Ning, Xiaojun; Luckenbaugh, Laurie; Liu, Kuancheng; Bruss, Volker; Sureau, Camille; Hu, Jianming
2018-05-09
During the morphogenesis of hepatitis B virus (HBV), an enveloped virus, two types of virions are secreted: (1) a minor population of complete virions containing a mature nucleocapsid with the characteristic, partially double-stranded, relaxed circular DNA genome and (2) a major population containing an empty capsid with no DNA or RNA (empty virions). Secretion of both types of virions requires interactions between the HBV capsid or core protein (HBc) and the viral surface or envelope proteins. We have studied the requirements from both HBc and envelope proteins for empty virion secretion, in comparison with those for secretion of complete virions. Substitutions within the N-terminal domain of HBc that block secretion of DNA-containing virions reduced but did not prevent secretion of empty virions. The HBc C-terminal domain was not essential for empty virion secretion. Among the three viral envelope proteins, the smallest, S, alone was sufficient for empty virion secretion at a basal level. The largest protein, L, essential for complete virion secretion, was not required for, but could stimulate empty virion secretion. Also, substitutions in L that eliminate secretion of complete virions reduced but did not eliminate empty virion secretion. S mutations that block secretion of the hepatitis D virus (HDV), an HBV satellite, did not block secretion of either empty or complete HBV virions. Together, these results indicate that both common and distinct signals on empty capsids vs. mature nucleocapsids interact with the S and L proteins during the formation of complete vs. empty virions. IMPORTANCE Hepatitis B virus (HBV) is a major cause of severe liver diseases including cirrhosis and cancer. In addition to the complete infectious virion particle, which contains an outer envelope layer and an interior capsid that, in turn, encloses a DNA genome, HBV infected cells also secrete non-infectious, incomplete viral particles in large excess over the complete virions. In particular, the empty (or genome-free) virion share with the complete virion the outer envelope and interior capsid but contain no genome. We have carried out a comparative study on the capsid and envelope requirements for the secretion of these two types of virion particles and uncovered both shared and distinct determinants on the capsid and envelope for their secretion. These results provide new information on HBV morphogenesis, and have implications for efforts to develop empty HBV virions as a novel biomarker and a new generation of HBV vaccine. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.
Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application.
Hu, Jianming; Liu, Kuancheng
2017-03-21
Hepatitis B virus (HBV) is a para-retrovirus or retroid virus that contains a double-stranded DNA genome and replicates this DNA via reverse transcription of a RNA pregenome. Viral reverse transcription takes place within a capsid upon packaging of the RNA and the viral reverse transcriptase. A major characteristic of HBV replication is the selection of capsids containing the double-stranded DNA, but not those containing the RNA or the single-stranded DNA replication intermediate, for envelopment during virion secretion. The complete HBV virion particles thus contain an outer envelope, studded with viral envelope proteins, that encloses the capsid, which, in turn, encapsidates the double-stranded DNA genome. Furthermore, HBV morphogenesis is characterized by the release of subviral particles that are several orders of magnitude more abundant than the complete virions. One class of subviral particles are the classical surface antigen particles (Australian antigen) that contain only the viral envelope proteins, whereas the more recently discovered genome-free (empty) virions contain both the envelope and capsid but no genome. In addition, recent evidence suggests that low levels of RNA-containing particles may be released, after all. We will summarize what is currently known about how the complete and incomplete HBV particles are assembled. We will discuss briefly the functions of the subviral particles, which remain largely unknown. Finally, we will explore the utility of the subviral particles, particularly, the potential of empty virions and putative RNA virions as diagnostic markers and the potential of empty virons as a vaccine candidate.
Cobbold, Christian; Brookes, Sharon M.; Wileman, Thomas
2000-01-01
Enwrapment by membrane cisternae has emerged recently as a mechanism of envelopment for large enveloped DNA viruses, such as herpesviruses, poxviruses, and African swine fever (ASF) virus. For both ASF virus and the poxviruses, wrapping is a multistage process initiated by the recruitment of capsid proteins onto membrane cisternae of the endoplasmic reticulum (ER) or associated ER-Golgi intermediate membrane compartments. Capsid assembly induces progressive bending of membrane cisternae into the characteristic shape of viral particles, and envelopment provides virions with two membranes in one step. We have used biochemical assays for ASF virus capsid recruitment, assembly, and envelopment to define the cellular processes important for the enwrapment of viruses by membrane cisternae. Capsid assembly on the ER membrane, and envelopment by ER cisternae, were inhibited when cells were depleted of ATP or depleted of calcium by incubation with A23187 and EDTA or the ER calcium ATPase inhibitor, thapsigargin. Electron microscopy analysis showed that cells depleted of calcium were unable to assemble icosahedral particles. Instead, assembly sites contained crescent-shaped and bulbous structures and, in rare cases, empty closed five-sided particles. Interestingly, recruitment of the capsid protein from the cytosol onto the ER membrane did not require ATP or an intact ER calcium store. The results show that following recruitment of the virus capsid protein onto the ER membrane, subsequent stages of capsid assembly and enwrapment are dependent on ATP and are regulated by the calcium gradients present across the ER membrane cisternae. PMID:10666244
ERIC Educational Resources Information Center
Yamana, Shukichi
1987-01-01
Illustrates the 18 steps to the development of a model of a coordination polyhedron that represents the cubic closest-packed structure. Uses a sealed, empty envelope in developing the model in teaching about stereochemistry. (TW)
L2, the minor capsid protein of papillomavirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joshua W.; Roden, Richard B.S., E-mail: roden@jhmi.edu; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287
2013-10-15
The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 ismore » not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.« less
L2, the minor capsid protein of papillomavirus
Wang, Joshua W.; Roden, Richard B.S.
2013-01-01
The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ~8kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. PMID:23689062
Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?
Tuthill, Tobias J.; Harlos, Karl; Walter, Thomas S.; Knowles, Nick J.; Groppelli, Elisabetta; Rowlands, David J.; Stuart, David I.; Fry, Elizabeth E.
2009-01-01
Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form ‘altered’ particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry. PMID:19816570
Amexis, Georgios; Young, Neal S
2006-09-15
For the production of dengue-vaccine candidates, empty capsids, or virus-like particles (VLPs), of parvovirus B19 that carry dengue 2-specific epitopes were employed as antigen carriers. Two epitopes (comprising amino acids 352-368 and 386-397) of domain BIII of the envelope glycoprotein were chosen to produce recombinant B19 VLPs for immunization of BALB/c mice. Serum samples from immunized mice revealed that recombinant B19 VLPs elicited strong humoral immune responses. In summary, this B19 VLP-vaccine platform produced high (> or =2.0 x 10(5)) anti-dengue 2 titers and robust (< or =1 120) 50%-plaque-reduction neutralization test (PRNT(50)) titers, which effectively neutralized live dengue 2 virus in PRNT(50) assays.
Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya
2012-09-04
The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.
Sousa, Ivanildo P; Carvalho, Carlos A M; Ferreira, Davis F; Weissmüller, Gilberto; Rocha, Gustavo M; Silva, Jerson L; Gomes, Andre M O
2011-01-21
Alphaviruses are enveloped arboviruses. The viral envelope is derived from the host cell and is positioned between two icosahedral protein shells (T = 4). Because the viral envelope contains glycoproteins involved in cell recognition and entry, the integrity of the envelope is critical for the success of the early events of infection. Differing levels of cholesterol in different hosts leads to the production of alphaviruses with distinct levels of this sterol loaded in the envelope. Using Mayaro virus, a New World alphavirus, we investigated the role of cholesterol on the envelope of alphavirus particles assembled in either mammalian or mosquito cells. Our results show that although quite different in their cholesterol content, Mayaro virus particles obtained from both cells share a similar high level of lateral organization in their envelopes. This organization, as well as viral stability and infectivity, is severely compromised when cholesterol is depleted from the envelope of virus particles isolated from mammalian cells, but virus particles isolated from mosquito cells are relatively unaffected by cholesterol depletion. We suggest that it is not cholesterol itself, but rather the organization of the viral envelope, that is critical for the biological activity of alphaviruses.
Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.
Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen
2018-01-01
Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty virions may allow us to rationally design effective strategies to prevent elimination of AAV transduced target cells by capsid specific CD8+ T cells.
Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo
Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen
2018-01-01
Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP−/−) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty virions may allow us to rationally design effective strategies to prevent elimination of AAV transduced target cells by capsid specific CD8+ T cells. PMID:29725339
The use of specific antibodies to mediate fusion between Sendai virus envelopes and living cells.
Loyter, A; Tomasi, M; Gitman, A G; Etinger, L; Nussbaum, O
1984-01-01
Incubation of Sendai virus particles with non-ionic detergents such as Triton X-100 completely solubilizes the viral envelopes. Removal of the detergent from the supernatant (which contains the two main viral glycoproteins) leads to the formation of fusogenic, reconstituted viral envelopes. Soluble macromolecules such as DNA or proteins can be enclosed within the reconstituted vesicles, while membrane components can be inserted into the viral envelopes. Fusion of such loaded or 'hybrid' reconstituted envelopes with living cells in culture results in either microinjection or transfer of the viral components to the recipient cells. Thus such reconstituted envelopes can serve as efficient carriers for the introduction of macromolecules of biological interest into living cells in culture. A more specific vehicle has been constructed by chemically coupling anti-cell membrane antibodies (anti-human erythrocyte antibody) to the viral envelope. Such antibody-bearing intact virus particles or reconstituted envelopes bound to and fused with virus receptor-depleted cells. In addition, anti-Sendai virus antibodies were coupled to neuraminidase-treated human erythrocytes. Such antibodies mediated the binding and fusion of intact Sendai virus particles and their reconstituted envelopes to virus receptor-depleted cells.
Selective Gene Regulation by Androgen Receptor in Prostate Cancer
2012-10-01
empty vector, wt AR, AR-E255K and AR- R753Q cells were transfected with an ARE- responsive reporter and renilla as control. Cells were treated with...empty vector (empty), wild-type AR (WT), AR-E255K or AR-R753Q were transfected with ARE-luciferase and renilla . Cells were treated with 0 or 1 nm...R1881, harvested after 24 hrs to read luciferase and renilla actiivity. % G ro w th (D ay 5 / D ay 1 ) Vector WTAR E255KR753Q 600 700 800 900
Deciphering indented impressions on plastic.
Brown, Sharon; Klein, Asne; Chaikovsky, Alan
2003-07-01
The questioned document laboratory is often called upon to decipher writing that has been erased, obliterated, or that has faded. In cases like these, the original writing is no longer legible to the naked eye, but may be enhanced using various light sources. Certain remnants of the ink's components absorb into the substrate's fibers and can be visualized, usually as luminescence or absorbance. A case is described here that involved the theft of a credit card. An empty plastic credit card holder was found in the possession of a suspect, and as submitted for examination. Indented impressions could be discerned on its clear plastic window and presumably originated from the credit card that had been held in the envelope. These indented impressions were deciphered in the hope that they would reveal enough details from the credit card to establish a connection between the plastic envelope and the stolen credit card. With methods generally utilized in the toolmarks and materials laboratory and the photography laboratory of the Israel Police, most of the indented impressions on the plastic were deciphered and a connection between the plastic envelope and the stolen credit card was demonstrated.
Kim, Yoon-Sang; Wielgosz, Matthew M; Hargrove, Phillip; Kepes, Steven; Gray, John; Persons, Derek A; Nienhuis, Arthur W
2010-01-01
Lentiviral vectors are useful for transducing primitive hematopoietic cells. We examined four envelope proteins for their ability to mediate lentiviral transduction of mobilized human CD34+ peripheral blood cells. Lentiviral particles encoding green fluorescent protein (GFP) were pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G), the amphotropic (AMPHO) murine leukemia virus envelope protein, the endogenous feline leukemia viral envelope protein or the feline leukemia virus type C envelope protein. Because the relative amount of genome RNA per ml was similar for each pseudotype, we transduced CD34+ cells with a fixed volume of each vector preparation. Following an overnight transduction, CD34+ cells were transplanted into immunodeficient mice which were sacrificed 12 weeks later. The average percentages of engrafted human CD45+ cells in total bone marrow were comparable to that of the control, mock-transduced group (37–45%). Lenti-particles pseudotyped with the VSV-G envelope protein transduced engrafting cells two- to tenfold better than particles pseudotyped with any of the γ-retroviral envelope proteins. There was no correlation between receptor mRNA levels for the γ-retroviral vectors and transduction efficiency of primitive hematopoietic cells. These results support the use of the VSV-G envelope protein for the development of lentiviral producer cell lines for manufacture of clinical-grade vector. PMID:20372106
Langemann, Timo; Mayr, Ulrike Beate; Meitz, Andrea; Lubitz, Werner; Herwig, Christoph
2016-01-01
Flow cytometry (FCM) is a tool for the analysis of single-cell properties in a cell suspension. In this contribution, we present an improved FCM method for the assessment of E-lysis in Enterobacteriaceae. The result of the E-lysis process is empty bacterial envelopes-called bacterial ghosts (BGs)-that constitute potential products in the pharmaceutical field. BGs have reduced light scattering properties when compared with intact cells. In combination with viability information obtained from staining samples with the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylarbituric acid) trimethine oxonol (DiBAC4(3)), the presented method allows to differentiate between populations of viable cells, dead cells, and BGs. Using a second fluorescent dye RH414 as a membrane marker, non-cellular background was excluded from the data which greatly improved the quality of the results. Using true volumetric absolute counting, the FCM data correlated well with cell count data obtained from colony-forming units (CFU) for viable populations. Applicability of the method to several Enterobacteriaceae (different Escherichia coli strains, Salmonella typhimurium, Shigella flexneri 2a) could be shown. The method was validated as a resilient process analytical technology (PAT) tool for the assessment of E-lysis and for particle counting during 20-l batch processes for the production of Escherichia coli Nissle 1917 BGs.
Overexpression of SASH1 related to the decreased invasion ability of human glioma U251 cells.
Yang, Liu; Liu, Mei; Gu, Zhikai; Chen, Jianguo; Yan, Yaohua; Li, Jian
2012-12-01
The purpose of this study was to investigate the impact of SAM- and SH3-domain containing 1 (SASH1) on the biological behavior of glioma cells, including its effects on cellular growth, proliferation, apoptosis, invasion, and metastasis, and thereby to provide an experimental basis for future therapeutic treatments. A pcDNA3.1-SASH1 eukaryotic expression vector was constructed and transfected into the U251 human glioma cell line. Using the tetrazolium-based colorimetric (MTT) assay, flow cytometry analyses, transwell invasion chamber experiments, and other methods, we examined the impact of SASH1 on the biological behaviors of U251 cells, including effects on viability, cell cycle, apoptosis, and invasion. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, and other proteins was observed. Compared to the empty vector and blank control groups, the pcDNA3.1-SASH1 group of U251 cells exhibited significantly reduced cell viability, proliferation, and invasion (p < 0.05), although there was no difference between the empty vector and blank control groups. The pcDNA3.1-SASH1 group demonstrated a significantly higher apoptotic index than did the empty vector and blank control groups (p < 0.05), and the percentage of apoptotic cells was similar between the empty vector and blank control groups. In addition, the pcDNA3.1-SASH1 group expressed significantly lower protein levels of cyclin D1 and MMP-2/9 compared to the control and empty vector groups (p < 0.05) and significantly higher protein levels of caspase-3 than the other two groups (p < 0.05). Cyclin D1, caspase-3, and MMP-2/9 expression was unchanged between the empty vector and blank control groups. SASH1 gene expression might be related to the inhibition of the growth, proliferation, and invasion of U251 cells and the promotion of U251 cells apoptosis.
Martinet, N; Beninati, S; Nigra, T P; Folk, J E
1990-01-01
N1N8-Bis(gamma-glutamyl)spermidine was found in exhaustive proteolytic digests of isolated cell envelopes from human epidermis at levels comparable with those of epsilon-(gamma-glutamyl)lysine. Significantly higher than normal amounts of these compounds, particularly the bis(gamma-glutamyl)polyamine, were observed in envelopes from afflicted areas (scales) of psoriatic patients. These findings support the notions that N1N8-bis(gamma-glutamyl)spermidine, like epsilon-(gamma-glutamyl)lysine, functions in cell envelopes as an enzyme-generated protein cross-link and stabilizing force and that individuals with the chronic, recurrent skin disease, psoriasis, exhibit in involved epidermis abnormal cell-envelope-protein cross-linking. PMID:2241917
NASA Astrophysics Data System (ADS)
Hamzah, Mohamad Hazmi; Deraman, Rafikullah; Saman, Nor Sarwani Mat
2017-12-01
In Malaysia, 45% of the average household electricity was consumed by air conditioners to create an acceptable indoor environment. This high energy consumption was mostly related to poor thermal performance of the building envelope. Therefore, selecting a low thermal conductivity of brick wall was of considerable importance in creating energy efficient buildings. Previously, numerous researchers reported the potential used of agricultural waste as an additive in building materials to enhance their thermal properties. The aim of this study is to examine how agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane bagasse (SB) can act as additive agents in a fired clay brick manufacturing process to produce a low thermal conductivity clay brick. In this study, these agricultural wastes were individually mixed with clay soil in different proportions ranging from 0%, 2.5%, 5%, 7.5% and 10% by weight. Physical and mechanical properties including soil physical properties, as well as thermal conductivity were performed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985 and ASTM C518. The results reveal that incorporating 5% of EFB as an additive component into the brick making process significantly enhances the production of a low thermal conductivity clay brick as compared to other waste alternatives tested. This finding suggests that EFB waste was a potential additive material to be used for the thermal property enhancement of the building envelope.
Salmond, G P; Lutkenhaus, J F; Donachie, W D
1980-01-01
We report the identification, cloning, and mapping of a new cell envelope gene, murG. This lies in a group of five genes of similar phenotype (in the order murE murF murG murC ddl) all concerned with peptidoglycan biosynthesis. This group is in a larger cluster of at least 10 genes, all of which are involved in some way with cell envelope growth. Images PMID:6998962
Acute Modulation of Mycobacterial Cell Envelope Biogenesis by Front-Line Tuberculosis Drugs.
Rodriguez-Rivera, Frances P; Zhou, Xiaoxue; Theriot, Julie A; Bertozzi, Carolyn R
2018-05-04
Front-line tuberculosis (TB) drugs have been characterized extensively in vitro and in vivo with respect to gene expression and cell viability. However, little work has been devoted to understanding their effects on the physiology of the cell envelope, one of the main targets of this clinical regimen. Herein, we use metabolic labeling methods to visualize the effects of TB drugs on cell envelope dynamics in mycobacterial species. We developed a new fluorophore-trehalose conjugate to visualize trehalose monomycolates of the mycomembrane using super-resolution microscopy. We also probed the relationship between mycomembrane and peptidoglycan dynamics using a dual metabolic labeling strategy. Finally, we found that metabolic labeling of both cell envelope structures reports on drug effects on cell physiology in two hours, far faster than a genetic sensor of cell envelope stress. Our work provides insight into acute drug effects on cell envelope biogenesis in live mycobacteria. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas
2016-02-19
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.
Song, Erwei; Zhu, Pengcheng; Lee, Sang-Kyung; Chowdhury, Dipanjan; Kussman, Steven; Dykxhoorn, Derek M; Feng, Yi; Palliser, Deborah; Weiner, David B; Shankar, Premlata; Marasco, Wayne A; Lieberman, Judy
2005-06-01
Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.
Darling, Sven; Theilade, Jørgen; Birch-Andersen, Aksel
1972-01-01
Cells of Saccharomyces cerevisiae and Hansenula anomala were digested with snail enzyme under conditions yielding prospheroplasts. Surrounding envelopes were isolated after lysis of prospheroplasts in distilled water. The envelope material was embedded and sectioned for electron microscopy, and thin, hollow structures still retaining the elongated form of the original cells were seen. The envelopes were of low electron density in sections stained with uranyl magnesium acetate and lead citrate, but were more electron-dense when stained with phosphotungstic acid. Shadowed preparations of prospheroplast envelopes revealed structures resembling ghosts. These “ghosts” were similar to the original cells in form and size but seemed to be very thin. Varying numbers of anular structures (bud scars) were found on them. Chemical analyses of the envelope indicated that an alkali-soluble glucan was a major constituent. The results show that the prospheroplast envelope is part of the original cell wall of the yeast and is located in close apposition to the cytoplasmic membrane. Images PMID:4552997
Gitman, A G; Graessmann, A; Loyter, A
1985-11-01
Insulin molecules were covalently attached to detergent-solubilized Sendai virus envelope glycoproteins (HN and F polypeptides) by the use of the crosslinking reagent succinimidyl 4-(p-maleimidophenyl)butyrate (SMPB). Reconstitution of modified viral glycoproteins (carrying covalently attached insulin) together with unmodified viral glycoproteins resulted in the formation of "fusogenic" viral envelopes bearing insulin molecules. Reconstitution of such fusogenic viral envelopes in the presence of ricin A or simian virus 40 (SV40) DNA resulted in the formation of viral envelopes bearing insulin molecules and loaded with ricin A or SV40 DNA. Such viral envelopes were able to bind to hepatoma tissue culture cells (HTCC) from which Sendai virus receptors were removed by treatment with neuraminidase. Incubation of viral envelopes loaded with ricin A with virus receptor-depleted HTCC resulted in fusion-mediated injection of the toxin, as inferred from inhibition of protein synthesis and decrease in cell viability of the microinjected cells. Fusion-mediated injection of SV40 DNA was inferred from the appearance of SV40 tumor antigen in microinjected cells. Binding and fusion of the loaded viral envelopes to neuraminidase-treated HTCC was mediated solely by the virus-associated insulin molecules. Addition of free insulin molecules inhibited binding of the viral envelopes and, consequently, the microinjection of ricin A and SV40 DNA.
Gitman, A G; Graessmann, A; Loyter, A
1985-01-01
Insulin molecules were covalently attached to detergent-solubilized Sendai virus envelope glycoproteins (HN and F polypeptides) by the use of the crosslinking reagent succinimidyl 4-(p-maleimidophenyl)butyrate (SMPB). Reconstitution of modified viral glycoproteins (carrying covalently attached insulin) together with unmodified viral glycoproteins resulted in the formation of "fusogenic" viral envelopes bearing insulin molecules. Reconstitution of such fusogenic viral envelopes in the presence of ricin A or simian virus 40 (SV40) DNA resulted in the formation of viral envelopes bearing insulin molecules and loaded with ricin A or SV40 DNA. Such viral envelopes were able to bind to hepatoma tissue culture cells (HTCC) from which Sendai virus receptors were removed by treatment with neuraminidase. Incubation of viral envelopes loaded with ricin A with virus receptor-depleted HTCC resulted in fusion-mediated injection of the toxin, as inferred from inhibition of protein synthesis and decrease in cell viability of the microinjected cells. Fusion-mediated injection of SV40 DNA was inferred from the appearance of SV40 tumor antigen in microinjected cells. Binding and fusion of the loaded viral envelopes to neuraminidase-treated HTCC was mediated solely by the virus-associated insulin molecules. Addition of free insulin molecules inhibited binding of the viral envelopes and, consequently, the microinjection of ricin A and SV40 DNA. PMID:2997783
Cell envelopes of chemotaxis mutants of Escherichia coli rotate their flagella counterclockwise.
Szupica, C J; Adler, J
1985-01-01
Flagella rotated exclusively counterclockwise in Escherichia coli cell envelopes prepared from wild-type cells, whose flagella rotated both clockwise and counterclockwise, from mutants rotating their flagella counterclockwise only, and even from mutants rotating their flagella primarily clockwise. Some factor needed for clockwise flagellar rotation appeared to be missing or defective in the cell envelopes. PMID:3884599
Li, Haishan; Pauza, C David
2011-11-24
HIV infects and replicates in CD4+ T cells but effects on host immunity and disease also involve depletion, hyper-activation, and modification of CD4-negative cell populations. In particular, the depletion of CD4-negative γδ T cells is common to all HIV+ individuals. We found that soluble or cell-associated envelope glycoproteins from CCR5-tropic strains of HIV could bind, activates the p38-caspase pathway, and induce the death of γδ cells. Envelope binding requires integrin α4β7 and chemokine receptor CCR5 which are at high levels and form a complex on the γδ T cell membrane. This receptor complex facilitated V3 loop binding to CCR5 in the absence of CD4-induced conformational changes. Cell death was increased by antigen stimulation after exposure to envelope glycoprotein. Direct signaling by envelope glycoprotein killed CD4-negative γδ T cells and reproduced a defect observed in all patients with HIV disease.
Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope
Helmann, John D.
2016-01-01
Summary Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σW is most closely associated with membrane-active agents, σX with cationic antimicrobial peptide resistance, and σV with resistance to lysozyme. Here, I highlight the role of the σM regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics. PMID:26901131
Thomas, Edwin L.; Aune, Thomas M.
1978-01-01
The bactericidal action that results from lactoperoxidase-catalyzed oxidation of iodide or thiocyanate was studied, using Escherichia coli as the test organism. The susceptibility of intact cells to bactericidal action was compared with that of cells with altered cell envelopes. Exposure to ethylenediaminetetraacetic acid, to lysozyme and ethylenediaminetetraacetic acid, or to osmotic shock were used to alter the cell envelope. Bactericidal action was greatly increased when the cells were exposed to the lactoperoxidase-peroxide-iodide system at low temperatures, low cell density, or after alteration of the cell envelope. When thiocyanate was substituted for iodide, bactericidal activity was observed only at low cell density or after osmotic shock. Low temperature and low cell density lowered the rate of destruction of peroxide by the bacteria. Therefore, competition for peroxide between the bacteria and lactoperoxidase may influence the extent of bactericidal action. Alteration of the cell envelope had only a small effect on the rate of destruction of peroxide. Instead, the increased susceptibility of these altered cells suggested that bactericidal action required permeation of a reagent through the cell envelope. In addition to altering the cell envelope, these procedures partly depleted cells of oxidizable substrates and sulfhydryl components. Adding an oxidizable substrate did not decrease the susceptibility of the altered cells. On the other hand, mild reducing agents such as sulfhydryl compounds did partly reverse bactericidal action when added after exposure of cells to the peroxidase systems. These studies indicate that alteration of the metabolism, structure, or composition of bacterial cells can greatly increase their susceptibility to peroxidase bactericidal action. PMID:348097
Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells
NASA Astrophysics Data System (ADS)
Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.
2013-06-01
Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.
Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope.
Helmann, John D
2016-04-01
Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mignaqui, Ana Clara; Ruiz, Vanesa; Perret, Sylvie; St-Laurent, Gilles; Singh Chahal, Parminder; Transfiguracion, Julia; Sammarruco, Ayelén; Gnazzo, Victoria; Durocher, Yves; Wigdorovitz, Andrés
2013-01-01
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE) in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.
Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan
2018-02-14
This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.
El-Salhy, M; Sitohy, B
2001-11-01
Gastrointestinal symptoms in patients with diabetes are believed to be caused by gastrointestinal dysmotility and secretion/absorption disturbances, and the gut endocrine cells play an important part in regulating these two functions. Studies on animal models of human diabetes type I revealed abnormality in these cells, but it is unknown whether abnormality also occurs in patients with diabetes. Eleven patients with long duration of diabetes type I and organ complications, as well as gastrointestinal symptoms, were studied. Endocrine cells in different segments of the gastrointestinal tract were detected by immunocytochemistry and quantified by computerized image analysis. Gastric emptying was measured by scintigraphy and gastric myoelectric activity was determined by electrogastrography. An abnormal density of gastrointestinal endocrine cells was found in patients with diabetes. This abnormality occurred in all segments of the upper and lower gastrointestinal tract investigated, and included most of the endocrine cell types. The patients showed delayed gastric emptying, which correlated closely with the acute glucose level, but did not correlate with HbA1c. Gastric emptying also correlated closely with the density of duodenal serotonin and secretin cells. The patients exhibited bradygastrias and tachygastrias. These dysrhythmias, however, did not differ significantly from controls. The endocrine cells are the anatomical units responsible for the production of gut hormones, and the change in their density would reflect a change in the capacity of producing these hormones. The abnormality in density of the gastrointestinal endocrine cells may contribute to the development of gastrointestinal dysmotility and the symptoms encountered in patients with diabetes.
Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function.
Geng, Jie; Altman, John D; Krishnakumar, Sujatha; Raghavan, Malini
2018-05-09
When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8 + T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8 + T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8 + T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8 + T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8 + T cell activation, mediated by the binding of empty HLA-I to CD8. © 2018, Geng et al.
Bilello, John A.; Strand, Mette; August, J. T.
1974-01-01
Expression of the major internal protein and the envelope glycoprotein of murine C-type viruses in focus-derived lines of normal rat kidney cells infected with Kirsten murine sarcoma virus was measured by radioimmunoassay. Of the clones selected, which do not produce virus particles or the major viral structural protein, approximately half express the viral envelope glycoprotein at concentrations found in productively infected cells. Expression of the envelope glycoprotein did not appear to alter significantly the properties of the transformed cells in culture. PMID:4370209
Rat pancreatic B-cells after chronic alcohol feeding. A morphometric and fine structural study.
Koko, V; Todorović, V; Nikolić, J A; Glisić, R; Cakić, M; Lacković, V; Petronijević, L; Stojković, M; Varagić, J; Janić, B
1995-04-01
Quantitative analysis of the light microscopic and fine structure of rat islet B-cells was carried out in chronic alcoholism. Absolute pancreatic weight and volume were similar in groups C (control) and E (ethanol), but relative pancreatic weight in group E rat was decreased. The results for fasting blood glucose and insulin levels were similar in the two groups of animals. There was a significantly reduced total pancreatic islet volume in E rats. The total number of endocrine cells both per islet and per microns2 of islet was similar in the two groups of animals. The volume density and number of B-cells per islet and per microns2 of islet were not changed in ethanol-treated rats as compared with the control. On the other hand, diameter, surface area and volume of the B-cells and their nuclei were found to be statistically significantly decreased. Histological examination revealed that islet blood vessels were dilated in alcoholic rats. Over the 4-month period of ethanol intake a significant decrease in cell profile area, nuclear profile area and volume density of cytoplasmic granules and an increase in the profile area and volume density of endoplasmic reticulum occurred. The gross histological alteration seen in most B-cells of the ethanol-treated rats was irregularity of the nuclear envelope with deep invagination and with margination of heterochromatin and many empty granules or granules without clear electron dense crystals of insulin. The present results indicate some optical and structural abnormalities of B-cells in chronic alcoholism that may be related to cell dysfunction and may contribute, at least in part, to the endocrine pancreas functional disturbance.
Effect of alkali on the structure of cell envelopes of Chlamydia psittaci elementary bodies.
Narita, T; Wyrick, P B; Manire, G P
1976-01-01
Suspensions of isolated cell envelopes of infectious elementary bodies (EB) of Chlamydia psittaci at alkaline pH showed a rapid, extensive decrease in absorbance, accompanied by the release of a cell envelope component in a sedimentable form. This phenomenon was observed both at 0 C and with envelopes which had been previously heated to 100 C. Monovalent and divalent cations effectively inhibited the turbidity loss, whereas ethylenediaminetetraacetate (EDTA) caused an accelerated decrease in turbidity. The turbidity loss observed after incubation of the envelopes at alkaline pH could be reversed to the level of the initial value by dialysis against distilled water containing Mg2+. Thin-section electron photomicrographs of purified EB exposed to alkaline buffer with EDTA revealed the loss of the internal contents of cells, but these cells still maintained their round shapes. The cell surface of treated EB appeared pitted in negatively stained preparations, whereas intact EB had a smooth surface. Electron microscopic studies on negatively stained preparations of the clear supernatant obtained after the treatment of the envelope with alkaline buffer containing EDTA demonstrated the presence of spherical particles, approximately 6 to 7 nm in diameter, and rodlike particles, which appeared to be made up of two or more spherical particles. Images PMID:1375
1988-01-01
T cells primed specifically for the envelope glycoprotein of Friend murine leukemia helper virus (F-MuLV) were prepared by immunizing mice with a recombinant vaccinia virus that expressed the entire env gene of F-MuLV. Significant proliferative responses of F-MuLV envelope- specific, H-2a/b T cells were observed when the T cells were stimulated with antigen-pulsed peritoneal exudate cells (PEC) having the b allele at the K, A beta, A alpha, and E beta loci of the H-2. On the other hand, PEC having only the kappa allele at these loci did not induce the envelope-specific T cell proliferation, even when the PEC had the b allele at the E alpha, S, or D loci. F-MuLV envelope-specific proliferation of H-2a/b T cells under the stimulation of antigen- pulsed, H-2a/b PEC was specifically blocked with anti-I-Ab and anti-I- Ek mAbs but not with anti-Kb, anti-Kk, or anti-I-Ak mAbs. Moreover, (B10.MBR x A/WySn)F1 mice that have the b allele only at the K locus but not in I-A subregion were nonresponders to the envelope glycoprotein, and the bm12 mutation at the A beta locus completely abolished the T cell responsiveness to this antigen. These results indicate that proliferative T cells recognize a limited number of epitopes on F-MuLV envelope protein in the context of I-Ab, hybrid I- Ak/b, and/or hybrid I-Ek/b class II MHC molecules but fail to recognize the same envelope protein in the context of I-Ak or I-Ek molecules. This influence of the H-2I region on T cell recognition of the envelope glycoprotein appeared to control in vivo induction of protective immunity against Friend virus complex after immunization with the vaccinia-F-MuLV env vaccine. Thus, these results provide, for the first time, direct evidence for Ir gene-controlled responder/nonresponder phenotypes influencing the immune response to a pathogenic virus of mice. PMID:3141552
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependentmore » phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The activated monocyte-like phenotype is mediated by TLR2/TLR4 signaling.« less
Stevenson, M; Haggerty, S; Lamonica, C; Mann, A M; Meier, C; Wasiak, A
1990-01-01
The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell. Images PMID:1695254
Hershkovitz, Oren; Rosental, Benyamin; Rosenberg, Lior Ann; Navarro-Sanchez, Martha Erika; Jivov, Sergey; Zilka, Alon; Gershoni-Yahalom, Orly; Brient-Litzler, Elodie; Bedouelle, Hugues; Ho, Joanna W.; Campbell, Kerry S.; Rager-Zisman, Bracha; Despres, Philippe; Porgador, Angel
2009-01-01
Dengue virus (DV) and West Nile virus (WNV) have become a global concern due to their widespread distribution and their ability to cause a variety of human diseases. Antiviral immune defenses involve natural killer (NK) cells. In the present study, we investigated the interaction between NK cells and these two flaviviruses. We show that the NK-activating receptor NKp44 is involved in virally-mediated NK activation through direct interaction with the flavivirus envelope protein. Recombinant NKp44 directly binds to purified DV and WNV envelope proteins and specifically to domain III of WNV envelope protein (EIII); it also binds to WNV virus-like particles (VLPs). These WNV-VLPs and WNV-EIII directly bind NK cells expressing high levels of NKp44. Functionally, interaction of NK cells with infective and inactivated WNV results in NKp44-mediated NK de-granulation. Finally, WNV infection of cells results in increased binding of recombinant NKp44 that is specifically inhibited by anti-WNV serum. WNV-infected target cells induce IFNγ secretion and augmented lysis by NKp44-expressing primary NK cells that are blocked by anti-NKp44 antibodies. Our findings show that triggering of NK cells by flavivirus is mediated by interaction of NKp44 with the flavivirus envelope protein. PMID:19635919
Envelope Structures of Gram-Positive Bacteria
Rajagopal, Mithila; Walker, Suzanne
2016-01-01
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan, which is a well-established target for antibiotics, teichoic acids, capsular polysaccharides, surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis and important functions of major cell envelope components in Gram-positive bacteria. Possible targets for new antimicrobials will be noted. PMID:26919863
Automated analysis of cell migration and nuclear envelope rupture in confined environments.
Elacqua, Joshua J; McGregor, Alexandra L; Lammerding, Jan
2018-01-01
Recent in vitro and in vivo studies have highlighted the importance of the cell nucleus in governing migration through confined environments. Microfluidic devices that mimic the narrow interstitial spaces of tissues have emerged as important tools to study cellular dynamics during confined migration, including the consequences of nuclear deformation and nuclear envelope rupture. However, while image acquisition can be automated on motorized microscopes, the analysis of the corresponding time-lapse sequences for nuclear transit through the pores and events such as nuclear envelope rupture currently requires manual analysis. In addition to being highly time-consuming, such manual analysis is susceptible to person-to-person variability. Studies that compare large numbers of cell types and conditions therefore require automated image analysis to achieve sufficiently high throughput. Here, we present an automated image analysis program to register microfluidic constrictions and perform image segmentation to detect individual cell nuclei. The MATLAB program tracks nuclear migration over time and records constriction-transit events, transit times, transit success rates, and nuclear envelope rupture. Such automation reduces the time required to analyze migration experiments from weeks to hours, and removes the variability that arises from different human analysts. Comparison with manual analysis confirmed that both constriction transit and nuclear envelope rupture were detected correctly and reliably, and the automated analysis results closely matched a manual analysis gold standard. Applying the program to specific biological examples, we demonstrate its ability to detect differences in nuclear transit time between cells with different levels of the nuclear envelope proteins lamin A/C, which govern nuclear deformability, and to detect an increase in nuclear envelope rupture duration in cells in which CHMP7, a protein involved in nuclear envelope repair, had been depleted. The program thus presents a versatile tool for the study of confined migration and its effect on the cell nucleus.
A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.
York, Joanne; Nunberg, Jack H
2018-01-01
For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.
Archaeal viruses at the cell envelope: entry and egress
Quemin, Emmanuelle R. J.; Quax, Tessa E. F.
2015-01-01
The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane, each adapted to the cell surface environment of their host. Here, we review recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the unique nature of the archaeal cell envelope, these particular viruses exhibit novel and unexpected mechanisms to traverse the cellular membrane. PMID:26097469
Liu, Lin; Nardo, David; Li, Eric; Wang, Gary P
2016-03-13
CD4 T-cell depletion from HIV infection leads to a global decline in anti-hepatitis C virus (HCV) envelope neutralizing antibody (nAb) response, which may play a role in accelerating liver fibrosis. An increase in anti-HCV nAb titers has been reported during antiretroviral therapy (ART) but its impact on HCV remains poorly understood. The objective of this study is to determine the effects of ART on long-term HCV evolution. We examined HCV quasispecies structure and long-term evolution in HIV/HCV coinfected patients with ART-induced CD4 T-cell recovery, and compared with patients with CD4 T-cell depletion from delayed ART. We applied a single-variant sequencing (SVS) method to construct authentic viral quasispecies and compared sequence evolution in HCV envelope, the primary target for humoral immune responses, and NS3, a target for cellular immunity, between the two cohorts. The SVS method corrected biases known to skew the proportions of viral variants, revealing authentic HCV quasispeices structures. We observed higher rates of HCV envelope sequence evolution in patients with ART-induced CD4 T-cell recovery, compared with patients with CD4 T-cell depletion from delayed ART (P = 0.03). Evolutionary rates for NS3 were considerably lower than the rates for envelope (P < 0.01), with no significant difference observed between the two groups. ART-induced CD4 T-cell recovery results in rapid sequence evolution in HCV envelope, but not in NS3. These results suggest that suppressive ART disproportionally enhances HCV-specific humoral responses more than cellular responses, resulting in rapid sequence evolution in HCV envelope but not NS3.
Russell, R L; Rohrmann, G F
1990-01-01
A polyclonal antiserum against a trpE fusion protein containing the complete open reading frame of the polyhedron envelope (PE) protein from the nuclear polyhedrosis virus of Orgyia pseudotsugata (OpMNPV) was used for immunogold staining and electron microscopic examination of polyhedra, isolated polyhedron envelopes, and infected insect cells at selected times postinfection. The antiserum specifically stained the peripheral envelope of mature polyhedra and also stained the envelope structure which remained after polyhedra were dissolved in dilute alkaline solutions. In OpMNPV-infected Lymantria dispar cells, the PE protein was detected by 48 hr postinfection (hr p.i.) but specific localization and staining of developing polyhedra were not evident. However, by 72 hr p.i. substantial and preferential staining of the periphery of developing polyhedra was evident even though a distinct polyhedron envelope was not yet observed. In addition, the periphery of fibrillar structures was stained by the PE antiserum. By 96 hr p.i., mature envelopes surrounded polyhedra and these polyhedron envelopes were stained with the PE antibody. The progression of PE protein staining during polyhedron morphogenesis indicates that the PE protein accumulates and becomes associated with developing polyhedra in the nucleus between 48 and 72 hr p.i. Very late in infection the mature polyhedron envelope forms on the polyhedron surface. The apparent affinity of the PE protein for the surface of maturing polyhedra suggests that it may be a major component of the polyhedron envelope or may form the matrix for the deposition of other components which contribute to the mature envelope. Immunogold staining and protease digestion experiments indicate that protein is an essential component of the polyhedron envelope.
The cell envelope proteome of Aggregatibacter actinomycetemcomitans
Smith, Kenneth P.; Fields, Julia G.; Voogt, Richard D.; Deng, Bin; Lam, Ying-Wai; Mintz, Keith P.
2014-01-01
Summary The cell envelope of Gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 28% of the predicted ORFs in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, while others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity. PMID:25055881
Novel Function of NIBP in Breast Cancer
2012-05-01
reduced in NIBP knockdown cells (Fig. 8). 7 pRK -Flag-NIBP Isoforms(aa) 960 944 1200 1246 1148 S E A P A c ti v it y ( F o ld...Fig.9. MDA-MB-231 cells were co-transfected by TurboFectin8.0 with empty pRK -Flag vector or various isoforms of NIBP with NF-B-SEAP reporter and...Ser536) pRK -Flag 12060301550 NIBP-mutA 12060301550TNFα (min) Fig.11. MDA-MB-231 cells at 60% confluence in 6-well plates were transfected with empty
Bedgood, R M; Stallcup, M R
1992-04-05
The intracellular processing of the murine leukemia virus envelope glycoprotein precursor Pr85 to the mature products gp70 and p15e was analyzed in the mouse T-lymphoma cell line W7MG1. Kinetic (pulse-chase) analysis of synthesis and processing, coupled with endoglycosidase (endo H) and neuraminidase digestions revealed the existence of a novel high molecular weight processing intermediate, gp95, containing endo H-resistant terminally glycosylated oligosaccharide chains. In contrast to previously published conclusions, our data indicate that proteolytic cleavage of the envelope precursor occurs after the acquisition of endo H-resistant chains and terminal glycosylation and thus after the mannosidase II step. In the same W7MG1 cell line, the type and order of murine leukemia virus envelope protein processing events was identical to that for the mouse mammary tumor virus envelope protein. Interestingly, complete mouse mammary tumor virus envelope protein processing requires the addition of glucocorticoid hormone, whereas murine leukemia virus envelope protein processing occurs constitutively in these W7MG1 cells. We propose that all retroviral envelope proteins share a common processing pathway in which proteolytic processing is a late event that follows acquisition of endo H resistance and terminal glycosylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov
Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectorsmore » with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.« less
Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor
2017-03-01
Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Generation of Envelope-Modified Baculoviruses for Gene Delivery into Mammalian Cells.
Hofmann, Christian
2016-01-01
Genetically modified baculoviruses can efficiently deliver and express genes in mammalian cells. The major prerequisite for the expression of a gene transferred by baculovirus is its control by a promoter that is active in mammalian cells. This chapter describes methods for producing second generation baculovirus vectors through modification of their envelope. Envelope modified baculoviruses offer additional new applications of the system, such as their use in in vivo gene delivery, targeting, and vaccination. Methods of generating a recombinant baculovirus vector with a modified envelope and its amplification and purification, including technical scale production, are discussed. A variety of notes give clues regarding specific technical procedures. Finally, methods to analyze the virus and transduction procedures are presented.
Passive and active response of bacteria under mechanical compression
NASA Astrophysics Data System (ADS)
Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration
Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.
Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J.; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F.; Emili, Andrew
2011-01-01
As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target. PMID:22125496
Babu, Mohan; Díaz-Mejía, J Javier; Vlasblom, James; Gagarinova, Alla; Phanse, Sadhna; Graham, Chris; Yousif, Fouad; Ding, Huiming; Xiong, Xuejian; Nazarians-Armavil, Anaies; Alamgir, Md; Ali, Mehrab; Pogoutse, Oxana; Pe'er, Asaf; Arnold, Roland; Michaut, Magali; Parkinson, John; Golshani, Ashkan; Whitfield, Chris; Wodak, Shoshana J; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack F; Emili, Andrew
2011-11-01
As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.
Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis
Vidal, Christopher; Bermeo, Sandra; Fatkin, Diane; Duque, Gustavo
2012-01-01
The nuclear envelope is the most important border in the eukaryotic cell. The role of the nuclear envelope in cell differentiation and function is determined by a constant interaction between the elements of the nuclear envelope and the transcriptional regulators involved in signal transcription pathways. Among those components of the nuclear envelope, there is a growing evidence that changes in the expression of A-type lamins, which are essential components of the nuclear lamina, are associated with age-related changes in bone affecting the capacity of differentiation of mesenchymal stem cells into osteoblasts, favoring adipogenesis and affecting the function and survival of the osteocytes. Overall, as A-type lamins are considered as the 'guardians of the soma', these proteins are also essential for the integrity and quality of the bone and pivotal for the longevity of the musculoskeletal system. PMID:23951459
Nishi, Takashi; Hara, Hiroshi; Tomita, Fusao
2003-02-01
Cholecystokinin (CCK) is an important physiologic mediator that regulates satiety and gastric emptying. We demonstrated previously that soybean peptone acts directly on rat small intestinal mucosal cells to stimulate CCK release. In the present study, we examined the effects of beta-conglycinin, a major component of soy protein, and its peptone on food intake and gastric emptying after an intraduodenal infusion of beta-conglycinin peptone in relation to CCK release and interaction with the mucosal cell membrane. Intraduodenal infusion of beta-conglycinin peptone inhibited food intake in a dose-dependent manner, but that of whole soy peptone or camostat did not. The suppression of food intake by beta-conglycinin peptone was abolished by an intravenous injection of devazepide, a selective peripheral CCK receptor antagonist. The beta-conglycinin peptone infusion strongly suppressed gastric emptying with marked increases in portal CCK levels. We also observed that the beta-conglycinin peptone dose dependently and more potently stimulated CCK release from isolated dispersed mucosal cells of the rat jejunum than did beta-conglycinin itself. This stimulation corresponded to the binding activity of the peptide or protein to solubilized components of the rat jejunum membrane as evaluated by surface plasmon biosensor. These results indicate that beta-conglycinin peptone suppresses food intake, and this effect may be due to beta-conglycinin peptone in the lumen stimulating endogenous CCK release with direct acceptance to the intestinal cells.
Zucoloto, S; Romanello, L M F; Garcia, S B; Sobreira, L F R; Barbosa, A J A; Troncon, L E A
2002-11-01
In the present study we evaluated the effects of gastric myenteric denervation using benzalkonium chloride (BAC) on the time for gastric emptying, as well as gastric secretion, and mucosal epithelial cell size and population in rats. Wistar rats were treated with topical serosal application of BAC to the stomach. Control animals received saline. Ninety days after surgery, gastric emptying time, gastric acid secretion and serum gastrin levels were studied. Next, the animals were sacrificed and the stomachs were removed, fixed in formalin and histologically processed for histomorphometry of the height, area and volume of the glandular portion, and volume and population of mucous, chief, parietal, G- and labelled cells. BAC animals showed a significant delay in gastric emptying and an increase in gastric acid secretion and serum gastrin levels. These animals also presented a significant reduction of myenteric neuron number, hypertrophy of parietal and chief cells, hyperplasia of G cells and an increase in the gastric mucosa area. The absence of the myenteric plexus seems to protect the stomach from the hyperplastic effects of hypergastrinemia. Gastric food stasis may act as a factor triggering morphological and functional alterations of the gastric epithelium. Although gastric food stasis is a common finding in medical practice, its physiopathological consequences are poorly understood and have not been frequently discussed in the literature.
[Cell entry mechanisms of coronaviruses].
Taguchi, Fumihiro; Matsuyama, Shutoku
2009-12-01
Enveloped viruses enter into cells via fusion of their envelope and cellular membrane. Spike (S) protein of coronavirus (CoV) is responsible for entry events. We studied the cell entry mechanisms of two different CoVs, murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV). MHV-JHM that induces syncytia in infected cells entered directly from cell surface, i.e., fusion of envelope and plasma membrane, whereas SARS-CoV and MHV-2 that fail to induce syncytia entered via endosome in a protease-dependent fashion, i.e., fusion of envelope and endosomal membrane. The latter viruses entered directly from cell surface, when receptor-bound viruses were treated with proteases that activate fusion activity of their S proteins. The entry pathway of SARS-CoV could influence the severity of the disease. It was also reveled that a highly neurovirulent JHM spread in a receptor-independent fashion, which could result in a high neuropathogenicity of the virus.
Detecting cell death with optical coherence tomography and envelope statistics
NASA Astrophysics Data System (ADS)
Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.
2011-02-01
Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.
Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics
Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra
2014-01-01
The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819
Synthesis and assembly of Hepatitis B virus envelope protein-derived particles in Escherichia coli.
Li, Hao; Onbe, Keisuke; Liu, Qiushi; Iijima, Masumi; Tatematsu, Kenji; Seno, Masaharu; Tada, Hiroko; Kuroda, Shun' Ichi
2017-08-19
Hepatitis B virus (HBV) envelope particles have been synthesized in eukaryotic cells (e.g., mammalian cells, insect cells, and yeast cells) as an HB vaccine immunogen and drug delivery system (DDS) nanocarrier. Many researchers had made attempts to synthesize the particles in Escherichia coli for minimize the cost and time for producing HBV envelope particles, but the protein was too deleterious to be synthesized in E. coli. In this study, we generated deletion mutants of HBV envelope L protein (389 amino acid residues (aa)) containing three transmembrane domains (TM1, TM2, TM3). The ΔNC mutant spanning from TM2 to N-terminal half of TM3 (from 237 aa to 335 aa) was found as a shortest form showing spontaneous particle formation. After the N-terminal end of ΔNC mutant was optimized by the N-end rule for E. coli expression, the modified ΔNC mutant (mΔNC) was efficiently expressed as particles in E. coli. The molecular mass of mΔNC particle was approx. 670 kDa, and the diameter was 28.5 ± 6.2 nm (mean ± SD, N = 61). The particle could react with anti-HBV envelope S protein antibody, indicating the particles exhibited S antigenic domain outside as well as HBV envelope particles. Taken together, the E. coli-derived mΔNC particles could be used as a substitute of eukaryotic cell-derived HBV envelope particles for versatile applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Imaging mycobacterial growth and division with a fluorogenic probe.
Hodges, Heather L; Brown, Robert A; Crooks, John A; Weibel, Douglas B; Kiessling, Laura L
2018-05-15
Control and manipulation of bacterial populations requires an understanding of the factors that govern growth, division, and antibiotic action. Fluorescent and chemically reactive small molecule probes of cell envelope components can visualize these processes and advance our knowledge of cell envelope biosynthesis (e.g., peptidoglycan production). Still, fundamental gaps remain in our understanding of the spatial and temporal dynamics of cell envelope assembly. Previously described reporters require steps that limit their use to static imaging. Probes that can be used for real-time imaging would advance our understanding of cell envelope construction. To this end, we synthesized a fluorogenic probe that enables continuous live cell imaging in mycobacteria and related genera. This probe reports on the mycolyltransferases that assemble the mycolic acid membrane. This peptidoglycan-anchored bilayer-like assembly functions to protect these cells from antibiotics and host defenses. Our probe, quencher-trehalose-fluorophore (QTF), is an analog of the natural mycolyltransferase substrate. Mycolyltransferases process QTF by diverting their normal transesterification activity to hydrolysis, a process that unleashes fluorescence. QTF enables high contrast continuous imaging and the visualization of mycolyltransferase activity in cells. QTF revealed that mycolyltransferase activity is augmented before cell division and localized to the septa and cell poles, especially at the old pole. This observed localization suggests that mycolyltransferases are components of extracellular cell envelope assemblies, in analogy to the intracellular divisomes and polar elongation complexes. We anticipate QTF can be exploited to detect and monitor mycobacteria in physiologically relevant environments.
Changes in the position and volume of inactive X chromosomes during the G0/G1 transition.
Lyu, Guoliang; Tan, Tan; Guan, Yiting; Sun, Lei; Liang, Qianjin; Tao, Wei
2018-04-21
In female mammals, each cell silences one X chromosome by converting it into transcriptionally inert heterochromatin. The inactivation is concomitant with epigenetic changes including methylation of specific histone residues and incorporation of macroH2A. Such epigenetic changes may exert influence on the positioning of the inactive X chromosome (Xi) within the nucleus beyond the level of chromatin structure. However, the dynamic positioning of the inactive X chromosome during cell cycle remains unclear. Here, we show that H3K27me3 is a cell-cycle-independent marker for the inactivated X chromosomes in WI38 cells. By utilizing this marker, three types of Xi locations in the nuclei are classified, which are envelope position (associated with envelope), mid-position (between the envelope and nucleolus), and nucleolus position (associated with the nucleolus). Moreover, serial-section analysis revealed that the inactive X chromosomes in the mid-position appear to be sparser and less condensed than those associated with the nuclear envelope or nucleolus. During the transition from G0 to G1 phase, the inactive X chromosomes tend to move from the envelope position to the nucleolus position in WI38 cells. Our results imply a role of chromosome positioning in maintaining the organization of the inactive X chromosomes in different cell phases.
Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.
Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J
2009-04-07
The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.
Role of phosphatidylserine receptors in enveloped virus infection.
Morizono, Kouki; Chen, Irvin S Y
2014-04-01
We recently demonstrated that a soluble protein, Gas6, can facilitate viral entry by bridging viral envelope phosphatidylserine to Axl, a receptor tyrosine kinase expressed on target cells. The interaction between phosphatidylserine, Gas6, and Axl was originally shown to be a molecular mechanism through which phagocytes recognize phosphatidylserine exposed on dead cells. Since our initial report, several groups have confirmed that Axl/Gas6, as well as other phosphatidylserine receptors, facilitate entry of dengue, West Nile, and Ebola viruses. Virus binding by viral envelope phosphatidylserine is now a viral entry mechanism generalized to many families of viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most of the known human phosphatidylserine-recognizing molecules, including MFG-E8, TIM-1, -3, and -4, CD300a, BAI1, and stabilin-1 and -2, for their abilities to facilitate virus binding and infection. Using pseudotyped lentiviral vectors, we found that a soluble phosphatidylserine-binding protein, MFG-E8, enhances transduction. Cell surface receptors TIM-1 and -4 also enhance virus binding/transduction. The extent of enhancement by these molecules varies, depending on the type of pseudotyping envelope proteins. Mutated MFG-E8, which binds viral envelope phosphatidylserine without bridging virus to cells, but, surprisingly, not annexin V, which has been used to block phagocytosis of dead cells by concealing phosphatidylserine, efficiently blocks these phosphatidylserine-dependent viral entry mechanisms. These results provide insight into understanding the role of viral envelope phosphatidylserine in viral infection. Envelope phosphatidylserine has previously been shown to be important for replication of various envelope viruses, but details of this mechanism(s) were unclear. We were the first to report that a bifunctional serum protein, Gas6, bridges envelope phosphatidylserine to a cell surface receptor, Axl. Recent studies demonstrated that many envelope viruses, including vaccinia, dengue, West Nile, and Ebola viruses, utilize Axl/Gas6 to facilitate their entry, suggesting that the phosphatidylserine-mediated viral entry mechanism can be shared by various enveloped viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most human phosphatidylserine-recognizing molecules for their abilities to facilitate viral infection. The results provide insights into the role(s) of envelope phosphatidylserine in viral infection, which can be applicable to the development of novel antiviral reagents that block phosphatidylserine-mediated viral entry.
Blaise, Sandra; Ruggieri, Alessia; Dewannieux, Marie; Cosset, François-Loic; Heidmann, Thierry
2004-01-01
A member of the HERV-W family of human endogenous retroviruses (HERV) had previously been demonstrated to encode a functional envelope which can form pseudotypes with human immunodeficiency virus type 1 virions and confer infectivity on the resulting retrovirus particles. Here we show that a second envelope protein sorted out by a systematic search for fusogenic proteins that we made among all the HERV coding envelope genes and belonging to the HERV-FRD family can also make pseudotypes and confer infectivity. We further show that the orthologous envelope genes that were isolated from simians—from New World monkeys to humans—are also functional in the infectivity assay, with one singular exception for the gibbon HERV-FRD gene, which is found to be fusogenic in a cell-cell fusion assay, as observed for the other simian envelopes, but which is not infectious. Sequence comparison of the FRD envelopes revealed a limited number of mutations among simians, and one point mutation—located in the TM subunit—was shown to be responsible for the loss of infectivity of the gibbon envelope. The functional characterization of the identified envelopes is strongly indicative of an ancestral retrovirus infection and endogenization, with some of the envelope functions subsequently retained in evolution. PMID:14694139
Blaise, Sandra; Ruggieri, Alessia; Dewannieux, Marie; Cosset, François-Loic; Heidmann, Thierry
2004-01-01
A member of the HERV-W family of human endogenous retroviruses (HERV) had previously been demonstrated to encode a functional envelope which can form pseudotypes with human immunodeficiency virus type 1 virions and confer infectivity on the resulting retrovirus particles. Here we show that a second envelope protein sorted out by a systematic search for fusogenic proteins that we made among all the HERV coding envelope genes and belonging to the HERV-FRD family can also make pseudotypes and confer infectivity. We further show that the orthologous envelope genes that were isolated from simians-from New World monkeys to humans-are also functional in the infectivity assay, with one singular exception for the gibbon HERV-FRD gene, which is found to be fusogenic in a cell-cell fusion assay, as observed for the other simian envelopes, but which is not infectious. Sequence comparison of the FRD envelopes revealed a limited number of mutations among simians, and one point mutation-located in the TM subunit-was shown to be responsible for the loss of infectivity of the gibbon envelope. The functional characterization of the identified envelopes is strongly indicative of an ancestral retrovirus infection and endogenization, with some of the envelope functions subsequently retained in evolution.
Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice.
Dai, Shiyu; Zhang, Tao; Zhang, Yanfang; Wang, Hualin; Deng, Fei
2018-06-01
The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.
Gastric emptying and postprandial glucose excursions in adolescents with type 1 diabetes
USDA-ARS?s Scientific Manuscript database
Because amylin is co-secreted with insulin from beta cells, patients with type 1 diabetes (T1DM) are deficient in both insulin and amylin. Amylin delays gastric emptying and suppresses glucagon in the postprandial period. Hence, we hypothesized that children with complication-naive T1DM have acceler...
Zhou, Wenchang; Marinelli, Fabrizio; Nief, Corrine; Faraldo-Gómez, José D
2017-01-01
Pathological metabolic conditions such as ischemia induce the rupture of the mitochondrial envelope and the release of pro-apoptotic proteins, leading to cell death. At the onset of this process, the inner mitochondrial membrane becomes depolarized and permeable to osmolytes, proposedly due to the opening of a non-selective protein channel of unknown molecular identity. A recent study purports that this channel, referred to as Mitochondrial Permeability Transition Pore (MPTP), is formed within the c-subunit ring of the ATP synthase, upon its dissociation from the catalytic domain of the enzyme. Here, we examine this claim for two c-rings of different lumen width, through calculations of their ion conductance and selectivity based on all-atom molecular dynamics simulations. We also quantify the likelihood that the lumen of these c-rings is in a hydrated, potentially conducting state rather than empty or blocked by lipid molecules. These calculations demonstrate that the structure and biophysical properties of a correctly assembled c-ring are inconsistent with those attributed to the MPTP. DOI: http://dx.doi.org/10.7554/eLife.23781.001 PMID:28186490
Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin
2008-05-01
Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.
Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe
2016-03-10
In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.
Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L
2010-01-01
The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.
Humbert, Olivier; Gisch, Don W; Wohlfahrt, Martin E; Adams, Amie B; Greenberg, Phil D; Schmitt, Tom M; Trobridge, Grant D; Kiem, Hans-Peter
2016-08-01
Lentiviral vectors (LVs) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G) have demonstrated great promise in gene therapy trials employing hematopoietic stem cell and T-cells. The VSV-G envelope confers broad tropism and stability to the vector but is toxic when constitutively expressed, which has impeded efforts to generate stable producer cell lines. We previously showed that cocal pseudotyped LVs offer an excellent alternative to VSV-G vectors because of their broad tropism and resistance to human serum inactivation. In this study, we demonstrate that cocal LVs transduce CD34(+) and CD4(+) T-cells more efficiently than VSV-G LVs and share the same receptor(s) for cell entry. 293T-cells stably expressing the cocal envelope produced significantly higher LV titers than VSV-G expressing cells. We developed cocal pseudotyped, third-generation, self-inactivating LV producer cell lines for a GFP reporter and for a WT1 tumor-specific T-cell receptor, which achieved concentrated titers above 10(8) IU/ml and were successfully adapted for growth in suspension, serum-free culture. The resulting LVs were at least as effective as standard LVs in transducing CD34(+) and CD4(+) T-cells. Our stable cocal LV producer cell lines should facilitate the production of large-scale, high titer clinical grade vectors.
Comparison of Vibrio parahaemolyticus grown in estuarine water and rich medium.
Pace, J; Chai, T J
1989-01-01
Cell envelope composition and selected physiological traits of Vibrio parahaemolyticus were studied in regard to the Kanagawa phenomenon and growth conditions. Cell envelopes were prepared from cells cultured in Proteose Peptone-beef extract (Difco Laboratories, Detroit, Mich.) medium or filtered estuarine water. Protein, phospholipid, and lipopolysaccharide contents varied with culture conditions. The phospholipids present in the cell envelopes were identified as phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Phosphatidylethanolamine decreased and phosphatidylglycerol increased in cells grown in estuarine water. Profiles of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated numerous protein species, with four to six predominant proteins ranging from 26,000 to 120,000 in molecular weight. The profile of V. parahaemolyticus cell envelope proteins was unique and might be useful in the identification of the organism. Alkaline phosphatase activity was slightly higher in Kanagawa-negative strains and was higher in cells grown in estuarine water than in cells grown in rich laboratory medium. The DNA levels in estuarine water-grown cells increased, while RNA levels and cell volume decreased. Bacteriophage sensitivity typing demonstrated a close intraspecies relationship. Results indicated that Kanagawa-positive and -negative strains were closely related, but they could be grouped separately and may have undergone starvation-related physiological changes when cultured in estuarine water. Images PMID:2782869
Lee, S Y; Poloumienko, A; Belfry, S; Qu, X; Chen, W; MacAfee, N; Morin, B; Lucarotti, C; Krause, M
1996-01-01
The assembly of the polyhedron envelope in baculovirus-infected cells has been the subject of several studies, yet it is still poorly understood. We have used immunogold-labelled antibodies to two baculovirus proteins, p10 and calyx (also referred to as polyhedron envelope protein or PEP), to follow envelope assembly in AcMNPV-infected tissues of Spodoptera frugiperda larvae. We show that, in wild type virus, both proteins colocalize in fibrillar structures and associated electron-dense spacers which progress to encircle the polyhedra, as well as in completed polyhedron envelopes. In cells infected with polyhedrin-negative (PH-) viruses, an unusual proliferation of these spacers was observed suggesting a deregulatory event in the envelope assembly process. Results of Northern and Western blot analysis revealed that synthesis of P10 and calyx mRNA and proteins in PH- AcMNPV is unaffected as compared to wild type virus. Taken together, the observed physical and compositional connection between fibrillar structures, spacers and polyhedron envelopes, as well as the abnormal appearance of the spacers in PH- mutants, provide further evidence in support of a cooperative role of these structures in the assembly of the polyhedron envelope.
The nuclear envelope from basic biology to therapy.
Worman, Howard J; Foisner, Roland
2010-02-01
The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.
Benforte, Florencia C; Colonnella, Maria A; Ricardi, Martiniano M; Solar Venero, Esmeralda C; Lizarraga, Leonardo; López, Nancy I; Tribelli, Paula M
2018-01-01
Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.
Effects of peptide YY and neuropeptide Y on gastric emptying in man.
Allen, J M; Fitzpatrick, M L; Yeats, J C; Darcy, K; Adrian, T E; Bloom, S R
1984-01-01
Neuropeptide Y (NPY) and peptide YY (PYY) are two structurally related peptides. PYY has been identified within endocrine cells and NPY within nerves of the gastrointestinal tract. Infusion of PYY at a low dose at a nominal rate of 2 pmol/kg/min resulted in an increment of 59.2 +/- 7.1 pmol/1 in plasma concentration and a significant delay in gastric emptying of glucose. Infusion of NPY at the same rate produced similar plasma concentrations (52.5 +/- 1.1 pmol/1) and had no significant effect on the rate of gastric emptying.
Poon, Betty; Chen, Irvin S. Y.
1998-01-01
In vitro infection by human T-cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) can result in syncytium formation, facilitating viral entry. Using cell lines that were susceptible to HTLV-2-mediated syncytium formation but were nonfusogenic with HTLV-1, we constructed chimeric envelopes between HTLV-1 and -2 and assayed for the ability to induce syncytia in BJAB cells and HeLa cells. We have identified a fusion domain composed of the first 64 amino acids at the amino terminus of the HTLV-2 transmembrane protein, p21, the retention of which was required for syncytium induction. Construction of replication-competent HTLV genomic clones allowed us to correlate the ability of HTLV-2 to induce syncytia with the ability to replicate in BJAB cells. Differences in the ability to induce syncytia were not due to differences in the levels of total or cell membrane-associated envelope or in the formation of multimers. Therefore, we have localized a fusion domain within the amino terminus of the transmembrane protein of HTLV-2 envelope that is necessary for syncytium induction and viral replication. PMID:9499049
Fernandez-Espla, María Dolores; Garault, Peggy; Monnet, Véronique; Rul, Françoise
2000-01-01
Streptococcus thermophilus CNRZ 385 expresses a cell envelope proteinase (PrtS), which is characterized in the present work, both at the biochemical and genetic levels. Since PrtS is resistant to most classical methods of extraction from the cell envelopes, we developed a three-step process based on loosening of the cell wall by cultivation of the cells in the presence of glycine (20 mM), mechanical disruption (with alumina powder), and enzymatic treatment (lysozyme). The pure enzyme is a serine proteinase highly activated by Ca2+ ions. Its activity was optimal at 37°C and pH 7.5 with acetyl-Ala-Ala-Pro-Phe-paranitroanilide as substrate. The study of the hydrolysis of the chromogenic and casein substrates indicated that PrtS presented an intermediate specificity between the most divergent types of cell envelope proteinases from lactococci, known as the PI and PIII types. This result was confirmed by the sequence determination of the regions involved in substrate specificity, which were a mix between those of PI and PIII types, and also had unique residues. Sequence analysis of the PrtS encoding gene revealed that PrtS is a member of the subtilase family. It is a multidomain protein which is maturated and tightly anchored to the cell wall via a mechanism involving an LPXTG motif. PrtS bears similarities to cell envelope proteinases from pyogenic streptococci (C5a peptidase and cell surface proteinase) and lactic acid bacteria (PrtP, PrtH, and PrtB). The highest homologies were found with streptococcal proteinases which lack, as PrtS, one domain (the B domain) present in cell envelope proteinases from all other lactic acid bacteria. PMID:11055922
Biserova, N M
2008-01-01
The problem of glial cells existing in parasitic and free living flatworms is correlated with organization of parenchyma in platyhelmintes. In the contrary to the widespread opinion that myelin-like envelopes and glial cells do not exist in the nervous system of parasitic flatworms, it has been shown by ultrastructural researches that Amphilina foliacea (Cestoda, Amphilinidea) has well developed glial cells and myelin-like envelopes in the ganglia and main cords, which include both glial cells and intercellular components. The aim of our research was to reveal and investigate in details structural components corresponding to the concept of the glial cell in the CNS of Grillotia erinaceus (Cestoda: Trypanorhyncha). Three types of glial cells have been found. The first type is the fibroblast-like glial cells; cells locate in the cerebral ganglion, contain in cytoplasm and extract out fibrillar matrix, form desmosomes and have supporting function. The glial cells of the second type form myeline-like envelope of the giant axons and bulbar nerves in scolex and have laminar cytoplasm. These cells are numerous and exceed in number the neurons bodies into the nerve. The glial cells of the third type form multilayer envelopes in the main nerve cords; extra cellular fibers and gap-junctions take place between the layers. There are contacts between the glial cells of the third type and excretory epithelium but specialized contacts with neurons have been not found. The existing of glial cells in free living and parasitic flatworms is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, S.K.
1986-01-01
Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulatedmore » strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.« less
Antineoplastic And Antiviral Properties Of Merocyanine 540
NASA Astrophysics Data System (ADS)
Sieber, Fritz
1989-03-01
Simultaneous exposure to the lipophilic photosensitizer, merocyanine 540, and light in the presence of serum (or certain serum components) and oxygen kills leukemia cells, lymphoma cells, neuroblastoma cells, cell-free enveloped viruses, cell-associated enveloped viruses, and virus-infected cells. The same treatment spares pluripotent hematopoietic stem cells, mature erythrocytes, factor VIII, von Willebrand factor, and probably other blood components. Merocyanine 540-mediated photosensitization is now being evaluated clinically as a means to eliminate residual tumor cells from autologous remission bone marrow grafts and preclinically as a means to inactivate pathogenic viruses in blood products.
Nuclear envelope: positioning nuclei and organizing synapses
Razafsky, David; Hodzic, Didier
2015-01-01
The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about Atype lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins. PMID:26079712
Emile, or on devastation: when virtual boundlessness meets inner emptiness.
Werbart, Andrzej
2014-01-01
The author's starting point is a psychoanalysis conducted with Emile, a teenager who was unable to form close relationships and was living in a virtual world, planning a school massacre. For him, virtual reality functioned as a bottomless container in which he was no longer a victim of bullying but rather a god. When the boundlessness of cyberspace encounters a "black hole" in the psyche, any fantasies can be put into virtual realization and actions. By recounting his wickedness, violence, destructiveness, and perversion, Emile could start restoring his self boundaries and create his own autobiographical narrative. Unable to sustain the pain of mourning his envelope of invulnerability and omnipotence, however, he prematurely terminated analysis. © 2014 The Psychoanalytic Quarterly, Inc.
Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing
2011-01-01
Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906
2016-11-28
olivocochlear reflex (MOCR), a feedback mechanism that controls gain of the outer hair cells, is thought to provide protection and enhancement for a listener in...effectively reduce the outer hair cell gain, depending on the stimulus frequency, level, and timing. Human Envelope Following Responses (EFRs
NASA Astrophysics Data System (ADS)
Martini, Luiz Cesar
2014-04-01
This article results from Introducing the Dimensional Continuous Space-Time Theory that was published in reference 1. The Dimensional Continuous Space-Time Theory shows a series of facts relative to matter, energy, space and concludes that empty space is inelastic, absolutely stationary, motionless, perpetual, without possibility of deformation neither can it be destroyed or created. A elementary cell of empty space or a certain amount of empty space can be occupied by any quantity of energy or matter without any alteration or deformation. As a consequence of these properties and being a integral part of the theory, the principles of Relativity Theory must be changed to become simple and intuitive.
Wang, Xinhai; Kochetkova, Irina; Haddad, Asmahan; Hoyt, Teri; Hone, David M; Pascual, David W
2005-05-31
Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1.
HIV envelope glycoprotein imaged at high resolution | Center for Cancer Research
The outer surface of the human immunodeficiency virus (HIV) is surrounded by an envelope studded with spike-shaped glycoproteins called Env that help the deadly virus identify, bind, and infect cells. When unbound, Env exists in a “closed” conformational state. Upon binding with target cells, such as CD4+ T cells, the protein transitions to an “open” configuration. Given that
NASA Astrophysics Data System (ADS)
Inai, Mizuho; Yamauchi, Masaya; Honda, Norihiro; Hazama, Hisanao; Tachikawa, Shoji; Nakamura, Hiroyuki; Nishida, Tomoki; Yasuda, Hidehiro; Kaneda, Yasufumi; Awazu, Kunio
2015-03-01
Traditional treatment options for prostate cancer are insufficient to cure advanced drug-resistant prostate cancer. Thus, as an alternative form of cancer therapy, photodynamic therapy (PDT) has become the main subject of intense investigation as a possible treatment modality. In this study, ultraviolet-inactivated viral vector, called hemagglutinating virus of Japan envelope (HVJ-E) was utilized to establish an effective delivery system for photosensitizer. Lipidated protoporphyrin IX (PpIX lipid) was inserted in HVJ-E by centrifugation to create a new drug delivering system that allows selective accumulation of photosensitizers in cancer cells. To study in vitro drug release mechanism of porphyrus envelope, the ultra-high voltage electron microscope tomography was applied. Next, to evaluate the photodynamic efficiency of porphyrus envelope for hormone antagonistic prostate cancer cells (PC-3), uptake of porphyrus envelope derived PpIX lipid and PpIX induced from exogenously administered precursor of 5-aminolevulinic acid hydrochloride (5-ALA) were compared by measuring fluorescence intensity of PpIX. Finally, to evaluate the efficacy of porphyrus envelope-PDT, laser light at a wavelength of 405 nm was irradiated to PC-3 cells. As a result, incorporation of porphyrus envelope-derived PpIX lipid occurred via membrane fusion, giving the highest fluorescence intensity when compared to 5-ALA-induced PpIX. Also, results from PDT experiment revealed the 28.6 × 103-fold and 206-fold increase in therapeutic efficacy when compared to those of PDT using 5-ALA induced PpIX and PpIX lipid, respectively. Our findings suggest how porphyrus envelope can induce efficient accumulation of PpIX lipid, which can enhance the therapeutic efficacy of PDT against hormone antagonistic prostate cancer.
Mechanism of Dissolution of Envelopes of the Extreme Halophile Halobacterium cutirubrum1
Onishi, H.; Kushner, D. J.
1966-01-01
Onishi, H. (National Research Council, Ottawa, Ontario, Canada), and D. J. Kushner. Mechanism of dissolution of envelopes of the extreme halophile Halobacterium cutirubrum. J. Bacteriol. 91:646–652. 1966.—Envelopes of Halobacterium cutirubrum dissolved rapidly in media of low ionic strength. Heating partially inhibited breakdown, probably because of nonspecific protein coagulation rather than inactivation of a lytic enzyme(s). Dissolution of envelopes in water did not involve splitting of peptide bonds or protein-lipid bonds, or any extensive breakdown of carbohydrate polymers. Dissolution was increased by alcohols and urea, even at high salt concentrations, but was not affected by metabolic inhibitors. Thus, no evidence was found for a dilution-activated lytic enzyme that contributes to envelope breakdown. Cells of H. cutirubrum were stable in 2 m NaCl, but lysis occurred in 2 m KCl or NH4Cl. This lysis did not involve an extensive breakdown of the envelope. No evidence for different sites of Na+, K+, and NH4+ action was obtained from the pattern of release of envelope constituents in different concentrations of these salts. Ultracentrifugation studies showed that adding salts to envelopes that had been dissolved in water led to a nonspecific reaggregation of envelope material. No difference was seen between the effects of KCl and NaCl, except at 3 to 4 m concentrations where KCl caused more aggregation. The preferential effect of Na+ on intact cells is probably due to its ability specifically to prevent leakage rather than to an overall effect on envelope integrity. Images PMID:5883109
Radeck, Jara; Fritz, Georg; Mascher, Thorsten
2017-02-01
The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.
Kim, Jiyeun Kate; Son, Dae Woo; Kim, Chan-Hee; Cho, Jae Hyun; Marchetti, Roberta; Silipo, Alba; Sturiale, Luisa; Park, Ha Young; Huh, Ye Rang; Nakayama, Hiroshi; Fukatsu, Takema; Molinaro, Antonio; Lee, Bok Luel
2015-01-01
The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis. PMID:26116716
2018-01-01
ABSTRACT Flagellum-driven motility of Salmonella enterica serovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population of Salmonella, resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhD4C2 with respect to proteolytic degradation. Information concerning the environmental cues controlling expression of rflP and thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants of Salmonella Typhimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ24 (RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhD4C2 via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response. PMID:29717015
Immunomodulatory effects of exosomes produced by virus-infected cells.
Petrik, Juraj
2016-08-01
Viruses have developed a spectrum of ways to modify cellular pathways to hijack the cell machinery for the synthesis of their nucleic acid and proteins. Similarly, they use intracellular vesicular mechanisms of trafficking for their assembly and eventual release, with a number of viruses acquiring their envelope from internal or plasma cell membranes. There is an increasing number of reports on viral exploitation of cell secretome pathways to avoid recognition and stimulation of the immune response. Extracellular vesicles (EV) containing viral particles have been shown to shield viruses after exiting the host cell, in some cases challenging the boundaries between viral groups traditionally characterised as enveloped and non-enveloped. Apart from viral particles, EV can spread the virus also carrying viral genome and can modify the target cells through their cargo of virus-coded miRNAs and proteins as well as selectively packaged cellular mRNAs, miRNAs, proteins and lipids, differing in composition and quantities from the cell of origin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Genetics Home Reference: mandibuloacral dysplasia
... proteins act as scaffolding (supporting) components of the nuclear envelope, which is the membrane that surrounds the nucleus in cells. The nuclear envelope regulates the movement of molecules into and ...
Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing
2012-02-01
Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori
2008-01-05
Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-{gamma}-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activitymore » against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV{sub KU2}. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-{gamma} production, higher levels of vaccine-specific IFN-{gamma} producing CD4{sup +} cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.« less
Kinet, Sandrina; Swainson, Louise; Lavanya, Madakasira; Mongellaz, Cedric; Montel-Hagen, Amélie; Craveiro, Marco; Manel, Nicolas; Battini, Jean-Luc; Sitbon, Marc; Taylor, Naomi
2007-01-01
Background We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding. Results As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell. Conclusion Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes. PMID:17504522
Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea
2011-07-01
In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.
Määttä, Arto; DiColandrea, Teresa; Groot, Karen; Watt, Fiona M.
2001-01-01
Envoplakin, a member of the plakin family of cytoskeletal linker proteins, is localized in desmosomes of stratified epithelial cells and is a component of the epidermal cornified envelope. Gene targeting in mouse embryonic stem cells was used to generate a null allele of envoplakin. No envoplakin transcripts from the targeted allele could be detected in the skin of newborn mice. Mice homozygous for the targeted allele were born in the normal Mendelian ratio and were fertile. They did not develop any discernible pathological phenotype up to the age of 1 year. The ultrastructural appearance of cornified envelopes from adult epidermis was indistinguishable between wild-type and knockout mice, and there was no evidence that the absence of envoplakin affected the subcellular distribution of periplakin or desmoplakin, two other plakins found in desmosomes. The proportion of immature cornified envelopes in the epidermis of newborn mice was greater in envoplakin-null animals than in heterozygous littermates or wild-type mice, and the envelopes had a larger surface area. This correlated with a slight delay in barrier acquisition during embryonic development. We conclude that although envoplakin is part of the scaffolding on which the cornified envelope is assembled, it is not essential for envelope formation or epidermal barrier function. PMID:11564887
Ruangsawasdi, Nisarat; Zehnder, Matthias; Weber, Franz E
2014-02-01
In pulpless immature human premolars implanted in rodents, this study investigated whether fibrin gel offered advantages over leaving the root canal empty regarding soft tissue ingrowth and cell differentiation. Root canals of extracted human immature premolars (n = 12) were accessed and then irrigated with 5% sodium hypochlorite followed by 17% ethylenediaminetetraacetic acid. Root canals were then either left empty or filled with a fibrin gel (n = 6 each) before being placed subcutaneously on top of the calvarial bone of rats (1 tooth per rat) for 12 weeks. After sacrifice, teeth were histologically assessed. Tissue ingrowth was quantified and compared between groups using the Mann-Whitney U test (P < .05). Cells adhering to the pulp canal wall were immunohistochemically screened for the presence of bone sialoprotein (BSP) and dentin sialoprotein (DSP). More tissue grew into the pulp space when teeth were filled with fibrin gel (P < .05). The presence of fibrin gel affected not only the extent of tissue ingrowth but also tissue morphology and differentiation of cells contacting the dentinal wall. In the fibrin gel group, newly formed tissue was similar to normal pulp, constituted of inner pulp, cell-rich zone, cell-free zone, and an apparent odontoblast layer, which stained positive for BSP and DSP. Newly formed blood vessels were also more abundant compared with the initially empty root canals. Under the conditions of this study, fibrin gel improved cell infiltration and cell-dentin interaction. Both are necessary for pulp tissue regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Virus-mimetic nanovesicles as a versatile antigen-delivery system
Zhang, Pengfei; Chen, Yixin; Zeng, Yun; Shen, Chenguang; Li, Rui; Guo, Zhide; Li, Shaowei; Zheng, Qingbing; Chu, Chengchao; Wang, Zhantong; Zheng, Zizheng; Tian, Rui; Ge, Shengxiang; Zhang, Xianzhong; Xia, Ning-Shao; Liu, Gang; Chen, Xiaoyuan
2015-01-01
It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses. PMID:26504197
Vanderlinde, Elizabeth M.; Magnus, Samantha A.; Tambalo, Dinah D.; Koval, Susan F.; Yost, Christopher K.
2011-01-01
The bacterial cell envelope is of critical importance to the function and survival of the cell; it acts as a barrier against harmful toxins while allowing the flow of nutrients into the cell. It also serves as a point of physical contact between a bacterial cell and its host. Hence, the cell envelope of Rhizobium leguminosarum is critical to cell survival under both free-living and symbiotic conditions. Transposon mutagenesis of R. leguminosarum strain 3841 followed by a screen to isolate mutants with defective cell envelopes led to the identification of a novel conserved operon (RL3499-RL3502) consisting of a putative moxR-like AAA+ ATPase, a hypothetical protein with a domain of unknown function (designated domain of unknown function 58), and two hypothetical transmembrane proteins. Mutation of genes within this operon resulted in increased sensitivity to membrane-disruptive agents such as detergents, hydrophobic antibiotics, and alkaline pH. On minimal media, the mutants retain their rod shape but are roughly 3 times larger than the wild type. On media containing glycine or peptides such as yeast extract, the mutants form large, distorted spheres and are incapable of sustained growth under these culture conditions. Expression of the operon is maximal during the stationary phase of growth and is reduced in a chvG mutant, indicating a role for this sensor kinase in regulation of the operon. Our findings provide the first functional insight into these genes of unknown function, suggesting a possible role in cell envelope development in Rhizobium leguminosarum. Given the broad conservation of these genes among the Alphaproteobacteria, the results of this study may also provide insight into the physiological role of these genes in other Alphaproteobacteria, including the animal pathogen Brucella. PMID:21357485
A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourez, Thomas; APHP, GH Saint-Louis-Lariboisiere, Laboratoire de Bacteriologie-Virologie, F-75010 Paris; Universite Paris 7 Denis Diderot, F-75010 Paris
2011-10-25
We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimericmore » particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.« less
Identification of a major polypeptide of the nuclear pore complex
1982-01-01
The nuclear pore complex is a prominent structural component of the nuclear envelope that appears to regulate nucleoplasmic molecular movement. Up to now, none of its polypeptides have been defined. To identify possible pore complex proteins, we fractionated rat liver nuclear envelopes and microsomal membranes with strong protein perturbants into peripheral and intrinsic membrane proteins, and compared these fractions on SDS gels. From this analysis, we identified a prominent 190-kilodalton intrinsic membrane polypeptide that occurs specifically in nuclear envelopes. Lectin binding studies indicate that this polypeptide (gp 190) is the major nuclear envelope glycoprotein. Upon treatment of nuclear envelopes with Triton X-100, gp 190 remains associated with a protein substructure of the nuclear envelope consisting of pore complexes and nuclear lamina. We prepared monospecific antibodies to gp 190 for immunocytochemical localization. Immunofluorescence staining of tissue culture cells suggests that gp 190 occurs exclusively in the nucleus during interphase. This polypeptide becomes dispersed throughout the cell in mitotic prophase when the nuclear envelope is disassembled, and subsequently returns to the nuclear surfaces during telophase when the nuclear envelope is reconstructed. Immunoferritin labeling of Triton-treated rat liver nuclei demonstrates that gp 190 occurs exclusively in the nuclear pore complex, in the regions of the cytoplasmic (and possibly nucleoplasmic) pore complex annuli. A polypeptide that cross-reacts with gp 190 is present in diverse vertebrate species, as shown by antibody labeling of nitrocellulose SDS gel transfers. On the basis of its biochemical characteristics, we suggest that gp 190 may be involved in anchoring the pore complex to nuclear envelope membranes. PMID:7153248
Direction of flagellar rotation in bacterial cell envelopes.
Ravid, S; Eisenbach, M
1984-01-01
Cell envelopes with functional flagella, isolated from wild-type strains of Escherichia coli and Salmonella typhimurium by formation of spheroplasts with penicillin and subsequent osmotic lysis, demonstrate counterclockwise (CCW)-biased rotation when energized with an electron donor for respiration, DL-lactate. Since the direction of flagellar rotation in bacteria is central to the expression of chemotaxis, we studied the cause of this bias. Our main observations were: (i) spheroplasts acquired a clockwise (CW) bias if instead of being lysed they were further incubated with penicillin; (ii) repellents temporarily caused CW rotation of tethered bacteria and spheroplasts but not of their derived cell envelopes; (iii) deenergizing CW-rotating cheV bacteria by KCN or arsenate treatment caused CCW bias; (iv) cell envelopes isolated from CW-rotating cheC and cheV mutants retained the CW bias, unlike envelopes isolated from cheB and cheZ mutants, which upon cytoplasmic release lost this bias and acquired CCW bias; and (v) an inwardly directed, artificially induced proton current rotated tethered envelopes in CCW direction, but an outwardly directed current was unable to rotate the envelopes. It is concluded that (i) a cytoplasmic constituent is required for the expression of CW rotation (or repression of CCW rotation) in strains which are not defective in the switch; (ii) in the absence of this cytoplasmic constituent, the motor is not reversible in such strains, and it probably is mechanically constricted so as to permit CCW sense of rotation only; (iii) the requirement of CW rotation for ATP is not at the level of the motor or the switch but at one of the preceding functional steps of the chemotaxis machinery; (iv) the cheC and cheV gene products are associated with the cytoplasmic membrane; and (v) direct interaction between the switch-motor system and the repellent sensors is improbable. Images PMID:6370958
Schlecht-Louf, Géraldine; Mangeney, Marianne; El-Garch, Hanane; Lacombe, Valérie; Poulet, Hervé; Heidmann, Thierry
2014-01-01
We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins that is critical for virus propagation in vivo. The envelope-mediated immunosuppression was assessed by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation (i) specifically abolishes immunosuppressive activity without affecting the "mechanical" function of the envelope protein and (ii) significantly enhances humoral and cellular immune responses elicited against the virus. The objective of this work was to study the immunosuppressive activity of the envelope protein (p15E) of feline leukemia virus (FeLV) and evaluate the effect of its abolition on the efficacy of a vaccine against FeLV. Here we demonstrate that the FeLV envelope protein is immunosuppressive in vivo and that this immunosuppressive activity can be "switched off" by targeted mutation of a specific amino acid. As a result of the introduction of the mutated envelope sequence into a previously well characterized canarypox virus-vectored vaccine (ALVAC-FeLV), the frequency of vaccine-induced FeLV-specific gamma interferon (IFN-γ)-producing cells was increased, whereas conversely, the frequency of vaccine-induced FeLV-specific interleukin-10 (IL-10)-producing cells was reduced. This shift in the IFN-γ/IL-10 response was associated with a higher efficacy of ALVAC-FeLV against FeLV infection. This study demonstrates that FeLV p15E is immunosuppressive in vivo, that the immunosuppressive domain of p15E can modulate the FeLV-specific immune response, and that the efficacy of FeLV vaccines can be enhanced by inhibiting the immunosuppressive activity of the IS domain through an appropriate mutation.
Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette; Belsham, Graham J
2013-11-01
The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of "self-tagged" empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines.
van Winden, Vincent J. C.; Sparrius, Marion; van de Weerd, Robert; Speer, Alexander; Ummels, Roy; Sherman, David R.
2017-01-01
The cell envelope of mycobacteria is a highly unique and complex structure that is functionally equivalent to that of Gram-negative bacteria to protect the bacterial cell. Defects in the integrity or assembly of this cell envelope must be sensed to allow the induction of stress response systems. The promoter that is specifically and most strongly induced upon exposure to ethambutol and isoniazid, first line drugs that affect cell envelope biogenesis, is the iniBAC promoter. In this study, we set out to identify the regulator of the iniBAC operon in Mycobacterium marinum using an unbiased transposon mutagenesis screen in a constitutively iniBAC-expressing mutant background. We obtained multiple mutants in the mce1 locus as well as mutants in an uncharacterized putative transcriptional regulator (MMAR_0612). This latter gene was shown to function as the iniBAC regulator, as overexpression resulted in constitutive iniBAC induction, whereas a knockout mutant was unable to respond to the presence of ethambutol and isoniazid. Experiments with the M. tuberculosis homologue (Rv0339c) showed identical results. RNAseq experiments showed that this regulatory gene was exclusively involved in the regulation of the iniBAC operon. We therefore propose to name this dedicated regulator iniBAC Regulator (IniR). IniR belongs to the family of signal transduction ATPases with numerous domains, including a putative sugar-binding domain. Upon testing different sugars, we identified trehalose as an activator and metabolic cue for iniBAC activation, which could also explain the effect of the mce1 mutations. In conclusion, cell envelope stress in mycobacteria is regulated by IniR in a cascade that includes trehalose. PMID:29281637
Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection
Millet, Jean Kaoru; Whittaker, Gary R.
2016-01-01
Viral pseudotyped particles (pp) are enveloped virus particles, typically derived from retroviruses or rhabdoviruses, that harbor heterologous envelope glycoproteins on their surface and a genome lacking essential genes. These synthetic viral particles are safer surrogates of native viruses and acquire the tropism and host entry pathway characteristics governed by the heterologous envelope glycoprotein used. They have proven to be very useful tools used in research with many applications, such as enabling the study of entry pathways of enveloped viruses and to generate effective gene-delivery vectors. The basis for their generation lies in the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins of other viruses into a pseudotyped virus particle. These can be engineered to contain reporter genes such as luciferase, enabling quantification of virus entry events upon pseudotyped particle infection with susceptible cells. Here, we detail a protocol enabling generation of MLV-based pseudotyped particles, using the Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) as an example of a heterologous envelope glycoprotein to be incorporated. We also describe how these particles are used to infect susceptible cells and to perform a quantitative infectivity readout by a luciferase assay. PMID:28018942
Navarre, William Wiley; Schneewind, Olaf
1999-01-01
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836
Ma, Xiao-Xin; Zhu, Jun-Quan; Zhou, Hong; Yang, Wan-Xi
2012-02-01
The egg envelope is an essential structure occurring during oogenesis. It plays an important role during the process of fertilization in the large yellow croaker Pseudosciaena crocea. Elucidation of egg envelope formation helps us to understand fertilization mechanisms in teleosts. In the present work, we studied the formation of egg envelope in P. crocea by light microscopy, as well as by transmission and scanning electron microscopy. Four layers exist outside the oocyte plasmalemma, i.e., theca cell layer, basal membrane, granulosa cell layer and zona radiata. According to our observation, zona radiata is a multilaminar structure just like the same structure reported in teleosts, but the origin of this structure is a little different. Before it is formed, a peripheral space filled with different density of vesicles is the place where zona radiata is formed. Zona radiata (Z1) is secreted only by oocyte itself, it belongs to the primary envelope; zona radiata 2 (Z2) and zona radiata 3 (Z3) belong to the secondary envelope, because the two layers are formed after granulosa cells appear, and microvilli participate this process. It is very interesting that Z2 and Z3 are situated between Z1 and the granulosa cell first, but they translocate to the other side of Z1. This microanatomy difference may due to the participation of microvilli. The new finding about egg envelope formation in P. crocea will help us to do further investigation on fertilization mechanisms and will make artificial breeding possible which may contribute to the resource recovery of this species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Numerical simulation of dark envelope soliton in plasma
NASA Astrophysics Data System (ADS)
Wang, Fang-Ping; Han, Juan-fang; Zhang, Jie; Gao, Dong-Ning; Li, Zhong-Zheng; Duan, Wen-Shan; Zhang, Heng
2018-03-01
One-dimensional (1-D) particle-in-cell simulation is used to study the propagation of dark envelop solitons described by the nonlinear Schrödinger equation (NLSE) in electron-ion plasmas. The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the dark envelope soliton in plasma. It is demonstrated by our numerical simulation that there is dark envelope soliton in electron-ion plasmas. The numerical results are in good agreements with the analytical ones from the NLSE which is obtained from the reductive perturbation method. The limitation of the amplitude of dark envelop solitons in plasma is noticed.
Antibody-mediated targeting of replication-competent retroviral vectors.
Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki
2003-05-20
Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.
Genetics Home Reference: triple A syndrome
... understood. Within cells, ALADIN is found in the nuclear envelope, the structure that surrounds the nucleus and ... protein from reaching its proper location in the nuclear envelope. The absence of ALADIN in the nuclear ...
Valdivieso-Torres, Leonardo; Sarangi, Anindita; Whidby, Jillian; Marcotrigiano, Joseph; Roth, Monica J
2015-12-30
Retargeting of gammaretroviral envelope proteins has shown promising results in the isolation of novel isolates with therapeutic potential. However, the optimal conditions required to obtain high-affinity retargeted envelope proteins with narrow tropism are not understood. This study highlights the advantage of constrained peptides within receptor binding domains and validates the random library screening technique of obtaining novel retargeted Env proteins. Using a modified vector backbone to screen the envelope libraries on 143B osteosarcoma cells, three novel and unique retargeted envelopes were isolated. The use of complex disulfide bonds within variable regions required for receptor binding is found within natural gammaretroviral envelope isolates. Interestingly, two of the isolates, named AII and BV2, have a pair of cysteines located within the randomized region of 11 amino acids similar to that identified within the CP Env, an isolate identified in a previous Env library screen on the human renal carcinoma Caki-1 cell line. The amino acids within the randomized region of AII and BV2 envelopes that are essential for viral infection have been identified in this study and include these cysteine residues. Through mutagenesis studies, the putative disulfide bond pairs including and beyond the randomized region were examined. In parallel, the disulfide bonds of CP Env were identified using mass spectrometry. The results indicate that this pair of cysteines creates the structural context to position key hydrophobic (F and W) and basic (K and H) residues critical for viral titer and suggest that AII, BV2, and CP internal cysteines bond together in distinct ways. Retargeted gammaretroviral particles have broad applications for therapeutic use. Although great advances have been achieved in identifying new Env-host cell receptor pairs, the rules for designing optimal Env libraries are still unclear. We have found that isolates with an additional pair of cysteines within the randomized region have the highest transduction efficiencies. This emphasizes the importance of considering cysteine pairs in the design of new libraries. Furthermore, our data clearly indicate that these cysteines are essential for viral infectivity by presenting essential residues to the host cell receptor. These studies facilitate the screening of Env libraries for functional entry into target cells, allowing the identification of novel gammaretroviral Envs targeting alternative host cell receptors for gene and protein delivery. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
A Role for Caenorhabditis elegans Importin IMA-2 in Germ Line and Embryonic Mitosis
Geles, Kenneth G.; Johnson, Jeffrey J.; Jong, Sena; Adam, Stephen A.
2002-01-01
The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis. PMID:12221121
Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry
Moller-Tank, Sven; Kondratowicz, Andrew S.; Davey, Robert A.; Rennert, Paul D.
2013-01-01
The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence. PMID:23698310
Death of mitochondria during programmed cell death of leaf mesophyll cells.
Selga, Tūrs; Selga, Maija; Pāvila, Vineta
2005-12-01
The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.
Data on the association of the nuclear envelope protein Sun1 with nucleoli.
Moujaber, Ossama; Omran, Nawal; Kodiha, Mohamed; Pié, Brigitte; Cooper, Ellis; Presley, John F; Stochaj, Ursula
2017-08-01
SUN proteins participate in diverse cellular activities, many of which are connected to the nuclear envelope. Recently, the family member SUN1 has been linked to novel biological activities. These include the regulation of nucleoli, intranuclear compartments that assemble ribosomal subunits. We show that SUN1 associates with nucleoli in several mammalian epithelial cell lines. This nucleolar localization is not shared by all cell types, as SUN1 concentrates at the nuclear envelope in ganglionic neurons and non-neuronal satellite cells. Database analyses and Western blotting emphasize the complexity of SUN1 protein profiles in different mammalian cells. We constructed a STRING network which identifies SUN1-related proteins as part of a larger network that includes several nucleolar proteins. Taken together, the current data highlight the diversity of SUN1 proteins and emphasize the possible links between SUN1 and nucleoli.
Sharma, Sanjai; Murai, Fukashi; Miyanohara, Atsushi; Friedmann, Theodore
1997-01-01
Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 105 colony-forming units per ml. PMID:9380714
Proteins required for lipopolysaccharide assembly in Escherichia coli form a trans-envelope complex†
Chng, Shu-Sin; Gronenberg, Luisa S.; Kahne, Daniel
2010-01-01
The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential Lpt proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes, and that they co-purify. This constitutes the first evidence that the Lpt proteins form a trans-envelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope. PMID:20446753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, Man I; O’Dowd, John M.; Chughtai, Kamila
2016-10-15
Human Cytomegalovirus (HCMV) infection is compromised in cells lacking p53, a transcription factor that mediates cellular stress responses. In this study we have investigated compromised functional virion production in cells with p53 knocked out (p53KOs). Infectious center assays found most p53KOs released functional virions. Analysis of electron micrographs revealed modestly decreased capsid production in infected p53KOs compared to wt. Substantially fewer p53KOs displayed HCMV-induced infoldings of the inner nuclear membrane (IINMs). In p53KOs, fewer capsids were found in IINMs and in the cytoplasm. The deficit in virus-induced membrane remodeling within the nucleus of p53KOs was mirrored in the cytoplasm, withmore » a disproportionately smaller number of capsids re-enveloped. Reintroduction of p53 substantially recovered these deficits. Overall, the absence of p53 contributed to inhibition of the formation and function of IINMs and re-envelopment of the reduced number of capsids able to reach the cytoplasm. -- Highlights: •The majority of p53KO cells release fewer functional virions than wt cells. •Nucleocapsids do not efficiently exit the nucleus in p53KO cells. •Infoldings of the inner nuclear membrane are not efficiently formed in p53KO cells. •Cytoplasmic capsids are not efficiently re-enveloped in p53KO cells. •Reintroduction of p53 largely ameliorates these phenotypes.« less
Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz
2012-01-01
Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829
The molecular mechanisms on glomangiopericytoma invasion
2013-01-01
Purpose To observed the imaging and pathological features of the glomangiopericytoma. Experimental design In this paper we report a typical case of glomangiopericytoma arising in the skull base area and summarize the clinical manifestations, imaging and pathological features of such diseases. Results Immunohistochemical staining confirmed the tumor cells were strongly positive to Vim, SMA, MSA and negative to CD31, CD34. Partial cells were positive to FVIII. The imaging can’t confirm the diagnosis but indicate the the tumor has intact envelope.The cells in the tumor envelope is positive to Vim and negative SMA and FVIII. These findings were compatible with glomangiopericytoma and the cells in the tumor envelope is not glomangiopericytoma cells. Conclusion In view of the clinical and pathological features of the glomangiopericytoma, we believe that the surgery is the best treatment so far and the tumor can be resected completely. The above results can be preliminary reason to explain the low recurrence of such diseases. PMID:24074285
Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C
2009-11-01
Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.
NASA Astrophysics Data System (ADS)
Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.
2017-06-01
Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper
De Voe, Irving W.; Oginsky, Evelyn L.
1969-01-01
The susceptibility of a marine bacterium, designated isolate c-A1, to lysis in distilled water and in salt solutions has been found to be a function of Na+ concentration. Optical densities of cells pre-exposed to 0.05 m MgCl2 were maintained in 1.0 m KCl, whereas those of cells pre-exposed to 1.0 m NaCl were not maintained at any KCl concentration tested. Cells transferred from MgCl2 to low concentrations of NaCl underwent more extensive lysis than did those transferred to distilled water. The degree of disruption of cells transferred to distilled water from mixtures of 0.05 m MgCl2 and NaCl (0 to 1.0 m) was dependent on the concentration of NaCl; similar results were obtained with LiCl, but not with KCl. In electron micrographs of thin sections, c-A1 cell envelopes consisted of two double-track layers which fractured and peeled apart on lysis after pre-exposure to NaCl-MgCl2 mixtures. Envelope eruptions or “hernias” occurred only in lysed cells pre-exposed to NaCl alone. No evidence for a functional lytic enzyme was found. Comparative studies on a terrestrial pseudomonad with a multilayered envelope indicated that preexposure to NaCl did not enhance the susceptibility of this cell to lysis in distilled water. The lytic susceptibility of the marine bacterium is considered to be the consequence of competition between specific monovalent cations and Mg++ for electrostatic interactions with components of the cell envelope of this organism. Images PMID:5788707
Puech, V; Chami, M; Lemassu, A; Lanéelle, M A; Schiffler, B; Gounon, P; Bayan, N; Benz, R; Daffé, M
2001-05-01
With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes.
Baffet, Alexandre D; Hu, Daniel J; Vallee, Richard B
2015-06-22
Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2 via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell-cycle control of this behavior are unknown. We now find that Cdk1 serves as a direct master controller for NE dynein recruitment in neural stem cells and HeLa cells. Cdk1 phosphorylates conserved sites within RanBP2 and activates BicD2 binding and early dynein recruitment. Late recruitment is triggered by a Cdk1-induced export of CENP-F from the nucleus. Forced NE targeting of BicD2 overrides Cdk1 inhibition, fully rescuing dynein recruitment and nuclear migration in neural stem cells. These results reveal how NE dynein recruitment is cell-cycle regulated and identify the trigger mechanism for apical nuclear migration in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Kan; Zhao, Chaofei; Chen, Jianwen; Wu, Shengpan; Yao, Yuanxin; Wu, Chong; Luo, Guoxiong; Zhang, Xu
2016-06-01
Objective To establish selenoprotein P, plasma 1 (SEPP1) gene recombinant lentiviral vector and investigate the effect of SEPP1 on the proliferation of human clear cell renal cell carcinoma (ccRCC) cells. Methods cDNA sequence of SEPP1 was cloned from the total cDNA of HEK293T cells by PCR. Then, the cDNA fragment was combined with the pLV-EGFP(2A)Puro vector and the constructed plasmid pLV-EGFP(2A)Puro-SEPP1 was transfected into HEK293T cells for packaging the virus. Forty-eight hours after transfected with the virus supernatant, the level of SEPP1 protein in 769-P and 786-O cells were tested by Western blotting. Cells were divided into recombinant lentivirus-infected cells, empty vector lentivirus-infected cells and the blank control cells. Cell proliferation rate was detected by MTS assay, colony forming ability was evaluated by plate clony formation assay and cell cycle change was assayed by flow cytometry after transfected with pLV-EGFP(2A)Puro-SEPP1 or empty pLV-EGFP(2A)Puro vector. Results Enzyme digestion analysis and DNA sequencing showed that the recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 was constructed successfully. After being infected by the virus supernatant, the 786-O and 769-P cells expressed EGFP. Compared with the empty vector group and the blank control group, expression level of SEPP1 in the experimental group was much higher. The cell proliferative ability was inhibited in the cells overexpressing SEPP1, and the colony forming ability of SEPP1-overexpressed cells evidently decreased. Cell cycle was arrested in G2/M phase in 786-O cells overexpressing SEPP1. Conclusion The recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 has been constructed successfully. Overexpression of SEPP1 could significantly reduce the proliferation rate of 786-O and 769P cells, and cause G2/M phase arrest of 786-O cells.
Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul
2018-03-01
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes trapped inside the cell within the endosomal recycling compartment. Intracellular trapping resulted in a loss of envelope protein on released particles and a corresponding loss of infectivity. Mutations of specific trafficking motifs in the envelope protein tail prevented its trapping in the recycling compartment. These results establish that trafficking to the endosomal recycling compartment is an essential step in HIV envelope protein particle incorporation. Copyright © 2018 American Society for Microbiology.
[Functional morphology of blowfly Calliphora vicina hemocytes].
Kind, T V
2012-01-01
In the hemolymph of Calliphora seven types of hemocytes were revealed. These are prohemocytes, which are the stem cells, stable and unstable hyaline cells, thrombocytoids, spindle cells, juvenile plasmatocytes and plasmatocytes I-IV, which represent sequential stages of one cell line differentiation were registered. The margin between them is completion of the crop emptying and beginning of wandering stage. In the feeding and crop emptying larvae take place rising of hyaline cells, thrombocytoids and hyaline cells amount with parallel growth of their defense function. The second wave of hemogenesis occur in the end of crop emptying period. It is accompanied by burst of plasmatocyte I production with their subsequent differentiation to plasmatocytes II-IV. Production of stable hyaline cells and respectively prothrombocytoids may be regulated not only by hormonal background but also by inorganic or organic particles invaded into the hemocel. Three types of hemocytes are involved in loosing of hemolymph from alien particles, notably thrombocytoids, juvenile plasmatocytes and plasmatocytes I and II. Thrombocytoids are responsible for parasitic eggs encapsulation. In addition they can phagocytize tiny organic and inorganic particles. Juvenile plasmatocytes respond to alien invasion almost as quickly as thrombocytoids at the onset of invasion. Plasmatocytes I and II start phagocytosis more slowly, hours post invasion, frequently accumulating the particles previously catched by thrombocytoids. Plasmatocytes I can absorb foreign particles and group in morules and can also surround filled thrombocytoids forming distinctive capsules. Both morules and capsules are temporary structures and disintegrate some hours lately. It is supposed the existence of three levels of immune defence: the fast response reaction of thrombocytoids and juvenile plasmatocytes and slow cellular reactions of plasmatocytes I. They are prerequisites for more extensive humoral response.
A Cell-Permeable Inhibitor to Trap Gαq Proteins in the Empty Pocket Conformation
Schmitz, Anna-Lena; Schrage, Ramona; Gaffal, Evelyn; Charpentier, Thomas H.; Wiest, Johannes; Hiltensperger, Georg; Morschel, Julia; Hennen, Stephanie; Häußler, Daniela; Horn, Velten; Wenzel, Daniela; Grundmann, Manuel; Büllesbach, Katrin M.; Schröder, Ralf; Brewitz, H. Henning; Schmidt, Johannes; Gomeza, Jesús; Galés, Céline; Fleischmann, Bernd K.; Tüting, Thomas; Imhof, Diana; Tietze, Daniel; Gütschow, Michael; Holzgrabe, Ulrike; Sondek, John; Harden, T. Kendall; Mohr, Klaus; Kostenis, Evi
2015-01-01
SUMMARY In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be “frozen” pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors. PMID:25036778
Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.
Melloy, Patricia G; Rose, Mark D
2017-09-15
Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.
Rahman, Mohammad M; Munzig, Mandy; Kaneshiro, Kiyomi; Lee, Brandon; Strome, Susan; Müller-Reichert, Thomas; Cohen-Fix, Orna
2015-12-15
Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions. The paired-nuclei phenotype was caused by a defect in forming a gap in the nuclear envelopes at the interface between the two pronuclei during the first mitotic division. This was accompanied by defects in chromosome congression and alignment of the maternal and paternal metaphase plates relative to each other. Perturbing chromosome congression by other means also resulted in failure to disassemble the nuclear envelope between the two pronuclei. Our data further show that PLK-1 is needed for nuclear envelope breakdown during early embryogenesis. We propose that during the first zygotic division, PLK-1-dependent chromosome congression and metaphase plate alignment are necessary for the disassembly of the nuclear envelope between the two pronuclei, ultimately allowing intermingling of the maternal and paternal chromosomes. © 2015 Rahman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells
Gu, Mingyu; LaJoie, Dollie; Chen, Opal S.; von Appen, Alexander; Ladinsky, Mark S.; Redd, Michael J.; Nikolova, Linda; Bjorkman, Pamela J.; Sundquist, Wesley I.; Ullman, Katharine S.; Frost, Adam
2017-01-01
Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope. PMID:28242692
Chiu, Mei-Wui; Shih, Hsiu-Ming; Yang, Tsung-Han; Yang, Yun-Liang
2007-05-01
Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.
Gordon, Shari N.; Doster, Melvin N; Kines, Rhonda C.; Keele, Brandon F; Cofano, Egidio Brocca; Guan, Yongjun; Pegu, Poonam; Liyanage, Namal P.M.; Vaccari, Monica; Cuburu, Nicolas; Buck, Christopher B.; Ferrari, Guido; Montefiori, David; Piatak, Mike; Lifson, Jeffrey D; Xenophontos, Anastasia M.; Venzon, David; Robert-Guroff, Marjorie; Graham, Barney S.; Lowy, Douglas R.; Schiller, John T.; Franchini, Genoveffa
2015-01-01
The human papilloma virus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of non human primates and mice. Intra-vaginal vaccination with HPV-PsVs expressing SIV genes, combined with an intra-muscular gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with intramuscular immunization with ALVAC-SIV vaccines, followed by intra-vaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T-cells in the female genital tract. Using a stringent repeated low dose intra-vaginal challenge with the highly pathogenic SIVmac251, we show that while these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High avidity antibody responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, while virus levels in mucosal tissues were inversely correlated with anti-envelope CD4+T-cell responses. CD8+T-cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8+T-cells in virus control. This study highlights the importance of CD8+ cells and anti-envelope CD4+ T-cell in curtailing virus replication and anti-envelope V1/V2 antibodies in preventing SIVmac251 acquisition. PMID:25398324
Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability.
Takaki, Tohru; Montagner, Marco; Serres, Murielle P; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J; Sahai, Erik; Petronczki, Mark
2017-07-24
Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.
Envelope Protein Dynamics in Paramyxovirus Entry
Plattet, Philippe; Plemper, Richard K.
2013-01-01
ABSTRACT Paramyxoviruses include major pathogens with significant global health and economic impact. This large family of enveloped RNA viruses infects cells by employing two surface glycoproteins that tightly cooperate to fuse their lipid envelopes with the target cell plasma membrane, an attachment and a fusion (F) protein. Membrane fusion is believed to depend on receptor-induced conformational changes within the attachment protein that lead to the activation and subsequent refolding of F. While structural and mechanistic studies have considerably advanced our insight into paramyxovirus cell adhesion and the structural basis of F refolding, how precisely the attachment protein links receptor engagement to F triggering remained poorly understood. Recent reports based on work with several paramyxovirus family members have transformed our understanding of the triggering mechanism of the membrane fusion machinery. Here, we review these recent findings, which (i) offer a broader mechanistic understanding of the paramyxovirus cell entry system, (ii) illuminate key similarities and differences between entry strategies of different paramyxovirus family members, and (iii) suggest new strategies for the development of novel therapeutics. PMID:23820396
Envelope protein dynamics in paramyxovirus entry.
Plattet, Philippe; Plemper, Richard K
2013-07-02
Paramyxoviruses include major pathogens with significant global health and economic impact. This large family of enveloped RNA viruses infects cells by employing two surface glycoproteins that tightly cooperate to fuse their lipid envelopes with the target cell plasma membrane, an attachment and a fusion (F) protein. Membrane fusion is believed to depend on receptor-induced conformational changes within the attachment protein that lead to the activation and subsequent refolding of F. While structural and mechanistic studies have considerably advanced our insight into paramyxovirus cell adhesion and the structural basis of F refolding, how precisely the attachment protein links receptor engagement to F triggering remained poorly understood. Recent reports based on work with several paramyxovirus family members have transformed our understanding of the triggering mechanism of the membrane fusion machinery. Here, we review these recent findings, which (i) offer a broader mechanistic understanding of the paramyxovirus cell entry system, (ii) illuminate key similarities and differences between entry strategies of different paramyxovirus family members, and (iii) suggest new strategies for the development of novel therapeutics.
Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability
Takaki, Tohru; Montagner, Marco; Serres, Murielle P.; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J.; Sahai, Erik; Petronczki, Mark
2017-01-01
Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability. PMID:28737169
HIV envelope glycoprotein imaged at high resolution | Center for Cancer Research
The outer surface of the human immunodeficiency virus (HIV) is surrounded by an envelope studded with spike-shaped glycoproteins called Env that help the deadly virus identify, bind, and infect cells. When unbound, Env exists in a “closed” conformational state. Upon binding with target cells, such as CD4+ T cells, the protein transitions to an “open” configuration. Given that Env is the only viral protein expressed on HIV’s surface, knowing its detailed structure—especially in the unbound state—may be critical for designing antibodies and vaccines against HIV.
SASH1 regulates proliferation, apoptosis, and invasion of osteosarcoma cell.
Meng, Qingbing; Zheng, Minqian; Liu, Hongbing; Song, Changzhi; Zhang, Wensheng; Yan, Juan; Qin, Ling; Liu, Xiaolan
2013-01-01
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. The SASH1 protein possesses both the SH3 and SAM domains, indicating that it may play an important role in intracellular signal transduction. Reduced expression of SASH1 is closely related to tumor growth, invasion, metastasis, and poor prognosis. However, the biological role of SASH1 remains unknown in osteosarcoma. To unravel the function of SASH1, we explored the expression of SASH1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and analyzed the relationship between SASH1 expression and cell cycle, apoptosis and invasion of osteosarcoma MG-63 cells, using the flow cytometry analysis and transwell invasion chamber experiments. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-9 were observed by western blot. Our results showed that the expression rate of SASH1 mRNA in osteosarcoma tissues was significantly lower than that in normal bone tissue (p = 0.000), that the expression rate of SASH1 mRNA in the carcinoma tissues from patients with lung metastasis was significantly lower than that from patients without lung metastasis (p = 0.041), and that the expression rate of SASH1 mRNA also decreased with increasing Enneking stage (p = 0.032). However, the mRNA expression of SASH1 in osteosarcoma was independent of the patient's gender, age, and tumor size (p = 0.983, 0.343, 0.517, respectively). The SASH1 protein displayed a down-regulation in osteosarcoma tissues compared to normal bone tissue (p = 0.000), displayed a down-regulation in osteosarcoma tissues from patients with lung metastasis compared to from patients without lung metastasis (p = 0.000), and displayed a gradual decrease with increasing Enneking stage (p = 0.000). In addition, the MG-63 cells from pcDNA3.1-SASH1 group exhibited significantly reduced cell viability, proliferation, and invasive ability compared to the empty vector group and blank control group (p = 0.023, 0.001, respectively), and there was no difference between the empty vector group and blank control group. The pcDNA3.1-SASH1 group displayed significantly more apoptotic cells than the empty vector group and blank control group (p = 0.004). The expression of cyclin D1, MMP-9 displayed a down-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000, 0.001, respectively) and the expression levels of caspase-3 displayed an up-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000). Taken together, these data indicated that the overexpression of SASH1 might be associated with the inhibition of growth, proliferation, and invasion of MG-63 cells and the promotion of apoptosis of MG-63 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoper, Ryan C.; Ferrarone, John; Yan Yuhe
2009-09-01
Three N-linked glycosylation sites were removed from the envelope glycoproteins of Friend, Moloney, and AKV mouse ecotropic gammaretroviruses: gs1 and gs2, in the receptor binding domain; and gs8, in a region implicated in post-binding cell fusion. Mutants were tested for their ability to infect rodent cells expressing 4 CAT-1 receptor variants. Three mutants (Mo-gs1, Mo-gs2, and Fr-gs1) infect NIH 3T3 and rat XC cells, but are severely restricted in Mus dunni cells and Lec8, a Chinese hamster cell line susceptible to ecotropic virus. This restriction is reproduced in ferret cells expressing M. dunni dCAT-1, but not in cells expressing NIHmore » 3T3 mCAT-1. Virus binding assays, pseudotype assays, and the use of glycosylation inhibitors further suggest that restriction is primarily due to receptor polymorphism and, in M. dunni cells, to glycosylation of cellular proteins. Virus envelope glycan size or type does not affect infectivity. Thus, host range variation due to N-glycan deletion is receptor variant-specific, cell-specific, virus type-specific, and glycan site-specific.« less
Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi
2007-08-15
A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.
Hussain, Naveen; Thickett, Kelly R; Na, Hong; Leung, Cherry; Tailor, Chetankumar S
2011-12-01
Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.
von Einem, Jens; Schumacher, Daniel; O'Callaghan, Dennis J; Osterrieder, Nikolaus
2006-03-01
The equine herpesvirus 1 (EHV-1) alpha-trans-inducing factor homologue (ETIF; VP16-E) is a 60-kDa virion component encoded by gene 12 (ORF12) that transactivates the immediate-early gene promoter. Here we report on the function of EHV-1 ETIF in the context of viral infection. An ETIF-null mutant from EHV-1 strain RacL11 (vL11deltaETIF) was constructed and analyzed. After transfection of vL11deltaETIF DNA into RK13 cells, no infectious virus could be reconstituted, and only single infected cells or small foci containing up to eight infected cells were detected. In contrast, after transfection of vL11deltaETIF DNA into a complementing cell line, infectious virus could be recovered, indicating the requirement of ETIF for productive virus infection. The growth defect of vL11deltaETIF could largely be restored by propagation on the complementing cell line, and growth on the complementing cell line resulted in incorporation of ETIF in mature and secreted virions. Low- and high-multiplicity infections of RK13 cells with phenotypically complemented vL11deltaETIF virus resulted in titers of virus progeny similar to those used for infection, suggesting that input ETIF from infection was recycled. Ultrastructural studies of vL11deltaETIF-infected cells demonstrated a marked defect in secondary envelopment at cytoplasmic membranes, resulting in very few enveloped virions in transport vesicles or extracellular space. Taken together, our results demonstrate that ETIF has an essential function in the replication cycle of EHV-1, and its main role appears to be in secondary envelopment.
Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus
Hirai-Yuki, Asuka; Hensley, Lucinda; Whitmire, Jason K.
2016-01-01
ABSTRACT Hepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (<0.02%/h) in HepG2-N6 cells, arguing against this as a mechanism for differences in membrane envelopment of serum versus fecal virus. High concentrations of human bile acids converted eHAV to nonenveloped virions, whereas virus present in bile from HAV-infected Ifnar1−/− Ifngr1−/− and Mavs−/− mice banded over a range of densities extending from that of eHAV to that of nonenveloped virions. We conclude that nonenveloped virions shed in feces are derived from eHAV released across the canalicular membrane and stripped of membranes by the detergent action of bile acids within the proximal biliary canaliculus. PMID:27923925
Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga; Rhein, Bethany; Moller-Tank, Sven; Brouillette, Rachel; Hensley, Lucinda; Misumi, Ichiro; Lovell, William; Cullen, John M.; Whitmire, Jason K.; Maury, Wendy
2017-01-01
ABSTRACT Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1) is widely accepted to be the receptor for hepatitis A virus (HAV), an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV) virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV) attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer) residues on the eHAV membrane. Both Tim1−/− Ifnar1−/− and Tim4−/− Ifnar1−/− double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT) elevations similar to those in Ifnar1−/− mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1−/−Ifnar1−/− mice compared to Ifnar1−/− mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice. PMID:28874468
Rappa, Germana; Santos, Mark F; Green, Toni M; Karbanová, Jana; Hassler, Justin; Bai, Yongsheng; Barsky, Sanford H; Corbeil, Denis; Lorico, Aurelio
2017-02-28
Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.
Role of HIV-2 envelope in Lv2-mediated restriction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Sandra; Kaumanns, Patrick; Buschhorn, Sabine B.
2005-02-05
We have characterized envelope protein pseudotyped HIV-2 particles derived from two HIV-2 isolates termed prCBL23 and CBL23 in order to define the role of the envelope protein for the Lv2-mediated restriction to infection. Previously, it has been described that the primary isolate prCBL23 is restricted to infection of several human cell types, whereas the T cell line adapted isolate CBL23 is not restricted in these cell types. Molecular cloning of the two isolates revealed that the env and the gag gene are responsible for the observed phenotype and that this restriction is mediated by Lv2, which is distinct from Ref1/Lv1more » (Schmitz, C., Marchant, D., Neil, S.J., Aubin, K., Reuter, S., Dittmar, M.T., McKnight, A., Kizhatil, K., Albritton, L.M., 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 78 (4), 2006-2016). We generated pseudotyped viruses consisting of HIV-2 (ROD-A{delta}env-GFP, ROD-A{delta}env-RFP, or ROD-A{delta}env-REN) and the prCBL23 or CBL23 envelope proteins as well as chimeric proteins between these envelopes. We demonstrate that a single amino acid exchange at position 74 in the surface unit of CBL23-Env confers restriction to infection. This single point mutation causes tighter CD4 binding, resulting in a less efficient fusion into the cytosol of the restricted cell line. Prevention of endosome formation and prevention of endosome acidification enhance infectivity of the restricted particles for GHOST/X4 cells indicating a degradative lysosomal pathway as a cause for the reduced cytosolic entry. The described restriction to infection of the primary isolate prCBL23 is therefore largely caused by an entry defect. A remaining restriction to infection (19-fold) is preserved when endosomal acidification is prevented. This restriction to infection is also dependent on the presence of the point mutation at position 74 (G74E)« less
NUCLEAR ENVELOPE-ASSOCIATED RESUMPTION OF RNA SYNTHESIS IN LATE MITOSIS OF HELA CELLS
Simmons, T.; Heywood, P.; Hodge, L.
1973-01-01
The restitution of RNA synthesis in cultures progressing from metaphase into interphase (G1) has been investigated in synchronized HeLa S3 cells by using inhibitors of macro-molecular synthesis and the technique of electron microscope autoradiography. The rate of incorporation of radioactive uridine into RNA approached interphase levels in the absence of renewed protein synthesis. In contrast, maintenance of this rate in G1 was dependent upon renewed protein synthesis. Restoration of synthesis of heterogeneous nuclear RNA occurred under conditions that inhibited production of ribosomal precursor RNA. In autoradiographs of individual cells exposed to radioactive uridine, silver grains were first detected after nuclear envelope reformation at the periphery of the chromosome mass but before chromosomal decondensation. These data are consistent with the following interpretation. Multiple RNA polymerase activities persist through mitosis and are involved in the initiation of RNA synthesis in early telophase at sites on the nuclear envelope. PMID:4752403
Gabotti, Damiano; Caporali, Elisabetta; Manzotti, Priscilla; Persico, Martina; Vigani, Gianpiero; Consonni, Gabriella
2014-06-01
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponec, M.; Weerheim, A.; Havekes, L.
The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisonemore » stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.« less
Structural and mechanistic studies of measles virus illuminate paramyxovirus entry.
Plemper, Richard K; Brindley, Melinda A; Iorio, Ronald M
2011-06-01
Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.
The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation.
Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha; Vidal, Christopher; Duque, Gustavo
2017-12-01
Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear β-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425-4435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gong, Wenrong; Zhao, Jianhua; Chen, Zhen; Lei, Lin; Luo, Lihua; Zhao, Xuehong; Xing, Hui; Chen, Suhua; Tu, Qisheng
2014-01-01
Objective: This paper is aimed at to evaluate B7-H1 expression as induced by human cytomegalovirus (HCMV) in extravillous cytotrophoblast cell line HPT-8 and possible underlying mechanism. Method: Real time PCR and flow cytometry were used to determine B7-H1 mRNA and protein before and after HCMV infection in HPT-8 cells. Western blot analysis was used to determine the level of MAPK phosphorylation in HPT-8 cell lines infected with HCMV. Results: 100TCID50 was found to be the most effective dose, capable of stimulating B7-H1 mRNA and protein expression in HPT-8 cells. When empty control group was considered to have a B7-H1 mRNA value of 1, B7-H1 mRNA was 4.32 in 100TCID50 group. In flow cytometry study, mean fluorescence intensity (MFI) of 100TCID50 group was 16.14, while empty control group was 1.34. Both mRNA and protein expression were found to be significantly increased (P<0.05) in 100TCID50 group compared to empty control group. The result of Western blot analysis showed increase in B7-H1 expression caused by the extracellular signaling that was related to ERK activation and the ERK inhibitor U0126 was found to reverse this increase. Conclusion: HCMV upregulates B7-H1 expression in human extravillous cytotrophoblast cell line HPT-8, which is related to MAPK activation. Our result would be helpful in finding better therapies against intrauterine HCMV infection. PMID:25225522
Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains.
Han, Mee-Jung; Lee, Sang Yup; Hong, Soon Ho
2012-04-01
Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane beta-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.
Tegument Assembly and Secondary Envelopment of Alphaherpesviruses
Owen, Danielle J.; Crump, Colin M.; Graham, Stephen C.
2015-01-01
Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called “tegument” that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei. PMID:26393641
Frequency-Modulation Correlation Spectrometer
NASA Technical Reports Server (NTRS)
Margolis, J. S.; Martonchik, J. V.
1985-01-01
New type of correlation spectrometer eliminates need to shift between two cells, one empty and one containing reference gas. Electrooptical phase modulator sinusoidally shift frequencies of sample transmission spectrum.
USDA-ARS?s Scientific Manuscript database
E1, along with E^rns and E2, is one of the three envelope glycoproteins of Classical Swine Fever Virus (CSFV). E1 and E2 are anchored to the virus envelope at their carboxyl termini and E^rns loosely associates with the viral envelope. In infected cells, E2 forms homodimers and heterodimers with E1,...
Aoki, Keita; Shiwa, Yuh; Takada, Hiraku; Yoshikawa, Hirofumi; Niki, Hironori
2013-09-01
Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Jiang, Bin; Jen, Michele; Perrin, Louisiane; Wertheim, Jason A; Ameer, Guillermo A
2015-12-01
Endothelial cells (ECs) that are differentiated from induced pluripotent stem cells (iPSCs) can be used in establishing disease models for personalized drug discovery or developing patient-specific vascularized tissues or organoids. However, a number of technical challenges are often associated with iPSC-ECs in culture, including instability of the endothelial phenotype and limited cell proliferative capacity over time. Early senescence is believed to be the primary mechanism underlying these limitations. Sirtuin1 (SIRT1) is an NAD(+)-dependent deacetylase involved in the regulation of cell senescence, redox state, and inflammatory status. We hypothesize that overexpression of the SIRT1 gene in iPSC-ECs will maintain EC phenotype, function, and proliferative capacity by overcoming early cell senescence. SIRT1 gene was packaged into a lentiviral vector (LV-SIRT1) and transduced into iPSC-ECs at passage 4. Beginning with passage 5, iPSC-ECs exhibited a fibroblast-like morphology, whereas iPSC-ECs overexpressing SIRT1 maintained EC cobblestone morphology. SIRT1 overexpressing iPSC-ECs also exhibited a higher percentage of canonical markers of endothelia (LV-SIRT1 61.8% CD31(+) vs. LV-empty 31.7% CD31(+), P < 0.001; LV-SIRT1 46.3% CD144(+) vs. LV-empty 20.5% CD144(+), P < 0.02), with a higher nitric oxide synthesis, lower β-galactosidase production indicating decreased senescence (3.4% for LV-SIRT1 vs. 38.6% for LV-empty, P < 0.001), enhanced angiogenesis, increased deacetylation activity, and higher proliferation rate. SIRT1 overexpressing iPSC-ECs continued to proliferate through passage 9 with high purity of EC-like characteristics, while iPSC-ECs without SIRT1 overexpression became senescent after passage 5. Taken together, SIRT1 overexpression in iPSC-ECs maintains EC phenotype, improves EC function, and extends cell lifespan, overcoming critical hurdles associated with the use of iPSC-ECs in translational research.
Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus.
Hirai-Yuki, Asuka; Hensley, Lucinda; Whitmire, Jason K; Lemon, Stanley M
2016-12-06
Hepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (<0.02%/h) in HepG2-N6 cells, arguing against this as a mechanism for differences in membrane envelopment of serum versus fecal virus. High concentrations of human bile acids converted eHAV to nonenveloped virions, whereas virus present in bile from HAV-infected Ifnar1 -/- Ifngr1 -/- and Mavs -/- mice banded over a range of densities extending from that of eHAV to that of nonenveloped virions. We conclude that nonenveloped virions shed in feces are derived from eHAV released across the canalicular membrane and stripped of membranes by the detergent action of bile acids within the proximal biliary canaliculus. HAV is a hepatotropic, fecally/orally transmitted picornavirus that can cause severe hepatitis in humans. Recent work reveals that it has an unusual life cycle. Virus is found in cell culture supernatant fluids in two mature, infectious forms: one wrapped in membranes (quasi-enveloped) and another that is nonenveloped. Membrane-wrapped virions circulate in blood during acute infection and are resistant to neutralizing antibodies, likely facilitating HAV dissemination within the liver. On the other hand, virus shed in feces is nonenveloped and highly stable, facilitating epidemic spread and transmission to naive hosts. Factors controlling the biogenesis of these two distinct forms of the virus in infected humans are not understood. Here we characterize vectorial release of quasi-enveloped virions from polarized epithelial cell cultures and provide evidence that bile acids strip membranes from eHAV following its secretion into the biliary tract. These results enhance our understanding of the life cycle of this unusual picornavirus. Copyright © 2016 Hirai-Yuki et al.
Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.
Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A; Mascher, Thorsten
2012-11-01
L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing).
Cell Envelope Stress Response in Cell Wall-Deficient L-Forms of Bacillus subtilis
Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A.
2012-01-01
L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing). PMID:22964256
Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Rumi; En, Atsuki; Ukekawa, Ryo
2016-05-13
5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.
Constitutive expression of the maltoporin LamB in the absence of OmpR damages the cell envelope.
Reimann, Sylvia A; Wolfe, Alan J
2011-02-01
Cells experience multiple environmental stimuli simultaneously. To survive, they must respond accordingly. Unfortunately, the proper response to one stress easily could make the cell more susceptible to a second coexistent stress. To deal with such a problem, a cell must possess a mechanism that balances the need to respond simultaneously to both stresses. Our recent studies of ompR malT(Con) double mutants show that elevated expression of LamB, the outer membrane porin responsible for maltose uptake, causes cell death when the osmoregulator OmpR is disabled. To obtain insight into the nature of the death experienced by ompR malT(Con) mutants, we described the death process. On the basis of microscopic and biochemical approaches, we conclude that death results from a loss of membrane integrity. On the basis of an unbiased genome-wide search for suppressor mutations, we conclude that this loss of membrane integrity results from a LamB-induced envelope stress that the cells do not sufficiently perceive and thus do not adequately accommodate. Finally, we conclude that this envelope stress involves an imbalance in the lipopolysaccharide/porin composition of the outer membrane and an increased requirement for inorganic phosphate.
Requirement of cholesterol in the viral envelope for dengue virus infection.
Carro, Ana C; Damonte, Elsa B
2013-06-01
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry. Copyright © 2013 Elsevier B.V. All rights reserved.
Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P
2015-10-01
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.
Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong
2011-10-01
To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.
Ansardi, D C; Porter, D C; Morrow, C D
1991-04-01
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.
Beauparlant, David; Rusert, Peter; Magnus, Carsten; Weber, Jacqueline; Uhr, Therese; Clapham, Paul R.; Metzner, Karin J.
2017-01-01
A hallmark of HIV-1 infection is the continuously declining number of the virus’ predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur. PMID:28264054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maric, Martina; Haugo, Alison C.; Dauer, William
2014-07-15
Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but ismore » enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.« less
Fine Structure and Host-Virus Relationship of a Marine Bacterium and Its Bacteriophage
Valentine, Artrice F.; Chapman, George B.
1966-01-01
Valentine, Artrice F. (Georgetown University, Washington, D.C.), and George B. Chapman. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92:1535–1554. 1966.—The fine structure of a gram-negative marine bacterium, Cytophaga marinoflava sp. n., has been revealed by ultrathin sectioning and electron microscopy. Stages in the morphogenesis of the bacterial virus NCMB 385, which has been shown to be highly specific for this organism, were also demonstrated in bacterial cells fixed according to the Kellenberger technique. The bacterium possessed a cell wall, cytoplasmic membrane, and nuclear and cytoplasmic regions typical of bacterial cells. Both the cell wall and the cytoplasmic membrane showed a tripartite structure, i.e., each was composed of two dense layers separated by a low-density zone. Intracytoplasmic membrane systems were also observed, especially in dividing cells and in cells in which new viruses were being formed. As many as 18 hexagonally shaped, empty phage heads (membranes only) were observed in untreated, infected bacterial cells. Phage heads, intermediate in density to empty heads and fully condensed ones, possibly representing stages in the morphological development of the virus, were also seen. Images PMID:5924277
Destructive effects of butyrate on the cell envelope of Helicobacter pylori.
Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Zaman, Cynthia; Woo, Timothy Derk Hoong; Takahashi, Motomichi; Matsubara, Sachie; Kawakami, Hayato; Ochiai, Kuniyasu; Kamiya, Shigeru
2012-04-01
Helicobacter pylori can be found in the oral cavity and is mostly detected by the use of PCR techniques. Growth of H. pylori is influenced by various factors in the mouth, such as the oral microflora, saliva and other antimicrobial substances, all of which make colonization of the oral cavity by H. pylori difficult. In the present study, we analysed the effect of the cell supernatant of a representative periodontal bacterium Porphyromonas gingivalis on H. pylori and found that the cell supernatant destroyed the H. pylori cell envelope. As P. gingivalis produces butyric acid, we focused our research on the effects of butyrate and found that it significantly inhibited the growth of H. pylori. H. pylori cytoplasmic proteins and DNA were detected in the extracellular environment after treatment with butyrate, suggesting that the integrity of the cell envelope was compromised and indicating that butyrate has a bactericidal effect on H. pylori. In addition, levels of extracellular H. pylori DNA increased following treatment with the cell supernatant of butyric acid-producing bacteria, indicating that the cell supernatant also has a bactericidal effect and that this may be due to its butyric acid content. In conclusion, butyric acid-producing bacteria may play a role in affecting H. pylori colonization of the oral cavity.
Deltabaculoviruses encode a functional type I budded virus envelope fusion protein
USDA-ARS?s Scientific Manuscript database
Envelope fusion proteins (F proteins) are major constituents of budded viruses (BVs) of alpha- and betabaculoviruses (Baculoviridae) and are essential for the systemic infection of insect larvae and insect cells in culture. An F protein homolog gene was absent in gammabaculoviruses. Here we show tha...
The Thermodynamics of Anion Complexation to Nonpolar Pockets.
Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C
2018-02-08
The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.
Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.
Rathbone, C R; Guda, T; Singleton, B M; Oh, D S; Appleford, M R; Ong, J L; Wenke, J C
2014-05-01
Highly porous hydroxyapatite (HA) scaffolds were developed as bone graft substitutes using a template coating process, characterized, and seeded with bone marrow-derived mesenchymal stem cells (BMSCs). To test the hypothesis that cell-seeded HA scaffolds improve bone regeneration, HA scaffolds without cell seeding (HA-empty), HA scaffolds with 1.5 × 10(4) BMSCs (HA-low), and HA scaffolds with 1.5 × 10(6) BMSCs (HA-high) were implanted in a 10-mm rabbit radius segmental defect model for 4 and 8 weeks. Three different fluorochromes were administered at 2, 4, and 6 weeks after implantation to identify differences in temporal bone growth patterns. It was observed from fluorescence histomorphometry analyses that an increased rate of bone infiltration occurred from 0 to 2 weeks (p < 0.05) of implantation for the HA-high group (2.9 ± 0.5 mm) as compared with HA-empty (1.8 ± 0.8 mm) and HA-low (1.3 ± 0.2 mm) groups. No significant differences in bone formation within the scaffold or callus formation was observed between all groups after 4 weeks, with a significant increase in bone regenerated for all groups from 4 to 8 weeks (28.4% across groups). Although there was no difference in bone formation within scaffolds, callus formation was significantly higher in HA-empty scaffolds (100.9 ± 14.1 mm(3) ) when compared with HA-low (57.8 ± 7.3 mm(3) ; p ≤ 0.003) and HA-high (69.2 ± 10.4 mm(3) ; p ≤ 0.02) after 8 weeks. These data highlight the need for a better understanding of the parameters critical to the success of cell-seeded HA scaffolds for bone regeneration. Copyright © 2013 Wiley Periodicals, Inc.
Arsenate arrests flagellar rotation in cytoplasm-free envelopes of bacteria.
Margolin, Y; Barak, R; Eisenbach, M
1994-01-01
The effect of arsenate on flagellar rotation in cytoplasm-free flagellated envelopes of Escherichia coli and Salmonella typhimurium was investigated. Flagellar rotation ceased as soon as the envelopes were exposed to arsenate. Inclusion of phosphate intracellularly (but not extracellular) prevented the inhibition by arsenate. In a parallel experiment, the rotation was not affected by inclusion of an ATP trap (hexokinase and glucose) within the envelopes. It is concluded that arsenate affects the motor in a way other than reversible deenergization. This may be an irreversible damage to the cell or direct inhibition of the motor by arsenate. The latter possibility suggests that a process of phosphorylation or phosphate binding is involved in the motor function. PMID:8071237
The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.
Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp
2016-05-19
Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Teaching Cell and Molecular Biology for Gender Equity
ERIC Educational Resources Information Center
Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel
2006-01-01
Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social…
Lee, Kenneth K.; Gruenbaum, Yosef; Spann, Perah; Liu, Jun; Wilson, Katherine L.
2000-01-01
Emerin, MAN1, and LAP2 are integral membrane proteins of the vertebrate nuclear envelope. They share a 43-residue N-terminal motif termed the LEM domain. We found three putative LEM domain genes in Caenorhabditis elegans, designated emr-1, lem-2, and lem-3. We analyzed emr-l, which encodes Ce-emerin, and lem-2, which encodes Ce-MAN1. Ce-emerin and Ce-MAN1 migrate on SDS-PAGE as 17- and 52-kDa proteins, respectively. Based on their biochemical extraction properties and immunolocalization, both Ce-emerin and Ce-MAN1 are integral membrane proteins localized at the nuclear envelope. We used antibodies against Ce-MAN1, Ce-emerin, nucleoporins, and Ce-lamin to determine the timing of nuclear envelope breakdown during mitosis in C. elegans. The C. elegans nuclear envelope disassembles very late compared with vertebrates and Drosophila. The nuclear membranes remained intact everywhere except near spindle poles during metaphase and early anaphase, fully disassembling only during mid-late anaphase. Disassembly of pore complexes, and to a lesser extent the lamina, depended on embryo age: pore complexes were absent during metaphase in >30-cell embryos but existed until anaphase in 2- to 24-cell embryos. Intranuclear mRNA splicing factors disassembled after prophase. The timing of nuclear disassembly in C. elegans is novel and may reflect its evolutionary position between unicellular and more complex eukaryotes. PMID:10982402
NASA Astrophysics Data System (ADS)
Sackmann, Erich; Keber, Felix; Heinrich, Doris
2010-04-01
The survival of cells depends on perpetual active motions, including (a) bending excitations of the soft cell envelopes, (b) the bidirectional transport of materials and organelles between the cell center and the periphery, and (c) the ongoing restructuring of the intracellular macromolecular scaffolds mediating global cell changes associated with cell adhesion locomotion and phagocytosis. Central questions addressed are the following: How can this bustling motion of extremely complex soft structures be characterized and measured? What are the major driving forces? Further topics include (a) the active dynamic control of global shape changes by the interactive coupling of the aster-like soft scaffold of microtubules and the network of actin filaments associated with the cell envelope (the actin cortex) and (b) the generation of propulsion forces by solitary actin gelation waves propagating within the actin cortex.
In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses
Tani, Hideki; Limn, Chang Kwang; Yap, Chan Choo; Onishi, Masayoshi; Nozaki, Masami; Nishimune, Yoshitake; Okahashi, Nobuo; Kitagawa, Yoshinori; Watanabe, Rie; Mochizuki, Rika; Moriishi, Kohji; Matsuura, Yoshiharu
2003-01-01
Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy. PMID:12941888
Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.
Gonzalez, Yanira; Saito, Akira; Sazer, Shelley
2012-01-01
In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.
Witting, Scott R.; Vallanda, Priya; Gamble, Aisha L.
2013-01-01
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells. PMID:23698741
Witting, S R; Vallanda, P; Gamble, A L
2013-10-01
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, third generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared with vesicular stomatitis virus pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in third generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.
Overcoming preexisting humoral immunity to AAV using capsid decoys.
Mingozzi, Federico; Anguela, Xavier M; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J; Hui, Daniel J; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser; High, Katherine A
2013-07-17
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.
Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys
Anguela, Xavier M.; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J.; Hui, Daniel J.; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J.; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M.; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser
2014-01-01
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery. PMID:23863832
Fast kinetic studies of plasmid DNA transfer in intact yeast cells mediated by electropulsation.
Ganeva, V; Galutzov, B; Teissie, J
1995-09-25
Intact yeast cell Electrotransformation process was investigated. It is a two step process. The plasmid must be pre-mixed and present in contact with the cells during the pulse. During the millisecond field pulse, plasmid DNA is associated to the envelope. It therefore crosses the membrane by a process which lasts several seconds as shown by its sensitivity to a post pulse addition of DNase. Electrotransformation is not supported by an electrophoretic transfer due to the external field nor by a free diffusion across the electropermeabilized envelope. DNA is first bound during the field pulse and then is transferred by a still unknown active process due to cell metabolism.
Direct observation of nanoparticle-cancer cell nucleus interactions.
Dam, Duncan Hieu M; Lee, Jung Heon; Sisco, Patrick N; Co, Dick T; Zhang, Ming; Wasielewski, Michael R; Odom, Teri W
2012-04-24
We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.
Gitman, A G; Loyter, A
1984-08-10
The cross-linking reagents succinimidyl-4-(p-maleimidophenyl)-butyrate and N-succinimidyl-3-(2-pyridyldithio)-propionate were used to covalently attach antibodies against human erythrocytes to the thiol-containing paraffin, dodecanethiol. The complex formed, dodecanethiol-maleimidophenylbutyrate (or pyridyldithiopropionate)-antibody was inserted into the membranes of reconstituted Sendai virus envelopes. This was achieved by addition of the dodecanethiol-maleimidophenylbutyrate-antibody to a detergent solution (Triton X-100) containing the viral envelope phospholipids and glycoproteins. Removal of the detergent led to the formation of vesicles containing the viral glycoprotein and the dodecanethiol-maleimidophenylbutyrate (or pyridyldithiopropionate)-antibody complexes within the same membrane. Reconstituted Sendai virus envelope-bearing antibodies against human erythrocytes were able to fuse with human erythrocytes (as was reflected by reconstituted Sendai virus envelope-induced hemolysis) from which the natural virus receptors were removed by treatment with neuraminidase. Thus, it appears that anti-human erythrocyte antibodies could substitute for the viral binding protein (hemagglutinin/neuraminidase glycoprotein) in mediating functional binding of the virus particles to the cell plasma membranes. Furthermore, from the results of the present work, it may be inferred that in addition to being the viral-binding protein, hemagglutinin/neuraminidase glycoprotein actively participates in the process of virus-cell fusion.
Petrovsky, Roman; Krohne, Georg; Großhans, Jörg
2018-03-01
The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.
ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.
Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang
2017-03-01
The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.
Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses.
Lacour, William; Adjili, Salim; Blaising, Julie; Favier, Arnaud; Monier, Karine; Mezhoud, Sarra; Ladavière, Catherine; Place, Christophe; Pécheur, Eve-Isabelle; Charreyre, Marie-Thérèse
2016-08-01
Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Landowski, Matthew; Dabundo, Jeffrey; Liu, Qian; Nicola, Anthony V; Aguilar, Hector C
2014-12-01
Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. Drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are notably cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. NiV's attachment (G) and fusion (F) envelope glycoproteins mediate viral binding to the ephrinB2/ephrinB3 cell receptors and virus-cell membrane fusion, respectively. The NiV matrix protein (M) can autonomously induce NiV assembly and budding. Using a β-lactamase (βLa) reporter/NiV-M chimeric protein, we produced NiVLPs expressing NiV-G and wild-type or mutant NiV-F on their surfaces. By preloading target cells with the βLa fluorescent substrate CCF2-AM, we obtained viral entry kinetic curves that correlated with the NiV-F fusogenic phenotypes, validating NiVLPs as suitable viral entry kinetic tools and suggesting overall relatively slower viral entry than cell-cell fusion kinetics. Additionally, the proportions of F and G on individual NiVLPs and the extent of receptor-induced conformational changes in NiV-G were measured via flow virometry, allowing the proper interpretation of the viral entry kinetic phenotypes. The significance of these findings in the viral entry field extends beyond NiV to other paramyxoviruses and enveloped viruses. Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. For example, drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are especially cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. Our new tools allowed us the high-throughput measurement of viral entry kinetics, glycoprotein proportions on individual viral particles, and receptor-induced conformational changes in viral glycoproteins on viral surfaces. The significance of these findings extends beyond NiV to other paramyxoviruses and enveloped viruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis
Porwal, Manvi; Cohen, Sarah; Snoussi, Kenza; Popa-Wagner, Ruth; Anderson, Fenja; Dugot-Senant, Nathalie; Wodrich, Harald; Dinsart, Christiane; Kleinschmidt, Jürgen A.; Panté, Nelly; Kann, Michael
2013-01-01
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. PMID:24204256
Charles, Emilie; Hammadi, Mehdi; Kischel, Philippe; Delcroix, Vanessa; Demaurex, Nicolas; Castelbou, Cyril; Vacher, Anne-Marie; Devin, Anne; Ducret, Thomas; Nunes, Paula; Vacher, Pierre
2017-01-10
Selective Serotonin Reuptake Inhibitor antidepressants, such as fluoxetine (Prozac), have been shown to induce cell death in cancer cells, paving the way for their potential use as cancer therapy. These compounds are able to increase cytosolic calcium concentration ([Ca2+]cyt), but the involved mechanisms and their physiological consequences are still not well understood. Here, we show that fluoxetine induces an increase in [Ca2+]cyt by emptying the endoplasmic reticulum (ER) through the translocon, an ER Ca2+ leakage structure. Our data also show that fluoxetine inhibits oxygen consumption and lowers mitochondrial ATP. This latter is essential for Ca2+ reuptake into the ER, and we postulated therefore that the fluoxetine-induced decrease in mitochondrial ATP production results in the emptying of the ER, leading to capacitative calcium entry. Furthermore, Ca2+ quickly accumulated in the mitochondria, leading to mitochondrial Ca2+ overload and cell death. We found that fluoxetine could induce an early necrosis in human peripheral blood lymphocytes and Jurkat cells, and could also induce late apoptosis, especially in the tumor cell line. These results shed light on fluoxetine-induced cell death and its potential use in cancer treatment.
Kischel, Philippe; Delcroix, Vanessa; Demaurex, Nicolas; Castelbou, Cyril; Vacher, Anne-Marie; Devin, Anne; Ducret, Thomas; Nunes, Paula; Vacher, Pierre
2017-01-01
Selective Serotonin Reuptake Inhibitor antidepressants, such as fluoxetine (Prozac), have been shown to induce cell death in cancer cells, paving the way for their potential use as cancer therapy. These compounds are able to increase cytosolic calcium concentration ([Ca2+]cyt), but the involved mechanisms and their physiological consequences are still not well understood. Here, we show that fluoxetine induces an increase in [Ca2+]cyt by emptying the endoplasmic reticulum (ER) through the translocon, an ER Ca2+ leakage structure. Our data also show that fluoxetine inhibits oxygen consumption and lowers mitochondrial ATP. This latter is essential for Ca2+ reuptake into the ER, and we postulated therefore that the fluoxetine-induced decrease in mitochondrial ATP production results in the emptying of the ER, leading to capacitative calcium entry. Furthermore, Ca2+ quickly accumulated in the mitochondria, leading to mitochondrial Ca2+ overload and cell death. We found that fluoxetine could induce an early necrosis in human peripheral blood lymphocytes and Jurkat cells, and could also induce late apoptosis, especially in the tumor cell line. These results shed light on fluoxetine-induced cell death and its potential use in cancer treatment. PMID:27911858
Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga; Rhein, Bethany; Moller-Tank, Sven; Brouillette, Rachel; Hensley, Lucinda; Misumi, Ichiro; Lovell, William; Cullen, John M; Whitmire, Jason K; Maury, Wendy; Lemon, Stanley M
2017-09-05
Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1) is widely accepted to be the receptor for hepatitis A virus (HAV), an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV) virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV) attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer) residues on the eHAV membrane. Both Tim1 -/- Ifnar1 -/- and Tim4 -/- Ifnar1 -/- double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT) elevations similar to those in Ifnar1 -/- mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1 -/- Ifnar1 -/- mice compared to Ifnar1 -/- mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice. IMPORTANCE T cell immunoglobulin and mucin-containing domain protein 1 (TIM1) was reported more than 2 decades ago to be an essential cellular receptor for hepatitis A virus (HAV), a picornavirus in the Hepatovirus genus, resulting in its designation as "hepatitis A virus cellular receptor 1" (HAVCR1) by the Human Genome Organization Gene Nomenclature Committee. However, recent studies have shown that HAV exists in nature as both naked, nonenveloped (HAV) virions and membrane-cloaked, quasi-enveloped infectious virus (eHAV), prompting us to revisit the role of TIM1 in viral entry. We show here that TIM1 (HAVCR1) is not an essential cellular receptor for HAV entry into cultured cells or required for viral replication and pathogenesis in permissive strains of mice, although it may facilitate early stages of infection by binding phosphatidylserine on the eHAV surface. This work thus corrects the published record and sets the stage for future efforts to identify specific hepatovirus entry factors. Copyright © 2017 Das et al.
Obregón-Henao, Andrés; Ackart, David F.; Podell, Brendan K.; Belardinelli, Juan M.; Jackson, Mary; Nguyen, Tuan V.; Blackledge, Meghan S.; Melander, Roberta J.; Melander, Christian; Johnson, Benjamin K.; Abramovitch, Robert B.
2017-01-01
There is an urgent need to develop new drug treatment strategies to control the global spread of drug-sensitive and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). The ß-lactam class of antibiotics is among the safest and most widely prescribed antibiotics, but they are not effective against M. tuberculosis due to intrinsic resistance. This study shows that 2-aminoimidazole (2-AI)-based small molecules potentiate ß-lactam antibiotics against M. tuberculosis. Active 2-AI compounds significantly reduced the minimal inhibitory and bactericidal concentrations of ß-lactams by increasing M. tuberculosis cell envelope permeability and decreasing protein secretion including ß-lactamase. Metabolic labeling and transcriptional profiling experiments revealed that 2-AI compounds impair mycolic acid biosynthesis, export and linkage to the mycobacterial envelope, counteracting an important defense mechanism reducing permeability to external agents. Additionally, other important constituents of the M. tuberculosis outer membrane including sulfolipid-1 and polyacyltrehalose were also less abundant in 2-AI treated bacilli. As a consequence of 2-AI treatment, M. tuberculosis displayed increased sensitivity to SDS, increased permeability to nucleic acid staining dyes, and rapid binding of cell wall targeting antibiotics. Transcriptional profiling analysis further confirmed that 2-AI induces transcriptional regulators associated with cell envelope stress. 2-AI based small molecules potentiate the antimicrobial activity of ß-lactams by a mechanism that is distinct from specific inhibitors of ß-lactamase activity and therefore may have value as an adjunctive anti-TB treatment. PMID:28749949
B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of Rhesus macaques
USDA-ARS?s Scientific Manuscript database
Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutr...
Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen
2016-08-01
Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Incorporation of Hepatitis C Virus E1 and E2 Glycoproteins: The Keystones on a Peculiar Virion
Vieyres, Gabrielle; Dubuisson, Jean; Pietschmann, Thomas
2014-01-01
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response. PMID:24618856
Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus
Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.
2015-01-01
ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID:26136573
Beam-dynamics codes used at DARHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Jr., Carl August
Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.
Breaching the nuclear envelope in development and disease
Hatch, Emily
2014-01-01
In eukaryotic cells the nuclear genome is enclosed by the nuclear envelope (NE). In metazoans, the NE breaks down in mitosis and it has been assumed that the physical barrier separating nucleoplasm and cytoplasm remains intact during the rest of the cell cycle and cell differentiation. However, recent studies suggest that nonmitotic NE remodeling plays a critical role in development, virus infection, laminopathies, and cancer. Although the mechanisms underlying these NE restructuring events are currently being defined, one common theme is activation of protein kinase C family members in the interphase nucleus to disrupt the nuclear lamina, demonstrating the importance of the lamina in maintaining nuclear integrity. PMID:24751535
Martín-Acebes, Miguel A; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos
2014-10-01
West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. Importance: West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Martín-Acebes, Miguel A.; Merino-Ramos, Teresa; Blázquez, Ana-Belén; Casas, Josefina; Escribano-Romero, Estela
2014-01-01
ABSTRACT West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. IMPORTANCE West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle. PMID:25122799
Dynamic Assembly of Brambleberry Mediates Nuclear Envelope Fusion during Early Development
Abrams, Elliott W.; Zhang, Hong; Marlow, Florence L.; Kapp, Lee; Lu, Sumei; Mullins, Mary C.
2012-01-01
Summary To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, a mitotic intermediate wherein individual chromatin masses are surrounded by nuclear envelope, which then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion resulting in formation of multiple micronuclei. brambleberry is a previously unannotated gene homologous to Kar5p, which participates in nuclear fusion in yeast. We demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. As karyomeres form, Brambleberry localizes to the nuclear envelope with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. Our studies identify the first factor acting in karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. PMID:22863006
Potent virucidal effect of pheophorbide a and pyropheophorbide a on enveloped viruses.
Bouslama, Lamjed; Hayashi, Kyoko; Lee, Jung-Bum; Ghorbel, Abdelwahed; Hayashi, Toshimitsu
2011-01-01
In this study, we evaluated the inhibitory effect of ethanol and aqueous extracts from a stem of Opuntia ficus indica on replication of three kinds of viruses: two enveloped viruses [herpes simplex virus type 2 (HSV-2), influenza A virus (IFV-A)], and one non-enveloped virus [poliovirus type 1 (PV-1)]. Only ethanol extract from the cactus stem showed significant antiviral activity in vitro. Two chlorophyll derivatives, pheophorbide a and pyropheophorbide a, were isolated as active substances exhibiting potent virucidal effects on HSV-2 and IFV-A, but no activity against PV-1 was observed. These findings suggest that these active compounds might recognize specific glycoproteins of enveloped viruses, precluding their binding to host cell receptors and inhibiting viral infections.
Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation.
Taya, Yuki; Ota, Yasunori; Wilkinson, Adam C; Kanazawa, Ayano; Watarai, Hiroshi; Kasai, Masataka; Nakauchi, Hiromitsu; Yamazaki, Satoshi
2016-12-02
A specialized bone marrow microenvironment (niche) regulates hematopoietic stem cell (HSC) self-renewal and commitment. For successful donor-HSC engraftment, the niche must be emptied via myeloablative irradiation or chemotherapy. However, myeloablation can cause severe complications and even mortality. Here we report that the essential amino acid valine is indispensable for the proliferation and maintenance of HSCs. Both mouse and human HSCs failed to proliferate when cultured in valine-depleted conditions. In mice fed a valine-restricted diet, HSC frequency fell dramatically within 1 week. Furthermore, dietary valine restriction emptied the mouse bone marrow niche and afforded donor-HSC engraftment without chemoirradiative myeloablation. These findings indicate a critical role for valine in HSC maintenance and suggest that dietary valine restriction may reduce iatrogenic complications in HSC transplantation. Copyright © 2016, American Association for the Advancement of Science.
Structural and ultrastructural study of rat testes influenced by electromagnetic radiation.
Almášiová, Viera; Holovská, Katarína; Cigánková, Viera; Račeková, Enikö; Fabianová, Kamila; Martončíková, Marcela
2014-01-01
This study was conducted to investigate the influence of whole-body electromagnetic radiation (EMR) on testicular parenchyma of Wistar rats. Sexually mature rats were subjected to pulsed electromagnetic field at frequency of 2.45 GHz and mean power density 2.8 mW/cm(2) by 3-h daily applications for 3 wk. Tissue samples were obtained 3 h after the last irradiation and processed by histological techniques for light and transmission electron microscopy. Testes showed apparent degenerative changes of seminiferous epithelium. The seminiferous tubules were mostly irregular in shape, and seminiferous epithelium contained a number of empty spaces of different size. Subsequently, groups of sloughed epithelial cells were often found inside the lumina of tubules. Except for relatively unchanged Sertoli cells, some locations of basal compartment of seminiferous epithelium contained shriveled Sertoli cells with dark cytoplasm. These areas showed degenerative features including necrotizing and shriveled spermatogonia surrounded by empty irregular spaces, and undulating basement membrane. The intertubular spaces were enlarged but interstitial Leydig cells did not show any marked morphological changes. Evidence demonstrates the adverse effects of EMR on testicular parenchyma in rats.
Competition for space during bacterial colonization of a surface.
Lloyd, Diarmuid P; Allen, Rosalind J
2015-09-06
Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. © 2015 The Authors.
Competition for space during bacterial colonization of a surface
Lloyd, Diarmuid P.; Allen, Rosalind J.
2015-01-01
Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. PMID:26333814
Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.
2016-01-01
Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324
Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions
Dam, Duncan Hieu M.; Lee, Jung Heon; Sisco, Patrick N.; Co, Dick T.; Zhang, Ming; Wasielewski, Michael R.; Odom, Teri W.
2012-01-01
We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultra-fast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy. PMID:22424173
Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids
Daffé, Mamadou; Crick, Dean C.; Jackson, Mary
2014-01-01
This chapter summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity and biogenesis of a variety of non-covalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this chapter include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, non-carotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides. PMID:25485178
[Generation of functional organs from pluripotent stem cells].
Miyamoto, Tatsuyuki; Nakauchi, Hiromitsu
2015-10-01
Hematopoietic stem cells (HSCs) have played a major role in stem cell biology, providing many conceptual ideas and models. Among them is the concept of the "niche", a special bone-marrow microenvironment that by exchanging cues regulates stem-cell fate. The HSC niche also plays an important role in HSC transplantation. Successful engraftment of donor HSCs depends on myeloablative pretreatment to empty the niche. The concept of the stem-cell niche has now been extended to the generation of organs. We postulated that an empty "organ niche" exists in a developing animal when development of an organ is genetically disabled. This organ niche should be developmentally compensated by blastocyst complementation using wild-type primary stem cells (PSCs). We proved the principle of organogenesis from xenogeneic PSCs in an embryo unable to form a specific organ, demonstrating the generation of functionally normal rat pancreas by injecting rat PSCs into pancreatogenesis-disabled mouse embryos. This principle has held in pigs. When pancreatogenesis-disabled pig embryos underwent complementation with blastomeres from wild-type pig embryos to produce chimeric pigs, the chimeras had normal pancreata and survived to adulthood. Demonstration of the generation of a functional organ from PSCs in pigs is a very important step toward generation of human cells, tissues, and organs from individual patients' own PSCs in large animals.
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus
Wolfisberg, Raphael; Kempf, Christoph
2016-01-01
ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.
Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos
2016-06-01
Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2011-01-01
Background The mechanisms by which chronic hepatitis B is completely resolved through antiviral therapy are unknown, and the contribution of acquired T cell immunity to hepatitis B surface antigen (HBsAg) seroclearance has not been investigated. Therefore, we measured the T-cell responses to core and envelope antigens in patients with HBsAg seroclearance. Methods Fourteen subjects with HBsAg seroclearance following antiviral treatment for chronic hepatitis B, 7 HBeAg-positive immunotolerant HBV carriers and 9 HBeAg-negative inactive HBsAg carriers were recruited. HBV-specific T-cell responses to recombinant HBV core (rHBcAg) and envelope (rHBsAg) proteins and pools of core and envelope peptides were measured using an ELISPOT assay detecting interferon-gamma and intracellular cytokine staining (ICS) assays detecting interferon-gamma or interleukin 2. Results Interferon-gamma ELISPOT assays showed a low frequency of weak responses to the rHBsAg and S peptide pool in the HBsAg seroclearance group, and the response frequency to the rHBcAg and the C peptide pool was higher than to the rHBsAg (P < 0.001) and S peptide pool (P = 0.001) respectively. A higher response frequency to C than S peptide pools was confirmed in the interferon-gamma ICS assays for both CD4+ (P = 0.033) and CD8+ (P = 0.040) T cells in the HBsAg seroclearance group. The responses to C and S antigens in the inactive carriers were similar. Conclusions There was a low frequency of CD4+ and CD8+ T cell immune responses to envelope antigens in Chinese subjects with HBsAg seroclearance following antiviral therapy. It is unlikely that these immune responses are responsible for HBsAg seroclearance in these subjects. PMID:21320337
Bou Raad, Roland; Méniche, Xavier; de Sousa-d'Auria, Celia; Chami, Mohamed; Salmeron, Christophe; Tropis, Marielle; Labarre, Cecile; Daffé, Mamadou; Houssin, Christine; Bayan, Nicolas
2010-01-01
Corynebacterineae is a specific suborder of Gram-positive bacteria that includes Mycobacterium tuberculosis and Corynebacterium glutamicum. The ultrastructure of the cell envelope is very atypical. It is composed of a heteropolymer of peptidoglycan and arabinogalactan (AG) covalently associated to an outer membrane. Five arabinosyltransferases are involved in the biosynthesis of AG in C. glutamicum. AftB catalyzes the transfer of Araf (arabinofuranosyl) onto the arabinan domain of the arabinogalactan to form terminal β(1 → 2)-linked Araf residues. Here we show that ΔaftB cells lack half of the arabinogalactan mycoloylation sites but are still able to assemble an outer membrane. In addition, we show that a ΔaftB mutant grown on a rich medium has a perturbed cell envelope and sheds a significant amount of membrane fragments in the external culture medium. These fragments contain mono- and dimycolate of trehalose and PorA/H, the major porin of C. glutamicum, but lack conventional phospholipids that typify the plasma membrane, suggesting that they are derived from the atypical mycolate outer membrane of the cell envelope. This is the first report of outer membrane destabilization in the Corynebacterineae, and it suggests that a strong interaction between the mycolate outer membrane and the underlying polymer is essential for cell envelope integrity. The presence of outer membrane-derived fragments (OMFs) in the external medium of the ΔaftB mutant is also a very promising tool for outer membrane characterization. Indeed, fingerprint analysis of major OMF-associated proteins has already led to the identification of 3 associated mycoloyltransferases and an unknown protein with a C-terminal hydrophobic anchoring domain reminiscent of that found for the S-layer protein PS2 of C. glutamicum. PMID:20363942
Heckert, J; Thomas, R M; Parkman, H P
2017-08-01
The aims of this study were to describe the histology in gastroparesis, specifically to relate histopathology to etiology of gastroparesis (idiopathic and diabetic gastroparesis), gastric emptying, and clinical response to gastric electric stimulation. Full thickness gastric body sections obtained during insertion of gastric stimulator in gastroparetics were stained with Hematoxylin & Eosin, Masson Trichrome and immunohistochemical stains for Neuron-Specific Enolase and c-Kit. In all, 145 gastroparetics (71 diabetics, 71 idiopathic, 2 post-surgical, and 1 chronic intestinal pseudo-obstruction) had full thickness gastric body biopsies. A lymphocytic infiltrate was seen in the intermyenteric plexus in 22 diabetic and 23 idiopathic gastroparesis patients. Fibrosis was present in the inner circular layer in 13 diabetic and 15 idiopathics and in the outer longitudinal layer in 46 diabetic and 51 idiopathics. Diabetic gastroparesis had less ganglion cells (3.27±1.82 vs 4.81±2.81/hpf; P<.01) and less ganglia (0.90±0.44 vs 1.10±0.50/hpf; P=.01) than idiopathic gastroparesis. Interstitial cells of Cajal (ICC) count was slightly lower in the inner circular layer in diabetic than idiopathics (2.77±1.47 vs 3.18±1.34/hpf; P=.08). Delayed gastric emptying was associated with reduced ICCs in the myenteric plexus. Global therapeutic response to gastric electric stimulation was inversely related to ganglia/hpf (R=-.22; P=.008). In diabetics, improvements in nausea, vomiting, and abdominal pain were inversely related to fibrosis. Histologic assessment of full thickness gastric biopsy specimens allows correlation of histopathology to the gastroparesis disease process, its etiology, gastric emptying, and response to gastric electric stimulation treatment. © 2017 John Wiley & Sons Ltd.
Wan, Fen; Mao, Yinting; Dong, Yangyang; Ju, Lili; Wu, Genfu; Gao, Haichun
2015-01-01
Oxidative stress is one of the major challenges that Shewanella encounter routinely because they thrive in redox-stratified environments prone to reactive oxygen species (ROS) formation, letting alone that ROS can be generated endogenously. As respiration is the predominant process for endogenous ROS, regulators mediating respiration have been demonstrated and/or implicated to play a role in oxidative stress response. In our efforts to unveil the involvement of global regulators for respiration in the oxidative stress response, we found that loss of the Arc system increases S. oneidensis sensitivity to H2O2 whereas neither Fnr nor Crp has a significant role. A comparison of transcriptomic profiles of the wild-type and its isogenic arcA mutant revealed that the OxyR regulon is independent of the Arc system. We then provided evidence that the enhanced H2O2 sensitivity of the arcA mutant is due to an increased H2O2 uptake rate, a result of a cell envelope defect. Although one of three proteases of the ArcA regulon when in excess is partially accountable for the envelope defect, the major contributors remain elusive. Overall, our data indicate that the Arc system influences the bacterial cell envelope biosynthesis, a physiological aspect that has not been associated with the regulator before. PMID:25975178
Interactions of liposome carriers with infectious fungal hyphae reveals the role of β-glucans.
Chavan, Neelam L; Young, Joseph K; Drezek, Rebekah A; Lewis, Russell; Bikram, Malavosklish
2012-09-04
Relatively little is known about how liposomal formulations modulate drug delivery to fungal pathogens. We compared patterns of hyphal cell wall binding for empty rhodmine-labeled liposomes and the clinically available amphotericin B-containing liposomal formulation (AmBisome) in Aspergillus fumigatus and Candida albicans. Following 0.5 h of coincubation with A. fumigatus , empty liposomes concentrated primarily in fungal septae along at the surface of the cell wall, suggesting that liposome uptake is concentrated in areas of the cell wall where linear glucan is exposed on the cell surface, which was confirmed by aniline blue staining. Consistent with this hypothesis, pretreatment of liposomes with soluble linear glucan (laminarin) decreased liposome binding in both Aspergillus and Candida fungal hyphae, while growth of Aspergillus hyphae in the presence of an agent that increases fungal cell wall surface exposure of linear β-glucans without cell death (caspofungin) increased liposome uptake throughout the Aspergillus fungal cell wall. Increasing the polyethylene glycol (PEG) concentration in liposomes from 0 to 30% significantly increased fungal uptake of liposomes that was only modestly attenuated when fungal cells were incubated in serum concentrations ranging from 10 to 100%. The presence of β-glucans on the fungal hyphae cell walls of Aspergillus fumigatus is one of the factors responsible for mediating the binding of liposome carriers to the hyphae and could explain possible synergy reported between liposomal amphotericin B and echinocanins.
Crivellato, Enrico; Belloni, Anna; Nico, Beatrice; Nussdorfer, Gastone G; Ribatti, Domenico
2004-03-01
Exocytosis is considered the main route of granule discharge in chromaffin cells. We recently provided ultrastructural evidence suggesting that piecemeal degranulation (PMD) occurs in mouse adrenal chromaffin cells. In the present study, we processed rat adrenal glands for transmission electron microscopy (TEM), and examined chromaffin cells for changes characteristic of PMD. Both adrenaline (A)- and noradrenaline (NA)-storing cells express ultrastructural features suggestive of a slow and particulate mode of granule discharge. In adrenaline-containing cells, some granules present enlarged dimensions accompanied by eroded or dissolved matrices. Likewise, a number of granules in NA-releasing cells show content reduction with variably expanded granule chambers. Dilated, empty granule containers are recognizable in the cytoplasm of both cell types. Characteristically, altered granules and empty containers are seen intermingled with normal, resting granules. In addition, chromaffin granules often show irregular profiles, with budding or tail-like projections of their limiting membranes. Thirty 150-nm-diameter membrane-bound vesicles with a moderately electron-dense or -lucent internal structure are observable in the cytoplasm of both cell types. These vesicles are seen among the granules and some of them are fused with the perigranule membranes in the process of attachment to or budding from the granules. These data add further support to the concept that PMD may be an alternative secretory pathway in adrenal chromaffin cells. Copyright 2004 Wiley-Liss, Inc.
Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development.
Abrams, Elliott W; Zhang, Hong; Marlow, Florence L; Kapp, Lee; Lu, Sumei; Mullins, Mary C
2012-08-03
To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. Copyright © 2012 Elsevier Inc. All rights reserved.
Alzheimer's disease: An acquired neurodegenerative laminopathy.
Frost, Bess
2016-05-03
The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a "nucleoplasmic reticulum," into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination.
Merkle, R K; Helland, D E; Welles, J L; Shilatifard, A; Haseltine, W A; Cummings, R D
1991-10-01
The envelope glycoprotein of HIV-I in infected, cultured human T cells is synthesized as a precursor of apparent Mr 160 kDa (gp160) and is cleaved to two glycoproteins, gp120 and gp41, which are the mature envelope glycoproteins in the virus. Neither the temporal and spatial features of glycosylation nor the oligosaccharide processing and proteolytic cleavage of the envelope glycoprotein are well understood. To understand more about these events, we investigated the glycosylation and cleavage of the envelope glycoproteins in the CD4+ human cell line, Molt-3, persistently infected with HIV-I (HTLV IIIB). The carbohydrate analysis of gp160 and gp120 and the behavior of the glycoproteins and glycopeptides derived from them on immobilized lectins demonstrate that both of these glycoproteins contain complex- and high-mannose-type Asn-linked oligosaccharides. In addition, the N-glycanase-resistant oligosaccharides of gp120 were found to contain N-acetyl-galactosamine, a common constituent of Ser/Thr-linked oligosaccharides. Pulse-chase analysis of the conversion of [35S]cysteine-labeled gp160 showed that in Molt-3 cells it takes about 2 h for gp120 to arise with a half-time of conversion of about 5 h. At its earliest detectable occurrence, gp120 was found to contain complex-type Asn-linked oligosaccharides. Taken together, these results indicate that proteolytic cleavage of gp160 to gp120 and gp41 occurs either within the trans-Golgi or in a distal compartment.
Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S Munir; Fenizia, Claudio; Lifson, Jeffrey D; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David; Franchini, Genoveffa
2013-02-01
The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.
Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F.; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S. Munir; Fenizia, Claudio; Lifson, Jeffrey D.; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David
2013-01-01
The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines. PMID:23175374
Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons
Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric
2015-01-01
The reactive species of oxygen (ROS) and chlorine (RCS) damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine (Met) is converted to methionine sulfoxide (Met-O), which can cause a loss of biological activity. To rescue proteins with Met-O residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts 1-3. Here, we report the identification of an enzymatic system, MsrPQ, repairing Met-O containing proteins in the bacterial cell envelope, a compartment particularly exposed to the ROS and RCS generated by the host defense mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a heme-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid (HOCl), a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from Met oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both R- and S- diastereoisomers of Met-O, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting Met residues from oxidation should prompt search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum (ER). PMID:26641313
Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.
Gennaris, Alexandra; Ezraty, Benjamin; Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric
2015-12-17
The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.
Villegas, Josefina M; Brown, Lucía; Savoy de Giori, Graciela; Hebert, Elvira M
2015-05-01
The cell envelope-associated proteinase (CEP) of Lactobacillus delbrueckii subsp. lactis CRL 581 (PrtL) has an essential role in bacterial growth, contributes to the flavor and texture development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. The genome of L. delbrueckii subsp. lactis CRL 581 possesses only one gene that encodes PrtL, which consists of 1924 amino acids and is a multidomain protein anchored to the cell via its W domain. PrtL was extracted from the cell under high ionic strength conditions using NaCl, suggesting an electrostatic interaction between the proteinase and the cell envelope. The released PrtL was purified and biochemically characterized; its activity was maximal at temperatures between 37 and 40 °C and at pH between 7 and 8. Under optimal conditions, PrtL exhibited higher affinity for succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide than for succinyl-alanyl-glutamyl-prolyl-phenylalanine-p-nitroanilide, while methoxy-succinyl-arginyl-prolyl-tyrosyl-p-nitroanilide was not degraded. A similar α- and β-casein degradation pattern was observed with the purified and the cell envelope-bound proteinase. Finally, on the basis of its specificity towards caseins and the unique combination of amino acids at residues thought to be involved in substrate specificity, PrtL can be classified as a representative of a new group of CEP.
Ma, Zhao; Liu, Juan; Dick, Richard P; Li, Hui; Shen, Di; Gao, Yanzheng; Waigi, Michael Gatheru; Ling, Wanting
2018-05-08
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L -1 ) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L -1 ) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L -1 ) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Glucagon-like peptide-2 (GLP-2) is a neuropeptide secreted from endocrine cells in the gut and neurons in the brain. GLP-2 stimulates intestinal crypt cell proliferation and mucosal blood flow while decreasing gastric emptying and gut motility. However, a GLP-2-mediated signaling network has not bee...
Alkaline phosphatase activity of rumen bacteria.
Cheng, K J; Costerton, J W
1977-11-01
Of the 54 strains of rumen bacteria examined for alkaline phosphatase (APase) production, 9 of 33 gram-negative strains and none of 21 gram-positive strains produced the enzyme. The APase of the cells of the three strains of Bacteroides ruminicola that produced significant amounts of the enzyme was located in the periplasmic area of the cell envelope, whereas the enzyme was located in the strains of Selenomonas ruminantium and Succinivibrio dextrinosolvens was associated with the outer membrane. The localization of APase production in the cells of natural populations of rumen bacteria from hay-fed sheep was accomplished by reaction product deposition, and both the proportion of APase-producing bacteria and the location of the enzyme in the cell envelope of the producing cells could be determined. We suggest that this procedure is useful in detecting shifts in the bacterial population and the release of cell-bound APase that accompany feedlot bloat and other sequelae of dietary manipulation in ruminants.
Nuclear envelope and genome interactions in cell fate
Talamas, Jessica A.; Capelson, Maya
2015-01-01
The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741
[Study of negative feedback between wild-type BRAF or RAFV600E and Mps1 in melanoma].
Zhang, Ling; He, Chanting; Bi, Yanghui; Liu, Feng; Cui, Heyang; Wang, Juan; Song, Bin; Shi, Ruyi; Yang, Bin; Wang, Fang; Jia, Zhiwu; Zhao, Zhenxiang; Liu, Jing
2015-04-01
To study the effect of Mps1 on BRAFWT/MEK/ERK pathway in the presence of wild type BRAF or BRAFV600E in melanoma. Melanoma cells harboring BRAFWT genotype were transfected either with pBabe-puro-GST-BRAF-WT and/or pBabe-puro-GFP-Mps1-WT or pBabe-puro-GST-BRAFV600E and/or pBabe-puro-GFP-Mps1-WT, followed by Western blot to detect Mps1 and p-ERK expression. The melanoma cells harboring BRAFWT and BRAFV600E genotype were infected with pSUPER-Mps1 retrovirus to knockdown the endogenous Mps1 protein, followed by Western blot to detect Mps1 and p-ERK expression. Meanwhile, melanoma cells harboring BRAFV600E genotype were infected with pBabe-puro-GFP-Mps1 and Western blot was performed to detect Mps1 and p-ERK expression. In melanoma cells harboring BRAFWT genotype and transfected with pBabe-puro-GST-BRAF-WT and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels were notably reduced as compared to either negative control or empty vector. However, cells transfected with pBabe-puro-GST-BRAFV600E and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels did not change significantly compared with either negative control or empty vector. Knockout of Mps1 in BRAF wild-type cell lines led to an increased ERK activity. However, there was no significant change of ERK activity in BRAFV600E cell lines in the absence of Mps1. The expression of p-ERK in BRAFV600E mutant cell lines infected with pBabe-puro-GFP-Mps1-WT did not show any significant difference from either negative control or empty vector. Based on these findings, it suggests that there exists an auto-regulatory negative feedback loop between the Mps1 kinase and BRAFWT/ERK signaling. Oncogenic BRAFV600E abrogates the regulatory negative feedback loop of Mps1 on the MAPK pathway.
A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang
2010-01-22
To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potentialmore » entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.« less
The Influence of Soft Layer Electrokinetics on Electroporation of Gram-positive Bacteria
NASA Astrophysics Data System (ADS)
Dingari, Naga Neehar; Moran, Jeffrey L.; Garcia, Paulo A.; Buie, Cullen R.
2016-11-01
Bacterial electroporation involves subjecting cells to intense ( 10 kV/cm) electric pulses, to open pores on the cell membrane for intracellular delivery of exogenous molecules. Its high efficiency in genetic transformation makes it an attractive tool for synthetic biology. While mammalian cell electroporation has received extensive theoretical and experimental investigation, bacterial electroporation has received markedly less attention. In this work, we develop a theoretical model of electroporation for gram-positive bacteria, taking into account the effect of the bacterial cell envelope on the cell's response to an electroporation pulse. We model the influence of the cell wall charge on the electrokinetic transport (and hence the pore properties) around the bacterial cell envelope using the Poisson-Nernst-Planck equations. Further, we account for the influence of the cell wall's mechanical elasticity on the pore radius evolution during electroporation, which is typically neglected in mammalian cell electroporation. This yields valuable information about favorable conditions for pore formation and will enable designing optimal platforms for bacteria electroporation.
Cui, Xiuji; Luckenbaugh, Laurie; Bruss, Volker; Hu, Jianming
2015-10-01
Assembly of hepatitis B virus (HBV) begins with packaging of the pregenomic RNA (pgRNA) into immature nucleocapsids (NC), which are converted to mature NCs containing the genomic relaxed circular (RC) DNA as a result of reverse transcription. Mature NCs have two alternative fates: (i) envelopment by viral envelope proteins, leading to secretion extracellularly as virions, or (ii) disassembly (uncoating) to deliver their RC DNA content into the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, the template for viral transcription. How these two alternative fates are regulated remains to be better understood. The NC shell is composed of multiple copies of a single viral protein, the HBV core (HBc) protein. HBc mutations located on the surface of NC have been identified that allow NC maturation but block its envelopment. The potential effects of some of these mutations on NC uncoating and CCC DNA formation have been analyzed by transfecting HBV replication constructs into hepatoma cells. All envelopment-defective HBc mutations tested were competent for CCC DNA formation, indicating that core functions in envelopment and uncoating/nuclear delivery of RC DNA were genetically separable. Some of the envelopment-defective HBc mutations were found to alter specifically the integrity of mature, but not immature, NCs such that RC DNA became susceptible to nuclease digestion. Furthermore, CCC DNA formation could be enhanced by NC surface mutations that did or did not significantly affect mature NC integrity, indicating that the NC surface residues may be closely involved in NC uncoating and/or nuclear delivery of RC DNA. Hepatitis B virus (HBV) infection is a major health issue worldwide. HBV assembly begins with the packaging into immature nucleocapsids (NCs) of a viral RNA pregenome, which is converted to the DNA genome in mature NCs. Mature NCs are then selected for envelopment and secretion as complete-virion particles or, alternatively, can deliver their DNA to the host cell nucleus to maintain the viral genome as nuclear episomes, which are the basis for virus persistence. Previous studies have identified mutations on the capsid surface that selectively block NC envelopment without affecting NC maturation. We have now discovered that some of the same mutations result in preferential alteration of mature NCs and increased viral nuclear episomes. These findings provide important new insights into the regulation of the two alternative fates of mature NCs and suggest new ways to perturb viral persistence by manipulating levels of viral nuclear episomes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification
Righolt, Christiaan H.; Zatreanu, Diana A.; Raz, Vered
2013-01-01
The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification. PMID:27335676
Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification.
Righolt, Christiaan H; Zatreanu, Diana A; Raz, Vered
2013-01-01
The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.
Gray, Andrew N; Egan, Alexander JF; van't Veer, Inge L; Verheul, Jolanda; Colavin, Alexandre; Koumoutsi, Alexandra; Biboy, Jacob; Altelaar, A F Maarten; Damen, Mirjam J; Huang, Kerwyn Casey; Simorre, Jean-Pierre; Breukink, Eefjan; den Blaauwen, Tanneke; Typas, Athanasios; Gross, Carol A; Vollmer, Waldemar
2015-01-01
To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI: http://dx.doi.org/10.7554/eLife.07118.001 PMID:25951518
Lombardi, Maria L; Lammerding, Jan
2011-12-01
Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.
Silva, Maria C.; Yu, Qian-Chun; Enquist, Lynn; Shenk, Thomas
2003-01-01
The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm. PMID:12970444
Complement and the control of HIV infection: an evolving story.
Frank, Michael M; Hester, Christopher; Jiang, Haixiang
2014-05-01
Thirty years ago, investigators isolated and later determined the structure of HIV-1 and its envelope proteins. Using techniques that were effective with other viruses, they prepared vaccines designed to generate antibody or T-cell responses, but they were ineffective in clinical trials. In this article, we consider the role of complement in host defense against enveloped viruses, the role it might play in the antibody response and why complement has not controlled HIV-1 infection. Complement consists of a large group of cell-bound and plasma proteins that are an integral part of the innate immune system. They provide a first line of defense against microbes and also play a role in the immune response. Here we review the studies of complement-mediated HIV destruction and the role of complement in the HIV antibody response. HIV-1 has evolved a complex defense to prevent complement-mediated killing reviewed here. As part of these studies, we have discovered that HIV-1 envelope, on administration into animals, is rapidly broken down into small peptides that may prove to be very inefficient at provident the type of antigenic stimulation that leads to an effective immune response. Improving complement binding and stabilizing envelope may improve the vaccine response.
Fusion of Enveloped Viruses in Endosomes
White, Judith M.; Whittaker, Gary R.
2016-01-01
Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856
Poprawa, Izabela; Schlechte-Wełnicz, Weronika; Hyra, Marta
2015-05-01
The female reproductive system, the process of oogenesis, and the morphology of the egg capsule of Macrobiotus polonicus were analyzed using transmission and scanning electron microscopy and histochemical methods. The female reproductive system of Macrobiotus polonicus consists of a single ovary and a single oviduct that opens into the cloaca. The seminal receptacle filled with sperm cells is present. The ovary is divided into two parts: a germarium that is filled with oogonia and a vitellarium that is filled with branched clusters of the germ cells. Meroistic oogenesis occurs in the species that was examined. The yolk material is synthesized by the oocyte (autosynthesis) and by the trophocytes and is transported to the oocyte through cytoplasmic bridges. The process of the formation of the egg envelopes starts in the late vitellogenesis. The egg capsule is composed of two envelopes-the vitelline envelope and the three-layered chorion. The vitelline envelope is of the primary type while the chorion is of a secondary type. The surface of the chorion is covered with conical processes that terminate with a strongly indented terminal disc.
Movahedi, Nima; Marsavina, Liviu
2018-01-01
In this research work, the effect of lateral loading (LL) on the crushing performance of empty tubes (ETs) and ex situ aluminum foam-filled tubes (FFTs) was investigated at 300 °C. The cylindrical thin-walled steel tube was filled with the closed-cell aluminum alloy foam that compressed under quasi-static loading conditions. During the compression test, the main mechanical properties of the ETs improved due to the interaction effect between the cellular structure of the foam and the inner wall of the empty tube. In addition, the initial propagated cracks on the steel tubes reduced considerably as a result of such interaction. Furthermore, the obtained results of the LL loading were compared with the axial loading (AL) results for both ETs and FFTs at the same temperature. The findings indicated that the application of loading on the lateral surface of the composite causes the lower mechanical properties of both ETs and FFTs in comparison with the axial loading conditions. PMID:29617300
Jiang, Xiao Jing; Adler, Barbara; Sampaio, Kerstin Laib; Digel, Margarete; Jahn, Gerhard; Ettischer, Nicole; Stierhof, York-Dieter; Scrivano, Laura; Koszinowski, Ulrich; Mach, Michael; Sinzger, Christian
2008-01-01
The glycoprotein (g) complex gH/gL represents an essential part of the herpesvirus fusion machinery mediating entry of cell-free virions and cell-associated viral spread. In some herpesviruses additional proteins are associated with gH/gL contributing to the cell tropism of the respective virus. Human cytomegalovirus (HCMV) gH/gL forms complexes with either gO (UL74) or proteins of the UL128-131A gene locus. While a contribution of UL128-131A to endothelial cell tropism is known, the role of gO is less clear. We studied the role of gH/gL-associated proteins in HCMV replication in human foreskin fibroblasts (HFF) and human umbilical vein endothelial cells (HUVEC). Deletions of UL74 alone or in combination with mutations of the UL128-131A gene region were introduced into bacterial artificial chromosome vectors derived from the endotheliotropic strain TB40/E. Deletion of UL74 caused a profound defect regarding virus release from infected HFF and HUVEC. Large numbers of capsids accumulated in the cytoplasm of infected HFF but failed to acquire an envelope. Clear cell type differences were observed in the cell-associated spread of the UL74-defective virus. In HFF, focal growth was severely impaired, whereas it was normal in HUVEC. Deletion of UL131A abolished focal growth in endothelial cells. UL74/UL128-131A dual mutants showed severely impaired reconstitution efficiency. Our data suggest that gO plays a critical role in secondary envelopment and release of cell-free virions independent of the cell type but affects cell-associated growth specifically in HFF, whereas UL128-131A contributes to cell-associated spread in HFF and HUVEC. PMID:18184717
Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C
2007-06-12
Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.
Structural associations between organelle membranes in nectary parenchyma cells.
Machado, Silvia Rodrigues; Gregório, Elisa A; Rodrigues, Tatiane M
2018-05-01
The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.
Baculovirus GP64-mediated entry into mammalian cells.
Kataoka, Chikako; Kaname, Yuuki; Taguwa, Shuhei; Abe, Takayuki; Fukuhara, Takasuke; Tani, Hideki; Moriishi, Kohji; Matsuura, Yoshiharu
2012-03-01
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.
Ruskoski, Sallie A; Champlin, Franklin R
2017-07-01
The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.
Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina
2012-06-01
Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.
Dubińska-Magiera, Magda; Chmielewska, Magdalena; Kozioł, Katarzyna; Machowska, Magdalena; Hutchison, Christopher J; Goldberg, Martin W; Rzepecki, Ryszard
2016-05-01
Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.
Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes
Prudovsky, Igor; Vary, Calvin P.H.; Markaki, Yolanda; Olins, Ada L.; Olins, Donald E.
2012-01-01
Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope. PMID:22555604
Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display
Desvaux, Mickaël; Candela, Thomas; Serror, Pascale
2018-01-01
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed. PMID:29491848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehrig, John T., E-mail: jtr1@cdc.gov; Butrapet, Siritorn; Liss, Nathan M.
Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cellsmore » and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.« less
Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.
Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V
2015-09-01
Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Channel Allocation in Wireless Integrated Services Networks for Low-Bit-Rate Applications.
1998-06-01
server remains idle until the beginning of the next slot, even if cells arrive in the meanwhile.7 The server is assumed to be non - preemptive , i.e., it...If the ToE of the cell is smaller than 1/C^(the service time): i) Discard the cell. 2. Sort the remaining cells in the queue in a non -decreasing...126 Next, the cell-loss-probability ratios (CLPR) of non -empty sources (i.e., having at least one cell in the queue ) defined as ratios between the
Carrier-Envelope Phase Effects in Plasma-Based Electron Acceleration with Few-Cycle Laser Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nerush, E. N.; Kostyukov, I. Yu.
2009-07-17
Carrier-envelope phase effects during the interaction of relativistically intense few-cycle laser pulses with a plasma are studied in the 'bubble' regime when an electron cavity (bubble) is formed behind the pulse. We show that for few-cycle laser pulses the cavity shape becomes asymmetric and depends strongly on the carrier-envelope phase. The carrier-envelope phase varies when the laser pulse propagates in plasma, which causes transverse oscillations of the cavity. Furthermore, the beam of electrons trapped by the cavity becomes modulated in the polarization plane. To describe these effects we derive an analytical model extended beyond the ponderomotive approximation. The degree ofmore » plasma cavity asymmetry as a function of the laser-plasma parameters is calculated. The obtained results are verified by particle-in-cell simulations.« less
World-Record Solar Cell a Step Closer to Cheap Solar Energy
envelope of solar-cell efficiency, we can begin to visualize the day when energy from the sun will be in efficiency translates into lower costs for harnessing energy from the sun. The cell's excellent
Gitman, A G; Kahane, I; Loyter, A
1985-05-21
Anti-human erythrocyte antibodies or insulin molecules were covalently coupled to the glycoproteins (the hemagglutinin/neuraminidase and the fusion polypeptides) of Sendai virus envelopes with N-succinimidyl 3-(2-pyridyldithio)propionate and succinimidyl 4-(p-maleimidophenyl)butyrate as cross-linking reagents. Reconstituted Sendai virus envelopes, bearing covalently attached anti-human erythrocyte antibodies or insulin molecules, were able to bind to but not fuse with virus receptor depleted human erythrocytes (neuraminidase-treated human erythrocytes). Only coreconstitution of Sendai virus glycoproteins, bearing attached anti-human erythrocyte antibodies or insulin molecules with intact, untreated viral glycoproteins, led to the formation of fusogenic, targeted reconstituted Sendai virus envelopes. Binding and fusion of reconstituted Sendai virus envelopes, bearing anti-human erythrocyte antibodies or insulin molecules, with neuraminidase-treated human erythrocytes were blocked by the monovalent fraction, obtained after papain digestion of immunoglobulins, made of anti-human erythrocyte antibodies or free insulin molecules, respectively. The results of this work demonstrate an active role of the viral binding protein (hemagglutinin/neuraminidase polypeptide) in the virus membrane fusion process and show a novel and efficient method for the construction of targeted, fusogenic Sendai virus envelopes.
Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke
2017-02-06
In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.
Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T
2005-09-01
Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.
S-layers: principles and applications
Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva-Maria; Pum, Dietmar
2014-01-01
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology. PMID:24483139
Taniyama, Toshiyuki; Tsuda, Natsumi; Sueda, Shinji
2018-06-15
The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.
General Protein Diffusion Barriers create Compartments within Bacterial Cells
Schlimpert, Susan; Klein, Eric A.; Briegel, Ariane; Hughes, Velocity; Kahnt, Jörg; Bolte, Kathrin; Maier, Uwe G.; Brun, Yves V.; Jensen, Grant J.; Gitai, Zemer; Thanbichler, Martin
2013-01-01
SUMMARY In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell cycle-dependent manner. Their presence is critical for cellular fitness, as they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins. PMID:23201141
Klupp, Barbara G; Hellberg, Teresa; Granzow, Harald; Franzke, Kati; Dominguez Gonzalez, Beatriz; Goodchild, Rose E; Mettenleiter, Thomas C
2017-10-01
Herpesvirus capsids assemble in the nucleus, while final virion maturation proceeds in the cytoplasm. This requires that newly formed nucleocapsids cross the nuclear envelope (NE), which occurs by budding at the inner nuclear membrane (INM), release of the primary enveloped virion into the perinuclear space (PNS), and subsequent rapid fusion with the outer nuclear membrane (ONM). During this process, the NE remains intact, even at late stages of infection. In addition, the spacing between the INM and ONM is maintained, as is that between the primary virion envelope and nuclear membranes. The linker of nucleoskeleton and cytoskeleton (LINC) complex consists of INM proteins with a luminal SUN (Sad1/UNC-84 homology) domain connected to ONM proteins with a KASH (Klarsicht, ANC-1, SYNE homology) domain and is thought to be responsible for spacing the nuclear membranes. To investigate the role of the LINC complex during herpesvirus infection, we generated cell lines constitutively expressing dominant negative (dn) forms of SUN1 and SUN2. Ultrastructural analyses revealed a significant expansion of the PNS and the contiguous intracytoplasmic lumen, most likely representing endoplasmic reticulum (ER), especially in cells expressing dn-SUN2. After infection, primary virions accumulated in these expanded luminal regions, also very distant from the nucleus. The importance of the LINC complex was also confirmed by reduced progeny virus titers in cells expressing dn-SUN2. These data show that the intact LINC complex is required for efficient nuclear egress of herpesviruses, likely acting to promote fusion of primary enveloped virions with the ONM. IMPORTANCE While the viral factors for primary envelopment of nucleocapsids at the inner nuclear membrane are known to the point of high-resolution structures, the roles of cellular components and regulators remain enigmatic. Furthermore, the machinery responsible for fusion with the outer nuclear membrane is unsolved. We show here that dominant negative SUN2 interferes with efficient herpesvirus nuclear egress, apparently by interfering with fusion between the primary virion envelope and outer nuclear membrane. This identifies a new cellular component important for viral egress and implicates LINC complex integrity in nonconventional nuclear membrane trafficking. Copyright © 2017 American Society for Microbiology.
Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells.
Yesil-Celiktas, Ozlem; Pala, Cansu; Cetin-Uyanikgil, E Oyku; Sevimli-Gur, Canan
2017-02-15
Mesoporous silica carriers are emerging as therapeutic drug delivery systems. The objective of this study was to develop a formulation for synthesizing silica-PAMAM dendrimer hybrid nanoparticles with sol-gel technique. Subsequently, black carrot anthocyanins were encapsulated and investigated for their capability in terms of inhibiting the proliferative effects of neuroblastoma (Neuro 2A). In this context, particle size distributions were ascertained followed by thermal analysis (DSC), scanning electron microscopy and encapsulation efficiency. Subsequently, in vitro release kinetics was determined along with cytotoxicity of empty and anthocyanin doped hybrid nanoparticles. The lowest particle size was 134.8 nm with a zeta potential of +19.78 mV which enhanced electrostatic interaction with the cell membrane in the cytotoxicity analyses. As the anthocyanin content was totally released at the end of 6 days, the cytotoxicity was observed for 134 h, reaching an inhibition of 87.9%. On the other hand, Neuro 2A cells incubated with empty nanoparticles exhibited a high proliferation indicating that hybrid nanoparticles were not toxic to the cells and the inhibitory effect was associated with the anthocyanins. Copyright © 2016 Elsevier Inc. All rights reserved.
Bestman-Smith, Julie; Piret, Jocelyne; Désormeaux, André; Tremblay, Michel J.; Omar, Rabeea F.; Bergeron, Michel G.
2001-01-01
The microbicidal activity of sodium lauryl sulfate (SLS) against human immunodeficiency virus type 1 (HIV-1) was studied in cultured cells. Pretreatment of HIV-1NL4-3 with SLS decreased, in a concentration-dependent manner, its infectivity when using 1G5 as target cells. In the absence of a viral pretreatment period or when 1G5 cells were pretreated with SLS, the surfactant-induced inactivation of viral infectivity was less pronounced, especially at concentrations between 375 and 550 μM. SLS had no effect on HIV-1 when the virus was adsorbed to 1G5 cells by a 2-h incubation period. SLS almost completely inhibited the fusion process by decreasing the attachment of HIV-1 to target cells. SLS also inhibited the infectivity of HIV-1-based luciferase reporter viruses pseudotyped with the amphotropic murine leukemia virus envelope (which enters cells in a CD4-, CCR5-, and CXCR4-independent manner), indicating that SLS may inactivate other envelope viruses. In contrast, no effect was seen with vesicular stomatitis virus envelope glycoprotein G (which enters cells through receptor-mediated endocytosis) pretreated with up to 700 μM SLS. SLS also decreased, in a dose-dependent manner, the HIV-1-dependent syncytium formation between 1G5 and J1.1 cells after a 24-h incubation. The reduction of luciferase activity was more pronounced when J1.1 cells (which express HIV-1 proteins on their surface) were pretreated with SLS rather than 1G5 cells. Taken together, our results suggest that SLS could represent a candidate of choice for use in vaginal microbicides to prevent the sexual transmission of HIV and possibly other pathogens causing sexually transmitted diseases. PMID:11451679
NASA Astrophysics Data System (ADS)
Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.
2018-02-01
The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.
Nuclear lamins during gametogenesis, fertilization and early development
NASA Technical Reports Server (NTRS)
Maul, G. G.; Schatten, G.
1986-01-01
The distribution of lamins (described by Gerace, 1978, as major proteins of nuclear envelope) during gametogenesis, fertilization, and early development was investigated in germ cells of a mouse (Mus musculus), an echinoderm (Lytechinus variegatus), and the surf clam (Spisula solidissima) was investigated in order to determine whether the differences detected could be correlated with differences in the function of cells in these stages of the germ cells. In order to monitor the behavior of lamins, the gametes and embryos were labeled with antibodies to lamins A, C, and B extracted from autoimmune sera of patients with scleroderma and Lupus erythematosus. Results indicated that lamin B could be identified in nuclear envelopes on only those nuclei where chromatin is attached and where RNA synthesis takes place.
De Groot, Anne S; Martin, William; Moise, Leonard; Guirakhoo, Farshad; Monath, Thomas
2007-11-19
T-cell epitope variability is associated with viral immune escape and may influence the outcome of vaccination against the highly variable Japanese Encephalitis Virus (JEV). We computationally analyzed the ChimeriVax-JEV vaccine envelope sequence for T helper epitopes that are conserved in 12 circulating JEV strains and discovered 75% conservation among putative epitopes. Among non-identical epitopes, only minor amino acid changes that would not significantly affect HLA-binding were present. Therefore, in most cases, circulating strain epitopes could be restricted by the same HLA and are likely to stimulate a cross-reactive T-cell response. Based on this analysis, we predict no significant abrogation of ChimeriVax-JEV-conferred protection against circulating JEV strains.
Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection
Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.
2017-01-01
HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635
Belouzard, Sandrine; Cordo, Sandra M.; Candurra, Nélida A.; Whittaker, Gary R.
2014-01-01
The target cell tropism of enveloped viruses is regulated by interactions between viral proteins and cellular receptors determining susceptibility at a host cell, tissue or species level. However, a number of additional cell-surface moieties can also bind viral envelope glycoproteins and could act as capture receptors, serving as attachment factors to concentrate virus particles on the cell surface, or to disseminate the virus infection to target organs or susceptible cells within the host. Here, we used Junín virus (JUNV) or JUNV glycoprotein complex (GPC)-pseudotyped particles to study their ability to be internalized by the human C-type lectins hDC- or hL-SIGN. Our results provide evidence that hDC- and hL-SIGN can mediate the entry of Junín virus into cells, and may play an important role in virus infection and dissemination in the host. PMID:24183720
2013-11-27
lar to the slow axis appear yellow [19]. To observe the morphology of aligned collagen fibril, fibers were dehydrated via graded series of ethanols (70...Invitrogen) displayed prolifer- ating cell numbers. 2.5. Effect of aligned collagen–NP fibers on cell morphology and proliferation (7 days’ culture) A...loaded with PDGF than in the well with fibers that contained only empty NPs (control). 3.5. ADSCs cell proliferation and morphology on aligned collagen–NP
2012-05-01
subset enriched in epithelial-to- mesenchymal transition and stem cell characteristics. Cancer Res 69: 4116–4124. Hoenerhoff MJ, Chu I, Barkan D, Liu ZY...expression of epithelial markers and loss of mesenchymal markers in MB- 231 cells (Task1a) Our analyses of m icroarray data com paring 231-Empty cells ...is considered a hallmark of EMT (Yang and Weinberg 2008). MB-231 cells lack E-cadherin expression and exhibit a more mesenchymal phenotype
Jeon, B J; Kim, J D; Han, J W; Kim, B S
2016-05-01
The objective of this study was to explore antifungal metabolites targeting fungal cell envelope and to evaluate the control efficacy against anthracnose development in pepper plants. A natural product library comprising 3000 microbial culture extracts was screened via an adenylate kinase (AK)-based cell lysis assay to detect antifungal metabolites targeting the cell envelope of plant-pathogenic fungi. The culture extract of Streptomyces mauvecolor strain BU16 displayed potent AK-releasing activity. Rimocidin and a new rimocidin derivative, BU16, were identified from the extract as active constituents. BU16 is a tetraene macrolide containing a six-membered hemiketal ring with an ethyl group side chain instead of the propyl group in rimocidin. Rimocidin and BU16 showed broad-spectrum antifungal activity against various plant-pathogenic fungi and demonstrated potent control efficacy against anthracnose development in pepper plants. Antifungal metabolites produced by S. mauvecolor strain BU16 were identified to be rimocidin and BU16. The compounds displayed potent control efficacy against pepper anthracnose. Rimocidin and BU16 would be active ingredients of disease control agents disrupting cell envelope of plant-pathogenic fungi. The structure and antifungal activity of rimocidin derivative BU16 is first described in this study. © 2016 The Society for Applied Microbiology.
Sakaguchi, Shoichi; Shojima, Takayuki; Fukui, Daisuke; Miyazawa, Takayuki
2015-03-01
T-lymphotropic feline leukemia virus (FeLV-T), a highly pathogenic variant of FeLV, induces severe immunosuppression in cats. FeLV-T is fusion defective because in its PHQ motif, a gammaretroviral consensus motif in the N terminus of an envelope protein, histidine is replaced with aspartate. Infection by FeLV-T requires FeLIX, a truncated envelope protein encoded by an endogenous FeLV, for transactivation of infectivity and Pit1 for binding FeLIX. Although Pit1 is present in most tissues in cats, the expression of FeLIX is limited to certain cells in lymphoid organs. Therefore, the host cell range of FeLV-T was thought to be restricted to cells expressing FeLIX. However, because FeLIX is a soluble factor and is expressed constitutively in lymphoid organs, we presumed it to be present in blood and evaluated its activities in sera of various mammalian species using a pseudotype assay. We demonstrated that cat serum has FeLIX activity at a functional level, suggesting that FeLIX is present in the blood and that FeLV-T may be able to infect cells expressing Pit1 regardless of the expression of FeLIX in vivo. In addition, FeLIX activities in sera were detected only in domestic cats and not in other feline species tested. To our knowledge, this is the first report to prove that a large amount of truncated envelope protein of endogenous retrovirus is circulating in the blood to facilitate the infection of a pathogenic exogenous retrovirus. © 2015 The Authors.
Camilleri, Michael; Breen, Mary; Ryks, Michael; Burton, Duane
2011-01-01
Background Interventions such as gastric surgery and erythromycin result in displacement of solids to the distal stomach and acceleration of overall and proximal gastric emptying. The effect of non-surgical impairment of gastric accommodation on gastric emptying is unclear. Non-surgical impairment of gastric accommodation is associated with accelerated gastric emptying. Aim To compare measurements of proximal and overall gastric emptying in patients with reduced postprandial gastric volume accommodation with the emptying rates in age- and gender-matched controls with normal postprandial gastric volume accommodation. Methods We evaluated overall and proximal gastric emptying in 9 patients with impaired gastric accommodation and age-equivalent and gender-matched controls. Gastric volumes and emptying were measured using validated SPECT and dual gamma camera scintigraphy respectively. We compared group differences in overall and proximal gastric emptying t1/2 by t test. Results Patients with impaired postprandial gastric volume accommodation had greater fasting gastric volume. The proportion of food emptied from the proximal stomach immediately after meal ingestion was lower and t1/2of proximal gastric emptying correspondingly longer in the group with reduced postprandial gastric accommodation. In contrast, differences were not detected in overall gastric emptying in the two groups, and the ratio of overall to proximal gastric emptying t1/2was greater in the group with impaired volume accommodation. Conclusions Proximal stomach emptying is reduced in patients with impaired postprandial volume accommodation; this difference occurs predominantly during the time of meal ingestion. Compensatory mechanisms that result in normal overall gastric emptying require further elucidation. PMID:21327917
Single molecule fate of HIV-1 envelope reveals late-stage viral lattice incorporation.
Buttler, Carmen A; Pezeshkian, Nairi; Fernandez, Melissa V; Aaron, Jesse; Norman, Sofya; Freed, Eric O; van Engelenburg, Schuyler B
2018-05-10
Human immunodeficiency virus type 1 (HIV-1) assembly occurs on the inner leaflet of the host cell plasma membrane, incorporating the essential viral envelope glycoprotein (Env) within a budding lattice of HIV-1 Gag structural proteins. The mechanism by which Env incorporates into viral particles remains poorly understood. To determine the mechanism of recruitment of Env to assembly sites, we interrogate the subviral angular distribution of Env on cell-associated virus using multicolor, three-dimensional (3D) superresolution microscopy. We demonstrate that, in a manner dependent on cell type and on the long cytoplasmic tail of Env, the distribution of Env is biased toward the necks of cell-associated particles. We postulate that this neck-biased distribution is regulated by vesicular retention and steric complementarity of Env during independent Gag lattice formation.
Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.
Vassallo, Christopher N; Wall, Daniel
2016-04-01
Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.
Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.
2011-01-01
Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816
Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J
2011-01-01
Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.
Popovich, John; Stephens, Michelle; Celaya, Holly; Suwarno, Serena; Barclay, Shizuka; Yee, Emily; Dean, David A.; Farris, Megan; Haydel, Shelley E.
2018-01-01
“Building and breaking the cell wall” is designed to review the bacterial cell envelope, previously learned in lower-division biology classes, while introducing new topics such as antibiotics and bacterial antibiotic resistance mechanisms. We developed a kinesthetic and tactile modeling activity where students act as cellular components and construct the cell wall. In the first two acts, students model a portion of the gram-positive bacterial cell envelope and then demonstrate in detail how the peptidoglycan is formed. Act III involves student demonstration of the addition of β-lactam antibiotics to the environment and how they inhibit the formation of peptidoglycan, thereby preventing bacterial replication. Using Staphylococcus aureus as a model for gram-positive bacteria, students finish the activity (Act IV) by acting out how S. aureus often becomes resistant to β-lactam antibiotics. A high level of student engagement was observed, and the activity received positive feedback. In an assessment administered prior to and two months after the activity, significant improvements in scores were observed (p < 0.0001), demonstrating increased understanding and retention. This activity allows students to (i) visualize, role play, and kinesthetically “build” the cell envelope and form the peptidoglycan layer, (ii) understand the mechanism of action for β-lactam antibiotics, as well as how gene acquisition and protein changes result in resistance, and (iii) work cooperatively and actively to promote long-term retention of the subject material. PMID:29904519
Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoudis, Alain; Delvin, Edgard; Canadian Institute of Health Research, Group of the Functional Development and Physiopathology of the Digestive Tract, and Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
2006-01-06
Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferationmore » and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.« less
Effect of colectomy on gastric emptying in idiopathic slow-transit constipation.
Hemingway, D M; Finlay, I G
2000-09-01
Gastric emptying is delayed in patients with idiopathic slow-transit constipation (ISTC). Gastric emptying was measured before and after colectomy and ileorectal anastomosis in patients with ISTC to determine whether the abnormality persists after operation. Twelve patients undergoing colectomy for severe ISTC had solid-phase gastric emptying measured after an overnight fast. All 12 had an uncomplicated subtotal colectomy and ileorectal anastomosis; 11 had an excellent functional outcome. In ten of these patients gastric emptying was repeated within 3 months of operation. Seven patients (including the remaining two) had the study performed at 1 year. All 12 patients had severely delayed gastric emptying before operation. Gastric emptying remained delayed in the ten patients who underwent an early postoperative gastric emptying study. Six of seven patients assessed at 1 year had improved gastric emptying, of whom four had returned to normal. Functional outcome did not relate to gastric emptying. Patients with ISTC have delayed gastric emptying. In some patients this returns to normal after colectomy, but is persistent in others. This may have implications for our understanding of ISTC.
Measurement of gastric emptying during and between meal intake in free-feeding Lewis rats.
van der Velde, P; Koslowsky, I; Koopmans, H S
1999-02-01
A new scintigraphic measurement technique is described that allows accurate assessment of gastric emptying in between as well as during a number of successive meals. Measurements were made every minute of food intake, gastric nutrient filling, and gastric emptying over a 6 h, 40 min period in conscious, free-feeding, loosely restrained rats. Before receiving access to the food, the animals had been deprived for a period of 31 h. Over the full duration of the experiment, an average rate of gastric emptying of 2.46 +/- 0.18 (SE) kcal/h was established. During most meals, however, the gastric emptying rate was increased so that an average of 26.9 +/- 2.7% of the ingested calories was emptied while the animals were feeding, with an average emptying rate of 0.15 +/- 0.014 kcal/min or 8.88 +/- 0.84 kcal/h. This transient increase in the rate of gastric emptying was followed by a subsequent slowing of gastric emptying after meal termination; in the 10-min postmeal interval, an average emptying rate of 0.96 +/- 0.12 kcal/h was found. Despite these fluctuations during and immediately after meals, a relatively constant rate of caloric emptying is maintained over longer periods. There were no differences between the emptying rate during the first meal when the gastrointestinal tract was still empty, compared with later meals when the gastrointestinal tract had been filled with food. The emptying rate during the 10-min postmeal interval, however, was significantly reduced during later meals. The results suggest that gastric emptying is controlled by different mechanisms during and after the ingestion of food and that these mechanisms remain in effect at various degrees of gastrointestinal filling.
Nuclear Physics in a biological context
NASA Astrophysics Data System (ADS)
Discher, Dennis
2012-02-01
A solid tissue can be soft like fat or brain, stiff like striated muscle and heart, or rigid like bone -- and of course every cell has a nucleus that contributes in some way small or large to tissue mechanics. Indeed, nuclei generally exhibit rheology and plasticity that reflects both the chromatin and the nuclear envelope proteins called lamins, all of which change in differentiation. Profiling of tissue nuclei shows that the nuclear intermediate filament protein Lamin-A/C varies over 30-fold between adult tissues and scales strongly with micro-elasticity of tissue, while other nuclear envelope components such as Lamin-B exhibit small variations. Lamin-A/C has been implicated in aging syndromes that affect muscle and fat but not brain, and we find nuclei in brain-derived cells are indeed dominated by Lamin-B and are much softer than nuclei derived from muscle cells with predominantly Lamin-A/C. In vitro, matrix elasticity can affect expression of nuclear envelope components in adult stem cells, and major changes in Lamin-A/C are indeed shown to direct lineage with lower levels favoring soft tissue and higher levels promoting rigid tissue lineage. Further molecular studies provide evidence that the nucleus transduces physical stress. References: (1) J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, and D.E. Discher. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104: 15619-15624 (2007). (2) A. Buxboim, I. Ivanova, and D.E. Discher. Matrix Elasticity, Cytoskeletal Forces, and Physics of the Nucleus: how deeply do cells `feel' outside and in? Journal of Cell Science 123: 297-308 (2010).
[Primary hypothyroidism associated with empty sella turcica and hypopituitarism].
Milosević, Maja; Stojanović, Milos; Nesović, Milica
2005-01-01
Empty sella syndrome is a rather frequent neuroradiological finding in the general population and can be associated with hypopituitarism. Examinations reveal low pituitary hormone levels and lack of response to stimuli. Most patients suffer from central hypothyroidism as part of pituitary insufficiency. Primary hypothyroidism is a rare finding in these patients. We present 3 patients: one female and two male, suffering from complete hypopituitarism, as part of the empty sella syndrome diagnosed due to low concentrations of all pituitary hormones, elevated TSH and low thyroid hormones. TRH, LHRH, ACTH and ITT tests, as well as IGF1 have confirmed hypopituitarism and primary hypothyroidism. CT and NMR in all three patients showed empty sella without a tumor in it. The diagnosis of primary hypothyrodism in the first patient was made before hypopituitarism has taken place, or at the same time in the second patient, whereas in the third patient it was diagnosed twenty years later. In two patients anti-TPO and anti-Tg antibody levels were high, and in the third patient they were not elevated. It can be assumed that the etiology of primary hypothyrodism in all three patients was of autoimmune origin, which caused thyroid hypofunction. High level of TSH in all three patients and especially in the patient whose hypopituitarism was diagnosed twenty years later, showed presence of thyrotrophic cells in the pituitary. Evaluation of the hypothalamic-pituitary-thyroid axis was carried out during the complete substitution therapy of hypopituitarism. Diagnosing primary hypothyroidism associated with hypopituitarism helps improving the knowledge on empty sella syndrome and points to different clinical syndromes characterized by lack of mixoedema, although approach to therapy is the same for both primary and central hypothyroidism.
Statistical Properties of Echosignal Obtained from Human Dermis In Vivo
NASA Astrophysics Data System (ADS)
Piotrzkowska, Hanna; Litniewski, Jerzy; Nowicki, Andrzej; Szymańska, Elżbieta
The paper presents the classification of the healthy skin and the skin lesions (basal cell carcinoma and actinic keratosis), basing on the statistical parameters of the envelope of ultrasonic echoes. The envelope was modeled using Rayleigh and non-Rayleigh (K-distribution) statistics. Furthermore, the characteristic parameter of the K-distribution, the effective number of scatterers was investigated. Also the attenuation coefficient was used for the skin lesion assessment.
Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿
Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik
2009-01-01
Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568
Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.
Shen, Shu; Tobery, Cynthia E; Rose, Mark D
2009-05-01
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.
Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.
Xu, Xiaoding; Wu, Jun; Liu, Yanlan; Saw, Phei Er; Tao, Wei; Yu, Mikyung; Zope, Harshal; Si, Michelle; Victorious, Amanda; Rasmussen, Jonathan; Ayyash, Dana; Farokhzad, Omid C; Shi, Jinjun
2017-03-28
With the capability of specific silencing of target gene expression, RNA interference (RNAi) technology is emerging as a promising therapeutic modality for the treatment of cancer and other diseases. One key challenge for the clinical applications of RNAi is the safe and effective delivery of RNAi agents such as small interfering RNA (siRNA) to a particular nonliver diseased tissue (e.g., tumor) and cell type with sufficient cytosolic transport. In this work, we proposed a multifunctional envelope-type nanoparticle (NP) platform for prostate cancer (PCa)-specific in vivo siRNA delivery. A library of oligoarginine-functionalized and sharp pH-responsive polymers was synthesized and used for self-assembly with siRNA into NPs with the features of long blood circulation and pH-triggered oligoarginine-mediated endosomal membrane penetration. By further modification with ACUPA, a small molecular ligand specifically recognizing prostate-specific membrane antigen (PSMA) receptor, this envelope-type nanoplatform with multifunctional properties can efficiently target PSMA-expressing PCa cells and silence target gene expression. Systemic delivery of the siRNA NPs can efficiently silence the expression of prohibitin 1 (PHB1), which is upregulated in PCa and other cancers, and significantly inhibit PCa tumor growth. These results suggest that this multifunctional envelope-type nanoplatform could become an effective tool for PCa-specific therapy.
Breach of the nuclear lamina during assembly of herpes simplex viruses.
Morrison, Lynda A; DeLassus, Gregory S
2011-01-01
Beneath the inner nuclear membrane lies the dense meshwork of the nuclear lamina, which provides structural support for the nuclear envelope and serves as an important organizing center for a number of nuclear and cytoplasmic constituents and processes. Herpesviruses have a significant and wide-ranging impact on human health, and their capacity to replicate and cause disease includes events that occur in the host cell nucleus. Herpesviruses begin assembly of progeny virus in the nuclei of infected cells and their capsids must escape the confines of the nucleus by budding through the inner nuclear membrane (INM) to proceed with later stages of virion assembly and egress. Access of viral capsids to the INM thus necessitates disruption of the dense nuclear lamina layer. We review herpesvirus effects on the nuclear lamina and in particular the roles of the herpes simplex virus-encoded nuclear envelope complex and viral kinases on lamin phosphorylation, dissociation, and nucleocapsid envelopment at the INM.
Sequence and characterization of cytoplasmic nuclear protein import factor p97
1995-01-01
Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein. PMID:7615630
Chabouté, Marie-Edith; Berr, Alexandre
2016-01-01
Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm.
A Novel Fission Yeast Gene, tht1 +, Is Required for the Fusion of Nuclear Envelopes during Karyogamy
Tange, Yoshie; Horio, Tetsuya; Shimanuki, Mizuki; Ding, Da-Qiao; Hiraoka, Yasushi; Niwa, Osami
1998-01-01
We have isolated a fission yeast karyogamy mutant, tht1, in which nuclear congression and the association of two spindle pole bodies occurs but the subsequent fusion of nuclear envelopes is blocked. The tht1 mutation does not prevent meiosis, so cells execute meiosis with two unfused nuclei, leading to the production of aberrant asci. The tht1 + gene was cloned and sequenced. Predicted amino acid sequence has no significant homology to previously known proteins but strongly suggests that it is a type I membrane protein. The tht1 + gene is dispensable for vegetative growth and expressed only in conjugating cells. Tht1p is a glycoprotein susceptible to endoglycosilase H digestion. Site- directed mutagenesis showed that the N-glycosylation site, as well as the COOH-terminal region of Tht1p, is essential for its function. A protease protection assay indicated that the COOH terminus is cytoplasmic. Immunocytological analysis using a HA-tagged Tht1p suggested that the protein is localized in nuclear envelopes and in the ER during karyogamy and that its levels are reduced in cells containing fused nuclei. PMID:9442101
Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; ...
2015-05-01
Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less
Moeller, Curt H.; Mudd, J. Brian
1982-01-01
Filipin was used as a cytochemical probe for membrane sterols in the root storage tissue of the red beet Beta vulgaris L. and the chloroplasts of Spinacia oleracea L. In unfixed beet tissue, filipin lysed the cells. Freeze-fracture replicas revealed that the filipin-sterol complexes were tightly aggregated in the plasma membrane, while in thin section the complexes corrugated the plasma membrane. If the cells were fixed with glutaraldehyde prior to the filipin treatment, the cell structure was preserved. Filipin-induced lesions were dispersed or clustered loosely in the plasma membrane. A few filipin-sterol complexes were observed in the tonoplast. In spinach chloroplasts, filipin-sterol complexes were limited to the outer membrane of the envelope and were not found in the inner membrane of the envelope or in the lamellar membranes. If the filipin-sterol complexes accurately mapped the distribution of membrane sterols, then sterol was located predominantly in the plasma membrane of the red beet and in the outer membrane of the chloroplast envelope. Furthermore, the sterol may be heterogenously distributed laterally in both these membranes. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16662716
Carney, Daniel W; Nelson, Christian D S; Ferris, Bennett D; Stevens, Julia P; Lipovsky, Alex; Kazakov, Teymur; DiMaio, Daniel; Atwood, Walter J; Sello, Jason K
2014-09-01
Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2(cycl), an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2(cycl) and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure-activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M
2014-03-01
BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is also its Env protein, but the mechanism is distinctive. Unlike other tetherin antagonists, FIV Env cannot act in trans to rescue vpu-deficient HIV-1. It must be incorporated specifically into FIV virions to be active. Also unlike other retroviral antagonists, but similar to Ebola virus Env, it does not act by downregulating or degrading tetherin. FIV Env might exclude tetherin locally or direct assembly to tetherin-negative membrane domains. Other distinctive features are apparent, including evidence that this virus evolved an equilibrium in which tetherin is both restriction factor and cofactor, as FIV requires tetherin for optimal particle release.
Cellular phosphoinositides and the maturation of bluetongue virus, a non-enveloped capsid virus
2013-01-01
Background Bluetongue virus (BTV), a member of Orbivirus genus in the Reoviridae family is a double capsid virus enclosing a genome of 10 double-stranded RNA segments. A non-structural protein of BTV, NS3, which is associated with cellular membranes and interacts with outer capsid proteins, has been shown to be involved in virus morphogenesis in infected cells. In addition, studies have also shown that during the later stages of virus infection NS3 behaves similarly to HIV protein Gag, an enveloped viral protein. Since Gag protein is known to interact with membrane lipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2] and one of the known binding partners of NS3, cellular protein p11 also interacts with annexin a PI(4,5)P2 interacting protein, this study was designed to understand the role of this negatively charged membrane lipid in BTV assembly and maturation. Methods Over expression of cellular enzymes that either depleted cells of PI(4,5)P2 or altered the distribution of PI(4,5)P2, were used to analyze the effect of the lipid on BTV maturation at different times post-infection. The production of mature virus particles was monitored by plaque assay. Microscopic techniques such as confocal microscopy and electron microscopy (EM) were also undertaken to study localization of virus proteins and virus particles in cells, respectively. Results Initially, confocal microscopic analysis demonstrated that PI(4,5)P2 not only co-localized with NS3, but it also co-localized with VP5, one of the outer capsid proteins of BTV. Subsequently, experiments involving depletion of cellular PI(4,5)P2 or its relocation demonstrated an inhibitory effect on normal BTV maturation and it also led to a redistribution of BTV proteins within the cell. The data was supported further by EM visualization showing that modulation of PI(4,5)P2 in cells indeed resulted in less particle production. Conclusion This study to our knowledge, is the first report demonstrating involvement of PI(4,5)P2 in a non-enveloped virus assembly and release. As BTV does not have lipid envelope, this finding is unique for this group of viruses and it suggests that the maturation of capsid and enveloped viruses may be more closely related than previously thought. PMID:23497128
Achieving 15% Tandem Polymer Solar Cells
2015-06-23
solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency
Berri, Fatma; Haffar, Ghina; Lê, Vuong Ba; Sadewasser, Anne; Paki, Katharina; Lina, Bruno; Wolff, Thorsten
2014-01-01
ABSTRACT During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes. PMID:25031344
Alkaline phosphatase activity of rumen bacteria.
Cheng, K J; Costerton, J W
1977-01-01
Of the 54 strains of rumen bacteria examined for alkaline phosphatase (APase) production, 9 of 33 gram-negative strains and none of 21 gram-positive strains produced the enzyme. The APase of the cells of the three strains of Bacteroides ruminicola that produced significant amounts of the enzyme was located in the periplasmic area of the cell envelope, whereas the enzyme was located in the strains of Selenomonas ruminantium and Succinivibrio dextrinosolvens was associated with the outer membrane. The localization of APase production in the cells of natural populations of rumen bacteria from hay-fed sheep was accomplished by reaction product deposition, and both the proportion of APase-producing bacteria and the location of the enzyme in the cell envelope of the producing cells could be determined. We suggest that this procedure is useful in detecting shifts in the bacterial population and the release of cell-bound APase that accompany feedlot bloat and other sequelae of dietary manipulation in ruminants. Images PMID:563216
Use of Log-Linear Models in Classification Problems.
1981-12-01
polynomials. The second example involves infant hypoxic trauma, and many cells are empty. The existence conditions are used to find a model for which esti...mates of cell frequencies exist and are in good agreement with the ob- served data. Key Words: Classification problem, log-difference models, minimum 8...variates define k states, which are labeled consecutively. Thus, while MB define cells in their tables by an I-vector Z, we simply take Z to be a
NASA Astrophysics Data System (ADS)
Hamdan, E.; Deraman, M.; Suleman, M.; Nor, N. S. M.; Basri, N. H.; Hanappi, M. F. Y. M.; Sazali, N. E. S.; Tajuddin, N. S. M.; Omar, R.; Othman, M. A. R.; Shamsudin, S. A.
2016-11-01
In this study, we produced pre-carbonized date pits (PDP) and self-adhesive carbon grains (SACGs) from oil palm empty fruit bunches (EFB) by a low temperature (200°C for DP and 280°C for SACGs, respectively) carbonization method followed by KOH treatment to obtain KOH treated PDP (T-PDP) and KOH treated SACGs (T-SACGs). Four sets of green monolith (GMs) denoted as GM-A, GM-B, GM-C and GM-D were prepared respectively from SACGs (100 wt. %), mixture of PDP and SACGs (50:50 wt. %), T-SACGs (100 wt. %), and mixture of T-SACGs and T-PDP (50:50 wt. %), respectively. From these GMs the respective activated carbon monolith (ACMs) electrodes namely ACM-A, ACM-B, ACM-C and ACM-D were prepared via carbonization (N2 carbonization) and activation (CO2 environment). These ACMs electrodes were used to fabricate the corresponding EDLC cells: Cell-A, Cell-B, Cell-C and Cell-D, respectively. The electrochemical impedance spectroscopy tests conducted on the cells found that the Cell-D showed the maximum value of specific capacitance, Csp (˜ 135 F g-1) whereas the Cell-A showed the minimum values of ESR and characteristic response time, respectively, ˜ 2.14 Ω and ˜ 46 s. Therefore, it can be concluded that the KOH treatment can improve the capacitance but caused the increase in the ESR and response time.
Kharkwal, Himanshu; Smith, Caitlin G.
2014-01-01
ABSTRACT Herpes simplex virus (HSV) and, as reported here, pseudorabies virus (PRV) utilize the ESCRT apparatus to drive cytoplasmic envelopment of their capsids. Here, we demonstrate that blocking ESCRT-mediated envelopment using the dominant-negative inhibitor Vps4A-EQ (Vps4A in which glutamate [E] at position 228 in the ATPase active site is replaced by a glutamine [Q]) reduced the ability of HSV and PRV particles to subsequently traffic along microtubules in vitro. HSV and PRV capsid-associated particles with bound green fluorescent protein (GFP)-labeled Vps4A-EQ were readily detected by fluorescence microscopy in cytoplasmic extracts of infected cells. These Vps4A-EQ-associated capsid-containing particles bound to microtubules in vitro but were unable to traffic along them. Using a PRV strain expressing a fluorescent capsid and a fluorescently tagged form of the envelope protein gD, we found that similar numbers of gD-positive and gD-negative capsid-associated particles accumulated in cytoplasmic extracts under our conditions. Both classes of PRV particle bound to microtubules in vitro with comparable efficiency, and similar results were obtained for HSV using anti-gD immunostaining. The gD-positive and gD-negative PRV capsids were both capable of trafficking along microtubules in vitro; however, motile gD-positive particles were less numerous and their trafficking was more sensitive to the inhibitory effects of Vps4A-EQ. We discuss our data in the context of microtubule-mediated trafficking of naked and enveloped alphaherpesvirus capsids. IMPORTANCE The alphaherpesviruses include several important human pathogens. These viruses utilize microtubule-mediated transport to travel through the cell cytoplasm; however, the molecular mechanisms of trafficking are not well understood. In this study, we have used a cell-free system to examine the requirements for microtubule trafficking and have attempted to distinguish between the movement of so-called “naked” and membrane-associated cytoplasmic alphaherpesvirus capsids. PMID:25297998
Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao
2016-01-01
Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711
Empty sella associated with growth hormone deficiency and polydactyly.
Jurcă, Maria Claudia; Bembea, Marius; Kozma, Kinga; Şandor, Mircea Ioan; Negrean, Rodica Anamaria; Dobjanschi, Luciana; Cuc, Emilia Albiniţa; Petcheşi, Codruţa Diana; Jurcă, Alexandru Daniel
2018-01-01
Empty sella means the absence of the pituitary gland on cranial computed tomography or magnetic resonance imaging. Empty sella syndrome is the pathological variant of the imaging-described empty sella. We present the case of a male Caucasian child, aged four years and two months, for short stature and diagnosed by imaging procedures as empty sella. The cause of short stature was isolated growth hormone (GH) deficiency. Associated he presented left hand postaxial polydactyly. In connection with this particular case, we propose a review of current knowledge in empty sella syndrome. The particularity of reported case consists of association empty sella with GH deficiency and polydactyly. The association of empty sella with polydactyly is not reported yet in the medical literature and is probably coincidental.
Stomach emptiness in fishes: Sources of variation and study design implications
Vinson, M.R.; Angradi, T.R.
2011-01-01
This study summarizes fish stomach content data from 369,000 fish from 402 species in 1,096 collections and reports on the percentage of individuals with empty stomachs. The mean percentage of individuals with empty stomachs among all species, locations, habitats, seasons, regions, and collection methods was 26.4%. Mean percentage of individuals with empty stomachs varied significantly among fish collection gear types, taxonomic orders, trophic groups, feeding behaviors, and habitats, and with species length at maturity. Most of the variation in percentage of individuals with empty stomachs was explained by species length at maturity, fish collection gear type, and two autecological factors: trophic group (piscivore percentage of individuals with empty stomachs > non-piscivore percentage of individuals with empty stomachs) and feeding habitat (water column feeder percentage of individuals with empty stomachs > benthic feeder percentage of individuals with empty stomachs). After accounting for variation with fish length, the percentage of individuals with empty stomachs did not vary with the stomach removal collection method (dissection vs. gastric lavage), feeding time (diurnal or nocturnal), or time of collection (day or night). The percentage of individuals with empty stomachs was similar between fresh and saltwater fish, but differed within finer habitat classifications and appeared to follow a general prey availability or productivity gradient: percentage of individuals with empty stomachs of open ocean collections > estuary collections, lentic > lotic, and pelagic > littoral. Gear type (active or passive) was the most influential factor affecting the occurrence of empty stomachs that can be readily controlled by researchers.
Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice.
The, Frans O; Boeckxstaens, Guy E; Snoek, Susanne A; Cash, Jenna L; Bennink, Roel; Larosa, Gregory J; van den Wijngaard, Rene M; Greaves, David R; de Jonge, Wouter J
2007-10-01
We previously showed that intestinal inflammation is reduced by electrical stimulation of the efferent vagus nerve, which prevents postoperative ileus in mice. We propose that this cholinergic anti-inflammatory pathway is mediated via alpha7 nicotinic acetylcholine receptors expressed on macrophages. The aim of this study was to evaluate pharmacologic activation of the cholinergic anti-inflammatory pathway in a mouse model for postoperative ileus using the alpha7 nicotinic acetylcholine receptor-agonist AR-R17779. Mice were pretreated with vehicle, nicotine, or AR-R17779 20 minutes before a laparotomy (L) or intestinal manipulation (IM). Twenty-four hours thereafter gastric emptying was determined using scintigraphy and intestinal muscle inflammation was quantified. Nuclear factor-kappaB transcriptional activity and cytokine production was assayed in peritoneal macrophages. Twenty-four hours after surgery IM led to a delayed gastric emptying compared with L (gastric retention: L(saline) 14% +/- 4% vs IM(saline) 38% +/- 10%, P = .04). Pretreatment with AR-R17779 prevented delayed gastric emptying (IM(AR-R17779) 15% +/- 4%, P = .03). IM elicited inflammatory cell recruitment (L(saline) 50 +/- 8 vs IM(saline) 434 +/- 71 cells/mm(2), P = .001) which was reduced by AR-R17779 pretreatment (IM(AR-R17779) 231 +/- 32 cells/mm(2), P = .04). An equimolar dose of nicotine was not tolerated. Subdiaphragmal vagotomy did not affect the anti-inflammatory properties of AR-R17779. In peritoneal macrophages, both nicotinic agonists reduced nuclear factor kappaB transcriptional activity and proinflammatory cytokine production, with nicotine being more effective than AR-R17779. AR-R17779 treatment potently prevents postoperative ileus, whereas toxicity limits nicotine administration to ineffective doses. Our data further imply that nicotinic inhibition of macrophage activation may involve other receptors in addition to alpha7 nicotinic acetylcholine receptor.
Cell Envelope of Corynebacteria: Structure and Influence on Pathogenicity
Burkovski, Andreas
2013-01-01
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper. PMID:23724339
Cell envelope of corynebacteria: structure and influence on pathogenicity.
Burkovski, Andreas
2013-01-01
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.
[Development of viral vectors and the application for viral entry mechanisms].
Tani, Hideki
2011-06-01
Virus is identified as one of the obligate intracellular parasites, which only amplify in cells of specific living things. Viral vectors, which are developed by utilizing these properties, are available in the various fields such as basic research of medical biology or application of gene therapy. Our research group has studied development of viral vectors using properties of baculovirus or vesicular stomatitis virus (VSV). Due to the development of new baculoviral vectors for mammalian cells, it is possible to be more efficient transduction of foreign gene in mammalian cells and animals. Furthermore, pseudotype or recombinant VSV possessing the envelope proteins of hepatitis C virus, Japanese encephalitis virus or baculovirus were constructed, and characteristics of the envelope proteins or entry mechanisms of these viruses were analyzed.
Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta
2017-07-01
Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.
[Some Features of Sound Signal Envelope by the Frog's Cochlear Nucleus Neurons].
Bibikov, N G
2015-01-01
The responses of single neurons in the medullar auditory center of the grass frog were recorded extracellularly under the action of long tonal signals of the characteristic frequency modulated by repeating fragments of low-frequency (0-15 Hz, 0-50 Hz or 0-150 Hz) noise. Correlation method was used for evaluating the efficacy of different envelope fragments to ensure generation of a neuron pulse discharge. Carrying out these evaluations at different time intervals between a signal and a response the maximum delays were assessed. Two important envelope fragments were revealed. In majority of units the most effective was the time interval of the amplitude rise from mean value to maximum, and the fragment where the amplitude fall from maximum to mean value was the second by the efficacy. This type of response was observed in the vast majority of cells in the range of the envelope frequency bands 0-150 and 0-50 Hz. These cells performed half-wave rectification of such type of the envelope. However, in some neurons we observed more strong preference toward a time interval with growing amplitude, including even those where the amplitude value was smaller than the mean one. These properties were observed mainly for low-frequency (0-15 Hz) modulated signals at high modulation depth. The data show that even in medulla oblongata specialization of neural elements of the auditory pathway occurs with respect to time interval features of sound stimulus. This diversity is most evident for signals with a relatively slowly varying amplitude.
Kariithi, Henry M; van Lent, Jan W M; Boeren, Sjef; Abd-Alla, Adly M M; Ince, Ikbal Agah; van Oers, Monique M; Vlak, Just M
2013-01-01
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus-host interactions.
Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason; Owen, Randall P; Lee, Hanna J; Concepcion, Erlinda; Yi, Zhengzi; Zhang, Weijia; Tomer, Yaron
2017-02-01
Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms. Copyright © 2017 by the Endocrine Society
Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon
2014-01-01
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856
Park, Chung; Arthos, James; Cicala, Claudia; Kehrl, John H
2015-01-01
The HIV-1 envelope protein gp120 is both the target of neutralizing antibodies and a major focus of vaccine efforts; however how it is delivered to B cells to elicit an antibody response is unknown. Here, we show that following local gp120 injection lymph node (LN) SIGN-R1+ sinus macrophages located in interfollicular pockets and underlying SIGN-R1+ macrophages form a cellular network that rapidly captures gp120 from the afferent lymph. In contrast, two other antigens, phycoerythrin and hen egg lysozyme, were not captured by these cells. Intravital imaging of mouse LNs revealed persistent, but transient interactions between gp120 bearing interfollicular network cells and both trafficking and LN follicle resident gp120 specific B cells. The gp120 specific, but not the control B cells repetitively extracted gp120 from the network cells. Our findings reveal a specialized LN antigen delivery system poised to deliver gp120 and likely other pathogen derived glycoproteins to B cells. DOI: http://dx.doi.org/10.7554/eLife.06467.001 PMID:26258881
Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe
2003-01-01
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086
Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model
Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent
2016-05-11
Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less
Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent
Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less
Ulcerative colitis: ultrastructure of interstitial cells in myenteric plexus.
Rumessen, J J; Vanderwinden, J-M; Horn, T
2010-10-01
Interstitial cells of Cajal (ICC) are key regulatory cells in the gut. In the colon of patients with severe ulcerative colitis (UC), myenteric ICC had myoid ultrastructural features and were in close contact with nerve terminals. In all patients as opposed to controls, some ICC profiles showed degenerative changes, such as lipid droplets and irregular vacuoles. Nerve terminals often appeared swollen and empty. Glial cells, muscle cells, and fibroblast-like cells (FLC) showed no alterations. FLC enclosed macrophages (MLC), which were in close contact with naked axon terminals. The organization and cytological changes may be of pathophysiological significance in patients with UC.
Bailer, Susanne M.
2017-11-25
Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.
Kid-mediated chromosome compaction ensures proper nuclear envelope formation.
Ohsugi, Miho; Adachi, Kenjiro; Horai, Reiko; Kakuta, Shigeru; Sudo, Katsuko; Kotaki, Hayato; Tokai-Nishizumi, Noriko; Sagara, Hiroshi; Iwakura, Yoichiro; Yamamoto, Tadashi
2008-03-07
Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.
Ai, Li-Shuang; Lee, Yu-Wen; Chen, Steve S.-L.
2009-01-01
The molecular basis underlying hepatitis C virus (HCV) core protein maturation and morphogenesis remains elusive. We characterized the concerted events associated with core protein multimerization and interaction with membranes. Analyses of core proteins expressed from a subgenomic system showed that the signal sequence located between the core and envelope glycoprotein E1 is critical for core association with endoplasmic reticula (ER)/late endosomes and the core's envelopment by membranes, which was judged by the core's acquisition of resistance to proteinase K digestion. Despite exerting an inhibitory effect on the core's association with membranes, (Z-LL)2-ketone, a specific inhibitor of signal peptide peptidase (SPP), did not affect core multimeric complex formation, suggesting that oligomeric core complex formation proceeds prior to or upon core attachment to membranes. Protease-resistant core complexes that contained both innate and processed proteins were detected in the presence of (Z-LL)2-ketone, implying that core envelopment occurs after intramembrane cleavage. Mutations of the core that prevent signal peptide cleavage or coexpression with an SPP loss-of-function D219A mutant decreased the core's envelopment, demonstrating that SPP-mediated cleavage is required for core envelopment. Analyses of core mutants with a deletion in domain I revealed that this domain contains sequences crucial for core envelopment. The core proteins expressed by infectious JFH1 and Jc1 RNAs in Huh7 cells also assembled into a multimeric complex, associated with ER/late-endosomal membranes, and were enveloped by membranes. Treatment with (Z-LL)2-ketone or coexpression with D219A mutant SPP interfered with both core envelopment and infectious HCV production, indicating a critical role of core envelopment in HCV morphogenesis. The results provide mechanistic insights into the sequential and coordinated processes during the association of the HCV core protein with membranes in the early phase of virus maturation and morphogenesis. PMID:19605478
Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.
Sakamoto, Shingo; Mitsuda, Nobutaka
2015-02-01
The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
What is emptiness? Clarifying the 7th criterion for borderline personality disorder.
Klonsky, E David
2008-08-01
The present study aims to clarify the 7th DSM-IV criterion for Borderline Personality Disorder: "chronic feelings of emptiness." Emptiness has been the subject of little empirical investigation. The relationship of emptiness to boredom and other affect-states is uncertain, and patients and clinicians can find it difficult to generate verbal descriptions of emptiness. In the present study, two sets of analyses address the meaning and clinical implications of feeling empty. First, affect-states that co-occur with emptiness are identified in 45 young adults who exhibit a prominent feature of Borderline Personality Disorder (i.e., self-injury). Second, the relationship of chronic emptiness to key psychiatric variables is examined in a large nonclinical sample (n = 274). Results indicate that emptiness is negligibly related to boredom, is closely related to feeling hopeless, lonely, and isolated, and is a robust predictor of depression and suicidal ideation (but not anxiety or suicide attempts). Findings are consistent with DSM-IV revisions regarding the 7th criterion for Borderline Personality Disorder. In addition, findings suggest that emptiness reflects pathologically low positive affect and significant psychiatric distress.
Nothing to it: Precursors to a Zero Concept in Preschoolers
Merritt, Dustin J.; Brannon, Elizabeth M.
2013-01-01
Do young children understand the numerical value of empty sets prior to developing a concept of symbolic zero? Are empty sets represented as mental magnitudes? In order to investigate these questions, we tested 4-year old children and adults with a numerical ordering task in which the goal was to select two stimuli in ascending numerical order with occasional empty set stimuli. Both children and adults showed distance effects for empty sets.. Children who were unable to order the symbol zero (e.g., 0 < 1), but who successfully ordered countable integers (e.g., 2 < 4) nevertheless showed distance effects with empty sets. These results suggest that empty sets are represented on the same numerical continuum as non-empty sets and that children represent empty sets numerically prior to understanding symbolic zero. PMID:23219980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farma, R.; Awitdrus,; Taer, E.
Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated usingmore » electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.« less
Silverman, Lee R.; Phipps, Andrew J.; Montgomery, Andy; Fernandez, Soledad; Tsukahara, Tomonori; Ratner, Lee; Lairmore, Michael D.
2005-01-01
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell lymphoma/leukemia (ATL). The HTLV-1 envelope gene exhibits limited variability when examined from infected individuals, but has not been tested using infectious clones of the virus in animal models. In vitro assays indicate that HTLV-1 envelope (Env) Ser75Ile, Asn95Asp, and Asn195Asp surface unit (SU) mutants are able to replicate in and immortalize lymphocytes. Herein, we examined the effects of these Env mutants in rabbits inoculated with HTLV-1 immortalized ACH.75, ACH.95, or ACH.195 cell lines (expressing full-length molecular clones with the SU mutations) or the ACH.1 cell line (expressing wild-type SU). All rabbits became infected, and the fidelity of the mutations was maintained throughout the 8-week study. However, SU point mutations resulted in decreased antibody responses to viral group-associated antigen (Gag) and Env antigens. ACH.195 rabbits had a selective decreased antibody response to SU, and one ACH.195 rabbit had an antibody response to both HTLV-1 and HTLV-2 SUs. Some mutant inoculation groups had altered proviral loads. However, peripheral-blood mononuclear cell (PBMC) proviral loads did not correlate with antibody responses. Our data are the first to demonstrate that mutations in critical determinants of HTLV-1 Env SU altered antibody responses and proviral loads, but do not prevent viral replication in vivo. PMID:16046523
Kassaye, Seble; Johnston, Elizabeth; McColgan, Bryan; Kantor, Rami; Zijenah, Lynn; Katzenstein, David
2009-01-01
In resource-constrained settings, antiretroviral treatment (ART) is often continued based on clinical and CD4 responses, without virologic monitoring. ART with incomplete viral suppression was assessed in 27 subjects with subtype C HIV-1 by measuring plasma HIV-1 RNA, drug resistance, viral tropism, and evolution in polymerase (pol) and envelope (env) genes. The association between these viral parameters and CD4 cell change over time was analyzed using linear regression models. Increased area under the curve of HIV-1 RNA replication was a predictor of lower CD4 cell gains (p <0.007), while less drug resistance measured as a genotypic susceptibility score (GSS) (p=0.065), and lower rates of evolution in pol and env genes (p= 0.08 and 0.097, respectively) measured as genetic distance were modestly associated with increasing CD4 cell counts. Evolution of pol and env were correlated (R2 = 0.48, p=0.005), however, greater evolution was identified in env vs. pol (p <0.05). CXCR4-usage (X4) was detected in 14/27 (52%) but no differences in CD4 cell change or plasma viremia were associated with X4-usage. Among subtype C HIV-1 infected patients in Zimbabwe receiving incompletely suppressive ART, higher virus replication and lower CD4 cell gains were associated with drug resistance and evolution of polymerase and envelope. PMID:19295330
Barros, Maria C E S; Galasso, Tatiane G C M; Chaib, Antônio J M; Degallier, Nicolas; Nagata, Tatsuya; Ribeiro, Bergmann M
2011-05-27
Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Xiao-shan; Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501; Fujishiro, Masako
In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells weremore » tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.« less
Enhanced production of enveloped viruses in BST-2-deficient cell lines.
Yi, Eunbi; Oh, Jinsoo; Giao, Ngoc Q; Oh, Soohwan; Park, Se-Ho
2017-10-01
Despite all the advantages that cell-cultured influenza vaccines have over egg-based influenza vaccines, the inferior productivity of cell-culture systems is a major drawback that must be addressed. BST-2 (tetherin) is a host restriction factor which inhibits budding-out of various enveloped viruses from infected host cells. We developed BST-2-deficient MDCK and Vero cell lines to increase influenza virus release in cell culture. BST-2 gene knock-out resulted in increased release of viral particles into the culture medium, by at least 2-fold and up to 50-fold compared to release from wild-type counterpart cells depending on cell line and virus type. The effect was not influenza virus/MDCK/Vero-specific, but was also present in a broad range of host cells and virus families; we observed similar results in murine, human, canine, and monkey cell lines with viruses including MHV-68 (Herpesviridae), influenza A virus (Orthomyxoviridae), porcine epidemic diarrhea virus (Coronaviridae), and vaccinia virus (Poxviridae). Our results suggest that the elimination of BST-2 expression in virus-producing cell lines can enhance the production of viral vaccines. Biotechnol. Bioeng.2017;114: 2289-2297. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gastric emptying abnormal in duodenal ulcer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, S.; Heading, R.C.; Taylor, T.V.
1986-07-01
To investigate the possibility that an abnormality of gastric emptying exists in duodenal ulcer and to determine if such an abnormality persists after ulcer healing, scintigraphic gastric emptying measurements were undertaken in 16 duodenal ulcer patients before, during, and after therapy with cimetidine; in 12 patients with pernicious anemia, and in 12 control subjects. No difference was detected in the rate or pattern of gastric emptying in duodenal ulcer patients before and after ulcer healing with cimetidine compared with controls, but emptying of the solid component of the test meal was more rapid during treatment with the drug. Comparison ofmore » emptying patterns obtained in duodenal ulcer subjects during and after cimetidine treatment with those obtained in pernicious anemia patients and controls revealed a similar relationship that was characterized by a tendency for reduction in the normal differentiation between the emptying of solid and liquid from the stomach. The similarity in emptying patterns in these groups of subjects suggests that gastric emptying of solids may be influenced by changes in the volume of gastric secretion. The failure to detect an abnormality of gastric emptying in duodenal ulcer subjects before and after ulcer healing calls into question the widespread belief that abnormally rapid gastric emptying is a feature with pathogenetic significance in duodenal ulcer disease.« less
Physical characteristics of indigestible solids affect emptying from the fasting human stomach.
Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A
1989-01-01
Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438
Yamaza, Takayoshi; Shea, Lonnie D.; Djouad, Farida; Kuhn, Nastaran Z.; Tuan, Rocky S.; Shi, Songtao
2010-01-01
The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell–based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell–mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls. PMID:19737072
Li, Qingxin; Ng, Wei Ting; Puah, Sze Min; Bhaskar, Ravindran Vijay; Soh, Loon Siong; MacBeath, Calum; Parakattil, Pius; Green, Phil; Wu, Jin Chuan
2014-01-01
Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
[Overexpression of liver kinase B1 inhibits the proliferation of lung cancer cells].
Li, Yang; Zhang, Libin; Wang, Ping
2017-01-01
Objective To explore the effect of overexpressed liver kinase B1(LKB1) on the proliferation of lung cancer cell lines. Methods The expression levels of LKB1 and PTEN in A549, NCI-H23, NCI-H157, XWLC-05, NCI-H446 lung cancer cells were detected by immunocytochemistry (ICC) and Western blotting. Plasmid pcDNA3.1 + -LKB1 and empty vector pcDNA3.1 + -null were separately transfected into the above five cell lines, and then the expression of LKB1 mRNA and protein were determined by quantitative real-time PCR and Western blotting, respectively. Finally, CCK-8 assay was used to analyze the proliferation ability of the transfected cells. Results LKB1 and PTEN were positive in NCI-H23 cells; LKB1 was negative while PTEN was positive in A549 and NCI-H446 cells; both LKB1 and PTEN were negative in NCI-H157 and XWLC-05 cells. Quantitative real-time PCR and Western blotting showed that the expression level of LKB1 significantly increased in the above cell lines transfected with plasmid pcDNA3.1 + -LKB1 compared with the ones with empty vector pcDNA3.1 + -null. Besides, CCK-8 assay showed that the overexpression of LKB1 in the lung cancer cells transfected with pcDNA3.1 + -LKB1 had an obvious inhibitory effect on cell proliferation. Conclusion The expression of LKB1 is down-regulated in most of the lung cell lines to different extent and the over-expression of LKB1 can remarkably inhibit the proliferation ability of lung cancer cell lines.
Gastric emptying of solid radiopaque markers: studies in healthy subjects and diabetic patients.
Feldman, M; Smith, H J; Simon, T R
1984-10-01
The purpose of these studies was to develop a radiologic method for assessing gastric emptying of an indigestible solid in humans and to apply this technique to the evaluation of patients with diabetes mellitus. Thirty healthy subjects ingested 10 solid radiopaque markers (small pieces of nasogastric tubing) together with a standard meal (donuts and 7-Up). Radiographs of the upper abdomen were obtained hourly for up to 6 h until all markers had emptied from the stomach. Although most of the liquid component of the meal, labeled with 111In, emptied during the first hour (as assessed simultaneously by radionuclide scintigraphy), few radiopaque markers emptied from the stomach during the first 2 h after the meal. Most markers emptied during the fourth postprandial hour, and all 10 markers had emptied by 6 h in 45 of 46 experiments. In contrast, not all of the solid radiopaque markers emptied from the stomach by 6 h in 16 of 26 experiments in patients with diabetes mellitus (p less than 0.001 vs. healthy controls). In some experiments, 99mTc-labeled scrambled eggs were added to the meal so that emptying of this digestible solid, assessed by scintigraphy, could be compared with emptying of liquids and solid radiopaque markers. In healthy subjects, the digestible solid emptied more slowly than the liquid (t 1/2 = 154 +/- 11 min vs. 30 +/- 3 min, p less than 0.001), but emptying of digestible solid was significantly faster than the emptying of the indigestible solid radiopaque markers. In diabetics, emptying rates for the digestible solid and liquid were close to normal (t 1/2 = 178 +/- 5 min and 40 +/- 3 min, respectively), whereas indigestible solid markers were retained in the stomach 6 h after the meal in 50% of the patients. Radiopaque markers proved to be a simple method for measuring gastric emptying of indigestible solids in humans. Using this technique, patients with insulin-dependent diabetes mellitus had a high incidence of abnormally slow gastric emptying of indigestible solids; the method may be a more sensitive indicator of gastric motor dysfunction than radionuclide scintigraphy.
Comparative analysis of Beggiatoa from hypersaline and marine environments.
de Albuquerque, Julia Peixoto; Keim, Carolina Neumann; Lins, Ulysses
2010-07-01
The main criterion to classify a microorganism as belonging to the genus Beggiatoa is its morphology. All multicellular, colorless, gliding bacterial filaments containing sulfur globules described so far belong to this genus. At the ultrastructural level, they show also a very complex cell envelope structure. Here we describe uncultured vacuolated and non-vacuolated bacteria from two different environments showing all characteristics necessary to assign a bacterium to the genus Beggiatoa. We also intended to investigate whether narrow and vacuolate Beggiatoa do differ morphologically as much as they do phylogenetically. Both large, vacuolated trichomes and narrow filaments devoid of vacuoles were observed. We confirmed the identity of the narrow filaments by 16S rRNA phylogenetic analysis. The diameters of the trichomes ranged from 2.4 to 34 microm, and their lengths ranged from 10 microm to over 30 mm. Narrow trichomes moved by gliding at 3.0 microm/s; large filaments moved at 1.5 microm/s. Periplasmic sulfur inclusions were observed in both types of filaments, whereas phosphorus-rich bodies were found only in narrow trichomes. On the other hand, nitrate vacuoles were observed only in large trichomes. Ultra-thin section transmission electron microscopy showed differences between the cell ultrastructure of narrow (non-vacuolated) and large (vacuolated) Beggiatoa. We observed that cell envelopes from narrow Beggiatoa consist of five layers, whereas cell envelopes from large trichomes contain four layers. Copyright 2010 Elsevier Ltd. All rights reserved.
van der Ploeg, René; Goudelis, Spyridon Theodoros; den Blaauwen, Tanneke
2015-01-01
The increase in antibiotic resistant bacteria demands the development of new antibiotics against preferably new targets. The common approach is to test compounds for their ability to kill bacteria or to design molecules that inhibit essential protein activities in vitro. In the first case, the mode of action of the drug is unknown and in the second case, it is not known whether the compound will pass the impermeable barrier of the bacterial envelope. We developed an assay that detects the target of a compound, as well as its ability to pass the membrane(s) simultaneously. The Escherichia coli cytoskeletal protein MreB recruits protein complexes (elongasomes) that are essential for cell envelope growth. An in cell Förster Resonance Energy Transfer (FRET) assay was developed to detect the interaction between MreB molecules and between MreB and the elongasome proteins RodZ, RodA and PBP2. Inhibition of the polymerization of MreB by S-(3,4-dichlorobenzyl) isothiourea (A22) or of the activity of PBP2 by mecilinam resulted in loss or reduction of all measured interactions. This suggests that the interactions between the elongasome proteins are governed by a combination of weak affinities and substrate availability. This validated in cell FRET assay can be used to screen for cell envelope growth inhibitors. PMID:26263980
Half Full or Half Empty? An Assessment of the Crocker Report on Iraqi Economic Conditions
2007-12-01
noted that the expansion in cell phones was one of the major indicators of economic success in the country. As he noted "An auction of cell phone spectrum... phone usage:[13] The cell phone market in Iraq is indeed growing fast, and it’s that market that drove competition for the country’s wireless...Alex Rossmiller worked in Iraq as an intelligence office for the Department of Defense. He says " cell - phone use in Iraq is skyrocketing, primarily
Gas recombination assembly for electrochemical cells
Levy, Isaac; Charkey, Allen
1989-01-01
An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.
Characterization of the fusion core in zebrafish endogenous retroviral envelope protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jian; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071; Zhang, Huaidong
2015-05-08
Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type Imore » viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.« less
Monteiro, Ricardo; Chafsey, Ingrid; Leroy, Sabine; Chambon, Christophe; Hébraud, Michel; Livrelli, Valérie; Pizza, Mariagrazia; Pezzicoli, Alfredo; Desvaux, Mickaël
2018-06-15
Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.
Plant nuclei can contain extensive grooves and invaginations
NASA Technical Reports Server (NTRS)
Collings, D. A.; Carter, C. N.; Rink, J. C.; Scott, A. C.; Wyatt, S. E.; Allen, N. S.; Brown, C. S. (Principal Investigator)
2000-01-01
Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.
Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection.
Koblischke, Maximilian; Stiasny, Karin; Aberle, Stephan W; Malafa, Stefan; Tschouchnikas, Georgios; Schwaiger, Julia; Kundi, Michael; Heinz, Franz X; Aberle, Judith H
2018-01-01
Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.
Plant Nuclei Can Contain Extensive Grooves and InvaginationsW⃞W⃞
Collings, David A.; Carter, Crystal N.; Rink, Jochen C.; Scott, Amie C.; Wyatt, Sarah E.; Allen, Nina Strömgren
2000-01-01
Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus. PMID:11148288
A review of methods for assessment of the rate of gastric emptying in the dog and cat: 1898-2002.
Wyse, C A; McLellan, J; Dickie, A M; Sutton, D G M; Preston, T; Yam, P S
2003-01-01
Gastric emptying is the process by which food is delivered to the small intestine at a rate and in a form that optimizes intestinal absorption of nutrients. The rate of gastric emptying is subject to alteration by physiological, pharmacological, and pathological conditions. Gastric emptying of solids is of greater clinical significance because disordered gastric emptying rarely is detectable in the liquid phase. Imaging techniques have the disadvantage of requiring restraint of the animal and access to expensive equipment. Radiographic methods require administration of test meals that are not similar to food. Scintigraphy is the gold standard method for assessment of gastric emptying but requires administration of a radioisotope. Magnetic resonance imaging has not yet been applied for assessment of gastric emptying in small animals. Ultrasonography is a potentially useful, but subjective, method for assessment of gastric emptying in dogs. Gastric tracer methods require insertion of gastric or intestinal cannulae and are rarely applied outside of the research laboratory. The paracetamol absorption test has been applied for assessment of liquid phase gastric emptying in the dog, but requires IV cannulation. The gastric emptying breath test is a noninvasive method for assessment of gastric emptying that has been applied in dogs and cats. This method can be carried out away from the veterinary hospital, but the effects of physiological and pathological abnormalities on the test are not known. Advances in technology will facilitate the development of reliable methods for assessment of gastric emptying in small animals.
The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Claire Y.-H., E-mail: CHuang1@cdc.go; Butrapet, Siritorn; Moss, Kelly J.
The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could notmore » re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.« less
Nagashima, Shigeo; Takahashi, Masaharu; Kobayashi, Tominari; Nishizawa, Tsutomu; Nishiyama, Takashi; Primadharsini, Putu Prathiwi
2017-01-01
ABSTRACT Our previous studies demonstrated that membrane-associated hepatitis E virus (HEV) particles—now considered “quasi-enveloped particles”—are present in the multivesicular body with intraluminal vesicles (exosomes) in infected cells and that the release of HEV virions is related to the exosomal pathway. In this study, we characterized exosomes purified from the culture supernatants of HEV-infected PLC/PRF/5 cells. Purified CD63-, CD9-, or CD81-positive exosomes derived from the culture supernatants of HEV-infected cells that had been cultivated in serum-free medium were found to contain HEV RNA and the viral capsid (ORF2) and ORF3 proteins, as determined by reverse transcription-PCR (RT-PCR) and Western blotting, respectively. Furthermore, immunoelectron microscopy, with or without prior detergent and protease treatment, revealed the presence of virus-like particles in the exosome fraction. These particles were 39.6 ± 1.0 nm in diameter and were covered with a lipid membrane. After treatment with detergent and protease, the diameter of these virus-like particles was 26.9 ± 0.9 nm, and the treated particles became accessible with an anti-HEV ORF2 monoclonal antibody (MAb). The HEV particles in the exosome fraction were capable of infecting naive PLC/PRF/5 cells but were not neutralized by an anti-HEV ORF2 MAb which efficiently neutralizes nonenveloped HEV particles in cell culture. These results indicate that the membrane-wrapped HEV particles released by the exosomal pathway are copurified with the exosomes in the exosome fraction and suggest that the capsids of HEV particles are individually covered by lipid membranes resembling those of exosomes, similar to enveloped viruses. IMPORTANCE Hepatitis E, caused by HEV, is an important infectious disease that is spreading worldwide. HEV infection can cause acute or fulminant hepatitis and can become chronic in immunocompromised hosts, including patients after organ transplantation. The HEV particles present in feces and bile are nonenveloped, while those in circulating blood and culture supernatants are covered with a cellular membrane, similar to enveloped viruses. Furthermore, these membrane-associated and -unassociated HEV particles can be propagated in cultured cells. The significance of our research is that the capsids of HEV particles are individually covered by a lipid membrane that resembles the membrane of exosomes, similar to enveloped viruses, and are released from infected cells via the exosomal pathway. These data will help to elucidate the entry mechanisms and receptors for HEV infection in the future. This is the first report to characterize the detailed morphological features of membrane-associated HEV particles. PMID:28878075
1994-01-01
Spodoptera frugiperda (Sf9) cells, approximately I mg of recombinant E antigen was made per 10’ cells. This antigen reacted with polyclonal, anti...entry by fusion at acidic pH with host cell mem- in Spodoptera frugiperda (Sf9) cells brane.Ř The E antigen contains both T and B cell epitopes that
[Inhibition of HIV-1 mediated cell-cell fusion by saponin fraction from Psidium guajava leaf].
Mao, Qin-Chao; Zhou, Ying-Chun; Li, Run-Ming; Hu, Yi-Ping; Liu, Shu-Wen; Li, Xiao-Juan
2010-11-01
To investigate the effects of the total saponin of Psidium guajava leaf (TSGL) on HIV-1 envelop proteins (env) mediated virus entry into target cells. The TSGL was purified and concentrated using SA-1 macropore resin. The effect of TSGL on HIV-1 entry into target cells was tested using a cell-cell fusion assay by mixing CHO-WT and MT-2 cells. The cytotoxicity of TSGL was measured by MTT assay. The activity of TSGL on blocking the HIV-1 gp41 six helical bundle (6-HB) formation was analyzed by ELISA and Native-PAGE (N-PAGE). The TSGL could inhibit HIV env mediated cell-cell fusion with an IC50 of (7.33 +/- 0.40) microg/mL, and displayed little cytotoxicity at that concentration. ELISA assay showed that the TSGL could prevent gp41 6-HB formation with inhibitory activity of 95.93% at 25 microg/mL. N-PAGE study confirmed the inhibitory effect of TSGL on gp41 6-HB formation. The TSGL can inhibit HIV entry target cells by interfering the envelop subunit gp41 form the critical 6-HB structure.
Assessment of Gastric Emptying in Patients with Autoimmune Gastritis.
Kalkan, Çağdaş; Soykan, Irfan; Soydal, Çiğdem; Özkan, Elgin; Kalkan, Emra
2016-06-01
Symptoms of patients with autoimmune gastritis are not specific, and some patients may present symptoms suggestive of delayed gastric emptying. This study aims to investigate whether any delay in gastric emptying of solid food exists in patients with autoimmune gastritis and, if so, to identify the factors that might affect delayed gastric emptying. A total of 165 patients (106 women) diagnosed as having autoimmune gastritis were analyzed by means of a gastric emptying test. All patients underwent a standardized scintigraphic gastric emptying study. Patients with delayed gastric emptying and normal gastric emptying tests were then compared by means of factors that might affect gastric emptying. Also 65 patients with functional dyspepsia who had a gastric emptying study constituted the control group. The median gastric emptying T ½ time was 127.43 min (min-max 50-953) for patients with AIG and 81 min (min-max 21-121.6) for functional dyspepsia patients (p < 0.001), and median percent retention at 2 h was 63.8 versus 20.2 (p < 0.001). In multivariate analysis, parameters that affected gastric emptying T ½ time were found as serum gastrin level (OR 1.002, 95 % CI 1.001-1.004, p < 0.001, chronic inflammation (OR 3.689, 95 % CI 1.44-9.39, p < 0.001), and increase in the degree of the atrophy of the gastric mucosa (OR 8.96, 95 % CI 2.98-26.93, p < 0.001). In patients with autoimmune gastritis, gastric emptying is generally delayed. Autoimmune gastritis is an important etiology to explain the finding of delayed gastric emptying on a radionuclide test. This new finding is likely to be relevant to clinicians when evaluating and initiating appropriate medical treatment for patients with autoimmune gastritis manifesting upper gastrointestinal symptoms.
RELATIONSHIP BETWEEN GLYCEMIC CONTROL AND GASTRIC EMPTYING IN POORLY CONTROLLED TYPE 2 DIABETES
Bharucha, Adil E.; Kudva, Yogish; Basu, Ananda; Camilleri, Michael; Low, Phillip A.; Vella, Adrian; Zinsmeister, Alan R.
2014-01-01
Background & Aims Acute hyperglycemia delays gastric emptying in patients with diabetes. However, it is not clear whether improved control of glycemia affects gastric emptying in these patients. We investigated whether overnight and short-term (6 months) improvements in control of glycemia affect gastric emptying. Methods We studied 30 patients with poorly controlled type 2 diabetes (levels of glycated hemoglobin >9%). We measured gastric emptying using the [13C]-spirulina platensis breath test on the patients’ first visit (visit 1), after overnight administration of insulin or saline, 1 week later (visit 2), and 6 months after intensive therapy for diabetes. We also measured fasting and post-prandial plasma levels of C-peptide, GLP1, and amylin, as well as autonomic functions. Results At visit 1, gastric emptying was normal in 10 patients, delayed in 14, and accelerated in 6; 6 patients had gastrointestinal symptoms; vagal dysfunction was associated with delayed gastric emptying (P<.05). Higher fasting blood levels of glucose were associated with shorter half-times of gastric emptying (thalf) at visits 1 (r= −0.46, P=.01) and 2 (r= −0.43, P=.02). Although blood levels of glucose were lower after administration of insulin (132±7 mg/dl) than saline (211±15 mg/dl; P=0.0002), gastric emptying thalf was not lower after administration of insulin, compared with saline. After 6 months of intensive therapy, levels of glycated hemoglobin decreased from 10.6%±0.3% to 9%±0.4% (P=.0003), but gastric emptying thalf did not change (92±8 min before, 92±7 min after). Gastric emptying did not correlate with plasma levels of GLP1 and amylin. Conclusions Two-thirds of patients with poorly-controlled type 2 diabetes have mostly asymptomatic yet abnormal gastric emptying. Higher fasting blood levels of glucose are associated with faster gastric emptying. Overnight and sustained (6 months) improvements in glycemic control do not affect gastric emptying. PMID:25041866
Urbain, J L; Penninckx, F; Siegel, J A; Vandenborre, P; Van Cutsem, E; Vandenmaegdenbergh, V; De Roo, M
1990-10-01
The role of the distal stomach in gastric emptying was studied. Ten patients with proximal gastric vagotomy (PV) and 10 age-matched patients with Roux-en-Y gastro-jejunostomy (R-Y) were compared with 10 healthy controls. Gastric emptying of solids and liquids was determined by the use of Tc-99m SC scrambled eggs and In-111 DTPA. In PV, gastric emptying of both solids and liquids was delayed; the prolongation with solids was mainly accounted for by an abnormal lag phase. In R-Y patients, no lag phase was observed, and the solid emptying curve pattern was characterized by early rapid emptying followed by very slow emptying. Both the solid and liquid phases were prolonged. The lag phase is affected by proximal vagotomy and is mainly determined by the distal stomach, which appears to be essential for normal emptying.
Vincent, Maxence S.; Canestrari, Mickaël J.; Leone, Philippe; Stathopulos, Julien; Ize, Bérengère; Zoued, Abdelrahim; Cambillau, Christian; Kellenberger, Christine; Roussel, Alain
2017-01-01
The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis. Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts. PMID:28057754
Statistical Mechanics of Viral Entry
NASA Astrophysics Data System (ADS)
Zhang, Yaojun; Dudko, Olga K.
2015-01-01
Viruses that have lipid-membrane envelopes infect cells by fusing with the cell membrane to release viral genes. Membrane fusion is known to be hindered by high kinetic barriers associated with drastic structural rearrangements—yet viral infection, which occurs by fusion, proceeds on remarkably short time scales. Here, we present a quantitative framework that captures the principles behind the invasion strategy shared by all enveloped viruses. The key to this strategy—ligand-triggered conformational changes in the viral proteins that pull the membranes together—is treated as a set of concurrent, bias field-induced activated rate processes. The framework results in analytical solutions for experimentally measurable characteristics of virus-cell fusion and enables us to express the efficiency of the viral strategy in quantitative terms. The predictive value of the theory is validated through simulations and illustrated through recent experimental data on influenza virus infection.
Chen, Junchen; Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang
2017-01-01
Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.
Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang
2017-01-01
Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147’s capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development. PMID:28832687
Construction of yellow fever-influenza A chimeric virus particles.
Oliveira, B C E P D; Liberto, M I M; Barth, O M; Cabral, M C
2002-12-01
In order to obtain a better understanding of the functional mechanisms involved in the fusogenesis of enveloped viruses, the influenza A (X31) and the yellow fever (17DD) virus particles were used to construct a chimeric structure based on their distinct pH requirements for fusion, and the distinct malleability of their nucleocapsids. The malleable nucleocapsid of the influenza A virus particle is characterized by a pleomorphic configuration when observed by electron microscopy. A heat inactivated preparation of X31 virus was used as a lectin to interact with the sialic acid domains present in the 17DD virus envelope. The E spikes of 17DD virus were induced to promote fusion of both envelopes, creating a double genome enveloped structure, the chimeric yellow fever-influenza A virus particle. These chimeric viral particles, originally denominated 'partículas virais quiméricas' (PVQ), were characterized by their infectious capacity for different biological systems. Cell inoculation with PVQ resulted in viral products that showed similar characteristics to those obtained after 17DD virus infections. Our findings open new opportunities towards the understanding of both virus particles and aspects of cellular physiologic quality control. The yellow fever-influenza A chimeric particles, by means of their hybrid composition, should be a valuable tool in the study of cell biology and the function of viral components. Copyright 2002 Elsevier Science B.V.
Gross, C H; Russell, R L; Rohrmann, G F
1994-05-01
To investigate the regulation of p10 and polyhedron envelope protein (PEP) gene expression and their role in polyhedron development, Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis viruses lacking these genes were constructed. Recombinant viruses were produced, in which the p10 gene, the PEP gene or both genes were disrupted with the beta-glucuronidase (GUS) or beta-galactosidase (lacZ) genes. GUS activity under the control of the PEP protein promoter was observed later in infection and its maximal expression was less than 10% the level for p10 promoter-GUS constructs. Tissues from O. pseudotsugata larvae infected with these recombinants were examined by electron microscopy. Cells from insects infected with the p10- viruses lacked p10-associated fibrillar structures, but fragments of polyhedron envelope-like structures were observed on the surface of some polyhedra. Immunogold labelling of cells infected with the p10-GUS+ virus with an antibody directed against PEP showed that the PEP was concentrated at the surface of polyhedra. Although polyhedra produced by p10 and PEP gene deletion mutants demonstrated what appeared to be a polyhedron envelope by transmission electron microscopy, scanning electron microscopy showed that they had irregular, pitted surfaces that were different from wild-type polyhedra. These data suggested that both p10 and PEP are important for the proper formation of the periphery of polyhedra.
Zhou, C E; Ko, R; Maeda, S
1998-01-20
The polyhedrin gene in Bombyx mori nucleopolyhedrovirus (BmNPV) was replaced with the granulin gene of Trichoplusia ni granulovirus (TnGV). The substitution was verified by Southern hybridization, and expression of granulin by the mutant virus, BmGran, was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by amino acid sequencing of the predominant protein of BmGran inclusion bodies (IBs). Light and electron microscopy examination of BmGran-infected B. mori and BmN cells revealed large, cuboidal, polyhedron-like IBs in the nucleus and cytoplasm, but granules were not seen. IBs contained small, parallel, electron-dense streaks, which defined the geometric pattern of crystallization. Geometric patterns of nuclear IBs were frequently disrupted by occlusion of polyhedron envelope fragments, resulting in IB instability and fracturing. Virions were not embedded in most of the polyhedron-like IBs, but accumulated with polyhedron envelope fragments. Some virions were coated with matrix protein and were partially wrapped by polyhedron envelope. These results suggested that (1) the amino acid sequence of granulin insufficient for determining IB morphology in TnGV-infected cells, and TnGV may have genes, not present in BmNPV, that control granule formation, and (2) interactions among the virion, the IB envelope, and the matrix protein may be important in virion occlusion and IB morphology and stability.
Deden, Laura N; Cooiman, Mellody I; Aarts, Edo O; Janssen, Ignace M C; Gotthardt, Martin; Hendrickx, Baudewijn W; Berends, Frits J
2017-11-01
After Roux-en-Y gastric bypass (RYGB), approximately 10% of patients have insufficient weight loss (excess body mass index loss<50%). Gastric pouch emptying may have a role in weight loss. To compare pouch emptying of patients with poor weight loss and patients with successful weight loss after RYGB. A research-intensive nonacademic hospital and center of expertise in bariatric surgery in the Netherlands METHODS: Female patients were included from among patients with the least (poor weight loss group [P-WL]) and the most weight loss (successful weight loss group [S-WL]) in our center 2 years after RYGB. Pouch emptying scintigraphy was performed after ingestion of a radiolabeled solid meal. Emptying curves, intestinal content (IC) at meal completion and after 15, 30, 45, and 60 minutes, half emptying time, and maximal pouch emptying rate were compared. Five individuals were included in P-WL and 5 in S-WL, on average 2.5 ± .3 years after RYGB. Total weight loss was 18 ± 4.1% in P-WL and 44 ± 5.7% in S-WL (P<.001). In P-WL, a fast initial pouch emptying and exponential emptying curve was observed, compared with a slower initial emptying and more linear curve in S-WL. Faster emptying in P-WL was also shown by a larger IC meal (42 ± 18% versus 4.0 ± 3.3%,), IC 15 (76 ± 15% versus 35 ± 22%), and IC 30 (85 ± 12% versus 54 ± 25%), and a greater maximal pouch emptying rate (17 ± 4.7 versus 5.6 ± 3.4%/min) compared with S-WL (P<.05). A linear correlation was found between total weight loss and maximal pouch emptying rate (Pearson R = .82, P = .004). Pouch emptying for solid food was faster in patients with the least weight loss compared with patients with the most weight loss after RYGB. If pouch emptying is an important mechanism in weight loss, altering the pouch outlet may improve poor weight loss management. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Polymers in cell encapsulation from an enveloped cell perspective.
de Vos, Paul; Lazarjani, Hamideh Aghajani; Poncelet, Denis; Faas, Marijke M
2014-04-01
In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory. Copyright © 2013 Elsevier B.V. All rights reserved.
Agoraphobia and Melancholia: Thoughts on Milrod's "Emptiness in Agoraphobia Patients".
Yates, Sheena
2015-08-01
Milrod (2007) identifies persistent emptiness in agoraphobic patients whose symptoms of anxiety and avoidance have remitted. To this important identification, a number of critical considerations may be raised regarding the meanings of emptiness in the psychoanalytic clinic. Milrod's admonishment to distinguish between an emptiness that indicates a deficit in the structure and stability of self-representation, and an emptiness that is strictly defensive, is a case in point. While much of the literature supports an interpretation of emptiness as a defense against overwhelming rage, these patients' assertions and experiences of emptiness can be better explained by the presence of traumatic, unmourned losses. Several explanations are offered as to why agoraphobic patients, in particular, defend unconsciously against mourning. © 2015 by the American Psychoanalytic Association.
Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.
2011-08-26
Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2more » teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.« less
Cohen, Sarah; Panté, Nelly
2005-12-01
Parvoviruses are small DNA viruses that replicate in the nucleus of their host cells. It has been largely assumed that parvoviruses enter the nucleus through the nuclear pore complex (NPC). However, the details of this mechanism remain undefined. To study this problem, the parvovirus Minute virus of mice (MVM) was microinjected into the cytoplasm of Xenopus oocytes and a transmission electron microscope was used to visualize the effect of the virus on the host cell. It was found that MVM caused damage to the nuclear envelope (NE) in a time- and concentration-dependent manner. Damage was predominantly to the outer nuclear membrane and was often near the NPCs. However, microinjection experiments in which the NPCs were blocked showed that NE damage induced by MVM was independent of the NPC. To address the question of whether this effect of MVM is specific to the NE, purified organelles were incubated with MVM. Visualization by electron microscopy revealed that MVM did not affect all intracellular membranes. These data represent a novel form of virus-induced damage to host cell nuclear structure and suggest that MVM is imported into the nucleus using a unique mechanism that is independent of the NPC, and involves disruption of the NE and import through the resulting breaks.
Recent Progress in Understanding Coxsackievirus Replication, Dissemination, and Pathogenesis
Sin, Jon; Mangale, Vrushali; Thienphrapa, Wdee; Gottlieb, Roberta A.; Feuer, Ralph
2015-01-01
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses – although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis. PMID:26142496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shiu-Mei; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Huang, Kuo-Jung
2014-01-20
Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cellmore » surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments. - Highlights: • BST2 knockdown expression results in enhanced HCoV-229E egress. • HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. • HCoV-229E infection at high MOI can significantly downregulate HeLa BST2 and rescue HIV-1 egress.« less
Zhou, Yanchen; Agudelo, Juliet; Lu, Kai; Goetz, David H.; Hansell, Elizabeth; Chen, Yen Ting; Roush, William R.; McKerrow, James; Craik, Charles S.; Amberg, Sean M.; Simmons, Graham
2011-01-01
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged as the causal agent of an endemic atypical pneumonia, infecting thousands of people worldwide. Although a number of promising potential vaccines and therapeutic agents for SARS-CoV have been described, no effective antiviral drug against SARS-CoV is currently available. The intricate, sequential nature of the viral entry process provides multiple valid targets for drug development. Here, we describe a rapid and safe cell-based high-throughput screening system, Dual Envelope Pseudovirion (DEP) Assay, for specifically screening inhibitors of viral entry. The assay system employs a novel dual envelope strategy, using lentiviral pseudovirions as targets whose entry is driven by the SARS-CoV Spike glycoprotein. A second, unrelated viral envelope is used as an internal control to reduce the number of false positives. As an example of the power of this assay a class of inhibitors is reported with the potential to inhibit SARS-CoV at two steps of the replication cycle, viral entry and particle assembly. This assay system can be easily adapted to screen entry inhibitors against other viruses with the careful selection of matching partner virus envelopes. PMID:21820471
Eukaryotic-Like Virus Budding in Archaea
Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick
2016-01-01
ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130
Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly
Nguyen, Tra Huong; Leong, Daniel; Ravi, Laxmi Iyer; Tan, Boon Huan; Sandin, Sara; Sugrue, Richard J.
2017-01-01
ABSTRACT Respiratory syncytial virus (RSV) is an enveloped virus that assembles into filamentous virus particles on the surface of infected cells. Morphogenesis of RSV is dependent upon cholesterol-rich (lipid raft) membrane microdomains, but the specific role of individual raft molecules in RSV assembly is not well defined. Here, we show that RSV morphogenesis occurs within caveolar membranes and that both caveolin-1 and cavin-1 (also known as PTRF), the two major structural and functional components of caveolae, are actively recruited to and incorporated into the RSV envelope. The recruitment of caveolae occurred just prior to the initiation of RSV filament assembly, and was dependent upon an intact actin network as well as a direct physical interaction between caveolin-1 and the viral G protein. Moreover, cavin-1 protein levels were significantly increased in RSV-infected cells, leading to a virus-induced change in the stoichiometry and biophysical properties of the caveolar coat complex. Our data indicate that RSV exploits caveolae for its assembly, and we propose that the incorporation of caveolae into the virus contributes to defining the biological properties of the RSV envelope. PMID:28154158
Different Infectivity of HIV-1 Strains Is Linked to Number of Envelope Trimers Required for Entry
Brandenberg, Oliver F.; Magnus, Carsten; Rusert, Peter; Regoes, Roland R.; Trkola, Alexandra
2015-01-01
HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV. PMID:25569556
Li, Juan; Tao, Shujuan; Orlando, Ron; Murtaugh, Michael P.
2015-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-sense ssRNA virus whose envelope contains four glycoproteins and three nonglycosylated proteins. Glycans of major envelope glycoprotein 5 (GP5) are proposed as important for virus assembly and entry into permissive cells. Structural characterization of GP5 glycans would facilitate the mechanistic understanding of these processes. Thus, we purified the PRRSV type 2 prototype strain, VR2332, and analyzed the virion-associated glycans by both biochemical and mass spectrometric methods. Endoglycosidase digestion showed that GP5 was the primary protein substrate, and that the carbohydrate moieties were primarily complex-type N-glycans. Mass spectrometric analysis (HPLC-ESI-MS/MS) of GP5 N-glycans revealed an abundance of N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) oligomers in addition to sialic acids. GlcNAc and LacNAc accessibility to ligands was confirmed by lectin co-precipitation. Our findings help to explain PRRSV infection of cells lacking sialoadhesin and provide a glycan database to facilitate molecular structural studies of PRRSV. PMID:25726973
Martino, Lisa; Morchoisne-Bolhy, Stéphanie; Cheerambathur, Dhanya K; Van Hove, Lucie; Dumont, Julien; Joly, Nicolas; Desai, Arshad; Doye, Valérie; Pintard, Lionel
2017-10-23
In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Bombyx mori nucleopolyhedrovirus ORF101 encodes a budded virus envelope associated protein.
Chen, Huiqing; Li, Mei; Huang, Guoping; Mai, Weijun; Chen, Keping; Zhou, Yajing
2014-08-01
Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, Bm101 was characterized. Transcripts of Bm101 were detected from 24 through 96 h post infection (h p.i.) by RT-PCR. The corresponding protein was also detected from 24 to 96 h p.i. in BmNPV-infected BmN cells by Western blot analysis using a polyclonal antibody against Bm101. Western blot assay of occlusion-derived virus and budded virus (BV) preparations revealed that Bm101 encodes a 28-kDa structural protein that is associated with BV and is located in the envelope fraction of budded virions. In addition, confocal analysis showed that the protein was localized in the cytosol and cytoplasmic membrane in virus-infected cells. In conclusion, the available data suggest that Bm101 is a functional ORF of BmNPV and encodes a protein expressed in the late stage of the infection cycle that is associated with the BV envelope.
Measurement of gastric emptying by intragastric gamma scintigraphy.
Malbert, C H; Mathis, C; Bobillier, E; Laplace, J P; Horowitz, M
1997-09-01
Gastric emptying is usually measured in animals and humans by dilution/sampling or external scintigraphy. These methods are either time consuming or require expensive equipment. The capacity of a miniature gamma counter positioned in the stomach to measure emptying of liquid and solid meals was evaluated. In eight conscious pigs fitted with gastric and duodenal cannulae, gastric emptying of saline (500 mL), dextrose (20%, 500 mL), porridge (300 g) and scrambled eggs (300 g), all labelled with 3.5 MBq 99mTC, was evaluated. When positioned in the antrum the probe was unable to quantify gastric emptying. In contrast, measurements of the fractional emptying of saline over 4-min periods by the probe positioned in the corpus and quantification of radioactivity in the duodenal effluent correlated closely (r = 0.88, P < 0.05). Gastric emptying (50% emptying time) of saline and both solid meals measured by the probe was not significantly different from quantification of the duodenal effluent volume. No difference was observed also for the dextrose meal but only while gastric acid secretion was suppressed by omeprazole. We conclude that an intragastric gamma counter permits measurement of gastric emptying of homogeneous meals provided meal stimulation of gastric secretion was not extensive. This was possible probably by monitoring emptying from the proximal stomach.
Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication
Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas
2016-01-01
Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839
Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P
2013-03-01
Protective mechanisms of casein-based microcapsules containing mannitol on Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris, changes in their secondary protein structures, and glass transition of the microcapsules were studied after spray- or freeze-drying and after 10 wk of storage in aluminum foil pouches containing different desiccants (NaOH, LiCl, or silica gel) at 25°C. An in situ Fourier transform infrared analysis was carried out to recognize any changes in fatty acids (FA) of bacterial cell envelopes, interaction between polar site of cell envelopes and microcapsules, and alteration of their secondary protein structures. Differential scanning calorimetry was used to determine glass transition of microcapsules based on glass transition temperature (T(g)) values. Hierarchical cluster analysis based on functional groups of cell envelopes and secondary protein structures was also carried out to classify the microencapsulated bacteria due to the effects of spray- or freeze-drying and storage for 10 wk. The results showed that drying process did not affect FA and secondary protein structures of bacteria; however, those structures were affected during storage depending upon the type of desiccant used. Interaction between exterior of bacterial cell envelopes and microencapsulant occurred after spray- or freeze-drying; however, these structures were maintained after storage in foil pouch containing sodium hydroxide. Method of drying and type of desiccants influenced the level of similarities of microencapsulated bacteria. Desiccants and method of drying affected glass transition, yet no T(g) ≤25°C was detected. This study demonstrated that the changes in FA and secondary structures of the microencapsulated bacteria still occurred during storage at T(g) above room temperature, indicating that the glassy state did not completely prevent chemical activities. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
14 CFR 31.85 - Required basic equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...
14 CFR 31.85 - Required basic equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...
14 CFR 31.85 - Required basic equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...
14 CFR 31.85 - Required basic equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be incorporated to indicate to the crew the quantity of fuel in each cell during flight. The means must be calibrated in appropriate units or in percent of fuel cell capacity. (2) An envelope temperature indicator...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang,X.; Wu, J.; Sivaraman, J.
2007-01-01
White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 {angstrom}, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelopemore » proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt {beta}-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core {beta}-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Honda; R Wang; W Kong
Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, M.; Robinson, H.; Wang, R.
Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less
Zuber, Benoît; Chami, Mohamed; Houssin, Christine; Dubochet, Jacques; Griffiths, Gareth; Daffé, Mamadou
2008-01-01
The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function. PMID:18567661
Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state.
Zuber, Benoît; Chami, Mohamed; Houssin, Christine; Dubochet, Jacques; Griffiths, Gareth; Daffé, Mamadou
2008-08-01
The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function.
Schauflinger, Martin; Fischer, Daniela; Schreiber, Andreas; Chevillotte, Meike; Walther, Paul; Mertens, Thomas; von Einem, Jens
2011-01-01
Morphogenesis of human cytomegalovirus (HCMV) is still only partially understood. We have characterized the role of HCMV tegument protein pUL71 in viral replication and morphogenesis. By using a rabbit antibody raised against the C terminus of pUL71, we could detect the protein in infected cells, as well as in virions showing a molecular mass of approximately 48 kDa. The expression of pUL71, detected as early as 48 h postinfection, was not blocked by the antiviral drug foscarnet, indicating an early expression. The role of pUL71 during virus replication was investigated by construction and analysis of a UL71 stop mutant (TBstop71). The mutant could be reconstituted on noncomplementing cells proving that pUL71 is nonessential for virus replication in human fibroblasts. However, the inhibition of pUL71 expression resulted in a severe growth defect, as reflected by an up to 16-fold reduced extracellular virus yield after a high-multiplicity infection and a small-plaque phenotype. Ultrastructural analysis of cells infected with TBstop71 virus revealed an increased number of nonenveloped nucleocapsids in the cytoplasm, many of them at different stages of envelopment, indicating that final envelopment of nucleocapsids in the cytoplasm was affected. In addition, enlarged multivesicular bodies (MVBs) were found in close proximity to the viral assembly compartment, suggesting that pUL71 affects MVBs during virus infection. The observation of numerous TBstop71 virus particles attached to MVB membranes and budding processes into MVBs indicated that these membranes can be used for final envelopment of HCMV. PMID:21289123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Z.; Xu C.; Benning, C.
The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminalmore » {beta}-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.« less
Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.
2016-01-01
Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252
NASA Astrophysics Data System (ADS)
Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi
2012-08-01
Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.
Broder, C C; Berger, E A
1993-01-01
The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent mammalian species. Syncytium formation mediated by several of the CDR3 mutants was partially or completely resistant to inhibition by the CDR3-directed monoclonal antibody L71, suggesting that the corresponding epitope is not directly involved in the fusion process.(ABSTRACT TRUNCATED AT 400 WORDS) Images PMID:8419649
Broder, C C; Berger, E A
1993-02-01
The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent mammalian species. Syncytium formation mediated by several of the CDR3 mutants was partially or completely resistant to inhibition by the CDR3-directed monoclonal antibody L71, suggesting that the corresponding epitope is not directly involved in the fusion process.(ABSTRACT TRUNCATED AT 400 WORDS)
Guevara, Rebekah B.; Marcano, Adriana C.; Saenz, Dyana T.; Fadel, Hind J.; Rogstad, Daniel K.
2014-01-01
ABSTRACT BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env− particles do not. IMPORTANCE HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is also its Env protein, but the mechanism is distinctive. Unlike other tetherin antagonists, FIV Env cannot act in trans to rescue vpu-deficient HIV-1. It must be incorporated specifically into FIV virions to be active. Also unlike other retroviral antagonists, but similar to Ebola virus Env, it does not act by downregulating or degrading tetherin. FIV Env might exclude tetherin locally or direct assembly to tetherin-negative membrane domains. Other distinctive features are apparent, including evidence that this virus evolved an equilibrium in which tetherin is both restriction factor and cofactor, as FIV requires tetherin for optimal particle release. PMID:24390322
TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus.
Brouillette, Rachel B; Phillips, Elisabeth K; Patel, Radhika; Mahauad-Fernandez, Wadie; Moller-Tank, Sven; Rogers, Kai J; Dillard, Jacob A; Cooney, Ashley L; Martinez-Sobrido, Luis; Okeoma, Chioma; Maury, Wendy
2018-06-06
Lassa virus (LASV) is an Old World arenavirus responsible for hundreds of thousands of infections in West Africa every year. LASV entry into a variety of cell types is mediated by interactions with glycosyltransferase LARGE-modified O-linked glycans present on the ubiquitous receptor, α-dystroglycan (αDG). Yet, cells lacking αDG are permissive to LASV infection, suggesting that alternative receptors exist. Previous studies demonstrate that phosphatidylserine (PtdSer)-binding receptors, Axl and Tyro3 along with C-type lectin receptors, mediate αDG-independent entry. Here, we demonstrate that another PtdSer receptor, TIM-1, mediates LASV glycoprotein (GP) pseudotyped virions entry into αDG knocked out HEK 293T and wild-type (WT) Vero which express αDG lacking appropriate glycosylation. To investigate the mechanism by which TIM-1 mediates enhancement of entry, we demonstrate that mutagenesis of the TIM-1 IgV domain PtdSer-binding pocket abrogated transduction. Further, the human TIM-1 IgV domain binding monoclonal antibody, ARD5, blocked transduction of pseudovirions bearing LASV GP in a dose-dependent manner. Finally, as we showed previously for other viruses that use TIM-1 for entry, a chimeric TIM-1 protein that substitutes the proline rich region (PRR) from murine leukemia virus envelope (Env) for the mucin-like domain served as a competent receptor. These studies provide evidence that, in the absence of a functional αDG, TIM-1 mediates entry of LASV pseudoviral particles through interactions of virions with the IgV PtdSer binding pocket of TIM-1. Importance PtdSer receptors, such as TIM-1, are emerging as critical entry factors for many enveloped viruses. Most recently, Hepatitis C virus and Zika virus have been added to a growing list. PtdSer receptors engage with enveloped viruses through binding of PtdSer embedded in the viral envelope, defining them as GP-independent receptors. This GP-independent entry mechanism should effectively mediate entry of all enveloped viruses, yet LASV GP pseudotyped viruses were previously found to be unresponsive to PtdSer receptor enhancement in HEK 293T cells. Here we demonstrate that LASV pseudovirions can utilize the PtdSer receptor TIM-1, but only in the absence of appropriately glycosylated α-dystroglycan (αDG), the high affinity cell surface receptor for LASV. Our studies shed light on LASV receptor utilization and explain why earlier studies performed in α-DG-expressing cells did not find that LASV pseudovirions utilize PtdSer receptors for virus uptake. Copyright © 2018 American Society for Microbiology.
Endoscopic Evaluation of Gastric Emptying and Effect of Mosapride Citrate on Gastric Emptying
Jung, In Su; Kim, Jie-Hyun; Lee, Hwal Youn; Lee, Sang In
2010-01-01
Purpose Gastric emptying has been evaluated by scintigraphy in spite of its limitations of time consumption, cost, and danger of radioisotope. Endoscopy is a simple technique, however, its validation for gastric emptying and quantification of food has not yet been investigated. The aim of our study was to assess endoscopic gastric emptying compared with scintigraphy and radiopaque markers (ROMs) studies. We also investigated the effect of a single dose of mosapride on gastric emptying. Materials and Methods Fifteen healthy volunteers underwent scintigraphy. Next day, subjects received a standard solid meal with ROMs and underwent endoscopy and simple abdomen X-ray after 3 hrs. After one week, the same procedure was repeated after ingestion of mosapride (5 mg for group 1, n = 8; 10 mg for group 2, n = 7) 15 min before the meal. Quantification of gastric residue by endoscopy was scored from 0 to 3, and the scores were added up. Results All subjects completed the study without any complication. The gastric emptying rate [T1/2 (min)] was in normal range (65.6 ± 12.6 min). Endoscopic gastric emptying was correlated significantly with gastric clearance of ROMs (r = 0.627, p = 0.012). Endoscopic gastric emptying and gastric clearance of ROMs after administration of mosapride showed significant differences in the 10 mg group (p < 0.05). Conclusion Endoscopy can evaluate gastric emptying safely and simply on an outpatient basis. A 10 mg dose of mosapride enhanced gastric emptying, assessed by both endoscopy and ROMs. PMID:20046511
Qu, Bo; Sheng, Guan-Nan; Yu, Fei; Chen, Guan-Nan; Lv, Qi; Mao, Zhong-Peng; Guo, Long; Lv, Yi
2016-11-20
To explore the inhibitory effect of migration-inducing gene 7 (Mig-7) gene silencing induced by retroviral-mediated small hairpin RNA (shRNA) on vasculogenic mimicry (VM), invasion and metastasis of human hepatocellular carcinoma (HCC) cells in vitro. Two target sequences (Mig-7 shRNA-1 and Mig-7 shRNA-2) and one negative control sequence (Mig-7 shRNA-N) were synthesized. The recombinant retroviral vectors carrying Mig-7 shRNA were constructed, and HCC cell line MHCC-97H were transfected with Mig-7 shRNA-1, Mig-7 shRNA-2, Mig-7 shRNA-N, or the empty vector, or treated with 125 µg/mL recombinant human endostatin (ES). Mig-7 expression in the treated cells was detected using semi-quantitative PCR and Western blotting. The inhibitory effect of Mig-7 silencing on VM formation was investigated in a 3-dimensional cell culture system; the changes in cell adhesion, invasion and migration were assessed with intercellular adhesion assay, Transwell invasion assay and Transwell migration assay, respectively. The expression of Mig-7 at both mRNA and protein levels decreased significantly, VM formation, invasion and metastasis were suppressed, while intercellular adhesion increased significantly in MHCC-97H cells in Mig-7 shRNA-1 and Mig-7 shRNA-2 groups (P<0.05); such changes were not observed in cells transfected with Mig-7 shRNA-N or the empty vector, nor in cells treated with ES. Mig-7 silencing by retroviral-mediated shRNA significantly inhibits VM formation, invasion and metastasis and increases the intercellular adhesion of the HCC cells, while ES does not have such inhibitory effects.
HDM2 promotes WIP1-mediated medulloblastoma growth
Buss, Meghan C.; Read, Tracy-Ann; Schniederjan, Matthew J.; Gandhi, Khanjan; Castellino, Robert C.
2012-01-01
Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma. PMID:22379189
Large area, low cost solar cell development and production readiness
NASA Technical Reports Server (NTRS)
Michaels, D.
1982-01-01
A process sequence for a large area ( or = 25 sq. cm) silicon solar cell was investigated. Generic cell choice was guided by the expected electron fluence, by the packing factors of various cell envelope designs onto each panel to provide needed voltage as well as current, by the weight constraints on the system, and by the cost goals of the contract.
2011-01-01
Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598
Yang, Tingting; Chu, Jie; Zhou, Chengchao; Medina, Alexis; Li, Cuicui; Jiang, Shan; Zheng, Wengui; Sun, Liyuan; Liu, Jing
2016-07-05
The aim of this study was to compare the catastrophic health expenditure (CHE) prevalence and its determinants between empty-nest and non-empty-nest elderly households. Shandong province of China. A total of 2761 elderly households are included in the analysis. CHE incidence among elderly households was 44.9%. The CHE incidence of empty-nest singles (59.3%, p=0.000, OR=3.19) and empty-nest couples (52.9%, p=0.000, OR=2.45) are both statistically higher than that of non-empty-nest elderly households (31.4%). An inverse association was observed between CHE incidence and income level in all elderly household types. Factors including 1 or more household elderly members with non-communicable chronic diseases in the past 6 months, 1 or more elderly household members being hospitalised in the past year and lower household income, are significant risk factors for CHE in all 3 household types (p<0.05). Health insurance status was found to be a significant determinant of CHE among empty-nest singles and non-empty-nest households (p<0.05). CHE incidence among elderly households is high in China. Empty-nest households are at higher risk for CHE than non-empty-nest households. Based on these findings, we suggest that special insurance be developed to broaden the coverage of health services and heighten the reimbursement rate for empty-nest elderly in the existing health insurance schemes. Financial and social protection interventions are also essential for identified at-risk subgroups among different types of elderly households. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Yang, Tingting; Chu, Jie; Zhou, Chengchao; Medina, Alexis; Li, Cuicui; Jiang, Shan; Zheng, Wengui; Sun, Liyuan; Liu, Jing
2016-01-01
Objective The aim of this study was to compare the catastrophic health expenditure (CHE) prevalence and its determinants between empty-nest and non-empty-nest elderly households. Setting Shandong province of China. Participants A total of 2761 elderly households are included in the analysis. Results CHE incidence among elderly households was 44.9%. The CHE incidence of empty-nest singles (59.3%, p=0.000, OR=3.19) and empty-nest couples (52.9%, p=0.000, OR=2.45) are both statistically higher than that of non-empty-nest elderly households (31.4%). An inverse association was observed between CHE incidence and income level in all elderly household types. Factors including 1 or more household elderly members with non-communicable chronic diseases in the past 6 months, 1 or more elderly household members being hospitalised in the past year and lower household income, are significant risk factors for CHE in all 3 household types (p<0.05). Health insurance status was found to be a significant determinant of CHE among empty-nest singles and non-empty-nest households (p<0.05). Conclusions CHE incidence among elderly households is high in China. Empty-nest households are at higher risk for CHE than non-empty-nest households. Based on these findings, we suggest that special insurance be developed to broaden the coverage of health services and heighten the reimbursement rate for empty-nest elderly in the existing health insurance schemes. Financial and social protection interventions are also essential for identified at-risk subgroups among different types of elderly households. PMID:27381206
Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications
2016-01-01
Rapid progress in disease biomarker discovery has increased the need for robust detection technologies. In the past several years, the designs of many immunoaffinity reagents have focused on lowering costs and improving specificity while also promoting stability. Antibody fragments (scFvs) have long been displayed on the surface of yeast and phage libraries for selection; however, the stable production of such fragments presents challenges that hamper their widespread use in diagnostics. Membrane and cell wall proteins similarly suffer from stability problems when solubilized from their native environment. Recently, cell envelope compositions that maintain membrane proteins in native or native-like lipid environment to improve their stability have been developed. This cell envelope composition approach has now been adapted toward stabilizing antibody fragments by retaining their native cell wall environment. A new class of immunoaffinity reagents has been developed that maintains antibody fragment attachment to yeast cell wall. Herein, we review recent strategies that incorporate cell wall fragments with functional scFvs, which are designed for easy production while maintaining specificity and stability when in use with simple detection platforms. These cell wall based antibody fragments are globular in structure, and heterogeneous in size, with fragments ranging from tens to hundreds of nanometers in size. These fragments appear to retain activity once immobilized onto biosensor surfaces for the specific and sensitive detection of pathogen antigens. They can be quickly and economically generated from a yeast display library and stored lyophilized, at room temperature, for up to a year with little effect on stability. This new format of scFvs provides stability, in a simple and low-cost manner toward the use of scFvs in biosensor applications. The production and “panning” of such antibody cell wall composites are also extremely facile, enabling the rapid adoption of stable and inexpensive affinity reagents for emerging infectious threats. PMID:27762541
Role of Gag and lipids during HIV-1 assembly in CD4+ T cells and macrophages
Mariani, Charlotte; Desdouits, Marion; Favard, Cyril; Benaroch, Philippe; Muriaux, Delphine M.
2014-01-01
HIV-1 is an RNA enveloped virus that preferentially infects CD4+ T lymphocytes and also macrophages. In CD4+ T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4+ T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4+ T cells and macrophages. PMID:25009540
How Listeria monocytogenes organizes its surface for virulence
Carvalho, Filipe; Sousa, Sandra; Cabanes, Didier
2014-01-01
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host. PMID:24809022
Cai, Lifeng; Gochin, Miriam; Liu, Keliang
2011-12-01
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.
Benedicto, Ignacio; Molina-Jiménez, Francisca; Barreiro, Olga; Maldonado-Rodríguez, Alejandra; Prieto, Jesús; Moreno-Otero, Ricardo; Aldabe, Rafael; López-Cabrera, Manuel; Majano, Pedro L
2008-10-01
Hepatocyte tight junctions (TJ) play key roles in characteristic liver functions, including bile formation and secretion. Infection by hepatitis C virus (HCV) may cause alterations of the liver architecture and disruption of the bile duct, which ultimately can lead to cholestasis. Herein, we employed the HCV replicon system to analyze the effect of HCV on TJ organization. TJ-associated proteins occludin, claudin-1, and Zonula Occludens protein-1 (ZO-1) disappeared from their normal localization at the border of adjacent cells in Huh7 clones harboring genomic but not subgenomic replicons expressing only the nonstructural proteins. Furthermore, cells containing genomic replicons showed a cytoplasmic accumulation of occludin in the endoplasmic reticulum (ER). TJ-associated function, measured as FITC-dextran paracellular permeability, of genomic replicon-containing cells, was also altered. Interestingly, clearance of the HCV replicon by interferon-alpha (IFN-alpha) treatment and by short hairpin RNA (shRNA) significantly restored the localization of TJ-associated proteins. Transient expression of all HCV structural proteins, but not core protein alone, altered the localization of TJ-associated proteins in Huh7 cells and in clones with subgenomic replicons. Confocal analysis showed that accumulation of occludin in the ER partially co-localized with HCV envelope glycoprotein E2. E2/occludin association was further confirmed by co-immunoprecipitation and pull-down assays. Additionally, using a cell culture model of HCV infection, we observed the cytoplasmic dot-like accumulation of occludin in infected Huh7 cells. We propose that HCV structural proteins, most likely those of the viral envelope, promote alterations of TJ-associated proteins, which may provide new insights for HCV-related pathogenesis.
Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.
1998-01-01
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227
Rodrigues, A F; Formas-Oliveira, A S; Bandeira, V S; Alves, P M; Hu, W S; Coroadinha, A S
2013-11-01
Biopharmaceuticals derived from enveloped virus comprise an expanding market of vaccines, oncolytic vectors and gene therapy products. Thus, increased attention is given to the development of robust high-titer cell hosts for their manufacture. However, the knowledge on the physiological constraints modulating virus production is still scarce and the use of integrated strategies to improve hosts productivity and upstream bioprocess an under-explored territory. In this work, we conducted a functional genomics study, including the transcriptional profiling and central carbon metabolism analysis, following the metabolic changes in the transition 'parental-to-producer' of two human cell lines producing recombinant retrovirus. Results were gathered into three comprehensive metabolic maps, providing a broad and integrated overview of gene expression changes for both cell lines. Eight pathways were identified to be recruited in the virus production state: amino acid catabolism, carbohydrate catabolism and integration of the energy metabolism, nucleotide metabolism, glutathione metabolism, pentose phosphate pathway, polyamines biosynthesis and lipid metabolism. Their ability to modulate viral titers was experimentally challenged, leading to improved specific productivities of recombinant retrovirus up to 6-fold. Within recruited pathways in the virus production state, we sought for metabolic engineering gene targets in the low producing phenotypes. A mining strategy was used alternative to the traditional approach 'high vs. low producer' clonal comparison. Instead, 'high vs. low producer' from different genetic backgrounds (i.e. cell origins) were compared. Several genes were identified as limiting in the low-production phenotype, including two enzymes from cholesterol biosynthesis, two enzymes from glutathione biosynthesis and the regulatory machinery of polyamines biosynthesis. This is thus a frontier work, bridging fundamentals to technological research and contributing to enlarge our understanding of enveloped virus production dynamics in mammalian cell hosts. © 2013 Published by Elsevier Inc.
Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.
ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be enhanced by growing cells in bioreactor configurations that can be used industrially. We propose that our findings can inform current and future efforts to increase production of microbial lipids, other fuels, or chemicals that are currently derived from petroleum.« less
Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production
Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; ...
2017-05-23
ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be enhanced by growing cells in bioreactor configurations that can be used industrially. We propose that our findings can inform current and future efforts to increase production of microbial lipids, other fuels, or chemicals that are currently derived from petroleum.« less
Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.
Lemmer, Kimberly C; Zhang, Weiping; Langer, Samantha J; Dohnalkova, Alice C; Hu, Dehong; Lemke, Rachelle A; Piotrowski, Jeff S; Orr, Galya; Noguera, Daniel R; Donohue, Timothy J
2017-05-23
Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn 5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be enhanced by growing cells in bioreactor configurations that can be used industrially. We propose that our findings can inform current and future efforts to increase production of microbial lipids, other fuels, or chemicals that are currently derived from petroleum. Copyright © 2017 Lemmer et al.
Dandoy, Damien; Fremaux, Christophe; de Frahan, Marie Henry; Horvath, Philippe; Boyaval, Patrick; Hols, Pascal; Fontaine, Laetitia
2011-08-30
In industrial fermentation processes, the rate of milk acidification by Streptococcus thermophilus is of major technological importance. The cell-envelope proteinase PrtS was previously shown to be a key determinant of the milk acidification activity in this species. The PrtS enzyme is tightly anchored to the cell wall via a mechanism involving the typical sortase A (SrtA) and initiates the breakdown of milk casein into small oligopeptides. The presence or absence of PrtS divides the S. thermophilus strains into two phenotypic groups i.e. the slow and the fast acidifying strains. The aim of this study was to improve the milk acidification rate of slow S. thermophilus strains, and hence optimise the fermentation process of dairy products. In the present work, we developed for the first time a strategy based on natural transformation to confer the rapid acidification phenotype to slow acidifying starter strains of S. thermophilus. First, we established by gene disruption that (i) prtS, encoding the cell-envelope proteinase, is a key factor responsible for rapid milk acidification in fast acidifying strains, and that (ii) srtA, encoding sortase A, is not absolutely required to express the PrtS activity. Second, a 15-kb PCR product encompassing the prtS genomic island was transferred by natural transformation using the competence-inducing peptide in three distinct prtS-defective genetic backgrounds having or not a truncated sortase A gene. We showed that in all cases the milk acidification rate of transformants was significantly increased, reaching a level similar to that of wild-type fast acidifying strains. Furthermore, it appeared that the prtS-encoded activity does not depend on the prtS copy number or on its chromosomal integration locus. We have successfully used natural competence to transfer the prtS locus encoding the cell-envelope proteinase in three slow acidifying strains of S. thermophilus, allowing their conversion into fast acidifying derivatives. The efficient protocol developed in this article will provide the dairy industry with novel and optimised S. thermophilus starter strains.
Delayed gastric emptying of both the liquid and solid components of a meal in chronic liver disease.
Galati, J S; Holdeman, K P; Dalrymple, G V; Harrison, K A; Quigley, E M
1994-05-01
To evaluate gastric emptying in patients with chronic liver disease and portal hypertension. We measured gastric emptying of both the liquid and solid components of a meal in 10 consecutive patients with chronic liver disease and portal hypertension, but free of ascites, and 14 age- and sex-matched healthy controls. In the patients with liver disease, relationships between emptying and liver function were examined. To measure gastric emptying, subjects consumed a test meal that consisted of scrambled eggs labeled with 99mTc-sulfur colloid and 4 oz of water labeled with 111In-diethylene triamine pentacetic acid (DTPA). Patients with liver disease and portal hypertension demonstrated delayed emptying of both the liquid (t1/2, min, mean +/- SE, patients vs. 69.4 +/- 19.4 vs. 31.4 +/- 1.8, p < 0.01) and solid (post-lag phase solid emptying: 141 +/- 32.9 vs. 69.8 +/- 4.6, p < 0.006) components of the meal. We could not identify any correlation between gastric emptying and tests of liver function. Gastric emptying is delayed in patients with liver disease and portal hypertension; this abnormal gastric motor function may contribute to the pathophysiology of foregut complaints in this patient population.
Canine gastric emptying of fiber meals: influence of meal viscosity and antroduodenal motility.
Russell, J; Bass, P
1985-12-01
Dietary fibers such as psyllium and guar gum have been shown to delay the gastric emptying of liquids and solids, presumably due to an increase in meal viscosity. For liquid test meals containing fats, delayed gastric emptying is associated with a reversal of the usual antral-to-duodenal contractile gradient. The present studies were performed to determine whether the gastric emptying of increasingly viscous psyllium and guar gum meals was associated with antroduodenal motility changes. Dogs were surgically fitted with mid-duodenal cannulas for the measurement of gastric emptying. Strain-gauge force transducers were used to monitor antral and duodenal contractile responses to the test meals. Low-viscosity fiber meals emptied from the stomach rapidly (E 1/2 approximately 10 min) compared with the high-viscosity meals (E 1/2 approximately 40 min). None of the test meals stimulated antral or duodenal motility despite differences in gastric emptying time. Other motor parameters such as the time of reappearance and the duration of the burst interval were also unchanged. We conclude a) as test meals' fiber content and viscosity increase, gastric emptying is slowed; and b) viscosity-related delays in gastric emptying are not due to an effect on postprandial antroduodenal motility.
49 CFR 173.29 - Empty packagings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Empty packagings. 173.29 Section 173.29... SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.29 Empty packagings. (a) General. Except as otherwise provided in this section, an empty packaging containing only the residue of a...
Park, Hyun Jung; Oh, Sung; Vinod, Nagarajan; Ji, Seongmi; Noh, Han Byul; Koo, Jung Mo; Lee, Su Hyeong; Kim, Sei Chang; Lee, Ki-Sung; Choi, Chang Won
2016-11-15
Acellular bacterial ghosts (BGs) are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs) were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH), acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS) extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 10⁶ CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS), anti-inflammatory cytokine (IL-10), and dual activities (IL-6) in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning electron microscopy showed the formation of trans-membrane lysis tunnel structures in the NaOH-induced VPGs. SDS-PAGE and agarose gel electrophoresis also confirmed that cytoplasmic proteins and genomic DNA released from the VPGs to culture medium through the lysis tunnel structures. Taken together, all these data indicate that the NaOH-induced VPGs show the potency of a safe, economical, and effective inactivated bacterial vaccine candidate.
Hira, Tohru; Ogasawara, Shono; Yahagi, Asuka; Kamachi, Minami; Li, Jiaxin; Nishimura, Saki; Sakaino, Masayoshi; Yamashita, Takatoshi; Kishino, Shigenobu; Ogawa, Jun; Hara, Hiroshi
2018-06-25
The secretion of gut hormones, such as cholecystokinin (CCK) is stimulated by fatty acids. Although a chain length-dependent mechanism has been proposed, other structural relationships to releasing activity remain unclear. We aimed to elucidate specific structures in fatty acids that are responsible for their CCK-releasing activity, and related sensing mechanisms in enteroendocrine cells. We examined CCK secretory activities in a murine CCK-producing cell line STC-1 by exposing the cells to various modified fatty acids produced by gut lactic acid bacteria. The effects of fatty acids on gastric emptying rate as a CCK-mediated function were examined using acetaminophen- and phenol red-methods in rats. Out of more than thirty octadecanoic (C18)-derived fatty acids tested, five oxo-fatty acids potently stimulated CCK secretion without cytotoxic effects in STC-1 cells. Three fatty acids had a distinct specific structure containing one double-bond, whereas the other two had two double-bonds, nearby an oxo residue. CCK secretion induced by representative fatty acids (10-oxo-trans-11-18:1 and 13-oxo-cis-9,cis-15-18:2) was attenuated by a fatty acid-receptor GPR40 antagonist. Oral administration of 13-oxo-cis-9,cis-15-18:2 lowered the gastric emptying rate in rats in a dose- and structure-dependent manner. These results revealed a novel fatty acid-sensing mechanism in enteroendocrine cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Glimpsing over the event horizon: evolution of nuclear pores and envelope.
Jékely, Gáspár
2005-02-01
The origin of eukaryotes from prokaryotic ancestors is one of the major evolutionary transitions in the history of life. The nucleus, a membrane bound compartment for confining the genome, is a central feature of eukaryotic cells and its origin also has to be a central feature of any workable theory that ventures to explain eukaryotic origins. Recent bioinformatic analyses of components of the nuclear pore complex (NPC), the nuclear envelope (NE), and the nuclear transport systems revealed exciting evolutionary connections (e.g., between NPC and coated vesicles) and provided a useful record of the phyletic distribution and history of NPC and NE components. These analyses allow us to refine theories on the origin and evolution of the nucleus, and consequently, of the eukaryotic cell.
Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1974-01-01
Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.
Gramicidin D enhances the antibacterial activity of fluoride.
Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R
2014-07-01
Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rüthnick, Diana; Schiebel, Elmar
2018-05-10
The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.
Chang, Ye; Guo, Xiaofan; Guo, Liang; Li, Zhao; Yang, Hongmei; Yu, Shasha; Sun, Guozhe; Sun, Yingxian
2016-01-01
This study aimed to comprehensively compare the general characteristics, lifestyles, serum parameters, ultrasonic cardiogram (UCG) parameters, depression, quality of life, and various comorbidities between empty nest and non-empty nest elderly among rural populations in northeast China. This analysis was based on our previous study which was conducted from January 2012 to August 2013, using a multistage, stratified, random cluster sampling scheme. The final analyzed sample consisted of 3208 participants aged no less than 60 years, which was further classified into three groups: non-empty nest group, empty nest group (living as a couple), and empty nest group (living alone). More than half of the participants were empty nest elderly (60.5%). There were no significant statistical differences for serum parameters, UCG parameters, lifestyles, dietary pattern, and scores of Patient Health Questionnaire-9 (PHQ-9) and World Health Organization Quality of Life questionnaire, abbreviated version (WHOQOL-BREF) among the three groups. Empty nest elderly showed no more risk for comorbidities such as general obesity, abdominal obesity, hyperuricemia, hyperhomocysteinemia, diabetes, dyslipidemia, left atrial enlargement (LAE), and stroke. Our study indicated that empty nest elderly showed no more risk for depression, low quality of life and comorbidities such as general obesity, abdominal obesity, hyperuricemia, hyperhomocysteinemia, diabetes, dyslipidemia, LAE, and stroke among rural populations in northeast China. PMID:27618905
Chang, Ye; Guo, Xiaofan; Guo, Liang; Li, Zhao; Yang, Hongmei; Yu, Shasha; Sun, Guozhe; Sun, Yingxian
2016-08-27
This study aimed to comprehensively compare the general characteristics, lifestyles, serum parameters, ultrasonic cardiogram (UCG) parameters, depression, quality of life, and various comorbidities between empty nest and non-empty nest elderly among rural populations in northeast China. This analysis was based on our previous study which was conducted from January 2012 to August 2013, using a multistage, stratified, random cluster sampling scheme. The final analyzed sample consisted of 3208 participants aged no less than 60 years, which was further classified into three groups: non-empty nest group, empty nest group (living as a couple), and empty nest group (living alone). More than half of the participants were empty nest elderly (60.5%). There were no significant statistical differences for serum parameters, UCG parameters, lifestyles, dietary pattern, and scores of Patient Health Questionnaire-9 (PHQ-9) and World Health Organization Quality of Life questionnaire, abbreviated version (WHOQOL-BREF) among the three groups. Empty nest elderly showed no more risk for comorbidities such as general obesity, abdominal obesity, hyperuricemia, hyperhomocysteinemia, diabetes, dyslipidemia, left atrial enlargement (LAE), and stroke. Our study indicated that empty nest elderly showed no more risk for depression, low quality of life and comorbidities such as general obesity, abdominal obesity, hyperuricemia, hyperhomocysteinemia, diabetes, dyslipidemia, LAE, and stroke among rural populations in northeast China.
Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics
USDA-ARS?s Scientific Manuscript database
Virion-associated peptidoglycan hydrolases (VAPGH) are phage-encoded lytic enzymes that locally degrade the peptidoglycan (PG) of the bacterial cell wall during infection. Their action usually generates a small hole through which the phage tail crosses the cell envelope to inject the phage genetic m...
Electroporation and use of hepatitis B virus envelope L proteins as bionanocapsules.
Yamada, Tadanori; Jung, Joohee; Seno, Masaharu; Kondo, Akihiko; Ueda, Masakazu; Tanizawa, Katsuyuki; Kuroda, Shun'ichi
2012-06-01
Hepatitis B virus (HBV) envelope L proteins, when synthesized in yeast cells, form a hollow bionanocapsule (BNC) in which genes (including large plasmids up to 40 kbp), small interfering RNA (siRNA), drugs, and proteins can be enclosed by electroporation. BNCs made from L proteins have several advantages as a delivery system: Because they display a human liver-specific receptor (the pre-S region of the L protein) on their surface, BNCs can efficiently and specifically deliver their contents to human liver-derived cells and tissues ex vivo (in cell culture) and in vivo (in a mouse xenograft model). Retargeting can be achieved simply by substituting other biorecognition molecules such as antibodies, ligands, receptors, and homing peptides for the pre-S region. In addition, BNCs have already been proven to be safe for use in humans during their development as an immunogen of hepatitis B vaccine. This protocol describes the loading of BNCs and their use in cell culture and in vivo.
The plasma membrane of myxosporidian valve cells: freeze fracture data.
Desportes-Livage, I; Nicolas, G
1990-01-01
Freeze fracturing of Myxosporidian spores reveals the occurrence of a continuous layer of transmembrane particles all over the surface area of the valve cells which form the spore envelope. These particles are densely packed all over the P face membrane. Due to their polygonal outline, their diameter (6-7 nm) and their central core, they resemble the particles forming the connections of gap junctions which metabolically couple the neighboring cells in animal tissues. In the present report, the role of the transmembrane particles is still hypothetical. However, they might represent a membrane structural specialization of the spores which are submitted to osmotic variations of the fluid external medium. Furthermore similar transmembrane particles are observed at the level of the septate junction which seals the valve cells. In this occurrence, they are arranged in a series of 40 double rows parallel to the suture of the spore envelope. These findings support the view that Myxosporidia are Metazoa and raise the problem of their origin.
Non-senescent Hydra tolerates severe disturbances in the nuclear lamina.
Klimovich, Alexander; Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo; Bosch, Thomas C G
2018-05-10
The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra . We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra , the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra . A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.
Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface
Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.
2015-01-01
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012
Liquid-induced colour change in a beetle: the concept of a photonic cell.
Mouchet, Sébastien R; Van Hooijdonk, Eloise; Welch, Victoria L; Louette, Pierre; Colomer, Jean-François; Su, Bao-Lian; Deparis, Olivier
2016-01-13
The structural colour of male Hoplia coerulea beetles is notable for changing from blue to green upon contact with water. In fact, reversible changes in both colour and fluorescence are induced in this beetle by various liquids, although the mechanism has never been fully explained. Changes enacted by water are much faster than those by ethanol, in spite of ethanol's more rapid spread across the elytral surface. Moreover, the beetle's photonic structure is enclosed by a thin scale envelope preventing direct contact with the liquid. Here, we note the presence of sodium, potassium and calcium salts in the scale material that mediate the penetration of liquid through putative micropores. The result leads to the novel concept of a "photonic cell": namely, a biocompatible photonic structure that is encased by a permeable envelope which mediates liquid-induced colour changes in that photonic structure. Engineered photonic cells dispersed in culture media could revolutionize the monitoring of cell-metabolism.
OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment.
Samsudin, Firdaus; Ortiz-Suarez, Maite L; Piggot, Thomas J; Bond, Peter J; Khalid, Syma
2016-12-06
The envelope of Gram-negative bacteria is highly complex, containing separate outer and inner membranes and an intervening periplasmic space encompassing a peptidoglycan (PGN) cell wall. The PGN scaffold is anchored non-covalently to the outer membrane via globular OmpA-like domains of various proteins. We report atomically detailed simulations of PGN bound to OmpA in three different states, including the isolated C-terminal domain (CTD), the full-length monomer, or the complete full-length dimeric form. Comparative analysis of dynamics of OmpA CTD from different bacteria helped to identify a conserved PGN-binding mode. The dynamics of full-length OmpA, embedded within a realistic representation of the outer membrane containing full-rough (Ra) lipopolysaccharide, phospholipids, and cardiolipin, suggested how the protein may provide flexible mechanical support to the cell wall. An accurate model of the heterogeneous bacterial cell envelope should facilitate future efforts to develop antibacterial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-senescent Hydra tolerates severe disturbances in the nuclear lamina
Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo
2018-01-01
The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra. We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra, the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra. A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans. PMID:29754147
Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L
2016-01-01
FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest.
Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells
NASA Astrophysics Data System (ADS)
Fehr, M.; Behrends, J.; Haas, S.; Rech, B.; Lips, K.; Schnegg, A.
2011-11-01
Electrically detected electron-spin-echo envelope modulations (ED-ESEEM) were employed to detect hyperfine interactions between nuclear spins and paramagnetic sites, determining spin-dependent transport processes in multilayer thin-film microcrystalline silicon solar cells. Electrical detection in combination with a modified Hahn-echo sequence was used to measure echo modulations induced by 29Si, 31P, and 1H nuclei weakly coupled to electron spins of paramagnetic sites in the amorphous and microcrystalline solar cell layers. In the case of CE centers in the μc-Si:H i-layer, the absence of 1H ESEEM modulations indicates that the adjacencies of CE centers are depleted from hydrogen atoms. On the basis of this result, we discuss several models for the microscopic origin of the CE center and conclusively assign those centers to coherent twin boundaries inside of crystalline grains in μc-Si:H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, Corrin E., E-mail: cmcbrid5@jhmi.ed; Machamer, Carolyn E., E-mail: machamer@jhmi.ed
Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation ofmore » S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.« less
Nøhr, Martha Kampp; Thale, Zia I; Brodin, Birger; Hansen, Steen H; Holm, René; Nielsen, Carsten Uhd
2014-01-01
Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore to investigate the potential effect of coadministration of infant formula with vigabatrin on the oral absorption in vitro and in vivo. The effect of vigabatrin given with an infant formula on the oral uptake and transepithelial transport was investigated in vitro in Caco-2 cells. In vivo effects of infant formula and selected amino acids on the pharmacokinetic profile of vigabatrin was investigated after oral coadministration to male Sprague–Dawley rats using acetaminophen as a marker for gastric emptying. The presence of infant formula significantly reduced the uptake rate and permeability of vigabatrin in Caco-2 cells. Oral coadministration of vigabatrin and infant formula significantly reduced Cmax and prolonged tmax of vigabatrin absorption. Ligands for the proton-coupled amino acid transporter PAT1, sarcosine, and proline/l-tryptophan had similar effects on the pharmacokinetic profile of vigabatrin. The infant formula decreased the rate of gastric emptying. Here we provide experimental evidence for an in vivo role of PAT1 in the intestinal absorption of vigabatrin. The effect of infant formula on the oral absorption of vigabatrin was found to be due to delayed gastric emptying, however, it seems reasonable that infant formula may also directly affect the intestinal absorption rate of vigabatrin possibly via PAT1. PMID:25505585
Lee, Ji-Young; Acosta, Eliana G.; Stoeck, Ina Karen; Long, Gang; Hiet, Marie-Sophie; Mueller, Birthe; Fackler, Oliver T.; Kallis, Stephanie
2014-01-01
ABSTRACT The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE. PMID:25122793
Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei
NASA Technical Reports Server (NTRS)
Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.
1993-01-01
Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus, a highly cell-associated oncogenic 'alpha-herpesvirus, is the causative agent of a T cell lymphoma and neuropathic disease called Marek’s disease. The skin is the only anatomical site where infectious enveloped cell-free virions are produced and shed into the environment. Stud...
Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure.
Thompson, Gary L; Roth, Caleb C; Kuipers, Marjorie A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L
2016-01-29
Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus - histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. Copyright © 2015 Elsevier Inc. All rights reserved.
A Viral Pilot for HCMV Navigation?
Adler, Barbara
2015-07-15
gH/gL virion envelope glycoprotein complexes of herpesviruses serve as entry complexes and mediate viral cell tropism. By binding additional viral proteins, gH/gL forms multimeric complexes which bind to specific host cell receptors. Both Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) express alternative multimeric gH/gL complexes. Relative amounts of these alternative complexes in the viral envelope determine which host cells are preferentially infected. Host cells of EBV can modulate the gH/gL complex complement of progeny viruses by cell type-dependent degradation of one of the associating proteins. Host cells of HCMV modulate the tropism of their virus progenies by releasing or not releasing virus populations with a specific gH/gL complex complement out of a heterogeneous pool of virions. The group of Jeremy Kamil has recently shown that the HCMV ER-resident protein UL148 controls integration of one of the HCMV gH/gL complexes into virions and thus creates a pool of virions which can be routed by different host cells. This first mechanistic insight into regulation of the gH/gL complex complement of HCMV progenies presents UL148 as a pilot candidate for HCMV navigation in its infected host.
Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Bigi, J. P.; Byrne-Bailey, K. G.; Remis, J. P.; Schichnes, D.; Auer, M.; Chang, C. J.; Coates, J. D.
2011-01-01
Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction. PMID:21908627
When the Chips Are down: Taking Time to Pay Attention to Real Issues
ERIC Educational Resources Information Center
Model, David
2011-01-01
Global warming, deforestation, destruction of the oceans, hunger, poverty, human rights abuses and war crimes will, at best, be redressed by empty words and token gestures unless the public imbibes massive doses of caffeine. Unfortunately the public's attention seems to be focused elsewhere. Blackberries, cell phones, social networks on the…
Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K.; Braff, William
2009-01-01
In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.
Role of the Neddylation Enzyme Uba3, A New Estrogen Receptor Corepressor in Breast Cancer
2006-09-01
cells acquire ICI 182,780 resistance while retaining expres- sion of ER. MATERIALS AND METHODS Materials The following antibodies and reagents were used...protein assay kit; FBS and csFBS (Hy- Clone Laboratories, Inc., Logan, UT); LipofectAMINE Plus Reagent , geneticin, and other cell culture reagents were...plasmid DNA (adjusted by corresponding empty vectors) by using LipofectAMINE Plus Reagent according to the manufacturer’s guidelines. Five hours later
Beta Catenin in Prostate Cancer Apoptosis
2014-04-01
indicate that, Glycogen Synthase Kinase 3β (GSK3β) might be a key player in mediating this. GSK3β, a multifunctional serine/ threonine kinase regulates...for TRAIL-TZD-induced apoptosis in prostate cancer cells. AMPK is a family of serine/ threonine protein kinase and is highly conserved from yeast to...metabolic syndrome and Type 2 diabetes . We used C42-DN (stably overexpressing AMPK α1-dominant negative) and C42-EV (empty vector) prostate cancer cell
Camacho, Susana; Michlig, Stephanie; de Senarclens-Bezençon, Carole; Meylan, Jenny; Meystre, Julie; Pezzoli, Maurizio; Markram, Henry; le Coutre, Johannes
2015-01-01
Cinnamon extract is associated to different health benefits but the active ingredients or pathways are unknown. Cinnamaldehyde (CIN) imparts the characteristic flavor to cinnamon and is known to be the main agonist of transient receptor potential-ankyrin receptor 1 (TRPA1). Here, expression of TRPA1 in epithelial mouse stomach cells is described. After receiving a single-dose of CIN, mice significantly reduce cumulative food intake and gastric emptying rates. Co-localization of TRPA1 and ghrelin in enteroendocrine cells of the duodenum is observed both in vivo and in the MGN3-1 cell line, a ghrelin secreting cell model, where incubation with CIN up-regulates expression of TRPA1 and Insulin receptor genes. Ghrelin secreted in the culture medium was quantified following CIN stimulation and we observe that octanoyl and total ghrelin are significantly lower than in control conditions. Additionally, obese mice fed for five weeks with CIN-containing diet significantly reduce their cumulative body weight gain and improve glucose tolerance without detectable modification of insulin secretion. Finally, in adipose tissue up-regulation of genes related to fatty acid oxidation was observed. Taken together, the results confirm anti-hyperglycemic and anti-obesity effects of CIN opening a new approach to investigate how certain spice derived compounds regulate endogenous ghrelin release for therapeutic intervention. PMID:25605129
Pathological Studies of “Sudden Death Syndrome” in Broiler Chickens
Ononiwu, J.C.; Thomson, R.G.; Carlson, H.C.; Julian, R.J.
1979-01-01
Sudden death syndrome usually occurs in heavy, fast-growing and healthy-looking broilers. Most of the affected birds are males. The characteristic necropsy changes are seen in well-fleshed broilers with edema and generalized pulmonary congestion, recently ingested feed in the crop and gizzard, distended intestine with creamy content and empty gall bladder. The liver and kidneys are slightly enlarged and the latter have patchy areas of subcapsular hemorrhage. The heart contains clotted blood in the atria but the ventricles are often empty and the left ventricle in particular assumes a hypertrophied appearance. Microscopic examination of heart muscle reveals degeneration of fibers, separation of cardiac muscle fibers by edema and infiltration of heterophils. The lungs have severe vascular congestion, inflammatory cell infiltration in the mucosa of the secondary bronchi and edema fluid in the tertiary bronchi and interlobular connective tissue. The liver has moderate bile duct hyperplasia, periportal hepatitis and mononuclear cell infiltration adjacent to bile ducts which possibly leads to bile duct constriction. The kidneys have subcapsular and parenchymatous hemorrhage. ImagesFIGURE 1.FIGURE 2. PMID:436100
Anchoring of LPXTG-Like Proteins to the Gram-Positive Cell Wall Envelope.
Siegel, Sara D; Reardon, Melissa E; Ton-That, Hung
2017-01-01
In Gram-positive bacteria, protein precursors with a signal peptide and a cell wall sorting signal (CWSS)-which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues-are targeted to the cell envelope by a transpeptidase enzyme call sortase. Evolution and selective pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are capable of polymerizing substrates harboring the pilin motif and CWSS into protein polymers known as pili or fimbriae, whereas the others perform cell wall anchoring functions. Regardless of the products generated from these sortases, the basic principle of sortase-catalyzed transpeptidation is the same. It begins with the cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product at the threonine residue to a nucleophile, i.e., an active amino group of the peptidoglycan stem peptide or the lysine residue of the pilin motif. This chapter will summarize the efforts to identify and characterize sortases and their associated pathways with emphasis on the cell wall anchoring function.
Cummins, Nathan W.; Klicpera, Anna; Sainski, Amy M.; Bren, Gary D.; Khosla, Sundeep; Westendorf, Jennifer J.; Badley, Andrew D.
2011-01-01
Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05), which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism. PMID:21931863
14 CFR 223.24 - Transportation of empty mail bags.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Transportation of empty mail bags. Any carrier authorized to engage in foreign air transportation may transport in foreign air transportation empty air mail bags from any country to the country of origin of such... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Transportation of empty mail bags. 223.24...
14 CFR 223.24 - Transportation of empty mail bags.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Transportation of empty mail bags. Any carrier authorized to engage in foreign air transportation may transport in foreign air transportation empty air mail bags from any country to the country of origin of such... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transportation of empty mail bags. 223.24...
14 CFR 223.24 - Transportation of empty mail bags.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Transportation of empty mail bags. Any carrier authorized to engage in foreign air transportation may transport in foreign air transportation empty air mail bags from any country to the country of origin of such... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transportation of empty mail bags. 223.24...
Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.
Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji
2018-02-28
Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of MV within the cell. Further studies demonstrated that annexin A2 interacts with the MV matrix (M) protein and mediates the localization of the M protein at the plasma membrane where MV particles are formed. The M protein lines the inner surface of the MV envelope membrane and plays a role in MV particle formation. Our results provide useful information for the understanding of the MV replication process and potential development of anti-viral agents. Copyright © 2018 American Society for Microbiology.
The stomach, cholecystokinin, and satiety.
McHugh, P R; Moran, T H
1986-04-01
The stomach of the rhesus monkey empties liquids in a fashion that varies with the character of the solutions. Physiological saline empties exponentially. Glucose solutions empty biphasically--rapidly for the first minutes, then slowly and proportionately to glucose concentration to deliver glucose calories through the pylorus at a regulated rate (0.4 kcal/min). This prolonged and regulated second phase of gastric emptying depends on intestinal inhibition of the stomach. Cholecystokinin (CCK), a hormone released by food in the intestine, is an inhibitor of gastric emptying. In vitro receptor autoradiography demonstrates CCK receptors to be clustered on the circular muscle of the pylorus. Exogenous CCK, in doses that inhibit gastric emptying, will reduce food intake only if combined with an infusion of saline in the stomach. These observations indicate how gastric distension can be a means for provoking satiety. The variably sustained distension produced by the stomach's slow, calorically regulated emptying could prolong intermeal intervals and thus permit high-calorie meals to inhibit further caloric intake over time. CCK, by directly inhibiting gastric emptying during a meal, could promote gastric distension and so restrict the duration and size of individual meals.
NASA Astrophysics Data System (ADS)
Basri, N. H.; Deraman, M.; Suleman, Md.; Khiew, P. S.; Yatim, B.; Nor, N. S. M.; Sazali, N. E. S.; Hamdan, E.; Hanappi, M. F. Y. M.; Bakri, W. F. W.; Tajuddin, N. S. M.
2016-11-01
Hybrid supercapacitor or asymmetric cell made of composite electrode consists of nanoparticles NiO (75, 80, 85 wt.%), activated carbon powder (ACP) and PTFE binder (5 wt.%) as cathode paired with porous KOH treated activated carbon monolith (ACM) electrode from oil palm empty fruit bunches as anode have been fabricated. The physical characteristics of composite electrodes have been investigated by field emission scanning electron microscopy (FE-SEM). The density and resistivity of the composite electrodes have been measured and found to be increased with percentage of NiO composition. The supercapacitor performance of both symmetric and asymmetric configuration have been investigated in 6 M KOH electrolyte medium using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) techniques. The CV results at 1 mV s-1 for the asymmetric cell demonstrate that the presence of ACM as an anode can improve the supercapacitor cell performance, as shown by the cell composed of composite electrode that consist 75 wt.% of NiO, which optimally exhibits 164 % increase in the value of Csp. The same trend is observed by the GCD results. The GCD results show that the presence of porous ACM electrodes has increase the specific energy value from 0.14 Wh kg-1 (without ACM) to 0.24, 0.51 and 0.66 W h kg-1, and the specific power from 94.9 to 122.0 W kg-1 corresponding to asymmetric cell consist of 75, 80, 85 wt.% of NiO, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nor, N. S. M., E-mail: madra@ukm.my; Deraman, M., E-mail: madra@ukm.my; Omar, R., E-mail: madra@ukm.my
Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cellmore » B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.« less
Ma, Jing; Bellon, Max; Wishart, Judith M; Young, Richard; Blackshaw, L Ashley; Jones, Karen L; Horowitz, Michael; Rayner, Christopher K
2009-04-01
The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in glucose homeostasis in both health and diabetes. In mice, sucralose, an artificial sweetener, stimulates GLP-1 release via sweet taste receptors on enteroendocrine cells. We studied blood glucose, plasma levels of insulin, GLP-1, and GIP, and gastric emptying (by a breath test) in 7 healthy humans after intragastric infusions of 1) 50 g sucrose in water to a total volume of 500 ml (approximately 290 mosmol/l), 2) 80 mg sucralose in 500 ml normal saline (approximately 300 mosmol/l, 0.4 mM sucralose), 3) 800 mg sucralose in 500 ml normal saline (approximately 300 mosmol/l, 4 mM sucralose), and 4) 500 ml normal saline (approximately 300 mosmol/l), all labeled with 150 mg 13C-acetate. Blood glucose increased only in response to sucrose (P<0.05). GLP-1, GIP, and insulin also increased after sucrose (P=0.0001) but not after either load of sucralose or saline. Gastric emptying of sucrose was slower than that of saline (t50: 87.4+/-4.1 min vs. 74.7+/-3.2 min, P<0.005), whereas there were no differences in t50 between sucralose 0.4 mM (73.7+/-3.1 min) or 4 mM (76.7+/-3.1 min) and saline. We conclude that sucralose, delivered by intragastric infusion, does not stimulate insulin, GLP-1, or GIP release or slow gastric emptying in healthy humans.
Ma, Jing; Bellon, Max; Wishart, Judith M.; Young, Richard; Blackshaw, L. Ashley; Jones, Karen L.; Horowitz, Michael; Rayner, Christopher K.
2009-01-01
The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in glucose homeostasis in both health and diabetes. In mice, sucralose, an artificial sweetener, stimulates GLP-1 release via sweet taste receptors on enteroendocrine cells. We studied blood glucose, plasma levels of insulin, GLP-1, and GIP, and gastric emptying (by a breath test) in 7 healthy humans after intragastric infusions of 1) 50 g sucrose in water to a total volume of 500 ml (∼290 mosmol/l), 2) 80 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 0.4 mM sucralose), 3) 800 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 4 mM sucralose), and 4) 500 ml normal saline (∼300 mosmol/l), all labeled with 150 mg 13C-acetate. Blood glucose increased only in response to sucrose (P < 0.05). GLP-1, GIP, and insulin also increased after sucrose (P = 0.0001) but not after either load of sucralose or saline. Gastric emptying of sucrose was slower than that of saline (t50: 87.4 ± 4.1 min vs. 74.7 ± 3.2 min, P < 0.005), whereas there were no differences in t50 between sucralose 0.4 mM (73.7 ± 3.1 min) or 4 mM (76.7 ± 3.1 min) and saline. We conclude that sucralose, delivered by intragastric infusion, does not stimulate insulin, GLP-1, or GIP release or slow gastric emptying in healthy humans. PMID:19221011
Hsu, Tom; Phung, An; Choe, Kevin; Kim, Jung Woo
2015-01-01
ABSTRACT The native envelope gene (env) of Jaagsiekte sheep retrovirus (JSRV) also acts as an oncogene. To investigate the mechanism of transformation, we performed yeast 2-hybrid screening for cellular proteins that interact with Env. Among several candidates, we identified mouse or rat zinc finger protein 111 (zfp111). The interaction between Env and Zfp111 was confirmed through in vivo coimmunoprecipitation assays. Knockdown of endogenous Zfp111 caused a decrease in cell transformation by JSRV Env, while overexpression of Zfp111 increased overall Env transformation, supporting a role for Zfp111 in Env transformation. Knockdown of Zfp111 had no effect on the growth rate of parental rat 208F cells, while it decreased the proliferation rate of JSRV-transformed 208F cells, suggesting that JSRV-transformed cells became dependent on Zfp111. In addition, Zfp111 preferentially bound to a higher-mobility form of JSRV Env that has not been described previously. The higher-mobility form of Env (P70env) was found exclusively in the nuclear fraction, and size of its polypeptide backbone was the same as that of the cytoplasmic Env polyprotein (Pr80env). The differences in glycosylation between the two versions of Env were characterized. These results identify a novel cellular protein, Zfp111, that binds to the JSRV Env protein, and this binding plays a role in Env transformation. These results indicate that JSRV transformation also involves proteins and interactions in the nucleus. IMPORTANCE The envelope protein (Env) of Jaagsiekte sheep retrovirus (JSRV) is an oncogene, but its mechanism of cell transformation is still unclear. Here we identified seven candidate cellular proteins that can interact with JSRV Env by yeast two-hybrid screening. This study focused on one of the seven candidates, zinc finger protein 111 (Zfp111). Zfp111 was shown to interact with JSRV Env in cells and to be involved in JSRV transformation. Moreover, coexpression of JSRV Env and Zfp111 led to the identification of a novel nuclear form of the JSRV Env protein that binds Zfp111. Nuclear Env was found to differ by glycosylation from the cytoplasmic Env precursor to the virion envelope proteins. These results suggest that JSRV Env transformation may involve nuclear events such as an alteration in transcription mediated by Env-Zfp111 interactions. PMID:26246563
Nouri, Mohammad; Constable, Peter D
2007-12-01
To determine the effect of parenteral administration of erythromycin, tilmicosin, and tylosin on abomasal emptying rate in suckling calves. 8 male Holstein-Friesian calves < 35 days old. Calves received each of 4 treatments in random order (2 mL of saline [0.9% NaCl] solution, IM [control treatment]; erythromycin, 8.8 mg/kg, IM; tilmicosin, 10 mg/kg, SC; and tylosin, 17.6 mg/kg, IM). Calves were fed 2 L of milk replacer containing acetaminophen (50 mg/kg) 30 minutes later. Jugular venous blood samples and transabdominal ultrasonographic abomasal dimensions were obtained periodically after suckling. Abomasal emptying rate was assessed on the basis of the time to maximal plasma acetaminophen concentration and ultrasonographic determination of the halftime of abomasal emptying. One-tailed Dunnett post tests were conducted whenever the F value for group was significant. Emptying rate was faster for erythromycin, tilimicosin, and tylosin than for the control treatment, as determined on the basis of time to maximal plasma acetaminophen concentration. Ultrasonography indicated that the half-time of abomasal emptying was significantly shorter for erythromycin than for the control treatment. Tylosin and tilmicosin accelerated the abomasal emptying rate, but not significantly, relative to the emptying rate for the control treatment. Administration of erythromycin, tilmicosin, and tylosin at the label dosage increased abomasal emptying rate in calves. The clinical importance of an increase in abomasal emptying rate in cattle remains to be determined.
Relation between gastric emptying rate and energy intake in children compared with adults.
Maes, B D; Ghoos, Y F; Geypens, B J; Hiele, M I; Rutgeerts, P J
1995-01-01
Measurement of gastric emptying rate of solids in children is difficult because the available methods are either invasive or induce a substantial radiation burden. In this study the newly developed 13C octanoic acid breath test was used to examine the gastric emptying rate of solids and milk in healthy children and to compare gastric emptying in children and adults. Fifteen healthy children and three groups of nine healthy adults were studied, using three different test meals labelled with 50 mg of 13C octanoic acid: a low caloric pancake (150 kcal), a high caloric pancake (250 kcal), and 210 ml of milk (134 kcal). Breath samples were taken before and at regular intervals after ingestion of the test meal, and analysed by isotope ratio mass spectrometry. The gastric emptying parameters were derived from the 13CO2 excretion curves by non-linear regression analysis. No significant difference was found between children and adults in the emptying rate of the low caloric solid test meal. In children as well as in adults, increasing the energy content of the solid meal resulted in a significantly slower emptying rate. The milk test meal, however, was emptied at a faster rate in adults and at slower rate in children compared with the low caloric solid test meal. Moreover, the emptying rate of milk in children was significantly slower than in adults. In conclusion, a similar gastric emptying rate of solids but a slower emptying of full cream milk was shown in children of school age compared with adults, using the non-radioactive 13C octanoic acid breath test. PMID:7883214
Gender Difference of Gastric Emptying in Healthy Volunteers and Patients with Functional Dyspepsia.
Mori, Hideki; Suzuki, Hidekazu; Matsuzaki, Juntaro; Taniguchi, Kanami; Shimizu, Toshiyuki; Yamane, Tsuyoshi; Masaoka, Tatsuhiro; Kanai, Takanori
2017-01-01
Delayed gastric emptying is one of the reasons why functional dyspepsia (FD) occurs. The 13C-acetate breath test is widely used to evaluate gastric emptying. Nevertheless, the standard value of 13C-acetate breath test has not taken into account the gender difference of gastric emptying among healthy individuals. The main aim of this study was to readjust the standard value of 13C-acetate breath test in the light of gender differences. In addition, we clarified the prevalence and clinical characteristics of delayed gastric emptying in patients with FD using the modified standard values of 13C-acetate breath test. Fifty-two healthy individuals and 126 patients with patients with FD were enrolled. Gastric emptying was evaluated by the 13C-acetate breath test. The cut-off points of Tmax for the diagnosis of delayed gastric emptying were determined on the basis of results from healthy individuals making a distinction of genders. Gastroesophageal reflux symptoms, dyspeptic symptoms, scores of anxiety and depression, age, body mass index (BMI), smoking and alcohol consumption were compared between the delayed gastric emptying group and the non-delayed gastric emptying group. Since gastric emptying was delayed in healthy women compared with that in healthy men (Tmax, 53.6 ± 19.3 vs. 42.7 ± 16.9 min, p = 0.04), we set the cut-off points of Tmax at 60 min in men and at 75 min in women. In patients with FD, the prevalence of delayed gastric emptying was not different between men and women with the modified standard values of 13C-acetate breath test. (31.0 vs. 27.4%, p = 0.68). BMI was lower in the delayed gastric emptying group than in the non-delayed group among the male patients. Reflux symptoms were more severe in delayed gastric emptying group than in the non-delayed group among the female patients. The standard values of 13C-acetate breath test should be modified bearing the gender difference in mind. It provides us more appropriate information to understand the mechanisms of FD. © 2016 S. Karger AG, Basel.
Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella
2013-01-01
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4+ T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. PMID:23606583
Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella
2013-05-01
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi
2009-05-01
Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.
Hu, Joyce K.; Crampton, Jordan C.; Cupo, Albert; Ketas, Thomas; van Gils, Marit J.; Sliepen, Kwinten; de Taeye, Steven W.; Sok, Devin; Ozorowski, Gabriel; Deresa, Isaiah; Stanfield, Robyn; Ward, Andrew B.; Burton, Dennis R.; Klasse, Per Johan; Sanders, Rogier W.; Moore, John P.
2015-01-01
ABSTRACT Generating neutralizing antibodies (nAbs) is a major goal of many current HIV-1 vaccine efforts. To be of practical value, these nAbs must be both potent and cross-reactive in order to be capable of preventing the transmission of the highly diverse and generally neutralization resistant (Tier-2) HIV-1 strains that are in circulation. The HIV-1 envelope glycoprotein (Env) spike is the only target for nAbs. To explore whether Tier-2 nAbs can be induced by Env proteins, we immunized conventional mice with soluble BG505 SOSIP.664 trimers that mimic the native Env spike. Here, we report that it is extremely difficult for murine B cells to recognize the Env epitopes necessary for inducing Tier-2 nAbs. Thus, while trimer-immunized mice raised Env-binding IgG Abs and had high-quality T follicular helper (Tfh) cell and germinal center (GC) responses, they did not make BG505.T332N nAbs. Epitope mapping studies showed that Ab responses in mice were specific to areas near the base of the soluble trimer. These areas are not well shielded by glycans and likely are occluded on virions, which is consistent with the lack of BG505.T332N nAbs. These data inform immunogen design and suggest that it is useful to obscure nonneutralizing epitopes presented on the base of soluble Env trimers and that the glycan shield of well-formed HIV Env trimers is virtually impenetrable for murine B cell receptors (BCRs). IMPORTANCE Human HIV vaccine efficacy trials have not generated meaningful neutralizing antibodies to circulating HIV strains. One possible hindrance has been the lack of immunogens that properly mimic the native conformation of the HIV envelope trimer protein. Here, we tested the first generation of soluble, native-like envelope trimer immunogens in a conventional mouse model. We attempted to generate neutralizing antibodies to neutralization-resistant circulating HIV strains. Various vaccine strategies failed to induce neutralizing antibodies to a neutralization-resistant HIV strain. Further analysis revealed that mouse antibodies targeted areas near the bottom of the soluble envelope trimers. These areas are not easily accessible on the HIV virion due to occlusion by the viral membrane and may have resulted from an absence of glycan shielding. Our results suggest that obscuring the bottom of soluble envelope trimers is a useful strategy to reduce antibody responses to epitopes that are not useful for virus neutralization. PMID:26246566
Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei
2018-02-26
Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.
Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M
2013-01-01
Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. © 2013 John Wiley & Sons A/S.
Advances in the study of transmissible respiratory tumours in small ruminants.
Monot, M; Archer, F; Gomes, M; Mornex, J-F; Leroux, C
2015-12-14
Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Tumour Virus are able to promote cell transformation, leading to cancer through their envelope glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma. The implication of a retrovirus related to Jaagsiekte Sheep RetroVirus is still controversial and under investigation, but the identification of an infectious agent associated with the development of lepidic pulmonary adenocarcinomas might help us to understand cancer development. This review explores the mechanisms of induction of respiratory cancers in small ruminants and the possible link between retrovirus and lepidic pulmonary adenocarcinomas in humans. Copyright © 2015. Published by Elsevier B.V.
Joint Processing of Envelope Alignment and Phase Compensation for Isar Imaging
NASA Astrophysics Data System (ADS)
Chen, Tao; Jin, Guanghu; Dong, Zhen
2018-04-01
Range envelope alignment and phase compensation are spilt into two isolated parts in the classical methods of translational motion compensation in Inverse Synthetic Aperture Radar (ISAR) imaging. In classic method of the rotating object imaging, the two reference points of the envelope alignment and the Phase Difference (PD) estimation are probably not the same point, making it difficult to uncouple the coupling term by conducting the correction of Migration Through Resolution Cell (MTRC). In this paper, an improved approach of joint processing which chooses certain scattering point as the sole reference point is proposed to perform with utilizing the Prominent Point Processing (PPP) method. With this end in view, we firstly get the initial image using classical methods from which a certain scattering point can be chose. The envelope alignment and phase compensation using the selected scattering point as the same reference point are subsequently conducted. The keystone transform is thus smoothly applied to further improve imaging quality. Both simulation experiments and real data processing are provided to demonstrate the performance of the proposed method compared with classical method.
The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, Peter, E-mail: pewild@access.uzh.ch; Institute of Virology, University of Zuerich; Oliveira, Anna Paula de
2012-10-25
Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24more » h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.« less
NASA Astrophysics Data System (ADS)
Hart, Mary Kate; Weinhold, Kent J.; Scearce, Richard M.; Washburn, Eileen M.; Clark, Cynthia A.; Palker, Thomas J.; Haynes, Barton F.
1991-11-01
The generation of antiviral cytotoxic T lymphocytes (CTLs) is a critical component of the immune response to viral infections. A safe and nontoxic vaccine for AIDS would optimally use a carrier-free synthetic peptide immunogen containing only components of HIV necessary for induction of protective immune responses. We report that hybrid synthetic peptides containing either a HIV envelope gp120 T-cell determinant (T1) or the envelope gp41 fusion domain (F) N-terminal to HIV CTL determinants are capable of priming murine CD8^+, major histocompatibility complex class I-restricted anti-HIV CTLs in vivo. These data demonstrate that carrier-free, nonderivatized synthetic peptides can be used in vivo to induce anti-HIV CTL responses.
Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.
Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M
1989-08-01
In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.
Uchida, Masayuki; Kobayashi, Orie; Shimizu, Kimiko
2017-01-01
Background This study aimed to evaluate the effects of the position of an acetic acid-induced gastric ulcer and the effects of prokinetic drugs on gastric emptying. Materials and Methods Male Sprague-Dawley rats were used in this study. Acetic acid ulcers were induced either in the region between the fundus and pylorus on the anterior wall of the stomach or in the glandular region on the greater curvature of the stomach to determine whether there were regional differences in the effect of the ulcers. Gastric emptying was evaluated with a breath test using [1- 13 C] acetic acid. In addition, the effects of the prokinetic drugs, metoclopramide and mosapride, on gastric emptying were also evaluated. Results Acetic acid induced ulcers in the region between the fundus and pylorus on the anterior wall of the stomach significantly delayed gastric emptying as compared with control rats, but not the acetic acid induced ulcers in the glandular region on the greater curvature of the stomach. Metoclopramide and mosapride did not improve the delayed gastric emptying even at doses that enhanced gastric emptying in normal rats. Conclusion These findings show that gastric emptying is influenced by the position of the ulcer and the region between the fundus and pylorus on the anterior wall plays an important role in gastric emptying. Moreover, it was found that metoclopramide and mosapride do not improve the delayed gastric emptying caused by acetic acid ulcers induced on the anterior wall in the region between the fundus and pylorus.
Uchida, Masayuki; Kobayashi, Orie; Shimizu, Kimiko
2017-01-01
Abstract Background This study aimed to evaluate the effects of the position of an acetic acid-induced gastric ulcer and the effects of prokinetic drugs on gastric emptying. Materials and Methods Male Sprague-Dawley rats were used in this study. Acetic acid ulcers were induced either in the region between the fundus and pylorus on the anterior wall of the stomach or in the glandular region on the greater curvature of the stomach to determine whether there were regional differences in the effect of the ulcers. Gastric emptying was evaluated with a breath test using [1-13C] acetic acid. In addition, the effects of the prokinetic drugs, metoclopramide and mosapride, on gastric emptying were also evaluated. Results Acetic acid induced ulcers in the region between the fundus and pylorus on the anterior wall of the stomach significantly delayed gastric emptying as compared with control rats, but not the acetic acid induced ulcers in the glandular region on the greater curvature of the stomach. Metoclopramide and mosapride did not improve the delayed gastric emptying even at doses that enhanced gastric emptying in normal rats. Conclusion These findings show that gastric emptying is influenced by the position of the ulcer and the region between the fundus and pylorus on the anterior wall plays an important role in gastric emptying. Moreover, it was found that metoclopramide and mosapride do not improve the delayed gastric emptying caused by acetic acid ulcers induced on the anterior wall in the region between the fundus and pylorus. PMID:28652516