions) observed in the SAL. These emissions are mostly linked to crude oil refineries, phosphate-based fertilizer industry and power plants. Although desert dust emissions appear as the most frequent source of the phosphorous observed in the SAL, high P concentrations are observed when the SAL is affected by emissions from open mines of phosphate and phosphate based fertilizer industry. The results also show that a significant fraction of the sulphate (up to 90 % of sulphate <10 μm transported from some regions) observed in the SAL may be influenced by soil emissions of evaporite minerals in well defined regions where dry saline lakes (chotts) are present. These interpretations of the MCAR plots are consistent with the results obtained with the Positive Matrix Factorization (PMF2) receptor modelling. The results of this study show that North African industrial pollutants may be mixed with desert dust and exported to the North Atlantic in the Saharan Air Layer.

  1. Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; Alastuey, A.; Alonso-Pérez, S.; Querol, X.; Cuevas, E.; Abreu-Afonso, J.; Viana, M.; Pandolfi, M.; de La Rosa, J.

    2011-03-01

    The chemical composition of particulate matter samples (TSP, PM10 and PM2.5) collected from 2002 to 2008 in the North Atlantic free troposphere at Izaña Global Atmospheric Watch (GAW) observatory (Tenerife, The Canary Islands) was studied. The analysis of the samples collected in the Saharan Air Layer (SAL) shows that soil desert dust is very frequently mixed with particulate pollutants. An analysis of this data set with Median Concentrations At Receptor (MCAR) plots allowed to identify the potential source regions of the dust and particulate pollutants. Areas located at the south of the Southern slope of Atlas emerge as the most frequent source of the soil desert dust advected to the northern edge of the SAL in summer. Industrial emissions occurring along the Atlantic coast of Morocco, Northern Algeria, Eastern Algeria and Tunisia appear as the most important source of the nitrate, ammonium and a fraction of sulphate (at least a 60% of the sulphate <10 μm transported from some regions) observed in the SAL. These emissions are mostly linked to crude oil refineries, phosphate-based fertilizer industry and power plants. Although desert dust emissions appear as the most frequent source of the phosphorous observed in the SAL, high P concentrations are observed when the SAL is affected by emissions from open mines of phosphate and phosphate based fertilizer industry. The results also show that a significant fraction of the sulphate (up to 90% of sulphate <10 μm transported from some regions) observed in the SAL is linked to soil emissions of evaporite minerals in well defined regions where dry saline lakes (chotts) are present. These interpretations of the MCAR plots are consistent with the results obtained with the Positive Matrix Factorization receptor modelling. The results of this study show that North African industrial pollutants may be mixed with desert dust and exported to the North Atlantic in the Saharan Air Layer.

  2. Modeling the Impact of Cracking in Low Permeability Layers in a Groundwater Contamination Source Zone on Dissolved Contaminant Fate and Transport

    NASA Astrophysics Data System (ADS)

    Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2011-12-01

    Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model

  3. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  4. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound

    NASA Astrophysics Data System (ADS)

    Hattori, Toshiaki; Taira, Takahiro; Era, Masanao; Tsutsui, Tetsuo; Saito, Shugu

    1996-05-01

    Two Pbl-based layer perovskite compounds, which possess cyclohexenylethylamine or phenylbutylamine as an organic ammonium layer, were newly found to exhibit efficient exciton emission due to their self-organized quantum well structure where a lead halide semiconducting layer and an organic ammonium dielectric layer are alternately piled up. We prepared heterostructure electroluminescent devices using the combination of the emissive layered perovskite and an electron-transporting oxadiazole. When the heterostructure devices were driven at 110 K, greenish emission, which corresponded well to the exciton emission, was observed. In the device using the perovskite with an organic layer of cyclohexenythylamine, a high luminance exceeding 4000 cd m -2 and high external EL quantum efficiency of 2.8% were attained at a current density of 50 mA cm -2 at an applied voltage of 24 V.

  5. Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Pan, Laura L.; Honomichl, Shawn B.; Kinnison, Douglas E.; Abalos, Marta; Randel, William J.; Bergman, John W.; Bian, Jianchun

    2016-12-01

    Chemical transport associated with the dynamics of the Asian summer monsoon (ASM) system is investigated using model output from the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model run in specified dynamics mode. The 3-D day-to-day behavior of modeled carbon monoxide is analyzed together with dynamical fields and transport boundaries to identify preferred locations of uplifting from the boundary layer, the role of subseasonal-scale dynamics in the upper troposphere and lower stratosphere (UTLS), and the relationship of ASM transport and the stratospheric residual circulation. The model simulation of CO shows the intraseasonal east-west oscillation of the anticyclone may play an essential role in transporting convectively pumped boundary layer pollutants in the UTLS. A statistical analysis of 11 year CO also shows that the southern flank of the Tibetan plateau is a preferred location for boundary layer tracers to be lofted to the tropopause region. The vertical structure of a model tracer (E90) further shows that the rapid ASM vertical transport is only effective up to the tropopause level (around 400 K). The efficiency of continued vertical transport into the deep stratosphere is limited by the slow ascent associated with the zonal-mean residual circulation in the lower stratosphere during northern summer. Quasi-isentropic transport near the 400 K potential temperature level is likely the most effective process for ASM anticyclone air to enter the stratosphere.

  6. Molecular self ordering and charge transport in layer by layer deposited poly (3,3‴-dialkylquarterthiophene) films formed by Langmuir-Schaefer technique

    SciTech Connect

    Pandey, Rajiv K.; Singh, Arun Kumar; Upadhyay, C.; Prakash, Rajiv

    2014-09-07

    The performance of π-conjugated polymer based electronic devices is directly governed by the molecular morphology of polymer aggregation, the extent to which a molecule is electronically coupled (self ordered and interacted) to neighboring molecules, and orientation. The well electronic coupled and crystalline/ordered polymer films have the potential to enhance the charge transport properties up to a benchmark. However, there is insufficient knowledge about the direct formation of large area, oriented, crystalline, and smooth films. In this study, we have presented Langmuir Schaefer technique to obtain the large area, oriented, crystalline, and smooth film of Poly (3,3‴-dialkylquarterthiophene) (PQT-12) polymer. The effect of self ordering and orientation of PQT-12 polymer on optical, morphological, and charge transport properties has been investigated. The prepared films have been characterized by UV-vis spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), selected area diffractions pattern (SAED), and atomic force microscopy (AFM) techniques. UV-vis spectra, TEM, SAED, and AFM images of monolayer films reveal the formation of well ordered and electronically coupled polymer domains. Layer by layer deposited films reveal the change in the orientation, which is confirmed by Raman spectra. Electronic properties and layer dependent charge transport properties are investigated using sandwiched structure Al/PQT-12/ITO Schottky configuration with perpendicular to the deposited films. It is observed that the charge transport properties and device electronic parameters (ideality factor and turn on voltage) are significantly changing with increasing the number of PQT-12 layers. Our study also demonstrates the charge transport between polymer crystallites and cause of deviation of ideal behavior of organic Schottky diodes. It may be further explored for improving the performance of other organic and optoelectronic devices.

  7. Statistics of fluctuation induced transport in the scrape-off layer of Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kube, Ralph; Garcia, Odd Erik; Theodorsen, Audun; Labombard, Brian; Terry, James

    2016-10-01

    The fluctuation induced transport in the scrape-off layer of Alcator C-Mod is investigated in an ohmically heated lower single-null discharge using Mirror Langmuir Probes. The probes are connected to a horizontal scanning probe which dwells at the outboard mid plane limiter radius and to electrodes in the outer divertor baffle. At the limiter radius the electron density, electron temperature and plasma potential are correlated with linear correlation coefficients r of approximately r=0.8. The bursts show a steep rise and a decay on a time scales of approximately 5 and 10 microseconds respectively. Amplitudes of bursts in the density, temperature, and plasma potential time series are correlated with r approximately 0.7-0.8. Conditionally averaged bursts in the radial particle and heat flux time series are less coherent and less reproducible, their amplitudes are correlated to the amplitude of bursts in the density time series with r=0.4. Statistics of the fluctuating plasma parameters at the outer divertor baffle are qualitatively similar to those at outboard midplane. Histograms, as well as statistics for level crossings and excess times spent above a given threshold for the time series compare favorably to a stochastic model for time series of scrape-off layer plasmas.

  8. Fluorine effects in new indenofluorenedione derivatives for electron transporting layer in OLED devices.

    PubMed

    Lee, Jaehyun; Kim, Beomjin; Park, Youngil; Kim, Seungho; Park, Jongwook

    2014-08-01

    New three indenofluorenedione derivatives were synthesized and proposed for electron transporting layer (ETL). Three compounds are indeno[1,2-b]fluorene-6,12-dione (IF-dione), 2,8-Difluoro-indeno[1,2-b]fluorene-6,12-dione (Mono-F-lF-dione), and 1,2,3,7,8,9-Hexafluoro-indeno[1,2- b]fluorene-6,12-dione (Tri-F-IF-dione). UV-visible (UV-Vis) absorption of three compounds in THF solution state showed different absorption maximum values as follows: 292, 318 and 334 nm (IF-dione), 289, 314 and 329 nm (Mono-F-IF-dione), 285, 319 and 334 nm (Tri-F-IF-dione). Three compounds were inserted between emitting layer (EML) and cathode electrode as an ETL in OLED device: ITO/2-TNATA (60 nm)/NPB (15 nm)/Alq3 (30 nm)/synthesized compounds (30 nm)/LiF (1 nm)/Al (200 nm). I-V characteristics of three devices were investigated at 20 mA/cm2. Operating voltages of three compounds were 7.06 V (IF-dione), 6.42 V (MonoF-IF-dione), 5.36 V (TriF-IF-dione), respectively.

  9. Study of effective transport properties of fresh and aged gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz

    2015-07-01

    Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.

  10. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    SciTech Connect

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  11. Resolving lubrication layers in immersed boundary method simulations of vesicular transport in dendritic spines

    NASA Astrophysics Data System (ADS)

    Fai, Thomas; Kusters, Remy; Rycroft, Chris

    2015-11-01

    Our understanding of how neuronal connections in the brain are maintained and reorganized is being revolutionized by new experimental and computational techniques. Existing high-resolution 3D images show that neuronal axons often terminate onto micron-sized structures known as dendritic spines, which are characterized by their thin necks and bulbous heads. Vesicles containing membrane receptors must deform significantly to squeeze into the bulbous heads of the spines, but more quantitative estimates of the force and energy required are still lacking. We have used three-dimensional immersed boundary method simulations to capture the fluid dynamics of vesicle transport into spines. We vary the applied force and neck geometry to identify the region in phase space in which the vesicle can squeeze into the spine. These results are compared to pass-stuck diagrams computed previously in the case of vesicles squeezing through open channels with rigid walls. The resulting force estimates are found to be consistent with the physiological density of motor proteins. Resolving the thin lubricating layers between the vesicles and spine poses significant numerical challenges, and we have used elements from lubrication theory to help resolve these boundary layers.

  12. Substrate-Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode.

    PubMed

    Ding, Chunmei; Wang, Zhiliang; Shi, Jingying; Yao, Tingting; Li, Ailong; Yan, Pengli; Huang, Baokun; Li, Can

    2016-03-23

    The photoelectrochemical water oxidation efficiency of photoanodes is largely limited by interfacial charge-transfer processes. Herein, a metal oxide electron-transport layer (ETL) was introduced at the substrate-electrode interface. Hematite photoanodes prepared on Li(+)- or WO3-modified substrates deliver higher photocurrent. It is inferred that a Li-doped Fe2O3 (Li:Fe2O3) layer with lower flat band potential than the bulk is formed. Li:Fe2O3 and WO3 are proved to function as an expressway for electron extraction. Via introducing ETL, both the charge separation and injection efficiencies are improved. The lifetime of photogenerated electrons is prolonged by 3 times, and the ratio of surface charge transfer and recombination rate is enhanced by 5 times with Li:Fe2O3 and 125 times with WO3 ETL at 1.23 V versus reversible hydrogen electrode. This result indicates the expedited electron extraction from photoanode to the substrate can suppress not only the recombination at the back contact interface but also those at the surface, which results in higher water oxidation efficiency.

  13. Dynamics of HIV neutralization by a microbicide formulation layer: biophysical fundamentals and transport theory.

    PubMed

    Geonnotti, Anthony R; Katz, David F

    2006-09-15

    Topical microbicides are an emerging HIV/AIDS prevention modality. Microbicide biofunctionality requires creation of a chemical-physical barrier against HIV transmission. Barrier effectiveness derives from properties of the active compound and its delivery system, but little is known about how these properties translate into microbicide functionality. We developed a mathematical model simulating biologically relevant transport and HIV-neutralization processes occurring when semen-borne virus interacts with a microbicide delivery vehicle coating epithelium. The model enables analysis of how vehicle-related variables, and anti-HIV compound characteristics, affect microbicide performance. Results suggest HIV neutralization is achievable with postcoital coating thicknesses approximately 100 mum. Increased microbicide concentration and potency hasten viral neutralization and diminish penetration of infectious virus through the coating layer. Durable vehicle structures that restrict viral diffusion could provide significant protection. Our findings demonstrate the need to pair potent active ingredients with well-engineered formulation vehicles, and highlight the importance of the dosage form in microbicide effectiveness. Microbicide formulations can function not only as drug delivery vehicles, but also as physical barriers to viral penetration. Total viral neutralization with 100-mum-thin coating layers supports future microbicide use against HIV transmission. This model can be used as a tool to analyze diverse factors that govern microbicide functionality.

  14. Ozone Transport and Mixing Processes in the Boundary Layer Observed with Lidar during Discover-AQ

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Alvarez, R. J. _II, II; Choukulkar, A.; Brewer, A.; Weickmann, A. M.; Kirgis, G.; Sandberg, S.; Hardesty, M.; Delgado, R.; Long, R.; Brown, S. S.

    2014-12-01

    The final two Discover-AQ air quality studies were conducted in Houston, TX in September 2013 and the Colorado Front Range in July/August 2014. These two regions are characterized by different ozone precursor sources and exhibit unique regional wind flow patterns. During these studies, NOAA deployed its truck-based, scanning TOPAZ ozone lidar to document the vertical structure and temporal evolution of ozone concentrations from near the surface up to about 2.5 km above ground level. In Houston, TOPAZ was located next to a radar wind profiler while during the Colorado campaign, Doppler wind lidars collocated with TOPAZ measured wind profiles and vertical velocity statistics throughout the boundary layer (BL). For both studies, nearby in situ sensors provided continuous observations of surface ozone and NOx. These combinations of remote and in situ sensors lend themselves to study the influence of BL transport and mixing processes on surface-level ozone. In this presentation, we focus on characterizing and quantifying changes in surface ozone due to several BL processes, including the Houston land-sea breeze circulation, the terrain-driven BL flow in the Colorado Front Range area, thunderstorm outflows, BL growth rate and depth, and entrainment of air from the residual layer or lower free troposphere into the BL.

  15. Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer.

    PubMed

    Choi, Gyu Jin; Van Le, Quyet; Choi, Kyoung Soon; Kwon, Ki Chang; Jang, Ho Won; Gwag, Jin Seog; Kim, Soo Young

    2017-07-21

    Here, this study successfully fabricates few-layer MoS2 nanosheets from (NH4 )2 MoS4 and applies them as the hole transport layer as well as the template for highly polarized organic light-emitting diodes (OLEDs). The obtained material consists of polycrystalline MoS2 nanosheets with thicknesses of 2 nm. The MoS2 nanosheets are patterned by rubbing/ion-beam treatment. The Raman spectra shows that {poly(9,9-dioctylfluorene-alt-benzothiadiazole), poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)]} (F8BT) on patterned MoS2 exhibits distinctive polarization behavior. It is discovered that patterned MoS2 not only improves the device efficiency but also changes the polarization behavior of the devices owing to the alignment of F8BT. This work demonstrates a highly efficient polarized OLED with a polarization ratio of 62.5:1 in the emission spectrum (166.7:1 at the peak intensity of 540 nm), which meets the manufacturing requirement. In addition, the use of patterned MoS2 nanosheets not only tunes the polarization of the OLEDs but also dramatically improves the device performance as compared with that of devices using untreated MoS2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Xia, Zhonggao; Liang, Jun; Wang, Xinwei; Liu, Yiming; Liu, Chuan; Zhang, Shengdong; Zhou, Hang

    2015-05-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping concentrations. The effect of interfacial defect densities on the solar cell performance was also investigated. Our simulation indicates that, with an optimized Cu2O HTL, high performance perovskite solar cells with efficiencies above 13% could be achieved, which shows the potential of using Cu2O as an alternative HTL over other inorganic materials, such as NiOx and MoOx. This study provides theoretical guidance for developing perovskite solar cells with inorganic hole transporting materials via a printing process.

  17. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    PubMed

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.

  18. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

    PubMed Central

    Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C.; Kim, Jin Young; Heeger, Alan J.

    2015-01-01

    Organic–inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT:PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells. PMID:26081865

  19. Flow and suspended particulate transport in a tidal bottom layer, south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; Cacchione, D.A.; Tate, G.B.

    1998-01-01

    Field investigations of the hydrodynamics and the resuspension and transport of particulate matter in a bottom boundary layer were carried out in South San Francisco Bay, California during March-April 1995. The GEOPROBE, an instrumented bottom tripod, and broad-band acousti Doppler current profilers were used in this investigation. The instrument assemblage provided detailed measurements of 1) turbulent mean velocity distribution within 1.5 m of sediment-w interface; 2) characteristics of 3-D tidal current in the water column; 3) friction velocity u* or bottom shear stress and bottom roughness length zo; 4) hydrodynamic conditions conducive for s resuspension; and 5) circulation patterns which are responsible for transporting suspended particulate matter in South San Francisco Bay. An unusual flow event was recorded by the instruments during March 8-11, 1995. A 3-D numerical model was implemented which re qualitatively, the unusual observations and supported the hypothesis that the unusual flow event caused by a combination of wind driven circulation and weak neap tides.

  20. Turbulent transport regimes and the scrape-off layer heat flux width

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-15

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  1. Turbulent transport regimes and the scrape-off layer heat flux width

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  2. Settling and compaction of chromite cumulates employing a centrifuging piston cylinder and application to layered mafic intrusions

    NASA Astrophysics Data System (ADS)

    Manoochehri, Shahrzad; Schmidt, Max W.

    2014-12-01

    The time scales and mechanics of gravitationally driven crystal settling and compaction is investigated through high temperature (1,280-1,500 °C) centrifuge-assisted experiments on a chromite-basalt melt system at 100-1,500 g (0.5 GPa). Subsequently, the feasibility of this process for the formation of dense chromite cumulate layers in large layered mafic intrusions (LMIs) is assessed. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. The experimentally observed mechanical settling velocity of a suspension of ~24 vol% chromite is calculated to be about half (~0.53) of the Stokes settling velocity, with a sedimentation exponent n of 2.35 (3). Gravitational settling leads to an orthocumulate layer with a porosity of 0.52 (all porosities as fraction). Formation times for such a layer from a magma with initial chromite contents of 0.1-1 vol% are 140-3.5 days, equal to a growth rate of 0.007-0.3 m/day for grain sizes of 1-2 mm. More compacted chromite layers form with increasing centrifugation time and acceleration through chemical compaction: An increase of grain contact areas and grain sizes together with a decrease in porosity is best explained by pressure dissolution at grain contacts, reprecipitation and grain growth into the intergranular space and a concomitant expulsion of intergranular melt. The relation between the porosity in the cumulate pile and effective pressure integrated over time (Δ ρ · h · a · t) is best fit with a logarithmic function, in fact confirming that a (pressure) dissolution-reprecipitation process is the dominant mechanism of compaction. The experimentally derived equation allows calculating compaction times: 70-80 % chromite at the bottom of a 1-m-thick chromite layer are reached after 9-250 years, whereas equivalent compaction times are 0.2-0.9 years for olivine (both for 2 mm grain size). The experiments allow to determine the bulk viscosities of chromite and olivine cumulates to be

  3. Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells.

    PubMed

    Gu, Xing; Cui, Wei; Song, Tao; Liu, Changhai; Shi, Xiaoze; Wang, Suidong; Sun, Baoquan

    2014-02-01

    Thin-layer, two-dimensional NbSe2 nanosheets with lower trap density have been obtained and act as an alternative hole-transporting layer to replace MoO3 in organic solar cells. If poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid methyl ester acts as an active layer, a power conversion efficiency of 8.10 % has been achieved without any further thermal treatment. The properties of this hole-transporting layer were investigated and the improvements in the devices are discussed.

  4. Particle Transport in the Scrape-Off Layer of Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Labombard, Brian

    2000-10-01

    Cross-field particle transport plays a dominant role in the ‘main-chamber recycling’ regime in Alcator C-Mod, a regime where the main-chamber plasma recycles primarily on the walls rather than via the divertor volume. This observation has important implications for a reactor: A tightly baffled divertor may not offer control of main-chamber neutrals such that charge-exchange heat losses and sputtering of the main-chamber walls can be avoided. Important attributes of SOL cross-field transport physics are clearly evident: (1) cross-field particle fluxes dominate over parallel fluxes in balancing local ionization, (2) effective cross-field particle diffusivities (D_eff) increase with distance from the separatrix, (3) cross-field heat convection and charge exchange losses are larger than cross-field conduction, particularly in the far scrape-off layer, and (4) main-chamber neutral pressures depend more on cross-field transport than on divertor or main-chamber wall geometry. Taking advantage of the local ionization and cross-field flux balance in this regime, one can infer D_eff profiles directly from measurements. D_eff near the separatrix is found to increase strongly with increasing plasma collisionality. As the Greenwald density is approached (highest collisionality), D_eff near the separatrix becomes very large and plasma fluctuations exhibit a bursty behavior with longer correlation times. Heat convection and charge exchange losses correspondingly increase. This behavior suggests that the discharge density limit is governed by a critical collisionality above which cross-field heat convection and charge exchange determine the SOL electron temperature rather than electron parallel heat conduction. Beyond this collisionality ( density), no stable plasma can be maintained, even in the absence of radiation.

  5. SPREADING LAYERS IN ACCRETING OBJECTS: ROLE OF ACOUSTIC WAVES FOR ANGULAR MOMENTUM TRANSPORT, MIXING, AND THERMODYNAMICS

    SciTech Connect

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M.

    2016-01-20

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  6. Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers.

    PubMed

    Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing

    2017-07-05

    To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

  7. Layering

    NASA Image and Video Library

    2011-04-01

    At the bottom of this image from NASA Mars Odyssey is the cliff-face that is the sidewall of Ophir Chasma. Layering is easily visible in the upper cliff wall, with the thickness of the surface clearly visible.

  8. Quantifying and Parameterizing the Transport of Sub-Cloud Layer Moisture and Reactants by Shallow Cumulus Clouds over Land

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; van Stratum, B. J.; Vila-Guerau Arellano, J.; Sikma, M.; Krol, M. C.; Lelieveld, J.

    2013-12-01

    We investigate the vertical transport of moisture and atmospheric chemical reactants from the sub-cloud layer to the cumulus cloud layer related to the kinematic mass flux that is driven by shallow convection over land. The dynamical and chemical assumptions needed for mesoscale and global chemistry-transport model parameterizations are systematically analysed using numerical experiments performed by a Large-Eddy Simulation (LES) model. First, we identify and discuss the four primary feedback mechanisms between sub-cloud layer dynamics and mass-flux transport by shallow cumulus clouds for typical mid-latitude conditions. These feedbacks involve mixed-layer drying and heating, changing the moisture variability at the sub-cloud layer top and adjusting entrainment. Based on this analysis and LES experiments, we design parameterizations for cloud properties and mass-flux transport of air and moisture that can be applied to large-scale models. As an intermediate step, we incorporate the parameterizations in a conceptual mixed-layer model, which enables us to study these interplays in more detail. By comparing the results of this model with LES case studies, we show for a wide range of conditions that the new parameterizations enable the model to reproduce the sub-cloud layer dynamics and the four aforementioned feedbacks. However, by considering heterogeneous sensible and latent heat fluxes at the surface, we demonstrate that the parameterizations are sensitive to specific boundary conditions due to changes in the boundary-layer dynamics. Second, we extend the investigation to determine whether the parameterizations are suitable for tropical conditions and to represent the transport of reactants. The numerical experiments in this analysis are inspired by observations over the Amazon during the dry season. Isoprene, a key atmospheric compound over the tropical rain forest, decreases by 8.5 % hr-1 on average and 15 % hr-1 at maximum due to mass-flux induced removal. The

  9. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  10. The importance of subsurface nepheloid layers in transport and delivery of sediments to the eastern Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Lorenzoni, Laura; Thunell, Robert C.; Benitez-Nelson, Claudia R.; Hollander, David; Martinez, Nahysa; Tappa, Eric; Varela, Ramón; Astor, Yrene; Muller-Karger, Frank E.

    2009-12-01

    Optical transmissometer measurements were coupled with particulate organic matter (POM) observations to understand suspended sediment composition and distribution in the eastern Cariaco Basin during the rainy seasons of September 2003 and 2006. Our results suggest that nepheloid layers originating at the mouth of small mountainous rivers discharging into the eastern Basin are a major delivery mechanism of terrigenous sediments to the Basin interior. Intermediate nepheloid layers (INL) were observed near the shelf break (˜100 m) and appear to effectively transport terrigenous material laterally from the shelf to deep waters, thereby providing a plausible supply mechanism of the terrestrial material observed in sediment traps. These findings highlight the importance of small, local rivers in the Cariaco Basin as sources of terrestrial material. In contrast, these nepheloid layers contained only limited POM. When this information is combined with published sediment trap POM data, it suggests that nepheloid layers may not be a primary mechanism for delivering terrigenous POM to the deeper waters of the basin during the rainy season. Rather, BNL may redistribute marine-derived POM from shallow waters to the Basin's interior by providing ballast materials, particularly during episodic events driven by wind and precipitation. Though we have determined that nepheloid layers play an important role in the seaward transport of particulate material in the Cariaco Basin, their composition and temporal variability have not been fully characterized. This is critical to understand lateral particle transport, since nepheloid layers constitute a significant source of sediment to the deep Cariaco Basin.

  11. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be

  12. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery.

    PubMed

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-06

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  13. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    PubMed Central

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-01-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on. PMID:24500376

  14. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  15. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G.; Yang, Xichuan; Sun, Licheng

    2017-02-01

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of -5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm-2 illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm2 and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.

  16. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material.

    PubMed

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G; Yang, Xichuan; Sun, Licheng

    2017-02-13

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of -5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm(-2) illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm(2) and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs.

  17. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material

    PubMed Central

    Jiang, Xiaoqing; Yu, Ze; Zhang, Yuchen; Lai, Jianbo; Li, Jiajia; Gurzadyan, Gagik G.; Yang, Xichuan; Sun, Licheng

    2017-01-01

    Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) made from a commercially available and cheap starting material. The ultraviolet photoelectron spectroscopy (UPS) demonstrated that the as-prepared PEDOT film possesses the highest occupied molecular orbital (HOMO) energy level of −5.5 eV, which facilitates an effective hole extraction from the perovskite absorber as confirmed by the photoluminescence measurements. Optimised PSC devices employing this polymeric HTM in combination with a low-cost vacuum-free carbon cathode (replacing the gold), show an excellent power conversion efficiency (PCE) of 17.0% measured at 100 mW cm−2 illumination (AM 1.5G), with an open-circuit voltage (Voc) of 1.05 V, a short-circuit current density (Jsc) of 23.5 mA/cm2 and a fill factor (FF) of 0.69, respectively. The present finding highlights the potential application of PEDOT made from solid-state polymerisation as a HTM for cost-effective and highly efficient PSCs. PMID:28211919

  18. Rapid Transport of Stratospheric Ozone into the Planetary Boundary Layer over the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Skerlak, B.; Sprenger, M.; Pfahl, S.; Wernli, H.

    2013-12-01

    Stratosphere-troposphere exchange (STE) has important impacts on atmospheric chemistry: it changes the oxidative capacity of the troposphere and affects the climate system through the exchange of water vapor and ozone. Although a large part of tropospheric ozone is produced photochemically, significant amounts of stratospheric ozone can be brought into the troposphere during STE events. The relative importance of these two sources depends on the location of interest and transport characteristics. Of particular interest are so-called deep exchange events where ozone-rich stratospheric air reaches the planetary boundary layer (PBL) within a few days (deep STT). This rapid vertical transport can contribute to ozone concentrations at ground level which can impair plant and human physiology. It is therefore not only important to quantify the ozone flux across the tropopause but also to investigate the transport pathways after the crossing to identify affected areas at ground. Using a Lagrangian methodology and 33 years of ERA-Interim reanalysis data, we have compiled a global climatology of STE from which the mountainous areas in western North America can be identified as a 'hot spot' of deep STT, especially in boreal spring. To address the question of how the stratospheric air masses are transported into the PBL in more detail, we investigate case studies in this region with the mesoscale numerical weather prediction model COSMO. On this account, we initialize a passive tracer in the stratosphere using an elaborated 3D-labeling algorithm which applies the dynamical 2 pvu/380 K tropopause definition. This tracer is then advected by both resolved and parameterized processes and allows us to follow the stratospheric air masses along their journey into the mountainous PBL. Although this tracer does not directly represent a specific chemical species, its concentrations at the lowest model level can indicate when and where ozone levels at ground are likely to be influenced

  19. Ultraviolet-enhanced light emitting diode employing individual ZnO microwire with SiO{sub 2} barrier layers

    SciTech Connect

    Xu, Yingtian; Xu, Li; Dai, Jun; Ma, Yan; Chu, Xianwei; Zhang, Yuantao; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2015-05-25

    This paper details the fabrication of n-ZnO single microwire (SMW)-based high-purity ultraviolet light-emitting diodes (UV-LEDs) with an added SiO{sub 2} barrier layer on the p-Si substrate. However, the current-voltage (I-V) curve exhibited non-ideal rectifying characteristics. Under forward bias, both UV and visible emissions could be detected by electroluminescence (EL) measurement. When bias voltage reached 60 V at room temperature, a UV emission spike occurred at 390 nm originating from the n-ZnO SMW. Compared with the EL spectrum of the n-ZnO SMW/p-Si heterojunction device without the SiO{sub 2} barrier layer, we saw improved UV light extraction efficiency from the current-blocking effect of the SiO{sub 2} layer. The intense UV emission in the n-ZnO SMW/SiO{sub 2}/p-Si heterojunction indicated that the SiO{sub 2} barrier layer can restrict the movement of electrons as expected and result in effective electron-hole recombination in ZnO SMW.

  20. Influence of p-doping hole transport layer on the performance of organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Xu, Wei; Khizar-ul-Haq; Bai, Yu; Jiang, X. Y.; Zhang, Z. L.; Zhu, W. Q.

    2008-05-01

    We have demonstrated devices based on a p-doped layer consisting of 4,4',4''-tris(3-methylphenylphenylamono) triphenylamine (m-MTDATA) and tetrafluro-tetracyano-quinodimethane (F4-TCNQ) as a hole transport layer (HTL). The typical device structure is ITO/m-MTDATA: x% F4-TCNQ (40 nm)/N, N'-bis-[1-naphthy(-N, N' diphenyl-1,1'-biphenyl-4,4'-diamine)] (NPB) (10 nm)/tris (8-hydroxyquinoline) aluminum (Alq3) (50 nm)/LiF (10 nm)/Al (100 nm). Hole-only devices, where the current only consists of holes, are fabricated to observe the apparent improvement in the conductivity of the p-doped layers. We have observed that such layers lead to a striking improvement of the electrical properties of organic light-emitting devices. In particular, the electroluminescent onset voltage is observed to decrease continuously with increasing doping ratio and is greatly reduced compared to diodes with undoped layers. We have seen that the driving voltage of device 3 (m-MTDATA:4% F4-TCNQ) is reduced ~56% as compared with that of the control device (undoped). This improvement has been attributed to the increased conductivity of the p-doping hole transport layer. It is found that the current efficiency also decreases with increasing doping ratio. This can be attributed to the charge imbalance in the emission layer due to the excess hole injection.

  1. Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells.

    PubMed

    Lee, Kang Hyuck; Kumar, Brijesh; Park, Hye-Jeong; Kim, Sang-Woo

    2010-08-31

    The photovoltaic (PV) performance of flexible inverted organic solar cells (IOSCs) with an active layer consisting of a blend of poly(3-hexylthiophene) and [6, 6]-phenyl C(61)-butlyric acid methyl ester was investigated by varying the thicknesses of ZnO seed layers and introducing ZnO nanorods (NRs). A ZnO seed layer or ZnO NRs grown on the seed layer were used as an electron transport layer and pathway to optimize PV performance. ZnO seed layers were deposited using spin coating at 3,000 rpm for 30 s onto indium tin oxide (ITO)-coated polyethersulphone (PES) substrates. The ZnO NRs were grown using an aqueous solution method at a low temperature (90°C). The optimized device with ZnO NRs exhibited a threefold increase in PV performance compared with that of a device consisting of a ZnO seed layer without ZnO NRs. Flexible IOSCs fabricated using ZnO NRs with improved PV performance may pave the way for the development of PV devices with larger interface areas for effective exciton dissociation and continuous carrier transport paths.

  2. Surface-initiated poly(3-methylthiophene) as a hole-transport layer for polymer solar cells with high performance.

    PubMed

    Yang, Liqiang; Sontag, S Kyle; LaJoie, Travis W; Li, Wentao; Huddleston, N Eric; Locklin, Jason; You, Wei

    2012-10-24

    In this work, uniform poly(3-methylthiophene) (P3MT) films are fabricated on indium-tin oxide (ITO) surfaces using surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from surface-bound arylnickel(II) bromide initiators. The P3MT interfacial layer is covalently bound to the ITO surface, thereby preventing possible delamination during the processing of additional layers. These surface-bound P3MT layers successfully serve as the hole-transport layer for solution-processed bulk heterojunction polymer solar cells. Efficiencies greater than 5% have been achieved on devices based on doped thin P3MT interfacial layers. Moreover, because of the excellent stability of the covalently immobilized P3MT on ITO substrates, devices based on reused P3MT/ITO substrates extracted from old devices exhibit efficiencies similar to those of the original devices.

  3. Layering Networked and Symphonic Selves: A Critical Role for e-Portfolios in Employability through Integrative Learning

    ERIC Educational Resources Information Center

    Cambridge, Darren

    2008-01-01

    Purpose: E-portfolios, which document and facilitate learning and performance, have recently attracted interest in the USA, UK, and Europe as means to increase employability and support lifelong learning. This article aims to critically examine these objectives in order to guide the future e-portfolio practice. Design/methodology/approach: Social…

  4. Layering Networked and Symphonic Selves: A Critical Role for e-Portfolios in Employability through Integrative Learning

    ERIC Educational Resources Information Center

    Cambridge, Darren

    2008-01-01

    Purpose: E-portfolios, which document and facilitate learning and performance, have recently attracted interest in the USA, UK, and Europe as means to increase employability and support lifelong learning. This article aims to critically examine these objectives in order to guide the future e-portfolio practice. Design/methodology/approach: Social…

  5. Solution-Processed Hybrid Light-Emitting Devices Comprising TiO2 Nanorods and WO3 Layers as Carrier-Transporting Layers

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Yan; Yan, Po-Ruei; Yang, Sheng-Hsiung

    2016-11-01

    The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of FTO/TiO2 nanorods/ionic PF/MEH-PPV/PEDOT:PSS/WO3/Au were constructed. The best device based on 100-nm-height TiO2 nanorods achieved a max brightness of 4493 cd/m2 and current efficiency of 0.66 cd/A, revealing much higher performance compared with those using TiO2 compact layer or nanorods with longer lengths as electron-transporting layers.

  6. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  7. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  8. Impact of planetary boundary layer turbulence on model climate and tracer transport

    NASA Astrophysics Data System (ADS)

    McGrath-Spangler, E. L.; Molod, A.; Ott, L. E.; Pawson, S.

    2015-07-01

    Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important because it is used to calculate the turbulent length scale that is used in the estimation of turbulent mixing. This study analyzes the impact of using three different PBL depth definitions in this calculation. Two definitions are based on the scalar eddy diffusion coefficient and the third is based on the bulk Richardson number. Over land, the bulk Richardson number definition estimates shallower nocturnal PBLs than the other estimates while over water this definition generally produces deeper PBLs. The near-surface wind velocity, temperature, and specific humidity responses to the change in turbulence are spatially and temporally heterogeneous, resulting in changes to tracer transport and concentrations. Near-surface wind speed increases in the bulk Richardson number experiment cause Saharan dust increases on the order of 1 × 10-4 kg m-2 downwind over the Atlantic Ocean. Carbon monoxide (CO) surface concentrations are modified over Africa during boreal summer, producing differences on the order of 20 ppb, due to the model's treatment of emissions from biomass burning. While differences in carbon dioxide (CO2) are small in the time mean, instantaneous differences are on the order of 10 ppm and these are especially prevalent at high latitude during boreal winter. Understanding the sensitivity of trace gas and aerosol concentration estimates to PBL depth is important for studies seeking to calculate surface fluxes based on near-surface concentrations and for studies projecting future concentrations.

  9. TURBULENT TRANSPORT IN A STRONGLY STRATIFIED FORCED SHEAR LAYER WITH THERMAL DIFFUSION

    SciTech Connect

    Garaud, Pascale

    2016-04-10

    This work presents numerical results on the transport of heat and chemical species by shear-induced turbulence in strongly stratified, thermally diffusive environments. The shear instabilities driven in this regime are sometimes called “secular” shear instabilities, and can take place when the Richardson number of the flow is large, provided the Péclet number is small. We have identified a set of simple criteria to determine whether these instabilities can take place or not. Generally speaking, we find that they may be relevant whenever the thermal diffusivity of the fluid is very large (typically larger than 10{sup 14} cm{sup 2} s{sup −1}), which is the case in the outer layers of high-mass stars (M ≥ 10 M{sub ⊙}), for instance. Using a simple model setup in which the shear is forced by a spatially sinusoidal, constant-amplitude body-force, we have identified several regimes ranging from effectively unstratified to very strongly stratified, each with its own set of dynamical properties. Unless the system is in one of the two extreme regimes (effectively unstratified or completely stable), however, we find that (1) only about 10% of the input power is used toward heat transport, while the remaining 90% is viscously dissipated; (2) that the effective compositional mixing coefficient is well-approximated by the model of Zahn, with D ≃ 0.02κ{sub T}/J where κ{sub T} is the thermal diffusivity and J is the Richardson number. These results need to be confirmed, however, with simulations in different model setups and at higher effective Reynolds number.

  10. Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2017-01-01

    Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.

  11. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells.

    PubMed

    Ho, Cherng-Rong; Tsai, Meng-Lin; Jhuo, Hung-Jun; Lien, Der-Hsien; Lin, Chin-An; Tsai, Shin-Hung; Wei, Tzu-Chiao; Huang, Kun-Ping; Chen, Show-An; He, Jr-Hau

    2013-07-21

    We demonstrated a promising route to enhance the performance of inverted organic photovoltaic (OPV) devices by the incorporation of CuGaSe2 (CGS) quantum dots (QDs) into the ZnO buffer layer of P3HT:PCBM-based devices. The modification of QDs provides better band alignment between the organic/cathode interface, improves ZnO crystal quality, and increases photon absorption, leading to more effective carrier transport/collection. By employing this energy-harvesting scheme, short-circuit current density, open-circuit voltage, and fill factor of the OPV device after CGS QD modification are improved by 9.43%, 7.02% and 6.31%, respectively, giving rise to a 23.8% enhancement in the power conversion efficiency.

  12. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    PubMed Central

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-01-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222

  13. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    NASA Astrophysics Data System (ADS)

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-11-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1‑xN}/AlN, (b) Thin-GaN/3 × {AlxGa1‑xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V•s) and 2DEG carrier concentration (>1.0 × 1013 cm‑2) on Si(111) substrates.

  14. Verification of the multi-layer SNOWPACK model with different water transport schemes

    NASA Astrophysics Data System (ADS)

    Wever, N.; Schmid, L.; Heilig, A.; Eisen, O.; Fierz, C.; Lehning, M.

    2015-12-01

    The widely used detailed SNOWPACK model has undergone constant development over the years. A notable recent extension is the introduction of a Richards equation (RE) solver as an alternative for the bucket-type approach for describing water transport in the snow and soil layers. In addition, continuous updates of snow settling and new snow density parameterizations have changed model behavior. This study presents a detailed evaluation of model performance against a comprehensive multiyear data set from Weissfluhjoch near Davos, Switzerland. The data set is collected by automatic meteorological and snowpack measurements and manual snow profiles. During the main winter season, snow height (RMSE: < 4.2 cm), snow water equivalent (SWE, RMSE: < 40 mm w.e.), snow temperature distributions (typical deviation with measurements: < 1.0 °C) and snow density (typical deviation with observations: < 50 kg m-3) as well as their temporal evolution are well simulated in the model and the influence of the two water transport schemes is small. The RE approach reproduces internal differences over capillary barriers but fails to predict enough grain growth since the growth routines have been calibrated using the bucket scheme in the original SNOWPACK model. However, the agreement in both density and grain size is sufficient to parameterize the hydraulic properties successfully. In the melt season, a pronounced underestimation of typically 200 mm w.e. in SWE is found. The discrepancies between the simulations and the field data are generally larger than the differences between the two water transport schemes. Nevertheless, the detailed comparison of the internal snowpack structure shows that the timing of internal temperature and water dynamics is adequately and better represented with the new RE approach when compared to the conventional bucket scheme. On the contrary, the progress of the meltwater front in the snowpack as detected by radar and the temporal evolution of the vertical

  15. Nonlinearity and hysteresis in longitudinal current transport in CoSi/GaAs alloy layers deposited from laser plasma

    NASA Astrophysics Data System (ADS)

    Demidov, E. S.; Gusev, S. N.; Podol'skii, V. V.; Lesnikov, V. P.; Sdobnyakov, V. V.; Budarin, L. I.; Tronov, A. A.; Skopin, E. V.

    2013-07-01

    The electron transport properties of nanosized CoSi alloy layers deposited at a lowered temperature (350°C) from laser plasma onto single-crystalline gallium arsenide have been studied. An asymmetry of the current-voltage characteristic (CVC) in the longitudinal current transport in such layers has been found, which indicates the spin polarization of charge carriers, and a substantial (up to 18%) nonlinearity and a hysteresis (up to 4%) have been revealed both at room temperature and at 77 K for comparatively low current densities (up to 5 × 104 A/cm2). In repeated cycles of CVC measurements at 77 K, irreversible changes in the properties of the layers have been observed.

  16. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    NASA Astrophysics Data System (ADS)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  17. Intermittent transport across the scrape-off layer: latest results from ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kočan, M.; Müller, H. W.; Nold, B.; Lunt, T.; Adámek, J.; Allan, S. Y.; Bernert, M.; Conway, G. D.; de Marné, P.; Eich, T.; Elmore, S.; Gennrich, F. P.; Herrmann, A.; Horacek, J.; Huang, Z.; Kallenbach, A.; Komm, M.; Maraschek, M.; Mehlmann, F.; Müller, S.; Ribeiro, T. T.; Rohde, V.; Schrittwieser, R.; Scott, B.; Stroth, U.; Suttrop, W.; Wolfrum, E.; the ASDEX Upgrade Team

    2013-07-01

    We report the latest results of turbulence and transport studies in the ASDEX Upgrade scrape-off layer (SOL). Dissimilarity between the plasma and the floating potential fluctuations is studied experimentally and by gyrofluid simulations. Measurements by a retarding field analyser reveal that both, edge-localized mode (ELM) and turbulent filaments, convey hot ions over large radial distances in the SOL. The measured far SOL ELM ion temperature increases with the ELM energy, consistent with earlier observations that large ELMs deposit a large fraction of their energy outside the divertor. In the SOL, the ELM suppression by magnetic perturbations (MPs) results in lower ELM ion energy in the far SOL. At the same time, large filaments of ion saturation current are replaced by more continuous bursts. Splitting of the divertor strike zones observed by the infrared imaging in H-mode with MPs agree with predictions from the EMC3-Eirene simulations. This suggests that the ‘lobe’ structures due to perturbation fields observed near the X-point are not significantly affected by plasma screening, and can be described by a vacuum approach, as in the EMC3-Eirene. Finally, some effects of the MPs on the L-mode SOL are addressed.

  18. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Ming; Yuan, Jie; Wen, Bo; Liu, Jia; Cao, Wen-Qiang; Cao, Mao-Sheng

    2013-03-01

    We investigate the dielectric properties of multi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz. MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers. Both permittivity ɛ and conductivity σ exhibit jumps around the percolation threshold. Variations of dielectric properties of the composites are in agreement with the percolation theory. All the percolation phenomena are determined by hopping and migrating electrons, which are attributed to the special electronic transport mechanism of the fillers in the composites. However, the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites, while in the graphite/SiO2 composites, there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%. The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism, especially the network effect of MWCNTs in the composites. The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  19. Interfacial engineering of hole transport layers with metal and dielectric nanoparticles for efficient perovskite solar cells.

    PubMed

    Wang, Dian; Chan, Kah H; Elumalai, Naveen Kumar; Mahmud, Md Arafat; Upama, Mushfika B; Uddin, Ashraf; Pillai, Supriya

    2017-09-06

    In this work, we have demonstrated the incorporation of metal (Ag NPs) and dielectric nanoparticles (SiO2 NPs) into the hole transporting layers of inverted PSCs using facile deposition methods. Interfacial engineering in PSCs is accomplished by incorporating 50 nm Ag NPs or SiO2 NPs within the PEDOT:PSS interlayer. Dielectric SiO2 NPs were used for comparison purposes as a control sample to isolate morphological impacts without plasmonic effects. The photovoltaic performance of the devices significantly improved due to increased charge selectivity and enhanced charge collection properties across the interface (HTL). The recombination resistance of the SiO2 NP incorporated HTL based PSCs was 193% higher than that of the conventional devices. In-depth analysis using impedance measurements revealed that devices containing Ag or SiO2 NPs have low electrode polarization and consequently lower charge accumulation at the interface. Lower electrode polarization in the modified devices was also found to improve the charge carrier selectivity, which eventually led to enhanced fill factor and lower parasitic resistances. Interfacial engineering via NPs yielded improvements in the electrical characteristics of non-optical origin, which not only enhanced device performance, but also reduced the hysteresis effects to much lower than in the conventional inverted PSCs based on a pristine PEDOT:PSS interlayer.

  20. Risk assessment of nitrate transport through subsurface layers and groundwater using experimental and modeling approach.

    PubMed

    Alslaibi, Tamer M; Abunada, Ziyad; Abu Amr, Salem S; Abustan, Ismail

    2017-09-22

    Landfills are one of the main point sources of groundwater pollution. This research mainly aims to assess the risk of nitrate [Formula: see text] transport from the unlined landfill to subsurface layers and groundwater using experimental results and the SESOIL model. Samples from 12 groundwater wells downstream of the landfill were collected and analyzed in 2008, 21 years after the landfill construction. The average [Formula: see text] concentration in the wells was 54 mg/L, slightly higher than the World Health Organization ([Formula: see text] 50 mg/L) standards. SESOIL model was used to predict the [Formula: see text] concentration at the bottom of the unsaturated zone. Results indicated that the current mean [Formula: see text] concentration at the bottom of the unsaturated zone is 75 mg/L. the model predicted that the level of NO3 will increased up to 325 mg/L within 30 years. Accordingly, the [Formula: see text] concentration in groundwater wells near the landfill area is expected to gradually increase with time. Although the current risk associated with the [Formula: see text] level might not be harm to adults, however, it might pose severe risks to both adults and infants in the near future due to [Formula: see text] leaching. Urgent mitigation measures such as final cell cover (cap), lining system and vertical expansion should be considered at the landfill to protect the public health in the area.

  1. Electrolyte dependence of transport properties of SrTiO3 electric double layer transistors

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Doi, Kiyomasa; Katayama, Yumiko; Ueno, Kazunori

    2017-05-01

    We report the electrolyte dependence of the transport properties of SrTiO3 electric double layer transistors (EDLTs). Ionic liquids such as 1-ethyl-3-methylimidazolium (EMIM) bis(trifluoromethylsulfonyl)imide (TFSI), EMIM dicyanamide (DCA), N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME) TFSI, and DEME tetrafluoroborate (BF4), and polymer electrolytes such as poly(ethylene oxide) (PEO):CsClO4, were used as the electrolytes. All the devices showed metal-insulator transition with a threshold carrier density of 1 × 1013 cm-2. The maximum carrier density was also limited to below 1.6 × 1014 cm-2 for all the devices. On the other hand, the electron mobility at low temperature varied with the cation of the electrolyte and the gating temperature. The EDLT with the ionic liquid EMIM-DCA, which gated at room temperature, showed the highest mobility of 2,600 cm2 V-1 s-1 at 2 K. The observed electrolyte dependence of the SrTiO3 channel mobility is attributed to the change in the surface scattering rate by the adsorbed cations and spatial homogeneity of the cations in the electrolyte.

  2. Photodiode Based on CdO Thin Films as Electron Transport Layer

    NASA Astrophysics Data System (ADS)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  3. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-01

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N'-diphenyl-N,N'-bis(1-naphthyl)-[1,1'-biphthyl]-4,4'-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  4. Universality of intermittent convective transport in the scrape-off layer of magnetically confined devices

    NASA Astrophysics Data System (ADS)

    Antar, Ghassan Y.; Counsell, Glenn; Yu, Yang; Labombard, Brian; Devynck, Pascal

    2003-02-01

    The nature of intermittency, long observed in magnetic fusion devices, was revisited lately [G. Antar et al., Phys. Rev. Lett. 87, 065001 (2001)]. It was shown that intermittency is caused by large-scale events with high radial velocity reaching about 1/10th of the sound speed. These type of structures were named "avaloids." In the present article, the universality of convective turbulence in magnetically confined plasmas is investigated. Turbulence properties in the scrape-off layer of four different magnetic fusion devices are compared. Namely, the Tore Supra tokamak [Tore Supra Team, Nuclear Fusion, 40, 1047 (2000)] with circular cross-section limiter-bounded plasma, the Alcator C-Mod tokamak [B. LaBombard et al., Phys. Plasmas 8, 2107 (2001)] which is a divertor device, the Mega-Ampere Spherical Tokamak (MAST) [A. Sykes et al., Phys. Plasmas 8, 2101 (2001)] with vacuum chamber walls far from the plasma last closed flux surface and the PISCES linear plasma device [D. Geobel et al., Rev. Sci. Istrum. 56, 1717 (1985)]. The statistical properties of the turbulent signals in the four devices are found to be identical allowing us to conclude that intermittent convective transport by avaloids is universal in the sense that it occurs and has the same properties in many confinement devices with different configurations.

  5. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  6. New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells.

    PubMed

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Shahverdi, Hamid Reza

    2015-10-07

    In this work we reported sputter deposited NiOx/Ni double layer as an HTM/contact couple in normal architecture of perovskite solar cell. A perovskite solar cell that is durable for more than 60 days was achieved, with increasing efficiency from 1.3% to 7.28% within 6 days. Moreover, low temperature direct deposition of NiOx layer on perovskite layer was introduced as a potential hole transport material for an efficient cost-effective solar cell applicable for various morphologies of perovskite layers, even for perovskite layers containing pinholes, which is a notable challenge in perovskite solar cells. The angular deposition of NiOx layers by dc reactive magnetron sputtering showed uniform and crack-free coverage of the perovskite layer with no negative impact on perovskite structure that is suitable for nickel back contact layer, surface shielding against moisture, and mechanical damages. Replacing the expensive complex materials in previous perovskite solar cells with low cost available materials introduces cost-effective scalable perovskite solar cells.

  7. A first-principles study on the phonon transport in layered BiCuOSe

    PubMed Central

    Shao, Hezhu; Tan, Xiaojian; Liu, Guo-Qiang; Jiang, Jun; Jiang, Haochuan

    2016-01-01

    First-principles calculations are employed to investigate the phonon transport of BiCuOSe. Our calculations reproduce the lattice thermal conductivity of BiCuOSe. The calculated grüneisen parameter is 2.4 ~ 2.6 at room temperature, a fairly large value indicating a strong anharmonicity in BiCuOSe, which leads to its ultralow lattice thermal conductivity. The contribution to total thermal conductivity from high-frequency optical phonons, which are mostly contributed by the vibrations of O atoms, is larger than 1/3, remarkably different from the usual picture with very little contribution from high-frequency optical phonons. Our calculations show that both the high group velocities and low scattering processes involved make the high-frequency optical modes contribute considerably to the total lattice thermal conductivity. In addition, we show that the sound velocity and bulk modulus along a and c axes exhibit strong anisotropy, which results in the anisotropic thermal conductivity in BiCuOSe. PMID:26878884

  8. Meeting Skills Needs in a Market-Based Training System: A Study of Employer Perceptions and Responses to Training Challenges in the Australian Transport and Logistics Industry

    ERIC Educational Resources Information Center

    Gekara, Victor O.; Snell, Darryn; Chhetri, Prem; Manzoni, Alex

    2014-01-01

    Many countries are adopting market-based training systems to address industry skills needs. This paper examines the marketisation of Australia's training system and the implications for training provision and outcomes in the Transport and Logistics industry. Drawing on qualitative interviews from industry employers and training providers, we…

  9. Meeting Skills Needs in a Market-Based Training System: A Study of Employer Perceptions and Responses to Training Challenges in the Australian Transport and Logistics Industry

    ERIC Educational Resources Information Center

    Gekara, Victor O.; Snell, Darryn; Chhetri, Prem; Manzoni, Alex

    2014-01-01

    Many countries are adopting market-based training systems to address industry skills needs. This paper examines the marketisation of Australia's training system and the implications for training provision and outcomes in the Transport and Logistics industry. Drawing on qualitative interviews from industry employers and training providers, we…

  10. Co-precipitation of tobramycin into biomimetically coated orthopedic fixation pins employing submicron-thin seed layers of hydroxyapatite.

    PubMed

    Sörensen, Jan H; Lilja, Mirjam; Åstrand, Maria; Sörensen, Torben C; Procter, Philip; Strømme, Maria; Steckel, Hartwig

    2014-01-01

    The migration, loosening and cut-out of implants and nosocomial infections are current problems associated with implant surgery. New innovative strategies to overcome these issues are emphasized in today's research. The current work presents a novel strategy involving co-precipitation of tobramycin with biomimetic hydroxyapatite (HA) formation to produce implant coatings that control local drug delivery to prevent early bacterial colonization of the implant. A submicron- thin HA layer served as seed layer for the co-precipitation process and allowed for incorporation of tobramycin in the coating from a stock solution of antibiotic concentrations as high as 20 mg/ml. Concentrations from 0.5 to 20 mg/ml tobramycin and process temperatures of 37 °C and 60 °C were tested to assess the optimal parameters for a thin tobramycin- delivering HA coating on discs and orthopedic fixation pins. The morphology and thickness of the coating and the drug-release profile were evaluated via scanning electron microscopy and high performance liquid chromatography. The coatings delivered pharmaceutically relevant amounts of tobramycin over a period of 12 days. To the best of our knowledge, this is the longest release period ever observed for a fast-loaded biomimetic implant coating. The presented approach could form the foundation for development of combination device/antibiotic delivery vehicles tailored to meet well-defined clinical needs while combating infections and ensuring fast implant in-growth.

  11. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Wang, Hongxi; Gao, Renjing; Hu, Ping; Yang, Yintang

    2012-06-01

    To eliminate the effects of motion coupling for measuring cylindrical work pieces, a novel alignment mechanism integrating functions of both leveling and centering is designed and fabricated by introducing multi-layered orthogonal connected flexible hinges as the key supporting and joining elements. Different from traditional leveling mechanisms with many separate parts fabricated together, all of the flexible hinges were integrated in one three-dimensioned machining part without assembling process, and thus synchronously simplifying the structure and reducing assembly errors. Based on the screw theory, the mathematic model of the proposed alignment mechanism is established for any resolution requirements depending on screw characteristics. A millimeter-sized device is fabricated with the alignment precision of 1.0 μm for centering within the range of ±1 mm and 1 in. for leveling within ±1°. The experiment results are in very close agreement to those obtained by simulation, which validate the feasibility of introducing multi-layered orthogonal flexible hinges in the centering and leveling mechanisms.

  12. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (∼200 J, ∼750 fs) at peak intensity ∼ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ∼70° FWHM cone along the ion beam forward direction, with maximum energy up to ∼40 MeV and a peak flux along the axis ∼ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  13. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering.

    PubMed

    Zhao, Jian; Wang, Hongxi; Gao, Renjing; Hu, Ping; Yang, Yintang

    2012-06-01

    To eliminate the effects of motion coupling for measuring cylindrical work pieces, a novel alignment mechanism integrating functions of both leveling and centering is designed and fabricated by introducing multi-layered orthogonal connected flexible hinges as the key supporting and joining elements. Different from traditional leveling mechanisms with many separate parts fabricated together, all of the flexible hinges were integrated in one three-dimensioned machining part without assembling process, and thus synchronously simplifying the structure and reducing assembly errors. Based on the screw theory, the mathematic model of the proposed alignment mechanism is established for any resolution requirements depending on screw characteristics. A millimeter-sized device is fabricated with the alignment precision of 1.0 μm for centering within the range of ±1 mm and 1 in. for leveling within ±1°. The experiment results are in very close agreement to those obtained by simulation, which validate the feasibility of introducing multi-layered orthogonal flexible hinges in the centering and leveling mechanisms.

  14. Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells.

    PubMed

    Liu, Jiewei; Pathak, Sandeep; Stergiopoulos, Thomas; Leijtens, Tomas; Wojciechowski, Konrad; Schumann, Stefan; Kausch-Busies, Nina; Snaith, Henry J

    2015-05-07

    Organic-inorganic halide perovskite solar cells have recently emerged as high-performance photovoltaic devices with low cost, promising for affordable large-scale energy production, with laboratory cells already exceeding 20% power conversion efficiency (PCE). To date, a relatively expensive organic hole-conducting molecule with low conductivity, namely spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'- spirobifluorene), is employed widely to achieve highly efficient perovskite solar cells. Here, we report that by replacing spiro-OMeTAD with much cheaper and highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) we can achieve PCE of up to 14.5%, with PEDOT cast from a toluene based ink. However, the stabilized power output of the PEDOT-based devices is only 6.6%, in comparison to 9.4% for the spiro-OMeTAD-based cells. We deduce that accelerated recombination is the cause for this lower stabilized power output and postulate that reduced levels of p-doping are required to match the stabilized performance of Spiro-OMeTAD. The entirely of the materials employed in the perovskite solar cell are now available at commodity scale and extremely inexpensive.

  15. Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells.

    PubMed

    Singh, Trilok; Singh, Jai; Miyasaka, Tsutomu

    2016-09-22

    Organic-inorganic hybrid perovskite light absorbers have recently emerged as a "holy grail" for next generation thin-film photovoltaics with excellent optoelectronics properties and low fabrication cost. In a very short span of time, we have witnessed a pronounced and unexpected progress in organic- inorganic perovskite solar cells (PSCs) with a vertical rise in power conversion efficiency from 3.8 to 22.1 %. In this manuscript we focus specifically on the recent development of metal oxide-based electron-transporting layer (ETL) modification for high performing PSCs and their stability. This review highlights various methodologies to modify existing compact/scaffold layers for improving device performance and stability. Various aspects of the ETL are discussed with different metal oxide compact layers in their relation to modification in mesoporous layers towards the design of a cell structure with high performance and stability.

  16. Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications.

    PubMed

    Mannarino, Matthew M; Liu, David S; Hammond, Paula T; Rutledge, Gregory C

    2013-08-28

    Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity. The bare mats were annealed to improve their mechanical properties, which improvements are shown to be retained in the composite membranes. Spray LbL assembly was used as a means for the rapid formation of proton-conducting films that fill the void space throughout the porous electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were fabricated, and viable composite membranes with methanol permeabilities 20 times lower than Nafion and through-plane proton selectivity five and a half times greater than Nafion are demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange membranes fabricated here were tested in an operational direct methanol fuel cell. The results show the potential for higher open circuit voltages (OCV) and comparable cell resistances when compared to fuel cells based on Nafion.

  17. Effect of aging-induced disorder on the quantum transport properties of few-layer WTe2

    NASA Astrophysics Data System (ADS)

    Lai Liu, Wei; Chen, Mao Lin; Li, Xiao Xi; Dubey, Sudipta; Xiong, Ting; Dai, Zhi Ming; Yin, Jun; Guo, Wan Lin; Ma, Jin Long; Chen, Ya Ni; Tan, Jun; Li, Da; Wang, Zhen Hua; Li, Wu; Bouchiat, Vincent; Sun, Dong Ming; Han, Zheng; Zhang, Zhi Dong

    2017-03-01

    The emerging physical phenomena found in transition metal dicalcogenides (TMDCs) have triggered vast investigations in recent years. Among them, nanoelectronics in WTe2 devices have attracted particular attentions due to its exotic band structure that leads to exciting phenomena such as the predicted type-II Weyl semimetallic state. However, the thickness dependence of its quantum transport properties in the two-dimensional limit remains under debate. The major missing ingredient in the previous studies is the aging-induced disorder, as atomically thin layers of TMDCs are often known to be metastable in the ambient atmosphere. Here, we show systematic performance of low temperature quantum electronic transport of few-layer WTe2. It is observed that aging-induced localized electronic states explains the low temperature Coulomb gap in transport measurements, leading to the anomalous magnetotransport which appears to be extrinsic. While few-layered WTe2 shows clear metallic tendency in the fresh state, degraded devices first exhibited a re-entrant insulating behavior, and finally entered a fully insulating state. Correspondingly, a crossover from parabolic to linear magnetoresistance, and, upon further aging, leads to the observation of weak anti-localization. Our study reveals for the first time the correlation between the unusual magnetotransport and disorder in few-layered WTe2, which is indispensable in providing guidance on its future device applications.

  18. Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer

    NASA Astrophysics Data System (ADS)

    Park, Young Ran; Jeong, Hu Young; Seo, Young Soo; Choi, Won Kook; Hong, Young Joon

    2017-04-01

    Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Förster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and -resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices.

  19. Methane distributions and transports in the nocturnal boundary layer at a rural station

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Zeeman, Matthias; Brosy, Caroline; Münkel, Christoph; Fersch, Benjamin; Mauder, Matthias; Emeis, Stefan

    2016-10-01

    To investigate the methane distributions and transports, the role of related atmospheric processes by determination of vertical profiles of wind, turbulence, temperature and humidity as well as nocturnal boundary layer (NBL) height and the quantification of methane emissions at local and plot scale the so-called ScaleX-campaign was performed in a pre-alpine observatory in Southern Germany from 01 June until 31 July 2015. The following measurements from the ground up to the free troposphere were performed: layering of the atmosphere by a ceilometer (Vaisala CL51); temperature, wind, turbulence profiles from 50 m up to 500 m by a Radio-Acoustic Sounding System (RASS, Metek GmbH); temperature, humidity profiles in situ by a hexacopter; methane farm emissions by two open-path laser spectrometers (Boreal GasFinder2); methane concentrations in situ (Los Gatos DLT-100) with tubes in 0.3 m agl and 5 sampling heads; and methane soil emissions by a big chamber (10 m length, 2.60 m width, up to 0.61 m height) with a plastic cover. The methane concentrations near the surface show a daily variation with a maximum and a frequent double-peak structure during night-time. Analysis of the variation of the nocturnal methane concentration together with the hexacopter and RASS data indicates that the first peak in the nocturnal methane concentration is probably due to local cooling and stabilization which keeps the methane emissions from the soil near the ground. The second peak seems to be due to advection of methane-enriched air which had formed in the environment of the nearby farm yards. These dairy farm emissions were determined by up-wind and down-wind open-path concentration measurements, turbulence data from an EC station nearby and Backward Lagrangian Simulation (WindTrax software). The methane fluxes at plot scale (big chamber) are characterized by emissions at water saturated grassland patches, by an exponential decrease of these emissions during grassland drying, and by an

  20. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the

  1. Climatology of wintertime long-distance transport of surface-layer air masses arriving urban Beijing in 2001-2012

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xiang-De, XU

    2017-02-01

    In this study, the FLEXPART-WRF coupled modeling system is used to conduct 12-year Lagrangian modeling over Beijing, China, for the winters of 2001-2012. Based on large trajectory tracking ensembles, the long-range air transport properties, in terms of geographic source regions within the atmospheric planetary boundary layer (PBL) and large-scale ventilation, and its association with air quality levels were quantified from a climatological perspective. The results show the following: (1) The air masses residing in the near-surface layer over Beijing potentially originate from broader atmospheric boundary-layer regions, which cover vast areas with the backward tracking time elapsed. However, atmospheric transport from northeastern China and, to a lesser extent, from the surrounding regions of Beijing is important. (2) The evolution of air quality over Beijing is negatively correlated with large-scale ventilation conditions, particularly at a synoptic timescale. Thus, the simple but robust backward-trajectory ventilation (BV) index defined in this study could facilitate operational forecasting of severe air pollution events. (3) By comparison, the relatively short-range transport occurring over transport timescales of less than 3 days from southern and southeastern Beijing and its surrounding areas plays a vital role in the formation of severe air pollution events during the wintertime. (4) Additionally, an interannual trend analysis suggests that the geographic sources and ventilation conditions also changed, at least over the last decade, corresponding to the strength variability of the winter East Asian monsoon.

  2. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM–ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level. PMID:27429041

  3. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers.

    PubMed

    Hehn, Iris; Schuster, Swen; Wächter, Tobias; Abu-Husein, Tarek; Terfort, Andreas; Zharnikov, Michael; Zojer, Egbert

    2016-08-04

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM-ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level.

  4. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  5. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    SciTech Connect

    Kellermann, Renate; Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter; Brabec, Christoph J.

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  6. Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean

    USGS Publications Warehouse

    McManus, M.A.; Cheriton, O.M.; Drake, P.J.; Holliday, D.V.; Storlazzi, C.D.; Donaghay, P.L.; Greenlaw, C.F.

    2005-01-01

    Thin layers of plankton are recurrent features in a variety of coastal systems. These layers range in thickness from a few centimeters to a few meters. They can extend horizontally for kilometers and have been observed to persist for days. Densities of organisms found within thin layers are far greater than those above or below the layer, and as a result, thin layers may play an important role in the marine ecosystem. The paramount objective of this study was to understand the physical processes that govern the dynamics of thin layers of zooplankton in the coastal ocean. We deployed instruments to measure physical processes and zooplankton distribution in northern Monterey Bay; during an 11 d period of persistent upwelling-favorable winds, 7 thin zooplankton layers were observed. These zooplankton layers persisted throughout daylight hours, but were observed to dissipate during evening hours. These layers had an average vertical thickness of 1.01 m. No layers were found in regions where the Richardson number was <0.25. In general, when the Richardson number is <0.25 the water column is unstable, and incapable of supporting thin layers. Thin zooplankton layers were also located in regions of reduced flow. In addition, our observations show that the vertical depth distribution of thin zooplankton layers is modulated by high-frequency internal waves, with periods of 18 to 20 min. Results from this study clearly show an association between physical structure, physical processes and the presence of thin zooplankton layers in Monterey Bay. With this new understanding we may identify other coastal regions that have a high probability of supporting thin layers. ?? Inter-Research 2005.

  7. The role of stability in modulating the structure and transport efficiency of turbulence in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Li, D.; Shah, S.; Chamecki, M.

    2011-12-01

    Understanding turbulent transport of momentum and scalars such as temperature, water vapor, and trace gases in the atmospheric boundary layer is important in many disciplines such as meteorology, hydrology, agriculture and air quality control. At present, similarity theories are used to relate these turbulent fluxes to mean profiles, variances, or other quantities; and it is essential to account for the effects of buoyancy in such formulations (e.g. the Monin-Obukhov similarity). A significant degree of empiricism remains in such stability-dependent formulations due to our lack of understanding of the basic physical mechanisms that lead to a change in transport efficiency for momentum and scalars under different stabilities. Using field data sets and numerical simulations of atmospheric surface layer flows under a range of stabilities, we revisit this problem with a focus on the ties between coherent structures, atmospheric stability, and turbulent transport. The results confirm that the topology of the coherent structures is very sensitive to stability. The findings point to a gradual transformation of the structures from hairpin vortices (or horizontal rolls) to thermals, as the upward buoyancy flux increases. This change then induces a decorrelation of the momentum and scalar fluxes in the surface layer and significant change in the relative efficiencies of momentum and scalar transport. Scalars are transported much more efficiently under unstable conditions. These findings provide a better framework for including the effect of stability in turbulent transport models and open the way for more advanced models based on a better understanding of turbulent scale-interactions under different stabilities, similar for example to the models of Marusic et al. (Science, 329, 2010) for neutral flows.

  8. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC{sub 71}BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    SciTech Connect

    Ahmad, Zubair Abdullah, Shahino Mah; Sulaiman, Khaulah; Taguchi, Dai; Iwamoto, Mitsumasa

    2015-04-28

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC{sub 71}BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC{sub 71}BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC{sub 71}BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  9. Transport driven plasma flows in the scrape-off layer of ADITYA Tokamak in different orientations of magnetic field

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2014-06-15

    Parallel plasma flows in the scrape-off layer of ADITYA tokamak are measured in two orientations of total magnetic field. In each orientation, experiments are carried out by reversing the direction of the toroidal magnetic field and the plasma current. The transport-driven component is determined by averaging flow Mach numbers, measured in two directions of the toroidal magnetic field and the plasma current for the same orientation. It is observed that there is a significant transport-driven component in the measured flow and the component depends on the field orientation.

  10. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  11. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    DOE PAGES

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  12. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    SciTech Connect

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; Luo, Jingdong; Jen, Alex K. -Y.

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  13. An experimental study of the turbulent boundary layer on a transport wing in subsonic and transonic flow

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Roos, Frederick W.; Hicks, Raymond M.

    1990-01-01

    The upper surface boundary layer on a transport wing model was extensively surveyed with miniature yaw probes at a subsonic and a transonic cruise condition. Additional data were obtained at a second transonic test condition, for which a separated region was present at mid-semispan, aft of mid-chord. Significant variation in flow direction with distance from the surface was observed near the trailing edge except at the wing root and tip. The data collected at the transonic cruise condition show boundary layer growth associated with shock wave/boundary layer interaction, followed by recovery of the boundary layer downstream of the shock. Measurements of fluctuating surface pressure and wingtip acceleration were also obtained. The influence of flow field unsteadiness on the boundary layer data is discussed. Comparisons among the data and predictions from a variety of computational methods are presented. The computed predictions are in reasonable agreement with the experimental data in the outboard regions where 3-D effects are moderate and adverse pressure gradients are mild. In the more highly loaded mid-span region near the trailing edge, displacement thickness growth was significantly underpredicted, except when unrealistically severe adverse pressure gradients associated with inviscid calculations were used to perform boundary layer calculations.

  14. TRANSPORT OF HEAT, WATER VAPOR AND CARBON DOXIDE BY LONG PERIOD EDDIES IN THE STABLE BOUNDARY LAYER

    SciTech Connect

    Kurzeja, R.

    2010-07-26

    The vertical transport of heat and trace chemicals for a night in April has been studied with a wavelet analysis and conventional one-hour averages. It was found that for the night of April 20, 2009, turbulent kinetic energy, heat and trace chemicals were transported directed downward from the jet core. The most significant periods for this transport were less than 5 minutes and greater than one hour with intermittent transport taking place in the 5 min to 1 hour time frame. The nocturnal boundary layer is characterized by turbulent intermittency, long period oscillations, and a slow approach to equilibrium, (Mahrt, 1999). Although turbulence is usually maintained by surface friction, downward transport from low-level jets can also play an important role in turbulence maintenance and in the transport of scalars, Mahrt (1999), Banta et al. (2006). The eddy covariance flux measurement technique assumes continuous turbulence which is unusual in the stable boundary because significant flux transport occurs via turbulent eddies whose periods are long compared with the averaging time (Goulden et al., 1996). Systematic error in eddy flux measurements is attributed mainly to the neglect of long period eddies. Banta et al. (2006) noted that observations of turbulence below the low level jet suggested that while upward transport of turbulence kinetic energy (TKE) is common, downward transport from the jet can also occur. They found that in the CASES 99 experiments that turbulence scaled well with the strength of the low-level jet, and that surface cooling was more important than surface roughness. Because nocturnal turbulence is intermittent and non-stationary, the appropriate averaging time for calculation of TKE and EC fluxes is not obvious. Wavelet analysis is, thus, a more suitable analysis tool than conventional Fourier analysis.

  15. Dependence of light-emitting and photovoltaic properties of dual-function organic diodes on carrier-transporting layers

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Nyeon; Choi, Mun Soo

    2013-10-01

    Dual-function photovoltaic organic light-emitting diodes (PVOEDs) have been investigated in this work. The PVOLEDs emit light when forward biased and generate electricity when backward biased. This dual function is based on the half-gap junction composed of 5,6,11,12-tetraphenylnaphthacene (rubrene) and C 60. The device structure was optimized through experiments using various organic materials for the electron-transporting layer (ETL) and electron-injection layer (EIL). Through this work, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), C 60 and LiF were selected as the ETL, electron-accepting layer and EIL, respectively. Using this device structure, we obtained a current efficiency of 0.27 cd/A for the light-emitting mode and a power-conversion efficiency of 1.95% for the photovoltaic mode.

  16. Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers

    PubMed Central

    Tian, Xiaojuan; Itkis, Mikhail E.; Haddon, Robert C.

    2015-01-01

    The in-plane alignment of graphite nanoplatelets (GNPs) in thin thermal interface material (TIM) layers suppresses the though-plane heat transport thus limiting the performance of GNPs in the geometry normally required for thermal management applications. Here we report a disruption of the GNP in-plane alignment by addition of spherical microparticles. The degree of GNP alignment was monitored by measurement of the anisotropy of electrical conductivity which is extremely sensitive to the orientation of high aspect ratio filler particles. Scanning Electron Microscopy images of TIM layer cross-sections confirmed the suppression of the in-plane alignment. The hybrid filler formulations reported herein resulted in a synergistic enhancement of the through-plane thermal conductivity of GNP/Al2O3 and GNP/Al filled TIM layers confirming that the control of GNP alignment is an important parameter in the development of highly efficient GNP and graphene-based TIMs. PMID:26279183

  17. Green phosphorescent organic light-emitting devices based on different electron transport layers combining with fluorescent sub-monolayer

    NASA Astrophysics Data System (ADS)

    Yang, Hui-shan; Guo, Hui-yu; Wu, Li-shuang

    2017-03-01

    We report a small molecule host of 4,4(-N,N)-dicarbazole-biphenyl (CBP) doped with 8% tris(2-phenylpyridine) iridium (Irppy3) for use in efficient green phosphorescent organic light-emitting devices (PHOLEDs) combined with different electron transport layers of Alq and BAlq. The PHOLEDs exhibit maximum current efficiency and power efficiency of 19.8 cd/A and 6.21 lm/W, respectively. The high performance of such PHOLEDs is attributed to the better electron mobile ability of BAlq and sub-monolayer quinacridone (QAD) as carrier trapping layer and equal charge carrier mobilities of hole and electron to form the broad carrier recombination zone in the emitting layer, which can reduce the triplet-triplet annihilation and improve the efficiency of the device.

  18. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  19. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    DOE PAGES

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; ...

    2016-04-25

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotopemore » observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from –40.2 to –15.9 ‰ and δ2Hv ranged from –278.7 to –113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol–1) indicate that regional

  20. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    SciTech Connect

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-25

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from –40.2 to –15.9 ‰ and δ2Hv ranged from –278.7 to –113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for

  1. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  2. Model Simulation of Ionosphere Electron Density with Dynamic Transportation and Mechanism of Sporadic E Layers in Lower Part of Ionosphere

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chu, Y. H.

    2015-12-01

    There are many physical theories responsible for explanation the generation mechanism of sporadic E (Es) plasma irregularities. In middle latitude, it's generally believed that sporadic E layers occur in vertical ion convergent areas driven by horizontal neutral wind shear. The sporadic E layers appear characteristic of abundant metallic ion species (i.e., Fe+, Mg+, Na+), that lifetime are longer than molecular ions by a factor of several orders, have been demonstrated by rocket-borne mass spectrometric measurements. On the basic of the GPS Radio Occultation (RO), using the scintillations of the GPS signal-to-noise ratio and intense fluctuation of excess phase, the global and seasonal sporadic E layers occurrence rates could be retrieved. In our previous study we found there is averaged 10 kilometers shift in height between the COSMIC-retrieved sporadic E layer occurrence rate and the sporadic E occurrence rate modeled from considering the convergence/divergence of Fe+ vertical flux. There are many reasons that maybe result in the altitude differences, e.g., tidal wind with phase shift, electric field driven force, iron species distributions. In this research, the quantitative analyses for electric field drives Es layers translations in vertical direction are presented. The tidal wind driven sporadic E layers have been simulating by modeling several nonmetallic ions (O+(4S), O+(2D), O+(2p), N+, N2+, O2+, NO+) and metallic ions (Fe+, FeO2+, FeN2+, FeO+) with wind shear transportation. The simulation result shows the Fe+ particles accumulate at zonal wind shear convergent regions and form the thin sporadic E layers. With the electric field taking into account, the whole shape of sporadic E layers vertical shift 2~5 km that depending on what magnitude and direction of electric field is added.

  3. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    PubMed Central

    Paytan, Adina; Lecher, Alanna L.; Dimova, Natasha; Sparrow, Katy J.; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D.

    2015-01-01

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  4. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

    PubMed

    Paytan, Adina; Lecher, Alanna L; Dimova, Natasha; Sparrow, Katy J; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D

    2015-03-24

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.

  5. Solution-Processed Hybrid Light-Emitting Devices Comprising TiO2 Nanorods and WO3 Layers as Carrier-Transporting Layers.

    PubMed

    Tsai, Tsung-Yan; Yan, Po-Ruei; Yang, Sheng-Hsiung

    2016-12-01

    The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of FTO/TiO2 nanorods/ionic PF/MEH-PPV/PEDOT:PSS/WO3/Au were constructed. The best device based on 100-nm-height TiO2 nanorods achieved a max brightness of 4493 cd/m(2) and current efficiency of 0.66 cd/A, revealing much higher performance compared with those using TiO2 compact layer or nanorods with longer lengths as electron-transporting layers.

  6. Morphology and Transport Properties of Novel Polymer Nanocomposites Resulted from Melt Processing of Polyvinylacetate Substrates Coated with Layer-by-Layer Assemblies

    NASA Astrophysics Data System (ADS)

    Soltani, Iman; Spontak, Richard J.

    Novel polymer nanocomposites (PNCs) were processed through layer-by-layer (LBL) deposition of clay and polyethylene terephthalate ionomer layers on polyvinylacetate (PVAc) substrates, followed by repetitive melt pressing of coated samples to crush LBL assemblies into the polymeric matrix. The increase in the clay content in resulted PNCs prepared through similar LBL coatings, relative to previously studied hydrophobic polystyrene-based nanocomposites, postulated superiority of PVAc, with relatively higher hydrophilicity, to interact with LBL assemblies. Also, these PNCs showed relatively good barrier improvement against transport of oxygen and carbon dioxide gases, proposing the scavenging effect of LBL assemblies crushed portions as highly tortuous labyrinths with high aspect ratios, comprising edge-edge flocculated exfoliated clay platelets, observed through transmission electron micrographs. However, combinative morphological investigations through optical microscopy, x-ray diffractometry, and transmission electron microscopy proposed low global dispersion of clay throughout polymeric matrix, conjecturing insufficient intensity of stress applied through cyclic melt pressing, and/or slight thermal degradation of samples via extended times of processing at high temperatures.

  7. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    SciTech Connect

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-21

    The characterization of Cu/diamond interface thermal conductance (h{sub c}) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The h{sub c} across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The h{sub c} is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in h{sub c}. Furthermore, h{sub c} was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  8. Propagation and fluid transport of fault-related mineral veins in layered rocks

    NASA Astrophysics Data System (ADS)

    Brenner, S. L.; Gudmundsson, A.

    2003-04-01

    Mineral veins are normally hydrofractures, that is fractures generated by internal fluid pressure, formed by geothermal water. The generation of hydrofractures is, together with the formation of shear fractures, presumably one of the main mechanisms for developing permeability in fractured reservoirs, such as those for petroleum, gas, geothermal or groundwater. We present field data on calcite veins related to normal faults in a Liassic limestone-shale sequence from Kilve at the Somerset Coast, SW-England. The veins are injected into the limestone layers along the faults; most veins are subvertical extension fractures restricted to these layers. Such arrested, stratabound fractures are common in layered fluid reservoirs. When fractures are stratabound, the temporary permeability in a heterogeneous fluid reservoir is much lower than when fractures propagate through many layers (non-stratabound). Numerical models on the effects of mechanical layering, such as abrupt changes in layer stiffness, indicate that soft layers can contribute to the arrest of hydrofractures such as mineral veins. For example, at Kilve, comparatively few veins dissect the soft shale layers. These veins are commonly thinner in the shale than in the limestone layers, partly because they commonly follow inclined shear fractures and are thus inclined to the minimum compressive principal stress. By contrast, numerical models of the aperture variation of vertical hydrofractures with the fluid overpressure as the only loading indicate that the apertures of hydrofractures tend to be smaller in stiff layers than in soft layers. Aperture changes between layers with different mechanical properties suggest that in certain layers in a fluid reservoir preferential flow (flow channelling) may occur. Using analytical models based on the vein length/thickness ratios in the limestone layers, we calculate the fluid overpressure at the time of vein formation. The veins at Kilve presumably formed during normal

  9. Effects of Surface Heat Flux Anomalies on Stratification, Convective Growth and Vertical Transport within the Saharan Boundary Layer

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Marsham, John; Parker, Doug; Tian, Wenshou; Grams, Christian; Cuesta, Juan; Flamant, Cyrille

    2010-05-01

    The very large surface sensible and very low latent heat fluxes in the Sahara desert lead to its unusually deep, almost dry-adiabatic boundary layer, that often reaches 6 km. This is often observed to consist of a shallow convective boundary layer (CBL) with a near neutral residual layer above (the Saharan Residual Layer, or SRL). It has been shown that the SRL can be both spatially extensive and persist throughout the day. Multiple near-neutral layers are frequently observed within the SRL, or within the SAL, each with a different water vapour and/or dust content, and each separated by a weak lid (e.g., Figure 1). A local maximum in not only relative humidity, but also water vapour mixing ratio (WVMR) is often seen at the top of the SRL or SAL. This structure suggests that in some locations, at some times, convection from the surface is mixing the full depth of the Saharan boundary layer, but in most locations and times this is not the case, and varying horizontal advection leads to the multiple layering observed. During the GERBILS (GERB Intercomparison of Longwave and Shortwave radiation) field campaign in the Sahara, coherent couplings were observed between surface albedo, CBL air temeperatures and CBL winds. Using two cases based on observations from GERBILS, large eddy model (LEM) simulations have been used to investigate the effects of surface flux anomalies on the growth of the summertime Saharan CBL into the Saharan Residual layer (SRL) above, and transport from the CBL into the SRL. Hot surface anomalies generated updraughts and convergence in the CBL that increased transport from the CBL into the SRL. The induced subsidence in regions away from the anomalies inhibited growth of the CBL there. If the domain-averaged surface fluxes were kept constant this led to a shallower, cooler CBL. If fluxes outside the anomalies were kept constant, so that stronger anomalies led to increased domain-averaged fluxes, this gave a warmer, shallower CBL. These effects

  10. Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers.

    PubMed

    Wei, Huai-Xin; Zu, Feng-Shuo; Li, Yan-Qing; Chen, Wen-Cheng; Yuan, Yi; Tang, Jian-Xin; Fung, Man-Keung; Lee, Chun-Sing; Noh, Yong-Young

    2016-02-07

    Mechanisms of charge transport between the interconnector and its neighboring layers in tandem organic photovoltaic cells have been systematically investigated by studying electronic properties of the involving interfaces with photoelectron spectroscopies and performance of the corresponding devices. The results show that charge recombination occurs at HATCN and its neighboring hole transport layers which can be deposited at low temperature. The hole transport layer plays an equal role to the interconnector itself. These insights provide guidance for the identification of new materials and the device architecture for high performance devices.

  11. Numerical Modeling of the Vertical Heat Transport Through the Diffusive Layer of the Arctic Ocean

    DTIC Science & Technology

    2013-03-01

    transport through thermohaline staircases in the Arctic region. Results revealed that vertical fluxes exceeded those of extant “four-thirds flux...vertical heat flux, thermohaline staircase 15. NUMBER OF PAGES 73 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...DNS) were conducted to assess the vertical heat transport through thermohaline staircases in the Arctic region. Results revealed that vertical

  12. Anomalous electron transport in metal/carbon multijunction devices by engineering of the carbon thickness and selecting metal layer

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani

    2017-06-01

    A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.

  13. Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer

    PubMed Central

    Park, Young Ran; Jeong, Hu Young; Seo, Young Soo; Choi, Won Kook; Hong, Young Joon

    2017-01-01

    Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Förster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and -resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices. PMID:28401912

  14. Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer.

    PubMed

    Park, Young Ran; Jeong, Hu Young; Seo, Young Soo; Choi, Won Kook; Hong, Young Joon

    2017-04-12

    Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Förster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and -resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices.

  15. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG

  16. High Mobility Transport Layer Structures for Rhombohedral Si/Ge/SiGe Devices

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Kim, Hyun-Jung (Inventor); Lee, Kunik (Inventor)

    2017-01-01

    An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.

  17. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  18. Steady-state and time-dependent modelling of parallel transport in the scrape-off layer

    NASA Astrophysics Data System (ADS)

    Havlíčková, E.; Fundamenski, W.; Naulin, V.; Nielsen, A. H.; Zagórski, R.; Seidl, J.; Horáček, J.

    2011-06-01

    The one-dimensional fluid code SOLF1D has been used for modelling of plasma transport in the scrape-off layer (SOL) along magnetic field lines, both in steady state and under transient conditions that arise due to plasma turbulence. The presented work summarizes results of SOLF1D with attention given to transient parallel transport which reveals two distinct time scales due to the transport mechanisms of convection and diffusion. Time-dependent modelling combined with the effect of ballooning shows propagation of particles along the magnetic field line with Mach number up to M ≈ 1 and supersonic transport when plasma-neutral interactions are not present. Asymmetric heat and particle fluxes are analysed for a case with poloidally asymmetric radial outflow (ballooning) and for a radial outflow with parallel momentum (rotation). In addition, parallel damping of the density and electron temperature calculated in SOLF1D is compared with the approximative model used in the turbulence code ESEL both for steady-state and turbulent SOL. Dynamics of the parallel transport are investigated for a simple transient event simulating the propagation of particles and energy to the targets from a blob passing across the flux tube at the outboard midplane and for more complex time-dependent data provided by ESEL.

  19. Efficiency improvement of organic solar cells by tuning hole transport layer with germanium oxide.

    PubMed

    Choi, Moon Kee; Kim, Ju-Hyung; Yoon, Hyunsik; Tahk, Dongha; Seo, Soonmin; Shin, Kyusoon; Lee, Hong H

    2012-01-01

    Improving optical property is critical for optimizing the power conversion efficiency of organic solar cells. In the present research, we show that modification of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer with GeO2 leads to 15% improvement of power conversion efficiency in a polymer solar cells through enhancement of short circuit currents. Modified PEDOT:PSS layer with optimized concentration of GeO2 assists active layer absorbing much light by playing a role of optical spacer. Using AFM and grazing incidence X-ray diffraction (GIXD) data, we also present the evidence that an addition of GeO2 does not affect crystallinity of active layer.

  20. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    PubMed Central

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability. PMID:28084304

  1. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    NASA Astrophysics Data System (ADS)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  2. Lidar Characterization of Boundary Layer Transport and Mixing for Estimating Urban-Scale Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Hardesty, R. Michael; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Shepson, Paul B.; Cambaliza, Maria; Heimburger, Alexie; Davis, Kenneth J.; Lauvaux, Thomas; Miles, Natasha L.; Sarmiento, Daniel P.; Deng, A. J.; Gaudet, Brian; Karion, Anna; Sweeney, Colm; Whetstone, James

    2016-06-01

    A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.

  3. Defect chemistry and charge transport properties of mixed bismuth oxides with layer lattices

    NASA Astrophysics Data System (ADS)

    Palanduz, Ahmet Cengiz

    Undoped SrBi2Ta2O9 (SBT) displays a broad ionic conductivity plateau and p-type conductivity at lower and higher oxygen activities, respectively, which is consistent with an oxide that has a net acceptor center concentration of 1--2%. Undoped SrBi2Nb 2O9 (SBN) displays n-type conductivity behaviour that is consistent with that of an oxide which has a net donor center concentration of 1--2% SBN also undergoes an unprecedented abrupt conductivity rise at very low oxygen activities. Recent structural studies indicate that there is substantial place exchange between Bi3+ and Sr2+ in the alternating layers of the structure and that there is significant distortion of Ta (Nb) octahedral environment. In a crystal with a 'homogeneous' unit cell the cation place exchange would be self-compensating. Defect chemistry studies suggest that in SBN and SBT, where there are two distinct layers, Bi ˙Sr and Sr 'Bi are locally compensated by strontium vacancies in the perovskite-like layers and by oxygen vacancies in the bismuth oxide layers, respectively. In SBT, where electron density is low due to its large band gap, oxygen vacancies in the bismuth oxide layers dominate the total conductivity. In SBN, which due to its easier reducibility is expected to have a lower band gap, n-type conductivity prevails. SBN displays thermally activated electron mobility. Superior ferroelectric fatigue resistance of SBT is attributed to the following: (i) large band gap and (ii) heavy donor presence suppress electron and oxygen vacancy formation in the perovskite-like layers; (iii) electron mobility is thermally activated; (iv) oxygen vacancies in the bismuth oxide layers can not enter the perovskite-like layer. Thus there are no mobile defects that could drift to the domain walls and pin their movement.

  4. Employing hole-array recess of barrier layer of AlGaN/GaN Heterostructures to reduce annealing Temperature of Ohmic contact

    NASA Astrophysics Data System (ADS)

    Han, Kefeng

    2017-10-01

    Ohmic contact to AlGaN/GaN heterostructures employing hole-array recess of barrier layer is conducted in this paper, in which an Ohmic contact resistance of 0.2 Ωmm with an annealing temperature of 800 °C with 15 nm deep holes recessed on the AlGaN layer before annealing is obtained. The annealing temperature and metal morphology post annealing is compared between Ohmic contacts with and without hole array recess. The annealing temperature required for the Ohmic contact with hole recess to achieve minimum ohmic contact resistance is 40 °C lower when compared to an ordinary Ohmic contact without hole array recess. Additionally metal morphology is significantly improved, such as the reduction of irregular metal particles and metal bumps forming in the annealing process, smaller alloying grains, perfectly straight metal edge and no educts existing at metal sidewalls are realized. The results demonstrated in this paper are beneficial to the performance, yield and reliability of relevant devices and circuits.

  5. Interface architecture between TiO2/perovskite, perovskite/hole transport layer, and perovskite grain boundary(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro

    2016-09-01

    surface was much more passivated by PbCl2 than by PbI2. This may explain partially the high efficiency when the perovskite layer was fabricated by one step process consisting of MAI and PbCl2 solution. We also observed that the crystal size increased with an increase in the amount of Cl anion which of course one of the explanation of the high efficiency. The interface of hole transport layer/perovskite layer, and between perovskite layer /perovskite layer (grain boundary) was passivated with organic amines. The passivation was also effective for increasing Voc and Jsc. This was explained by the results of transient absorption spectroscopy that the charge recombination time between hole transport payer/perovskite layer increased from 0.3 μsec to 60 μsec.

  6. Downscaling the Sample Thickness to Sub-Micrometers by Employing Organic Photovoltaic Materials as a Charge-Generation Layer in the Time-of-Flight Measurement

    PubMed Central

    Liu, Shun-Wei; Lee, Chih-Chien; Su, Wei-Cheng; Yuan, Chih-Hsien; Lin, Chun-Feng; Chen, Kuan-Ting; Shu, Yi-Sheng; Li, Ya-Ze; Su, Tsung-Hao; Huang, Bo-Yao; Chang, Wen-Chang; Liu, Yu-Hsuan

    2015-01-01

    Time-of-flight (TOF) measurements typically require a sample thickness of several micrometers for determining the carrier mobility, thus rendering the applicability inefficient and unreliable because the sample thicknesses are orders of magnitude higher than those in real optoelectronic devices. Here, we use subphthalocyanine (SubPc):C70 as a charge-generation layer (CGL) in the TOF measurement and a commonly hole-transporting layer, N,N’-diphenyl-N,N’-bis(1,1’-biphenyl)-4,4’-diamine (NPB), as a standard material under test. When the NPB thickness is reduced from 2 to 0.3 μm and with a thin 10-nm CGL, the hole transient signal still shows non-dispersive properties under various applied fields, and thus the hole mobility is determined accordingly. Only 1-μm NPB is required for determining the electron mobility by using the proposed CGL. Both the thicknesses are the thinnest value reported to data. In addition, the flexibility of fabrication process of small molecules can deposit the proposed CGL underneath and atop the material under test. Therefore, this technique is applicable to small-molecule and polymeric materials. We also propose a new approach to design the TOF sample using an optical simulation. These results strongly demonstrate that the proposed technique is valuable tool in determining the carrier mobility and may spur additional research in this field. PMID:25999238

  7. Lattice and transport properties of the misfit-layered oxide thermoelectric Ca3Co4O9 from first principles

    NASA Astrophysics Data System (ADS)

    Rebola, Alejandro; Klie, Robert; Zapol, Peter; Ogut, Serdar

    2013-03-01

    The misfit-layered oxide Ca3Co4O9 (CCO) has recently been the subject of many experimental and some theoretical investigations due to its remarkable thermoelectric properties. CCO is composed of two incommensurate subsystems, a distorted rocksalt-type Ca2CoO3 layer sandwiched between hexagonal CoO2 layers. Taking into account that the composition ratio between these subsystems is very close to the golden mean, which is the limit of the sequence of the ratios of consecutive Fibonacci numbers F (n) , we model CCO from first principles[1] by using rational approximants of composition [Ca2CoO3]2 F (n)[CoO2]2 F (n + 1). In the present study, we use 3/2 and 5/3 rational approximants and PBE+U computations to calculate the ab initio phonon dispersion curves, related thermal properties, as well as ab initio electronic transport properties such as DC conductivity and thermopower within the relaxation time approximation by applying the Boltzmann transport theory. Results are compared with available experimental data and potential routes for increasing the thermopower of CCO are discussed.

  8. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    PubMed

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel.

  9. Hierarchically Structured Hole Transport Layers of Sp