Overexpression of SASH1 related to the decreased invasion ability of human glioma U251 cells.
Yang, Liu; Liu, Mei; Gu, Zhikai; Chen, Jianguo; Yan, Yaohua; Li, Jian
2012-12-01
The purpose of this study was to investigate the impact of SAM- and SH3-domain containing 1 (SASH1) on the biological behavior of glioma cells, including its effects on cellular growth, proliferation, apoptosis, invasion, and metastasis, and thereby to provide an experimental basis for future therapeutic treatments. A pcDNA3.1-SASH1 eukaryotic expression vector was constructed and transfected into the U251 human glioma cell line. Using the tetrazolium-based colorimetric (MTT) assay, flow cytometry analyses, transwell invasion chamber experiments, and other methods, we examined the impact of SASH1 on the biological behaviors of U251 cells, including effects on viability, cell cycle, apoptosis, and invasion. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-2, MMP-9, and other proteins was observed. Compared to the empty vector and blank control groups, the pcDNA3.1-SASH1 group of U251 cells exhibited significantly reduced cell viability, proliferation, and invasion (p < 0.05), although there was no difference between the empty vector and blank control groups. The pcDNA3.1-SASH1 group demonstrated a significantly higher apoptotic index than did the empty vector and blank control groups (p < 0.05), and the percentage of apoptotic cells was similar between the empty vector and blank control groups. In addition, the pcDNA3.1-SASH1 group expressed significantly lower protein levels of cyclin D1 and MMP-2/9 compared to the control and empty vector groups (p < 0.05) and significantly higher protein levels of caspase-3 than the other two groups (p < 0.05). Cyclin D1, caspase-3, and MMP-2/9 expression was unchanged between the empty vector and blank control groups. SASH1 gene expression might be related to the inhibition of the growth, proliferation, and invasion of U251 cells and the promotion of U251 cells apoptosis.
Monahan, Paul E; Sun, Junjiang; Gui, Tong; Hu, Genlin; Hannah, William B; Wichlan, David G; Wu, Zhijian; Grieger, Joshua C; Li, Chengwen; Suwanmanee, Thipparat; Stafford, Darrel W; Booth, Carmen J; Samulski, Jade J; Kafri, Tal; McPhee, Scott W J; Samulski, R Jude
2015-02-01
Vector capsid dose-dependent inflammation of transduced liver has limited the ability of adeno-associated virus (AAV) factor IX (FIX) gene therapy vectors to reliably convert severe to mild hemophilia B in human clinical trials. These trials also identified the need to understand AAV neutralizing antibodies and empty AAV capsids regarding their impact on clinical success. To address these safety concerns, we have used a scalable manufacturing process to produce GMP-grade AAV8 expressing the FIXR338L gain-of-function variant with minimal (<10%) empty capsid and have performed comprehensive dose-response, biodistribution, and safety evaluations in clinically relevant hemophilia models. The scAAV8.FIXR338L vector produced greater than 6-fold increased FIX specific activity compared with wild-type FIX and demonstrated linear dose responses from doses that produced 2-500% FIX activity, associated with dose-dependent hemostasis in a tail transection bleeding challenge. More importantly, using a bleeding model that closely mimics the clinical morbidity of hemophilic arthropathy, mice that received the scAAV8.FIXR338L vector developed minimal histopathological findings of synovitis after hemarthrosis, when compared with mice that received identical doses of wild-type FIX vector. Hemostatically normal mice (n=20) and hemophilic mice (n=88) developed no FIX antibodies after peripheral intravenous vector delivery. No CD8(+) T cell liver infiltrates were observed, despite the marked tropism of scAAV8.FIXR338L for the liver in a comprehensive biodistribution evaluation (n=60 animals). With respect to the role of empty capsids, we demonstrated that in vivo FIXR338L expression was not influenced by the presence of empty AAV particles, either in the presence or absence of various titers of AAV8-neutralizing antibodies. Necropsy of FIX(-/-) mice 8-10 months after vector delivery revealed no microvascular or macrovascular thrombosis in mice expressing FIXR338L (plasma FIX activity, 100-500%). These preclinical studies demonstrate a safety:efficacy profile supporting an ongoing phase 1/2 human clinical trial of the scAAV8.FIXR338L vector (designated BAX335).
SASH1 regulates proliferation, apoptosis, and invasion of osteosarcoma cell.
Meng, Qingbing; Zheng, Minqian; Liu, Hongbing; Song, Changzhi; Zhang, Wensheng; Yan, Juan; Qin, Ling; Liu, Xiaolan
2013-01-01
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. The SASH1 protein possesses both the SH3 and SAM domains, indicating that it may play an important role in intracellular signal transduction. Reduced expression of SASH1 is closely related to tumor growth, invasion, metastasis, and poor prognosis. However, the biological role of SASH1 remains unknown in osteosarcoma. To unravel the function of SASH1, we explored the expression of SASH1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and analyzed the relationship between SASH1 expression and cell cycle, apoptosis and invasion of osteosarcoma MG-63 cells, using the flow cytometry analysis and transwell invasion chamber experiments. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-9 were observed by western blot. Our results showed that the expression rate of SASH1 mRNA in osteosarcoma tissues was significantly lower than that in normal bone tissue (p = 0.000), that the expression rate of SASH1 mRNA in the carcinoma tissues from patients with lung metastasis was significantly lower than that from patients without lung metastasis (p = 0.041), and that the expression rate of SASH1 mRNA also decreased with increasing Enneking stage (p = 0.032). However, the mRNA expression of SASH1 in osteosarcoma was independent of the patient's gender, age, and tumor size (p = 0.983, 0.343, 0.517, respectively). The SASH1 protein displayed a down-regulation in osteosarcoma tissues compared to normal bone tissue (p = 0.000), displayed a down-regulation in osteosarcoma tissues from patients with lung metastasis compared to from patients without lung metastasis (p = 0.000), and displayed a gradual decrease with increasing Enneking stage (p = 0.000). In addition, the MG-63 cells from pcDNA3.1-SASH1 group exhibited significantly reduced cell viability, proliferation, and invasive ability compared to the empty vector group and blank control group (p = 0.023, 0.001, respectively), and there was no difference between the empty vector group and blank control group. The pcDNA3.1-SASH1 group displayed significantly more apoptotic cells than the empty vector group and blank control group (p = 0.004). The expression of cyclin D1, MMP-9 displayed a down-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000, 0.001, respectively) and the expression levels of caspase-3 displayed an up-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000). Taken together, these data indicated that the overexpression of SASH1 might be associated with the inhibition of growth, proliferation, and invasion of MG-63 cells and the promotion of apoptosis of MG-63 cells.
Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin
2008-05-01
Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.
Zhang, YongSheng; Xi, JiFeng; Jia, Bin; Wang, XiangZu; Wang, XuHai; Li, ChaoCheng; Li, YaQiang; Zeng, XianCun; Ying, RuiWen; Li, Xin; Jiang, Song; Yuan, FangYuan
2017-04-01
The objective of this study was to explore a novel method to alter the sex-ratio balance of mouse offspring by silencing the paralogous genes Zfx/Zfy (Zinc finger X/Y-chromosomal transcription factor gene) during spermatogenesis. Four recombined vectors PRZ1, PRZ2, PRZ3, and PRZ4 (RNAi-Ready-pSIREN-RetroQ-ZsGreen) were constructed for interrupting the Zfx gene. Additionally, a recombined vector Psilencer/Zfy-shRNA was constructed for interrupting the Zfy gene. Male mice were randomly divided into 8 groups, with 20 animals per group. Five groups of mice were injected with PRZ1, PRZ2, PRZ3, PRZ4, and Psilencer/Zfy-shRNA vectors, respectively. The three control groups were injected with an equal volume of physiological saline, empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector, and empty Psilencer/Zfy-shRNA vector, respectively. All groups were injected every 7 days for a total of four injections. Fourteen days after the fourth injection, 10 male mice from each group were mated individually with 10 females. Testicular tissue of 10 male mice in each group was collected, and the expression level of Zfx/Zfy mRNA was determined by qRT-PCR. Results showed that, compared with the empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector and the physiological saline group, expression of Zfx mRNA decreased significantly after injection of PRZ1 (p < 0.01), PRZ3 (p < 0.01), and PRZ4 (p < 0.01), and 78.75 ± 7.50% of the offspring were male in PRZ4 group, significantly higher than the offspring derived from the empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector and physiological saline group (p < 0.01). In the PRZ1 group, the expression of Zfx mRNA was also significantly lower (p < 0.01), but the male rate of offspring was not different (p > 0.05). Conversely, the expression of Zfy mRNA decreased significantly after injection of Psilencer/Zfy-shRNA (p < 0.01) and 31.00 ± 11.00% of the offspring were male, significantly lower than in the physiological saline group (p < 0.01). In conclusion, our findings show that RNAi-mediated disruption of Zfx/Zfy in mouse testis affected X/Y spermatogenesis. Additionally, results suggest that the paralogous genes Zfx/Zfy play an important role in the process of X and Y sperm development. The individual interference of Zfx/Zfy may predict the outcome of X and Y haploid sperms. Presented herein is an advanced method developed to control mouse X/Y spermatogenesis and sex ratio of offspring.
Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz
2012-01-01
Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829
Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won
2014-11-01
Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates heterologous expression of large gene clusters for drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.
Song, Chun-Li; Wang, Jin-Peng; Xue, Xin; Liu, Ning; Zhang, Xiao-Hao; Zhao, Zhuo; Liu, Jian-Gen; Zhang, Chun-Peng; Piao, Zhe-Hao; Liu, Yang; Yang, Yi-Bo
2017-01-01
This study aims to investigate the role of circular antisense non-coding RNA at the INK4 locus (cANRIL) in the inflammatory response of vascular endothelial cells (ECs) in a rat model of coronary atherosclerosis (AS). A rat model of AS was established with rats that were injected with a large dose of vitamin D3 and fed a high-fat diet. Sixty Wistar rats were randomly assigned into control, model, empty vector, over-expressed cANRIL and low-expressed cANRIL groups (12 rats in each group). Sixteen weeks later, the ultrastructure of their coronary arteries was observed via transmission electron microscopy. Rat serum lipid levels were analyzed using an automatic biochemical analyzer, and their atherogenic index (AI) values were calculated. Hematoxylin and eosin staining was used to observe the endothelial morphology of rats. Additionally, rat EC apoptosis was tested via a TUNEL assay. Enzyme-linked immunosorbent assays (ELISAs) were applied to measure serum levels of interleukin-1 (IL-1), IL-6, matrix metalloproteinase-9 (MMP-9) and C-reactive protein (CRP). The cANRIL, Bax, bcl-2 and caspase-3 mRNA expression levels were measured with a quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of Bax, bcl-2 and caspase-3 were detected using immunohistochemistry. In the control group, ECs were closely arranged with normal structures, and there was no proliferation. In the model, empty vector and over-expressed cANRIL groups, some cells were not present, and atherosclerotic plaques and thrombi appeared. However, in the under-expressed cANRIL group, the cells had a normal structure. Compared with the model and empty vector groups, the levels of total cholesterol (CHOL), triglycerides (TGs), low density lipoprotein (LDL), IL-1, IL-6, MMP-9, CRP, cANRIL, Bax, and caspase-3, AI values, and rates of EC apoptosis decreased in the low-expressed cANRIL group, while HDL (high density lipoprotein) levels and mRNA and protein expression levels of bcl-2 were increased. The changes in expression levels in the over-expressed cANRIL group were the opposite of those in the low-expressed cANRIL group. Our study provides evidence that reduced cANRIL expression could prevent coronary AS by reducing vascular EC apoptosis and inflammatory factor expression. © 2017 The Author(s). Published by S. Karger AG, Basel.
Selective Gene Regulation by Androgen Receptor in Prostate Cancer
2012-10-01
empty vector, wt AR, AR-E255K and AR- R753Q cells were transfected with an ARE- responsive reporter and renilla as control. Cells were treated with...empty vector (empty), wild-type AR (WT), AR-E255K or AR-R753Q were transfected with ARE-luciferase and renilla . Cells were treated with 0 or 1 nm...R1881, harvested after 24 hrs to read luciferase and renilla actiivity. % G ro w th (D ay 5 / D ay 1 ) Vector WTAR E255KR753Q 600 700 800 900
Liu, Kan; Zhao, Chaofei; Chen, Jianwen; Wu, Shengpan; Yao, Yuanxin; Wu, Chong; Luo, Guoxiong; Zhang, Xu
2016-06-01
Objective To establish selenoprotein P, plasma 1 (SEPP1) gene recombinant lentiviral vector and investigate the effect of SEPP1 on the proliferation of human clear cell renal cell carcinoma (ccRCC) cells. Methods cDNA sequence of SEPP1 was cloned from the total cDNA of HEK293T cells by PCR. Then, the cDNA fragment was combined with the pLV-EGFP(2A)Puro vector and the constructed plasmid pLV-EGFP(2A)Puro-SEPP1 was transfected into HEK293T cells for packaging the virus. Forty-eight hours after transfected with the virus supernatant, the level of SEPP1 protein in 769-P and 786-O cells were tested by Western blotting. Cells were divided into recombinant lentivirus-infected cells, empty vector lentivirus-infected cells and the blank control cells. Cell proliferation rate was detected by MTS assay, colony forming ability was evaluated by plate clony formation assay and cell cycle change was assayed by flow cytometry after transfected with pLV-EGFP(2A)Puro-SEPP1 or empty pLV-EGFP(2A)Puro vector. Results Enzyme digestion analysis and DNA sequencing showed that the recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 was constructed successfully. After being infected by the virus supernatant, the 786-O and 769-P cells expressed EGFP. Compared with the empty vector group and the blank control group, expression level of SEPP1 in the experimental group was much higher. The cell proliferative ability was inhibited in the cells overexpressing SEPP1, and the colony forming ability of SEPP1-overexpressed cells evidently decreased. Cell cycle was arrested in G2/M phase in 786-O cells overexpressing SEPP1. Conclusion The recombinant plasmid pLV-EGFP(2A)Puro-SEPP1 has been constructed successfully. Overexpression of SEPP1 could significantly reduce the proliferation rate of 786-O and 769P cells, and cause G2/M phase arrest of 786-O cells.
[Study of negative feedback between wild-type BRAF or RAFV600E and Mps1 in melanoma].
Zhang, Ling; He, Chanting; Bi, Yanghui; Liu, Feng; Cui, Heyang; Wang, Juan; Song, Bin; Shi, Ruyi; Yang, Bin; Wang, Fang; Jia, Zhiwu; Zhao, Zhenxiang; Liu, Jing
2015-04-01
To study the effect of Mps1 on BRAFWT/MEK/ERK pathway in the presence of wild type BRAF or BRAFV600E in melanoma. Melanoma cells harboring BRAFWT genotype were transfected either with pBabe-puro-GST-BRAF-WT and/or pBabe-puro-GFP-Mps1-WT or pBabe-puro-GST-BRAFV600E and/or pBabe-puro-GFP-Mps1-WT, followed by Western blot to detect Mps1 and p-ERK expression. The melanoma cells harboring BRAFWT and BRAFV600E genotype were infected with pSUPER-Mps1 retrovirus to knockdown the endogenous Mps1 protein, followed by Western blot to detect Mps1 and p-ERK expression. Meanwhile, melanoma cells harboring BRAFV600E genotype were infected with pBabe-puro-GFP-Mps1 and Western blot was performed to detect Mps1 and p-ERK expression. In melanoma cells harboring BRAFWT genotype and transfected with pBabe-puro-GST-BRAF-WT and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels were notably reduced as compared to either negative control or empty vector. However, cells transfected with pBabe-puro-GST-BRAFV600E and pBabe-puro-GFP-Mps1-WT, phospho-ERK levels did not change significantly compared with either negative control or empty vector. Knockout of Mps1 in BRAF wild-type cell lines led to an increased ERK activity. However, there was no significant change of ERK activity in BRAFV600E cell lines in the absence of Mps1. The expression of p-ERK in BRAFV600E mutant cell lines infected with pBabe-puro-GFP-Mps1-WT did not show any significant difference from either negative control or empty vector. Based on these findings, it suggests that there exists an auto-regulatory negative feedback loop between the Mps1 kinase and BRAFWT/ERK signaling. Oncogenic BRAFV600E abrogates the regulatory negative feedback loop of Mps1 on the MAPK pathway.
Hauck, Bernd; Murphy, Samuel L; Smith, Peter H; Qu, Guang; Liu, Xingge; Zelenaia, Olga; Mingozzi, Federico; Sommer, Jürg M; High, Katherine A; Wright, J. Fraser
2008-01-01
In a gene therapy clinical trial for hemophilia B, adeno-associated virus 2 (AAV2) capsid–specific CD8+ T cells were previously implicated in the elimination of vector-transduced hepatocytes, resulting in loss of human factor IX (hFIX) transgene expression. To test the hypothesis that expression of AAV2 cap DNA impurities in the AAV2-hFIX vector was the source of epitopes presented on transduced cells, transcription of cap was assessed by quantitative reverse transcription–PCR (Q-RT-PCR) following transduction of target cells with the vector used in the clinical trial. Transcriptional profiling was also performed for residual AmpR, and adenovirus E2A and E4. Although trace amounts of DNA impurities were present in the clinical vector, transcription of these sequences was not detected after transduction of human hepatocytes, nor in mice administered a dose 26-fold above the highest dose administered in the clinical study. Two methods used to minimize encapsidated DNA impurities in the clinical vector were: (i) a vector (cis) production plasmid with a backbone exceeding the packaging limit of AAV; and (ii) a vector purification step that achieved separation of the vector from vector-related impurities (e.g., empty capsids). In conclusion, residual cap expression was undetectable following transduction with AAV2-hFIX clinical vectors. Preformed capsid protein is implicated as the source of epitopes recognized by CD8+ T cells that eliminated vector-transduced cells in the clinical study. PMID:18941440
Overcoming preexisting humoral immunity to AAV using capsid decoys.
Mingozzi, Federico; Anguela, Xavier M; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J; Hui, Daniel J; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser; High, Katherine A
2013-07-17
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.
Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys
Anguela, Xavier M.; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J.; Hui, Daniel J.; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J.; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M.; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser
2014-01-01
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery. PMID:23863832
HDM2 promotes WIP1-mediated medulloblastoma growth
Buss, Meghan C.; Read, Tracy-Ann; Schniederjan, Matthew J.; Gandhi, Khanjan; Castellino, Robert C.
2012-01-01
Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma. PMID:22379189
Syngeneic AAV pseudo-vectors potentiates full vector transduction
USDA-ARS?s Scientific Manuscript database
An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...
TPD52: A Novel Vaccine Target for Prostate Cancer
2009-09-01
Headquarters Services , Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302...3T3 and 3T3.V (transfected with empty vector) served as negative controls. GAPDH expression served as an internal reference control. B. Western blot... internal reference control. Representative of three separate experiments. Murine TPD52–Induced Metastasis Mol Cancer Res 2007;5(2). February 2007 135 To
[Overexpression of liver kinase B1 inhibits the proliferation of lung cancer cells].
Li, Yang; Zhang, Libin; Wang, Ping
2017-01-01
Objective To explore the effect of overexpressed liver kinase B1(LKB1) on the proliferation of lung cancer cell lines. Methods The expression levels of LKB1 and PTEN in A549, NCI-H23, NCI-H157, XWLC-05, NCI-H446 lung cancer cells were detected by immunocytochemistry (ICC) and Western blotting. Plasmid pcDNA3.1 + -LKB1 and empty vector pcDNA3.1 + -null were separately transfected into the above five cell lines, and then the expression of LKB1 mRNA and protein were determined by quantitative real-time PCR and Western blotting, respectively. Finally, CCK-8 assay was used to analyze the proliferation ability of the transfected cells. Results LKB1 and PTEN were positive in NCI-H23 cells; LKB1 was negative while PTEN was positive in A549 and NCI-H446 cells; both LKB1 and PTEN were negative in NCI-H157 and XWLC-05 cells. Quantitative real-time PCR and Western blotting showed that the expression level of LKB1 significantly increased in the above cell lines transfected with plasmid pcDNA3.1 + -LKB1 compared with the ones with empty vector pcDNA3.1 + -null. Besides, CCK-8 assay showed that the overexpression of LKB1 in the lung cancer cells transfected with pcDNA3.1 + -LKB1 had an obvious inhibitory effect on cell proliferation. Conclusion The expression of LKB1 is down-regulated in most of the lung cell lines to different extent and the over-expression of LKB1 can remarkably inhibit the proliferation ability of lung cancer cell lines.
Lukan, Tjaša; Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina
2018-01-01
Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science.
Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina
2018-01-01
Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science. PMID:29300787
Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong
2011-10-01
To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.
Qu, Bo; Sheng, Guan-Nan; Yu, Fei; Chen, Guan-Nan; Lv, Qi; Mao, Zhong-Peng; Guo, Long; Lv, Yi
2016-11-20
To explore the inhibitory effect of migration-inducing gene 7 (Mig-7) gene silencing induced by retroviral-mediated small hairpin RNA (shRNA) on vasculogenic mimicry (VM), invasion and metastasis of human hepatocellular carcinoma (HCC) cells in vitro. Two target sequences (Mig-7 shRNA-1 and Mig-7 shRNA-2) and one negative control sequence (Mig-7 shRNA-N) were synthesized. The recombinant retroviral vectors carrying Mig-7 shRNA were constructed, and HCC cell line MHCC-97H were transfected with Mig-7 shRNA-1, Mig-7 shRNA-2, Mig-7 shRNA-N, or the empty vector, or treated with 125 µg/mL recombinant human endostatin (ES). Mig-7 expression in the treated cells was detected using semi-quantitative PCR and Western blotting. The inhibitory effect of Mig-7 silencing on VM formation was investigated in a 3-dimensional cell culture system; the changes in cell adhesion, invasion and migration were assessed with intercellular adhesion assay, Transwell invasion assay and Transwell migration assay, respectively. The expression of Mig-7 at both mRNA and protein levels decreased significantly, VM formation, invasion and metastasis were suppressed, while intercellular adhesion increased significantly in MHCC-97H cells in Mig-7 shRNA-1 and Mig-7 shRNA-2 groups (P<0.05); such changes were not observed in cells transfected with Mig-7 shRNA-N or the empty vector, nor in cells treated with ES. Mig-7 silencing by retroviral-mediated shRNA significantly inhibits VM formation, invasion and metastasis and increases the intercellular adhesion of the HCC cells, while ES does not have such inhibitory effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Ryan L.; Weber, Thomas J.
2012-05-04
In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediatedmore » toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.« less
Xie, Linglin; Fu, Qiang; Ortega, Teresa M; Zhou, Lun; Rasmussen, Dane; O'Keefe, Jacy; Zhang, Ke K; Chapes, Stephen K
2014-01-01
Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206(+), CD301(+), CD11c(-)CD206(+) (M2) and CD11c(+)CD206(+) (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.
Esparza-Araiza, Mayra J.; Bañuelos-Hernández, Bernardo; Argüello-Astorga, Gerardo R.; Lara-Ávila, José P.; Goodwin, Paul H.; Isordia-Jasso, María I.; Castillo-Collazo, Rosalba; Rougon-Cardoso, Alejandra; Alpuche-Solís, Ángel G.
2015-01-01
Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianum. Previous research showed up-regulation of a SUMO E2 conjugating enzyme (SCEI) transcript in S. peruvianum compared to S. lycopersicum following infection with Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of SCEI from S. peruvianum was cloned into a novel virus-induced gene-silencing (VIGS) vector based on the geminivirus, Tomato Mottle Virus (ToMoV). Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, resulting in leaf bleaching. VIGS with the ToMoV_SCEI construct resulted in ~61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. The SCEI-silenced plants showed unilateral wilting (15 dpi) and subsequent death (20 dpi) of the entire plant after Cmm inoculation, whereas the empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. The SCEI-silenced plants showed higher Cmm colonization and an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of transcription factors, leading to expression of proteins involved in salicylic acid-dependent defense responses. PMID:26734014
Lock, Martin; Alvira, Mauricio R.
2012-01-01
Abstract Advances in adeno-associated virus (AAV)-mediated gene therapy have brought the possibility of commercial manufacturing of AAV vectors one step closer. To realize this prospect, a parallel effort with the goal of ever-increasing sophistication for AAV vector production technology and supporting assays will be required. Among the important release assays for a clinical gene therapy product, those monitoring potentially hazardous contaminants are most critical for patient safety. A prominent contaminant in many AAV vector preparations is vector particles lacking a genome, which can substantially increase the dose of AAV capsid proteins and lead to possible unwanted immunological consequences. Current methods to determine empty particle content suffer from inconsistency, are adversely affected by contaminants, or are not applicable to all serotypes. Here we describe the development of an ion-exchange chromatography-based assay that permits the rapid separation and relative quantification of AAV8 empty and full vector particles through the application of shallow gradients and a strong anion-exchange monolith chromatography medium. PMID:22428980
Syngeneic AAV pseudo-particles potentiate gene transduction of AAV vectors
USDA-ARS?s Scientific Manuscript database
Gene delivery vectors based on adeno-associated virus (AAV) have emerged as safe and efficient therapeutic platform for numerous diseases. Excessive empty particles were generated as impurities during AAV vector production, but their effects on clinical outcome of AAV gene therapy are unclear. Here,...
Zhou, Jingxiang; Xue, Jiangdong; Wang, Qiuju; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming
2014-06-01
In order to construct the recombinant plasmid of pIRES-ORF81, the nucleic acid isolated from Koi herpes virus-CJ (KHV-CJ) strains was used as a template to insert the ORF81 gene fragments amplified by PCR into the pIRES-neo, a kind of eukaryotic expression vector. Using Western blotting analysis, it was verified that ORF81 gene protein can be expressed correctly by pIRES-ORF81, after MFC cells were transfected. The recombinant plasmid pIRES-ORF81 was set into three immunization dose gradients: 1, 10, and 50 μg/carp. Empty plasmid group, PBS group, and blank control group were set simultaneously. Giving intramuscular injections to healthy carps with an average body mass of 246 ± 20 g, indirect ELISA was used to regularly determine antibody levels after three times immunization injection. Neutralizing antibodies were detected by neutralization assay. The results of inoculation tests showed that the pIRES-ORF81 recombinant plasmid can induce the production of carp-specific antibodies. The differences of immune effect between the three different doses of immune gradients were not significant (P > 0.05), but they can induce the production of neutralizing antibodies. After 25 d of inoculation, carp mortality of pIRES-neo empty vector treatment groups was 85%, while the carp mortality of eukaryotic expression recombinant plasmid pIRES-ORF81 injected with three different doses of immune gradients was 20, 17.5, and 12.5%, respectively. Differences in comparison to the control group were highly significant (P < 0.01). However, histopathological section of immunohistochemistry organization revealed no significant changes. It demonstrated that the DNA vaccine pIRES-ORF81 constructed in the experiment displayed a good protective effect against KHV, which had the potential to industrial applications.
Rossi, Lorenzo; Borghi, Monica; Yang, Jinfen; Xie, De-Yu
2017-08-01
Isoprene (2-methyl-1,3-butadiene) is a hemiterpene molecule. It has been estimated that the plant kingdom emits 500-750 million tons of isoprene in the environment, half of which results from tropical broadleaf trees and the remainder from shrubs. Camelina (Camelina sativa (L.) Crantz) is an emerging bioenergy plant for biodiesel. In this study, we characterized isoprene formation following a diurnal/nocturnal cycle in wild-type Camelina plants. To understand the potential effects of isoprene emission on this herbaceous plant, a gray poplar Populus×canescens isoprene synthase gene (PcISPS) was overexpressed in Camelina. Transgenic plants showed increased isoprene production, and the emissions were characterized by a diurnal/nocturnal cycle. Measurements of the expression of six genes of the plastidial 2-C-methyl-d-erythriol-4-phosphate (MEP) pathway revealed that the expression patterns of three key genes were associated with isoprene formation dynamics in the three genotypic plants. Conversely, dissimilar gene expression levels existed in different genotypes, indicating that dynamics and variations occurred among plants. Moreover, transgenic plants grew shorter and developed smaller leaves than the wild-type and empty vector control transgenic plants. Photosynthetic analysis showed that the CO 2 assimilation rate, intracellular CO 2 concentration, mesophyll conductance and contents of chlorophylls a and b were similar among PcISPS transgenic, empty-vector control transgenic, and wild-type plants, indicating that the transgene did not negatively affect photosynthesis. Based on these results, we suggest that the reduced biomass was likely a trade-off consequence of the increased isoprene emission. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zhao, Yue; Ruan, Xiangyan; Wang, Husheng; Li, Xue; Gu, Muqing; Wang, Lijuan; Li, Yanglu; Seeger, Harald; Mueck, Alfred O
2017-08-01
During menopausal hormone therapy (MHT) a possible increase in breast cancer risk is thought to depend mainly on the progestogen component. In vitro studies have shown that the progesterone receptor membrane component 1 (PGRMC1) is important for tumor proliferation induced by progestogens. The primary aim of this study was to compare for the first time the natural progestogen, progesterone (P), with a synthetic progestogen, norethisterone (NET), using a xenograft model. MCF7 cells, transfected with PGRMC1 plasmid or empty vector, were injected into nude mice and estradiol (E2) pellets were implanted. After 12days, NET or P or placebo pellets were implanted. Tumor volumes in all groups (6 mice/group) were monitored for 6-7 weeks. Immunohistochemical expression of PGRMC1 and KI-67 was assessed. These experiments were repeated using T47D cells. Compared with the control condition, E2 and sequential E2/NET combination increased xenograft tumor growth with MCF7 and T47D cells that transgenically expressed PGRMC1 (p<0.01); progesterone did not increase growth. Breast cancer cells transfected with empty vectors did not respond to either progestogen. Comparing KI-67 and PGRMC1 expression, the Pearson correlation was r=0.848, p=0.002. E2 plus NET increases tumor growth in human breast cancer cells overexpressing PGRMC1, but there is no change with progesterone. To our knowledge, this is the first comparison of both progestogens in vivo using nude mice, which are frequently used in xenograft models. Clinical trials are needed to determine whether women with overexpression of PGRMC1 are at increased risk of breast cancer if NET instead of progesterone is used in MHT. Copyright © 2017 Elsevier B.V. All rights reserved.
Collister, John P; Bellrichard, Mitch; Drebes, Donna; Nahey, David; Tian, Jun; Zimmerman, Matthew C
2014-12-02
The brain senses circulating levels of angiotensin II (AngII) via circumventricular organs, such as the subfornical organ (SFO), and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO) have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s) involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2·-) scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·- in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD) or control vector (AdEmpty) were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Rats over-expressing CuZnSOD (n = 7) in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9). These results support the hypothesis that production of O2·- in the MnPO contributes to the development of chronic AngII-dependent hypertension.
PSI:Biology-Materials Repository: A Biologist’s Resource for Protein Expression Plasmids
Cormier, Catherine Y.; Park, Jin G.; Fiacco, Michael; Steel, Jason; Hunter, Preston; Kramer, Jason; Singla, Rajeev; LaBaer, Joshua
2011-01-01
The Protein Structure Initiative:Biology-Materials Repository (PSI:Biology-MR; MR; http://psimr.asu.edu) sequence-verifies, annotates, stores, and distributes the protein expression plasmids and vectors created by the Protein Structure Initiative (PSI). The MR has developed an informatics and sample processing pipeline that manages this process for thousands of samples per month from nearly a dozen PSI centers. DNASU (http://dnasu.asu.edu), a freely searchable database, stores the plasmid annotations, which include the full-length sequence, vector information, and associated publications for over 130,000 plasmids created by our laboratory, by the PSI and other consortia, and by individual laboratories for distribution to researchers worldwide. Each plasmid links to external resources, including the PSI Structural Biology Knowledgebase (http://sbkb.org), which facilitates cross-referencing of a particular plasmid to additional protein annotations and experimental data. To expedite and simplify plasmid requests, the MR uses an expedited material transfer agreement (EP-MTA) network, where researchers from network institutions can order and receive PSI plasmids without institutional delays. Currently over 39,000 protein expression plasmids and 78 empty vectors from the PSI are available upon request from DNASU. Overall, the MR’s repository of expression-ready plasmids, its automated pipeline, and the rapid process for receiving and distributing these plasmids more effectively allows the research community to dissect the biological function of proteins whose structures have been studied by the PSI. PMID:21360289
Zhu, Yu; Lu, Gui-Hua; Bian, Zhuo-Wu; Wu, Feng-Yao; Pang, Yan-Jun; Wang, Xiao-Ming; Yang, Rong-Wu; Tang, Cheng-Yi; Qi, Jin-Liang; Yang, Yong-Hua
2017-11-13
Shikonin is a naphthoquinone secondary metabolite with important medicinal value and is found in Lithospermum erythrorhizon. Considering the limited knowledge on the membrane transport mechanism of shikonin, this study investigated such molecular mechanism. We successfully isolated an ATP-binding cassette protein gene, LeMDR, from L. erythrorhizon. LeMDR is predominantly expressed in L. erythrorhizon roots, where shikonin accumulated. Functional analysis of LeMDR by using the yeast cell expression system revealed that LeMDR is possibly involved in the shikonin efflux transport. The accumulation of shikonin is lower in yeast cells transformed with LeMDR-overexpressing vector than that with empty vector. The transgenic hairy roots of L. erythrorhizon overexpressing LeMDR (MDRO) significantly enhanced shikonin production, whereas the RNA interference of LeMDR (MDRi) displayed a reverse trend. Moreover, the mRNA expression level of LeMDR was up-regulated by treatment with shikonin and shikonin-positive regulators, methyl jasmonate and indole-3-acetic acid. There might be a relationship of mutual regulation between the expression level of LeMDR and shikonin biosynthesis. Our findings demonstrated the important role of LeMDR in transmembrane transport and biosynthesis of shikonin.
Intracellular trehalose via transporter TRET1 as a method to cryoprotect CHO-K1 cells.
Uchida, Tsutomu; Furukawa, Maho; Kikawada, Takahiro; Yamazaki, Kenji; Gohara, Kazutoshi
2017-08-01
Trehalose is a promising natural cryoprotectant, but its cryoprotective effect is limited due to difficulties in transmembrane transport. Thus, expressing the trehalose transporter TRET1 on various mammalian cells may yield more trehalose applications. In this study, we ran comparative cryopreservation experiments between the TRET1-expressing CHO-K1 cells (CHO-TRET1) and the CHO-K1 cells transfected with an empty vector (CHO-vector). The experiments involve freezing under various trehalose concentrations in an extracellular medium. The freeze-thawing viabilities of CHO-TRET1 cells are higher than those of CHO-vector cells for most freezing conditions. This result differs from control experiments with a transmembrane type cryoprotectant, dimethyl sulfoxide (Me 2 SO), which had similar viabilities in each condition for both cell types. We conclude that the trehalose loaded into the cells with TRET1 significantly improves the cryoprotective effect. The higher viabilities occurred when the extracellular trehalose concentration exceeded 200 mM, with 250-500 mM being optimal, and a cooling rate below 30 K/min, with 5-20 K/min being optimal. Copyright © 2017 Elsevier Inc. All rights reserved.
Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma
REN, XIAOYAN; LIU, YIFEI; TAO, YUMEI; ZHU, GUOXIANG; PEI, MEILAN; ZHANG, JIANGUO; LIU, JIAN
2016-01-01
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells. PMID:27123075
Downregulation of SASH1 correlates with tumor progression and poor prognosis in ovarian carcinoma.
Ren, Xiaoyan; Liu, Yifei; Tao, Yumei; Zhu, Guoxiang; Pei, Meilan; Zhang, Jianguo; Liu, Jian
2016-05-01
SAM- and SH3-domain containing 1 (SASH1) is a recently identified tumor suppressor gene that is required in the tumorigenesis of breast and other solid carcinomas. The SASH1 protein contains SH3 and SAM domains, indicating that it may serve an important role in intracellular signal transduction. The purpose of the present study was to investigate the expression of SASH1 in ovarian carcinoma and the correlation between its expression with clinical pathological features and clinical significance, and the effect of SASH1 on cell proliferation, apoptosis and migration of ovarian SKOV3 cells. The human ovarian carcinoma tissues and adjacent normal tissues were collected following surgery. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the expression levels of SASH1 mRNA and protein, respectively. The expression levels of SASH1 mRNA and protein in ovarian carcinoma tissues were significantly lower than that observed in adjacent normal tissues (P<0.05). The expression levels of SASH1 in samples from patients without lymph nodes metastasis and patients with early FIGO stage was lower than those with lymph nodes metastasis and patients with advanced FIGO stage (P<0.05). Flow cytometry analysis and Transwell invasion chamber experiments were used to investigate the effect of SASH1 on the cell proliferation, apoptosis and migration of SKOV3 cells. The recombinant plasmid pcDNA3.1-SASH1 was constructed and transfected into SKOV3 cells. In addition, the SKOV3 cells in the pcDNA3.1-SASH1 group exhibited significantly reduced cell growth, proliferation, and migration ability compared to the empty vector group and normal group (P<0.01). There were a greater number of apoptotic cells in the pcDNA3.1-SASH1 group compared to the empty vector group and normal group (P<0.01). Taken together, these results indicated that SASH1 may be a tumor suppressor gene in ovarian carcinoma, and SASH1 expression inhibited growth, proliferation and migration, and enhanced apoptosis of SKOV3 cells.
Xiang, F; Zhang, D X; Ma, S Y; Huang, Y S
2016-12-20
Objective: To investigate the mechanism of protective effects of tumor necrosis factor receptor associated protein 1 (TRAP1) on hypoxic cardiomyocytes of rats. Methods: Primary cultured cardiomyocytes were obtained from neonatal Sprague-Dawley rats (aged 1 to 3 days) and then used in the following experiments. (1) Cells were divided into group TRAP1 and control group according to the random number table (the same grouping method below), and then the total protein of cells was extracted. Total protein of cells in group TRAP1 was added with mouse anti-rat TRAP1 monoclonal antibody, while that in control group was added with the same type of IgG from mouse. Co-immunoprecipitation and protein mass spectrography analysis were used to determine the possible proteins interacted with TRAP1. (2) Cells were divided into normoxia blank control group (NBC), normoxia+ TRAP1 interference control group (NTIC), normoxia+ TRAP1 interference group (NTI), normoxia+ TRAP1 over-expression control group (NTOC), and normoxia+ TRAP1 over-expression group (NTO), with 1 well in each group. Cells in group NBC were routinely cultured, while cells in the latter four groups were respectively added with TRAP1 RNA interference empty virus vector, TRAP1 RNA interference adenovirus vector, TRAP1 over-expression empty virus vector, and TRAP1 over-expression adenovirus vector. Another batch of cells were divided into group NBC, hypoxic blank control group (HBC), hypoxic+ TRAP1 interference control group (HTIC), hypoxic+ TRAP1 interference group (HTI), hypoxic+ TRAP1 over-expression control group (HTOC), and hypoxic+ TRAP1 over-expression group (HTO), with 1 well in each group. Cells in hypoxic groups were under hypoxic condition for 6 hours after being treated as those in the corresponding normoxia groups, respectively. The mRNA expression of cytochrome c oxidase subunit Ⅱ (COXⅡ) of cells in each group was detected by real time fluorescent quantitive reverse transcription polymerase chain reaction. Experiments were repeated for three times. (3) Cells were divided into group NBC, group HBC, group HTOC, group HTO, hypoxic+ TRAP1 over-expression+ COXⅡinterference control group (HTOCIC), and hypoxic+ TRAP1 over-expression+ COXⅡinterference group (HTOCI), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTOCIC and HTOCI were respectively transfected with COXⅡ RNA interference empty virus vector and COXⅡ RNA interference adenovirus vector, and then both added with TRAP1 over-expression adenovirus vector. The proliferation activity of cells was determined by cell counting kit 8 and microplate reader, and the ratio of death cells was measured by propidium lodide and Hoechst 33342 staining. Another batch of cells were divided into group NBC, group HBC, group HTIC, group HTI, hypoxic+ TRAP1 interference+ COXⅡover-expression control group (HTICOC), and hypoxic+ TRAP1 interference+ COXⅡ over-expression group (HTICO), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTICOC and HTICO were both transfected with TRAP1 RNA interference adenovirus vector, and then respectively added with COXⅡ over-expression empty virus vector and COXⅡ over-expression adenovirus vector. The proliferation activity of cells and the ratio of death cells were detected as before. Experiments were repeated for three times. Data were processed with one-way analysis of variance and LSD test. Results: (1) The expression of TRAP1 was found in cells of group TRAP1, while that was not found in cells of control group. The possible proteins interacted with TRAP1 were keratin, COXⅡ, and an unknown protein with predicted molecular weight 13×10 3 . (2) Compared with that in group NBC, the mRNA expression of COXⅡof cells had no significant change in group NTIC and group NTOC (with P values above 0.05), but significantly decreased in group NTI ( P <0.01), and significantly increased in group NTO ( P <0.01). Compared with that in group NBC, the mRNA expression of COXⅡof cells in group HBC was significantly decreased ( P <0.01). Compared with that in group HBC, the mRNA expression of COXⅡof cells had no significant change in group HTIC and group HTOC (with P values above 0.05), but significantly decreased in group HTI ( P <0.01), and significantly increased in group HTO ( P <0.01). (3) The proliferation activity of cells in group NBC, group HBC, group HTOC, group HTO, group HTOCIC, and group HTOCI was respectively 0.498±0.022, 0.303±0.018, 0.313±0.032, 0.456±0.031, 0.448±0.034, and 0.335±0.026, and the ratios of death cells in above groups were respectively (4.7±1.5)%, (24.7±3.1)%, (26.0±2.7)%, (13.3±2.5)%, (12.7±2.1)%, and (21.0±1.7)%. Compared with those in group NBC, the proliferation activity of cells in HBC was decreased, while the ratio of death cells was increased (with P values below 0.01). Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was decreased in group HTO (with P values below 0.01). Compared with those in group HTO, the proliferation activity of cells and the ratio of death cells in group HTOCIC had no significant change (with P values above 0.05), while the proliferation activity of cells was decreased and the ratio of death cells was increased in group HTOCI (with P values below 0.01). (4) The proliferation activity of cells in group NBC, group HBC, group HTIC, group HTI, group HTICOC, and group HTICO was respectively 0.444±0.025, 0.275±0.016, 0.283±0.021, 0.150±0.009, 0.135±0.011, and 0.237±0.017, and the ratios of death cells in above groups were respectively (3.7±0.6)%, (21.0±2.7)%, (20.3±3.1)%, (31.7±2.5)%, (33.3±3.2)%, and (19.3±1.5)%. Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTIC had no significant change (with P values above 0.05). Compared with those in group HBC and group HTIC, the proliferation activity of cells was decreased and the ratio of death cells was significantly increased in group HTI (with P values below 0.01). Compared with those in group HTI, the proliferation activity of cells and the ratio of death cells in group HTICOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was significantly decreased in group HTICO (with P values below 0.01). Conclusions: TRAP1 can up-regulate the expression of COXⅡ mRNA, and COXⅡ is one of the downstream effector molecules that TRAP1 mediates its protective effects on hypoxic cardiomyocytes.
Xu, Li; Ye, Rongjian; Zheng, Yusheng; Wang, Zhekui; Zhou, Peng; Lin, Yongjun; Li, Dongdong
2010-09-01
As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.
Liao, Yang-Wen-Ke; Liu, Ya-Ru; Liang, Jia-Yang; Wang, Wen-Ping; Zhou, Jie; Xia, Xiao-Jian; Zhou, Yan-Hong; Yu, Jing-Quan; Shi, Kai
2015-03-01
Salicylic acid (SA) plays a critical role in plant defense against pathogen attack. The SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense, which is pathogenesis-related protein-independent but involves an RNA-dependent RNA polymerase 1 (RDR1)-mediated RNA silencing mechanism and/or an alternative oxidase (AOX)-associated defense pathway. However, the relationship between these two viral defense-related pathways remains unclear. In this study, Tobacco mosaic virus (TMV) inoculation onto Solanum lycopersicum (tomato) leaves induced a rapid induction of the SlAOX1a transcript level as well as the total and CN-resistant respiration at 0.5 dpi, followed by an increase in SlRDR1 gene expression at 1 dpi in the upper uninoculated leaves. Silencing SlRDR1 using virus-induced gene silencing system significantly reduced SlRDR1 expression and tomato defense against TMV but had no evident effect on SlAOX1a transcription. Conversely, silencing SlAOX1a not only effectively reduced the AOX1a transcript level, but also blocked the TMV-induced SlRDR1 expression and decreased the basal defense against TMV. Furthermore, the application of an exogenous AOX activator on empty vector-silenced control plants greatly induced the accumulation of SlRDR1 and SlAOX1a transcript and reduced TMV viral RNA accumulation, but failed to have such effects on SlRDR1-silenced plants. Moreover, RDR1-overexpressed transgenic Nicotiana benthamiana plants enhanced defense against TMV than the empty vector-transformed plants, but these effects were not affected by the exogenous AOX activator or inhibitor. These results indicate that RDR1 is involved in the AOX-mediated defense pathway against TMV infection and plays a crucial role in enhancing RNA silencing to limit virus systemic spread.
Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M
2006-12-08
Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.
Single dose of an adenovirus vectored mouse interferon-α protects mice from lethal EV71 challenge.
Sun, Jialei; Ennis, Jane; Turner, Jeffrey D; Chu, Justin Jang Hann
2016-10-01
Enterovirus 71 (EV71) causes hand-foot-and-mouth diseases as well as neurological complications in young children. Interferon (IFN) can inhibit the replication of many viruses with low cytotoxic effects. Previously, an adenovirus vectored mouse interferon-α (DEF201), subtype 5, was generated by Wu et al, 2007. In this study, the antiviral effects of DEF201 against EV71 were evaluated in a murine model. 6-day-old BALB/c mice were administered a single dose of DEF201 before or after infection with lethal dose of EV71. The survival rate, clinical symptoms, tissue viral loads and histology pathogenesis were evaluated. IFN gene expression following a single dose of DEF201 maintained high concentrations of 100-9000 pg/mL for more than 7 days in mice serum. Pre-infection administration of a single dose of 10 6 PFU of DEF201 offered full protection of the mice against EV71 infection compared with the empty Ad5 vector control. In addition, virus load in DEF201-treated mice muscle tissue was significantly decreased as compared with empty vector control. Histopathology analysis revealed that DEF201 significantly prevented the development of severe tissue damage with reduction of viral antigen in the murine muscle tissue. Post-infection treatment at 6 h offered full protection and partial protection at 12 h, indicating that DEF201 could be used as an anti-EV71 therapeutic agent in early stage of EV71 infection. In addition, our study showed that DEF201 enhanced the neutralization ability of serum in EV71-vaccinated mice, implying that DEF201 could promote the production of specific anti-EV71 antibodies. In conclusion, single dose of DEF201 is highly efficacious as a prophylactic agent against EV71 infection in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Hao, Guiliang; Wang, Libin; Chen, Dongmei; Liang, Xueyun; Wang, Qiong; Zhu, Yongzhao; Ma, Xiaona; Liu, Xiaoming; Li, Yukui
2015-05-01
To compare the immunosuppressive effects of maternal and fetal placental mesenchymal stem cells (mPMSCs and fPMSCs, respectively) on the rejection of allogenic skin transplants in mice, and further to investigate the mechanism underlying this suppression. The mPMSCs and fPMSCs were isolated from human term placentas. The expressions of cell surface markers were detected by flow cytometry. Cell proliferation capacity was characterized by MTT colorimetric assay. CD200 protein expressed on fPMSCs was neutralized with streaming monoclonal antibodies, and mPMSCs were infected with adenovirus expression vector carrying CD200 cDNA. For skin transplantation, 60 C57BL/6 mice were randomly divided into 6 groups as skin transplant recipients, and ICR mice served as skin donors. After establishment of the allogenic skin transplants, recipient mice of the 6 groups were intravenous injected respectively with PBS, mPMSCs, fPMSCs, fPMSCs combined with anti-CD200 antibodies, mPMSCs with CD200 expressing vectors, and mPMSCs with empty vectors. The conditions and survival time of the skin grafts were inspected daily, and the expressions of interleukin 17 (IL-17), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α) and interleukin 12 (IL-12) in blood and spleen were measured at the end of the study by ELISA and reverse transcription PCR. The majority (>70%) of fPMSCs were detected CD200 positive, while only a minor fraction (about 2%) of CD-200 positive cells were seen in mPMSCs. In the allogenic skin graft mice, the graft survival time in both mPMSCs- and fPMSCs-treated groups were significantly longer than that in PBS group [(5.6±1.17) days], while the fPMSCs group [(10.6±1.43) days] was more dominant than mPMSCs group [(7.7±1.42) days]. Neutralizing anti-CD200 antibody reduced the graft survival [(8.2±1.14) days] of the fPMSCs group to the level of that in mPMSCs group, while enforced expression of CD200 increased the graft survival [(10.7±1.34) days] of the mPMSCs group to the level of the fPMSCs group. The empty vector-transfected mPMSCs showed a similar effect on graft survival [(7.8±1.32) days] as that in mPMSCs group, longer than PBS group but shorter than fPMSCs and mPMSCs combined with CD200 groups. Comparing with PBS group, the expressions of IL-17, IFN-γ and TNF-α were significantly reduced in mPMSCs and fPMSCs groups. The reduction of these cytokine expressions in the fPMSCs group was neutralized when anti-CD200 antibody was applied, while this reduction in the mPMSCs-treated mice was further enhanced when the mPMSCs were enforced to express CD200. The immunosuppressive effect of fPMSCs on the rejection of allogenic skin transplantation was higher than that of mPMSCs, and this difference was partially contributed by CD200 signaling pathway. The mechanism of this suppression may mediate the inhibition of IL-17, IFN-γ, TNF-α and IL-12 expressions. The fPMSCs may be a suitable choice for immunosuppression on skin transplantation.
Padmanabha, H; Soto, E; Mosquera, M; Lord, C C; Lounibos, L P
2010-08-01
Understanding linkages between household behavior and Aedes aegypti (L.) larval ecology is essential for community-based dengue mitigation. Here we associate water storage behaviors with the rate of A. aegypti pupal production in three dengue-endemic Colombian cities with different mean temperatures. Qualitative, semi-structured interviews and pupal counts were conducted over a 7-15-day period in 235 households containing a water storage vessel infested with larvae. Emptying vessels more often than every 7 days strongly reduced pupal production in all three cities. Emptying every 7-15 days reduced production by a similar magnitude as emptying <7 days in Armenia (21.9 degrees C), has a threefold smaller reduction as compared to <7 days in Bucaramanga (23.9 degrees C), and did not reduce production in Barranquilla (29.0 degrees C). Lidding vessels reduced mosquito production and was most feasible in Barranquilla because of container structure. Vessel emptying strongly correlated with usage in Barranquilla, where many households stored water in case of interruptions in piped service rather than for regular use. In the cooler cities, >90% of households regularly used stored water for washing clothes, generating a weaker correlation between emptying and usage. Emptying was less frequent in the households surveyed in the dry season in all three cities. These results show that A. aegypti production and human behaviors are coupled in a temperature-dependent manner. In addition to biological effects on aquatic stages, climate change may impact A. aegypti production through human behavioral adaptations. Vector control programs should account for geographic variation in temperature and water usage behaviors in designing targeted interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien -Yuan; Jakes, Joseph E.; Donohoe, Bryon S.
Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cellmore » walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. Here, the results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.« less
Lin, Chien -Yuan; Jakes, Joseph E.; Donohoe, Bryon S.; ...
2016-10-21
Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cellmore » walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. Here, the results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.« less
Hamatani, Kiyohiro; Eguchi, Hidetaka; Koyama, Kazuaki; Mukai, Mayumi; Nakachi, Kei; Kusunoki, Yoichiro
2014-11-01
During analysis of RET/PTC rearrangements in papillary thyroid cancer (PTC) among atomic bomb survivors, a cDNA fragment of a novel type of RET rearrangement was identified in a PTC patient exposed to a high radiation dose using the improved 5' RACE method. This gene resulted from the fusion of the 3' portion of RET containing tyrosine kinase domain to the 5' portion of the acyl-coenzyme A binding domain containing 5 (ACBD5) gene, by pericentric inversion inv(10)(p12.1;q11.2); expression of the fusion gene was confirmed by RT-PCR. ACBD5 gene is ubiquitously expressed in various human normal tissues including thyroid. Full-length cDNA of the ACBD5-RET gene was constructed and then examined for tumorigenicity. Enhanced phosphorylation of ERK proteins in the MAPK pathway was observed in NIH3T3 cells transfected with expression vector encoding the full-length ACBD5/RET cDNA, while this was not observed in the cells transfected with empty expression vector. Stable NIH3T3 transfectants with ACBD5-RET cDNA induced tumor formation after their injection into nude mice. These findings suggest that the ACBD5-RET rearrangement is causatively involved in the development of PTC.
Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoudis, Alain; Delvin, Edgard; Canadian Institute of Health Research, Group of the Functional Development and Physiopathology of the Digestive Tract, and Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
2006-01-06
Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferationmore » and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.« less
Xie, Lining; Moroi, Yoichi; Tsuji, Gaku; Liu, Min; Hayashida, Sayaka; Takahara, Masakazu; Fukagawa, Shuji; Takeuchi, Satoshi; Shan, Baoen; Nakahara, Takeshi; Uchi, Hiroshi; Yokomizo, Takehiko; Furue, Masutaka
2010-12-01
CD10 is a neutral endopeptidase, which cleaves various peptide substrates including substance P. CD10 expression has been detected in peritumoral fibroblasts (Fb) within the invasive area of various cancers such as squamous cell carcinoma (SCC). However, the biological significance of CD10-bearing Fb remains largely unknown. We examined dynamic interactions of Fb with tumorigenic A431 SCC cells or non-tumorigenic HaCaT squamous cells. The SCC and HaCaT cells did not synthesize CD10, while Fb constitutively expressed CD10. When co-cultured, SCC markedly upregulated fibroblastic CD10 expression compared with HaCaT, which was mainly attributable to SCC-derived interleukin-1α (IL-1α). Both SCC and Fb autonomously secreted substance P, which eventually enhanced the invasive capacity of SCC in a matrigel invasion assay by upregulating matrix metalloproteinase (MMP)-1 and MMP-2, but not MMP-9. Transfection of siRNA for CD10 successfully knocked down the CD10 expression in Fb (CD10ND-Fb). In the presence of CD10ND-Fb, substance P levels in supernatants as well as MMP production and the invasive potency of SCC were significantly augmented compared with control scramble RNA-transfected Fb. We also transfected CD10 vector to Fb and found that the matrigel invasive ability of SCC cells was downregulated co-cultured with CD10 vector-transfected Fb rather than empty vector-transfected Fb. In conclusion, the CD10-bearing Fb generated by SCC-derived IL-1 inhibited the invasive capacity of SCC by diminishing the microenvironmental concentration of substance P. © 2010 Japanese Cancer Association.
Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells.
Yasui, Takahiro; Fujita, Keiji; Asai, Kiyofumi; Kohri, Kenjiro
2002-02-01
The association of calcium crystals with renal tubular cells is an important factor during the formation of urinary stones. We previously reported the strong expression of osteopontin (OPN) on renal tubular cells in the stone-forming kidney, suggesting that OPN plays a role in the crystal-cell interaction. In the present study, we examined the biological consequences of inhibiting OPN expression at the translational level on the formation and adhesion of crystals. We synthesized antisense OPN expression vector (pTet-OPNas) using the tetracycline-regulated expression system. The pTet-OPNas was constructed using a mouse OPN cDNA sequence in an inverted (antisense) orientation. Two clones (NRK-52E/ASs) were identified by transfection of pTet-OPNas into NRK-52E cells and they showed a marked reduction of OPN synthesis in the absence of tetracycline. Calcium oxalate (CaOx) crystal suspension was spread homogeneously on top of the NRK-52E cells. After incubation, the association of CaOx crystals and cells was visualized by scanning electron microscopy. Intact NRK-52E cells, NRK-52E cells transfected with empty vector and tetracycline-treated antisense clones (NRK-52E/ASs), under identical conditions, were associated with CaOx crystals. In contrast, the expression of antisense OPN prevented the association of CaOx crystals with NRK-52E cells. Osteopontin plays a crucial role in the adhesion process of CaOx crystals to renal tubular cells in stone formation.
Piras, Bryan A; Drury, Jason E; Morton, Christopher L; Spence, Yunyu; Lockey, Timothy D; Nathwani, Amit C; Davidoff, Andrew M; Meagher, Michael M
2016-01-01
With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development. PMID:27069949
Expression of adhA from different organisms in Clostridium thermocellum.
Zheng, Tianyong; Cui, Jingxuan; Bae, Hye Ri; Lynd, Lee R; Olson, Daniel G
2017-01-01
Clostridium thermocellum is a cellulolytic anaerobic thermophile that is a promising candidate for consolidated bioprocessing of lignocellulosic biomass into biofuels such as ethanol. It was previously shown that expressing Thermoanaerobacterium saccharolyticum adhA in C. thermocellum increases ethanol yield.In this study, we investigated expression of adhA genes from different organisms in Clostridium thermocellum . Based on sequence identity to T. saccharolyticum adhA , we chose adhA genes from 10 other organisms: Clostridium botulinum , Methanocaldococcus bathoardescens , Thermoanaerobacterium ethanolicus , Thermoanaerobacter mathranii , Thermococcus strain AN1, Thermoanaerobacterium thermosaccharolyticum , Caldicellulosiruptor saccharolyticus , Fervidobacterium nodosum , Marinitoga piezophila , and Thermotoga petrophila . All 11 adhA genes (including T. saccharolyticum adhA ) were expressed in C. thermocellum and fermentation end products were analyzed. All 11 adhA genes increased C. thermocellum ethanol yield compared to the empty-vector control. C. botulinum and T. ethanolicus adhA genes generated significantly higher ethanol yield than T. saccharolyticum adhA . Our results indicated that expressing adhA is an effective method of increasing ethanol yield in wild-type C. thermocellum , and that this appears to be a general property of adhA genes.
Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae
2012-01-01
Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH) and fumarase (RoFUM1) were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2) was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1) than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner. PMID:22335940
USDA-ARS?s Scientific Manuscript database
A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) sero-type O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa empty capsids. Swine inoculated with Ad5-O1Man developed an FMDV-specific neutralizing antibody response as compared to animals inoculated wi...
Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas
2016-02-19
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Bagheri, Fatemeh; Safarian, Shahrokh; Eslaminejad, Mohamadreza Baghaban; Sheibani, Nader
2015-12-01
There are a number of reports demonstrating a relationship between the alterations in DFF40 expression and development of some cancers. Here, increased DFF40 expression in T-47D cells in the presence of doxorubicin was envisaged for therapeutic usage. The T-47D cells were transfected with an eukaryotic expression vector encoding the DFF40 cDNA. Following incubation with doxorubicin, propidium iodide (PI) staining was used for cell cycle distribution analysis. The rates of apoptosis were determined by annexin V/PI staining. Apoptosis was also evaluated using the DNA laddering analysis. The viability of DFF40-transfected cells incubated with doxorubicin was significantly decreased compared with control cells. However, there were no substantial changes in the cell cycle distribution of pIRES2-DFF40 cells incubated with doxorubicin compared to control cells. The expression of DFF40, without doxorubicin incubation, had also no significant effect on the cell cycle distribution. There was no DNA laddering in cells transfected with the empty pIRES2 vector when incubated with doxorubicin. In contrast, DNA laddering was observed in DFF40 transfected cells in the presence of doxorubicin after 48 h. Also, the expression of DFF40 and DFF45 was increased in DFF40 transfected cells in the presence of doxorubicin enhancing cell death. Collectively our results indicated that co-treatment of DFF40-transfected cells with doxorubicin can enhance the killing of these tumor cells via apoptosis. Thus, modulation of DFF40 level may be a beneficial strategy for treatment of chemo-resistant cancers.
Liu, Yanhua; Wang, Ruo; Jiang, Jing; Yang, Bingfen; Cao, Zhihong; Cheng, Xiaoxing
2015-10-01
Tuberculosis (TB) is a serious infectious disease that most commonly affects the lungs. Macrophages are among the first line defenders against establishment of Mycobacterium tuberculosis infection in the lungs. In this study, we found that activation and cytokine production in monocyte-derived macrophages (MDM) from patients with active TB was impaired. miR-223 expression was significantly elevated in monocytes and MDM from patients with TB compared with healthy controls. To determine the functional role of miR-223 in macrophages, stable miR-223-expressing and miR-223 antisense-expressing U937 cells were established. Compared with empty vector controls, expression of IL-1β, IL-6, TNF-α and IL-12p40 genes was significantly higher in miR-223 antisense-expressing U937 cells, but lower in miR-223-expressing U937 cells. miR-223 can negatively regulate activation of NF-κB by inhibition of p65 phosphorylation and nuclear translocation. It is concluded that miR-223 can regulate macrophage function by inhibition of cytokine production and NF-κB activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer.
Bi, Lihong; Ma, Feng; Tian, Rui; Zhou, Yanli; Lan, Weiguang; Song, Quanmao; Cheng, Xiankui
2018-02-20
Though LIM-domain protein AJUBA was identified as a putative oncogene, the function and underlying mechanisms of AJUBA in cervical cancer remain largely unknown. Firstly, AJUBA expression was detected via real-time quantitative PCR in patients' samples. Furthermore, Hela and Siha cells were transfected with AJUBA-overexpressing plasmids, and then exposed to cisplatin, the apoptosis was measured by cytometry assay. In addition, the expression of YAP and TAZ was disclosed through western blot assay. Our results revealed that AJUBA expression was significantly higher in the cervical cancer patients resistant to cisplatin treatment compared with cervical cancer patients sensitive to cisplatin treatment. In addition, overall survival time was significantly shorter in the cervical cancer patients with high AJUBA expression compare with those with low AJUBA expression using kaplan-meier analysis. Hela and Siha cells transfected with AJUBA-expressing plasmids exposed to cisplatin treatment had higher survival rate compared with the cells transfected with empty vector control. Mechanistic studies revealed the AJUBA upregulated the downstream targets YAP and TAZ. These results suggest that high AJUBA level enhances cervical cancer cells drug resistance to cisplatin, also associates with decreased patient survival times. Copyright © 2017 Elsevier B.V. All rights reserved.
Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Li, Min; Xu, Ding
2014-03-28
Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathymore » (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.« less
Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene therapy.
Ren, Binhai; O'Brien, Bronwyn A; Byrne, Michelle R; Ch'ng, Edwin; Gatt, Prudence N; Swan, M Anne; Nassif, Najah T; Wei, Ming Q; Gijsbers, Rik; Debyser, Zeger; Simpson, Ann M
2013-01-01
Type 1 diabetes (T1D) results from an autoimmune attack against the insulin-producing β-cells of the pancreas. The present study aimed to reverse T1D by gene therapy. We used a novel surgical technique, which involves isolating the liver from the circulation before the delivery of a lentiviral vector carrying furin-cleavable human insulin (INS-FUR) or empty vector to the livers of diabetic non-obese diabetic mice (NOD). This was compared with the direct injection of the vector into the portal circulation. Mice were monitored for body weight and blood glucose. Intravenous glucose tolerance tests were performed. Expression of insulin and pancreatic transcription factors was determined by the reverse transcriptase-polymerase chain reaction and immunohistochemistry and immunoelectron microscopy was used to localise insulin. Using the novel surgical technique, we achieved long-term transduction (42% efficiency) of hepatocytes, restored normoglycaemia for 150 days (experimental endpoint) and re-established normal glucose tolerance. We showed the expression of β-cell transcription factors, murine insulin, glucagon and somatostatin, and hepatic storage of insulin in granules. The expression of hepatic markers, C/EBP-β, G6PC, AAT and GLUI was down-regulated in INS-FUR-treated livers. Liver function tests remained normal, with no evidence of intrahepatic inflammation or autoimmune destruction of the insulin-secreting liver tissue. By comparison, direct injection of INS-FUR reduced blood glucose levels, and no pancreatic transdifferentiation or normal glucose tolerance was observed. This gene therapy protocol has, for the first time, permanently reversed T1D with normal glucose tolerance in NOD mice and, as such, represents a novel therapeutic strategy for the treatment of T1D. Copyright © 2013 John Wiley & Sons, Ltd.
Novel Function of NIBP in Breast Cancer
2012-05-01
reduced in NIBP knockdown cells (Fig. 8). 7 pRK -Flag-NIBP Isoforms(aa) 960 944 1200 1246 1148 S E A P A c ti v it y ( F o ld...Fig.9. MDA-MB-231 cells were co-transfected by TurboFectin8.0 with empty pRK -Flag vector or various isoforms of NIBP with NF-B-SEAP reporter and...Ser536) pRK -Flag 12060301550 NIBP-mutA 12060301550TNFα (min) Fig.11. MDA-MB-231 cells at 60% confluence in 6-well plates were transfected with empty
The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes.
Yin, Yiran; Tang, Lian; Shi, Lei
2017-03-01
The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells.
Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens
Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.
2014-01-01
Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165
Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens.
Askelson, Tyler E; Campasino, Ashley; Lee, Jason T; Duong, Tri
2014-02-01
Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.
Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.
Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen
2018-01-01
Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty virions may allow us to rationally design effective strategies to prevent elimination of AAV transduced target cells by capsid specific CD8+ T cells.
Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo
Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen
2018-01-01
Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP−/−) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty virions may allow us to rationally design effective strategies to prevent elimination of AAV transduced target cells by capsid specific CD8+ T cells. PMID:29725339
King, Lauren E; Love, Christopher G; Sieber, Oliver M; Faux, Maree C; Burgess, Antony W
2016-03-01
The adenomatous polyposis coli (APC) tumour suppressor gene is mutated in about 80% of colorectal cancers (CRC) Brannon et al. (2014) [1]. APC is a large multifunctional protein that regulates many biological functions including Wnt signalling (through the regulation of beta-catenin stability) Reya and Clevers (2005) [2], cell migration Kroboth et al. (2007), Sansom et al. (2004) [3], [4], mitosis Kaplan et al. (2001) [5], cell adhesion Faux et al. (2004), Carothers et al. (2001) [6], [7] and differentiation Sansom et al. (2004) [4]. Although the role of APC in CRC is often described as the deregulation of Wnt signalling, its other biological functions suggest that there are other factors at play that contribute to the onset of adenomas and the progression of CRC upon the truncation of APC. To identify genes and pathways that are dysregulated as a consequence of loss of function of APC, we compared the gene expression profiles of the APC mutated human CRC cell line SW480 following reintroduction of wild-type APC (SW480 + APC) or empty control vector (SW480 + vector control) Faux et al. (2004) . Here we describe the RNA-seq data derived for three biological replicates of parental SW480, SW480 + vector control and SW480 + APC cells, and present the bioinformatics pipeline used to test for differential gene expression and pathway enrichment analysis. A total of 1735 genes showed significant differential expression when APC was restored and were enriched for genes associated with cell polarity, Wnt signalling and the epithelial to mesenchymal transition. There was additional enrichment for genes involved in cell-cell adhesion, cell-matrix junctions, angiogenesis, axon morphogenesis and cell movement. The raw and analysed RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE76307. This dataset is useful for further investigations of the impact of APC mutation on the properties of colorectal cancer cells.
Intracellular localization of adeno-associated viral proteins expressed in insect cells.
Gallo-Ramírez, Lilí E; Ramírez, Octavio T; Palomares, Laura A
2011-01-01
Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Lingzi, Xia; Zhihua, Yin; Xuelian, Li; Yangwu, Ren; Haibo, Zhang; Yuxia, Zhao; Baosen, Zhou
2016-12-13
To investigate the prognostic effect of microRNA single nucleotide polymorphisms (SNP) on non-small cell lung cancer (NSCLC) patients, 658 female participants from northeast China were enrolled in our prospective cohort study and followed up from 2010 to 2015. C-containing genotypes of miR-149 rs2292832 were associated with better overall survival (OS). The joint effect of miR-149 and miR-196a2 and the joint effect of miR-149 and miR-608 were also observed in our study. To verify the function of miR-149 rs2292832, A549 cell lines were stably transfected with lenti-virus containing miR-149-C vector, miR-149-T vector and empty vector. Cells containing C allele assumed a higher expression level of miR-149, a decrease in cell growth and the sensitivity to anticancer drug when compared with cells containing T allele. The role of miR-149 playing in cancer prognosis may function through DNA topoisomerases 1 (TOP1) pathway, according to the results from luciferase reporter assays. In conclusion, miR-149 C allele may be a prognostic biomarker for better NSCLC OS.
Lingzi, Xia; Zhihua, Yin; Xuelian, Li; Yangwu, Ren; Haibo, Zhang; Yuxia, Zhao; Baosen, Zhou
2016-01-01
To investigate the prognostic effect of microRNA single nucleotide polymorphisms (SNP) on non-small cell lung cancer (NSCLC) patients, 658 female participants from northeast China were enrolled in our prospective cohort study and followed up from 2010 to 2015. C-containing genotypes of miR-149 rs2292832 were associated with better overall survival (OS). The joint effect of miR-149 and miR-196a2 and the joint effect of miR-149 and miR-608 were also observed in our study. To verify the function of miR-149 rs2292832, A549 cell lines were stably transfected with lenti-virus containing miR-149-C vector, miR-149-T vector and empty vector. Cells containing C allele assumed a higher expression level of miR-149, a decrease in cell growth and the sensitivity to anticancer drug when compared with cells containing T allele. The role of miR-149 playing in cancer prognosis may function through DNA topoisomerases 1 (TOP1) pathway, according to the results from luciferase reporter assays. In conclusion, miR-149 C allele may be a prognostic biomarker for better NSCLC OS. PMID:27825117
O'Brien, Kevin D; Lewis, Katherine; Fischer, Jens W; Johnson, Pamela; Hwang, Jin-Yong; Knopp, Eleanor A; Kinsella, Michael G; Barrett, P Hugh R; Chait, Alan; Wight, Thomas N
2004-11-01
Lipoprotein retention on extracellular matrix (ECM) may play a central role in atherogenesis, and a specific extracellular matrix proteoglycan, biglycan, has been implicated in lipoprotein retention in human atherosclerosis. To test whether increased cellular biglycan expression results in increased retention of lipoproteins on ECM, rat aortic smooth muscle cells (SMCs) were transduced with a human biglycan cDNA-containing retroviral vector (LBSN) or with an empty retroviral vector (LXSN). To assess the importance of biglycan's glycosaminoglycan side chains in lipoprotein retention, ECM binding studies were also performed using RASMCs transduced with a retroviral vector encoding for a mutant, glycosaminoglycan-deficient biglycan (LBmutSN). Human biglycan mRNA and protein were confirmed in LBSN and LBmutSN RASMCs by Northern and Western blot analyses. HDL3+E binding to SMC ECM was increased significantly (as determined by 95% confidence intervals for binding curves) for LBSN as compared to either LXSN or LBmutSN cells; the increases for LBSN cell ECM were due primarily to an approximately 50% increase in binding sites (increased Bmax) versus LXSN cell ECM and of approximately 25% versus LBmutSN cell ECM. These results are consistent with the hypothesis that biglycan, through its glycosaminoglycan side chains, may mediate lipoprotein retention on atherosclerotic plaque ECM.
Zinonos, Irene; Labrinidis, Agatha; Lee, Michelle; Liapis, Vasilios; Hay, Shelley; Ponomarev, Vladimir; Diamond, Peter; Findlay, David M; Zannettino, Andrew CW; Evdokiou, Andreas
2017-01-01
Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that binds to the ligand for receptor activator of nuclear factor κB (RANKL) and inhibits bone resorption. OPG can also bind and inhibit the activity of the TNF-related apoptosis-inducing ligand (Apo2L/TRAIL), raising the possibility that the anticancer efficacy of soluble Apo2L/TRAIL may be abrogated in the bone microenvironment where OPG expression is high. In this study we used a murine model of breast cancer growth in bone to evaluate the efficacy of recombinant soluble Apo2L/TRAIL against intratibial tumors that were engineered to overexpress native full-length human OPG. In vitro, OPG-overexpressing breast cancer cells were protected from Apo2L/TRAIL-induced apoptosis, an effect that was reversed with the addition of soluble RANKL or neutralizing antibodies to OPG. In vivo, mice injected intratibially with cells containing the empty vector developed large osteolytic lesions. In contrast, OPG overexpression preserved the integrity of bone and prevented breast cancer–induced bone destruction. This effect was due primarily to the complete absence of osteoclasts in the tibias of mice inoculated with OPG-transfected cells, confirming the biologic activity of the transfected OPG in vivo. Despite the secretion of supraphysiologic levels of OPG, treatment with Apo2L/TRAIL resulted in strong growth inhibition of both empty vector and OPG-overexpressing intratibial tumors. While Apo2L/TRAIL-induced apoptosis may be abrogated in vitro by OPG overexpression, the in vivo anticancer efficacy of recombinant soluble Apo2L/TRAIL is retained in the bone microenvironment even in the presence of biologically active OPG at supraphysiologic concentrations. PMID:20818644
[Overexpressed miRNA-134b inhibits proliferation and invasion of CD133+ U87 glioma stem cells].
Liu, Yifeng; Zhang, Baochao; Wen, Changming; Wen, Gongling; Zhou, Guoping; Zhang, Jingwei; He, Haifa; Wang, Ning; Li, Wei
2017-05-01
Objective To investigate the role of microRNA-134b (miR-134b) in the tumorigenesis of glioma stem cells (GSCs) and the possible molecular mechanism. Methods Real-time quantitative PCR (qRT-PCR) was used to evalate the expression of miR-134b in CD133 + and CD133 - U87 GSCs. A lentiviral vector overexpressing miR-134b in U87 GSCs was constructed, and the effect of miR-134b overexpression on matrix metalloproteinase-2 (MMP-2), MMP-9 and MMP-12 expressions at both mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Transwell TM assay was performed to determine the effect of miR-134b overexpression on GSCs invasion ability. Tumor xenograft models in nude mice were established to evaluate the effect of miR-134b overexpression on tumorgenesis in vivo. Results The qRT-PCR showed that, compared with CD133 - cells, miR-134b was significantly down-regulated in CD133 + cells. Cell line over-expressing miR-134b was successfully established, and miR-134b was up-regulated significantly compared with empty vector control. Overexpression of miR-134b remarkably inhibited the invasion of U87 GSCs and the expression of MMP-12. However, overexpression of miR-134b did not affect MMP-2 and MMP-9 expressions. miR-134b also suppressed U87 GSCs xenograft growth in vivo. Tumor volume in tumor xenograft model group was significantly lower than that in control group, and tumor weight decreased by 42% in the former group. Conclusion Overexpression of miR-134b inhibits the growth and invasion of CD133 + GSCs.
Shao, Qiang; Xu, Wenpin; Yan, Li; Liu, Jinhua; Rui, Lei; Xiao, Xiao; Yu, Xiaoxue; Lu, Yanan; Li, Zandong
2014-10-13
The avian influenza (AI) H9N2 virus and IBDV are two major problems in the poultry industry. They have been prevalent among domestic poultry in Asia for many years and have caused considerable economic losses. Retinoic-acid-induced gene I (RIG-I) is a cytoplasmic sensor of dsRNA and ssRNA. It can detect Encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV) in human cells, influenza virus in duck leads to production of IFN-β and IFN-stimulated antiviral genes and reductions in the replication of RNA virus. Chickens, which lack RIG-I, are more sensitive to influenza virus than ducks. However, little is known about the roles of duck RIG-I (dRIG-I) in the detection of IBDV and AI H9N2 in chicken cells DF-1. The purpose of this study was to examine the function of dRIG-I in the recognition of IBDV Ts strain and H9N2 A/Chicken/Shandong/ZB/2007(ZB07) and in the induction of antiviral gene expression to gain an understanding of antiviral ability of dRIG-I in chicken cells against dsRNA virus IBDV and ssRNA virus ZB07. After challenge with the IBDV Ts strain and ZB07 the expression levels of Type I IFN (IFN-β and IFN-α) and IFN-induced antiviral genes (Mx and PKR) were significantly up-regulated in dRIG-I-transfected DF-1cells compared with the empty-vector-transfected control. dRIG-I knockdown experiments further proved that dRIG-I is essential to sensing IBDV and ZB07 in duck embryo fibroblasts (DEF). Growth curves showed that dRIG-I repressed the replication of IBDV and almost blunted the growth of ZB07 in DF-1. Apoptosis analysis revealed that dRIG-I increase the number of the survival cells after IBDV Ts strain or ZB07 infection relative to the empty-vector-transfected control. These results indicate that dRIG-I can up-regulates type I IFN and reduce viral gene expression and viral replication and protect chicken cells from virus-induced apoptosis during ZB07 and IBDV infection. Copyright © 2014 Elsevier B.V. All rights reserved.
Peters-Wendisch, P; Götker, S; Heider, S A E; Komati Reddy, G; Nguyen, A Q; Stansen, K C; Wendisch, V F
2014-12-20
The Gram-positive Corynebacterium glutamicum is auxotrophic for biotin. Besides the biotin uptake system BioYMN and the transcriptional regulator BioQ, this bacterium possesses functional enzymes for the last three reactions of biotin synthesis starting from pimeloyl-CoA. Heterologous expression of bioF from the Gram-negative Escherichia coli enabled biotin synthesis from pimelic acid added to the medium, but expression of bioF together with bioC and bioH from E. coli did not entail biotin prototrophy. Heterologous expression of bioWAFDBI from Bacillus subtilis encoding another biotin synthesis pathway in C. glutamicum allowed for growth in biotin-depleted media. Stable growth of the recombinant was observed without biotin addition for eight transfers to biotin-depleted medium while the empty vector control stopped growth after the first transfer. Expression of bioWAFDBI from B. subtilis in C. glutamicum strains overproducing the amino acids l-lysine and l-arginine, the diamine putrescine, and the carotenoid lycopene, respectively, enabled formation of these products under biotin-depleted conditions. Thus, biotin-prototrophic growth and production by recombinant C. glutamicum were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Xiao; Beres, Zachery T; Jin, Lin; Parrish, Jason T; Zhao, Wanying; Mackey, David; Snow, Allison A
2017-01-01
Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide's target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines.
Beres, Zachery T.; Jin, Lin; Parrish, Jason T.; Zhao, Wanying; Mackey, David; Snow, Allison A.
2017-01-01
Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide’s target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines. PMID:28426703
Wang, Lai; Tian, Fang; Arias, Ana; Yang, Mingjie; Sharifi, Behrooz G; Shah, Prediman K
2016-05-01
Apolipoprotein A-1 (Apo A-I) Milano, a naturally occurring Arg173to Cys mutant of Apo A-1, has been shown to reduce atherosclerosis in animal models and in a small phase 2 human trial. We have shown the superior atheroprotective effects of Apo A-I Milano (Apo A-IM) gene compared to wild-type Apo A-I gene using transplantation of retrovirally transduced bone marrow in Apo A-I/Apo E null mice. In this study, we compared the effect of dietary lipid lowering versus lipid lowering plus Apo A-IM gene transfer using recombinant adeno-associated virus (rAAV) 8 as vectors on atherosclerosis regression in Apo A-I/Apo E null mice. All mice were fed a high-cholesterol diet from age of 6 weeks until week 20, and at 20 weeks, 10 mice were euthanized to determine the extent of atherosclerosis. After 20 weeks, an additional 20 mice were placed on either a low-cholesterol diet plus empty rAAV (n = 10) to serve as controls or low-cholesterol diet plus 1 single intravenous injection of 1.2 × 10(12)vector genomes of adeno-associated virus (AAV) 8 vectors expressing Apo A-IM (n = 10). At the 40 week time point, intravenous AAV8 Apo A-IM recipients showed a significant regression of atherosclerosis in the whole aorta (P< .01), aortic sinuses (P< .05), and brachiocephalic arteries (P< .05) compared to 20-week-old mice, whereas low-cholesterol diet plus empty vector control group showed no significant regression in lesion size. Immunostaining showed that compared to the 20-week-old mice, there was a significantly reduced macrophage content in the brachiocephalic (P< .05) and aortic sinus plaques (P< .05) of AAV8 Apo A-IM recipients. These data show that although dietary-mediated cholesterol lowering halts progression of atherosclerosis, it does not induce regression, whereas combination of low-cholesterol diet and AAV8 mediated Apo A-I Milano gene therapy induces rapid and significant regression of atherosclerosis in mice. These data provide support for the potential feasibility of this approach for atherosclerosis regression. © The Author(s) 2015.
Saifur, Rahman G M; Hassan, Ahmad Abu; Dieng, Hamady; Salmah, Md Rawi Che; Saad, Ahmad Ramli; Satho, Tomomitsu
2013-03-01
We studied the diversity of Aedes breeding sites in various urban, suburban, and rural areas over time between February 2009 and February 2010 in the dengue endemic areas of Penang Island, Malaysia. We categorized the breeding sites and efficiency, and identified the key breeding containers. Among the 3 areas, the rural areas produced the highest container index (55), followed by suburban (42) and urban (32) areas. The numbers of key premises and containers were significantly higher (P < 0.000) in rural areas. The class 1 containers were identified as the key containers with higher productivity and efficiency, although class 2 and class 4 are the highest in numbers. Aedes aegypti immatures were found mostly in drums, water reservoirs, and polyethylene sheets, while mixed breeding was more common in buckets and empty paint cans in urban and suburban areas. Aedes albopictus was found mainly in miscellaneous containers such as drums, empty paint cans, and covers in all areas. The main potential containers indoors were drums, water reservoirs, and empty paint cans, and containers outdoors included empty paint cans, drums, and polyethylene sheets.
Mignaqui, Ana Clara; Ruiz, Vanesa; Perret, Sylvie; St-Laurent, Gilles; Singh Chahal, Parminder; Transfiguracion, Julia; Sammarruco, Ayelén; Gnazzo, Victoria; Durocher, Yves; Wigdorovitz, Andrés
2013-01-01
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV). The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE) in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.
Song, Xiaokai; Huang, Xinmei; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui
2015-09-01
Chimeric DNA vaccines encoding Eimeria tenella (E. tenella) surface antigen 5401 were constructed and their efficacies against E. tenella challenge were studied. The open reading frame (ORF) of 5401 was cloned into the prokaryotic expression vector pGEX-4T2 to express the recombinant protein and the expressed recombinant protein was identified by Western blot. The ORF of 5401 and chicken cytokine gene IFN-γ or IL-2 were cloned into the eukaryotic expression vector pVAX1 consecutively to construct DNA vaccines pVAX-5401-IFN-γ, pVAX-5401-IL-2 and pVAX-5401. The expression of aim genes in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Fourteen-day-old chickens were inoculated twice at an interval of 7 days with 100 µg of plasmids pVAX-5401, pVAX-5401-IFN-γ and pVAX-5401-IL-2 or 200 µg of recombinant 5401 protein by leg intramuscular injection, respectively. Seven days after the second inoculation, all chickens except the unchallenged control group were challenged orally with 5 × 10(4) sporulated oocysts of E. tenella. Seven days after challenge, all chickens were weighted and slaughtered to determine the effects of immunization. The results showed the recombinant protein was about 90 kDa and reacted with antiserum against soluble sporozoites. The animal experiment showed that all the DNA vaccines pVAX-5401, pVAX-5401-IFN-γ or pVAX-5401-IL-2 and the recombinant 5401 protein could obviously alleviate body weight loss and cecal lesions as compared with non-vaccinated challenged control and empty vector pVAX1control. Furthermore, pVAX-5401-IFN-γ or pVAX-5401-IL-2 induced anti-coccidial index (ACI) of 180.01 or 177.24 which were significantly higher than that of pVAX-5401. The results suggested that 5401 was an effective candidate antigen for vaccine. This finding also suggested that chicken IFN-γ or IL-2 could effectively improve the efficacies of DNA vaccines against avian coccidiosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Modified Einstein and Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Bulyzhenkov, I. É.
2018-05-01
The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.
Modified Einstein and Navier–Stokes Equations
NASA Astrophysics Data System (ADS)
Bulyzhenkov, I. É.
2018-05-01
The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.
RNA interference of pax2 inhibits growth of transplanted human endometrial cancer cells in nude mice
Zhang, Li-Ping; Shi, Xiao-Yan; Zhao, Chang-Yin; Liu, Yong-Zhen; Cheng, Ping
2011-01-01
The development of human endometrial carcinoma (HEC) is a complex pathologic process involves several oncogenes and tumor suppressor genes. The full-length paired-box gene 2 (pax2), a recently discovered Oncogene, promotes cell proliferation and growth and inhibits apoptosis of HEC cells. Here, we examined the effect of pax2 small interfering RNA (siRNA) on the growth of transplanted HEC cells in nude mice. The expression of Pax2 in 21 cases of normal endometrium and 38 cases of HEC was examined by immohistochemistry (IHC). HEC models were developed by subcutaneously transferring HEC cells into nude mice, followed by treatment with empty lentivirus vector, lentivirus vector-based pax2 siRNA, and phosphate buffered saline, respectively. Four weeks later, tumor size was measured, tumor inhibition rate was calculated, and histological analyses were conducted after staining with hematoxylin and eosin. The expression of Pax2 and Bcl-2 was detected by Western blot; proliferating cell nuclear antigen (PCNA) was detected by IHC. Significant differences were observed in the positive rate of Pax2 between normal endometrium and HEC (14.2% vs. 60.5%, P < 0.01). The expression index of Pax2 in well differentiated tumors was 1.88 ± 1.68, much lower than that in tumors of moderate (3.07 ± 1.96, P < 0.05) or poor differentiation (5.45 ± 2.76, P < 0.01). Tumor necrosis increased, nuclear basophilia stain decreased, tumor growth was inhibited, and PCNA, Pax2, and Bcl-2 expression was reduced in HEC models treated with pax2 siRNA. These results indicate that Pax2 expression is related to HEC tumor biology with the increased expression of Pax2 correlated to malignancy. pax2 siRNA down-regulates Pax2 expression and inhibits tumorigenesis of HEC in nude mice, possibly due to cell apoptosis and the inhibition of tumor proliferation induced by down-regulation of Bcl-2. PMID:21627862
Hølvold, Linn Benjaminsen; Fredriksen, Børge N; Bøgwald, Jarl; Dalmo, Roy A
2013-09-01
The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA delivery has received considerable attention in mammalian studies. DNA vaccination of fish has been shown to elicit durable transgene expression, but no reports exist on intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into PLGA nano- (~320 nm) (NP) or microparticles (~4 μm) (MP), c) in an oil-based formulation, or with empty particles of both sizes. The ability of the different pDNA-treatments to induce transgene expression was analyzed through a 70-day experimental period. Anatomical distribution patterns and depot effects were determined by tracking isotope labeled pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for proinflammatory cytokines (TNF-α, IL-1β), antiviral genes (IFN-α, Mx) and cytotoxic T-cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. Histopathological examinations were performed on injection site samples from days 2, 7 and 30. Injection of either naked pDNA or the oil-formulation was superior to particle treatments for inducing transgene expression at early time-points. Empty particles of both sizes were able to induce proinflammatory immune responses as well as degenerative and inflammatory pathology at the injection site. Microparticles demonstrated injection site depots and an inflammatory pathology comparable to the oil-based formulation. In comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, although encapsulation into NPs significantly elevated the expression of antiviral genes in all tissues. Together the results indicate that while naked pDNA is most efficient for inducing transgene expression, the encapsulation of pDNA into NPs up-regulates antiviral responses that could be of benefit to DNA vaccination. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95
Das, Anindita; Durrant, David; Mitchell, Clint; Dent, Paul; Batra, Surinder K.; Kukreja, Rakesh C.
2016-01-01
We previously reported that Sildenafil enhances apoptosis and antitumor efficacy of doxorubicin (DOX) while attenuating its cardiotoxic effect in prostate cancer. In the present study, we investigated the mechanism by which sildenafil sensitizes DOX in killing of prostate cancer (PCa) cells, DU145. The death receptor Fas (APO-1 or CD95) induces apoptosis in many carcinoma cells, which is negatively regulated by anti-apoptotic molecules such as FLIP (Fas-associated death domain (FADD) interleukin-1-converting enzyme (FLICE)-like inhibitory protein). Co-treatment of PCa cells with sildenafil and DOX for 48 hours showed reduced expression of both long and short forms of FLIP (FLIP-L and -S) as compared to individual drug treatment. Over-expression of FLIP-s with an adenoviral vector attentuated the enhanced cell-killing effect of DOX and sildenafil. Colony formation assays also confirmed that FLIP-S over-expression inhibited the DOX and sildenafil-induced synergistic killing effect as compared to the cells infected with an empty vector. Moreover, siRNA knock-down of CD95 abolished the effect of sildenafil in enhancing DOX lethality in cells, but had no effect on cell killing after treatment with a single agent. Sildenafil co-treatment with DOX inhibited DOX-induced NF-κB activity by reducing phosphorylation of IκB and nuclear translocation of the p65 subunit, in addition to down regulation of FAP-1 (Fas associated phosphatase-1, a known inhibitor of CD95-mediated apoptosis) expression. This data provides evidence that the CD95 is a key regulator of sildenafil and DOX mediated enhanced cell death in prostate cancer. PMID:26716643
Electromagnetic Characterization of Materials Using a Dual Chambered High Temperature Waveguide
to just one day through simultaneous measurement of the sample and the empty second chamber. A vector network analyzer (VNA) will be used to run X-band...calculated from the Nicolson-Ross-Weir inversion algorithm for computing permittivity and permeability using VNA measured S-parameters at increasing temperatures.
In vivo over-expression of KGF mimic human middle ear cholesteatoma.
Yamamoto-Fukuda, Tomomi; Akiyama, Naotaro; Shibata, Yasuaki; Takahashi, Haruo; Ikeda, Tohru; Koji, Takehiko
2015-10-01
We reported previously that keratinocyte growth factor (KGF), a mesenchymal cell-derived paracrine growth factor, plays an important role in middle ear cholesteatoma formation, which is characterized by marked proliferation of epithelial cells. Here, we investigated whether KGF, the main factor that induces cholesteatoma, overexpression in vivo results in the formation of cholesteatoma. Flag-hKGF cDNA driven by CMV14 promoter was transfected through electroporation into the external auditory canal (EAC) of rats once (short-term model) or five times on every fourth day (long-term model). Ears transfected with empty vector were used as controls. Successful transfection of plasmids into epithelial and stromal cells was confirmed by Flag immunohistochemistry. In the short-term model, the intensity of KGF protein was the strongest in hKGF transfected ear at day 4. KGF expression induced epithelial cell proliferation, reaching a peak level at day 4 and then decreased later, while in the long-term model, KGF expression in the EAC led to middle ear cholesteatoma formation. In conclusion, we described here a new experimental model of human middle ear cholesteatoma, and demonstrated that KGF and KGF receptor paracrine action play an essential role in middle ear cholesteatoma formation in an in vivo model.
NASA Astrophysics Data System (ADS)
Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi
2014-12-01
Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.
Ma, C X; Zheng, G Y
2018-02-11
Objective: To construct lentiviral-mediated EphA2 overexpression vectors, transfect them into human lens epithelial cells (HLE-B3) in vitro , and investigate the effect of EphA2 gene overexpression on the proliferation and apoptosis of HLE-B3 exposed to high-concentration dexamethasone. Methods: Experimental Study. The pCDH-CMV- MCS-EF1-RFP plasmid was set up by the digestion of NOTⅠand XbaⅠ double restriction enzyme and ligation of CE ligase, and then the plasmid was transformed into DH10B cells. Seven clons were picked for enzymatic digestion and the clons with correct results were chosen for sequencing. The 293 T/17 cells were co-transfected with the pCDH-CMV-MCS-EF1-RFP-EphA2 and the packaging mixture by Lipofectamine 2000. At different multiplicities of infection (MOI=20, 50, 100, and 200) after 72-hour infection, we observed the expression of RFP and morphological changes of HLE-B3 by an inverted fluorescence microscope, and calculated the transfection efficiency through the flow cytometry. EphA2 protein expression was detected by Western blot. The following experiments were divided into four groups: normal control group (group A), EphA2 overexpression vector transfection group (group B), HLE-B3 cells exposed to dexamethasone group (group C) and EphA2 overexpression vector transfection HLE-B3 cells exposed to dexamethasone group (group D). Statistical analysis method was single factor or two factors variance analysis. Cell survival rate was detected by the Cell Counting Kit-8 assay. Cell apoptosis index was detected by Tunel. Results: Restriction enzyme digestion and sequencing indicated that EphA2 cDNA fragment was successfully inserted in the vector. The infection efficiency was up to 38.6%±3.9%, 49.2%±4.2%, 79.5%±5.5% and 80.2%±6.0% when the MOI was 20, 50, 100 and 200, respectively. There was statistically significant difference ( F= 2 600.8, P= 0.001) among the four groups and between any two groups except between the MOI=100 group and MOI=200 group ( P= 2.507) . The relative quantity of EphA2 protein of the normal control group, empty vector transfection group and EphA2 gene overexpression vector transfection group was (0.561 2±0.031 7) , (0.559 7±0.012 8) and (3.032 0±0.041 9) , respectively. There was statistically significant difference ( F= 2 646.0, P= 0.001) among the three groups and between any two groups except between the normal control group and empty vector transfection group ( P= 0.868) . The survival rate of groups A, B, C and D was 98.18%±1.85%, 122.01%±3.89%, 52.32%±1.99% and 76.18%±3.74%, respectively. There was statistically significant difference among the four groups ( F= 497.6, P= 0.001) . The survival rate of group B was greater than group A ( P= 0.001) . The survival rate of group D was greater than group C ( P= 0.001) . Tunel results showed that the apoptosis index of groups A, B, C and D was 5.4%±1.5%, 5.0%±1.3%, 23.0%±3.9% and 14.4%±2.7%, respectively. There was statistically significant difference among the four groups ( F= 397.6, P= 0.001) . The apoptosis index of group B was lower than group A, but there was no statistically significant difference between them ( P= 0.415) ; the apoptosis index of group D was lower than group C ( P= 0.018). Conclusions: The lentiviral vector carrying human EphA2 gene has been successfully constructed and efficiently expressed in HLE-B3 cells. EphA2 gene overexpression could increase the HLE-B3 cell survival rate and protect HLE-B3 cells from high-concentration dexamethasone-induced reduction of the cell survival rate. EphA2 gene overexpression could protect HLE-B3 cells from high-concentration dexamethasone-induced apoptosis, but it has no remarkable effect on apoptosis of HLE-B3 cells under physiological conditions. (Chin J Ophthalmol, 2018, 54: 125-132) .
Agronomic performance of Populus deltoides trees engineered for biofuel production
Macaya-Sanz, David; Chen, Jin?Gui; Kalluri, Udaya C.; ...
2017-11-30
Background: One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions.Results: Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performancemore » of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index.Conclusions: This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.« less
Agronomic performance of Populus deltoides trees engineered for biofuel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macaya-Sanz, David; Chen, Jin?Gui; Kalluri, Udaya C.
Background: One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions.Results: Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performancemore » of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index.Conclusions: This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.« less
Zhao, Feijun; Wu, Yimou; Zhang, Xiaohong; Yu, Jian; Gu, Weiming; Liu, Shuangquan; Zeng, Tiebing; Zhang, Yuejun; Wang, Shiping
2011-10-01
In this study, the immune-modulatory and protective efficacy of using an interleukin-2 (IL-2) expression plasmid as a genetic adjuvant and chitosan (CS) nanoparticles as vectors to enhance a Tp92 DNA vaccine candidate were investigated in a Treponema pallidum (Tp) rabbit challenge model. CS vectoring of pTp92 or pIL-2 were both demonstrated to augment anti-Tp92 antibody levels induced by pTp92 DNA vaccines. Interestingly, the combination of CS vectored Tp92 and pIL-2 led to the greatest enhancements of anti-Tp92 antibodies and T-cell proliferation (p < 0.05). At week 10 after the first immunization, 15 of the 18 rabbits in each group were challenged with Tp Nichols strain and monitored for skin lesions and ulcer lesions. Ratios of positive skin lesions and ratios of ulcer lesions in groups immunized with pTp92 were significantly lower than those of the empty vector or PBS groups (p < 0.05), demonstrating that pTp92 immunization elicited significant protective efficacy against the Tp Nichols strain challenge. CS vectored and pIL-2 adjuvanted pTp92 immunized animals exhibited the lowest rates of positive skin and ulcer lesions. Male New Zealand white rabbits were randomly assigned to groups (n = 18/group) and immunized intramuscularly with pTp92 based plasmid DNA constructs (100 μg of DNA/rabbit/immunization). Two weeks before Tp challenge (Week 8), three rabbits from each group were used to determine cytokine measurements and fifteen rabbits from each group were used for Tp challenge studies. Intramuscular injection of pTp92 induced strong humoral and cellular immune responses and conferred protection from Tp challenge in rabbits. The use of CS as a pTp92 vector or pIL-2 as an adjuvant achieved a superior level of protective efficacy against Tp challenge, however CS vectored, IL-2 adjuvanted pTp92 immunization conferred the highest level of protective efficacy.
Conde, Melisa A; Alza, Natalia P; Iglesias González, Pablo A; Scodelaro Bilbao, Paola G; Sánchez Campos, Sofía; Uranga, Romina M; Salvador, Gabriela A
2018-06-01
We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration. Copyright © 2018 Elsevier B.V. All rights reserved.
Solid Test Meal to Measure the Gastric Emptying with Magnetogastrography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynaga-Ornelas, M. G.; Roca-Chiapas, J. M. de ls; Cordova-Fraga, T.
2008-08-11
The gastric emptying is the time of evacuating the food ingested from the stomach to the duodenum in a controlled rate. Diverse studies express the results of the gastric emptying in form of half-time (t{sub 1/2}). The Magnetogastrography (MGG) is a biomagnetic technique that has the advantage of not being invasive, radiation free and does not interfere with the privacy of the subject. The objective was to analyze the magnetic signal of magnetic tracers mixed in a solid food to measure gastric emptying using Magnetogastrography. The ingested test meal displayed a magnetic signal, which served to obtain the signal registeredmore » by the fluxgate and the peristaltic contractions could be calculated while the stomach was emptying. The solid food product developed results to work satisfactorily in magnetogastrography.« less
Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids
Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert
2013-01-01
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783
Souza, Bianca Mendes; Preisser, Tatiane Melo; Pereira, Vanessa Bastos; Zurita-Turk, Meritxell; de Castro, Camila Prósperi; da Cunha, Vanessa Pecini; de Oliveira, Rafael Pires; Gomes-Santos, Ana Cristina; de Faria, Ana Maria Caetano; Machado, Denise Carmona Cara; Chatel, Jean-Marc; Azevedo, Vasco Ariston de Carvalho; Langella, Philippe; Miyoshi, Anderson
2016-08-30
Inflammatory bowel diseases are characterized by chronic intestinal inflammation that leads to severe destruction of the intestinal mucosa. Therefore, the understanding of their aetiology as well as the development of new medicines is an important step for the treatment of such diseases. Consequently, the development of Lactococcus lactis strains capable of delivering a eukaryotic expression vector encoding the interleukin 4 (IL-4) of Mus musculus would represent a new strategy for the elaboration of a more effective alternative therapy against Crohn's disease. The murine IL-4 ORF was cloned into the eukaryotic expression vector pValac::dts. The resulting plasmid-pValac::dts::IL-4-was transfected into CHO cells so that its functionality could be evaluated in vitro. With fluorescent confocal microscopy, flow cytometry and ELISA, it was observed that pValac::dts::IL-4-transfected cells produced IL-4, while non-transfected cells and cells transfected with the empty vector did not. Then, pValac::dts::IL-4 was inserted into L. lactis MG1363 FnBPA(+) in order to evaluate the therapeutic potential of the recombinant strain against TNBS-induced colitis. Intragastric administration of L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) was able to decrease the severity of colitis, with animals showing decreased levels of IL-12, IL-6 and MPO activity; and increased levels of IL-4 and IL-10. Finally, LP-isolated cells from mice administered TNBS were immunophenotyped so that the main IL-4 and IL-10 producers were identified. Mice administered the recombinant strain presented significantly higher percentages of F4/80(+)MHCII(+)Ly6C(-)IL-4(+), F4/80(+)MHCII(+)Ly6C(-)IL-10(+), F4/80(+)MHCII(+)Ly6C(-)CD206(+)CD124(+)IL-10(+) and CD4(+)Foxp3(+)IL10(+) cells compared to the other groups. This study shows that L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) is a good candidate to maintain the anti-inflammatory and proinflammatory balance in the gastrointestinal tract, increasing the levels of IL-10-secreting regulatory cells and, thus, demonstrating the effectiveness of this novel DNA delivery-based strategy.
Yue, Bin; Lin, Yazhou; Ma, Xuexiao; Zhang, Guoqing; Chen, Bohua
2016-11-01
The aim of the current study was to use gene therapy to attenuate or reverse the degenerative process within the intervertabral disc. The effect of survivin gene therapy via lentiviral vector transfection on the course of intervertebral disc degeneration was investigated in the current study in an in vivo rabbit model. A total of 15 skeletally mature female New Zealand White rabbits were randomly divided into three groups: Punctured blank control group (group A, n=5), punctured empty vector control group (group B, n=5) and the treatment group (group C, n=5). Computed tomography‑guided puncture was performed at the L3‑L4 and L4‑L5 discs, in accordance with a previously validated rabbit annulotomy model for intervertebral disc degeneration. After 3 weeks, a lentiviral vector (LV) carrying survivin was injected into the nucleus pulposus. The results demonstrated that through magnetic resonance imaging, histology, gene expression, protein content and apoptosis analyses, group A and B were observed to exhibit disc degeneration, which increased over time, and no significant difference was observed between the two groups (P>0.05). However, there was reduced disc degeneration in group C compared with the punctured control groups, and the difference was statistically significant (P<0.05). Overall, the results of the present study demonstrated that injection of the LV carrying survivin into punctured rabbit intervertebral discs acted to delay changes associated with the degeneration of the discs. Although data from animal models should be extrapolated to the human condition with caution, the present study suggests potential for the use of gene therapy to decelerate disc degeneration.
Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan
2018-02-14
This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong
2015-04-03
Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2more » and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.« less
Sprenger, Cynthia C T; Drivdahl, Rolf H; Woodke, Lillie B; Eyman, Daniel; Reed, May J; Carter, William G; Plymate, Stephen R
2008-01-01
Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs) are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer. PMID:19048114
Yoon, Wonsuck; Park, Yoo Chang; Kim, Jinseok; Chae, Yang Seok; Byeon, Jung Hye; Min, Sang-Hyun; Park, Sungha; Yoo, Young; Park, Yong Keun; Kim, Byeong Mo
2017-01-01
Salmonella have been experimentally used as anti-cancer agents, because they show selective growth in tumours. In this study, we genetically modified attenuated Salmonella typhimurium to express and secrete interferon-gamma (IFN-γ) as a tumouricidal agent to enhance the therapeutic efficacy of Salmonella. IFN-γ was fused to the N-terminal region (residues 1-160) of SipB (SipB160) for secretion from bacterial cells. Attenuated S. typhimurium expressing recombinant IFN-γ (S. typhimurium (IFN-γ)) invaded the melanoma cells and induced cytotoxicity. Subcutaneous administration of S. typhimurium (IFN-γ) also efficiently inhibited tumour growth and prolonged the survival of C57BL/6 mice bearing B16F10 melanoma compared with administration of phosphate-buffered saline (PBS), unmodified S. typhimurium or S. typhimurium expressing empty vector (S. typhimurium [Vec]) in a natural killer (NK) cell-dependent manner. Moreover, genetically modified Salmonella, including S. typhimurium (IFN-γ), showed little toxicity to normal tissues with no observable adverse effects. However, S. typhimurium (IFN-γ)-mediated tumour suppression was attributed to direct killing of tumour cells rather than to stable anti-tumour immunity. Collectively, these results suggest that tumour-targeted therapy using S. typhimurium (IFN-γ) has potential for melanoma treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jin, Cheng-Yun; Moon, Dong-Oh; Choi, Yung Hyun; Lee, Jae-Dong; Kim, Gi-Young
2007-08-01
Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.
Luo, Huiyuan; Li, Zhiguo; Ge, Hong; Mei, Dan; Zhao, Lian; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Cao, Jun
2017-11-01
Cadmium (Cd) is a toxic metal widely found in a number of environmental matrices, and it induces serious adverse effects in various organs and tissues. In this study, the role of high mobility group A2 (HMGA2) in promoting migration and invasion in Cd-treated A549 cells and lung tissues of mice was investigated. Our findings showed that exposure to Cd (2 μM) for 48 h or subcutaneous injection of Cd daily for 6 weeks significantly enhanced the expression of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), phosphorylated focal adhesion kinase (p-FAK), and HMGA2 in A549 cells or lung tissues of mice. In A549 cells, HMGA2 knockdown significantly decreased expression of MMP-9, MMP-2 and p-FAK and inhibited the migration and invasion compared to that of only Cd-treated cultures. Overexpression of HMGA2 in HEK-293T cells increased expression of MMP-9, MMP-2 and p-FAK and enhanced the migration and invasion compared with the empty vector transfection group. In conclusion, upregulation of HMGA2 plays an important role in Cd-enhanced migration and invasion. Suppressing HMGA2 expression might have potential values in prevention of Cd-resulted toxicities. Copyright © 2017 Elsevier B.V. All rights reserved.
Qu, Danni; Qu, Hongyan; Fu, Ming; Zhao, Xuelian; Liu, Rong; Sui, Lihua; Zhan, Qimin
2008-08-01
Nlp (Ninein-like protein), a novel centrosome protein involved in microtubule nucleation, has been studied extensively in our laboratory, and its overexpression has been found in some human tumors. To understand the role of Nlp in human ovarian cancer development, we studied the correlation of Nlp expression with clinicopathological parameters and survival in epithelial ovarian cancer, and the impact of Nlp overexpression on ovarian cancer cells. Nlp expression in normal, borderline, benign and malignant epithelial ovarian tissues was examined by immunohistochemistry. The correlation between Nlp expression and tumor grade, FIGO stage and histological type was also evaluated. Survival was calculated using Kaplan-Meier estimates. Cell proliferation and apoptosis were assayed after stable transfection of pEGFP-C3-Nlp or empty vector in human ovarian cancer cell line SKOV3. Nlp was positive in 1 of 10 (10%) normal ovarian tissues, 5 of 34 (14.7%) benign tumors, 9 of 26 (34.6%) borderline tumors and 73 of 131 (56.0%) ovarian tumors. Nlp immunoreactivity intensity significantly correlated with tumor grade, but not with FIGO stage or histological type. Kaplan-Meier curves showed that Nlp overexpression was marginally associated with decreased overall survival. Overexpression of Nlp enhanced proliferation and inhibited apoptosis induced by paclitaxel in the SKOV3 cell line. Overexpression of Nlp in ovarian tumors raises the possibility that Nlp may play a role in ovarian carcinogenesis.
Bombykol receptors in the silkworm moth and the fruit fly
Syed, Zainulabeuddin; Kopp, Artyom; Kimbrell, Deborah A.; Leal, Walter S.
2010-01-01
Male moths are endowed with odorant receptors (ORs) to detect species-specific sex pheromones with remarkable sensitivity and selectivity. We serendipitously discovered that an endogenous OR in the fruit fly, Drosophila melanogaster, is highly sensitive to the sex pheromone of the silkworm moth, bombykol. Intriguingly, the fruit fly detectors are more sensitive than the receptors of the silkworm moth, although its ecological significance is unknown. By expression in the “empty neuron” system, we identified the fruit fly bombykol-sensitive OR as DmelOR7a (= DmOR7a). The profiles of this receptor in response to bombykol in the native sensilla (ab4) or expressed in the empty neuron system (ab3 sensilla) are indistinguishable. Both WT and transgenic flies responded with high sensitivity, in a dose-dependent manner, and with rapid signal termination. In contrast, the same empty neuron expressing the moth bombykol receptor, BmorOR1, demonstrated low sensitivity and slow signal inactivation. When expressed in the trichoid sensilla T1 of the fruit fly, the neuron housing BmorOR1 responded with sensitivity comparable to that of the native trichoid sensilla in the silkworm moth. By challenging the native bombykol receptor in the fruit fly with high doses of another odorant to which the receptor responds with the highest sensitivity, we demonstrate that slow signal termination is induced by overdose of a stimulus. As opposed to the empty neuron system in the basiconic sensilla, the structural, biochemical, and/or biophysical features of the sensilla make the T1 trichoid system of the fly a better surrogate for the moth receptor. PMID:20439725
JC Virus Mediates Invasion and Migration in Colorectal Metastasis
Link, Alexander; Shin, Sung Kwan; Nagasaka, Takeshi; Balaguer, Francesc; Koi, Minoru; Jung, Barbara; Boland, C. Richard; Goel, Ajay
2009-01-01
Introduction JC Virus (JCV), a human polyomavirus, is frequently present in colorectal cancers (CRCs). JCV large T-Ag (T-Ag) expressed in approximately half of all CRC's, however, its functional role in CRC is poorly understood. We hypothesized that JCV T-Ag may mediate metastasis in CRC cells through increased migration and invasion. Material and Methods CRC cell lines (HCT116 and SW837) were stably transfected with JCV early transcript sequences cloned into pCR3 or empty vectors. Migration and invasion assays were performed using Boyden chambers. Global gene expression analysis was performed to identify genetic targets and pathways altered by T-Ag expression. Microarray results were validated by qRT-PCR, protein expression analyses and immunohistochemistry. Matching primary CRCs and liver metastases from 33 patients were analyzed for T-Ag expression by immunohistochemistry. Results T-Ag expressing cell lines showed 2 to 3-fold increase in migration and invasion compared to controls. JCV T-Ag expression resulted in differential expression of several genetic targets, including genes that mediate cell migration and invasion. Pathway analysis suggested a significant involvement of these genes with AKT and MAPK signaling. Treatment with selective PI3K/AKT and MAPK pathway inhibitors resulted in reduced migration and invasion. In support of our in-vitro results, immunohistochemical staining of the advanced stage tumors revealed frequent JCV T-Ag expression in metastatic primary tumors (92%) as well as in their matching liver metastasis (73%). Conclusion These data suggest that JCV T-Ag expression in CRC associates with a metastatic phenotype, which may partly be mediated through the AKT/MAPK signaling pathway. Frequent expression of JCV T-Ag in CRC liver metastasis provides further clues supporting a mechanistic role for JCV as a possible mediator of cellular motility and invasion in CRC. PMID:19997600
Han, Chao-Dong; Ge, Wen-Sheng
2016-11-01
BACKGROUND The angiotensin-converting enzyme (ACE, CD143) gene plays a crucial role in the pathology of many cancers. Previous studies mostly focused on the gene polymorphism, but the other functions of ACE have rarely been reported. The purpose of this study was to investigate the expression of ACE and its biological function, as well as its prognostic value, in laryngeal cancer. MATERIAL AND METHODS The expression of ACE was detected by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in 106 patients with laryngeal cancer and 85 healthy people. Then the cell proliferation was estimated after the cell lines Hep-2 were transfected with pGL3-ACE and empty vector, respectively. In addition, the relationship between ACE expression and clinicopathologic characteristics was analyzed. Finally, Kaplan-Meier analysis was used to evaluate the overall survival of patients with different ACE expression, while Cox regression analysis was conducted to reveal the prognostic value of ACE in laryngeal cancer. RESULTS Our results demonstrate that ACE is over-expressed in laryngeal cancer and thus promotes cell proliferation. The up-regulation of ACE was significantly influenced by tumor stage and lymph node metastasis. Patients with high ACE expression had a shorter overall survival compared with those with low ACE expression according to Kaplan-Meier analysis. The ACE gene was also found to be an important factor in the prognosis of laryngeal cancer. CONCLUSIONS Our study shows that the ACE gene was up-regulated, which promoted the cell proliferation, and it could be an independent prognostic marker in laryngeal cancer.
Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke
2010-03-19
Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated atmore » a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.« less
Ansardi, D C; Porter, D C; Morrow, C D
1991-04-01
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.
Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich
2005-12-01
Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.
Minchenko, O H; Riabovol, O O; Tsymbal, D O; Minchenko, D O; Ratushna, O O
2016-01-01
We have studied the effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells under the inhibition of IRE1 (inositol requiring enzyme-1), which controls cell proliferation and tumor growth as a central mediator of endoplasmic reticulum stress. It was shown that hypoxia down-regulated gene expression of malate dehydrogenase 2 (MDH2), malic enzyme 2 (ME2), mitochondrial aspartate aminotransferase (GOT2), and subunit B of succinate dehydrogenase (SDHB) in control (transfected by empty vector) glioma cells in a gene specific manner. At the same time, the expression level of mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) and subunit D of succinate dehydrogenase (SDHD) genes in these cells does not significantly change in hypoxic conditions. It was also shown that the inhibition of ІRE1 signaling enzyme function in U87 glioma cells decreases the effect of hypoxia on the expression of ME2, GOT2, and SDHB genes and introduces the sensitivity of IDH2 gene to hypoxia. Furthermore, the expression of all studied genes depends on IRE1-mediated endoplasmic reticulum stress signaling in gene specific manner, because ІRE1 knockdown significantly decreases their expression in normoxic conditions, except for IDH2 gene, which expression level is strongly up-regulated. Therefore, changes in the expression level of nuclear genes encoding ME2, MDH2, IDH2, SDHB, SDHD, and GOT2 proteins possibly reflect metabolic reprogramming of mitochondria by hypoxia and IRE1-mediated endoplasmic reticulum stress signaling and correlate with suppression of glioma cell proliferation under inhibition of the IRE1 enzyme function.
NASA Technical Reports Server (NTRS)
Charlesworth, Arthur
1990-01-01
The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.
Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro
2015-01-01
Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.
Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro
2015-01-01
Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores. PMID:26023857
Wang, Le; Zhu, Yue; Wang, Peng; Fan, Qiang; Wu, Yao; Peng, Qing-Zhong; Xia, Gui-Xian; Wu, Jia-He
2016-01-26
Dihydroflavanol 4-reductase (DFR) is a key later enzyme involved in two polyphenols' (anthocyanins and proanthocyanidins (PAs)) biosynthesis, however it is not characterized in cotton yet. In present reports, a DFR cDNA homolog (designated as GhDFR1) was cloned from developing fibers of upland cotton. Silencing GhDFR1 in cotton by virus-induced gene silencing led to significant decrease in accumulation of anthocyanins and PAs. More interestingly, based on LC-MS analysis, two PA monomers, (-)-epicatachin and (-)-epigallocatachin, remarkably decreased in content in fibers of GhDFR1-silenced plants, but two new monomers, (-)-catachin and (-)-gallocatachin were present compared to the control plants infected with empty vector. The ectopic expression of GhDFR1 in an Arabidopsis TT3 mutant allowed for reconstruction of PAs biosynthesis pathway and led to accumulation of PAs in seed coat. Taken together, these data demonstrate that GhDFR1 contributes to the biosynthesis of anthocyanins and PAs in cotton.
Wigner functions on non-standard symplectic vector spaces
NASA Astrophysics Data System (ADS)
Dias, Nuno Costa; Prata, João Nuno
2018-01-01
We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.
2014-01-01
Background Bone marrow mesenchymal stem cells (BM-MSCs) are capable of differentiating into endothelial cells in vitro and acquire major characteristics of mature endothelial-like expression of vWF and CD31. SFAs and lipid oxidation products have been linked with postprandial endothelial dysfunction. Consumption of SFAs impairs arterial endothelial function, while a Mediterranean-type MUFA-diet has a beneficial effect on endothelial function by producing a decrease in levels of vWF, TFPI and PAI-1. Stearoyl-CoA desaturase 1 (SCD1), which converts SFA to MUFA, is involved in the cellular biosynthesis of MUFAs from SFA substrates. High expression of SCD1 is corresponded with low rates of fatty acid oxidation, therefore it might reduce inflammatory responses and be beneficial for the growth of induced endothelial cells. Overexpression of SCD1 in BM-MSCs might increase the growth of induced endothelial cells. The goal of this research is to study the relationship between overexpression of SCD1 and the expression of induced endothelial cells in BM-MSCs in vitro. Methods The gene SCD1 was integrated into a lentiviral vector, and then 293 T cells were transfected by the connected product to produce a packaged virus. BM-MSCs were infected by the packaged virus. Cell culture and endothelial induction were performed. Fluorescent quantitative PCR of CD31, vWF and VE-cad was performed after 1 week and 2 weeks to test the growth of induced endothelial cells. Results The mRNA amount of CD31, vWF and VE-cad of the SCD1 overexpressed group was statistically higher than that of the empty vector (EV) group and that of the normal group after 1 week and 2 weeks, respectively (p < 0.05). Immunocytochemical staining of CD31 or vWF was detected by visualizing red color. Conclusions This study suggested that overexpression of SCD1 in BM-MSCs could increase the expression of induced endothelial cells in vitro. PMID:24650127
Gastric emptying and intragastric distribution of lipids in man. A new scintigraphic method of study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, R.; Vigneron, N.; Najean, Y.
1982-08-01
We measured gastric emptying of fat and water from a solid-liquid meal in healthy volunteers using a tubeless scintigraphic method. /sup 75/Se glycerol triether, incorporated in butter, was the lipid-phase marker, and /sup 99m/Tcm, ingested with 250 ml water, the non-lipid phase marker. In seven of these subjects we also measured the gastric emptying of solids and liquids with /sup 99m/Tc bound to cooked egg whites as the solid-phase marker and /sup 111/In ingested with 250 ml water as the marker of the solid and aqueous phases. Emptying and intragastric repartition of each marker were measured by detection of radioactivitymore » changes over the abdominal area using a gamma-camera. The stability and the specificity of the labeling was checked for each marker. Mean gastric emptying rate (expressed as percentage ingested marker emptied per hr) of lipids (17.4 +/- 2.4) was much lower than that of the rest of the meal (34.2 +/- 1.8) and slightly, but significantly, lower than that of solids (22.8 +/- 1.8). An intragastric layering of fat above nonlipids was observed only after the first postprandial hour and remained moderate. Thus, lipids are emptied more slowly than any other component of an ordinary meal, and this is not due only to layering of fat above water.« less
Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C
1990-01-01
Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacco, or maize chloroplast DNA have also been tested for efficiency and duration of cat expression in chloroplasts of tobacco cells. Cultured NT1 tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 (negative control), 35S-CAT (nuclear expression vector), pHD312 (repliconless chloroplast expression vector), and pHD407, pACp18, and pACp19 (chloroplast expression vectors with replicon). Sonic extracts of cells bombarded with pUC118 showed no detectable cat activity in the autoradiograms. Nuclear expression of cat reached two-thirds of the maximal 48 hr after bombardment and the maximal at 72 hr. Cells bombarded with chloroplast expression vectors showed a low level of expression until 48 hr of incubation. A dramatic increase in the expression of cat was observed 24 hr after the addition of fresh medium to cultured cells in samples bombarded with pHD407; the repliconless vector pHD312 showed about 50% of this maximal activity. The expression of nuclear cat and the repliconless chloroplast vector decreased after 72 hr, but a high level of chloroplast cat expression was maintained in cells bombarded with pHD407. Organelle-specific expression of cat in appropriate compartments was checked by introducing various plasmid constructions into tobacco protoplasts by electroporation. Although the nuclear expression vector 35S-CAT showed expression of cat, no activity was observed with any chloroplast vectors. Images PMID:2404285
Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C
1990-01-01
Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacco, or maize chloroplast DNA have also been tested for efficiency and duration of cat expression in chloroplasts of tobacco cells. Cultured NT1 tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 (negative control), 35S-CAT (nuclear expression vector), pHD312 (repliconless chloroplast expression vector), and pHD407, pACp18, and pACp19 (chloroplast expression vectors with replicon). Sonic extracts of cells bombarded with pUC118 showed no detectable cat activity in the autoradiograms. Nuclear expression of cat reached two-thirds of the maximal 48 hr after bombardment and the maximal at 72 hr. Cells bombarded with chloroplast expression vectors showed a low level of expression until 48 hr of incubation. A dramatic increase in the expression of cat was observed 24 hr after the addition of fresh medium to cultured cells in samples bombarded with pHD407; the repliconless vector pHD312 showed about 50% of this maximal activity. The expression of nuclear cat and the repliconless chloroplast vector decreased after 72 hr, but a high level of chloroplast cat expression was maintained in cells bombarded with pHD407. Organelle-specific expression of cat in appropriate compartments was checked by introducing various plasmid constructions into tobacco protoplasts by electroporation. Although the nuclear expression vector 35S-CAT showed expression of cat, no activity was observed with any chloroplast vectors.
Bahi, Amine; Al Mansouri, Shamma; Al Maamari, Elyazia
2016-10-01
Anxiety is believed to influence ethanol use human in alcoholics. Studies using laboratory animals suggested an interaction between oxytocin and the behavioral effects of ethanol. Our previous study implicated a potential role for the oxytocin receptor (OxtR) in regulating ethanol-conditioned place preference. Here, we examined anxiety and the behavioral responses to ethanol in C57BL/6 mice stereotaxically injected in the nucleus accumbens (NAcc) with lentiviral vectors expressing an empty vector (Mock) or the OxtR cDNA. For anxiety we used the elevated-plus maze, the open-field and the marble-burying tests and for ethanol we used the two-bottle choice paradigm, the wire-hanging and ethanol-induced loss-of-righting-reflex tests. We found that, compared to Mock, OxtR overexpression led to anxiolytic-like behavior without altering spontaneous locomotor activity. Most importantly, we found that, relative to Mock controls, increased expression of the OxtR in the NAcc led to decreased ethanol consumption and preference in the two-bottle choice protocol and increased resistance to ethanol-induced sedation. We also compared the consequence of OxtR modulation on the consumption and preference of saccharin and quinine and found that the two experimental groups did not differ for any tastant. These results provide further evidence that the oxytocin system contributes to the regulation of ethanol drinking and sensitivity and position OxtR as a central molecular mediator of ethanol's effects within the mesolimbic system. Taken together, the current findings suggest that OxtR manipulation may be a relevant strategy to address ethanol use disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice.
Harris, Jamie; Herrero-Garcia, Erika; Russo, Angela; Kajdacsy-Balla, Andre; O'Bryan, John P; Chiu, Bill
2017-11-01
Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer
2011-12-01
Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less
On staggered indecomposable Virasoro modules
NASA Astrophysics Data System (ADS)
Kytölä, Kalle; Ridout, David
2009-12-01
In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be nondiagonalizable, possessing Jordan blocks of rank 2. Moreover, the module is further assumed to have a highest weight submodule, the "left module," and that the quotient by this submodule yields another highest weight module, the "right module." Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centers on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension 0, 1, or 2, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulas as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit.
NASA Astrophysics Data System (ADS)
Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.
2016-08-01
While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.
HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma
2010-01-01
Background In our previous study, it was well defined that IGFBP7 was an important tumor suppressor gene in colorectal cancer (CRC). We aimed to uncover the downstream molecules responsible for IGFBP7's behaviour in this study. Methods Differentially expressed protein profiles between PcDNA3.1(IGFBP7)-transfected RKO cells and the empty vector transfected controls were generated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) identification. The selected differentially expressed protein induced by IGFBP7 was confirmed by western blot and ELISA. The biological behaviour of the protein was explored by cell growth assay and colony formation assay. Results Six unique proteins were found differentially expressed in PcDNA3.1(IGFBP7)-transfected RKO cells, including albumin (ALB), 60 kDa heat shock protein(HSP60), Actin cytoplasmic 1 or 2, pyruvate kinase muscle 2(PKM2), beta subunit of phenylalanyl-tRNA synthetase(FARSB) and hypothetical protein. The downregulation of HSP60 by IGFBP7 was confirmed by western blot and ELISA. Recombinant human HSP60 protein could increase the proliferation rate and the colony formation ability of PcDNA3.1(IGFBP7)-RKO cells. Conclusion HSP60 was an important downstream molecule of IGFBP7. The downregulation of HSP60 induced by IGFBP7 may be, at least in part, responsible for IGFBP7's tumor suppressive biological behaviour in CRC. PMID:20433702
Jasmonates act positively in adventitious root formation in petunia cuttings.
Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina
2015-09-22
Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.
Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice.
Dai, Shiyu; Zhang, Tao; Zhang, Yanfang; Wang, Hualin; Deng, Fei
2018-06-01
The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.
Kaowinn, Sirichat; Jun, Seung Won; Kim, Chang Seok; Shin, Dong-Myeong; Hwang, Yoon-Hwae; Kim, Kyujung; Shin, Bosung; Kaewpiboon, Chutima; Jeong, Hyeon Hee; Koh, Sang Seok; Krämer, Oliver H; Johnston, Randal N; Chung, Young-Hwa
2017-12-01
Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by decreasing Stat1 phosphorylation and EGFR expression, thus indicating an interplay between HDAC4, Stat1 and EGFR. Taken together, we conclude that CUG2-induced EGFR upregulation confers doxorubicin resistance to lung (cancer) cells through Stat1-HDAC4 signaling.
Adamson-Small, Laura; Potter, Mark; Falk, Darin J; Cleaver, Brian; Byrne, Barry J; Clément, Nathalie
2016-01-01
Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 1014 rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 105 vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production. PMID:27222839
Bish, Lawrence T; Sleeper, Meg M; Reynolds, Caryn; Gazzara, Jeffrey; Withnall, Elanor; Singletary, Gretchen E; Buchlis, George; Hui, Daniel; High, Katherine A; Gao, Guangping; Wilson, James M; Sweeney, H Lee
2011-08-01
Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways.
Tahmasebi, Amin-Alah; Afsharifar, Alireza
2017-06-01
Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) on green fluorescent protein (GFP) expression efficiency. N . benthamiana leaves were inoculated with capped or un-capped RNA transcripts of a Turnip crinkle virus (TCV) construct containing a green fluorescent protein reporter gene (TCV-sGFP) in place of its coat protein (CP) ORF. PVA HC-Pro as a viral suppressor of RNA silencing was infiltrated in trans by Agrobacterium tumefaciens , increased the GFP foci diameter to six and even more cells in both capped and un capped treatments. The expression level of GFP in inoculated plants with TCV-sGFP transcript pre-infiltrated with PVA HC-Pro was 12.97-fold higher than the GFP accumulation level in pre-infiltrated leaves with empty plasmid (EP) control. Also, the yield of GFP in inoculated N. benthamiana plants with capped TCV-sGFP transcript pre-infiltrated with EP and PVA HC-Pro was 1.54 and 1.2-fold respectively, greater than the level of GFP expressed without cap analog application at 5 days post inoculation (dpi). In addition, the movement of TCV-sGFP was increased in some cells of inoculated leaves with capped transcripts. Results of this study indicated that PVA HC-Pro and mRNA capping can increase GFP expression and its cell to cell movement in N. benthamiana .
Sleeper, Meg M.; Reynolds, Caryn; Gazzara, Jeffrey; Withnall, Elanor; Singletary, Gretchen E.; Buchlis, George; Hui, Daniel; High, Katherine A.; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee
2011-01-01
Abstract Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways. PMID:21542669
Pollex, Erika K; Anger, Gregory; Hutson, Janine; Koren, Gideon; Piquette-Miller, Micheline
2010-05-01
The antidiabetic agent glyburide (glibenclamide) is frequently used for the treatment of type II diabetes and is increasingly being used for the treatment of gestational diabetes. Evidence suggests that breast cancer resistance protein/ATP-binding cassette, subfamily G, member 2 (ABCG2) expressed in the placenta protects the fetus against the accumulation of glyburide. A number of studies have investigated the significance of several single-nucleotide polymorphisms (SNPs) in the ABCG2 gene. Associations between the Q141K (C421A) SNP and ABCG2 protein expression, membrane surface translocation, efflux activity, or ATPase activity have been shown. Therefore, alterations in glyburide transport across the placenta, resulting in increased fetal glyburide exposure, may be seen in individuals carrying the C421A allele. The purpose of this study is to investigate whether the Q141K SNP causes alterations in ABCG2-mediated glyburide transport. Glyburide accumulation assays were carried out with stably transfected human embryonic kidney (HEK)-293 cells expressing wild-type ABCG2 (Arg482) and polymorphic ABCG2 (Q141K). Glyburide kinetic parameters were determined for comparison of wild-type and SNP ABCG2 activity by simultaneously fitting data for ABCG2-expressing cells (saturable transport) and empty vector-expressing cells (nonsaturable transport) by nonlinear regression analysis. The apparent K(t) and V(max) values for the transfected HEK-293 cells expressing the polymorphic variant (Q141K) of ABCG2 were significantly higher than those values determined for the wild-type ABCG2-expressing cells (p < 0.05). Our results indicate that the Q141K variant of ABCG2 may have the potential to alter the placental pharmacokinetics of glyburide used in pregnancy.
Hajam, Irshad A; Lee, John H
2017-01-01
Attenuated Salmonella strains constitute a promising technology for the development of a more efficient multivalent protein based vaccines. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the H1N1 hemagglutinin (HA) and the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strain exhibited efficient HA and M2e protein expressions and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we showed that the mice vaccinated with a Salmonella strain expressing HA and M2e protein antigens, respectively, induced significant production of HA and M2e-specific serum IgG1 and IgG2a responses, and of anti-HA interferon-γ producing T cells. Furthermore, immunization with Salmonella-HA-M2e-based vaccine via different routes provided protection in 66.66% orally, 100% intramuscularly, and 100% intraperitoneally immunized mice against the homologous H1N1 virus while none of the animals survived treated with either the PBS or the Salmonella carrying empty expression vector. Ex vivo stimulated dendritic cells (DCs) with heat killed Salmonella expressing HA demonstrated that DCs play an important role in the elicitation of HA-specific humoral immune responses in mice. In summary, Salmonella -HA-M2e-based vaccine elicits efficient antigen-specific humoral and cellular immune responses, and provides significant immune protection against a highly pathogenic H1N1 influenza virus.
Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL.
Bartram, Isabelle; Erben, Ulrike; Ortiz-Tanchez, Jutta; Blunert, Katja; Schlee, Cornelia; Neumann, Martin; Heesch, Sandra; Baldus, Claudia D
2015-10-08
T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with the need for treatment optimization. Previously, high expression of Insulin-like growth factor binding protein 7 (IGFBP7), a member of the IGF system, was identified as negative prognostic factor in adult T-ALL patients. Since aberrant IGFBP7 expression was observed in a variety of neoplasia and was relevant for prognosis in T-ALL, we investigated the functional role of IGFBP7 in Jurkat and Molt-4 cells as in vitro models for T-ALL. Jurkat and Molt-4 cells were stably transfected with an IGFBP7 over-expression vector or the empty vector as control. Proliferation of the cells was assessed by WST-1 assays and cell cycle status was measured by flow-cytometry after BrDU/7-AAD staining. The effect of IGFBP7 over-expression on sensitivity to cytostatic drugs was determined in AnnexinV/7-AAD assays. IGF1-R protein expression was measured by Western Blot and flow-cytometric analysis. IGF1-R associated gene expression profiles were generated from microarray gene expression data of 86 T-ALL patients from the Microarrays Innovations in Leukemia (MILE) multicenter study. IGFBP7-transfected Jurkat cells proliferated less, leading to a longer survival in a nutrient-limited environment. Both IGFBP7-transfected Jurkat and Molt-4 cells showed an arrest in the G0/G1 cell cycle phase. Furthermore, Jurkat IGFBP7-transfected cells were resistant to vincristine and asparaginase treatment. Surface expression and whole protein measurement of IGF1-R protein expression showed a reduced abundance of the receptor after IGFBP7 transfection in Jurkat cells. Interestingly, combination of the IGF1-R inhibitor NPV-AEW541 restored sensitivity to vincristine in IGFBP7-transfected cells. Additionally, IGF1-R associated GEP revealed an up-regulation of important drivers of T-ALL pathogenesis and regulators of chemo-resistance and apoptosis such as NOTCH1, BCL-2, PRKCI, and TP53. This study revealed a proliferation inhibiting effect of IGFBP7 by G0/G1 arrest and a drug resistance-inducing effect of IGFBP7 against vincristine and asparaginase in T-ALL. These results provide a model for the previously observed association between high IGFBP7 expression and chemotherapy failure in T-ALL patients. Since the resistance against vincristine was abolished by IGF1-R inhibition, IGFBP7 could serve as biomarker for patients who may benefit from therapies including IGF1-R inhibitors in combination with chemotherapy.
Effective-medium theory of elastic waves in random networks of rods.
Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G
2012-06-01
We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.
Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette; Belsham, Graham J
2013-11-01
The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of "self-tagged" empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Morral, Núria; O’Neal, Wanda; Rice, Karen; Leland, Michele; Kaplan, Johanne; Piedra, Pedro A.; Zhou, Heshan; Parks, Robin J.; Velji, Rizwan; Aguilar-Córdova, Estuardo; Wadsworth, Samuel; Graham, Frank L.; Kochanek, Stefan; Carey, K. Dee; Beaudet, Arthur L.
1999-01-01
The efficiency of first-generation adenoviral vectors as gene delivery tools is often limited by the short duration of transgene expression, which can be related to immune responses and to toxic effects of viral proteins. In addition, readministration is usually ineffective unless the animals are immunocompromised or a different adenovirus serotype is used. Recently, adenoviral vectors devoid of all viral coding sequences (helper-dependent or gutless vectors) have been developed to avoid expression of viral proteins. In mice, liver-directed gene transfer with AdSTK109, a helper-dependent adenoviral (Ad) vector containing the human α1-antitrypsin (hAAT) gene, resulted in sustained expression for longer than 10 months with negligible toxicity to the liver. In the present report, we have examined the duration of expression of AdSTK109 in the liver of baboons and compared it to first-generation vectors expressing hAAT. Transgene expression was limited to approximately 3–5 months with the first-generation vectors. In contrast, administration of AdSTK109 resulted in transgene expression for longer than a year in two of three baboons. We have also investigated the feasibility of circumventing the humoral response to the virus by sequential administration of vectors of different serotypes. We found that the ineffectiveness of readministration due to the humoral response to an Ad5 first-generation vector was overcome by use of an Ad2-based vector expressing hAAT. These data suggest that long-term expression of transgenes should be possible by combining the reduced immunogenicity and toxicity of helper-dependent vectors with sequential delivery of vectors of different serotypes. PMID:10536005
Du, Zhaoli; Cheng, Yanfei; Zhu, Hui; He, Xiuping; Zhang, Borun
2015-02-01
Flocculent gene FLO1 and its truncated form FLO1c with complete deletion of repeat unit C were expressed in a non-flocculent industrial strain Saccharomyces cerevisiae CE6 to generate recombinant flocculent strains 6-AF1 and 6-AF1c respectively. Both strains of 6-AF1 and 6-AF1c displayed strong flocculation and better cell growth than the control strain CE6-V carrying the empty vector under acetic acid stress. Moreover, the flocculent strains converted glucose to ethanol at much higher rates than the control strain CE6-V under acetic acid stress. In the presence of 0.6% (V/V) acetic acid, the average ethanol production rates of 6-AF1 and 6-AF1c were 1.56 and 1.62 times of that of strain CE6-V, while the ethanol production rates of 6-AF1 and 6-AF1c were 1.21 and 1.78 times of that of strain CE6-V under 1.0% acetic acid stress. Results in this study indicate that acetic acid tolerance and fermentation performance of industrial S. cerevisiae under acetic acid stress can be improved largely by flocculation endowed by expression of flocculent genes, especially FLO1c.
Phase 1 Gene Therapy for Duchenne Muscular Dystrophy Using a Translational Optimized AAV Vector
Bowles, Dawn E; McPhee, Scott WJ; Li, Chengwen; Gray, Steven J; Samulski, Jade J; Camp, Angelique S; Li, Juan; Wang, Bing; Monahan, Paul E; Rabinowitz, Joseph E; Grieger, Joshua C; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Xiao, Xiao; Samulski, R Jude
2012-01-01
Efficient and widespread gene transfer is required for successful treatment of Duchenne muscular dystrophy (DMD). Here, we performed the first clinical trial using a chimeric adeno-associated virus (AAV) capsid variant (designated AAV2.5) derived from a rational design strategy. AAV2.5 was generated from the AAV2 capsid with five mutations from AAV1. The novel chimeric vector combines the improved muscle transduction capacity of AAV1 with reduced antigenic crossreactivity against both parental serotypes, while keeping the AAV2 receptor binding. In a randomized double-blind placebo-controlled phase I clinical study in DMD boys, AAV2.5 vector was injected into the bicep muscle in one arm, with saline control in the contralateral arm. A subset of patients received AAV empty capsid instead of saline in an effort to distinguish an immune response to vector versus minidystrophin transgene. Recombinant AAV genomes were detected in all patients with up to 2.56 vector copies per diploid genome. There was no cellular immune response to AAV2.5 capsid. This trial established that rationally designed AAV2.5 vector was safe and well tolerated, lays the foundation of customizing AAV vectors that best suit the clinical objective (e.g., limb infusion gene delivery) and should usher in the next generation of viral delivery systems for human gene transfer. PMID:22068425
Role of the Neddylation Enzyme Uba3, A New Estrogen Receptor Corepressor in Breast Cancer
2006-09-01
cells acquire ICI 182,780 resistance while retaining expres- sion of ER. MATERIALS AND METHODS Materials The following antibodies and reagents were used...protein assay kit; FBS and csFBS (Hy- Clone Laboratories, Inc., Logan, UT); LipofectAMINE Plus Reagent , geneticin, and other cell culture reagents were...plasmid DNA (adjusted by corresponding empty vectors) by using LipofectAMINE Plus Reagent according to the manufacturer’s guidelines. Five hours later
Use of Log-Linear Models in Classification Problems.
1981-12-01
polynomials. The second example involves infant hypoxic trauma, and many cells are empty. The existence conditions are used to find a model for which esti...mates of cell frequencies exist and are in good agreement with the ob- served data. Key Words: Classification problem, log-difference models, minimum 8...variates define k states, which are labeled consecutively. Thus, while MB define cells in their tables by an I-vector Z, we simply take Z to be a
Beta Catenin in Prostate Cancer Apoptosis
2014-04-01
indicate that, Glycogen Synthase Kinase 3β (GSK3β) might be a key player in mediating this. GSK3β, a multifunctional serine/ threonine kinase regulates...for TRAIL-TZD-induced apoptosis in prostate cancer cells. AMPK is a family of serine/ threonine protein kinase and is highly conserved from yeast to...metabolic syndrome and Type 2 diabetes . We used C42-DN (stably overexpressing AMPK α1-dominant negative) and C42-EV (empty vector) prostate cancer cell
Gong, Wenrong; Zhao, Jianhua; Chen, Zhen; Lei, Lin; Luo, Lihua; Zhao, Xuehong; Xing, Hui; Chen, Suhua; Tu, Qisheng
2014-01-01
Objective: This paper is aimed at to evaluate B7-H1 expression as induced by human cytomegalovirus (HCMV) in extravillous cytotrophoblast cell line HPT-8 and possible underlying mechanism. Method: Real time PCR and flow cytometry were used to determine B7-H1 mRNA and protein before and after HCMV infection in HPT-8 cells. Western blot analysis was used to determine the level of MAPK phosphorylation in HPT-8 cell lines infected with HCMV. Results: 100TCID50 was found to be the most effective dose, capable of stimulating B7-H1 mRNA and protein expression in HPT-8 cells. When empty control group was considered to have a B7-H1 mRNA value of 1, B7-H1 mRNA was 4.32 in 100TCID50 group. In flow cytometry study, mean fluorescence intensity (MFI) of 100TCID50 group was 16.14, while empty control group was 1.34. Both mRNA and protein expression were found to be significantly increased (P<0.05) in 100TCID50 group compared to empty control group. The result of Western blot analysis showed increase in B7-H1 expression caused by the extracellular signaling that was related to ERK activation and the ERK inhibitor U0126 was found to reverse this increase. Conclusion: HCMV upregulates B7-H1 expression in human extravillous cytotrophoblast cell line HPT-8, which is related to MAPK activation. Our result would be helpful in finding better therapies against intrauterine HCMV infection. PMID:25225522
A central site of action for benzamide facilitation of gastric emptying.
Costall, B; Gunning, S J; Naylor, R J; Simpson, K H
1983-07-22
Gastric emptying of the fed guinea-pig was measured using a non-invasive X-ray fluoroscopic technique to determine passage from the stomach of polystyrene-coated barium sulphate spheroids. Peripherally administered metoclopramide (0.1-10 mg/kg i.p.), clebopride (1-10 mg/kg i.p.), (-)-sulpiride (40 mg/kg i.p.), haloperidol (1 mg/kg i.p.) and domperidone (1-10 mg/kg i.p.) failed to modify gastric emptying. Stress inhibited emptying, and this was considered to explain the effects of eserine and high dose metoclopramide. Gastric emptying was decreased by peripherally administered atropine (0.5 mg/kg i.p.) and apomorphine (0.1-0.5 mg/kg s.c.); the apomorphine response was antagonised by pretreatment with haloperidol, domperidone, (-)-sulpiride, metoclopramide and clebopride but not by prazosin + propranolol. Gastric emptying was facilitated by intracerebroventricular (i.c.v.) administrations of metoclopramide and clebopride (40, 100 and 200 micrograms) but not by i.c.v. domperidone, haloperidol, fluphenazine or (-)-sulpiride (100, 200 micrograms) and was inhibited by i.c.v. apomorphine (100, 200 micrograms); the response to i.c.v. apomorphine was antagonised by i.c.v. pretreatments with haloperidol, domperidone, (-)-sulpiride, metoclopramide and clebopride (40-50 micrograms). Facilitation of emptying by i.c.v. metoclopramide was prevented by peripheral pretreatment with atropine (0.5 mg/kg i.p.). It is concluded that the actions of apomorphine and metoclopramide/clebopride to respectively inhibit and facilitate gastric emptying may be mediated, at least in part, via central mechanisms. Whilst apomorphine's action may be mediated via dopamine receptor mechanisms, metoclopramide and clebopride act at additional unspecified sites, metoclopramide's action being expressed via cholinergic mechanisms.
Du, Qian; Yang, Xiangdong; Zhang, Jinhua; Zhong, Xiaofang; Kim, Kyung Seok; Yang, Jing; Xing, Guojie; Li, Xiaoyu; Jiang, Zhaoyuan; Li, Qiyun; Dong, Yingshan; Pan, Hongyu
2018-06-01
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T 2 -T 4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.
Zhu, Y; Chu, S-J; Luo, Y-L; Fu, J-Y; Tang, C-Y; Lu, G-H; Pang, Y-J; Wang, X-M; Yang, R-W; Qi, J-L; Yang, Y-H
2018-03-01
Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown. In this study, we isolated a cDNA encoding LeMRP, an ATP-binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real-time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes. Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real-time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up-regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down-regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots. Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields
NASA Astrophysics Data System (ADS)
Domokos, Gábor; Holmes, Philip; Lángi, Zsolt
2016-12-01
Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.
Vector intensity reconstruction using the data completion method.
Langrenne, Christophe; Garcia, Alexandre
2013-04-01
This paper presents an application of the data completion method (DCM) for vector intensity reconstructions. A mobile array of 36 pressure-pressure probes (72 microphones) is used to perform measurements near a planar surface. Nevertheless, since the proposed method is based on integral formulations, DCM can be applied with any kind of geometry. This method requires the knowledge of Cauchy data (pressure and velocity) on a part of the boundary of an empty domain in order to evaluate pressure and velocity on the remaining part of the boundary. Intensity vectors are calculated in the interior domain surrounded by the measurement array. This inverse acoustic problem requires the use of a regularization method to obtain a realistic solution. An experiment in a closed wooden car trunk mock-up excited by a shaker and two loudspeakers is presented. In this case, where the volume of the mock-up is small (0.61 m(3)), standing-waves and fluid structure interactions appear and show that DCM is a powerful tool to identify sources in a confined space.
Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker
2016-09-01
Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.
Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R
2015-02-01
Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of plasminogen activator inhibitor-1 on adipogenesis in vivo.
Scroyen, Ilse; Jacobs, Frank; Cosemans, Leen; De Geest, Bart; Lijnen, H Roger
2009-02-01
To study the functional role of plasminogen activator inhibitor-1 (PAI-1) in obesity, the effect of its overexpression on de novo adipogenesis was evaluated in murine models in vivo. Therefore, 3T3-F442A preadipocytes expressing murine PAI-1 (mPAI-1) or control cells were injected in the back of male NUDE mice, which were fed a high-fat diet (HFD) for four weeks. De novo fat pads that formed from the PAI-1 expressing cells were larger (21 +/- 2.4 mg vs. 14 +/- 1.4 mg; p = 0.017) and showed a higher adipocyte density (373 +/- 28 mm(-2) vs. 301 +/- 12 mm(-2); p = 0.03) as compared to those formed from control cells. In a second model, male NUDE mice were injected in the tail vein with an adenoviral construct expressing mPAI-1 or with the empty vector, and three days later with 3T3-F442A cells. After four weeks of HFD, total body weight and de novo fat pad weight were comparable for both groups. Mild adipocyte hypotrophy was observed in the de novo fat pads of the PAI-1 overexpressing mice (1180 +/- 33 microm(2) vs. 1285 +/- 32 microm(2); p = 0.024), whereas the blood vessel size was significantly smaller than in controls (30 +/- 1.8 microm(2) vs. 63 +/- 3.6 microm(2); p < 0.0001). Thus, the effect of local or systemic PAI-1 (over)expression on adipocyte or blood vessel size and density of de novo formed fat pads appears to be different, and concentration-dependent. Whereas local expression resulted in larger fat pads, systemic overexpression had no effect on de novo adipogenesis, although angiogenesis appeared to be impaired.
Geminivirus vectors for high-level expression of foreign proteins in plant cells.
Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S
2003-02-20
Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.
Carnes, Aaron E.; Luke, Jeremy M.; Vincent, Justin M.; Anderson, Sheryl; Schukar, Angela; Hodgson, Clague P.; Williams, James A.
2010-01-01
Background For safety considerations, regulatory agencies recommend elimination of antibiotic resistance markers and nonessential sequences from plasmid DNA-based gene medicines. In the present study we analyzed antibiotic-free (AF) vector design criteria impacting bacterial production and mammalian transgene expression. Methods Both CMV-HTLV-I R RNA Pol II promoter (protein transgene) and murine U6 RNA Pol III promoter (RNA transgene) vector designs were studied. Plasmid production yield was assessed through inducible fed-batch fermentation. RNA Pol II-directed EGFP and RNA Pol III-directed RNA expression were quantified by fluorometry and quantitative real-time polymerase chain reaction (RT-PCR), respectively, after transfection of human HEK293 cells. Results Sucrose-selectable minimalized protein and therapeutic RNA expression vector designs that combined an RNA-based AF selection with highly productive fermentation manufacturing (>1,000 mg/L plasmid DNA) and high level in vivo expression of encoded products were identified. The AF selectable marker was also successfully applied to convert existing kanamycin-resistant DNA vaccine plasmids gWIZ and pVAX1 into AF vectors, demonstrating a general utility for retrofitting existing vectors. A minimum vector size for high yield plasmid fermentation was identified. A strategy for stable fermentation of plasmid dimers with improved vector potency and fermentation yields up to 1,740 mg/L was developed. Conclusions We report the development of potent high yield AF gene medicine expression vectors for protein or RNA (e.g. short hairpin RNA or microRNA) products. These AF expression vectors were optimized to exceed a newly identified size threshold for high copy plasmid replication and direct higher transgene expression levels than alternative vectors. PMID:20806425
Shang, Yonglei; Tesar, Devin; Hötzel, Isidro
2015-10-01
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bandeira, Vanessa S; Tomás, Hélio A; Alici, Evren; Carrondo, Manuel J T; Coroadinha, Ana S
2017-04-01
Gammaretrovirus and lentivirus are the preferred viral vectors to genetically modify T and natural killer cells to be used in immune cell therapies. The transduction efficiency of hematopoietic and T cells is more efficient using gibbon ape leukemia virus (GaLV) pseudotyping. In this context gammaretroviral vector producer cells offer competitive higher titers than transient lentiviral vectors productions. The main aim of this work was to identify the key parameters governing GaLV-pseudotyped gammaretroviral vector productivity in stable producer cells, using a retroviral vector expression cassette enabling positive (facilitating cell enrichment) and negative cell selection (allowing cell elimination). The retroviral vector contains a thymidine kinase suicide gene fused with a ouabain-resistant Na + ,K + -ATPase gene, a potential safer and faster marker. The establishment of retroviral vector producer cells is traditionally performed by randomly integrating the retroviral vector expression cassette codifying the transgene. More recently, recombinase-mediated cassette exchange methodologies have been introduced to achieve targeted integration. Herein we compared random and targeted integration of the retroviral vector transgene construct. Two retroviral producer cell lines, 293 OuaS and 293 FlexOuaS, were generated by random and targeted integration, respectively, producing high titers (on the order of 10 7 infectious particles·ml -1 ). Results showed that the retroviral vector transgene cassette is the key retroviral vector component determining the viral titers notwithstanding, single-copy integration is sufficient to provide high titers. The expression levels of the three retroviral constructs (gag-pol, GaLV env, and retroviral vector transgene) were analyzed. Although gag-pol and GaLV env gene expression levels should surpass a minimal threshold, we found that relatively modest expression levels of these two expression cassettes are required. Their levels of expression should not be maximized. We concluded, to establish a high producer retroviral vector cell line only the expression level of the genomic retroviral RNA, that is, the retroviral vector transgene cassette, should be maximized, both through (1) the optimization of its design (i.e., genetic elements composition) and (2) the selection of high expressing chromosomal locus for its integration. The use of methodologies identifying and promoting integration into high-expression loci, as targeted integration or high-throughput screening are in this perspective highly valuable.
Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny
2012-01-01
Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624
Definition of Contravariant Velocity Components
NASA Technical Reports Server (NTRS)
Hung, Ching-moa; Kwak, Dochan (Technical Monitor)
2002-01-01
In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.
Zenke, Kosuke; Nam, Yoon Kwon; Kim, Ki Hong
2010-01-01
In the present study, we have developed short interfering RNA (siRNA) expression vector utilizing rock bream beta-actin promoter and examined the possible use for the inhibition of highly pathogenic fish virus, rock bream iridovirus (RBIV), replication in vitro. Initially, in order to express siRNA effectively, we added several modifications to wild-type rock bream beta-actin promoter. Next, we succeeded in knocking down the expression of enhanced green fluorescent protein reporter gene expression in fish cells using newly developed vector more effectively than the fugu U6 promoter-driven vector we described previously. Finally, we could observe that cells transfected with modified rock bream beta-actin promoter-driven siRNA expression vector targeting major capsid protein (MCP) gene of RBIV exhibited more resistance to RBIV challenge than other control cells. Our results indicate that this novel siRNA expression vector can be used as a new tool for therapeutics in virus infection in fish species.
Wyatt, Linda S; Xiao, Wei; Americo, Jeffrey L; Earl, Patricia L; Moss, Bernard
2017-06-06
Viruses are used as expression vectors for protein synthesis, immunology research, vaccines, and therapeutics. Advantages of poxvirus vectors include the accommodation of large amounts of heterologous DNA, the presence of a cytoplasmic site of transcription, and high expression levels. On the other hand, competition of approximately 200 viral genes with the target gene for expression and immune recognition may be disadvantageous. We describe a vaccinia virus (VACV) vector that uses an early promoter to express the bacteriophage T7 RNA polymerase; has the A23R intermediate transcription factor gene deleted, thereby restricting virus replication to complementing cells; and has a heterologous gene regulated by a T7 promoter. In noncomplementing cells, viral early gene expression and DNA replication occurred normally but synthesis of intermediate and late proteins was prevented. Nevertheless, the progeny viral DNA provided templates for abundant expression of heterologous genes regulated by a T7 promoter. Selective expression of the Escherichia coli lac repressor gene from an intermediate promoter reduced transcription of the heterologous gene specifically in complementing cells, where large amounts might adversely impact VACV replication. Expression of heterologous proteins mediated by the A23R deletion vector equaled that of a replicating VACV, was higher than that of a nonreplicating modified vaccinia virus Ankara (MVA) vector used for candidate vaccines in vitro and in vivo , and was similarly immunogenic in mice. Unlike the MVA vector, the A23R deletion vector still expresses numerous early genes that can restrict immunogenicity as demonstrated here by the failure of the prototype vector to induce interferon alpha. By deleting immunomodulatory genes, we anticipate further improvements in the system. IMPORTANCE Vaccines provide an efficient and effective way of preventing infectious diseases. Nevertheless, new and better vaccines are needed. Vaccinia virus, which was used successfully as a live vaccine to eradicate smallpox, has been further attenuated and adapted as a recombinant vector for immunization against other pathogens. However, since the initial description of this vector system, only incremental improvements largely related to safety have been implemented. Here we described novel modifications of the platform that increased expression of the heterologous target gene and decreased expression of endogenous vaccinia virus genes while providing safety by preventing replication of the candidate vaccine except in complementing cells used for vector propagation. Copyright © 2017 Wyatt et al.
Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W
2015-01-01
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.
Ferreira, Joshua P; Peacock, Ryan W S; Lawhorn, Ingrid E B; Wang, Clifford L
2011-12-01
The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines. The online version of this article (doi:10.1007/s11693-011-9089-0) contains supplementary material, which is available to authorized users.
Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin
2012-01-01
Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857
Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi
2017-07-21
Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.
Nakashima, N; Tamura, T
2013-06-01
Here, we report on the construction of doxycycline (tetracycline analogue)-inducible vectors that express antisense RNAs in Escherichia coli. Using these vectors, the expression of genes of interest can be silenced conditionally. The expression of antisense RNAs from the vectors was more tightly regulated than the previously constructed isopropyl-β-D-galactopyranoside-inducible vectors. Furthermore, expression levels of antisense RNAs were enhanced by combining the doxycycline-inducible promoter with the T7 promoter-T7 RNA polymerase system; the T7 RNA polymerase gene, under control of the doxycycline-inducible promoter, was integrated into the lacZ locus of the genome without leaving any antibiotic marker. These vectors are useful for investigating gene functions or altering cell phenotypes for biotechnological and industrial applications. A gene silencing method using antisense RNAs in Escherichia coli is described, which facilitates the investigation of bacterial gene function. In particular, the method is suitable for comprehensive analyses or phenotypic analyses of genes essential for growth. Here, we describe expansion of vector variations for expressing antisense RNAs, allowing choice of a vector appropriate for the target genes or experimental purpose. © 2013 The Society for Applied Microbiology.
Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M
2001-04-01
Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.
Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin
2006-08-01
To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV showed that (1) the cells in pHRE-TK and pTK groups were much more sensitive to GCV than the cells in pHRE group under hypoxia condition (P < 0.01), the higher the GCV concentration, the greater the difference; (2) the cells of pHRE-TK group were more sensitive to GCV than those in pTK group under hypoxic condition (P < 0.01), but was almost equally sensitive under normoxic condition (P > 0.05); (3) the pHRE-TK group cells had higher sensitivity to GCV under hypoxia than normoxia (P < 0.01) while the pTK group cells had almost the same sensitivity to GCV under hypoxia and normoxia (P > 0.05). (1) The eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia was constructed successfully. (2) HRE could up-regulate expression of EGFP by SK-ES cells under hypoxia condition. (3) HRE could enhance the killing effect of HSV-TK/GCV system on human Ewing's sarcoma cell line SK-ES under hypoxic condition.
Jung, Inuk; Jo, Kyuri; Kang, Hyejin; Ahn, Hongryul; Yu, Youngjae; Kim, Sun
2017-12-01
Identifying biologically meaningful gene expression patterns from time series gene expression data is important to understand the underlying biological mechanisms. To identify significantly perturbed gene sets between different phenotypes, analysis of time series transcriptome data requires consideration of time and sample dimensions. Thus, the analysis of such time series data seeks to search gene sets that exhibit similar or different expression patterns between two or more sample conditions, constituting the three-dimensional data, i.e. gene-time-condition. Computational complexity for analyzing such data is very high, compared to the already difficult NP-hard two dimensional biclustering algorithms. Because of this challenge, traditional time series clustering algorithms are designed to capture co-expressed genes with similar expression pattern in two sample conditions. We present a triclustering algorithm, TimesVector, specifically designed for clustering three-dimensional time series data to capture distinctively similar or different gene expression patterns between two or more sample conditions. TimesVector identifies clusters with distinctive expression patterns in three steps: (i) dimension reduction and clustering of time-condition concatenated vectors, (ii) post-processing clusters for detecting similar and distinct expression patterns and (iii) rescuing genes from unclassified clusters. Using four sets of time series gene expression data, generated by both microarray and high throughput sequencing platforms, we demonstrated that TimesVector successfully detected biologically meaningful clusters of high quality. TimesVector improved the clustering quality compared to existing triclustering tools and only TimesVector detected clusters with differential expression patterns across conditions successfully. The TimesVector software is available at http://biohealth.snu.ac.kr/software/TimesVector/. sunkim.bioinfo@snu.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Trinh, Alice T; Ball, Bret G; Weber, Erin; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Anderson, French; Basile, Lena A
2009-12-30
Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.
Lausberg, Frank; Chattopadhyay, Ava Rebecca; Heyer, Antonia; Eggeling, Lothar; Freudl, Roland
2012-09-01
Here we report on the construction of a tetracycline inducible expression vector that allows a tightly regulable gene expression in Corynebacterium glutamicum which is used in industry for production of small molecules such as amino acids. Using the green fluorescent protein (GFP) as a reporter protein we show that this vector, named pCLTON1, is characterized by tight repression under non-induced conditions as compared to a conventional IPTG inducible expression vector, and that it allows gradual GFP synthesis upon gradual increase of anhydrotetracycline addition. Copyright © 2012 Elsevier Inc. All rights reserved.
Jiang, Jinghang; Yang, Peipei; Guo, Zhe; Yang, Rirong; Yang, Haojie; Yang, Fuquan; Li, Lequn; Xiang, Bangde
2016-10-28
Liver cancer stem cells (LCSCs) have been shown to express higher levels of microRNA-21 (miR-21). Here, we examine the possible contributions of miR-21 to the phenotype of LCSCs in culture and in xenograft tumors in nude mice. The hepatocellular carcinoma cell line MHCC-97H was stably transformed with a retroviral vector to establish cells overexpressing miR-21, while a cell line transformed with empty vector served as a negative control. RT-PCR and Western blotting were used to evaluate the effects of miR-21 overexpression on the expression of various LCSC markers, a Transwell assay was used to assess the effects on cell migration and invasion, and a spheroid formation assay was used to examine the effects on clonogenesis. The effects of miR-21 overexpression were also examined in tumors in nude mice. An MHCC-97H cell line was constructed that stably overexpresses miR-21 at 7.78 ± 1.51-fold higher levels than the negative control cell line. Expression of the LCSC markers CD13, Ep-CAM, CD90, and OCT4 was significantly higher in the miR-21-overexpressing cell line than in the negative control at both mRNA and protein levels. The overexpressing cell line formed larger, tighter, and more numerous spheroids. Overexpression of miR-21 was associated with greater cell migration and invasion. Tumors of overexpressing cells in nude mice had a significantly larger mean volume after 34 days of growth (773.62 ± 163.46 mm 3 ) than tumors of negative control cells (502.79 ± 33.94 mm 3 , p = 0.048), as well as greater mean weight (0.422 ± 0.019 vs. 0.346 ± 0.006 g, p = 0.003). Overexpression of miR-21 strengthens the phenotype of LCSCs, facilitating invasion, migration, and tumorigenesis in hepatocellular carcinoma.
Amigo-Jiménez, Irene; Bailón, Elvira; Ugarte-Berzal, Estefanía; Aguilera-Montilla, Noemí; García-Marco, José A; García-Pardo, Angeles
2014-01-01
Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of cytotoxic drugs. We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment.
Amigo-Jiménez, Irene; Bailón, Elvira; Ugarte-Berzal, Estefanía; Aguilera-Montilla, Noemí; García-Marco, José A.; García-Pardo, Angeles
2014-01-01
Background Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of cytotoxic drugs. Methods We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test. Results In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9. Conclusions Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment. PMID:24956101
Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G
2016-08-01
Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein localization, and protein degradation, thus setting the foundation in understanding the functional role of AIRE in germ cell biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Liwei; Zhao, Wenting; Zheng, Quanhui
2016-01-15
The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis. We previously showed that CSIG plays an important role in regulating cell proliferation and cellular senescence progression through inhibiting PTEN, however, which domain or region of CSIG contributes to this function? To clarify this question, we investigated the functional importance of ribosomal L1 domain and lysine (Lys) -rich region of CSIG. Themore » data showed that expression of CSIG potently reduced PTEN expression, increased cell proliferation rates, and reduced the senescent phenotype (lower SA-β-gal activity). By contrast, neither the expression of CSIG N- terminal (NT) fragment containing the ribosomal L1 domain nor C-terminal (CT) fragment containing Lys-rich region could significantly altered the levels of PTEN; instead of promoting cell proliferation and delaying cellular senescence, expression of CSIG-NT or CSIG-CT inhibited cell proliferation and accelerated cell senescence (increased SA-β-gal activity) compared to either CSIG over-expressing or control (empty vector transfected) cells. The further immunofluorescence analysis showed that CSIG-CT and CSIG-NT truncated proteins exhibited different subcellular distribution with that of wild-type CSIG. Conclusively, both ribosomal L1 domain and Lys-rich region of CSIG are critical for CSIG to act as a regulator of cell proliferation and cellular senescence. - Highlights: • The ribosomal L1 domain and lysine-rich region of CSIG were expressed. • They are critical for CSIG to regulate proliferation and senescence. • CSIG and its domains exhibit different subcellular distribution.« less
Zulu, Nodumo Nokulunga; Popko, Jennifer; Zienkiewicz, Krzysztof; Tarazona, Pablo; Herrfurth, Cornelia; Feussner, Ivo
2017-01-01
Microalgae are promising alternate and renewable sources for producing valuable products such as biofuel and essential fatty acids. Although this is the case, there are still challenges impeding on the effective commercial production of microalgal products. For instance, their product yield is still too low. Therefore, this study was oriented towards enhancing triacylglycerol (TAG) accumulation in the diatom Phaeodactylum tricornutum (strain Pt4). To achieve this, a type 2 acyl-CoA:diacylglycerol acyltransferase from yeast ( ScDGA1 ) and the lipid droplet (LD) stabilizing oleosin protein 3 from Arabidopsis thaliana ( AtOLEO3 ) were expressed in Pt4. The individual expression of ScDGA1 and AtOLEO3 in Pt4 resulted in a 2.3- and 1.4-fold increase in TAG levels, respectively, in comparison to the wild type. The co-expression of both, ScDGA1 and AtOLEO3 , was accompanied by a 3.6-fold increase in TAG content. On the cellular level, the lines co-expressing ScDGA1 and AtOLEO3 showed the presence of the larger and increased numbers of lipid droplets when compared to transformants expressing single genes and an empty vector. Under nitrogen stress, TAG productivity was further increased twofold in comparison to nitrogen-replete conditions. While TAG accumulation was enhanced in the analyzed transformants, the fatty acid composition remained unchanged neither in the total lipid nor in the TAG profile. The co-expression of two genes was shown to be a more effective strategy for enhancing TAG accumulation in P. tricornutum strain Pt4 than a single gene strategy. For the first time in a diatom, a LD protein from a vascular plant, oleosin, was shown to have an impact on TAG accumulation and on LD organization.
IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis
Rosiak, Kamila; Smolarz, Maciej; Stec, Wojciech J.; Peciak, Joanna; Grzela, Dawid; Winiecka-Klimek, Marta; Stoczynska-Fidelus, Ewelina; Krynska, Barbara; Piaskowski, Sylwester; Rieske, Piotr
2016-01-01
Background The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. Methods Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. Results Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. Conclusions Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust apoptosis causes differentiation deficiency of IDH1R132H-expressing cells. PMID:27145078
MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines
Lopez, Cecilia M.; Yu, Peter Y.; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A.
2018-01-01
Background Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. Methodology and principal findings RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. Conclusions These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. PMID:29293555
MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.
Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M
2018-01-01
Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.
Ma, Benjiang; Hang, Changshou; Zhao, Yun; Wang, Shiwen; Xie, Yanxiang
2002-09-01
To construct a novel baculovirus vector which is capable of promoting the high-yield expression of foreign gene in mammalian cells and to express by this vector the nucleoprotein (NP) gene of Crimean-Congo hemorrhagic fever virus (CCHFV) Chinese isolate (Xinjiang hemorrhagic fever virus, XHFV) BA88166 in insect and Vero cells. Human cytomegalovirus (CMV) immediate early (IE) promoter was ligated to the baculovirus vector pFastBac1 downstream of the polyhedrin promoter to give rise to the novel vector pCB1. XHFV NP gene was cloned to this vector and was well expressed in COS-7 cells and Vero cells by means of recombinant plasmid transfection and baculovirus infection. The XHFV NP gene in vector pCB1 could be well expressed in mammalian cells. Vero cells infected with recombinant baculovirus harboring NP gene could be employed as antigens to detect XHF serum specimens whose results were in good correlation with those of ELISA and in parallel with clinical diagnoses. This novel baculovirus vector is able to express the foreign gene efficiently in both insect and mammalian cells, which provides not only the convenient diagnostic antigens but also the potential for developing recombinant virus vaccines and gene therapies.
Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi
2013-01-01
We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.
2013-01-01
Background Molecular markers allow rapid identification of biologically important germplasm/s having desired character. Previously we have reported a genotype specific molecular marker, Balco1128 [GenBank ID EU258678] of Bambusa balcooa containing an ORF (375 bp) having high similarity with receptor like cytoplasmic kinase of Arabidopsis and Oryza. Balco1128 was found to be associated only with bamboo genotypes endowed with high cellulose and low lignin contents of fibers. Under the above backdrop, it was necessitated to characterize this genetic marker for better understanding of its biological significance in context of superior quality fiber development. Results The full length cDNA (3342 bp) of BbKst, a serine-threonine protein kinase was isolated from B. balcooa comprising of six LRR domains at the N-terminal end and a kinase domain at the C-terminal end. Bacteria-expressed BbKst-kinase domain (3339 bp long) showed Mg2+ dependent kinase activity at pH 7.0, 28°C. Bioinformatics study followed by phospho-amino analysis further confirmed that BbKst-kinase belongs to the serine/threonine protein kinase family. Transcript analysis of the BbKst gene following RNA slot blot hybridization and qPCR revealed higher expression of BbKst during initiation and elongation stages of fiber development. Tissue specific expression studies showed much higher expression of BbKst transcript in stems and internodes of B. balcooa than in leaves and rhizomes. Southern analysis revealed single copy insertion of BbKst in most of the Agrobacterium mediated transgenic tobacco plants. Real-time PCR detected 150-200 fold enhanced expression of BbKst in different T1 tobacco lines than that of the vector transformed plants. Heterologous expression of BbKst under control of 35S promoter in transgenic tobacco showed high cellulose deposition in the xylem fibers. Number of xylary fibers was higher in transgenic T0 and T1 plants than that of empty-vector transformed tobacco plants offering enhanced mechanical strength to the transgenic plants, which was also substantiated by their strong upright phenotypes, significantly higher cellulose contents, flexibility coefficient, slenderness ratio, and lower Runkel ratio of the fibers. Conclusions This finding clearly demonstrated that BbKst gene (GenBank ID JQ432560) encodes a serine/threonine protein kinase. BbKst induced higher cellulose deposition/synthesis in transgenic tobacco plants, an important attribute of fiber quality bestowing additional strength to the plant. PMID:24015925
AAVPG: A vigilant vector where transgene expression is induced by p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.
2013-12-15
Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 foldmore » increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.« less
Liu, Danya; Burd, Eileen M.; Coopersmith, Craig M.; Ford, Mandy L.
2016-01-01
Following T cell encounter with antigen, multiple signals are integrated to collectively induce distinct differentiation programs within antigen-specific CD8+ T cell populations. Several factors contribute to these cell fate decisions including the amount and duration of antigen, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The inducible costimulator (ICOS) is not expressed on resting T cells but is rapidly upregulated upon encounter with antigen. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study we therefore sought to determine the role of ICOS signaling on CD8+ T cell programmed differentiation. Through the creation of novel ICOS retrogenic antigen-specific TCR transgenic CD8+ T cells, we interrogated the phenotype, functionality, and recall potential of CD8+ T cells that receive early and sustained ICOS signaling during antigen exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of antigen-specific CD8+ T cells, resulting in increased frequencies of KLRG-1hiCD127lo cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared to empty vector controls. Interestingly, however, ICOS retrogenic CD8+ T cells also preferentially homed to non-lymphoid organs, and exhibited reduced multi-cytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. PMID:26729800
Ecto-5’-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model
Cappellari, Angélica R.; Pillat, Micheli M.; Souza, Hellio D. N.; Dietrich, Fabrícia; Oliveira, Francine H.; Figueiró, Fabrício; Abujamra, Ana L.; Roesler, Rafael; Lecka, Joanna; Sévigny, Jean; Battastini, Ana Maria O.; Ulrich, Henning
2015-01-01
Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy. PMID:26491983
Liu, Danya; Burd, Eileen M; Coopersmith, Craig M; Ford, Mandy L
2016-02-01
Following T cell encounter with Ag, multiple signals are integrated to collectively induce distinct differentiation programs within Ag-specific CD8(+) T cell populations. Several factors contribute to these cell fate decisions, including the amount and duration of Ag, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The ICOS is not expressed on resting T cells but is rapidly upregulated upon encounter with Ag. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study, we therefore sought to determine the role of ICOS signaling on CD8(+) T cell programmed differentiation. Through the creation of novel ICOS retrogenic Ag-specific TCR-transgenic CD8(+) T cells, we interrogated the phenotype, functionality, and recall potential of CD8(+) T cells that receive early and sustained ICOS signaling during Ag exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of Ag-specific CD8(+) T cells, resulting in increased frequencies of KLRG-1(hi)CD127(lo) cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared with empty vector controls. Interestingly, however, ICOS retrogenic CD8(+) T cells also preferentially homed to nonlymphoid organs and exhibited reduced multicytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. Copyright © 2016 by The American Association of Immunologists, Inc.
Construction of two vectors for gene expression in Trichoderma reesei.
Lv, Dandan; Wang, Wei; Wei, Dongzhi
2012-01-01
We report the construction of two filamentous fungi Trichoderma reesei expression vectors, pWEF31 and pWEF32. Both vectors possess the hygromycin phosphotransferase B gene expression cassette and the strong promoter and terminator of the cellobiohydrolase 1 gene (cbh1) from T. reesei. The two newly constructed vectors can be efficiently transformed into T. reesei with Agrobacterium-mediated transformation. The difference between pWEF31 and pWEF32 is that pWEF32 has two longer homologous arms. As a result, pWEF32 easily undergoes homologous recombination. On the other hand, pWEF31 undergoes random recombination. The applicability of both vectors was tested by first generating the expression vectors pWEF31-red and pWEF32-red and then detecting the expression of the DsRed2 gene in T. reesei Rut C30. Additionally, we measured the exo-1,4-β-glucanase activity of the recombinant cells. Our work provides an effective transformation system for homologous and heterologous gene expression and gene knockout in T. reesei. It also provides a method for recombination at a specific chromosomal location. Finally, both vectors will be useful for the large-scale gene expression industry. Copyright © 2011 Elsevier Inc. All rights reserved.
Kohlbrenner, Erik; Henckaerts, Els; Rapti, Kleopatra; Gordon, Ronald E; Linden, R Michael; Hajjar, Roger J; Weber, Thomas
2012-06-01
Adeno-associated virus (AAV)-based vectors have gained increasing attention as gene delivery vehicles in basic and preclinical studies as well as in human gene therapy trials. Especially for the latter two-for both safety and therapeutic efficacy reasons-a detailed characterization of all relevant parameters of the vector preparation is essential. Two important parameters that are routinely used to analyze recombinant AAV vectors are (1) the titer of viral particles containing a (recombinant) viral genome and (2) the purity of the vector preparation, most commonly assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. An important, third parameter, the titer of total viral particles, that is, the combined titer of both genome-containing and empty viral capsids, is rarely determined. Here, we describe a simple and inexpensive method that allows the simultaneous assessment of both vector purity and the determination of the total viral particle titer. This method, which was validated by comparison with established methods to determine viral particle titers, is based on the fact that Coomassie Brilliant Blue, when bound to proteins, fluoresces in the infrared spectrum. Viral samples are separated by SDS-PAGE followed by Coomassie Brilliant Blue staining and gel analysis with an infrared laser-scanning device. In combination with a protein standard, our method allows the rapid and accurate determination of viral particle titers simultaneously with the assessment of vector purity.
Marathe, Chinmay S; Rayner, Christopher K; Lange, Kylie; Bound, Michelle; Wishart, Judith; Jones, Karen L; Kahn, Steven E; Horowitz, Michael
2017-02-01
The oral disposition index, the product of the early insulin secretory response during an oral glucose tolerance test and insulin sensitivity, is used widely for both the prediction of, and evaluation of the response to interventions, in type 2 diabetes. Gastric emptying, which determines small intestinal exposure of nutrients, modulates postprandial glycemia. The aim of this study was to determine whether the insulin secretory response and the disposition index (DI) related to gastric emptying in subjects with normal glucose tolerance. Thirty-nine subjects consumed a 350 mL drink containing 75 g glucose labeled with 99m Tc-sulfur colloid. Gastric emptying (by scintigraphy), blood glucose (G) and plasma insulin (I) were measured between t = 0-120 min. The rate of gastric emptying was derived from the time taken for 50% emptying ( T 50 ) and expressed as kcal/min. The early insulin secretory response was estimated by the ratio of the change in insulin (∆I 0-30 ) to that of glucose at 30 min (∆G 0-30 ) represented as ∆I 0-30 /∆G 0-30 Insulin sensitivity was estimated as 1/fasting insulin and the DI was then calculated as ∆I 0-30 /∆G 0-30 × 1/fasting insulin. There was a direct relationship between ∆G 0-30 and gastric emptying ( r = 0.47, P = 0.003). While there was no association of either ∆I 0-30 ( r = -0.16, P = 0.34) or fasting insulin ( r = 0.21, P = 0.20), there were inverse relationships between the early insulin secretory response ( r = -0.45, P = 0.004) and the DI ( r = -0.33, P = 0.041), with gastric emptying. We conclude that gastric emptying is associated with both insulin secretion and the disposition index in subjects with normal glucose tolerance, such that when gastric emptying is relatively more rapid, both the early insulin secretory response and the disposition index are less. These findings should be interpreted as "hypothesis generating" and provide the rationale for longitudinal studies to examine the impact of baseline rate of gastric emptying on the prospective risk of type 2 diabetes. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L
2009-01-01
Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574
Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong
2003-02-01
To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.
Ahmadi, Samira; Davami, Fatemeh; Davoudi, Noushin; Nematpour, Fatemeh; Ahmadi, Maryam; Ebadat, Saeedeh; Azadmanesh, Kayhan; Barkhordari, Farzaneh; Mahboudi, Fereidoun
2017-01-01
Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can be considered as a good option. In the present study, three PB transposon donor vectors containing both heavy and light chains were constructed, one contained independent expression cassettes while the others utilized either an Internal Ribosome Entry Site (IRES) or 2A element to express mAb. Conventional cell pools were created by transferring donor vectors into the CHO cells, whereas transposon-based cells were generated by transfecting the cells with donor vectors with a companion of a transposase-encoding helper vector, with 1:2.5 helper/donor vectors ratio. To evaluate the influence of helper/donor vectors ratio on expression, the second transposon-based cell pools were generated with 1:5 helper/donor ratio. Expression levels in the transposon-based cells were two to five -folds more than those created by conventional method except for the IRES-mediated ones, in which the observed difference increased more than 100-fold. The results were dependent on both donor vector design and vectors ratios.
Ahmadi, Samira; Davami, Fatemeh; Davoudi, Noushin; Nematpour, Fatemeh; Ahmadi, Maryam; Ebadat, Saeedeh; Azadmanesh, Kayhan; Barkhordari, Farzaneh
2017-01-01
Establishing stable Chinese Hamster Ovary (CHO) cells producing monoclonal antibodies (mAbs) usually pass through the random integration of vectors to the cell genome, which is sensitive to gene silencing. One approach to overcome this issue is to target a highly transcribed region in the genome. Transposons are useful devices to target active parts of genomes, and PiggyBac (PB) transposon can be considered as a good option. In the present study, three PB transposon donor vectors containing both heavy and light chains were constructed, one contained independent expression cassettes while the others utilized either an Internal Ribosome Entry Site (IRES) or 2A element to express mAb. Conventional cell pools were created by transferring donor vectors into the CHO cells, whereas transposon-based cells were generated by transfecting the cells with donor vectors with a companion of a transposase-encoding helper vector, with 1:2.5 helper/donor vectors ratio. To evaluate the influence of helper/donor vectors ratio on expression, the second transposon-based cell pools were generated with 1:5 helper/donor ratio. Expression levels in the transposon-based cells were two to five -folds more than those created by conventional method except for the IRES-mediated ones, in which the observed difference increased more than 100-fold. The results were dependent on both donor vector design and vectors ratios. PMID:28662065
2009-01-01
Background Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone. Methods A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection. Results Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene. Conclusion These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency. PMID:20042112
KGFR as a possible therapeutic target in middle ear cholesteatoma.
Yamamoto-Fukuda, Tomomi; Akiyama, Naotaro; Shibata, Yasuaki; Takahashi, Haruo; Ikeda, Tohru; Kohno, Michiaki; Koji, Takehiko
2014-11-01
We demonstrated that repression of keratinocyte growth factor (KGF) receptor (KGFR) could be a potentially useful strategy in the conservative treatment of middle ear cholesteatoma. Recently, the use of a selective inhibitor of the KGFR, SU5402, in an in vitro experiment resulted in the inhibition of the differentiation and proliferation of epithelial cells through KGF secretion by fibroblasts isolated from the cholesteatoma. In this study, we investigated the effects of the KGFR inhibitor during middle ear cholesteatoma formation in vivo. Based on the role of KGF in the development of cholesteatoma, Flag-hKGF cDNA driven by CMV14 promoter was transfected through electroporation into the external auditory canal of rats five times on every fourth day. Ears transfected with empty vector were used as controls. KGFR selective inhibitor (SU5402) or MEK inhibitor (PD0325901) was administered in the right ear of five rats after vector transfection. In the control, 2% DMSO in PBS was administered in the other ears after vector transfection. The use of a selective KGFR inhibitor, SU5402, completely prevented middle ear cholesteatoma formation in the rats.
Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors
Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.
2012-01-01
Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537
Optimal Cloning of PCR Fragments by Homologous Recombination in Escherichia coli
Jacobus, Ana Paula; Gross, Jeferson
2015-01-01
PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories. PMID:25774528
Kita, Kazuko; Jin, Yuan-Hu; Sun, Zhuo; Chen, Shi-Ping; Sumiya, Yoko; Hongo, Toshio; Suzuki, Nobuo
2009-06-01
We examined changes in the levels of chaperone proteins to evaluate the toxic effects of environmental chemicals in human cells in vitro. Some chaperones are up-regulated by estrogenic chemicals, but the effect is not necessarily dependent on the receptor. Thus we also investigated whether a chemical-induced change in chaperone protein expression is human estrogen receptor (hER)-dependent or not, using cultured human cell lines transfected with hERalpha cDNA or an empty vector. In the hERalpha-expressed cells, the protein levels of the heat shock protein 27 (HSP27), the glucose-regulated protein 78 (GRP78/BiP), and GRP94 increased after exposure to beta-estradiol (E(2)) (from 10(-9)M to 10(-6)M) and bisphenol A (BPA) (from 10(-6)M to 10(-5)M). On the other hand, the increase was not observed in the cells without hERalpha expression. These results suggest that the E(2)- and BPA-induced increase in the protein levels were hERalpha dependent. We next examined the effect of four phenolic chemicals similar in structure to BPA, and found that among them, 4-methoxyphenol (from 10(-6)M to 10(-5)M) increased the levels of the chaperone proteins with hERalpha dependency. Thus the human cultured cells would be suitable for evaluating whether an increase in chaperone proteins occurs upon exposure to environmental chemicals and whether the effect is ER-dependent.
Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.
Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G
2008-12-01
With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.
Lutzko, Carolyn; Senadheera, Dinithi; Skelton, Dianne; Petersen, Denise; Kohn, Donald B.
2003-01-01
In the present studies we developed lentivirus vectors with regulated, consistent transgene expression in B lymphocytes by incorporating the immunoglobulin heavy chain enhancer (Eμ) with and without associated matrix attachment regions (EμMAR) into lentivirus vectors. Incorporation of these fragments upstream of phosphoglycerate kinase (PGK) or cytomegalovirus promoters resulted in a two- to threefold increase in enhanced green fluorescent protein (EGFP) mean fluorescence intensity (MFI) in B-lymphoid but not T-lymphoid, myeloid, fibroblast, or carcinoma cell lines. A 1-log increase in EGFP expression was observed in B-lymphoid cells (but not myeloid cells) differentiated from human CD34+ progenitors in vitro transduced with Eμ- and EμMAR-containing lentivectors. Lastly, we evaluated the expression from the EμMAR element in mice 2 to 24 weeks posttransplant with transduced hematopoietic stem cells. In mice receiving vectors with the Eμ and EμMAR elements upstream of the PGK promoter, there was a 2- to 10-fold increase in EGFP expression in B cells (but not other cell types). Evaluation of the coefficient of variation of expression among different cell types demonstrated that consistent, position-independent transgene expression was observed exclusively in B cells transduced with the EμMAR-containing vector and not other cells types or vectors. Proviral genomes with the EμMAR element had increased chromatin accessibility, which likely contributed to the position independence of expression in B lymphocytes. In summary, incorporation of the EμMAR element in lentivirus vectors resulted in enhanced, position-independent expression in primary B lymphocytes. These vectors provide a useful tool for the study of B-lymphocyte biology and the development of gene therapy for disorders affecting B lymphocytes, such as immune deficiencies. PMID:12805432
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-03-06
Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics.
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-01-01
Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics. PMID:16519801
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, S.T.; Stoker, A.W.; Bissell, M.J.
1991-12-01
Retroviruses are valuable tools in studies of embryonic development, both as gene expression vectors and as cell lineage markers. In this study early chicken blastoderm cells are shown to be permissive for infection by Rous sarcoma virus and derivative replication-defective by Rous sarcoma virus and derivative replication-defective vectors, and, in contrast to previously published data, these cells will readily express viral genes. In cultured blastoderm cells, Rous sarcoma virus stably integrates and is transcribed efficiently, producing infectious virus particles. Using replication-defective vectors encoding the bacterial lacZ gene, the authors further show that blastoderms can be infected in culture and inmore » ovo. In ovo, lacZ expression is seen within 24 hours of virus inoculation, and by 96 hours stably expressing clones of cells are observed in diverse tissues throughout the embryo, including epidermis, somites, and heart, as well as in extraembryonic membranes. Given the rapid onset of vector expression and the broad range of permissive cell types, it should be feasible to use Rous sarcoma virus-derived retroviruses as early lineage markers and expression vectors beginning at the blastoderm stage of avian embryogenesis.« less
Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.
2013-01-01
The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912
Kinematic sensitivity of robot manipulators
NASA Technical Reports Server (NTRS)
Vuskovic, Marko I.
1989-01-01
Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.
Liu, Lixin; Marti, Guy P.; Wei, Xiaofei; Zhang, Xianjie; Zhang, Huafeng; Liu, Ye V.; Nastai, Manuel; Semenza, Gregg L.; Harmon, John W.
2009-01-01
Wound healing is impaired in elderly patients with diabetes mellitus. We hypothesized that age-dependent impairment of cutaneous wound healing in db/db diabetic mice: (a) would correlate with reduced expression of the transcription factor hypoxia-inducible factor 1α (HIF-1α) as well as its downstream target genes; and (b) could be overcome by HIF-1α replacement therapy. Wound closure, angiogenesis, and mRNA expression in excisional skin wounds were analyzed and circulating angiogenic cells were quantified in db/db mice that were untreated or received electroporation-facilitated HIF-1α gene therapy. HIF-1α mRNA levels in wound tissue were significantly reduced in older (4–6 months) as compared to younger (1.5–2 months) db/db mice. Expression of mRNAs encoding the angiogenic cytokines vascular endothelial growth factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, platelet derived growth factor B (PDGF-B), and placental growth factor (PLGF) was also impaired in wounds of older db/db mice. Intradermal injection of plasmid gWIZ-CA5, which encodes a constitutively active form of HIF-1α, followed by electroporation, induced increased levels of HIF-1α mRNA at the injection site on day 3 and increased levels of VEGF, PLGF, PDGF-B, and ANGPT2 mRNA on day 7. Circulating angiogenic cells in peripheral blood increased 10-fold in mice treated with gWIZ-CA5. Wound closure was significantly accelerated in db/db mice treated with gWIZ-CA5 as compared to mice treated with empty vector. Thus, HIF-1α gene therapy corrects the age-dependent impairment of HIF-1α expression, angiogenic cytokine expression, and circulating angiogenic cells that contribute to the age-dependent impairment of wound healing in db/db mice. PMID:18506785
2011-01-01
Background Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP. Results WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector. Conclusions The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1. PMID:21955916
Epigenetic Alterations Associated with CCCTC-Binding Factor Deregulation in Prostate Cancer
2012-07-01
HPV16 E6 and/or E7 prostate cell lines. We have had to reestablish stable cell lines containing inducible multiple CTCF shRNA in pTRIPZ vector in PPC...1, LNCaPs, 293T and non‐tumorigenic HPV16 E6 5 and/or E7 prostate cell lines. We have had to rederive these due to leakage from the promoter...empty pTRIPZ vector and control scrambled shRNA. f. To test the tumorigenic ability of CTCF shRNA infected non‐tumorigenic E6 / E7 cells using colony
Arazi, T; Slutsky, S G; Shiboleth, Y M; Wang, Y; Rubinstein, M; Barak, S; Yang, J; Gal-On, A
2001-04-27
Plant virus vectors provide an attractive biotechnological tool for the transient expression of foreign genes in whole plants. As yet there has been no use of recombinant viruses for the improvement of commercial crops. This is mainly because the viruses used to create vectors usually cause significant yield loss and can be transmitted in the field. A novel attenuated zucchini yellow mosaic potyvirus (AG) was used for the development of an environmentally safe non-pathogenic virus vector. The suitability of AG as an expression vector in plants was tested by analysis of two infectious viral constructs, each containing a distinct gene insertion site. Introduction of a foreign viral coat protein gene into AG genome between the P1 and HC-Pro genes, resulted in no expression in planta. In contrast, the same gene was stably expressed when inserted between NIb and CP genes, suggesting that this site is more suitable for a gene vector. Virus-mediated expression of reporter genes was observed in squash and cucumber leaves, stems, roots and edible fruit. Furthermore, AG stably expressed human interferon-alpha 2, an important human anti-viral drug, without affecting plant development and yield. Interferon biological activity was measured in cucumber and squash fruit. Together, these data corroborate a biotechnological utility of AG as a non-pathogenic vector for the expression of a foreign gene, as a benefit trait, in cucurbits and their edible fruit.
Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid
2017-03-01
There is no effective vaccine for the prevention and elimination of leishmaniasis. For this reason, we assessed the protective effects of DNA vaccines containing LeIF, TSA genes alone, or LeIF-TSA fusion against cutaneous leishmaniasis pEGFP-N1 plasmid (empty vector) and phosphate buffer saline (PBS) were used as control groups. Therefore, cellular and humoral immune responses were evaluated before and after the challenge with Leishmania major. Lesion diameter was also measured 3-12 weeks after challenge. All immunized mice with plasmid DNA encoding Leishmania antigens induced the partial immunity characterized by increased IFN-γ and IgG2a levels compared with control groups (p < 0.001). Furthermore, the immunized mice showed significant reduction in mean lesion sizes compared with mice in empty vector and PBS groups (p < 0.05). The reduction in lesion diameter was 29.3%, 34.1%, and 46.2% less in groups vaccinated with LeIF, TSA, and LeIF-TSA, respectively, than in PBS group at 12th week post infection. IFN/IL-4 and IgG2a/IgG1 ratios indicated that group receiving LeIF-TSA fusion had the highest IFN-γ and IgG2a levels. In this study, DNA immunization promoted Th1 immune response characterized by higher IFN-γ and IgG2a levels and also reduction in lesion size. These results showed that a bivalent vaccine containing two distinct antigens may induce more potent immune responses against leishmaniasis. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Rhee, Sun-Ju; Jang, Yoon Jeong; Lee, Gung Pyo
2016-06-01
Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.
Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases
Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T. Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L.; Peterson, James J.; Boye, Shannon E.; Hauswirth, William W.; Chulay, Jeffrey D.
2016-01-01
Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia. PMID:26603570
Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.
Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D
2016-01-01
Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.
Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos
2017-01-01
During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.
Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos
2017-01-01
During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919
Li, Jing; Song, Lanlin; Qiu, Yuwen; Yin, Ailan; Zhong, Mei
2014-01-01
ZNF217 is an alternatively spliced Kruppel-like transcription factor that has recently been implicated to play a role in human carcinogenesis. Here, we used immunohistochemistry (IHC) to show that ZNF217 protein is overexpressed in nearly 60% of ovarian tumor samples. The disease-free survival time was shorter in patients with positive ZNF217 expression than in ZNF217-negative patients (P=0.042). Fluorescence in situ hybridization (FISH) analysis showed ZNF217 genomic amplification in the poorly differentiated tumors, suggesting that ZNF217 is associated with the progression of ovarian cancer. Invasion was enhanced in HO-8910 cells stably transfected with constructs carrying full-length ZNF217 relative to cells transfected with the empty vector. To confirm our findings in vivo, we performed a tumorigenicity assay in nude mice inoculated with the HO-8910 overexpressing ZNF217 cells. As expected, tumors grown in the ZNF217 group were more invasive and prone to metastasis than those formed control groups. Based on these clinical and laboratory observations, we conclude that ZNF217 may contribute to ovarian cancer invasion and metastasis, and associated with worse clinical outcomes.
Watkins, Crystal C.; Sawa, Akira; Jaffrey, Samie; Blackshaw, Seth; Barrow, Roxanne K.; Snyder, Solomon H.; Ferris, Christopher D.
2000-01-01
Gastrointestinal dysfunction is common in diabetic patients. In genetic (nonobese diabetic) and toxin-elicited (streptozotocin) models of diabetes in mice, we demonstrate defects in gastric emptying and nonadrenergic, noncholinergic relaxation of pyloric muscle, which resemble defects in mice harboring a deletion of the neuronal nitric oxide synthase gene (nNOS). The diabetic mice manifest pronounced reduction in pyloric nNOS protein and mRNA. The decline of nNOS in diabetic mice does not result from loss of myenteric neurons. nNOS expression and pyloric function are restored to normal levels by insulin treatment. Thus diabetic gastropathy in mice reflects an insulin-sensitive reversible loss of nNOS. In diabetic animals, delayed gastric emptying can be reversed with a phosphodiesterase inhibitor, sildenafil. These findings have implications for novel therapeutic approaches and may clarify the etiology of diabetic gastropathy. PMID:10930440
Haut, Larissa H; Gill, Amanda L; Kurupati, Raj K; Bian, Ang; Li, Yan; Giles-Davis, Wynetta; Xiang, Zhiquan; Zhou, Xiang Yang; Ertl, Hildegund C J
2016-10-01
Adenovirus (Ad) is used extensively for construction of viral vectors, most commonly with deletion in its E1 and/or E3 genomic regions. Previously, our attempts to insert envelope proteins (Env) of HIV-1 into such vectors based on chimpanzee-derived Ad (AdC) viruses were thwarted. Here, we describe that genetic instability of an E1- and E3-deleted AdC vector of serotype C6 expressing Env of HIV-1 can be overcome by reinsertion of E3 sequences with anti-apoptotic activities. This partial E3 deletion presumably delays premature death of HEK-293 packaging cell lines due to Env-induced cell apoptosis. The same partial E3 deletion also allows for the generation of stable glycoprotein 140 (gp140)- and gp160-expressing Ad vectors based on AdC7, a distinct AdC serotype. Env-expressing AdC vectors containing the partial E3 deletion are genetically stable upon serial cell culture passaging, produce yields comparable to those of other AdC vectors, and induce transgene product-specific antibody responses in mice. A partial E3 deletion thereby allows expansion of the repertoire of transgenes that can be expressed by Ad vectors.
Suerth, Julia D; Maetzig, Tobias; Brugman, Martijn H; Heinz, Niels; Appelt, Jens-Uwe; Kaufmann, Kerstin B; Schmidt, Manfred; Grez, Manuel; Modlich, Ute; Baum, Christopher; Schambach, Axel
2012-01-01
Comparative integrome analyses have highlighted alpharetroviral vectors with a relatively neutral, and thus favorable, integration spectrum. However, previous studies used alpharetroviral vectors harboring viral coding sequences and intact long-terminal repeats (LTRs). We recently developed self-inactivating (SIN) alpharetroviral vectors with an advanced split-packaging design. In a murine bone marrow (BM) transplantation model we now compared alpharetroviral, gammaretroviral, and lentiviral SIN vectors and showed that all vectors transduced hematopoietic stem cells (HSCs), leading to comparable, sustained multilineage transgene expression in primary and secondary transplanted mice. Alpharetroviral integrations were decreased near transcription start sites, CpG islands, and potential cancer genes compared with gammaretroviral, and decreased in genes compared with lentiviral integrations. Analyzing the transcriptome and intragenic integrations in engrafting cells, we observed stronger correlations between in-gene integration targeting and transcriptional activity for gammaretroviral and lentiviral vectors than for alpharetroviral vectors. Importantly, the relatively “extragenic” alpharetroviral integration pattern still supported long-term transgene expression upon serial transplantation. Furthermore, sensitive genotoxicity studies revealed a decreased immortalization incidence compared with gammaretroviral and lentiviral SIN vectors. We conclude that alpharetroviral SIN vectors have a favorable integration pattern which lowers the risk of insertional mutagenesis while supporting long-term transgene expression in the progeny of transplanted HSCs. PMID:22334016
Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.
2001-01-01
Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351
Crosby, Catherine M; Barry, Michael A
2017-02-18
Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad's ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.
Casales, Erkuden; Aranda, Alejandro; Quetglas, Jose I; Ruiz-Guillen, Marta; Rodriguez-Madoz, Juan R; Prieto, Jesus; Smerdou, Cristian
2010-05-31
Semliki Forest virus (SFV) vectors lead to high protein expression in mammalian cells, but expression is transient due to vector cytopathic effects, inhibition of host cell proteins and RNA-based expression. We have used a noncytopathic SFV mutant (ncSFV) RNA vector to generate stable cell lines expressing two human therapeutic proteins: insulin-like growth factor I (IGF-I) and cardiotrophin-1 (CT-1). Therapeutic genes were fused at the carboxy-terminal end of Puromycin N-acetyl-transferase gene by using as a linker the sequence coding for foot-and-mouth disease virus (FMDV) 2A autoprotease. These cassettes were cloned into the ncSFV vector. Recombinant ncSFV vectors allowed rapid and efficient selection of stable BHK cell lines with puromycin. These cells expressed IGF-I and CT-1 in supernatants at levels reaching 1.4 and 8.6 microg/10(6)cells/24 hours, respectively. Two cell lines generated with each vector were passaged ten times during 30 days, showing constant levels of protein expression. Recombinant proteins expressed at different passages were functional by in vitro signaling assays. Stability at RNA level was unexpectedly high, showing a very low mutation rate in the CT-1 sequence, which did not increase at high passages. CT-1 was efficiently purified from supernatants of ncSFV cell lines, obtaining a yield of approximately 2mg/L/24 hours. These results indicate that the ncSFV vector has a great potential for the production of recombinant proteins in mammalian cells. 2010 Elsevier B.V. All rights reserved.
Hanawa, Hideki; Yamamoto, Motoko; Zhao, Huifen; Shimada, Takashi; Persons, Derek A
2009-01-01
Hematopoietic cell gene therapy using retroviral vectors has achieved success in clinical trials. However, safety issues regarding vector insertional mutagenesis have emerged. In two different trials, vector insertion resulted in the transcriptional activation of proto-oncogenes. One strategy for potentially diminishing vector insertional mutagenesis is through the use of self-inactivating lentiviral vectors containing the 1.2-kb insulator element derived from the chicken β-globin locus. However, use of this element can dramatically decrease both vector titer and transgene expression, thereby compromising its practical use. Here, we studied lentiviral vectors containing either the full-length 1.2-kb insulator or the smaller 0.25-kb core element in both orientations in the partially deleted long-terminal repeat. We show that use of the 0.25-kb core insulator rescued vector titer by alleviating a postentry block to reverse transcription associated with the 1.2-kb element. In addition, in an orientation-dependent manner, the 0.25-kb core element significantly increased transgene expression from an internal promoter due to improved transcriptional termination. This element also demonstrated barrier activity, reducing variability of expression due to position effects. As it is known that the 0.25-kb core insulator has enhancer-blocking activity, this particular insulated lentiviral vector design may be useful for clinical application. PMID:19223867
Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R
1999-04-01
The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.
Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming.
Schmitt, Christopher E; Morales, Blanca M; Schmitz, Ellen M H; Hawkins, John S; Lizama, Carlos O; Zape, Joan P; Hsiao, Edward C; Zovein, Ann C
2017-06-05
Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.
Design and construction of functional AAV vectors.
Gray, John T; Zolotukhin, Serge
2011-01-01
Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.
Mathison, Megumi; Singh, Vivek P; Chiuchiolo, Maria J; Sanagasetti, Deepthi; Mao, Yun; Patel, Vivekkumar B; Yang, Jianchang; Kaminsky, Stephen M; Crystal, Ronald G; Rosengart, Todd K
2017-02-01
The reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells improves ventricular function in myocardial infarction models. Only integrating persistent expression vectors have thus far been used to induce reprogramming, potentially limiting its clinical applicability. We therefore tested the reprogramming potential of nonintegrating, acute expression adenoviral (Ad) vectors. Ad or lentivirus vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) were validated in vitro. Sprague-Dawley rats then underwent coronary ligation and Ad-mediated administration of vascular endothelial growth factor to generate infarct prevascularization. Three weeks later, animals received Ad or lentivirus encoding G, M, or T (AdGMT or LentiGMT) or an equivalent dose of a null vector (n = 11, 10, and 10, respectively). Outcomes were analyzed by echocardiography, magnetic resonance imaging, and histology. Ad and lentivirus vectors provided equivalent G, M, and T expression in vitro. AdGMT and LentiGMT both likewise induced expression of the cardiomyocyte marker cardiac troponin T in approximately 6% of cardiac fibroblasts versus <1% cardiac troponin T expression in AdNull (adenoviral vector that does not encode a transgene)-treated cells. Infarcted myocardium that had been treated with AdGMT likewise demonstrated greater density of cells expressing the cardiomyocyte marker beta myosin heavy chain 7 compared with AdNull-treated animals. Echocardiography demonstrated that AdGMT and LentiGMT both increased ejection fraction compared with AdNull (AdGMT: 21% ± 3%, LentiGMT: 14% ± 5%, AdNull: -0.4% ± 2%; P < .05). Ad vectors are at least as effective as lentiviral vectors in inducing cardiac fibroblast transdifferentiation into induced cardiomyocyte-like cells and improving cardiac function in postinfarct rat hearts. Short-term expression Ad vectors may represent an important means to induce cardiac cellular reprogramming in humans. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Liu, Shangdian; Liu, Zonghong; Li, Lulu; Liu, Pengfei; Liu, Hongyu
2015-05-13
To determine whether keeping the heart empty and beating is an effective technique to preserve hypertrophied pig hearts, and to investigate the underlying mechanism. Ten Bama Miniature pigs with hypertrophied hearts were divided into 2 groups (n = 5 in each group). One group underwent normothermic normokalemic simultaneous perfusion (NNSP). The other group was subjected to normothermic hypermokalemic simultaneous perfusion (NHSP) and used as controls. Cardiac contractive function, myocardial energy metabolism and myocardial perfusion were assessed using magnetic resonance imaging. Western blot analysis was carried out to determine the expression of Troponin I (cTnI), Troponin T (cTnT), SM-MHC, Casapase-3 and PARP4. TUNEL assay was used to detect apoptotic cardiomyocytes. Keeping the heart empty and beating with NNSP improved the preservation of contractile function in comparison with cardioplegic arrest using NHSP. No significant differences existed in the effects of NNSP and NHSP in maintaining myocardial energy metabolism. 13 % perfusion defects areas were found in one heart in the NHSP group, whereas none was found in all other hearts in both groups. The expressions of cTnI, cTnT, Casapase-3 and PARP4 in NHSP group were abundantly increased compared to NNSP group as measured by Western blotting. Conversely, the expression of SM-MHC in NHSP group was reduced compared with NNSP group. The number of TUNEL positive nuclei per mm(2) area was significantly increased in NHSP group compared with NNSP group. Keeping the heart beating with NNSP is an alternative technique to preserve hypertrophied hearts during valvular surgery.
Construction of siRNA/miRNA expression vectors based on a one-step PCR process
Xu, Jun; Zeng, Jie Qiong; Wan, Gang; Hu, Gui Bin; Yan, Hong; Ma, Li Xin
2009-01-01
Background RNA interference (RNAi) has become a powerful means for silencing target gene expression in mammalian cells and is envisioned to be useful in therapeutic approaches to human disease. In recent years, high-throughput, genome-wide screening of siRNA/miRNA libraries has emerged as a desirable approach. Current methods for constructing siRNA/miRNA expression vectors require the synthesis of long oligonucleotides, which is costly and suffers from mutation problems. Results Here we report an ingenious method to solve traditional problems associated with construction of siRNA/miRNA expression vectors. We synthesized shorter primers (< 50 nucleotides) to generate a linear expression structure by PCR. The PCR products were directly transformed into chemically competent E. coli and converted to functional vectors in vivo via homologous recombination. The positive clones could be easily screened under UV light. Using this method we successfully constructed over 500 functional siRNA/miRNA expression vectors. Sequencing of the vectors confirmed a high accuracy rate. Conclusion This novel, convenient, low-cost and highly efficient approach may be useful for high-throughput assays of RNAi libraries. PMID:19490634
Geiling, Benjamin; Vandal, Guillaume; Posner, Ada R.; de Bruyns, Angeline; Dutchak, Kendall L.; Garnett, Samantha; Dankort, David
2013-01-01
The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors. Using this system to recombine 3 or 4 modular plasmid components it is possible to generate viral vectors expressing cDNAs with or without inhibitory RNAs (shRNAmirs). In addition, we demonstrate a method to rapidly produce and triage novel shRNAmirs for use with this system. Once strong candidate shRNAmirs have been identified they may be linked together in tandem to knockdown expression of multiple targets simultaneously or to improve the knockdown of a single target. Here we demonstrate that these recombinant vectors are able to express cDNA and effectively knockdown protein expression using both cell culture and animal model systems. PMID:24146852
Wu, Jianwei; Cai, Lei; Qian, Wei; Jiao, Liyuan; Li, Jiangfeng; Song, Xiaoli; Wang, Jihua
2015-07-01
To construct a prokaryotic expression vector of human neutrophil gelatinase associated lipocalin (NGAL) and identify the bioactivity of the fusion protein. The cDNA of human NGAL obtained from GenBank was linked to a cloning vector to construct the prokaryotic expression vector pCold-NGAL. Then the vector was transformed into E.coli BL21(DE3) plysS. Under the optimal induction condition, the recombinant NGAL (rNGAL) was expressed and purified by Ni Sepharose 6 Fast Flow affinity chromatography. The purity and activity of the rNGAL were respectively identified by SDS-PAGE and Western blotting combined with NGAL reagent (Latex enhanced immunoturbidimetry). Restriction enzyme digestion and nucleotide sequencing proved that the expression vector pCold-NGAL was successfully constructed. Under the optimal induction condition that we determined, the rNGAL was expressed in soluble form in E.coli BL21(DE3) plysS. The relative molecular mass of the rNGAL was 25 000, and its purity was more than 98.0%. Furthermore, Western blotting and immunoturbidimetry indicated that the rNGAL reacted with NGAL mAb specifically. Human rNGAL of high purity and bioactivity was successfully constructed in E.coli BL21(DE3) plysS using the expression vector pCold-NGAL.
[Construction and expression of the targeting super-antigen EGF-SEA fusion gene].
Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng
2014-05-01
To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.
Retrovirus-based vectors for transient and permanent cell modification.
Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel
2015-10-01
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of nonhuman adenoviruses as vaccine vectors
Bangari, Dinesh S.; Mittal, Suresh K.
2006-01-01
Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508
A dual host vector for Fab phage display and expression of native IgG in mammalian cells.
Tesar, Devin; Hötzel, Isidro
2013-10-01
A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.
Nephron segment-specific gene expression using AAV vectors.
Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R
2018-02-26
AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin
2014-09-01
Human immunodeficiency virus (HIV)-associated sensory neuropathy is a common neurological complication of HIV infection affecting up to 30% of HIV-positive individuals. However, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments for HIV-related neuropathic pain (NP). In this study, we tested the hypothesis that inhibition of proinflammatory factors with overexpression of interleukin (IL)-10 reduces HIV-related NP in a rat model. NP was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. The hindpaws of rats were inoculated with nonreplicating herpes simplex virus (HSV) vectors expressing anti-inflammatory cytokine IL-10 or control vector. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The mechanical threshold response was assessed over time using the area under curves. The expression of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 in both the lumbar spinal cord and the L4/5 dorsal root ganglia (DRG), was examined at 14 and 28 days after vector inoculation using Western blots. We found that in the gp120-induced NP model, IL-10 overexpression mediated by the HSV vector resulted in a significant elevation of the mechanical threshold that was apparent on day 3 after vector inoculation compared with the control vector (P < 0.001). The antiallodynic effect of the single HSV vector inoculation expressing IL-10 lasted >28 days. The area under curve in the HSV vector expressing IL-10 was increased compared with that in the control vector (P < 0.0001). HSV vectors expressing IL-10 reversed the upregulation of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 expression at 14 and/or 28 days in the DRG and/or the spinal dorsal horn. Our studies demonstrate that blocking the signaling of these proinflammatory molecules in the DRG and/or the spinal cord using the HSV vector expressing IL-10 is able to reduce HIV-related NP. These results provide new insights on the potential mechanisms of HIV-associated NP and a proof of concept for treating painful HIV sensory neuropathy with this type of gene therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph
2007-01-01
Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity inmore » RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity in the absence of RANKL. Taken together, our results suggest that RANKL signals through TRAF6 and that NFATc1 is a downstream effector of RANKL signaling to modulate MMP-9 gene expression during osteoclast differentiation.« less
Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri
2006-01-01
Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events. PMID:16973752
Reporter gene expression in fish following cutaneous infection with pantropic retroviral vectors.
Paul, T A; Burns, J C; Shike, H; Getchell, R; Bowser, P R; Whitlock, K E; Casey, J W
2001-06-01
A central issue in gene delivery systems is choosing promoters that will direct defined and sustainable levels of gene expression. Pantropic retroviral vectors provide a means to insert genes into either somatic or germline cells. In this study, we focused on somatic cell infection by evaluating the activity of 3 promoters inserted by vectors into fish cell lines and fish skin using pantropic retroviruses. In bluegill and zebrafish cell lines, the highest levels of luciferase expression were observed from the 5' murine leukemia virus long terminal repeat of the retroviral vector. The Rous sarcoma virus long terminal repeat and cytomegalovirus early promoter, as internal promoters, generated lower levels of luciferase. Luciferase reporter vectors infected zebrafish skin, as measured by the presence of viral DNA, and expressed luciferase. We infected developing walleye dermal sarcomas with retroviral vectors to provide an environment with enhanced cell proliferation, a condition necessary for integration of the provirus into the host genome. We demonstrated a 4-fold to 7-fold increase in luciferase gene expression in tumor tissue over infections in normal walleye skin.
Generation of mammalian cells stably expressing multiple genes at predetermined levels.
Liu, X; Constantinescu, S N; Sun, Y; Bogan, J S; Hirsch, D; Weinberg, R A; Lodish, H F
2000-04-10
Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.
Park, Jong-Uk; Jo, Jae-Hyung; Kim, Young-Ji; Chung, So-Sun; Lee, Jin-Ho; Lee, Hyune Hwan
2008-04-01
The heat-inducible expression vectors for Corynebacterium glutamicum and C. ammoniagenes were constructed by using the lambdaOL1 and the cryptic promoters, CJ1 and CJ4 that express genes constitutively in C. ammoniagenes.. Although the promoters were isolated from C. ammoniagenes, CJ1 and CJ4 were also active in C. glutamicum. To construct vectors, the OL1 from the lambdaPL promoter was isolated and fused to the CJ1 and CJ4 promoters by recombinant PCR. The resulting artificial promoters, CJ1O and CJ4O, which have one lambdaOL1, and CJ1OX2, which has two successive lambdaOL1, were fused to the green fluorescent protein (GFP) gene followed by subcloning into pCES208. The expression of GFP in the corynebacteria harboring the vectors was regulated successfully by the temperature sensitive cI857 repressor. Among them, C. ammoniagenes harboring plasmid pCJ1OX2G containing GFP fused to CJ1OX2 showed more GFP than the other ones and the expression was tightly regulated by the repressor. To construct the generally applicable expression vector using the plasmid pCJ1OX2G, the His-tag, enterokinase (EK) moiety, and the MCS were inserted in front of the GFP gene. Using the vector, the expression of pyrR from C. glutamicum was tried by temperature shift-up. The results indicated that the constructed vectors (pCeHEMG) can be successfully used in the expression and regulation of foreign genes in corynebacteria.
Liu, Qiang; White, Lindsay R; Clark, Sharon A; Heffner, Daniel J; Winston, Brent W; Tibbles, Lee Anne; Muruve, Daniel A
2005-12-01
In gene therapy, the innate immune system is a significant barrier to the effective application of adenovirus (Ad) vectors. In kidney epithelium-derived (REC) cells, serotype 5 Ad vectors induce the expression of the chemokine CXCL10 (IP-10), a response that is dependent on NFkappaB. Compared to the parental vector AdLuc, transduction with the RGD-deleted vector AdL.PB resulted in reduced CXCL10 activation despite increasing titers, implying that RGD-alpha(V) integrin interactions contribute to adenovirus induction of inflammatory genes. Akt, a downstream effector of integrin signaling, was activated within 10 min of transduction with Ad vectors in a dose-dependent manner. Akt activation was not present following transduction with AdL.PB, confirming the importance of capsid-alpha(V) integrin interactions in Ad vector Akt activation. Inhibition of the phosphoinositide-3-OH kinase/Akt pathway by Wortmannin or Ly294002 compounds decreased Ad vector induction of CXCL10 mRNA. Similarly, adenovirus-mediated overexpression of the dominant negative AktAAA decreased CXCL10 mRNA expression compared to the reporter vector AdLacZ alone. The effect of Akt on CXCL10 mRNA expression occurred via NFkappaB-dependent transcriptional activation, since AktAAA overexpression and Ly294002 both inhibited CXCL10 and NFkappaB promoter activation in luciferase reporter experiments. These results show that Akt plays a role in the Ad vector activation of NFkappaB and CXCL10 expression. Understanding the mechanism underlying the regulation of host immunomodulatory genes by adenovirus vectors will lead to strategies that will improve the efficacy and safety of these agents for clinical use.
The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.
Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon
2012-12-01
The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.
Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.
Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo
2014-01-01
A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.
Ono, Motoharu; Yamada, Kayo; Avolio, Fabio; Afzal, Vackar; Bensaddek, Dalila; Lamond, Angus I
2015-01-01
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.
Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression
Lisowski, Leszek; Lau, Ashley; Wang, Zhongya; Zhang, Yue; Zhang, Feijie; Grompe, Markus; Kay, Mark A
2012-01-01
Although recombinant adeno-associated virus (rAAV) vectors are proving to be efficacious in clinical trials, the episomal character of the delivered transgene restricts their effectiveness to use in quiescent tissues, and may not provide lifelong expression. In contrast, integrating vectors enhance the risk of insertional mutagenesis. In an attempt to overcome both of these limitations, we created new rAAV-rDNA vectors, with an expression cassette flanked by ribosomal DNA (rDNA) sequences capable of homologous recombination into genomic rDNA. We show that after in vivo delivery the rAAV-rDNA vectors integrated into the genomic rDNA locus 8–13 times more frequently than control vectors, providing an estimate that 23–39% of the integrations were specific to the rDNA locus. Moreover, a rAAV-rDNA vector containing a human factor IX (hFIX) expression cassette resulted in sustained therapeutic levels of serum hFIX even after repeated manipulations to induce liver regeneration. Because of the relative safety of integration in the rDNA locus, these vectors expand the usage of rAAV for therapeutics requiring long-term gene transfer into dividing cells. PMID:22990671
Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.
Killiny, Nabil; Almeida, Rodrigo P P
2009-12-29
Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.
Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc
2017-07-25
Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of the inducible vector using the same promoter. Finally, we used gfp as a reporter gene in combination with the two promoters Pgrac01 and Pgrac100 to test the new vector types. The GFP expression levels could be repressed at least 1.5 times for the Pgrac01-gfp+ inducer-free construct in E. coli. The inducer-free constructs Pgrac01-gfp+ and Pgrac100-gfp+ allowed GFP expression at high levels from 23 × 10 4 to 32 × 10 4 RFU units and 9-13% of total intracellular proteins. We could reconfirm the two major advantages of the new inducer-free expression plasmids: (1) Strong repression of the target gene expression in the E. coli cloning strain, and (2) production of the target protein at high levels in B. subtilis in the absence of the inducer. We propose a general strategy to generate inducer-free expression vector by using IPTG-inducible vectors, and more specifically we developed inducer-free expression plasmids using IPTG-inducible promoters in the absence of the LacI repressor. These plasmids could be an excellent choice for high-level production of recombinant proteins in B. subtilis without the addition of inducer and at the same time maintaining a low basal level of the recombinant proteins in E. coli. The repression of the recombinant gene expression would facilitate cloning of genes that potentially inhibit the growth of E. coli cloning strains. The inducer-free expression plasmids will be extended versions of the current available IPTG-inducible expression vectors for B. subtilis, in which all these vectors use the same cognate promoters. These inducer-free and previously developed IPTG-inducible expression plasmids will be a useful cassette to study gene expression at a small scale up to a larger scale up for the production of recombinant proteins.
Dynamics in the Decompositions Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harding, John
2017-12-01
In Harding (Trans. Amer. Math. Soc. 348(5), 1839-1862 1996) it was shown that the direct product decompositions of any non-empty set, group, vector space, and topological space X form an orthomodular poset Fact X. This is the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with other types of structures. Here we develop dynamics and an abstract version of a time independent Schrödinger's equation in the setting of decompositions by considering representations of the group of real numbers in the automorphism group of the orthomodular poset Fact X of decompositions.
Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.
2010-01-01
The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859
Manoharan, Vinoth K; Khattar, Sunil K; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2018-06-12
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin
2015-06-01
Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.
Modification and identification of a vector for making a large phage antibody library.
Zhang, Guo-min; Chen, Yü-ping; Guan, Yuan-zhi; Wang, Yan; An, Yun-qing
2007-11-20
The large phage antibody library is used to obtain high-affinity human antibody, and the Loxp/cre site-specific recombination system is a potential method for constructing a large phage antibody library. In the present study, a phage antibody library vector pDF was reconstructed to construct diabody more quickly and conveniently without injury to homologous recombination and the expression function of the vector and thus to integrate construction of the large phage antibody library with the preparation of diabodies. scFv was obtained by overlap polymerase chain reaction (PCR) amplification with the newly designed VL and VH extension primers. loxp511 was flanked by VL and VH and the endonuclease ACC III encoding sequences were introduced on both sides of loxp511. scFv was cloned into the vector pDF to obtain the vector pDscFv. The vector expression function was identified and the feasibility of diabody preparation was evaluated. A large phage antibody library was constructed in pDscFv. Several antigens were used to screen the antibody library and the quality of the antibody library was evaluated. The phage antibody library expression vector pDscFv was successfully constructed and confirmed to express functional scFv. The large phage antibody library constructed using this vector was of high diversity. Screening of the library on 6 antigens confirmed the generation of specific antibodies to these antigens. Two antibodies were subjected to enzymatic digestion and were prepared into diabody with functional expression. The reconstructed vector pDscFv retains its recombination capability and expression function and can be used to construct large phage antibody libraries. It can be used as a convenient and quick method for preparing diabodies after simple enzymatic digestion, which facilitates clinical trials and application of antibody therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kun; Sun, Guoxun; Lv, Zhiyuan
Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functionalmore » similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.« less
RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea.
Kumar, Sanjeev; Tanti, Bhaben; Patil, Basavaprabhu L; Mukherjee, Sunil Kumar; Sahoo, Lingaraj
2017-01-01
Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea.
RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea
Kumar, Sanjeev; Tanti, Bhaben; Patil, Basavaprabhu L.; Mukherjee, Sunil Kumar
2017-01-01
Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea. PMID:29077738
Jackson, Kasey L.; Lin, Wen-Lang; Miriyala, Sumitra; Dayton, Robert D.; Panchatcharam, Manikandan; McCarthy, Kevin J.; Castanedes-Casey, Monica; Dickson, Dennis W.; Klein, Ronald L.
2017-01-01
One of the proteins most frequently found in neuropathological lesions is the ubiquitin binding protein p62 (sequestosome 1). Post-mortem analysis of p62 is a defining diagnostic marker in several neurodegenerative diseases including amyotrophic lateral sclerosis and inclusion body myositis. Since p62 functions in protein degradation pathways including autophagy, the build-up of p62-positive inclusions suggests defects in protein clearance. p62 was expressed unilaterally in the rat substantia nigra with an adeno-associated virus vector (AAV9) in order to study p62 neuropathology. Inclusions formed within neurons from several days to several weeks after gene transfer. By electron microscopy, the inclusions were found to contain packed 10 nm thick filaments, and mitochondria cristae structure was disrupted, resulting in the formation of empty spaces. In corollary cell culture transfections, p62 clearly impaired mitochondrial function. To probe for potential effects on macroautophagy, we co-expressed p62 with a double fluorescent tagged reporter for the autophagosome protein LC3 in the rat. p62 induced a dramatic and specific dissociation of the two tags. By 12 weeks, a rotational behavior phenotype manifested, consistent with a significant loss of dopaminergic neurons analyzed post-mortem. p62 overexpression resulted in a progressive and robust pathology model with neuronal inclusions and neurodegeneration. p62 gene transfer could be a novel methodological probe to disrupt mitochondrial function or autophagy in the brain and other tissues in vivo. PMID:28076378
Jackson, Kasey L; Lin, Wen-Lang; Miriyala, Sumitra; Dayton, Robert D; Panchatcharam, Manikandan; McCarthy, Kevin J; Castanedes-Casey, Monica; Dickson, Dennis W; Klein, Ronald L
2017-01-01
One of the proteins most frequently found in neuropathological lesions is the ubiquitin binding protein p62 (sequestosome 1). Post-mortem analysis of p62 is a defining diagnostic marker in several neurodegenerative diseases including amyotrophic lateral sclerosis and inclusion body myositis. Since p62 functions in protein degradation pathways including autophagy, the build-up of p62-positive inclusions suggests defects in protein clearance. p62 was expressed unilaterally in the rat substantia nigra with an adeno-associated virus vector (AAV9) in order to study p62 neuropathology. Inclusions formed within neurons from several days to several weeks after gene transfer. By electron microscopy, the inclusions were found to contain packed 10 nm thick filaments, and mitochondria cristae structure was disrupted, resulting in the formation of empty spaces. In corollary cell culture transfections, p62 clearly impaired mitochondrial function. To probe for potential effects on macroautophagy, we co-expressed p62 with a double fluorescent tagged reporter for the autophagosome protein LC3 in the rat. p62 induced a dramatic and specific dissociation of the two tags. By 12 weeks, a rotational behavior phenotype manifested, consistent with a significant loss of dopaminergic neurons analyzed post-mortem. p62 overexpression resulted in a progressive and robust pathology model with neuronal inclusions and neurodegeneration. p62 gene transfer could be a novel methodological probe to disrupt mitochondrial function or autophagy in the brain and other tissues in vivo.
Zhang, H; Su, L; Müller, S; Tighiouart, M; Xu, Z; Zhang, X; Shin, H J C; Hunt, J; Sun, S-Y; Shin, D M; Chen, Z(G)
2008-01-01
Caveolin-1 (Cav-1) plays an important role in modulating cellular signalling, but its role in metastasis is not well defined. A significant reduction in Cav-1 levels was detected in lymph node metastases as compared with primary tumour of head and neck squamous cell carcinoma (HNSCC) specimens (P<0.0001), confirming the downregulation of Cav-1 observed in a highly metastatic M4 cell lines derived from our orthotopic xenograft model. To investigate the function of Cav-1 in metastasis of HNSCC, we compared stable clones of M4 cells carrying human cav-1 cDNA (CavS) with cells expressing an empty vector (EV) in vitro and in the orthotopic xenograft model. Overexpression of Cav-1 suppressed growth of the CavS tumours compared with the EV tumours. The incidence of lung metastases was significantly lower in animals carrying CavS tumours than those with EV tumours (P=0.03). In vitro, CavS cells displayed reduced cell growth, invasion, and increased anoikis compared with EV cells. In CavS cells, Cav-1 formed complex with integrin β1 and Src. Further application of integrin β1 neutralising antibody or Src inhibitor PP2 to EV cells illustrated similar phenotypes as CavS cells, suggesting that Cav-1 may play an inhibitory role in tumorigenesis and lung metastasis through regulating integrin β1- and Src-mediated cell–cell and cell–matrix interactions. PMID:19002186
Billat, Pierre-André; Ossman, Tahani; Saint-Marcoux, Franck; Essig, Marie; Rerolle, Jean-Philippe; Kamar, Nassim; Rostaing, Lionel; Kaminski, Hannah; Fabre, Gabin; Otyepka, Michal; Woillard, Jean-Baptiste; Marquet, Pierre; Trouillas, Patrick; Picard, Nicolas
2016-09-01
Ganciclovir (GCV) is the cornerstone of cytomegalovirus prevention and treatment in transplant patients. It is associated with problematic adverse hematological effects in this population of immunosuppressed patients, which may lead to dose reduction thus favoring resistance. GCV crosses the membranes of cells, is activated by phosphorylation, and then stops the replication of viral DNA. Its intracellular accumulation might favor host DNA polymerase inhibition, hence toxicity. Following this hypothesis, we investigated the association between a selected panel of membrane transporter polymorphisms and the evolution of neutrophil counts in n=174 renal transplant recipients. An independent population of n=96 renal transplants served as a replication and experiments using HEK293T-transfected cells were performed to validate the clinical findings. In both cohorts, we found a variant in ABCC4 (rs11568658) associated with decreased neutrophil counts following valganciclovir (GCV prodrug) administration (exploratory cohort: β±SD=-0.68±0.28, p=0.029; replication cohort: β±SD=-0.84±0.29, p=0.0078). MRP4-expressing cells showed decreased GCV accumulation as compared to negative control cells (transfected with an empty vector) (-61%; p<0.0001). The efflux process was almost abolished in cells expressing MRP4 rs11568658 variant protein. Molecular dynamic simulations of GCV membrane crossing showed a preferred location of the drug just beneath the polar head group region, which supports its interaction with efflux transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Xiufang; Gu, Renjun; Hu, Weimin; Sun, Zhitang; Wang, Gaiqing; Wang, Li; Xu, Yuming
2018-06-01
The aim of the present study was to identify the effect of heme oxygenase (HO)-1 gene on cerebral ischemia-reperfusion injury. Sprague-Dawley rats were divided randomly into four groups: Sham group, vehicle group, empty adenovirus vector (Ad) group and recombinant HO-1 adenovirus (Ad-HO-1) transfection group. Rats in the vehicle, Ad and Ad-HO-1 groups were respectively injected with saline, Ad or Ad-HO-1 for 3 days prior to cerebral ischemia-reperfusion injury. Subsequently, the middle cerebral artery occlusion method was used to establish the model of cerebral ischemia-reperfusion injury. Following the assessment of neurological function, rats were sacrificed, and the infarction volume and apoptotic index in rat brains were measured. Furthermore, the protein expression levels of HO-1 in brain tissues were detected using western blot analysis. Results indicated that the neurological score of the Ad-HO-1 group was significantly increased compared with the Ad or vehicle groups, respectively (P<0.001). The volume of cerebral infarction and the index score of neuronal apoptosis in the vehicle and Ad groups was significantly increased compared with the Ad-HO-1 group (P<0.01). The death of neuronal cells following cerebral ischemia-reperfusion injury reduced remarkably induced by over-expression of HO-1. These findings suggest a neuroprotective role of HO-1 against brain injury induced by transient cerebral ischemia-reperfusion injury.
Liu, N; Shi, H G; Zhang, W; Gu, B
2016-11-09
Objective: To investigate the crosstalk between canonical Wnt/β-catenin and noncanonical Wnt/Ca 2+ pathway in osteoblast differentiation process of periodontal ligament stem cell (PDLSC) in inflammatory microenvironments. Methods: PDLSCs were obtained from human healthy individuals(H-PDLSC) and patients with periodontitis(P-PDLSC). The H/P-PDLSCs were transfected with β-catenin siRNA. Cell morphology was observed under fluorescent microscope and transfection efficiency was easured by Western blotting after transfection of PDLSC. The mRNA expressions of Runt-related transcription factor 2(Runx2), β-catenin and nemo like kinase(NLK) were detected by real time PCR, the protein expressions of calcium/calmodulin-dependent protein kinase Ⅱ (CaMK Ⅱ) and NLK were examined by Western blotting and the CaMK Ⅱ was observed by immunofluorescence staining, respectively. Results: The β-catenin expressions in H/P-PDLSCs were inhibited specifically and efficiently by treatment of β-catenin-siRNA for 24 h. After a 3-day-osteogenic process, results of real-time quantitative PCR showed that the Runx2 mRNA expression in P-PDLSC siRNA β-catenin transfected group(4.553 ± 0.659) was significantly higher than that in P-PDLSC empty plasmid control group(1.918 ± 0.315) ( P= 0.000). A similar trend was observed in the NLK mRNA expression tests(7.341 ± 1.331 vs. 5.664 ± 0.792) ( P= 0.030). Accordingly, the protein expression levels of CaMK Ⅱ, NLK were higher in P-PDLSC siRNA β-catenin transfected group than that in P-PDLSC empty plasmid control group in osteogenic differentiation condition for 3 days. CaMKⅡ was more strongly induced in P-PDLSC siRNA β-catenin group than that in P-PDLSC empty plasmid control group after PDLSC cultured in osteogenic medium for 3 days. Conclusions: Both canonical Wnt/β-catenin and noncanonical Wnt/Ca 2+ pathway could regulate the osteogenic differentiation potential of P-PDLSC. Suppression of β-catenin by siRNA promoted osteogenic differentiation via increasing noncanonical Wnt signaling pathway of PDLSC in inflammatory microenvironments.
Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan
2015-01-01
Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction. PMID:26074971
Xue, Xiaodong; Liu, Yu; Zhang, Jian; Liu, Tao; Yang, Zhonglu; Wang, Huishan
2015-01-01
Objectives. Low survival rate of mesenchymal stem cells (MSCs) severely limited the therapeutic efficacy of cell therapy in the treatment of myocardial infarction (MI). Bcl-xL genetic modification might enhance MSC survival after transplantation. Methods. Adult rat bone marrow MSCs were modified with human Bcl-xL gene (hBcl-xL-MSCs) or empty vector (vector-MSCs). MSC apoptosis and paracrine secretions were characterized using flow cytometry, TUNEL, and ELISA in vitro. In vivo, randomized adult rats with MI received myocardial injections of one of the three reagents: hBcl-xL-MSCs, vector-MSCs, or culture medium. Histochemistry, TUNEL, and echocardiography were carried out to evaluate cell engraftment, apoptosis, angiogenesis, scar formation, and cardiac functional recovery. Results. In vitro, cell apoptosis decreased 43%, and vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and plate-derived growth factor (PDGF) increased 1.5-, 0.7-, and 1.2-fold, respectively, in hBcl-xL-MSCs versus wild type and vector-MSCs. In vivo, cell apoptosis decreased 40% and 26% in hBcl-xL-MSC group versus medium and vector-MSC group, respectively. Similar results were observed in cell engraftment, angiogenesis, scar formation, and cardiac functional recovery. Conclusions. Genetic modification of MSCs with hBcl-xL gene could be an intriguing strategy to improve the therapeutic efficacy of cell therapy in the treatment of heart infarction.
Applications of lentiviral vectors in molecular imaging.
Chatterjee, Sushmita; De, Abhijit
2014-06-01
Molecular imaging provides the ability of simultaneous visual and quantitative estimation of long term gene expression directly from living organisms. To reveal the kinetics of gene expression by imaging method, often sustained expression of the transgene is required. Lentiviral vectors have been extensively used over last fifteen years for delivery of a transgene in a wide variety of cell types. Lentiviral vectors have the well known advantages such as sustained transgene delivery through stable integration into the host genome, the capability of infecting non-dividing and dividing cells, broad tissue tropism, a reasonably large carrying capacity for delivering therapeutic and reporter gene combinations. Additionally, they do not express viral proteins during transduction, have a potentially safe integration site profile, and a relatively easy system for vector manipulation and infective viral particle production. As a result, lentiviral vector mediated therapeutic and imaging reporter gene delivery to various target organs holds promise for the future treatment. In this review, we have conducted a brief survey of important lentiviral vector developments in diverse biomedical fields including reproductive biology.
Genetically modified pigs produced with a nonviral episomal vector
Manzini, Stefano; Vargiolu, Alessia; Stehle, Isa M; Bacci, Maria Laura; Cerrito, Maria Grazia; Giovannoni, Roberto; Zannoni, Augusta; Bianco, Maria Rosaria; Forni, Monica; Donini, Pierluigi; Papa, Michele; Lipps, Hans J; Lavitrano, Marialuisa
2006-01-01
Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy. PMID:17101993
Kashyap, Prakriti; Deswal, Renu
2017-06-01
Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.
2015-01-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695
Reflections on the early development of poxvirus vectors.
Moss, Bernard
2013-09-06
Poxvirus expression vectors were described in 1982 and quickly became widely used for vaccine development as well as research in numerous fields. Advantages of the vectors include simple construction, ability to accommodate large amounts of foreign DNA and high expression levels. Numerous poxvirus-based veterinary vaccines are currently in use and many others are in human clinical trials. The early reports of poxvirus vectors paved the way for and stimulated the development of other viral vectors and recombinant DNA vaccines. Published by Elsevier Ltd.
Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.
2017-01-01
We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072
Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying
2008-02-01
To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.
VGLL3 expression is associated with a tumor suppressor phenotype in epithelial ovarian cancer.
Gambaro, Karen; Quinn, Michael C J; Wojnarowicz, Paulina M; Arcand, Suzanna L; de Ladurantaye, Manon; Barrès, Véronique; Ripeau, Jean-Sébastien; Killary, Ann M; Davis, Elaine C; Lavoie, Josée; Provencher, Diane M; Mes-Masson, Anne-Marie; Chevrette, Mario; Tonin, Patricia N
2013-06-01
Previous studies have implicated vestigial like 3 (VGLL3), a chromosome 3p12.3 gene that encodes a putative transcription co-factor, as a candidate tumor suppressor gene (TSG) in high-grade serous ovarian carcinomas (HGSC), the most common type of epithelial ovarian cancer. A complementation analysis based on microcell-mediated chromosome transfer (MMCT) using a centric fragment of chromosome 3 (der3p12-q12.1) into the OV-90 ovarian cancer cell line haploinsufficient for 3p and lacking VGLL3 expression was performed to assess the effect on tumorigenic potential and growth characteristics. Genetic characterization of the derived MMCT hybrids revealed that only the hybrid that contained an intact VGLL3 locus exhibited alterations of tumorigenic potential in a nude mouse xenograft model and various in vitro growth characteristics. Only stable OV-90 transfectant clones expressing low levels of VGLL3 were derived. These clones exhibited an altered cytoplasmic morphology characterized by numerous single membrane bound multivesicular-bodies (MVB) that were not attributed to autophagy. Overexpression of VGLL3 in OV-90 was achieved using a lentivirus-based tetracycline inducible gene expression system, which also resulted in MVB formation in the infected cell population. Though there was no significant differences in various in vitro and in vivo growth characteristics in a comparison of VGLL3-expressing clones with empty vector transfectant controls, loss of VGLL3 expression was observed in tumors derived from mouse xenograft models. VGLL3 gene and protein expression was significantly reduced in HGSC samples (>98%, p < 0.05) relative to either normal ovarian surface epithelial cells or epithelial cells of the fallopian tube, possible tissues of origin of HGSC. Also, there appeared to be to be more cases with higher staining levels in stromal tissue component from HGSC cases that had a prolonged disease-free survival. The results taken together suggest that VGLL3 is involved in tumor suppressor pathways, a feature that is characterized by the absence of VGLL3 expression in HGSC samples. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Bryan E.; Patricio, Juliana Rotelli; Program in Biotechnology, University of Sao Paulo
2006-10-06
We have constructed a lentiviral vector with expression limited to cells presenting active E2F-1 protein, a potential advantage for gene therapy of proliferative diseases. For the FE2FLW vector, the promoter region of the human E2F-1 gene was utilized to drive expression of luciferase cDNA, included as a reporter of viral expression. Primary, immortalized, and transformed cells were transduced with the FE2FLW vector and cell cycle alterations were induced with serum starvation/replacement, contact inhibition or drug treatment, revealing cell cycle-dependent changes in reporter activity. Forced E2F-1 expression, but not E2F-2 or E2F-3, increased reporter activity, indicating a major role for thismore » factor in controlling expression from the FE2FLW virus. We show the utility of this vector as a reporter of E2F-1 and proliferation-dependent cellular alterations upon cytotoxic/cytostatic treatment, such as the introduction of tumor suppressor genes. We propose that the FE2FLW vector may be a starting point for the development of gene therapy strategies for proliferative diseases, such as cancer or restinosis.« less
Aziminia, Parastoo; Pilehchian-Langroudi, Reza; Esmaeilnia, Kasra
2016-08-01
Clostridium perfringens, a Gram-positive obligate anaerobic bacterium, is able to form resistant spores which are widely distributed in the environment. C. perfringens is subdivided into five types A to E based on its four major alpha, beta, epsilon and iota toxins. The aim of the present study was cloning and expression of C. perfringens type D vaccine strain epsilon toxin gene. Genomic DNA was extracted and the epsilon toxin gene was amplified using Pfu DNA polymerase. The PCR product was cloned into pJET1.2/blunt cloning vector. The recombinant vector (pJETε) was sequenced using universal primers. At the next step epsilon toxin gene was subcloned into pET22b(+) expression vector and transformed into E. coli Rosetta (DE3) host strain. The recombinant protein has been expressed in E. coli Rosetta (DE3) cells after subcloning of C. perfringens etx gene (1008 bp) into the expression vector. We concluded that E. coli Rosetta strain was suitable for the expression of recombinant C. perfringens epsilon toxin protein from pET22ε expression vector. This recombinant cell can be used for further research on recombinant vaccine development.
He, Zuoping; Luo, Peifang; Hu, Feihuan; Weng, Yunceng; Wang, Wenjing; Li, Chengyao
2016-04-01
To construct eukaryotic expression vectors carrying Brucella melitensis outer membrane protein 19 (OMP19), express them in transfected Huh7.5.1 and JEG-3 cells, and analyze their role in cell apoptosis. Brucella melitensis lipidated OMP19 (L-OMP19) gene and unlipidated OMP19 (U-OMP19) gene were amplified by PCR and inserted into the vector pZeroBack/blunt. The correct L-OMP19 and U-OMP19 genes verified by XbaI and BamHI double digestion and sequencing were cloned into the lentivirus expression vector pHAGE-CMV-MCS-IZsGreen to construct vectors pHAGE-L-OMP19 and pHAGE-U-OMP19, which were separately transfected into 293FT cells, Huh7.5.1 and JEG-3 cells. L-OMP19 and U-OMP19 in the cells were detected by Western blotting and immunofluorescence technique. Flow cytometry combined with annexin V-PE/7-AAD staining was used to detect the cell apoptosis. The lentiviral vectors pHAGE-L-OMP19 and pHAGE-U-OMP19 were constructed correctly and the recombinant lipoproteins L-OMP19 and U-OMP19 expressed in the above cells were well recognized by the specific antibodies against L-OMP19 in Western blotting and immunofluorescence technique. L-OMP19 and U-OMP19 induced JEG-3 cell death, but did not induce the apoptosis of Huh7.5.1 cells. The eukaryotic expression vectors of L-OMP19 and U-OMP19 have been constructed successfully. Recombinant lipoproteins L-OMP19 and U-OMP19 expressed in cells have a good antigenicity, which could be used as experimental materials for the research on the relationship between host cells and lipoproteins in Brucella infection.
[The expression of interferon-lambda1 in CHO cell].
Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu
2013-06-01
To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.
Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu
2017-07-01
Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Zhang, Guo-rong; Geller, Alfred I
2010-05-17
Multiple potential uses of direct gene transfer into neurons require restricting expression to specific classes of glutamatergic neurons. Thus, it is desirable to develop vectors containing glutamatergic class-specific promoters. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. We previously reported a plasmid (amplicon) Herpes Simplex Virus (HSV-1) vector that placed the Lac Z gene under the regulation of the VGLUT1 promoter (pVGLUT1lac). Using helper virus-free vector stocks, we showed that this vector supported approximately 90% glutamatergic neuron-specific expression in postrhinal (POR) cortex, in rats sacrificed at either 4 days or 2 months after gene transfer. We now show that pVGLUT1lac supports expression preferentially in VGLUT1-containing glutamatergic neurons. pVGLUT1lac vector stock was injected into either POR cortex, which contains primarily VGLUT1-containing glutamatergic neurons, or into the ventral medial hypothalamus (VMH), which contains predominantly VGLUT2-containing glutamatergic neurons. Rats were sacrificed at 4 days after gene transfer, and the types of cells expressing ss-galactosidase were determined by immunofluorescent costaining. Cell counts showed that pVGLUT1lac supported expression in approximately 10-fold more cells in POR cortex than in the VMH, whereas a control vector supported expression in similar numbers of cells in these two areas. Further, in POR cortex, pVGLUT1lac supported expression predominately in VGLUT1-containing neurons, and, in the VMH, pVGLUT1lac showed an approximately 10-fold preference for the rare VGLUT1-containing neurons. VGLUT1-specific expression may benefit specific experiments on learning or specific gene therapy approaches, particularly in the neocortex. Copyright 2010 Elsevier B.V. All rights reserved.
Using rabies virus vaccine strain SRV9 as viral vector to express exogenous gene.
Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Li, Ling; Qi, Yinglin; Liang, Meng; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Jin, Ningyi; Yang, Songtao; Xia, Xianzhu
2015-04-01
Rabies virus (RABV) can cause a fatal neurological disease in human and animals, and vaccines were generally applied for the immunoprophylaxis of rabies. Here, a recombinant viral vector carrying the exogenous gene expression component between phosphoprotein (P) and matrix protein (M) genes of RABV was constructed based on the vaccine strain SRV9 used in China. To develop a reverse genetic system, the full-length cDNA plasmids of SRV9 were constructed using the eukaryotic expression vector pCI or pcDNA3.1(+). However, recovery efficiency based on the pcDNA3.1 vector was significantly higher than that of the pCI vector. The exogenous gene expression component PE-PS-BsiWI-PmeI or PS-BsiWI-PmeI-PE was introduced in different locations between the P and M genes of SRV9. When the enhanced green fluorescent protein (eGFP) was used as a reporter gene, both locations could rescue recombinant RABV (rRABV) expressing eGFP with high efficiency. Characterization of rRABV expressing eGFP in vitro revealed that its growth was similar to that of the parental virus. Animal experiments showed that rRABV expressing eGFP could replicate and express eGFP in the brains of suckling mice. Furthermore, rRABV of SRV9 was nonpathogenic for 3-week-old mice and could be cleared from the central nervous system at 5 days post-inoculation. Our results showed that the recombinant SRV9 virus could be used as a useful viral vector for exogenous gene expression.
Generation of 2A-linked multicistronic cassettes by recombinant PCR.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.
Almarza, Elena; Río, Paula; Meza, Nestor W; Aldea, Montserrat; Agirre, Xabier; Guenechea, Guillermo; Segovia, José C; Bueren, Juan A
2007-08-01
Recent published data have shown the efficacy of gene therapy treatments of certain monogenic diseases. Risks of insertional oncogenesis, however, indicate the necessity of developing new vectors with weaker or cell-restricted promoters to minimize the trans-activation activity of integrated proviruses. We have inserted the proximal promoter of the vav proto-oncogene into self-inactivating lentiviral vectors (vav-LVs) and investigated the expression pattern and therapeutic efficacy of these vectors. Compared with other LVs frequently used in gene therapy, vav-LVs mediated a weak, though homogeneous and stable, expression in in vitro-cultured cells. Transplantation experiments using transduced mouse bone marrow and human CD34(+) cells confirmed the stable activity of the promoter in vivo. To investigate whether the weak activity of this promoter was compatible with a therapeutic effect, a LV expressing the Fanconi anemia A (FANCA) gene was constructed (vav-FANCA LV). Although this vector induced a low expression of FANCA, compared to the expression induced by a LV harboring the spleen focus-forming virus (SFFV) promoter, the two vectors corrected the phenotype of cells from a patient with FA-A with the same efficacy. We propose that self-inactivating vectors harboring weak promoters, such as the vav promoter, will improve the safety of gene therapy and will be of particular interest for the treatment of diseases where a high expression of the transgene is not required.
Yin, Xiaotao; Wang, Wei; Tian, Renli; Xu, Yuanji; Yan, Jinqi; Zhang, Wei; Gao, Jiangping; Yu, Jiyun
2013-08-01
To construct a prokaryotic expression plasmid pET28a-survivin, optimize the recombinant protein expression conditions in E.coli, and purify the survivin recombinant protein and identify its antigenicity. Survivin cDNA segment was amplified by PCR and cloned into prokaryotic expression vector pET28a(+) to construct the recombinant expression vector pET28a-survivin. The expression vector was transformed into BL21 (DE3) and the fusion protein survivin/His was induced by IPTG. The fusion protein was purified through Ni affinity chromatography. The antigenicity of the purified survivin protein was identified by Western blotting and ELISA. The recombinant expression vector was verified successfully by BamHI and HindIII. The fusion protein induced by IPTG was obtained with Mr; about 24 000. The purity of the purified protein reached 90% by SDS-PAGE analysis. And the antigenicity of the survivin protein was validated by Western blotting and ELISA. The prokaryotic expression plasmid pET28a-survivin was successfully constructed and the survivin protein was expressed and purified in E.coli. The antigenicity of the purified survivin protein was demonstrated desirable.
Shang, Q-Y; Wu, C-S; Gao, H-R
2017-09-01
The present study explored the effect that deoxycytidine kinase (DCK) knockdown had on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells. Human cervical cancer HeLa cells that had received no prior treatment were selected from the HeLa group. The HeLa-negative control (NC) group consisted of cells that had undergone an empty vector treatment, and finally the HeLa-short hairpin RNA (shRNA) group included cells that were treated by means of shRNA-DCK expression. DCK expressions were evaluated by quantitative real-time polymerase chain reaction in addition to western blotting assays. Cell proliferation was estimated using the Cell Counting Kit-8 (CCK-8) assay and cell cycle progression. Cell apoptosis was determined by flow cytometry. BALB/c nude mice (n=24) were selected to establish transplanted tumor models, with gross tumor volume measured every 3 days. The results in vitro were as follows: compared with the HeLa group, the HeLa-shRNA group exhibited downregulation of DCK expression and inhibition of cell proliferation at 48, 72 and 96 h. Additionally, more cells in the HeLa-shRNA group were arrested in G0/G1 stage and less in S and G2/M stages, as well as in promotion of cell apoptosis. In vivo results are as follows: when comparing the HeLa and HeLa-NC groups, the gross tumor volume of the transplanted tumor in nude mice in the HeLa-shRNA group was found to have decreased in 13, 16, 19 and 22 days. Based on these findings, our study suggests that DCK knockdown facilitates apoptosis while inhibiting proliferation and tumorigenicity in vivo of cervical cancer HeLa cells.
Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang, E-mail: Ly10160624@163.com; Han, Dong, E-mail: Donghan@bjmu.edu.cn; Wang, Lei, E-mail: wanglei_dentist@163.com
Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated withmore » epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation.« less
Palmieri, Diane; Bouadis, Amina; Ronchetti, Ruban; Merino, Maria J; Steeg, Patricia S
2006-11-01
The development of cancer prevention strategies depends on the elucidation of molecular pathways underlying oncogenesis. In a previous proteomic study of matched normal breast ducts and Ductal Carcinoma in Situ (DCIS), we identified overexpression of Rab11a in DCIS. Rab11a is not well studied in cancer, but is known to regulate the recycling of internalized cell surface proteins and receptors from the early endosome through the trans-Golgi network. Using immunohistochemistry, we confirmed our observation, noting increased Rab11a expression in 19 of 22 (86%) DCIS cases compared to matched normal breast epithelium. To study the function of Rab11a, immortal, nontumorigenic MCF10A breast cells were stimulated with ligands to the EGF receptor (EGFR) after transfection with empty vector (control), Rab11a, or a S25N dominant-negative (DN) Rab11a. Using an iodinated ligand:receptor recycling assay, transfection of Rab11a accelerated, while DN-Rab11a postponed EGFR recycling in vitro. The signaling and in vitro phenotypic consequences of Rab11a expression and function were studied. Transfection of DN-Rab11a increased Erk1/2 activation downstream of EGF, but exerted no effect on the Akt pathway. Expression of DN-Rab11a inhibited MCF10A proliferation by 50-60%, and also inhibited anchorage-dependent colonization. Notably, DN-Rab11a transfection increased motility toward EGFR ligands. The data provide a first demonstration that Rab11a modulates EGFR recycling, and promotes the proliferation but inhibits the motility of an immortal breast line, consistent with the DCIS phenotype.
Lin, Qiong; Li, Shaojia; Dong, Wencheng; Feng, Chao; Yin, Xueren; Xu, Changjie; Sun, Chongde; Chen, Kunsong
2015-01-01
Citrate is the predominant organic acid associated with taste in citrus fruit. Although citrate metabolism has been widely studied in recent years, the potential contributions of transport proteins to citrate content remain unclear. In the present study, high-acid citrus fruit Gaocheng (‘GC’, Citrus sp.) and low-acid citrus fruit Satsuma mandarin (‘SM’, Citrus unshiu Marc.) were selected for study, and the degradation of citrate was deduced to be the main cause of the difference in acidity in fully mature fruits. RNA-seq analysis was carried out on ‘GC’ and ‘SM’ fruit samples over the same time course, and the results indicated that citrate degradation occurred mainly through the glutamine pathway, catalyzed by CitAco3-CitGS2-CitGDU1, and also two transport-related genes, CitCHX and CitDIC, were shown to be associated with citrate degradation. These results were confirmed by real-time PCR. In postharvest ‘GC’ fruit, the expressions of these two transport-related genes were induced by 2-fold under hot air treatment, accompanied by a reduction of 7%-9% in total acid degradation. Transient expression of CitCHX and CitDIC in tobacco leaves was performed, and the citrate content was reduced by 62%, 75% and 78% following CitCHX, CitDIC and CitCHX plus CitDIC treatments, respectively, as compared with expression of an empty vector. Overall, these data indicated that two transport proteins, CitCHX and CitDIC, are not only involved in citrate degradation during fruit development, but also involved in postharvest hot air triggered citrate reduction. PMID:25738939
Frost, Patrick; Shi, Yijiang; Hoang, Bao; Gera, Joseph; Lichtenstein, Alan
2009-01-01
We have shown that heightened AKT activity sensitized multiple myeloma (MM) cells to the anti-tumor effects of the mTOR-inhibitor, CCI-779. To test the mechanism of AKT’s regulatory role, we stably transfected U266 MM cell lines with an activated AKT allele or empty vector. The AKT-transfected cells were more sensitive to cytostasis induced in vitro by rapamycin or in vivo by its analog, CCI-779, whereas cells with quiescent AKT were resistant. The ability of mTOR inhibitors to downregulate D-cyclin expression was significantly greater in AKT-transfected MM cells, due in part, to AKT’s ability to curtail cap-independent translation and internal ribosome entry site (IRES) activity of D-cyclin transcripts. Similar AKT-dependent regulation of rapamycin responsiveness was demonstrated in a second myeloma model: the PTEN-null OPM-2 cell line transfected with wild type PTEN. As ERK/p38 activity facilitates IRES-mediated translation of some transcripts, we investigated ERK/p38 as regulators of AKT-dependent effects on rapamycin sensitivity. AKT-transfected U266 cells demonstrated significantly decreased ERK and p38 activity. However, only an ERK inhibitor prevented D-cyclin IRES activity in resistant “low AKT” myeloma cells. Furthermore, the ERK inhibitor successfully sensitized myeloma cells to rapamycin in terms of down regulated D-cyclin protein expression and G1 arrest. However, ectopic over-expression of an activated MEK gene did not increase cap-independent translation of D-cyclin in “high AKT” myeloma cells indicating that MEK/ERK activity was required but not sufficient for activation of the IRES. These data support a scenario where heightened AKT activity down-regulates D-cyclin IRES function in MM cells and ERK facilitates activity. PMID:19139116
A novel approach to oral apoA-I mimetic therapy[S
Chattopadhyay, Arnab; Navab, Mohamad; Hough, Greg; Gao, Feng; Meriwether, David; Grijalva, Victor; Springstead, James R.; Palgnachari, Mayakonda N.; Namiri-Kalantari, Ryan; Su, Feng; Van Lenten, Brian J.; Wagner, Alan C.; Anantharamaiah, G. M.; Farias-Eisner, Robin; Reddy, Srinivasa T.; Fogelman, Alan M.
2013-01-01
Transgenic tomato plants were constructed with an empty vector (EV) or a vector expressing an apoA-I mimetic peptide, 6F. EV or 6F tomatoes were harvested, lyophilized, ground into powder, added to Western diet (WD) at 2.2% by weight, and fed to LDL receptor-null (LDLR−/−) mice at 45 mg/kg/day 6F. After 13 weeks, the percent of the aorta with lesions was 4.1 ± 4%, 3.3 ± 2.4%, and 1.9 ± 1.4% for WD, WD + EV, and WD + 6F, respectively (WD + 6F vs. WD, P = 0.0134; WD + 6F vs. WD + EV, P = 0.0386; WD + EV vs. WD, not significant). While body weight did not differ, plasma serum amyloid A (SAA), total cholesterol, triglycerides, and lysophosphatidic acid (LPA) levels were less in WD + 6F mice; P < 0.0295. HDL cholesterol and paroxonase-1 activity (PON) were higher in WD + 6F mice (P = 0.0055 and P = 0.0254, respectively), but not in WD + EV mice. Plasma SAA, total cholesterol, triglycerides, LPA, and 15-hydroxyeicosatetraenoic acid (HETE) levels positively correlated with lesions (P < 0.0001); HDL cholesterol and PON were inversely correlated (P < 0.0001). After feeding WD + 6F: i) intact 6F was detected in small intestine (but not in plasma); ii) small intestine LPA was decreased compared with WD + EV (P < 0.0469); and iii) small intestine LPA 18:2 positively correlated with the percent of the aorta with lesions (P < 0.0179). These data suggest that 6F acts in the small intestine and provides a novel approach to oral apoA-I mimetic therapy. PMID:23378594
Wang, Kun; Li, Yuwen; Zhu, Tiantian; Zhang, Yongting; Li, Wenting; Lin, Wenyu; Li, Jun; Zhu, Chuanlong
2017-07-05
Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has emerged as a novel therapy for acute liver failure (ALF). However, the homing efficiency of BMSCs to the injured liver sites appears to be poor. In this study, we aimed to determine if overexpression of c-Met in BMSCs could promote the homing ability of BMSCs to rat livers affected by ALF. Overexpression of c-Met in BMSCs (c-Met-BMSCs) was attained by transfection of naive BMSCs with the lenti-c-Met-GFP. The impact of transplanted c-Met-BMSCs on both homing and repair of ALF was evaluated and compared with lenti-GFP empty vector transfected BMSCs (control BMSCs). After cells were transfected with the lenti-c-Met-GFP vector, the BMSCs displayed very high expression of c-Met protein as demonstrated by Western blot. In addition, in vitro transwell migration assays showed that the migration ability of c-Met-BMSCs was significantly increased in comparison with that of control BMSCs (P < 0.05), and was dependent on hepatocyte growth factor (HGF). Furthermore, rats with ALF that received transplanted c-Met-BMSCs showed significantly improved homing ability to the injured liver; this was accompanied by elevated survival rates and liver function in the ALF rats. Parallel pathological examination further confirmed that transplantation of c-Met-BMSCs ameliorated liver injury with reduced hepatic activity index (HAI) scores, and that the effects of c-Met-BMSCs were more profound than those of control BMSCs. Overexpression of c-Met promotes the homing of BMSCs to injured hepatic sites in a rat model of ALF, thereby improving the efficacy of BMSC therapy for ALF repair.
Liang, Yongheng; Sun, Wendell Q.
2002-01-01
Rate of dehydration greatly affects desiccation tolerance of recalcitrant seeds. This effect is presumably related to two different stress vectors: direct mechanical or physical stress because of the loss of water and physicochemical damage of tissues as a result of metabolic alterations during drying. The present study proposed a new theoretic approach to represent these two types of stresses and investigated how seed tissues responded differently to two stress vectors, using the models of isolated cocoa (Theobroma cacao) and ginkgo (Ginkgo biloba) embryonic tissues dehydrated under various drying conditions. This approach used the differential change in axis water potential (ΔΨ/Δt) to quantify rate of dehydration and the intensity of direct physical stress experienced by embryonic tissues during desiccation. Physicochemical effect of drying was expressed by cumulative desiccation stress [∫\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{o}^{t}}}\\end{equation*}\\end{document}f(ψ,t)], a function of both the rate and time of dehydration. Rapid dehydration increased the sensitivity of embryonic tissues to desiccation as indicated by high critical water contents, below which desiccation damage occurred. Cumulative desiccation stress increased sharply under slow drying conditions, which was also detrimental to embryonic tissues. This quantitative analysis of the stress-time-response relationship helps to understand the physiological basis for the existence of an optimal dehydration rate, with which maximum desiccation tolerance could be achieved. The established numerical analysis model will prove valuable for the design of experiments that aim to elucidate biochemical and physiological mechanisms of desiccation tolerance. PMID:11950981
Nakanishi, Mahito; Otsu, Makoto
2012-01-01
Gene delivery/expression vectors have been used as fundamental technologies in gene therapy since the 1980s. These technologies are also being applied in regenerative medicine as tools to reprogram cell genomes to a pluripotent state and to other cell lineages. Rapid progress in these new research areas and expectations for their translation into clinical applications have facilitated the development of more sophisticated gene delivery/expression technologies. Since its isolation in 1953 in Japan, Sendai virus (SeV) has been widely used as a research tool in cell biology and in industry, but the application of SeV as a recombinant viral vector has been investigated only recently. Recombinant SeV vectors have various unique characteristics, such as low pathogenicity, powerful capacity for gene expression and a wide host range. In addition, the cytoplasmic gene expression mediated by this vector is advantageous for applications, in that chromosomal integration of exogenous genes can be undesirable. In this review, we introduce a brief historical background on the development of recombinant SeV vectors and describe their current applications in gene therapy. We also describe the application of SeV vectors in advanced nuclear reprogramming and introduce a defective and persistent SeV vector (SeVdp) optimized for such reprogramming. PMID:22920683
Nishimura, Ken; Ohtaka, Manami; Takada, Hitomi; Kurisaki, Akira; Tran, Nhi Vo Kieu; Tran, Yen Thi Hai; Hisatake, Koji; Sano, Masayuki; Nakanishi, Mahito
2017-08-01
Transgene-free induced pluripotent stem cells (iPSCs) are valuable for both basic research and potential clinical applications. We previously reported that a replication-defective and persistent Sendai virus (SeVdp) vector harboring four reprogramming factors (SeVdp-iPS) can efficiently induce generation of transgene-free iPSCs. This vector can express all four factors stably and simultaneously without chromosomal integration and can be eliminated completely from reprogrammed cells by suppressing vector-derived RNA-dependent RNA polymerase. Here, we describe an improved SeVdp-iPS vector (SeVdp(KOSM)302L) that is automatically erased in response to microRNA-302 (miR-302), uniquely expressed in pluripotent stem cells (PSCs). Gene expression and genome replication of the SeVdp-302L vector, which contains miRNA-302a target sequences at the 3' untranslated region of L mRNA, are strongly suppressed in PSCs. Consequently, SeVdp(KOSM)302L induces expression of reprogramming factors in somatic cells, while it is automatically erased from cells successfully reprogrammed to express miR-302. As this vector can reprogram somatic cells into transgene-free iPSCs without the aid of exogenous short interfering RNA (siRNA), the results we present here demonstrate that this vector may become an invaluable tool for the generation of human iPSCs for future clinical applications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors
NASA Astrophysics Data System (ADS)
Roizman, Bernard
1996-10-01
Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.
Santangelo, Kelly S; Baker, Sarah A; Nuovo, Gerard; Dyce, Jonathan; Bartlett, Jeffrey S; Bertone, Alicia L
2010-02-01
This study quantified and compared the transduction efficiencies of adenoviral (Ad), Arg-Gly-Asp (RGD)-modified Ad, adeno-associated viral serotype 2 (AAV2), and self-complementary AAV2 (scAAV2) vectors within full-thickness osteoarthritic (OA) and unaffected canine cartilage explants in vitro. Intraarticular administration of Ad and scAAV2 vectors was performed to determine the ability of these vectors to transduce unaffected guinea pig cartilage in vivo. Following explant exposure to vector treatment or control, the onset and surface distribution of reporter gene expression was monitored daily with fluorescent microscopy. At termination, explants were divided: one half was digested for analysis using flow cytometry; the remaining portion was used for histology and immunohistochemistry (IHC). Intact articular joints were collected for real-time RT-PCR and IHC to detect reporter gene expression following injection of selected vectors. Ad vector transduced focal areas along the perimeters of explants; the remaining vectors transduced chondrocytes across 100% of the surface. Greater mean transduction efficiencies were found with both AAV2 vectors as compared to the Ad vector (p < or = 0.026). Ad and Ad-RGD vectors transduced only superficial chondrocytes of OA and unaffected cartilage. Uniform reporter gene expression from AAV2 and scAAV2 was detected in the tangential and transitional zones of OA cartilage, but not deeper zones. AAV2 and scAAV2 vectors achieved partial and full-thickness transduction of unaffected cartilage. In vivo work revealed that scAAV2 vector, but not Ad vector, transduced deeper zones of cartilage and menisci. This study demonstrates that AAV2 and scAAV2 are reliable vectors for use in cartilage in vitro and in vivo. (c) 2009 Orthopaedic Research Society.
[Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].
Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing
2010-10-01
This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.
Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch.
Song, Yi; Zhao, Cheng; Liang, Xu-Fang; He, Shan; Tian, Changxu; Cheng, Xiaoyan; Yuan, Xiaochen; Lv, Liyuan; Guo, Wenjie; Xue, Min; Tao, Ya-Xiong
2017-06-01
Preproghrelin, a gut/brain peptide, plays an important role in the regulation of food intake and energy homeostasis in teleost and mammals. In the present study, we obtained the full-length preproghrelin cDNA in Chinese perch. The preproghrelin messenger RNA (mRNA) tissue expression showed that level was much higher in stomach and pituitary than in other tissues. The fasting study showed, after gastric emptying (3-6 h), short-term fasting (6-12 h) increased preproghrelin expression in the stomach. While in the pituitary, fasting reduced preproghrelin expression at 1, 3, 12, and 48 h, presenting state fluctuation of self-adjustment. The temperature study showed that the mRNA expression of preproghrelin was the highest in the brain at 26 °C and highest in the stomach at 32 °C, respectively, with different optimum temperature in these two tissues, reflecting spatiotemporal differences of regulation by central nervous system and peripheral organs. The photoperiod study showed that normal light (11 h of lightness and 13 h of darkness) led to highest preproghrelin expression, both in the brain and in the stomach, than continuous light or continuous dark, proving food intake is adapted to natural photoperiod or normal light in this study. These results all indicated that tissue-specific preproghrelin expression of Chinese perch could be significantly affected by environmental factors. Short-term fasting of 6 h after gastric emptying, 26 °C, and normal light led to higher preproghrelin expression, which indicated potential appetite increase in Chinese perch.
Viral Vectors for in Vivo Gene Transfer
NASA Astrophysics Data System (ADS)
Thévenot, E.; Dufour, N.; Déglon, N.
The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the review [2].) For this reason, it is mainly viral vectors that are used for gene transfer in animals and humans.
Barczyński, M; Thor, P
2001-08-01
The autonomic nervous system (ANS) function in hyperthyroidism has been so far investigated mainly from the cardiovascular point of view. The aim of this study is to show that the ANS dysfunction in hyperthyroidism is also expressed in gastric myoelectrical activity disturbances and gastric emptying disorders and to search for a correlation between the severity of clinical manifestation and free thyroid hormone levels and the degree of the ANS dysfunction. The analyzed group included 50 recently diagnosed patients with hyperthyroidism who were examined twice: before and after 3 months of thyrostatic treatment. Results were compared with those of a sex-, age- and BMI-matched control group of 50 healthy volunteers. The study included: heart rate variability analysis in time and frequency domain, at rest and during a deep-breathing test, surface electrogastrography in preprandial and postprandial periods measured simultaneously with the ultrasound assessment of gastric emptying time by Bolondi method. In patients with hyperthyroidism in comparison with the control group, the following significant differences were observed: a sharp reduction of the high-frequency component and a decrease of heart rate variability, a high incidence of dysrhythmia with dominant bradyarrhythmia, and a delay of gastric emptying. The degree of disorders related to the degree of clinical manifestation of hyperthyroidism's symptoms and free triiodothyronine serum concentration both. All the disorders were functional and disappeared in a stable euthyroidism. To conclude, the ANS dysfunction in hyperthyroidism results not only in withdrawal of vagal inhibitory effect on sinoatrial node, but in impaired mutual neuro-hormonal regulation (decrease of vagal influence) of gastric myoelectrical activity followed by delay of gastric emptying.
A stable RNA virus-based vector for citrus trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe
Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter.more » These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.« less
Aalbers, Caroline J.; Bevaart, Lisette; Loiler, Scott; de Cortie, Karin; Wright, J. Fraser; Mingozzi, Federico; Tak, Paul P.; Vervoordeldonk, Margriet J.
2015-01-01
Introduction Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02). Methods The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model. Results Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks. Conclusions These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA. PMID:26107769
Aalbers, Caroline J; Bevaart, Lisette; Loiler, Scott; de Cortie, Karin; Wright, J Fraser; Mingozzi, Federico; Tak, Paul P; Vervoordeldonk, Margriet J
2015-01-01
Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02). The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model. Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks. These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA.
Maruggi, Giulietta; Porcellini, Simona; Facchini, Giulia; Perna, Serena K; Cattoglio, Claudia; Sartori, Daniela; Ambrosi, Alessandro; Schambach, Axel; Baum, Christopher; Bonini, Chiara; Bovolenta, Chiara; Mavilio, Fulvio; Recchia, Alessandra
2009-01-01
The integration characteristics of retroviral (RV) vectors increase the probability of interfering with the regulation of cellular genes, and account for a tangible risk of insertional mutagenesis in treated patients. To assess the potential genotoxic risk of conventional or self-inactivating (SIN) γ-RV and lentiviral (LV) vectors independently from the biological consequences of the insertion event, we developed a quantitative assay based on real-time reverse transcriptase—PCR on low-density arrays to evaluate alterations of gene expression in individual primary T-cell clones. We show that the Moloney leukemia virus long terminal repeat (LTR) enhancer has the strongest activity in both a γ-RV and a LV vector context, while an internal cellular promoter induces deregulation of gene expression less frequently, at a shorter range and to a lower extent in both vector types. Downregulation of gene expression was observed only in the context of LV vectors. This study indicates that insertional gene activation is determined by the characteristics of the transcriptional regulatory elements carried by the vector, and is largely independent from the vector type or design. PMID:19293778
USDA-ARS?s Scientific Manuscript database
A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...
Gene transfer to the cerebellum.
Louboutin, Jean-Pierre; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S
2010-12-01
There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.
Design and construction of 2A peptide-linked multicistronic vectors.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. This article describes the design and construction of 2A peptide-linked multicistronic vectors, which can be used to express multiple proteins from a single open reading frame (ORF). The small 2A peptide sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector.
Douillard, François P; Mahony, Jennifer; Campanacci, Valérie; Cambillau, Christian; van Sinderen, Douwe
2011-09-01
Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses. Copyright © 2011 Elsevier Inc. All rights reserved.
Li, Xinxin; Wu, Zhihao; Zhang, Chuanfu; Jia, Leili; Song, Hongbin; Xu, Yuanyong
2014-01-01
To construct a eukaryotic expression vector containing human complement receptor 2 (CR2)-Fc and express the CR2-Fc fusion protein in Chinese hamster ovary (CHO) cells. The extracellular domain of human CR2 and IgG1 Fc were respectively amplified, ligated and inserted into the eukaryotic expression vector PCI-neo. After verified by restriction enzyme digestion and sequencing, the recombinant plasmid was transfected into CHO K1 cells. The ones with stable expression of the fusion protein were obtained by means of G418 selection. The expression of the CR2-Fc fusion protein was detected and confirmed by SDS-PAGE and Western blotting. Restriction enzyme digestion and sequencing demonstrated that the recombinant plasmid was valid. SDS-PAGE showed that relative molecular mass (Mr;) of the purified product was consistent with the expected value. Western blotting further proved the single band at the same position. We constructed the eukaryotic expression vector of CR2-Fc/PCI-neo successfully. The obtained fusion protein was active and can be used for the further study of the role in HIV control.
Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System
Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.
2015-01-01
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221
Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.
López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M
2015-01-01
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K
2015-10-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Kumar, Manish; Mohanty, Ajeet Kumar; Sreenivasamurthy, Sreelakshmi K; Dey, Gourav; Advani, Jayshree; Pinto, Sneha M; Kumar, Ashwani; Prasad, Thottethodi Subrahmanya Keshava
2017-09-01
Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.
An efficient Foxtail mosaic virus vector system with reduced environmental risk
2010-01-01
Background Plant viral vectors offer high-yield expression of pharmaceutical and commercially important proteins with a minimum of cost and preparation time. The use of Agrobacterium tumefaciens has been introduced to deliver the viral vector as a transgene to each plant cell via a simple, nonsterile infiltration technique called "agroinoculation". With agroinoculation, a full length, systemically moving virus is no longer necessary for excellent protein yield, since the viral transgene is transcribed and replicates in every infiltrated cell. Viral genes may therefore be deleted to decrease the potential for accidental spread and persistence of the viral vector in the environment. Results In this study, both the coat protein (CP) and triple gene block (TGB) genetic segments were eliminated from Foxtail mosaic virus to create the "FECT" vector series, comprising a deletion of 29% of the genome. This viral vector is highly crippled and expresses little or no marker gene within the inoculated leaf. However, when co-agroinoculated with a silencing suppressor (p19 or HcPro), FECT expressed GFP at 40% total soluble protein in the tobacco host, Nicotiana benthamiana. The modified FoMV vector retained the full-length replicase ORF, the TGB1 subgenomic RNA leader sequence and either 0, 22 or 40 bases of TGB1 ORF (in vectors FECT0, FECT22 and FECT40, respectively). As well as N. benthamiana, infection of legumes was demonstrated. Despite many attempts, expression of GFP via syringe agroinoculation of various grass species was very low, reflecting the low Agrobacterium-mediated transformation rate of monocots. Conclusions The FECT/40 vector expresses foreign genes at a very high level, and yet has a greatly reduced biohazard potential. It can form no virions and can effectively replicate only in a plant with suppressed silencing. PMID:21162736
In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector.
Zhang, G; Leung, C; Murdin, L; Rovinski, B; White, K A
2000-02-01
Plant viruses show significant potential as expression vectors for the production of foreign proteins (e.g., antigens) in plants. The HIV-1 p24 nucleocapsid protein is an important early marker of HIV infection and has been used as an antigen in the development of HIV vaccines. Toward developing a plant-based expression system for the production of p24, we have investigated the use of a (positive)-strand RNA plant virus, tomato bushy stunt virus (TBSV), as an expression vector. The HIV p24 open reading frame (ORF) was introduced into a cloned cDNA copy of the TBSV genome as an in-frame fusion with a 5'-terminal portion of the TBSV coat protein ORF. In vitro-generated RNA transcripts corresponding to the engineered virus vector were infectious when inoculated into plant protoplasts; Northern and Western blot analyses verified the accumulation of a predicted p24-encoding viral subgenomic mRNA and the production of p24 fusion product. Whole-plant infections with the viral vector led to the accumulation of p24 fusion protein in inoculated leaves, which cross-reacted with p24-specific antibodies, thus confirming the maintenance of key antigenic determinants. This study is the first to demonstrate that TBSV can be engineered to express a complete foreign protein of clinical importance. Strategies for optimizing protein yield from this viral vector are discussed.
Thyagarajan, Bhaskar; Scheyhing, Kelly; Xue, Haipeng; Fontes, Andrew; Chesnut, Jon; Rao, Mahendra; Lakshmipathy, Uma
2009-03-01
Stable expression of transgenes in stem cells has been a challenge due to the nonavailability of efficient transfection methods and the inability of transgenes to support sustained gene expression. Several methods have been reported to stably modify both embryonic and adult stem cells. These methods rely on integration of the transgene into the genome of the host cell, which could result in an expression pattern dependent on the number of integrations and the genomic locus of integration. To overcome this issue, site-specific integration methods mediated by integrase, adeno-associated virus or via homologous recombination have been used to generate stable human embryonic stem cell (hESC) lines. In this study, we describe a vector that is maintained episomally in hESCs. The vector used in this study is based on components derived from the Epstein-Barr virus, containing the Epstein-Barr virus nuclear antigen 1 expression cassette and the OriP origin of replication. The vector also expresses the drug-resistance marker gene hygromycin, which allows for selection and long-term maintenance of cells harboring the plasmid. Using this vector system, we show sustained expression of green fluorescent protein in undifferentiated hESCs and their differentiating embryoid bodies. In addition, the stable hESC clones show comparable expression with and without drug selection. Consistent with this observation, bulk-transfected adipose tissue-derived mesenchymal stem cells showed persistent marker gene expression as they differentiate into adipocytes, osteoblasts and chondroblasts. Episomal vectors offer a fast and efficient method to create hESC reporter lines, which in turn allows one to test the effect of overexpression of various genes on stem cell growth, proliferation and differentiation.
Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V
2007-06-15
A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.
Development of an adenoviral vector with robust expression driven by p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajgelman, Marcio C.; Biotechnology Program, Biomedical Sciences Institute, University of Sao Paulo; Millennium Institute-Gene Therapy Network, Ministry of Science and Technology
2008-02-05
Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG servedmore » as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.« less
Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2013-12-01
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.
A host-restricted viral vector for antigen-specific immunization against Lyme disease pathogen.
Xiao, Sa; Kumar, Manish; Yang, Xiuli; Akkoyunlu, Mustafa; Collins, Peter L; Samal, Siba K; Pal, Utpal
2011-07-18
Newcastle disease virus (NDV) is an avian virus that is attenuated in primates and is a potential vaccine vector for human use. We evaluated NDV as a vector for expressing selected antigens of the Lyme disease pathogen Borrelia burgdorferi. A series of recombinant NDVs were generated that expressed intracellular or extracellular forms of two B. burgdorferi antigens: namely, the basic membrane protein A (BmpA) and the outer surface protein C (OspC). Expression of the intracellular and extracellular forms of these antigens was confirmed in cultured chicken cells. C3H or Balb/C mice that were immunized intranasally with the NDV vectors mounted vigorous serum antibody responses against the NDV vector, but failed to mount a robust response against either the intracellular or extracellular forms of BmpA or OspC. By contrast, a single immunization of hamsters with the NDV vectors via the intranasal, intramuscular, or intraperitoneal route resulted in rapid and rigorous antibody responses against the intracellular or extracellular forms of BmpA and OspC. When groups of hamsters were separately inoculated with various NDV vectors and challenged with B. burgdorferi (10(8)cells/animal), immunization with vector expressing either intracellular or extracellular BmpA was associated with a significant reduction of the pathogen load in the joints. Taken together, our studies highlighted the importance of NDV as vaccine vector that can be used for simple yet effective immunization of hosts against bacterial infections including Lyme disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M
2014-08-01
Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.
Effect of guar gum on gastric emptying in growing pigs.
Rainbird, A L; Low, A G
1986-01-01
1. Simple gastric cannulas were surgically fitted to four pigs, initially of 30 kg live weight, to examine the effects of guar gum on gastric emptying. 2. Four semi-purified high-fat diets based on starch, casein, soya-bean oil and tallow were given to each pig. They contained 0 (control), 20, 40 or 60 g powdered guar gum/kg diet. The meals as fed contained 257 g dry matter (DM)/kg. 3. The contents of the stomach were evacuated, with rinsing, before feeding or 0.5, 1, 2 or 4 h after feeding. 4. The mean pH of the digesta was unaffected by guar gum until 4 h after feeding when the value increased as the amount of guar gum in the diet rose. 5. The only significant effects of guar gum on the emptying of digesta and its components (compared with the control diet) were to reduce the rate of emptying of (a) digesta 1 h after feeding (60 g/kg diet) and 4 h after feeding (40 and 60 g/kg diets), (b) dry matter and glucose 1 h after feeding (60 g/kg diet), (c) nitrogen 1 h after feeding (60 g/kg diet) and 4 h after feeding (40 and 60 g/kg diets). 6. When expressed on a half-time (T50) basis, the emptying of digesta and N (but not of DM and glucose) were significantly slower for diets containing 40 and 60 g guar gum/kg than for the control diet. 7. The apparent viscosity of the gastric digesta ranged between 0.5 and 23.7% of the values for the diets as consumed. 8. It was concluded that the effects of guar gum on gastric emptying of high-solid meals were small, and that this was unlikely to be an important aspect of the mechanism by which guar gum reduces postprandial blood glucose concentrations.
Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Singh, Surender; Kumar, Sudarshan; Kaushik, Jai K; Mohanty, Ashok K; Malakar, Dhruba
2015-12-01
Oct4, pluripotency marker and transcription factor, expresses in embryonic stem cells. It plays a pivotal role in determination of stem cells fate. Up and down regulation of Oct4 causes differentiation of embryonic stem cells. It is one of the main transcription factors which remained concerned in every study related to induced pluripotent stem cell. Here, we report the production of goat Oct4 protein using plasmid and lentiviral based vectors. Firstly, Oct4 ORF was cloned in pAcGFP1-N1 plasmid vector and positive clones were screened with colony PCR. Oct4 was over-expressed in CHO-K1 cell line and expression was confirmed by observing green florescent protein expression in CHO-K1 cells. Secondly, Oct4 lentiviral expression construct has been prepared using pLenti-gw vector. Oct4 ORF was cloned into pLenti4/V5-DEST vector and viral particles were produced in 293FT cells. Oct4 viral particles were used to infect goat fibroblast cells. Oct4 expression was observed and confirmed in transfected goat fibroblast cells using RT-PCR. Detection of Oct4 protein in western blotting assay affirmed the capacity of over-expression of our Oct4 lentiviral vector. The lentiviral expression construct and recombinant Oct4 protein may be used for reprogramming of somatic cell into induced pluripotent stem cell.
Jiang, Hao; Hu, Yijun; Yang, Mei; Liu, Hao; Jiang, Guangshui
2017-05-01
The strength of immune responses induced by DNA vaccine is closely associated with the expression level of cloned antigens available to the antigen presenting cells (APCs). To acquire a larger and more persistent amount of antigen, a dual-promoter, which could double the target antigen output through its expression both in prokaryotic and eukaryotic cells, was employed in the constructed anti-caries DNA vaccine with attenuated Salmonella as mucosal delivery vector in this study. Here, both CMV and nirB promoters were included in the plasmid that harbors the genes encoding the functional epitopes of two virulence factors of S. mutans, i.e. the saliva-binding region (SBR) of PAc and the glucan-binding region (GBR) of glucosyltransferase-I (GTF-I). Delivered by attenuated Salmonella Typhimurium strain SL3261, the anti-caries vaccine was administered intragastrointestinally to BALB/c mice for evaluation of the effectiveness of this immune regime. Specific anti-SBR and anti-GBR antibodies were detected in the serum and saliva of experimental animals by week 3 after immunization. These immune responses were further enhanced after a booster vaccination at week 16. However, in mice receiving Salmonella expressing SBR and GBR under the control of nirB alone these antibody responses were significantly (P<0.01) lower. The serum IgG subclass profiles suggested a Th1/Th2-mixed but Th2 biased immune response to the cloned antigens, which was further confirmed by a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-10) cytokines in splenocytes of immunized mice upon stimulation with SBR or GBR. To further determine the protective efficacy of these responses, a challenge test with S. mutans strain UA159 was performed in mice after the second immunization. Following challenge, mice immunized with Salmonella expressing SBR and GBR under the control of the CMV-nirB promoter showed a significant (P<0.01) reduction in the number of S. mutans in the dental plaque compared to the empty vector-immunized or unimmunized mice, and the reduction was also significant at weeks 3-8 (P<0.05) post-challenge when compared with those receiving Salmonella clones with nirB promoter alone. These results provide evidence for the effectiveness of a dual-promoter strategy in the anti-caries DNA vaccine when employing attenuated Salmonella as delivering vehicle for mucosal immunization. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wilson, Mandy L; Okumoto, Sakiko; Adam, Laura; Peccoud, Jean
2014-01-15
Expression vectors used in different biotechnology applications are designed with domain-specific rules. For instance, promoters, origins of replication or homologous recombination sites are host-specific. Similarly, chromosomal integration or viral delivery of an expression cassette imposes specific structural constraints. As de novo gene synthesis and synthetic biology methods permeate many biotechnology specialties, the design of application-specific expression vectors becomes the new norm. In this context, it is desirable to formalize vector design strategies applicable in different domains. Using the design of constructs to express genes in the chloroplast of Chlamydomonas reinhardtii as an example, we show that a vector design strategy can be formalized as a domain-specific language. We have developed a graphical editor of context-free grammars usable by biologists without prior exposure to language theory. This environment makes it possible for biologists to iteratively improve their design strategies throughout the course of a project. It is also possible to ensure that vectors designed with early iterations of the language are consistent with the latest iteration of the language. The context-free grammar editor is part of the GenoCAD application. A public instance of GenoCAD is available at http://www.genocad.org. GenoCAD source code is available from SourceForge and licensed under the Apache v2.0 open source license.
An integrated vector system for cellular studies of phage display-derived peptides.
Voss, Stephan D; DeGrand, Alec M; Romeo, Giulio R; Cantley, Lewis C; Frangioni, John V
2002-09-15
Peptide phage display is a method by which large numbers of diverse peptides can be screened for binding to a target of interest. Even when successful, the rate-limiting step is usually validation of peptide bioactivity using living cells. In this paper, we describe an integrated system of vectors that expedites both the screening and the characterization processes. Library construction and screening is performed using an optimized type 3 phage display vector, mJ(1), which is shown to accept peptide libraries of at least 23 amino acids in length. Peptide coding sequences are shuttled from mJ(1) into one of three families of mammalian expression vectors for cell physiological studies. The vector pAL(1) expresses phage display-derived peptides as Gal4 DNA binding domain fusion proteins for transcriptional activation studies. The vectors pG(1), pG(1)N, and pG(1)C express phage display-derived peptides as green fluorescent protein fusions targeted to the entire cell, nucleus, or cytoplasm, respectively. The vector pAP(1) expresses phage display-derived peptides as fusions to secreted placental alkaline phosphatase. Such enzyme fusions can be used as highly sensitive affinity reagents for high-throughput assays and for cloning of peptide-binding cell surface receptors. Taken together, this system of vectors should facilitate the development of phage display-derived peptides into useful biomolecules.
Chen, Huihui; Zhong, Fei; Li, Xiujin; Wang, Lu; Sun, Yan; Neng, Changai; Zhang, Kao; Li, Wenyan; Wen, Jiexia
2012-11-04
To investigate the effects of canine interleukin-2 (cIL-2) and cIL-7 genes on enhancing the immunogenicity of canine parvovirus (CPV) VP2 DNA vaccine. The bicistronic vectors of cIL-2 and cIL-7 genes were constructed using the eukaryotic expression vector containing internal ribosome entry site (IRES). The cIL-2/ cIL-7 dicistronic vector plus previously constructed vectors, including CPV VP2 DNA vaccine vector, cIL-2 vector and cIL-7 vector, were used to co-immunize mice with different combinations, consisting of VP2 alone, VP2 + cIL-2, VP2 + cIL-7 and VP2 + cIL-2/cIL-7. The VP2-specific antibody levels in immunized mice were measured by ELISA at different time post-immunization. The proliferation indices and interferon-gamma expression were measured by lymphocyte proliferation assay and ELISA, respectively. The cIL-2/cIL-7 bicistronic vector was correct and could mediate cIL-2 and cIL-7 gene expression in eukaryotic cells. Immunization results revealed that the antibody titers and the neutralizing antibody levels of the mice co-immunized with VP2 + cIL-7/cIL-2 vectors were significantly higher than that with either VP2 + cIL-2 vectors or VP2 + cIL-7 vectors (P < 0.05). The lymphocyte proliferation indices of VP2 + cIL-7/cIL-2 vector-immunized mice were also higher than that of other two groups although not statistically significant. However, the IFN-gamma expression levels of VP2 + cIL-7/cIL-2 vector-immunized mice were significantly higher than other immunized mice (P < 0.05). The cIL-2 and cIL-7 genes showed the significant synergic effects on enhancing the immunogenecity of CPV VP2 DNA vaccine.
Chromosomal integration of adenoviral vector DNA in vivo.
Stephen, Sam Laurel; Montini, Eugenio; Sivanandam, Vijayshankar Ganesh; Al-Dhalimy, Muhseen; Kestler, Hans A; Finegold, Milton; Grompe, Markus; Kochanek, Stefan
2010-10-01
So far there has been no report of any clinical or preclinical evidence for chromosomal vector integration following adenovirus (Ad) vector-mediated gene transfer in vivo. We used liver gene transfer with high-capacity Ad vectors in the FAH(Deltaexon5) mouse model to analyze homologous and heterologous recombination events between vector and chromosomal DNA. Intravenous injection of Ad vectors either expressing a fumarylacetoacetate hydrolase (FAH) cDNA or carrying part of the FAH genomic locus resulted in liver nodules of FAH-expressing hepatocytes, demonstrating chromosomal vector integration. Analysis of junctions between vector and chromosomal DNA following heterologous recombination indicated integration of the vector genome through its termini. Heterologous recombination occurred with a median frequency of 6.72 x 10(-5) per transduced hepatocyte, while homologous recombination occurred more rarely with a median frequency of 3.88 x 10(-7). This study has established quantitative and qualitative data on recombination of adenoviral vector DNA with genomic DNA in vivo, contributing to a risk-benefit assessment of the biosafety of Ad vector-mediated gene transfer.
Vectors for co-expression of an unrestricted number of proteins
Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad
2007-01-01
A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810
Greig, Jenny A; Peng, Hui; Ohlstein, Jason; Medina-Jaszek, C Angelica; Ahonkhai, Omua; Mentzinger, Anne; Grant, Rebecca L; Roy, Soumitra; Chen, Shu-Jen; Bell, Peter; Tretiakova, Anna P; Wilson, James M
2014-01-01
Intramuscular (IM) administration of adeno-associated viral (AAV) vectors has entered the early stages of clinical development with some success, including the first approved gene therapy product in the West called Glybera. In preparation for broader clinical development of IM AAV vector gene therapy, we conducted detailed pre-clinical studies in mice and macaques evaluating aspects of delivery that could affect performance. We found that following IM administration of AAV8 vectors in mice, a portion of the vector reached the liver and hepatic gene expression contributed significantly to total expression of secreted transgenes. The contribution from liver could be controlled by altering injection volume and by the use of traditional (promoter) and non-traditional (tissue-specific microRNA target sites) expression control elements. Hepatic distribution of vector following IM injection was also noted in rhesus macaques. These pre-clinical data on AAV delivery should inform safe and efficient development of future AAV products.
Cai, Yu-Yan; Wei, Xin; Zhang, Xiao-Ling; Liu, Gu-Yue; Li, Xi; Tang, Hong
2018-01-01
To quantify the hemodynamic characteristics of patients with nonvalvular atrial fibrillation. Twenty patients with paroxysmal atrial fibrillation and 15 patients with persistent atrial fibrillation enrolled in this study,while 12 patients with sinus rhythms served as controls. The hemodynamic characteristics of the patients in left atrial appendage were measured by transesophageal echocardiography (TEE) and vector flow mapping (VFM) using indicators such as vectors,vortex and energy loss (EL). ① Significant differences appeared between the patients with atrial fibrillation and the controls in heart rate,size of left atrium,size of left atrial appendage (LAA),and velocities of LAA filling and emptying. ② Regular vectors in LAA in early systole and late diastole were found in the patients with paroxysmal atrial fibrillation and the controls; whereas,irregular vectors with direction alternating were visualized in the whole cardiac cycle in the patients with persistent atrial fibrillation. ③ Small vortexes were observed at the opening of the left atrial appendage in late diastole in the patients with paroxysmal atrial fibrillation and the controls. ④ Peak EL values occurred in early systole and late diastole in the patients with paroxysmal atrial fibrillation and the controls. But the patients with persistent atrial fibrillation had increased EL values over the whole cardiac cycle. VFM can visualize and quantify the hemodynamics of LAA in patients with different heart rhythms. It may provide a new method for assessing atrial fibrillation. CopyrightCopyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).
Ronald, John A.; Katzenberg, Regina; Nielsen, Carsten H.; Jae, Hwan Jun; Hofmann, Lawrence V.; Gambhir, Sanjiv S.
2013-01-01
In hepatocellular carcinoma, tumor specificity of gene therapy is of utmost importance to preserve liver function. MicroRNAs are powerful negative regulators of gene expression and many are down-regulated in human HCC. We identified seven miRNAs that are also down-regulated in tumors in a rat hepatoma model (p<0.05) and attempted to improve tumor specificity by constructing a panel of luciferase-expressing vectors containing binding sites for these microRNAs. Attenuation of luciferase expression by the corresponding microRNAs was confirmed across various cell lines and in mouse liver. We then tested our vectors in tumor-bearing rats and identified two microRNAs, miR-26a and miR-122, that significantly decreased expression in liver compared to control vector (6.40% and 0.26%, respectively; p<0.05). In tumor, miR-122 had a non-significant trend towards decreased (~50%) expression , while miR-26 had no significant effect on tumor expression. To our knowledge this is the first work using differentially expressed microRNAs to de-target transgene expression in an orthotopic hepatoma model and identification of miR-26a in addition to miR-122 for de-targeting liver. Considering the heterogeneity of microRNA expression in human HCC, this information will be important in guiding development of more personalized vectors for the treatment of this devastating disease. PMID:23719066
Sehgal, Lalit; Budnar, Srikanth; Bhatt, Khyati; Sansare, Sneha; Mukhopadhaya, Amitabha; Kalraiya, Rajiv D; Dalal, Sorab N
2012-10-01
The study of protein-protein interactions, protein localization, protein organization into higher order structures and organelle dynamics in live cells, has greatly enhanced the understanding of various cellular processes. Live cell imaging experiments employ plasmid or viral vectors to express the protein/proteins of interest fused to a fluorescent protein. Unlike plasmid vectors, lentiviral vectors can be introduced into both dividing and non dividing cells, can be pseudotyped to infect a broad or narrow range of cells, and can be used to generate transgenic animals. However, the currently available lentiviral vectors are limited by the choice of fluorescent protein tag, choice of restriction enzyme sites in the Multiple Cloning Sites (MCS) and promoter choice for gene expression. In this report, HIV-1 based bi-cistronic lentiviral vectors have been generated that drive the expression of multiple fluorescent tags (EGFP, mCherry, ECFP, EYFP and dsRed), using two different promoters. The presence of a unique MCS with multiple restriction sites allows the generation of fusion proteins with the fluorescent tag of choice, allowing analysis of multiple fusion proteins in live cell imaging experiments. These novel lentiviral vectors are improved delivery vehicles for gene transfer applications and are important tools for live cell imaging in vivo.
Qu, Daofeng; Han, Jianzhong; Du, Aifang
2013-07-01
The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.
Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, R.; Huey-Tubman, K.E.; Dulac, C.
2006-10-06
Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-bindingmore » MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.« less
Klumpp, Dominik; Misovic, Milan; Szteyn, Kalina; Shumilina, Ekaterina; Rudner, Justine; Huber, Stephan M.
2016-01-01
Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+ signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation. PMID:26839633
VEST: Abstract Vector Calculus Simplification in Mathematica
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Squire, J. Burby and H. Qin
2013-03-12
We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce scalar and vector expressions of a very general type using a systematic canonicalization procedure. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by canonicalization, subsequently applying these to simplify large expressions. In a companion paper [1], we employ VEST in the automation of the calculation of Lagrangians for the single particle guiding center system in plasma physics, amore » computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations. __________________________________________________« less
VEST: Abstract vector calculus simplification in Mathematica
NASA Astrophysics Data System (ADS)
Squire, J.; Burby, J.; Qin, H.
2014-01-01
We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce three-dimensional scalar and vector expressions of a very general type to a well defined standard form. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by reduction, subsequently applying these to simplify large expressions. In a companion paper Burby et al. (2013) [12], we employ VEST in the automation of the calculation of high-order Lagrangians for the single particle guiding center system in plasma physics, a computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations.
Balakrishnan, R; Bolten, B; Backman, K C
1994-01-28
A cassette of genes from bacteriophage lambda, when carried on a derivative of bacteriophage Mu, renders strains of Escherichia coli (and in principle other Mu-sensitive bacteria) capable of supporting lambda-based expression vectors, such as rearrangement vectors and pL vectors. The gene cassette contains a temperature-sensitive allele of the repressor gene, cIts857, and a shortened leftward operon comprising, oLpL, N, xis and int. Transfection and lysogenization of this cassette into various host bacteria is mediated by phage Mu functions. Examples of regulated expression of the gene encoding T4 DNA ligase are presented.
Kumar, Kundan; Mosa, Kareem A; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash
2014-01-01
Boron (B) toxicity is responsible for low cereal crop production in a number of regions worldwide. In this report, we characterized two rice genes, OsPIP2;4 and OsPIP2;7, for their involvement in B permeability and tolerance. Transcript analysis demonstrated that the expression of OsPIP2;4 and OsPIP2;7 were downregulated in shoots and strongly upregulated in rice roots by high B treatment. Expression of both OsPIP2;4 and OsPIP2;7 in yeast HD9 strain lacking Fps1, ACR3, and Ycf1 resulted in an increased B sensitivity. Furthermore, yeast HD9 strain expressing OsPIP2;4 and OsPIP2;7 accumulated significantly higher B as compared to empty vector control, which suggests their involvement in B transport. Overexpression of OsPIP2;4 and OsPIP2;7 in Arabidopsis imparted higher tolerance under B toxicity. Arabidopsis lines overexpressing OsPIP2;4 and OsPIP2;7 showed significantly higher biomass production and greater root length, however there was no difference in B accumulation in long term uptake assay. Short-term uptake assay using tracer B (¹⁰B) in shoots and roots demonstrated increased ¹⁰B accumulation in Arabidopsis lines expressing OsPIP2;4 and OsPIP2;7, compare to wild type control plants. Efflux assay of B in the roots showed that ¹⁰B was effluxed from the Arabidopsis transgenic plants overexpressing OsPIP2;4 or OsPIP2;7 during the initial 1-h of assay. These data indicate that OsPIP2;4 and OsPIP2;7 are involved in mediating B transport in rice and provide tolerance via efflux of excess B from roots and shoot tissues. These genes will be highly useful in developing B tolerant crops for enhanced yield in the areas affected by high B toxicity.
Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle
2017-10-01
Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
Walker, Christopher J; Rush, Craig M; Dama, Paola; O'Hern, Matthew J; Cosgrove, Casey M; Gillespie, Jessica L; Zingarelli, Roman A; Smith, Blair; Stein, Maggie E; Mutch, David G; Shakya, Reena; Chang, Chia-Wen; Selvendiran, Karuppaiyah; Song, Jonathan W; Cohn, David E; Goodfellow, Paul J
2018-05-01
Genomic studies have revealed that multiple genes are mutated at varying frequency in endometrial cancer (EC); however, the relevance of many of these mutations is poorly understood. An EC-specific recurrent mutation in the MAX transcription factor p.His28Arg was recently discovered. We sought to assess the functional consequences of this hotspot mutation and determine its association with cancer-relevant phenotypes. MAX was sequenced in 509 endometrioid ECs, and associations between mutation status and clinicopathologic features were assessed. EC cell lines stably expressing MAXH28R were established and used for functional experiments. DNA binding was examined using electrophoretic mobility shift assays and chromatin immunoprecipitation. Transcriptional profiling was performed with microarrays. Murine flank (six to 11 mice per group) and intraperitoneal tumor models were used for in vivo studies. Vascularity of xenografts was assessed by MECA-32 immunohistochemistry. The paracrine pro-angiogenic nature of MAXH28R-expressing EC cells was tested using microfluidic HUVEC sprouting assays and VEGFA enzyme-linked immunosorbent assays. All statistical tests were two-sided. Twenty-two of 509 tumors harbored mutations in MAX, including 12 tumors with the p.His28Arg mutation. Patients with a MAX mutation had statistically significantly reduced recurrence-free survival (hazard ratio = 4.00, 95% confidence interval = 1.15 to 13.91, P = .03). MAXH28R increased affinity for canonical E-box sequences, and MAXH28R-expressing EC cells dramatically altered transcriptional profiles. MAXH28R-derived xenografts statistically significantly increased vascular area compared with MAXWT and empty vector tumors (P = .003 and P = .008, respectively). MAXH28R-expressing EC cells secreted nearly double the levels of VEGFA compared with MAXWT cells (P = .03, .005, and .005 at 24, 48, and 72 hours, respectively), and conditioned media from MAXH28R cells increased sprouting when applied to HUVECs. These data highlight the importance of MAX mutations in EC and point to increased vascularity as one mechanism contributing to clinical aggressiveness of EC.
Shi, Aiqin; Zheng, Huabao; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham T.
2016-01-01
Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate. PMID:26826228
Shi, Aiqin; Zheng, Huabao; Yomano, Lorraine P; York, Sean W; Shanmugam, Keelnatham T; Ingram, Lonnie O
2016-01-29
Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Powell, Kim L; Fitzgerald, Xavier; Shallue, Claire; Jovanovska, Valentina; Klugmann, Matthias; Von Jonquieres, Georg; O'Brien, Terence J; Morris, Margaret J
2018-05-01
Neuropeptide Y (NPY) is an important 36 amino acid peptide that is abundantly expressed in the mammalian CNS and is known to be an endogenous modulator of seizure activity, including in rat models of Genetic Generalised Epilepsy (GGE) with absence seizures. Studies have shown that viral-mediated "gene therapy" with overexpression of NPY in the hippocampus can suppress seizures in acquired epilepsy animal models. This study investigated whether NPY gene delivery to the thalamus or somatosensory cortex, using recombinant adeno-associated viral vector (rAAV), could produce sustained seizure suppression in the GAERS model of GGE with absence seizures. Three cohorts of GAERS were injected bilaterally into the thalamus (short term n = 14 and long term n = 8) or the somatosensory cortex (n = 26) with rAAV-NPY or rAAV-empty. EEG recordings were acquired weekly post-treatment and seizure expression was quantified. Anxiety levels were tested using elevated plus maze and open field test. NPY and NPY receptor mRNA and protein expression were evaluated using quantitative PCR, immunohistochemistry and immunofluorescence. Viral overexpression of human NPY in the thalamus and somatosensory cortex in GAERS significantly reduced the time spent in seizure activity and number of seizures, whereas seizure duration was only reduced after thalamic NPY overexpression. Human and rat NPY and rat Y2 receptor mRNA expression was significantly increased in the somatosensory cortex. NPY overexpression in the thalamus was observed in rAAV-NPY treated rats compared to controls in the long term cohort. No effect was observed on anxiety behaviour. We conclude that virally-mediated human NPY overexpression in the thalamus or somatosensory cortex produces sustained anti-epileptic effects in GAERS. NPY gene therapy may represent a novel approach for the treatment of patients with genetic generalised epilepsies. Copyright © 2018 Elsevier Inc. All rights reserved.
Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A
2016-10-01
Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alves, João Nuno; Muir, Elizabeth M; Andrews, Melissa R; Ward, Anneliese; Michelmore, Nicholas; Dasgupta, Debayan; Verhaagen, Joost; Moloney, Elizabeth B; Keynes, Roger J; Fawcett, James W; Rogers, John H
2014-04-30
As part of a project to express chondroitinase ABC (ChABC) in neurons of the central nervous system, we have inserted a modified ChABC gene into an adeno-associated viral (AAV) vector and injected it into the vibrissal motor cortex in adult rats to determine the extent and distribution of expression of the enzyme. A similar vector for expression of green fluorescent protein (GFP) was injected into the same location. For each vector, two versions with minor differences were used, giving similar results. After 4 weeks, the brains were stained to show GFP and products of chondroitinase digestion. Chondroitinase was widely expressed, and the AAV-ChABC and AAV-GFP vectors gave similar expression patterns in many respects, consistent with the known projections from the directly transduced neurons in vibrissal motor cortex and adjacent cingulate cortex. In addition, diffusion of vector to deeper neuronal populations led to labelling of remote projection fields which was much more extensive with AAV-ChABC than with AAV-GFP. The most notable of these populations are inferred to be neurons of cortical layer 6, projecting widely in the thalamus, and neurons of the anterior pole of the hippocampus, projecting through most of the hippocampus. We conclude that, whereas GFP does not label the thinnest axonal branches of some neuronal types, chondroitinase is efficiently secreted from these arborisations and enables their extent to be sensitively visualised. After 12 weeks, chondroitinase expression was undiminished. Copyright © 2014 Elsevier B.V. All rights reserved.
Snyder, Lindsey L.; Esser, Jonathan M.; Pachuk, Catherine J.; Steel, Laura F.
2008-01-01
RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes. PMID:18499277
A novel packaging system for the generation of helper-free oncolytic MVM vector stocks.
Brandenburger, A; Russell, S
1996-10-01
MVM-based autonomous parvoviral vectors have been shown to target the expression of heterologous genes in neoplastic cells and are therefore of interest for cancer gene therapy. The traditional method for production of parvoviral vectors requires the cotransfection of vector and helper plasmids into MVM-permissive cell lines, but recombination between the cotransfected plasmids invariably gives rise to vector stocks that are heavily contaminated with wild-type MVM. Therefore, to minimise recombination between the vector and helper genomes we have utilised a cell line in which the MVM helper functions are expressed inducibly from a modified MVM genome that is stably integrated into the host cell chromosome. Using this MVM packaging cell line, we could reproducibly generate MVM vector stocks that contained no detectable helper virus.
Weight loss after gastric banding is associated with pouch pressure and not pouch emptying rate.
Pedersen, Jan Bech; Larsen, Jens Fromholt; Drewes, Asbjørn Mohr; Arveschoug, Anne; Kroustrup, Jens Peter; Gregersen, Hans
2009-07-01
Morbid obesity defined as BMI > 40 is a growing problem. It is primarily treated with diet, lifestyle changes, and medicine. However, at present, surgery remains the only effective option for the management. Seventeen patients were studied 2 months after laparoscopic gastric banding. The aims were to evaluate the association between (1) the extent of pouch filling and satiety, (2) gastric emptying and weight loss, and (3) the pouch pressure during a meal and the sensation of satiety and weight loss. The preoperative weight was 146 kg (range 108-202 kg). The average weight loss was 21 kg between the banding and the examination. The half time (T (50%)) for the pouch emptying was 3 min (quartiles 3-12.5) and the time to 90% of pouch emptying (T (90%)) was 40 min (24.5-60). The sensation of satiety lasted 75 min (57.5-105), and the feeling of hunger started after 90 min (40-90). Neither T (50%) nor T (90%) correlated to the weight loss (R = 0.006, P > 0.5 and R = 0.1, P > 0.5). The sensation of satiety did not correlate to T (50%) or T (90%) (R = 0.6, P = 0.12 and R = 0.5, P = 0.15). No association was found between the sensory data and the pressure decline. Significant association was found between the load of the meal expressed as the area under the pouch pressure curve and the weight loss (R = 0.786, P = 0.015). The satiety sensation lasted much longer than the pouch emptying and the pressure increase. The pressure load correlated to the weight loss. This indicates that neuroendocrine mechanisms caused by the accumulated mechanical load are most important for maintaining satiety.
2013-01-01
Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113
Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C
2010-01-01
Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947
Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M
2008-04-01
Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.
Javan, Bita; Atyabi, Fatemeh; Shahbazi, Majid
2018-06-01
This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo. Copyright © 2018. Published by Elsevier Inc.
Douin, Victorine; Bornes, Stephanie; Creancier, Laurent; Rochaix, Philippe; Favre, Gilles; Prats, Anne-Catherine; Couderc, Bettina
2004-01-01
Background Polycistronic retroviral vectors that contain several therapeutic genes linked via internal ribosome entry sites (IRES), provide new and effective tools for the co-expression of exogenous cDNAs in clinical gene therapy protocols. For example, tricistronic retroviral vectors could be used to genetically modify antigen presenting cells, enabling them to express different co-stimulatory molecules known to enhance tumor cell immunogenicity. Results We have constructed and compared different retroviral vectors containing two co-stimulatory molecules (CD70, CD80) and selectable marker genes linked to different IRES sequences (IRES from EMCV, c-myc, FGF-2 and HTLV-1). The tricistronic recombinant amphotropic viruses containing the IRES from EMCV, FGF-2 or HTLV-1 were equally efficient in inducing the expression of an exogenous gene in the transduced murine or human cells, without displaying any cell type specificity. The simultaneous presence of several IRESes on the same mRNA, however, can induce the differential expression of the various cistrons. Here we show that the IRESes of HTLV-1 and EMCV interfere with the translation induced by other IRESes in mouse melanoma cells. The IRES from FGF-2 did however induce the expression of exogenous cDNA in human melanoma cells without any positive or negative regulation from the other IRESs present within the vectors. Tumor cells that were genetically modified with the tricistronic retroviral vectors, were able to induce an in vivo anti-tumor immune response in murine models. Conclusion Translation of the exogenous gene is directed by the IRES and its high level of expression not only depends on the type of cell that is transduced but also on the presence of other genetic elements within the vector. PMID:15279677
Ford, Kathryn L.; Baumgartner, Kendra; Henricot, Béatrice; Bailey, Andy M.; Foster, Gary D.
2016-01-01
Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled using yeast-based recombination methods. These have been designed to allow easy exchange of promoters and inclusion of introns. The vectors were first tested by transformation into basidiomycete Clitopilus passeckerianus to ascertain vector functionality then used to transform A. mellea. We show that heterologous promoters from the basidiomycetes Agaricus bisporus and Phanerochaete chrysosporium that were used successfully to control the hygromycin resistance cassette were not able to support expression of mRFP or GFP in A. mellea. The endogenous A. mellea gpd promoter delivered efficient expression, and we show that inclusion of an intron was also required for transgene expression. GFP and mRFP expression was stable in mycelia and fluorescence was visible in transgenic fruiting bodies and GFP was detectable in planta. Use of these vectors has been successful in giving expression of the fluorescent proteins GFP and mRFP in A. mellea, providing an additional molecular tool for this pathogen. PMID:27384974
Kim, Hyun Ah; Nam, Kihoon; Lee, Minhyung; Kim, Sung Wan
2013-10-10
Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy. © 2013.
Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A
2015-11-01
Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.
Challenging assumptions of notational transparency: the case of vectors in engineering mathematics
NASA Astrophysics Data System (ADS)
Craig, Tracy S.
2017-11-01
The notation for vector analysis has a contentious nineteenth century history, with many different notations describing the same or similar concepts competing for use. While the twentieth century has seen a great deal of unification in vector analysis notation, variation still remains. In this paper, the two primary notations used for expressing the components of a vector are discussed in historical and current context. Popular mathematical texts use the two notations as if they are transparent and interchangeable. In this research project, engineering students' proficiency at vector analysis was assessed and the data were analyzed using the Rasch measurement method. Results indicate that the students found items expressed in unit vector notation more difficult than those expressed in parenthesis notation. The expert experience of notation as transparent and unproblematically symbolic of underlying processes independent of notation is shown to contrast with the student experience where the less familiar notation is experienced as harder to work with.
Virus-Derived Gene Expression and RNA Interference Vector for Grapevine
Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.
2012-01-01
The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553
Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.
2018-01-01
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380
Suzuki, Nobuhiro; Geletka, Lynn M.; Nuss, Donald L.
2000-01-01
We have investigated whether hypoviruses, viral agents responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, could serve as gene expression vectors. The infectious cDNA clone of the prototypic hypovirus CHV1-EP713 was modified to generate 20 different vector candidates. Although transient expression was achieved for a subset of vectors that contained the green fluorescent protein gene from Aequorea victoria, long-term expression (past day 8) was not observed for any vector construct. Analysis of viral RNAs recovered from transfected fungal colonies revealed that the foreign genes were readily deleted from the replicating virus, although small portions of foreign sequences were retained by some vectors after months of replication. However, the results of vector viability and progeny characterization provided unexpected new insights into essential and dispensable elements of hypovirus replication. The N-terminal portion (codons 1 to 24) of the 5′-proximal open reading frame (ORF), ORF A, was found to be required for virus replication, while the remaining 598 codons of this ORF were completely dispensable. Substantial alterations were tolerated in the pentanucleotide UAAUG that contains the ORF A termination codon and the overlapping putative initiation codon of the second of the two hypovirus ORFs, ORF B. Replication competence was maintained following either a frameshift mutation that caused a two-codon extension of ORF A or a modification that produced a single-ORF genomic organization. These results are discussed in terms of determinants of hypovirus replication, the potential utility of hypoviruses as gene expression vectors, and possible mechanisms by which hypoviruses recognize and delete foreign sequences. PMID:10906211
Kim, Shin-Hee; Paldurai, Anandan; Xiao, Sa; Collins, Peter L.; Samal, Siba K.
2016-01-01
Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans. PMID:24968158
Advantageous Use of Hypnosis in a Case of Psychogenic Vomiting.
Chandrashekhar, Roopa
2016-04-01
This case study describes in detail the role of hypnosis in treatment of a case of psychogenic vomiting. The patient, a 60-yearold woman, had been suffering for 9 months from episodes of vomiting which resulted in weight loss, dehydration, and hypokalemia. She was a conscientious woman with high standards of behavior, which did not allow an expression of the extreme hostility she felt toward her daughter-in-law. Hypnotherapeutic sessions reduced her anxiety, restored her sleep, improved mood, and helped deepen rapport, all of which created the ideal setting for Gestalt's empty chair technique. Integrating hypnosis greatly enhanced the quality of the empty chair dialogue, which by bringing about a shift in the patient's emotions from hostility to sympathy, facilitated recovery.
Public health: champion of food and nutritional security in an insecure world.
2009-10-01
When it comes to nutrition, like most middle-income countries, Cuba is equally haunted by shadows of an undernourished past and forebodings of an overweight future. This dilemma is the country-level expression of a tough global reality: the world's empty stomachs and empty calories result from the same skewed constellation of international economic and trade policies. Speaking of the current and unprecedented food, fuel, climate and financial crises, World Health Organization (WHO) Director-General Margaret Chan comments: "…they are the result of massive failures in the international systems that govern the way nations and their populations interact. In short: they are the result of bad policies…(in which) economic interests trump health concerns time and time again."[1].
StearoylCoA Desaturase-5: A Novel Regulator of Neuronal Cell Proliferation and Differentiation
Sinner, Debora I.; Kim, Gretchun J.; Henderson, Gregory C.; Igal, R. Ariel
2012-01-01
Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation. PMID:22745828
Jailani, A Abdul Kader; Solanki, Vikas; Roy, Anirban; Sivasudha, T; Mandal, Bikash
2017-04-02
A highly infectious clone of Cucumber green mottle mosaic virus (CGMMV), a cucurbit-infecting tobamovirus was utilized for designing of gene expression vectors. Two versions of vector were examined for their efficacy in expressing the green fluorescent protein (GFP) in Nicotiana benthamiana. When the GFP gene was inserted at the stop codon of coat protein (CP) gene of the CGMMV genome without any read-through codon, systemic expression of GFP, as well as virion formation and systemic symptoms expression were obtained in N. benthamiana. The qRT-PCR analysis showed 23 fold increase of GFP over actin at 10days post inoculation (dpi), which increased to 45 fold at 14dpi and thereafter the GFP expression was significantly declined. Further, we show that when the most of the CP sequence is deleted retaining only the first 105 nucleotides, the shortened vector containing GFP in frame of original CP open reading frame (ORF) resulted in 234 fold increase of GFP expression over actin at 5dpi in N. benthamiana without the formation of virions and disease symptoms. Our study demonstrated that a simple manipulation of CP gene in the CGMMV genome while preserving the translational frame of CP resulted in developing a virus-free, rapid and efficient foreign protein expression system in the plant. The CGMMV based vectors developed in this study may be potentially useful for the production of edible vaccines in cucurbits. Copyright © 2017 Elsevier B.V. All rights reserved.
Kittel, Christian; Wressnigg, Nina; Shurygina, Anna Polina; Wolschek, Markus; Stukova, Marina; Romanovskaya-Romanko, Ekatherina; Romanova, Julia; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej
2015-10-01
The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels.
Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan
2017-08-01
Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria
2010-01-01
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151
Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A
2008-01-01
Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, γ-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different γ-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the γ-globin gene driven by 3.1 kb of β-globin regulatory sequences and a 130-bp β-globin promoter. The second vector, V5m3, was identical except that the γ-globin 3′-untranslated region (3′-UTR) was replaced with the β-globin 3′-UTR. Adult erythroid cells have β-globin mRNA 3′-UTR-binding proteins that enhance β-globin mRNA stability and we postulated this design might enhance γ-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human γ-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of γ-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a γ-globin lentiviral vector. PMID:19050697
Molecular design for recombinant adeno-associated virus (rAAV) vector production.
Aponte-Ubillus, Juan Jose; Barajas, Daniel; Peltier, Joseph; Bardliving, Cameron; Shamlou, Parviz; Gold, Daniel
2018-02-01
Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 3 to 10 5 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.
Shamekova, Malika; Mendoza, Maria R; Hsieh, Yi-Cheng; Lindbo, John; Omarov, Rustem T; Scholthof, Herman B
2014-03-01
A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing. Copyright © 2014. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Vectored vaccines expressing the combination of the hemagglutinin-neuraminidase (HN) and fusion (F) genes generally have better clinical protection against Newcastle disease virus (NDV) than when either the F and HN genes are expressed alone. Interestingly, the protection induced by F is usually bet...
Development of a GFP expression vector for Cucurbit chlorotic yellows virus.
Wei, Ying; Han, Xiaoyu; Wang, Zhenyue; Gu, Qinsheng; Li, Honglian; Chen, Linlin; Sun, Bingjian; Shi, Yan
2018-05-24
Cucurbit chlorotic yellows virus (CCYV), a bipartite crinivirus, causes chlorotic leaf spots and yellowing symptoms on cucurbit leaves. We previously developed an infectious clone of CCYV. Limited work has been conducted on the construction of a crinivirus green fluorescence protein (GFP) expression vector to date. We constructed a CCYV GFP expression vector using the "add a gene" strategy based on CCYV RNA2 cDNA constrcut. Three resultant clones, pCCYVGFP SGC , pCCYVGFP CGC , and pCCYVGFP CGS, were constructed with different promoters used to initiate GFP and CP expression. At 25 dpi GFP fluorescence was detectable not only in leaf veins but also in the surrounding cells. pCCYVGFP CGC -infected cucumber leaves exhibited cell spread at 25 dpi, whereas pCCYVGFP SGC and pCCYVGFP CGS were mainly found in single cells. Further observation of pCCYVGFP CGC GFP expression at 30 dpi, 40 dpi, and 50 dpi showed phloem-limited localization in the systemic leaves. We developed of a CCYV GFP expression vector that will be useful for further study of CCYV movement in cucurbits.
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
Fernandez-Sainz, Ignacio; Medina, Gisselle N; Ramirez-Medina, Elizabeth; Koster, Marla J; Grubman, Marvin J; de Los Santos, Teresa
2017-02-01
A human adenovirus (Ad5) vectored foot-and-mouth disease virus (FMDV) O1-Manisa subunit vaccine (Ad5-O1Man) was engineered to deliver FMDV O1-Manisa capsid and capsid-processing proteins. Swine inoculated with Ad5-O1Man developed an FMDV-specific humoral response as compared to animals inoculated with an empty Ad5-vector. Vaccinated animals were completely protected against homologous challenge at 7 or 21 days post-vaccination. Potency studies exhibited a PD50 of about 10 7 pfu/animal while a dose of 4×10 7 pfu/animal fully protected swine against FMDV intradermal challenge. In-vitro cross-neutralization analysis distinctly predicted that swine vaccinated with Ad5-O1Man would be protected against challenge with homologous FMDV O1Man Middle East-South Asia (ME-SA) topotype and also against recent outbreak strains of Mya-98 South East Asia (SEA) lineage including O1-UK-2001 and O1-South Korea-2010. These results indicate that recombinant Ad5-O1Man is an effective, safe and cross-reacting vaccine that could potentially be used preventively and in outbreak situations, to control FMDV O Mya-98 lineage in swine. Published by Elsevier Inc.
Halbert, Christine L.; Rutledge, Elizabeth A.; Allen, James M.; Russell, David W.; Miller, A. Dusty
2000-01-01
Vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in the lung; however, we have found that while gene expression can persist for at least 8 months in mice, it was reduced dramatically in rabbits over a period of 2 months. The efficiency and persistence of AAV2-mediated gene expression in the human lung have yet to be determined, but it seems likely that readministration will be necessary over the lifetime of an individual. Unfortunately, we have found that transduction by a second administration of an AAV2 vector is blocked, presumably due to neutralizing antibodies generated in response to the primary vector exposure. Here, we have explored the use of AAV2 vectors pseudotyped with capsid proteins from AAV serotypes 2, 3, and 6 for readministration in the mouse lung. We found that an AAV6 vector transduced airway epithelial and alveolar cells in the lung at rates that were at least as high as those of AAV2 pseudotype vectors, while transduction rates mediated by AAV3 were much lower. AAV6 pseudotype vector transduction was unaffected by prior administration of an AAV2 or AAV3 vector, and transduction by an AAV2 pseudotype vector was unaffected by prior AAV6 vector administration, showing that cross-reactive neutralizing antibodies against AAV2 and AAV6 are not generated in mice. Interestingly, while prior administration of an AAV2 vector completely blocked transduction by a second AAV2 pseudotype vector, prior administration of an AAV6 vector only partially inhibited transduction by a second administration of an AAV6 pseudotype vector. Analysis of sera obtained from mice and humans showed that AAV6 is less immunogenic than AAV2, which helps explain this finding. These results support the development of AAV6 vectors for lung gene therapy both alone and in combination with AAV2 vectors. PMID:10627564
Rotations with Rodrigues' Vector
ERIC Educational Resources Information Center
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Rule-Based Design of Plant Expression Vectors Using GenoCAD.
Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean
2015-01-01
Plant synthetic biology requires software tools to assist on the design of complex multi-genic expression plasmids. Here a vector design strategy to express genes in plants is formalized and implemented as a grammar in GenoCAD, a Computer-Aided Design software for synthetic biology. It includes a library of plant biological parts organized in structural categories and a set of rules describing how to assemble these parts into large constructs. Rules developed here are organized and divided into three main subsections according to the aim of the final construct: protein localization studies, promoter analysis and protein-protein interaction experiments. The GenoCAD plant grammar guides the user through the design while allowing users to customize vectors according to their needs. Therefore the plant grammar implemented in GenoCAD will help plant biologists take advantage of methods from synthetic biology to design expression vectors supporting their research projects.
The prospect of gene therapy for prostate cancer: update on theory and status.
Koeneman, K S; Hsieh, J T
2001-09-01
Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.
Wang, David B.; Dayton, Robert D.; Zweig, Richard M.; Klein, Ronald L.
2010-01-01
Neurofibrillary tangles comprised of the microtubule-associated protein tau are pathological features of Alzheimer's disease and several other neurodegenerative diseases, such as progressive supranuclear palsy. We previously overexpressed tau in the substantia nigra of rats and mimicked some of the neurodegenerative sequelae that occur in humans such as tangle formation, loss of dopamine neurons, and microgliosis. To study molecular changes involved in the tau-induced disease state, we used DNA microarrays at an early stage of the disease process. A range of adeno-associated virus (AAV9) vector doses for tau were injected in groups of rats with a survival interval of two weeks. Specific decreases in messages for dopamine related genes validated the technique with respect to the dopaminergic cell loss observed. Of the mRNAs upregulated, there was a dose-dependent effect on multiple genes involved in immune response such as chemokines, interferon-inducible genes and leukocyte markers, only in the tau vector groups and not in dose-matched controls of either transgene-less empty vector or control green fluorescent protein vector. Histological staining for dopamine neurons and microglia matched the loss of dopaminergic markers and upregulation of immune response mRNAs in the microarray data, respectively. RT-PCR for selected markers confirmed the microarray results, with similar changes found by either technique. The mRNA data correlate well with previous findings, and underscore microgliosis and immune response in the degenerative process following tau overexpression. PMID:20346943
Zhu, Lijuan; Liao, Wenjun; Zhu, Huifen; Lei, Ping; Wang, Zhihua; Shao, Jingfang; Zhang, Yue; Shen, Guanxin
2006-01-01
The expression vector of SmIg scFv fragment was constructed in patient with B cell chronic lymphocyte leukemia (B-CLL) and expressed in E. coli to obtain scFv fragment, and the effect of the protein on the proliferation of stimulated peripheral blood mononuclear cells (PBMC) was investigated in vitro. Two pairs of primers were designed, and variable region genes of light chain and heavy chain were amplified by PCR respectively from the pGEM-T vectors previously constructed in our laboratory which containing light chain gene or Fd fragment of heavy chain gene. The PCR product was digested, purified and inserted into pHEN2 vector to construct the soluble expression vector pHEN2-scFv. After the induction by IPTG, the scFv protein was identified by SDS-PAGE electrophoresis and purified by Ni-NTA-Chromatography. MTT was used to determine the effect of purified protein on the proliferation of stimulated PBMC in vitro. Plasmid PCR and restriction enzyme digestion of pHEN2-scFv revealed the pHEN2-scFv vector was constructed successfully. Id-scFv protein was expressed in positive clone after induced by IPTG. SDS-PAGE analysis showed that the relative molecular weight of fusion protein was about 30 kD (1 kD= 0.9921 ku), which was consistent with the theoretically predicted value. Proliferation of PBMC could be induced by purified Id-scFv. It was suggested that the expression vector of SmIg scFv fragment was constructed successfully, and scFv protein was expressed and secreted from E. coli, which could induce proliferation of PBMC. This may lay an experimental foundation for further research of Id-HSP complex vaccine for B-CLL.
Hagstrom, J N; Couto, L B; Scallan, C; Burton, M; McCleland, M L; Fields, P A; Arruda, V R; Herzog, R W; High, K A
2000-04-15
Hemophilia B is caused by the absence of functional coagulation factor IX (F.IX) and represents an important model for treatment of genetic diseases by gene therapy. Recent studies have shown that intramuscular injection of an adeno-associated viral (AAV) vector into mice and hemophilia B dogs results in vector dose-dependent, long-term expression of biologically active F.IX at therapeutic levels. In this study, we demonstrate that levels of expression of approximately 300 ng/mL (6% of normal human F.IX levels) can be reached by intramuscular injection of mice using a 2- to 4-fold lower vector dose (1 x 10(11) vector genomes/mouse, injected into 4 intramuscular sites) than previously described. This was accomplished through the use of an improved expression cassette that uses the cytomegalovirus (CMV) immediate early enhancer/promoter in combination with a 1.2-kilobase portion of human skeletal actin promoter. These results correlated with enhanced levels of F.IX transcript and secreted F.IX protein in transduced murine C2C12 myotubes. Systemic F.IX expression from constructs containing the CMV enhancer/promoter alone was 120 to 200 ng/mL in mice injected with 1 x 10(11) vector genomes. Muscle-specific promoters performed poorly for F.IX transgene expression in vitro and in vivo. However, the incorporation of a sequence from the alpha-skeletal actin promoter containing at least 1 muscle-specific enhancer and 1 enhancer-like element further improved muscle-derived expression of F.IX from a CMV enhancer/promoter-driven expression cassette over previously published results. These findings will allow the design of a clinical protocol for therapeutic levels of F.IX expression with lower vector doses, thus enhancing efficacy and safety of the protocol. (Blood. 2000;95:2536-2542)
Stable and Efficient Gene Transfer into the Retina Using an HIV-Based Lentiviral Vector
NASA Astrophysics Data System (ADS)
Miyoshi, Hiroyuki; Takahashi, Masayo; Gage, Fred H.; Verma, Inder M.
1997-09-01
The development of methods for efficient gene transfer to terminally differentiated retinal cells is important to study the function of the retina as well as for gene therapy of retinal diseases. We have developed a lentiviral vector system based on the HIV that can transduce terminally differentiated neurons of the brain in vivo. In this study, we have evaluated the ability of HIV vectors to transfer genes into retinal cells. An HIV vector containing a gene encoding the green fluorescent protein (GFP) was injected into the subretinal space of rat eyes. The GFP gene under the control of the cytomegalovirus promoter was efficiently expressed in both photoreceptor cells and retinal pigment epithelium. However, the use of the rhodopsin promoter resulted in expression predominantly in photoreceptor cells. Most successfully transduced eyes showed that photoreceptor cells in >80% of the area of whole retina expressed the GFP. The GFP expression persisted for at least 12 weeks with no apparent decrease. The efficient gene transfer into photoreceptor cells by HIV vectors will be useful for gene therapy of retinal diseases such as retinitis pigmentosa.
Zhang, Xiaoyue; Xu, Keyan; Ou, Yanmei; Xu, Xiaodong; Chen, Hongying
2018-05-02
The Baculovirus expression vector system (BEVS) is a transient expression platform for recombinant protein production in insect cells. Baculovirus infection of insect cells will shutoff host translation and induce apoptosis and lead to the termination of protein expression. Previous reports have demonstrated the enhancement of protein yield in BEVS using stable insect cell lines expressing interference RNA to suppress the expression of caspase-1. In this study, short-hairpin RNA (shRNA) expression cassettes targeting Spodoptera frugiperda caspase-1 (Sf-caspase-1) were constructed and inserted into an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vector. Using the recombinant baculovirus vectors, we detected the suppression of Sf-caspase-1 expression and cell apoptosis. Green fluorescent protein (GFP), Discosoma sp. Red (DsRed) and firefly luciferase were then expressed as reporter proteins. The results showed that suppression of apoptosis enhanced the accumulation of exogenous proteins at 2 and 3 days post infection. After 4 days post infection, the activity of the reporter proteins remained higher in BEVS using the baculovirus carrying shRNA in comparison with the control without shRNA, but the accumulated protein levels showed no obvious difference between them, suggesting that apoptosis suppression resulted in improved protein folding rather than translation efficiency at the very late stage of baculovirus infection. The baculovirus vector developed in this study would be a useful tool for the production of active proteins suitable for structural and functional studies or pharmaceutical applications in Sf9 cells, and it also has the potential to be adapted for the improvement of protein expression in different insect cell lines that can be infected by AcMNPV.
Gorziglia, M I; Kadan, M J; Yei, S; Lim, J; Lee, G M; Luthra, R; Trapnell, B C
1996-01-01
A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy. PMID:8648763
Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie
2004-01-01
Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. Conclusion This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme. PMID:15193153
Grieger, Joshua C; Soltys, Stephen M; Samulski, Richard Jude
2016-01-01
Adeno-associated virus (AAV) has shown great promise as a gene therapy vector in multiple aspects of preclinical and clinical applications. Many developments including new serotypes as well as self-complementary vectors are now entering the clinic. With these ongoing vector developments, continued effort has been focused on scalable manufacturing processes that can efficiently generate high-titer, highly pure, and potent quantities of rAAV vectors. Utilizing the relatively simple and efficient transfection system of HEK293 cells as a starting point, we have successfully adapted an adherent HEK293 cell line from a qualified clinical master cell bank to grow in animal component-free suspension conditions in shaker flasks and WAVE bioreactors that allows for rapid and scalable rAAV production. Using the triple transfection method, the suspension HEK293 cell line generates greater than 1 × 105 vector genome containing particles (vg)/cell or greater than 1 × 1014 vg/l of cell culture when harvested 48 hours post-transfection. To achieve these yields, a number of variables were optimized such as selection of a compatible serum-free suspension media that supports both growth and transfection, selection of a transfection reagent, transfection conditions and cell density. A universal purification strategy, based on ion exchange chromatography methods, was also developed that results in high-purity vector preps of AAV serotypes 1–6, 8, 9 and various chimeric capsids tested. This user-friendly process can be completed within 1 week, results in high full to empty particle ratios (>90% full particles), provides postpurification yields (>1 × 1013 vg/l) and purity suitable for clinical applications and is universal with respect to all serotypes and chimeric particles. To date, this scalable manufacturing technology has been utilized to manufacture GMP phase 1 clinical AAV vectors for retinal neovascularization (AAV2), Hemophilia B (scAAV8), giant axonal neuropathy (scAAV9), and retinitis pigmentosa (AAV2), which have been administered into patients. In addition, we report a minimum of a fivefold increase in overall vector production by implementing a perfusion method that entails harvesting rAAV from the culture media at numerous time-points post-transfection. PMID:26437810
Jin, Cheng; Feng, Jianjiang; Wang, Lei; Yu, Heng; Liu, Jiang; Lu, Jiwen; Zhou, Jie
2018-05-01
In this paper, we present an approach for left atrial appendage (LAA) multi-phase fast segmentation and quantitative assisted diagnosis of atrial fibrillation (AF) based on 4D-CT data. We take full advantage of the temporal dimension information to segment the living, flailed LAA based on a parametric max-flow method and graph-cut approach to build 3-D model of each phase. To assist the diagnosis of AF, we calculate the volumes of 3-D models, and then generate a "volume-phase" curve to calculate the important dynamic metrics: ejection fraction, filling flux, and emptying flux of the LAA's blood by volume. This approach demonstrates more precise results than the conventional approaches that calculate metrics by area, and allows for the quick analysis of LAA-volume pattern changes of in a cardiac cycle. It may also provide insight into the individual differences in the lesions of the LAA. Furthermore, we apply support vector machines (SVMs) to achieve a quantitative auto-diagnosis of the AF by exploiting seven features from volume change ratios of the LAA, and perform multivariate logistic regression analysis for the risk of LAA thrombosis. The 100 cases utilized in this research were taken from the Philips 256-iCT. The experimental results demonstrate that our approach can construct the 3-D LAA geometries robustly compared to manual annotations, and reasonably infer that the LAA undergoes filling, emptying and re-filling, re-emptying in a cardiac cycle. This research provides a potential for exploring various physiological functions of the LAA and quantitatively estimating the risk of stroke in patients with AF. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.
Sakamoto, Shingo; Mitsuda, Nobutaka
2015-02-01
The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Assessing the potential for AAV vector genotoxicity in a murine model
Li, Hojun; Malani, Nirav; Hamilton, Shari R.; Schlachterman, Alexander; Bussadori, Giulio; Edmonson, Shyrie E.; Shah, Rachel; Arruda, Valder R.; Mingozzi, Federico; Fraser Wright, J.; Bushman, Frederic D.
2011-01-01
Gene transfer using adeno-associated virus (AAV) vectors has great potential for treating human disease. Recently, questions have arisen about the safety of AAV vectors, specifically, whether integration of vector DNA in transduced cell genomes promotes tumor formation. This study addresses these questions with high-dose liver-directed AAV-mediated gene transfer in the adult mouse as a model (80 AAV-injected mice and 52 controls). After 18 months of follow-up, AAV-injected mice did not show a significantly higher rate of hepatocellular carcinoma compared with controls. Tumors in mice treated with AAV vectors did not have significantly different amounts of vector DNA compared with adjacent normal tissue. A novel high-throughput method for identifying AAV vector integration sites was developed and used to clone 1029 integrants. Integration patterns in tumor tissue and adjacent normal tissue were similar to each other, showing preferences for active genes, cytosine-phosphate-guanosine islands, and guanosine/cysteine-rich regions. Gene expression data showed that genes near integration sites did not show significant changes in expression patterns compared with genes more distal to integration sites. No integration events were identified as causing increased oncogene expression. Thus, we did not find evidence that AAV vectors cause insertional activation of oncogenes and subsequent tumor formation. PMID:21106988
Detection of osteoclastic cell-cell fusion through retroviral vector packaging.
Kondo, Takako; Ikeda, Kyoji; Matsuo, Koichi
2004-11-01
Cell-cell fusion generates multinucleated cells such as osteoclasts in bone, myotubes in muscle, and trophoblasts in placenta. Molecular details governing these fusion processes are still largely unknown. As a step toward identification of fusogenic genes, we tested the concept that retroviral vectors can be packaged as a result of cell-cell fusion. First, we introduced replication-deficient retroviral vectors expressing mCAT-1, which mediates fusogenic interaction with the retroviral envelope protein Env, into Chinese hamster ovary (CHO) cells to generate vector cells. Plasmids expressing virion proteins Gag, Pol, and Env were introduced into a separate culture of CHO cells to generate packaging cells. Co-culturing vector and packaging cells resulted in production of infectious retroviruses carrying the mCAT-1 gene as a consequence of cell-cell fusion. Second, we introduced a retroviral vector into primary osteoclast precursors and co-cultured them with established osteoclast precursor RAW264.7 cells, which turned out to harbor packaging activity. Packaged retroviral vector was detected in culture supernatants only where the osteoclast differentiation factor receptor activator for NF-kappaB ligand (RANKL) induced fusion between these two cell types. These data suggest that retrovirus production can occur as a result of cell-cell fusion. This provides a novel approach for isolating and characterizing fusogenic genes using retroviral expression vectors.
[Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].
Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min
2014-06-01
This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.
Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm
2012-01-01
DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.
Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O.; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm
2012-01-01
DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5′-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells. PMID:23110238
A Simple And Rapid Minicircle DNA Vector Manufacturing System
Kay, Mark A; He, Cheng-Yi; Chen, Zhi-Ying
2010-01-01
Minicircle DNA vectors consisting of a circular expression cassette devoid of the bacterial plasmid DNA backbone provides several advantages including sustained transgene expression in quiescent cells/tissues. Their use has been limited by labor-intensive production. We report on a strategy for making multiple genetic modifications in E.coli to construct a producer strain that stably expresses a set of inducible minicircle-assembly enzymes, the øC31-integrase and I-SceI homing-endonuclease. This bacterial strain is capable of producing highly purified minicircle yields in the same time frame as routine plasmid DNA. It is now feasible for minicircle DNA vectors to replace routine plasmids in mammalian transgene expression studies. PMID:21102455
[Cloning of human CD45 gene and its expression in Hela cells].
Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang
2015-11-01
To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.
Regulated Expression of Adenoviral Vectors-Based Gene Therapies
Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.
2008-01-01
Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649
Development of an Expression Vector to Overexpress or Downregulate Genes in Curvularia protuberata.
Liu, Chengke; Cleckler, Blake; Morsy, Mustafa
2018-05-05
Curvularia protuberata , an endophytic fungus in the Ascomycota, provides plants with thermotolerance only when it carries a mycovirus known as Curvularia thermotolerance virus (CThTV), and forms a three-way symbiotic relationship among these organisms. Under heat stress, several genes are expressed differently between virus-free C. protuberata (VF) and C. protuberata carrying CThTV (AN). We developed an expression vector, pM2Z-fun, carrying a zeocin resistance gene driven by the ToxA promoter, to study gene functions in C. protuberata to better understand this three-way symbiosis. Using this new 3.7-kb vector, five genes that are differentially expressed in C. protuberata —including genes involved in the trehalose, melanin, and catalase biosynthesis pathways—were successfully overexpressed or downregulated in VF or AN C. protuberata strains, respectively. The VF overexpression lines showed higher metabolite and enzyme activity than in the control VF strain. Furthermore, downregulation of expression of the same genes in the AN strain resulted in lower metabolite and enzyme activity than in the control AN strain. The newly generated expression vector, pM2Z-fun, has been successfully used to express target genes in C. protuberata and will be useful in further functional expression studies in other Ascomycota fungi.
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G.; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B.; Grillone, Teresa; Giovannone, Emilia D.; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A. S.; Bond, Heather M.; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells. PMID:25502183
Gerits, Annelies; Vancraeyenest, Pascaline; Vreysen, Samme; Laramée, Marie-Eve; Michiels, Annelies; Gijsbers, Rik; Van den Haute, Chris; Moons, Lieve; Debyser, Zeger; Baekelandt, Veerle; Arckens, Lutgarde; Vanduffel, Wim
2015-01-01
Abstract. Viral vector-mediated expression of genes (e.g., coding for opsins and designer receptors) has grown increasingly popular. Cell-type specific expression is achieved by altering viral vector tropism through crosspackaging or by cell-specific promoters driving gene expression. Detailed information about transduction properties of most recombinant adeno-associated viral vector (rAAV) serotypes in macaque cortex is gradually becoming available. Here, we compare transduction efficiencies and expression patterns of reporter genes in two macaque neocortical areas employing different rAAV serotypes and promoters. A short version of the calmodulin-kinase-II (CaMKIIα0.4) promoter resulted in reporter gene expression in cortical neurons for all tested rAAVs, albeit with different efficiencies for spread: rAAV2/5>>rAAV2/7>rAAV2/8>rAAV2/9>>rAAV2/1 and proportion of transduced cells: rAAV2/1>rAAV2/5>rAAV2/7=rAAV2/9>rAAV2/8. In contrast to rodent studies, the cytomegalovirus (CMV) promoter appeared least efficient in macaque cortex. The human synapsin-1 promoter preceded by the CMV enhancer (enhSyn1) produced homogeneous reporter gene expression across all layers, while two variants of the CaMKIIα promoter resulted in different laminar transduction patterns and cell specificities. Finally, differences in expression patterns were observed when the same viral vector was injected in two neocortical areas. Our results corroborate previous findings that reporter-gene expression patterns and efficiency of rAAV transduction depend on serotype, promoter, cortical layer, and area. PMID:26839901
Liu, Fang; Li, Li; Zhang, Wei; Wang, Qi
2013-04-01
This research was to construct the lentiviral expression vector for anti- p185(erbB2) mouse/human chimeric antibody and to determine the expression of the chimeric antibody gene in 293T cells transfected with this vector. The genes (vL and vH) coding light and heavy chain of variable regions of anti-p185(erbB2) mAb and the constant regions of human IgG1 (kappa and gamma1) were cloned with PCR method. The target genes were assembled by three-primers PCR method to obtain the chimeric light chain (L) and the chimeric heavy chain (H). Both chains inserted into the down stream and upper stream of IRES gene of the plasmid pVAX1/IRES respectively. We digested the plasmid pVAX1/ H-IRES-L with endoenzyme and subcloned H-IRES-L into the lentiviral vector pWPI. The enzyme digestion and sequence analysis showed that the lentiviral expression vector pWPI/H-IRES-L was constructed correctly. Then, it was transfected into 293T cells and after 48h, GFP protein expression in 293T cells were detected by fluorescent microscope and the chimeric antibody expression was detected by RT-PCR and direct ELISA. The results showed that after 293T cells were transfected with recombination plasmid, both light and heavy chains of the chimeric antibody genes could express together. The chimeric antibody expressed could bind to p185(erbB2) specifically. This research may lay a sound foundation for further study of anti-p185(erbB2) engineered antibody.
Meseda, Clement A; Atukorale, Vajini; Soto, Jackeline; Eichelberger, Maryna C; Gao, Jin; Wang, Wei; Weiss, Carol D; Weir, Jerry P
2018-03-29
Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages - A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.
Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem
2017-12-16
To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is not restricted to BL21(DE3), but it can in principle be used in any T7 RNAP-based strain. Thus, pReX is a versatile alternative to Lemo21(DE3).
2012-05-01
subset enriched in epithelial-to- mesenchymal transition and stem cell characteristics. Cancer Res 69: 4116–4124. Hoenerhoff MJ, Chu I, Barkan D, Liu ZY...expression of epithelial markers and loss of mesenchymal markers in MB- 231 cells (Task1a) Our analyses of m icroarray data com paring 231-Empty cells ...is considered a hallmark of EMT (Yang and Weinberg 2008). MB-231 cells lack E-cadherin expression and exhibit a more mesenchymal phenotype
Brill-Noether theory for vector bundles on projective curves
NASA Astrophysics Data System (ADS)
Ballico, E.
1998-11-01
In this paper we will study the Brill-Noether theory of vector bundles on a smooth projective curve X. As usual in papers on this topic we are mainly interested in stable or at least semistable bundles. Let Wkr, d(X) be the scheme of all stable vector bundles E on X with rank (E)=r, deg (E)=d and h0(X, E)[gt-or-equal, slanted]k+1. For a survey of the main known results, see the introduction of [6]. The referee has pointed out that the results in [6] were improved by V. Mercat in [14]; he proved that Wkr, d(X) is non-empty for d<2r if and only if k+1[less-than-or-eq, slant]r+(d[minus sign]r)/g. If X has general moduli the more interesting existence theorem was proved in [19]. However, in this paper we are mainly interested in very special curves X, e.g. the hyperelliptic or the bielliptic curves. We work over an algebraically closed base field K. In Section 5 we will assume char (K)=0. In Section 1 we will give some theorems of Clifford's type. In Section 2 we will construct several stable bundles with certain properties. Here the main tool is an operation (the +elementary transformation) which sends a vector bundle E on X to another vector bundle E[prime prime or minute] with rank (E[prime prime or minute])=rank (E) and deg (E[prime prime or minute])=deg (E)+1 (see Section 2 for its definition and its elementary properties). Using the +elementary transformations in Section 3 we will prove the following existence theorem which covers the case of a ‘small’ number of sections.
Verges, Ramona; Giraldo, Alexandra; Seoane, Alejandro; Toral, Elisabet; Ruiz, M Carmen; Pons, Ariadna; Giralt, Jordi
2018-01-01
To find out whether the internal target volume (ITV) vaginal procedure ensures dosimetric coverage during intensity-modulated radiation therapy (IMRT) of post-operative gynaecological tumours without instructions on rectal filling. The ITV vaginal procedure does not necessarily include all movements of the bladder, and does not include changes in the rectal volume. We should know if the vaginal ITV is a useful tool in maintaining CTV coverage during treatment. A retrospective analysis of 24 patients treated between July 2012 and July 2014 with adjuvant IMRT for gynaecological cancer. All patients underwent empty and full bladder CT on simulation (CT-planning) and three weeks later (CT-control). ITV displacement was measured and the 3D vector was calculated. ITV coverage was then evaluated by comparing the volume covered by the prescription isodose on both CT's. Patients were asked to have full bladder but they did not follow recommendations for the rectum. The mean 3D vector was 0.64 ± 0.32 cm (0.09-1.30). The mean ITV coverage loss was 5.8 ± 5.7% (0-20.2). We found a significant positive correlation between the 3D vector and the loss of coverage (Pearson correlation, r = 0.493, 95% CI: 0.111-0.748, p = 0.0144). We did not find any significant correlation between the bladder and rectal parameters with the 3D vector and loss of dosimetric coverage. We found a trend between the maximum rectal diameter in CT-planning and 3D vector ( r = 0.400, 95% CI: -0.004 to 0.692, p = 0.0529). ITV vaginal procedure contributed to ensuring a good dose coverage without instructions on rectal filling.
A novel intranuclear RNA vector system for long-term stem cell modification
Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo
2015-01-01
Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671
Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D.; Graham, Barney S.; Collins, Peter L.
2017-01-01
ABSTRACT Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the prefusion (pre-F) conformation by previously described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane and cytoplasmic tail (TMCT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild-type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo. In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine. IMPORTANCE RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a stabilized attenuating mutation, to express the RSV F glycoprotein bearing amino acid substitutions that increase its stability in the pre-F form, the most immunogenic form that elicits highly functional virus-neutralizing antibodies. RSV F was expressed from the pre-N or N-P gene position of the rHPIV1 vector as a full-length protein or as a chimeric form with its TMCT domain derived from HPIV1 F. TMCT modification greatly increased packaging of RSV F into the vector particles but also increased vector attenuation in vivo, resulting in reduced immunogenicity. In contrast, full-length RSV F expressed from the pre-N position was immunogenic, eliciting complement-independent RSV-neutralizing antibodies and providing protection against RSV challenge. PMID:28835504
ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.
Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang
2017-03-01
The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.
Santangeloyz, K.S.; Bertoneyz, A.L.
2011-01-01
summary Objective To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Methods Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RTPCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2−ΔΔCT) method. Results Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P= 0.0045) or >90% (P= 0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Conclusions Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. PMID:21945742
2013-01-01
Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512
Blixt, Maria K E; Hallböök, Finn
2016-01-01
Combining techniques of episomal vector gene-specific Cre expression and genomic integration using the piggyBac transposon system enables studies of gene expression-specific cell lineage tracing in the chicken retina. In this work, we aimed to target the retinal horizontal cell progenitors. A 208 bp gene regulatory sequence from the chicken retinoid X receptor γ gene (RXRγ208) was used to drive Cre expression. RXRγ is expressed in progenitors and photoreceptors during development. The vector was combined with a piggyBac "donor" vector containing a floxed STOP sequence followed by enhanced green fluorescent protein (EGFP), as well as a piggyBac helper vector for efficient integration into the host cell genome. The vectors were introduced into the embryonic chicken retina with in ovo electroporation. Tissue electroporation targets specific developmental time points and in specific structures. Cells that drove Cre expression from the regulatory RXRγ208 sequence excised the floxed STOP-sequence and expressed GFP. The approach generated a stable lineage with robust expression of GFP in retinal cells that have activated transcription from the RXRγ208 sequence. Furthermore, GFP was expressed in cells that express horizontal or photoreceptor markers when electroporation was performed between developmental stages 22 and 28. Electroporation of a stage 12 optic cup gave multiple cell types in accordance with RXRγ gene expression in the early retina. In this study, we describe an easy, cost-effective, and time-efficient method for testing regulatory sequences in general. More specifically, our results open up the possibility for further studies of the RXRγ-gene regulatory network governing the formation of photoreceptor and horizontal cells. In addition, the method presents approaches to target the expression of effector genes, such as regulators of cell fate or cell cycle progression, to these cells and their progenitor.
Dang, Yin-li; Yan, Yan; Zhang, Xiao-xiao; Li, Pu-yuan; Yu, Lan; Zhang, Lei; Zhang, Fang-lin; Xu, Zhi-kai; Wu, Xing-an
2011-05-01
To stably express herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) in Chinese hamster ovary cells (CHO-K1). The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed and transfected into CHO-K1 cells by Lipofectamine 2000. The transfected cells were selected by G418 and methotrexate (MTX). The expression of HSV-1 gC was analyzed by Slot blot. HSV-1 gC proteins were purified with His-Ni Sepharose and then detected by Western blot. The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed successfully. CHO-K1 cells stably expressing HSV-1 gC proteins were established and confirmed by Western blot. The HSV-1 gC proteins have been expressed successfully and have good bioactivity. The results make it possible for further study and clinical use of HSV-1 gC.
Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko
2014-05-01
Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti
2014-08-01
To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.
Dormiani, Kianoush; Mir Mohammad Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Forouzanfar, Mahboobeh; Baharvand, Hossein; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein
2017-01-01
Induced pluripotent stem cells are generated from somatic cells by direct reprogramming. These reprogrammed pluripotent cells have different applications in biomedical fields such as regenerative medicine. Although viral vectors are widely used for efficient reprogramming, they have limited applications in the clinic due to the risk for immunogenicity and insertional mutagenesis. Accordingly, we designed and developed a small, non-integrating plasmid named pLENSO/Zeo as a 2A-mediated polycistronic expression vector. In this experimental study, we developed a single plasmid which includes a single expression cassette containing open reading frames of human LIN28, NANOG, SOX2 and OCT4 along with an EGFP reporter gene. Each reprogramming factor is separated by an intervening sequence that encodes a 2A self-processing peptide. The reprogramming cassette is located downstream of a CMV promoter. The vector is easily propagated in the E. coli GT115 strain through a CpG-depleted vector backbone. We evaluated the stability of the constructed vector bioinformatically, and its ability to stoichiometric expression of the reprogramming factors using quantitative molecular methods analysis after transient transfection into HEK293 cells. In the present study, we developed a nonviral episomal vector named pLENSO/ Zeo. Our results demonstrated the general structural stability of the plasmid DNA. This relatively small vector showed concomitant, high-level expression of the four reprogramming factors with similar titers, which are considered as the critical parameters for efficient and consistent reprogramming. According to our experimental results, this stable extrachromosomal plasmid expresses reliable amounts of four reprogramming factors simultaneously. Consequently, these promising results encouraged us to evaluate the capability of pLENSO/Zeo as a simple and feasible tool for generation of induced pluripotent stem cells from primary cells in the future.
Simple cloning strategy using GFPuv gene as positive/negative indicator.
Miura, Hiromi; Inoko, Hidetoshi; Inoue, Ituro; Tanaka, Masafumi; Sato, Masahiro; Ohtsuka, Masato
2011-09-15
Because construction of expression vectors is the first requisite in the functional analysis of genes, development of simple cloning systems is a major requirement during the postgenomic era. In the current study, we developed cloning vectors for gain- or loss-of-function studies by using the GFPuv gene as a positive/negative indicator of cloning. These vectors allow us to easily detect correct clones and obtain expression vectors from a simple procedure by means of the combined use of the GFPuv gene and a type IIS restriction enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.
Wu, Xue-Fen; Chen, Xiao-Li; Zheng, Xue-Na; Guo, Xin; Xie, Zhi-Qiang; Liu, Li; Wei, Xin-Ran; Yue, Zeng-Hui
2018-03-25
To observe the effect of different strength of electroacupuncture (EA) stimulation on gastrointestinal motility and Ras homolog gene family member (RhoA)/Rho associated coiled-coil forming protein kinase (ROCK) signaling in diabetic gastroparesis (DGP) rats, so as to reveal the underlying mechanisms of EA for improving DGP. Sixty SD rats were randomly and equally divided into blank control, DGP model, weak EA, medium EA, and strong EA groups ( n =12 rats in each). The DGP model was established by intraperitoneal injection of streptozotocin (STZ, 55 mmol/kg, 2%) and high-sugar and high-fat fodder feeding for 8 weeks. EA (0.12, 0.24, 0.36 mA, 20 Hz/100 Hz) was applied to "Zusanli" (ST 36), "Sanyinjiao" (SP 6) and "Liangmen" (ST 21) for 20 min, once daily for 15 successive days. Blood glucose levels were measured weekly with blood glucose meter and blood glucose test paper. Fecal phenol red excretion method was used to display gastric emptying and small intestinal propulsion function. The expression of RhoA protein in the gastric antral smooth muscle tissue was detected by immunohistochemistry and Western blot (WB), separately, and that of ROCK, myosin phosphatase target subunit 1 (MYPT 1) and phosphorylated (p)-MYPT 1 proteins in gastric antrum detected by WB. Compared with the blank control group, the gastric emptying rate and small intestine propulsion rate of the model group were significantly decreased ( P <0.05), and the blood glucose level was remarkably increased ( P <0.05). Moreover, the expression levels of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins in the gastric antrum were significantly down-regulated relevant to the control group ( P <0.05). After administration of EA, the decreased gastric emptying rate and intestinal propulsion rate, and the down-regulated expression of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins were significantly increased in the strong, medium and weak EA stimulation groups ( P <0.05). Comparison among the 3 EA groups showed that the strong stimulation was significantly superior to weak stimulation in up-regulating the expression of RhoA, ROCK, MYPT 1 and p-MYPT 1 proteins, and obviously superior to the medium stimulation in up-regulating RhoA and MYPT 1 protein levels ( P <0.05), while the medium stimulation was significantly stronger than the weak stimulation in up-regulating the expression of ROCK, MYPT 1 and p-MYPT 1 proteins ( P <0.05). There were no significant differences among the 3 EA groups in up-regulating the gastric emptying rate and small intestinal propulsion rate, and between the strong stimulation and medium stimulation in the expression levels of ROCK and p-MYPT 1 proteins ( P >0.05). Electroacupuncture stimulation of ST 36-SP 6-ST 21 at 0.12, 0.24 and 0.36 mA can promote the gastrointestinal motility in DGP rats, which may be associated with its effects in enhancing RhoA/ROCK signaling in the gastric antral smooth muscle at different degrees.
[Prokaryotic expression of Nanog gene and preparation of anti-Nanog antibody].
Li, Jun; Wang, Xiao-min; Dou, Zhong-ying; Li, Yong
2012-07-01
To express Nanog fusion protein in Escherichia coli ( E.coli), and to prepare rabbit anti-mouse polyclonal antibodies to the Nanog fusion protein. Mouse Nanog gene was amplified from the pNA992 recombinant plasmid and inserted into pET-32a vector to construct a recombinant expression vector pET-32a-Nanog. The recombinant vector was transfected into E.coli BL21 and induced by IPTG to express in them. The acquired Nanog fusion protein was purified with HisTrap affinity column and injected as an antigen into rabbits for preparing polyclonal antibodies. At last, the titer and specificity of the polyclonal antibodies were analyzed with indirect ELISA, Western blotting and immunocytochemical staining, respectively. The recombinant expression vector pET-32a-Nanog was successfully prepared, transfected and induced to obtain the high expression of the Nanog fusion protein in a form of inclusion bodies in E.coli. After purification, its purity was up to 97%. The titer of anti-Nanog antibodies was 1:32 000 in the immunized rabbit serum, and exhibited a high specificity to Nanog protein. The rabbit anti-mouse polyclonal antibodies have been prepared successfully with a high titer and specificity to the Nanog fusion protein.
Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong
2015-01-01
A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.
Huang, Zhong; Phoolcharoen, Waranyoo; Lai, Huafang; Piensook, Khanrat; Cardineau, Guy; Zeitlin, Larry; Whaley, Kevin J.; Arntzen, Charles J.
2010-01-01
Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of heterooligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the “competing” nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al. 2009). In this article, we report further development of this expression system for its application in high-yield production of oligomeric protein complexes including monoclonal antibodies (mAbs) in plants. We showed that the BeYDV replicon system permits simultaneous efficient replication of two DNA replicons and thus, high-level accumulation of two recombinant proteins in the same plant cell. We also demonstrated that a single vector that contains multiple replicon cassettes was as efficient as the three-component system in driving the expression of two distinct proteins. Using either the non-competing, three-vector system or the multi-replicon single vector, we produced both the heavy and light chain subunits of a protective IgG mAb 6D8 against Ebola virus GP1 (Wilson et al. 2000) at 0.5 mg of mAb per gram leaf fresh weight within 4 days post infiltration of Nicotiana benthamiana leaves. We further demonstrated that full-size tetrameric IgG complex containing two heavy and two light chains was efficiently assembled and readily purified, and retained its functionality in specific binding to inactivated Ebola virus. Thus, our single-vector replicon system provides high-yield production capacity for heterooligomeric proteins, yet eliminates the difficult task of identifying non-competing virus and the need for co-infection of multiple expression modules. The multi-replicon vector represents a significant advance in transient expression technology for antibody production in plants. PMID:20047189
Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul
2012-01-01
Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondovcik, Stephanie L.; Preston, Thomas J.; McCallum, Gordon P.
Exposure to methylmercury (MeHg) acutely at high levels, or via chronic low-level dietary exposure from daily fish consumption, can lead to adverse neurological effects in both the adult and developing conceptus. To determine the impact of variable DNA repair capacity, and the role of reactive oxygen species (ROS) and oxidatively damaged DNA in the mechanism of toxicity, transgenic human embryonic kidney (HEK) 293 cells that stably express either human oxoguanine glycosylase 1 (hOgg1) or its bacterial homolog, formamidopyrimidine glycosylase (Fpg), which primarily repair the oxidative lesion 8-oxo-2′-deoxyguanosine (8-oxodG), were used to assess the in vitro effects of MeHg. Western blottingmore » confirmed the expression of hOgg1 or Fpg in both the nuclear and mitochondrial compartments of their respective cell lines. Following acute (1–2 h) incubations with 0–10 μM MeHg, concentration-dependent decreases in clonogenic survival and cell growth accompanied concentration-dependent increases in lactate dehydrogenase (LDH) release, ROS formation, 8-oxodG levels and apurinic/apyrimidinic (AP) sites, consistent with the onset of cytotoxicity. Paradoxically, hOgg1- and Fpg-expressing HEK 293 cells were more sensitive than wild-type cells stably transfected with the empty vector control to MeHg across all cellular and biochemical parameters, exhibiting reduced clonogenic survival and cell growth, and increased LDH release and DNA damage. Accordingly, upregulation of specific components of the base excision repair (BER) pathway may prove deleterious potentially due to the absence of compensatory enhancement of downstream processes to repair toxic intermediary abasic sites. Thus, interindividual variability in DNA repair activity may constitute an important risk factor for environmentally-initiated, oxidatively damaged DNA and its pathological consequences. - Highlights: • hOgg1 and Fpg repair oxidatively damaged DNA. • hOgg1- and Fpg-expressing cells are more sensitive to MeHg toxicity. • Enhanced sensitivity is likely due to an accumulation of toxic repair intermediates. • Interindividual variability in DNA repair activity may modulate toxicological risk.« less
Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo
2013-10-01
Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.
Tolmachov, Oleg E
2015-01-01
Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo are then attracted to and internalized into the intended target cells via the expressed cognate strongly binding extra-cellular receptor, causing escalation of gene transfer into these cells and increasing the copy number of the therapeutic gene expression modules. Such self-focusing swarms of gene vectors can be either homogeneous, with 'scout' and 'therapeutic' members of the swarm being structurally identical, or, alternatively, heterogeneous (split), with 'scout' and 'therapeutic' members of the swarm being structurally specialized. It is hoped that the proposed self-focusing cell-targeted gene vector swarms with receptor-mediated intra-swarm signalling could be particularly effective in 'top-up' gene delivery scenarios, achieving high-level and sustained expression of therapeutic transgenes that are prone to shut-down through degradation and silencing. Crucially, in contrast to low-precision 'general location' vector guidance by diffusible chemo-attractants, ear-marking non-diffusible receptors can provide high-accuracy targeting of therapeutic vector particles to the specific cell, which has undergone a 'successful cell-specific hit' by a 'scout' vector particle. Opportunities for cell targeting could be expanded, since in the proposed model of self-focusing it could be possible to probe a broad selection of intra-cellular determinants of cell-specificity and not just to rely exclusively on extra-cellular markers of cell-specificity. By employing such self-focusing gene vectors for the improvement of cell-targeted delivery of therapeutic genes, e.g., in cancer therapy or gene addition therapy of recessive genetic diseases, it could be possible to broaden a leeway for the reduction of the vector load and, consequently, to minimize undesired vector cytotoxicity, immune reactions, and the risk of inadvertent genetic modification of germline cells in genetic treatment in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin
2014-07-30
HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state. Neuropathic pain was induced by peripheral HIV coat protein gp120 combined with 2',3'-dideoxycytidine (ddC, one of the nucleoside reverse transcriptase inhibitors (NRTIs)). Mechanical threshold was tested using von Frey filament fibers. Non-replicating herpes simplex virus (HSV) vectors expressing interleukin 10 (IL10) were inoculated into the hindpaws of rats. The expression of TNFα, SDF1α, and CXCR4 in the lumbar spinal cord and L4/5 dorsal root ganglia (DRG) was examined using western blots. IL-10 expression mediated by the HSV vectors resulted in a significant elevation of mechanical threshold. The anti-allodynic effect of IL-10 expression mediated by the HSV vectors lasted more than 3 weeks. The area under the effect-time curves (AUC) in mechanical threshold in rats inoculated with the HSV vectors expressing IL-10, was increased compared with the control vectors, indicating antinociceptive effect of the IL-10 vectors. The HSV vectors expressing IL-10 also concomitantly reversed the upregulation of p-p38, TNFα, SDF1α, and CXCR4 induced by gp120 in the lumbar spinal dorsal horn and/or the DRG at 2 and/or 4 weeks. The blocking of the signaling of these proinflammatory molecules is able to reduce HIV-related neuropathic pain, which provide a novel mechanism-based approach to treating HIV-associated neuropathic pain using gene therapy.
2014-01-01
Background HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state. Results Neuropathic pain was induced by peripheral HIV coat protein gp120 combined with 2′,3′-dideoxycytidine (ddC, one of the nucleoside reverse transcriptase inhibitors (NRTIs)). Mechanical threshold was tested using von Frey filament fibers. Non-replicating herpes simplex virus (HSV) vectors expressing interleukin 10 (IL10) were inoculated into the hindpaws of rats. The expression of TNFα, SDF1α, and CXCR4 in the lumbar spinal cord and L4/5 dorsal root ganglia (DRG) was examined using western blots. IL-10 expression mediated by the HSV vectors resulted in a significant elevation of mechanical threshold. The anti-allodynic effect of IL-10 expression mediated by the HSV vectors lasted more than 3 weeks. The area under the effect-time curves (AUC) in mechanical threshold in rats inoculated with the HSV vectors expressing IL-10, was increased compared with the control vectors, indicating antinociceptive effect of the IL-10 vectors. The HSV vectors expressing IL-10 also concomitantly reversed the upregulation of p-p38, TNFα, SDF1α, and CXCR4 induced by gp120 in the lumbar spinal dorsal horn and/or the DRG at 2 and/or 4 weeks. Conclusion The blocking of the signaling of these proinflammatory molecules is able to reduce HIV-related neuropathic pain, which provide a novel mechanism-based approach to treating HIV-associated neuropathic pain using gene therapy. PMID:25078297
Bruneau, Nadine; Szepetowski, Pierre
2017-01-01
The functional study of reconstituted NMDA receptors (NMDARs) in host cells requires that the corresponding vectors for the expression of the NMDAR subunits are co-transfected with high efficiency. Magnetofection™ is a technology used to deliver nucleic acids to cells. It is driven and site-specifically guided by the attractive forces of magnetic fields acting on magnetic nanoparticles that are associated with nucleic acid vectors. In magnetofection™, cationic lipids form self-assembled complexes with the nucleic acid vectors of interest. Those complexes are then associated with magnetic nanoparticles that are concentrated at the surface of cultured cells by applying a permanent magnetic field. Magnetofection™ is a simple method to transfect cultured cells with high transfection rates. Satisfactory expression levels are obtained with very low amounts of nucleic acid vector. Moreover, incubation time with host cells is less than 1 h, as compared with the several hours needed with standard transfection assays.
Gene Transfer into Rat Brain Using Adenoviral Vectors
Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.
2010-01-01
Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657
Mihara, Hiroshi; Suzuki, Nobuhiro; Yamawaki, Hidemoto; Tominaga, Makoto; Sugiyama, Toshiro
2013-02-01
Gastric adaptive relaxation (GAR) is impaired in ~40% of functional dyspepsia (FD) patients, and nitric oxide (NO) released from inhibitory motor neurons plays an important role in this relaxation. Although the underlying molecular mechanism of GAR is poorly understood, transient receptor potential channel vanilloid 2 (TRPV2) mechano- and chemoreceptors are expressed in mouse intestinal inhibitory motor neurons and are involved in intestinal relaxation. The aim of this study was to evaluate the distribution of TRPV2 in inhibitory motor neurons throughout the mouse gastrointestinal tract and the contribution of TRPV2 to GAR. RT-PCR and immunohistochemical analyses were used to detect TRPV2 mRNA and protein, respectively. Intragastric pressure was determined with an isolated mouse stomach. Gastric emptying (GE) in vivo was determined using a test meal. TRPV2 mRNA was detected throughout the mouse gastrointestinal tract, and TRPV2 immunoreactivity was detected in 84.3% of neuronal nitric oxide synthase-expressing myenteric neurons in the stomach. GAR, which was expressed as the rate of decline of intragastric pressure in response to volume stimuli, was significantly enhanced by the TRPV2 activator probenecid, and the enhancement was inhibited by the TRPV2 inhibitor tranilast. GE was significantly accelerated by TRPV2 agonist applications, and the probenecid-induced enhancement was significantly inhibited by tranilast coapplication. Mechanosensitive TRPV2 was expressed in inhibitory motor neurons in the mouse stomach and contributed to GAR and GE. TRPV2 may be a promising target for FD patients with impaired GAR.
Uchida, Naoya; Hargrove, Phillip W.; Lap, Coen J.; Evans, Molly E.; Phang, Oswald; Bonifacino, Aylin C.; Krouse, Allen E.; Metzger, Mark E.; Nguyen, Anh-Dao; Hsieh, Matthew M.; Wolfsberg, Tyra G.; Donahue, Robert E.; Persons, Derek A.; Tisdale, John F.
2012-01-01
Human immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34+ cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34+ cells were transduced with standard SIV vectors and the other half with χHIV vectors. As compared with SIV vectors, χHIV vectors achieved higher vector integration, and the transgene expression rates were two- to threefold higher in granulocytes and red blood cells and equivalent in lymphocytes and platelets for 2 years. A recipient of χHIV vector-only transduced cells reached up to 40% of transgene expression rates in granulocytes and lymphocytes and 20% in red blood cells. Similar to HIV1 and SIV vectors, χHIV vector frequently integrated into gene regions, especially into introns. In summary, our χHIV vector demonstrated efficient transduction for rhesus long-term repopulating cells, comparable with SIV vectors. This χHIV vector should allow preclinical testing of HIV1-based therapeutic vectors in large animal models. PMID:22871664
Lee, Young Mok; Pan, Chi-Jiunn; Koeberl, Dwight D; Mansfield, Brian C; Chou, Janice Y
2013-11-01
Glycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia. © 2013.
[Sendai virus vector: vector development and its application to health care and biotechnology].
Iida, Akihiro
2007-06-01
Sendai virus (SeV) is an enveloped virus with a nonsegmented negative-strand RNA genome and a member of the paramyxovirus family. We have developed SeV vector which has shown a high efficiently of gene transfer and expression of foreign genes to a wide range of dividing and non-dividing mammalian cells and tissues. One of the characteristics of the vector is that the genome is located exclusively in the cytoplasm of infected cells and does not go through a DNA phase; thus there is no concern about unwanted integration of foreign sequences into chromosomal DNA. Therefore, this new class of "cytoplasmic RNA vector", an RNA vector with cytoplasmic expression, is expected to be a safer and more efficient viral vector than existing vectors for application to human therapy in various fields including gene therapy and vaccination. In this review, I describe development of Sendai virus vector, its application in the field of biotechnology and clinical application aiming to treat for a large number of diseases including cancer, cardiovascular disease, infectious diseases and neurologic disorders.
Bleckmann, Maren; Schürig, Margitta; Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop
2016-01-01
The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS.
Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.
2014-01-01
The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917
Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.
Wei, Y; Wang, S; Wang, X
2014-01-01
Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.
Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function.
Geng, Jie; Altman, John D; Krishnakumar, Sujatha; Raghavan, Malini
2018-05-09
When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8 + T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8 + T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8 + T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8 + T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8 + T cell activation, mediated by the binding of empty HLA-I to CD8. © 2018, Geng et al.
Will, Elke; Bailey, Jeff; Schuesler, Todd; Modlich, Ute; Balcik, Brenden; Burzynski, Ben; Witte, David; Layh-Schmitt, Gerlinde; Rudolph, Cornelia; Schlegelberger, Brigitte; von Kalle, Christof; Baum, Christopher; Sorrentino, Brian P; Wagner, Lars M; Kelly, Patrick; Reeves, Lilith; Williams, David A
2007-04-01
Although retroviral vectors are one of the most widely used vehicles for gene transfer, there is no uniformly accepted pre-clinical model defined to assess their safety, in particular their risk related to insertional mutagenesis. In the murine pre-clinical study presented here, 40 test and 10 control mice were transplanted with ex vivo manipulated bone marrow cells to assess the long-term effects of the transduction of hematopoietic cells with the retroviral vector MSCV-MGMT(P140K)wc. Test mice had significant gene marking 8-12 months post-transplantation with an average of 0.93 vector copies per cell and 41.5% of peripheral blood cells expressing the transgene MGMT(P140K), thus confirming persistent vector expression. Unexpectedly, six test mice developed malignant lymphoma. No vector was detected in the tumor cells of five animals with malignancies, indicating that the malignancies were not caused by insertional mutagenesis or MGMT(P140K) expression. Mice from a concurrent study with a different transgene also revealed additional cases of vector-negative lymphomas of host origin. We conclude that the background tumor formation in this mouse model complicates safety determination of retroviral vectors and propose an improved study design that we predict will increase the relevance and accuracy of interpretation of pre-clinical mouse studies.
Sun, Huai-Chang; Xue, Fang-Ming; Qian, Ke; Fang, Hao-Xia; Qiu, Hua-Lei; Zhang, Xin-Yu; Yin, Zhao-Hua
2006-01-01
To develop a gene therapy strategy for treating bovine mastitis, a new mammary-specific vector containing human lysozyme (hLYZ) cDNA and kanamycin resistance gene was constructed for intramammary expression and clinical studies. After one time acupuncture or intracisternal infusion of healthy cows with 400 μg of the p215C3LYZ vector, over 2.0 μg/ml of rhLYZ could be detected by enzymatic assay for about 3 weeks in the milk samples. Western blotting showed that rhLYZ secreted into milk samples from the vector-injected cows had molecular weight similar to that of the natural hLYZ in human colostrums. Twenty days after the primary injection, the quarters were re-injected with the same vector by quarter acupuncture and even higher concentrations of rhLYZ could be detected. Indirect competitive ELISA of milk samples showed that the vector injection did not induce detectable humoral immune response against hLYZ. Clinical studies showed that twice acupuncture of quarters with the p215C3LYZ vector had overt therapeutic effect on clinical and subclinical mastitis previously treated with antibiotics, including disappearance of clinical symptoms and relatively high microbiological cure rates. These data provide a solid rationale for using the vector to develop gene therapy for treating bovine mastitis. PMID:16532537
Buchlis, George; Podsakoff, Gregory M; Radu, Antonetta; Hawk, Sarah M; Flake, Alan W; Mingozzi, Federico; High, Katherine A
2012-03-29
In previous work we transferred a human factor IX-encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer.
Buchlis, George; Podsakoff, Gregory M.; Radu, Antonetta; Hawk, Sarah M.; Flake, Alan W.; Mingozzi, Federico
2012-01-01
In previous work we transferred a human factor IX–encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer. PMID:22271447
Interpretation of solution scattering data from lipid nanodiscs
Graziano, Vito; Miller, Lisa; Yang, Lin
2018-02-01
The structural information contained in solution scattering data from empty lipid nanodiscs is examined in the context of a multi-component geometric model. X-ray scattering data were collected on nanodiscs of different compositions at scattering vector magnitudes up to 2.0 Å −1 . Through the calculation of the partial form factor for each of the nanodisc components before the isotropic average, structural parameters in the model were correlated to the features observed in the X-ray scattering data and to the corresponding distance distribution function. It is shown that, in general, the features at ∼0.3–0.6 Å −1 in the scattering data correlate to themore » bilayer structure. The data also support the argument that the elliptical shape of nanodiscs found in model fitting is physical, rather than an artefact due to the nanodisc size distribution. The lipid chain packing peak at ∼1.5 Å −1 is visible in the data and reflects the lipid bilayer phase transition. The shape change in the distance distribution function across the phase transition suggests that the nanodiscs are more circular in the fluid phase. The implication of these findings for model fitting of empty and protein-loaded nanodiscs is discussed.« less
Srivastava, Preeti; Deb, J K
2002-07-02
A series of fusion vectors containing glutathione-S-transferase (GST) were constructed by inserting GST fusion cassette of Escherichia coli vectors pGEX4T-1, -2 and -3 in corynebacterial vector pBK2. Efficient expression of GST driven by inducible tac promoter of E. coli was observed in Corynebacterium acetoacidophilum. Fusion of enhanced green fluorescent protein (EGFP) and streptokinase genes in this vector resulted in the synthesis of both the fusion proteins. The ability of this recombinant organism to produce several-fold more of the product in the extracellular medium than in the intracellular space would make this system quite attractive as far as the downstream processing of the product is concerned.
On multi-sensitivity with respect to a vector
NASA Astrophysics Data System (ADS)
Jiao, Lixin; Wang, Lidong; Li, Fengquan; Liu, Heng
2018-05-01
Consider the surjective continuous map f: X → X defined on a compact metric space X. Let 𝒦(X) be the space of all non-empty compact subsets of X equipped with the Hausdorff metric and define f¯: 𝒦(X) →𝒦(X) by f¯(A) = {f(a),a ∈ A} for any A ∈𝒦(X). In this paper, we introduce several stronger versions of sensitivities, such as multi-sensitivity with respect to a vector, 𝒩-sensitivity, strong multi-sensitivity. We obtain some basic properties of the concepts of these sensitivities and discuss the relationships with other sensitivities for continuous self-map on [0,1]. Some sufficient conditions for a dynamical system to be 𝒩-sensitive are presented. Also, it is shown that the strong multi-sensitivity of f implies that f¯ is 𝒩-sensitive. In turn, the 𝒩-sensitivity of f¯ implies that f is 𝒩-sensitive. In particular, it is proved that if f is a multi-transitive map with dense periodic sets, then f is 𝒩-sensitive. Finally, we give a multi-sensitive example which is not 𝒩-sensitive.
Kim, Shin-Hee; Samal, Siba K
2017-07-24
Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.
David, Marion; Lécorché, Pascaline; Masse, Maxime; Faucon, Aude; Abouzid, Karima; Gaudin, Nicolas; Varini, Karine; Gassiot, Fanny; Ferracci, Géraldine; Jacquot, Guillaume; Vlieghe, Patrick
2018-01-01
Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells—or organs that express the LDLR. PMID:29485998
Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M
2016-10-01
The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.
Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials.
Doi, Knayo; Takeuchi, Yasuhiro
2015-01-01
Retrovirus vectors (gammaretroviral and lentiviral vectors) have been considered as promising tools to transfer therapeutic genes into patient cells because they can permanently integrate into host cellular genome. To treat monogenic, inherited diseases, retroviral vectors have been used to add correct genes into patient cells. Conventional gammaretroviral vectors achieved successful results in clinical trials: treated patients had therapeutic gene expression in target cells and had improved symptoms of diseases. However, serious side-effects of leukemia occurred, caused by retroviral insertional mutagenesis (IM). These incidences stressed the importance of monitoring vector integration sites in patient cells as well as of re-consideration on safer vectors. More recently lentiviral vectors which can deliver genes into non-dividing cells started to be used in clinical trials including neurological disorders, showing their efficacy. Vector integration site analysis revealed that lentiviruses integrate less likely to near promoter regions of oncogenes than gammaretroviruses and no adverse events have been reported in lentiviral vector-mediated gene therapy clinical trials. Therefore lentiviral vectors have promises to be applied to a wide range of common diseases in near future. For example, T cells from cancer patients were transduced to express chimeric T cell receptors recognizing their tumour cells enhancing patients' anti-cancer immunity.
Munir, Shirin; Amaro-Carambot, Emerito; Surman, Sonja; Mackow, Natalie; Yang, Lijuan; Buchholz, Ursula J.; Collins, Peter L.; Schaap-Nutt, Anne
2014-01-01
ABSTRACT A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109–114, 2012; C.-F. Yang et al., Vaccine 31:2822–2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. IMPORTANCE The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this knowledge has general application to the development and clinical evaluation of other mononegavirus vectors and vaccines. PMID:24478424
Siapati, Elena K; Bigger, Brian W; Miskin, James; Chipchase, Daniel; Parsley, Kathryn L; Mitrophanous, Kyriacos; Themis, Mike; Thrasher, Adrian J; Bonnet, Dominique
2005-09-01
The use of lentiviral vectors for gene transfer into hematopoietic stem cells has raised considerable interest as these vectors can permanently integrate their genome into quiescent cells. Vectors based on alternative lentiviruses would theoretically be safer than HIV-1-based vectors and could also be used in HIV-positive patients, minimizing the risk of generating replication-competent virus. Here we report the use of third-generation equine infectious anemia virus (EIAV)- and HIV-1-based vectors with minimal viral sequences and absence of accessory proteins. We have compared their efficiency in transducing mouse and human hematopoietic stem cells both in vitro and in vivo to that of a previously documented second-generation HIV-1 vector. The third-generation EIAV- and HIV-based vectors gave comparable levels of transduction and transgene expression in both mouse and human NOD/SCID repopulating cells but were less efficient than the second-generation HIV-1 vector in human HSCs. For the EIAV vector this is possibly a reflection of the lower protein expression levels achieved in human cells, as vector copy number analysis revealed that this vector exhibited a trend to integrate equally efficiently compared to the third-generation HIV-1 vector in both mouse and human HSCs. Interestingly, the presence or absence of Tat in viral preparations did not influence the transduction efficiency of HIV-1 vectors in human HSCs.
Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M
2017-12-01
Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a detailed comparison of production yields reached by injection vs oral infections for different recombinant proteins. In conclusion, these results open the possibility of future industrial scaling-up production of recombinant proteins in insect larvae by reducing manual operations. Copyright © 2017 Elsevier B.V. All rights reserved.
Camilleri, Michael; Breen, Mary; Ryks, Michael; Burton, Duane
2011-01-01
Background Interventions such as gastric surgery and erythromycin result in displacement of solids to the distal stomach and acceleration of overall and proximal gastric emptying. The effect of non-surgical impairment of gastric accommodation on gastric emptying is unclear. Non-surgical impairment of gastric accommodation is associated with accelerated gastric emptying. Aim To compare measurements of proximal and overall gastric emptying in patients with reduced postprandial gastric volume accommodation with the emptying rates in age- and gender-matched controls with normal postprandial gastric volume accommodation. Methods We evaluated overall and proximal gastric emptying in 9 patients with impaired gastric accommodation and age-equivalent and gender-matched controls. Gastric volumes and emptying were measured using validated SPECT and dual gamma camera scintigraphy respectively. We compared group differences in overall and proximal gastric emptying t1/2 by t test. Results Patients with impaired postprandial gastric volume accommodation had greater fasting gastric volume. The proportion of food emptied from the proximal stomach immediately after meal ingestion was lower and t1/2of proximal gastric emptying correspondingly longer in the group with reduced postprandial gastric accommodation. In contrast, differences were not detected in overall gastric emptying in the two groups, and the ratio of overall to proximal gastric emptying t1/2was greater in the group with impaired volume accommodation. Conclusions Proximal stomach emptying is reduced in patients with impaired postprandial volume accommodation; this difference occurs predominantly during the time of meal ingestion. Compensatory mechanisms that result in normal overall gastric emptying require further elucidation. PMID:21327917
USDA-ARS?s Scientific Manuscript database
A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic...
Kaufmann, Kerstin B.; Brendel, Christian; Suerth, Julia D.; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwäble, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel
2013-01-01
Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91phox) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders. PMID:23207695
Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides
Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.
2011-01-01
Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659
Harahap-Carrillo, Indira S.; Ceballos-Olvera, Ivonne; Reyes-del Valle, Jorge
2015-01-01
Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S) in order to display DV 2 DIII on a virus-like particle (VLP), thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV) vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU) and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNarko), eliciting robust neutralizing responses (averages) against MV (1:1280 NT90), hepatitis B virus (787 mIU/mL), and DV2 (1:160 NT50) in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV. PMID:26350592
Debray, Dominique; Rainteau, Dominique; Barbu, Véronique; Rouahi, Myriam; Mourabit, Haquima El; Lerondel, Stéphanie; Rey, Colette; Humbert, Lydie; Wendum, Dominique; Cottart, Charles-Henry; Dawson, Paul; Chignard, Nicolas; Housset, Chantal
2013-01-01
Background & Aims Patients with cystic fibrosis (CF) have poorly defined defects in biliary function. We evaluated the effects of cystic fibrosis transmembrane conductance regulator (CFTR) deficiency on the enterohepatic disposition of bile acids (BAs). Methods Bile secretion and BA homeostasis were investigated in Cftrtm1Unc (Cftr−/−) and CftrΔF508 (ΔF508) mice. Results Cftr−/− and ΔF508 mice did not grow to normal size, but did not have liver abnormalities. The gallbladders of Cftr−/− mice were enlarged and had defects in emptying, based on99mtechnetiummebrofenin scintigraphy or post-prandial variationsn gallbladder volume; gallbladder contraction in response to cholecystokinin-8 was normal. Cftr−/− mice had abnormal gallbladder bile and duodenal acidity, and overexpressed the vasoactive intestinal peptide—a myorelaxant factor for the gallbladder. The BA pool was larger in Cftr−/− than wild-type mice, although there were no differences in fecal loss of BAs. Amounts of secondary BAs in portal blood, liver, and bile of Cftr−/− mice were much lower than normal. Expression of genes that are induced by BAs, including fibroblast growth factor-15 and BA transporters, was lower in the ileum but higher in the gallbladders of Cftr−/− mice, compared with wild-type mice, whereas enzymes that synthesize BA were down-regulated in livers of Cftr−/− mice. This indicates that BAs underwent a cholecystohepatic shunt, which was confirmed using cholyl-(Ne-NBD)-lysine as a tracer. In Cftr−/− mice, cholecystectomy reversed most changes in gene expression and partially restored circulating levels of secondary BAs. The ΔF508 mice overexpressed vasoactive intestinal peptide and had defects in gallbladder emptying and in levels of secondary BAs, but these features were less severe than in Cftr−/− mice. Conclusions Cftr−/− and CftrΔF508 mice have defects in gallbladder emptying that disrupt enterohepatic circulation of BAs. These defects create a shunt pathway that restricts the amount of toxic secondary BAs that enter the liver. PMID:22370478
NASA Technical Reports Server (NTRS)
Shtykhno, Y. M.; Udovichenko, V. I.
1980-01-01
Changes were expressed in reduction in number of true capillaries, the appearance of nonfunctioning empty vessels and in the opening of the arteriolo-venular shunts. Changes in the acid-base balance in the direction of reduction of buffer blood content were also noted.
The MtDMI2-MtPUB2 Negative Feedback Loop Plays a Role in Nodulation Homeostasis1[OPEN
Deng, Jie; Zhu, Fugui; Lu, Zheng
2018-01-01
DOES NOT MAKE INFECTION 2 (MtDMI2) is a Leu rich repeat-type receptor kinase required for signal transduction in the Medicago truncatula/Sinorhizobium meliloti symbiosis pathway. However, the mechanisms through which MtDMI2 participates in nodulation homeostasis are poorly understood. In this study, we identified MtPUB2—a novel plant U-box (PUB)–type E3 ligase—and showed that it interacts with MtDMI2. MtDMI2 and MtPUB2 accumulation were shown to be similar in various tissues. Roots of plants in which MtPUB2 was silenced by RNAi (MtPUB2-RNAi plants) exhibited impaired infection threads, fewer nodules, and shorter primary root lengths compared to those of control plants transformed with empty vector. Using liquid chromatography-tandem mass spectrometry, we showed that MtDMI2 phosphorylates MtPUB2 at Ser-316, Ser-421, and Thr-488 residues. When MtPUB2-RNAi plants were transformed with MtPUB2S421D, which mimics the phosphorylated state, MtDMI2 was persistently ubiquitinated and degraded by MtPUB2S421D, resulting in fewer nodules than observed in MtPUB2/MtPUB2-RNAi-complemented plants. However, MtPUB2S421A/MtPUB2-RNAi-complemented plants showed no MtPUB2 ubiquitination activity, and their nodulation phenotype was similar to that of MtPUB2-RNAi plants transformed with empty vector. Further studies demonstrated that these proteins form a negative feedback loop of the prey (MtDMI2)-predator (MtPUB2) type. Our results suggest that the MtDMI2-MtPUB2 negative feedback loop, which displays crosstalk with the long-distance autoregulation of nodulation via MtNIN, plays an important role in nodulation homeostasis. PMID:29440269
Minchenko, Dmytro O; Kharkova, A P; Halkin, O V; Karbovskyi, L L; Minchenko, O H
2016-04-01
The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.
Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sangsoo Daniel; Antenos, Monica; Squires, E. James
2013-07-15
Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment ofmore » primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR induces CYP2A5 mRNA and protein expression. • BR increases CYP2A5 transcription via Nrf2 activation. • CYP2A5 overexpression increases BR clearance and reduces caspase-3 activation.« less
Effect of colectomy on gastric emptying in idiopathic slow-transit constipation.
Hemingway, D M; Finlay, I G
2000-09-01
Gastric emptying is delayed in patients with idiopathic slow-transit constipation (ISTC). Gastric emptying was measured before and after colectomy and ileorectal anastomosis in patients with ISTC to determine whether the abnormality persists after operation. Twelve patients undergoing colectomy for severe ISTC had solid-phase gastric emptying measured after an overnight fast. All 12 had an uncomplicated subtotal colectomy and ileorectal anastomosis; 11 had an excellent functional outcome. In ten of these patients gastric emptying was repeated within 3 months of operation. Seven patients (including the remaining two) had the study performed at 1 year. All 12 patients had severely delayed gastric emptying before operation. Gastric emptying remained delayed in the ten patients who underwent an early postoperative gastric emptying study. Six of seven patients assessed at 1 year had improved gastric emptying, of whom four had returned to normal. Functional outcome did not relate to gastric emptying. Patients with ISTC have delayed gastric emptying. In some patients this returns to normal after colectomy, but is persistent in others. This may have implications for our understanding of ISTC.
Core labeling of adenovirus with EGFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Long P.; Le, Helen N.; Nelson, Amy R.
2006-08-01
The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expressionmore » vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tratschin, J.D.; West, M.H.P.; Sandbank, T.
1984-10-01
The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/more » (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.« less
Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen
2017-03-15
Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.
Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song
2016-05-01
On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.
Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars
2015-08-01
Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.
Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G.; Corydon, Thomas J.; Mikkelsen, Jacob Giehm; Aagaard, Lars
2015-01-01
Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo. PMID:26204415
Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D; Graham, Barney S; Collins, Peter L; Munir, Shirin
2017-11-15
Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the prefusion (pre-F) conformation by previously described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane and cytoplasmic tail (TMCT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild-type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine. IMPORTANCE RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a stabilized attenuating mutation, to express the RSV F glycoprotein bearing amino acid substitutions that increase its stability in the pre-F form, the most immunogenic form that elicits highly functional virus-neutralizing antibodies. RSV F was expressed from the pre-N or N-P gene position of the rHPIV1 vector as a full-length protein or as a chimeric form with its TMCT domain derived from HPIV1 F. TMCT modification greatly increased packaging of RSV F into the vector particles but also increased vector attenuation in vivo , resulting in reduced immunogenicity. In contrast, full-length RSV F expressed from the pre-N position was immunogenic, eliciting complement-independent RSV-neutralizing antibodies and providing protection against RSV challenge. Copyright © 2017 American Society for Microbiology.
[Construction of rAAV2-GPIIb/IIIa vector and test of its expression and function in vitro].
Wang, Kai; Peng, Jian-Qiang; Chen, Fang-Ping; Wu, Xiao-Bin
2006-04-01
This study was aimed to explore the possibility of rAAV2 vector-mediating gene therapy for Glanzmann' s thrombasthenia. The rAAV2-GPIIb/IIIa vector was constructed. The GPIIb/IIIa gene expression in mammal cell were examined by different methods, such as: detection of mRNA expression in BHK-21 cells after 24 hours of infection (MOI = 1 x 10(5) v.g/cell) was performed by RT-PCR; the relation between MOI and quantity of GPII6/IIIa gene expression was detected by FACS after 48 hours of infection; GPIIb/IIIa protein expression in BHK-21 cells after 48 hours of infection (MOI = 10(5) v x g/cell) was assayed by Western blot, GPIIb/IIIa protein expression on cell surface was detected by immunofluorescence, and the biological function of expressing product was determined by PAC-1 conjunct experiments. The results showed that GPIIb/IIIa gene expression in mRNA level could be detected in BHK-21 cells after 24 hours of infection at MOI = 1 x 10(5) v x g/cell and the GPIIb/IIIa gene expression in protein level could be detected in BHK-21 cells after 48 hours of infection at MOI = 1 x 10(5) v x g/cell. In certain range, quantity of GPIIb/IIIa gene expression increased with MOI, but overdose of MOI decreased quantity of GPIIb/IIIa gene expression. Activated product of GPIIb/IIIa gene expression could combined with PAC-I, and possesed normal biological function. In conclusion, rAAV2 vactor can effectively mediate GPIIb and GPIIIa gene expressing in mammal cells, and the products of these genes exhibit biological function. This result may provide a basis for application of rAAV2 vector in Glanzmann's thrombasthenia gene therapy in furture.
Measurement of gastric emptying during and between meal intake in free-feeding Lewis rats.
van der Velde, P; Koslowsky, I; Koopmans, H S
1999-02-01
A new scintigraphic measurement technique is described that allows accurate assessment of gastric emptying in between as well as during a number of successive meals. Measurements were made every minute of food intake, gastric nutrient filling, and gastric emptying over a 6 h, 40 min period in conscious, free-feeding, loosely restrained rats. Before receiving access to the food, the animals had been deprived for a period of 31 h. Over the full duration of the experiment, an average rate of gastric emptying of 2.46 +/- 0.18 (SE) kcal/h was established. During most meals, however, the gastric emptying rate was increased so that an average of 26.9 +/- 2.7% of the ingested calories was emptied while the animals were feeding, with an average emptying rate of 0.15 +/- 0.014 kcal/min or 8.88 +/- 0.84 kcal/h. This transient increase in the rate of gastric emptying was followed by a subsequent slowing of gastric emptying after meal termination; in the 10-min postmeal interval, an average emptying rate of 0.96 +/- 0.12 kcal/h was found. Despite these fluctuations during and immediately after meals, a relatively constant rate of caloric emptying is maintained over longer periods. There were no differences between the emptying rate during the first meal when the gastrointestinal tract was still empty, compared with later meals when the gastrointestinal tract had been filled with food. The emptying rate during the 10-min postmeal interval, however, was significantly reduced during later meals. The results suggest that gastric emptying is controlled by different mechanisms during and after the ingestion of food and that these mechanisms remain in effect at various degrees of gastrointestinal filling.
Wultsch, T; Painsipp, E; Thoeringer, C K; Herzog, H; Sperk, G; Holzer, P
2005-01-01
Vagal afferents signal gastric acid challenge to the nucleus tractus solitarii of the rat brainstem. This study investigated whether nucleus tractus solitarii neurons in the mouse also respond to gastric acid challenge and whether this chemonociceptive input is modified by neuropeptide Y acting via neuropeptide Y receptors of type Y2 or Y4. The gastric mucosa of female mice was exposed to different concentrations of HCl or saline, excitation of neurons in the nucleus tractus solitarii visualized by c-Fos immunohistochemistry, gastric emptying deduced from the gastric volume recovery, and gastric lesion formation evaluated by planimetry. Relative to saline, intragastric HCl (0.15-0.35 M) increased the number of c-Fos-expressing cells in the nucleus tractus solitarii in a concentration-dependent manner, inhibited gastric emptying but failed to cause significant hemorrhagic injury in the stomach. Mice in which the Y2 or Y4 receptor gene had been deleted responded to gastric acid challenge with a significantly higher expression of c-Fos in the nucleus tractus solitarii, the increases amounting to 39 and 31%, respectively. The HCl-induced inhibition of gastric emptying was not altered by deletion of the Y2 or Y4 receptor gene. BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e] azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl] acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide; 0.03 mmol/kg s.c.), a Y2 receptor antagonist which does not cross the blood-brain barrier, did not modify the c-Fos response to gastric acid challenge. The Y2 receptor agonist peptide YY-(3-36) (0.1 mg/kg intraperitoneally) likewise failed to alter the gastric HCl-evoked expression of c-Fos in the nucleus tractus solitarii. BIIE0246, however, prevented the effect of peptide YY-(3-36) to inhibit gastric acid secretion as deduced from measurement of intragastric pH. The current data indicate that gastric challenge with acid concentrations that do not induce overt injury but inhibit gastric emptying is signaled to the mouse nucleus tractus solitarii. Endogenous neuropeptide Y acting via Y2 and Y4 receptors depresses the afferent input to the nucleus tractus solitarii by a presumably central site of action.
Santangelo, K S; Bertone, A L
2011-12-01
To ascertain a viral vector-based short hairpin RNA (shRNA) capable of reducing the interleukin-1β (IL-1β) transcript in osteoarthritis (OA)-prone chondrocytes and detect corresponding changes in the expression patterns of several critical disease mediators. Cultured chondrocytes from 2-month-old Hartley guinea pigs were screened for reduction of the IL-1β transcript following plasmid-based delivery of U6-driven shRNA sequences. A successful plasmid/shRNA knockdown combination was identified and used to construct an adeno-associated virus serotype 5 (AAV5) vector for further evaluation. Relative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify in vitro transcript changes of IL-1β and an additional nine genes following transduction with this targeting knockdown vector. To validate in vitro findings, this AAV5 vector was injected into one knee, while either an equivalent volume of saline vehicle (three animals) or non-targeting control vector (three animals) were injected into opposite knees. Fold differences and subsequent percent gene expression levels relative to control groups were calculated using the comparative CT (2(-ΔΔCT)) method. Statistically significant decreases in IL-1β expression were achieved by the targeting knockdown vector relative to both the mock-transduced control and non-targeting vector control groups in vitro. Transcript levels of anabolic transforming growth factor-β (TGF-β) were significantly increased by use of this targeting knockdown vector. Transduction with this targeting AAV5 vector also significantly decreased the transcript levels of key inflammatory cytokines [tumor necrosis factor-α (TNF-α), IL-2, IL-8, and IL-12] and catabolic agents [matrix metalloproteinase (MMP)13, MMP2, interferon-γ (IFN-γ), and inducible nitrous oxide synthase (iNOS)] relative to both mock-transduced and non-targeting vector control groups. In vivo application of this targeting knockdown vector resulted in a >50% reduction (P=0.0045) or >90% (P=0.0001) of the IL-1β transcript relative to vehicle-only or non-targeting vector control exposed cartilage, respectively. Successful reduction of the IL-1β transcript was achieved via RNA interference (RNAi) techniques. Importantly, this alteration significantly influenced the transcript levels of several major players involved in OA pathogenesis in the direction of disease modification. Investigations to characterize additional gene expression changes influenced by targeting knockdown AAV5 vector-based diminution of the IL-1β transcript in vivo are warranted. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Alquézar, Berta; Gadea, José; Gómez-Cadenas, Aurelio; De Ollas, Carlos José; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro
2014-01-01
Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate with the environment. In addition to their function in repelling herbivores and attracting carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles released from mature fruits is the attraction of seed-dispersing animals. Mature oranges (Citrus sinensis) primarily accumulate terpenes in peel oil glands, with d-limonene accounting for approximately 97% of the total volatile terpenes. In a previous report, we showed that down-regulation of a d-limonene synthase gene alters monoterpene levels in orange antisense (AS) fruits, leading to resistance against Penicillium digitatum infection. A global gene expression analysis of AS versus empty vector (EV) transgenic fruits revealed that the down-regulation of d-limonene up-regulated genes involved in the innate immune response. Basal levels of jasmonic acid were substantially higher in the EV compared with AS oranges. Upon fungal challenge, salicylic acid levels were triggered in EV samples, while jasmonic acid metabolism and signaling were drastically increased in AS orange peels. In nature, d-limonene levels increase in orange fruit once the seeds are fully viable. The inverse correlation between the increase in d-limonene content and the decrease in the defense response suggests that d-limonene promotes infection by microorganisms that are likely involved in facilitating access to the pulp for seed-dispersing frugivores. PMID:24192451
Cingaram, Pradeep Kumar Reddy; Nyeste, Antal; Dondapati, Divya Teja; Fodor, Elfrieda; Welker, Ervin
2015-01-01
The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp -/-) and ZW (Prnp +/+) hippocampus-derived mouse neuronal cells. Prnp -/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice. PMID:26426582
Arlauckas, Sean P; Kumar, Manoj; Popov, Anatoliy V; Poptani, Harish; Delikatny, Edward J
2017-03-07
Choline kinase alpha (ChoKα) overexpression is associated with an aggressive tumor phenotype. ChoKα inhibitors induce apoptosis in tumors, however validation of their specificity is difficult in vivo. We report the use of optical imaging to assess ChoKα status in cells and in vivo using JAS239, a carbocyanine-based ChoKα inhibitor with inherent near infrared fluorescence. JAS239 attenuated choline phosphorylation and viability in a panel of human breast cancer cell lines. Antibody blockade prevented cellular retention of JAS239 indicating direct interaction with ChoKα independent of the choline transporters and catabolic choline pathways. In mice bearing orthotopic MCF7 breast xenografts, optical imaging with JAS239 distinguished tumors overexpressing ChoKα from their empty vector counterparts and delineated tumor margins. Pharmacological inhibition of ChoK by the established inhibitor MN58b led to a growth inhibition in 4175-Luc+ tumors that was accompanied by concomitant reduction in JAS239 uptake and decreased total choline metabolite levels as measured using magnetic resonance spectroscopy. At higher therapeutic doses, JAS239 was as effective as MN58b at arresting tumor growth and inducing apoptosis in MDA-MB-231 tumors, significantly reducing tumor choline below baseline levels without observable systemic toxicity. These data introduce a new method to monitor therapeutically effective inhibitors of choline metabolism in breast cancer using a small molecule companion diagnostic.
Epigenetic Control of Prostate Cancer Metastasis: Role of Runx2 Phosphorylation
2014-04-01
prostate cancer cells. In the third budget year, we achieved the following: a. Generation of retrovirus and lentivirus vectors expressing WT RUNX2 and S301A... retrovirus vectors will be developed that express β-galactosidase (negative control), wild type Runx2, S301A/S319A (non-phosphorylated) or S301E/S310E...constitutively active) Runx2 mutants. As described last year, retrovirus and lentivirus vectors were constructed to stably introduce wild type and mutant
Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong
2015-01-01
Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551
2012-01-01
Background The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. Results By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. Conclusions The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation. PMID:22243621
Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Harper, Mary-Ellen
2010-10-13
Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.
Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise
2013-01-01
Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278
Regulation of HBEGF by Micro-RNA for Survival of Developing Human Trophoblast Cells.
Jain, Chandni V; Jessmon, Philip; Kilburn, Brian A; Jodar, Meritxell; Sendler, Edward; Krawetz, Stephen A; Armant, D Randall
2016-01-01
The growth factor HBEGF is upregulated post-transcriptionally in the low O2 environment of the human placenta during the first 10 weeks of pregnancy. We have examined the possible roles of HBEGF turnover and micro-RNA (miRNA) in its regulation by O2 in human first trimester trophoblast. HTR-8/SVneo trophoblast cells were cultured at 2% or 20% O2. The cells were transfected with a dual luciferase reporter construct (psiCHECK-2) containing no insert (control), the HBEGF 3' untranslated region (3'UTR), or sub-regions of the 3'UTR, as well as with siRNA for DGCR8. RNA was extracted from trophoblast cells cultured at 2% O2 for 0-4 h for next-generation sequencing. HBEGF was quantified by ELISA. HBEGF, DGCR8, and β-actin were examined by western blotting. Protein turnover studies, using 10 μg/ml cyclohexamide, 1 μg/ml lactocystin, or 100 μg/ml MG132, demonstrated faster HBEGF degradation at 20% O2 than 2% O2, mediated by the proteasome. However, proteasome inhibition failed to initiate HBEGF accumulation at 20% O2. Reporter assays, comparing to empty vector, demonstrated that the intact HBEGF 3' UTR inhibited expression (0.26), while fragments containing only its flanking regions increased reporter activity (3.15; 3.43). No differential expression of miRNAs was found in trophoblast cells cultured at 2% and 20% O2. Nevertheless, HBEGF upregulation at 2% O2 was blocked when the miRNA-processing protein DGCR8 was silenced, suggesting a role for miRNA. Our findings suggest involvement of flanking regions of the 3'UTR in activating HBEGF protein synthesis in response to 2% O2, possibly through a miRNA-mediated mechanism.
Tang, Jie; Zhu, Yi; Xie, Kunling; Zhang, Xiaoyu; Zhi, Xiaofei; Wang, Weizhi; Li, Zheng; Zhang, Qun; Wang, Linjun; Wang, Jiwei; Xu, Zekuan
2016-06-10
MUC4 is a high molecular weight membrane protein that is overexpressed in pancreatic cancer (PC) and is associated with the development and progression of this disease. However, the exact mechanisms through which MUC4 domains promote these biological processes have rarely been studied, partly because of its high molecular weight, difficulty to overexpress it. Here, we use MUC4/Y, one of the MUC4 transcript variants, as a model molecule to investigate the AMOP-domain of MUC4(MUC/Y). We used cell proliferation, migration, invasion and tube formation assays in vitro to explore the abilities of AMOP domain in PC. In vivo, the matrigel plug assay, orthotopic implantation and Kaplan-Meier survival curves were used to check the results we observed in vitro. Finally, we discovered the underlying mechanism through western blot and immunofluorescence. We found that MUC4/Y overexpression could enhance the angiogenic and metastatic properties of PC cells, both in vitro and in vivo. However, the deletion of AMOP domain could cutback these phenomena. Additionally, Kaplan-Meier survival curves showed that mice injected with MUC4/Y overexpressed cells had shorter survival time, compared with empty-vector-transfected cells (MUC4/Y-EV), or cells expressing MUC4/Y without the AMOP domain (MUC4/Y-AMOP(△)). Our data also showed that overexpression of MUC4/Y could activate NOTCH3 signaling, increasing the expression of downstream genes: VEGF-A, MMP-9 and ANG-2. The AMOP domain had an important role in MUC4/Y (MUC4)-mediated tumour angiogenesis and metastasis of PC cells; and the NOTCH3 signaling was involved. These findings provided new insights into PC therapies. Our study also supplies a new method to study other high molecular membrane proteins.
Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong
2015-01-01
Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. © 2015 American Society of Plant Biologists. All Rights Reserved.
Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliseev, Roman A.; Schwarz, Edward M.; Zuscik, Michael J.
2006-01-01
The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes suchmore » as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.« less
Roberts, Kathryn G.; Smith, Amanda M.; McDougall, Fiona; Carpenter, Helen; Horan, Martin; Neviani, Paolo; Powell, Jason A.; Thomas, Daniel; Guthridge, Mark A.; Perrotti, Danilo; Sim, Alistair T.R.; Ashman, Leonie K.; Verrills, Nicole M.
2010-01-01
Oncogenic mutations of the receptor tyrosine kinase c-KIT play an important role in the pathogenesis of gastrointestinal stromal tumors (GIST), systemic mastocytosis, and some acute myeloid leukemias (AML). Whilst juxtamembrane mutations commonly detected in GIST are sensitive to tyrosine kinase inhibitors, the kinase domain mutations frequently encountered in systemic mastocytosis and AML confer resistance and are largely unresponsive to targeted inhibition by the existing agent imatinib. In this study we show that myeloid cells expressing activated c-KIT mutants that are imatinib-sensitive (V560G) or –resistant (D816V) can inhibit the tumor suppressor activity of protein phosphatase 2A (PP2A). This effect was associated with reduced expression of PP2A structural (A) and regulatory subunits (B55α; B56α; B56γ and B56δ). Overexpression of PP2A-Aα in D816V c-KIT cells induced apoptosis and inhibited proliferation. In addition, pharmacological activation of PP2A by FTY720 reduced proliferation, inhibited clonogenic potential and induced apoptosis of mutant c-KIT+ cells, whilst having no effect on WT c-KIT cells or empty vector controls. FTY720 treatment caused dephosphorylation of the D816V c-KIT receptor and its downstream signaling targets pAkt, pSTAT5 and pERK1/2. Additionally, in vivo administration of FTY720 delayed the growth of V560G and D816V c-KIT tumors, inhibited splenic and bone marrow infiltration, and prolonged survival. Our findings show that PP2A inhibition is essential for c-KIT-mediated tumorigenesis, and that reactivating PP2A may offer an attractive strategy to treat drug-resistant c-KIT+ cancers. PMID:20551067
Schneider, Jens; Peters-Wendisch, Petra; Stansen, K Corinna; Götker, Susanne; Maximow, Stanislav; Krämer, Reinhard; Wendisch, Volker F
2012-01-13
The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation.
Augustin, Ewa; Niemira, Magdalena; Hołownia, Adam; Mazerska, Zofia
2014-11-01
High CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic efficacy. We have elucidated the influence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds were selected considering their different chemical structures and different metabolic pathways seen earlier in human and rat liver microsomes C-1748 was transformed to several metabolites at a higher rate in Hep3A4 than in HepC34 cells. In contrast, C-1305 metabolism in Hep3A4 cells was unchanged compared to HepC34 cells, with each cell line producing a single metabolite of comparable concentration. C-1748 resulted in a progressive appearance of sub-G1 population to its high level in both cell lines. In turn, the sub-G1 fraction was dominated in CYP3A4-overexpressing cells following C-1305 exposure. Both compounds induced necrosis and to a lesser extent apoptosis, which were more pronounced in Hep3A4 than in wild-type cells. In conclusion, CYP3A4-overexpressing cells produce higher levels of C-1748 metabolites, but they do not affect the cellular responses to the drug. Conversely, cellular response was modulated following C-1305 treatment in CYP3A4-overexpressing cells, although metabolism of this drug was unaltered. © 2014 International Federation for Cell Biology.
Fusagene vectors: a novel strategy for the expression of multiple genes from a single cistron.
Gäken, J; Jiang, J; Daniel, K; van Berkel, E; Hughes, C; Kuiper, M; Darling, D; Tavassoli, M; Galea-Lauri, J; Ford, K; Kemeny, M; Russell, S; Farzaneh, F
2000-12-01
Transduction of cells with multiple genes, allowing their stable and co-ordinated expression, is difficult with the available methodologies. A method has been developed for expression of multiple gene products, as fusion proteins, from a single cistron. The encoded proteins are post-synthetically cleaved and processed into each of their constituent proteins as individual, biologically active factors. Specifically, linkers encoding cleavage sites for the Golgi expressed endoprotease, furin, have been incorporated between in-frame cDNA sequences encoding different secreted or membrane bound proteins. With this strategy we have developed expression vectors encoding multiple proteins (IL-2 and B7.1, IL-4 and B7.1, IL-4 and IL-2, IL-12 p40 and p35, and IL-12 p40, p35 and IL-2 ). Transduction and analysis of over 100 individual clones, derived from murine and human tumour cell lines, demonstrate the efficient expression and biological activity of each of the encoded proteins. Fusagene vectors enable the co-ordinated expression of multiple gene products from a single, monocistronic, expression cassette.
Drouin, Lauren M.; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni
2016-01-01
ABSTRACT The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. IMPORTANCE The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production. PMID:27440903
Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.D.; Bender, M.A.; Harris, E.A.S.
1988-11-01
Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less
Liu, Ji-tong; Liu, Jing-shi; Jiang, Jin-yu; Zhou, Li-xue; Liang, Gang; Li, Yan-chun
2010-12-01
To study the effect of hBcl-2 gene transfer on rat liver against ischemia-reperfusion injury, and explore the feasibility of this approach to reduce ischemia-reperfusion injury in liver transplantation. We constructed the replication-deficient recombinant adenoviruses Adv-EGFP and Adv-Bcl-2 and transfected them into 293 cells and packaged into adenovirus particles for amplification and purification. The empty plasmid vector virus was constructed similarly. Male SD rats were randomized into Adv-Bcl-2-transfected group, Adv-EGFP-transfected group, ischemia-reperfusion group, and sham-operated group, and liver allograft transplantation model was established by sleeve method. In the transfected groups, the recombinant viruses were administered by perfusion through the portal vein, and the ischemia-reperfusion and sham-operated groups received no treatment. Real-time quantitative PCR and Western blotting were used to detect the mRNA and protein expressions of bcl-2 in the liver tissue of each group, and at 0, 60 and 180 min after reperfusion, serum AST, LDH, and MDA levels were measured. Histological changes of the liver cells were evaluated by HE staining. Bcl-2 mRNA and protein expressions in Adv-Bcl-2-transfected group, as compared with those in Adv-EGFP-transfected group and control group, were significantly increased (P<0.01); the serum levels of AST, LDH and MDA in Adv-Bcl-2-transfected group were significantly lower than those of Adv-EGFP-transfected group and ischemia-reperfusion group (P<0.05 or 0.01). Compared with the sham-operated group, Adv-Bcl-2 treatment group showed lessened edema and vacuolar degeneration of the liver cells without patches or spots of necrosis. In ischemia-reperfusion and Adv-EGFP group, HE staining revealed hepatic lobular destruction and extensive liver cell swelling, enlargement, vacuolar degeneration, edema and occasional focal necrosis. Adv-Bcl-2 transfection can induce the expression of bcl-2 gene to reduce ischemia-reperfusion injury of the liver graft in rats.
Sonaimuthu, Parthasarathy; Ching, Xiao T.; Fong, Mun Y.; Kalyanasundaram, Ramaswamy; Lau, Yee L.
2016-01-01
Toxoplasma gondii is the causative agent for toxoplasmosis. The rhoptry protein 1 (ROP1) is secreted by rhoptry, an apical secretory organelle of the parasite. ROP1 plays an important role in host cell invasion. In this study, the efficacy of ROP1 as a vaccine candidate against toxoplasmosis was evaluated through intramuscular or subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated) and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Briefly, a recombinant DNA plasmid (pVAX1-GFP-ROP1) was expressed in CHO cells while expression of recombinant ROP1 protein (rROP1) was carried out in Escherichia coli expression system. Immunization study involved injection of the recombinant pVAX1-ROP1 and purified rROP1 into different group of mice. Empty vector and PBS served as two different types of negative controls. Results obtained demonstrated that ROP1 is an immunogenic antigen that induced humoral immune response whereby detection of a protein band with expected size of 43 kDa was observed against vaccinated mice sera through western blot analysis. ROP1 antigen was shown to elicit cellular-mediated immunity as well whereby stimulated splenocytes with total lysate antigen (TLA) and rROP1 from pVAX1-ROP1 and rROP1-immunized mice, respectively, readily proliferated and secreted large amount of IFN-γ (712 ± 28.1 pg/ml and 1457 ± 31.19 pg/ml, respectively) and relatively low IL-4 level (94 ± 14.5 pg/ml and 186 ± 14.17 pg/ml, respectively). These phenomena suggested that Th1-favored immunity was being induced. Vaccination with ROP1 antigen was able to provide partial protection in the vaccinated mice against lethal challenge with virulent RH strain of tachyzoites. These findings proposed that the ROP1 antigen is a potential candidate for the development of vaccine against toxoplasmosis. PMID:27303390
Global Foot-and-Mouth Disease Research Update and Gap Analysis: 3 - Vaccines.
Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W
2016-06-01
This study assessed research knowledge gaps in the field of FMDV (foot-and-mouth disease virus) vaccines. The study took the form of a literature review (2011-15) combined with research updates collected in 2014 from 33 institutes from across the world. Findings were used to identify priority areas for future FMD vaccine research. Vaccines play a vital role in FMD control, used both to limit the spread of the virus during epidemics in FMD-free countries and as the mainstay of disease management in endemic regions, particularly where sanitary controls are difficult to apply. Improvements in the performance or cost-effectiveness of FMD vaccines will allow more widespread and efficient disease control. FMD vaccines have changed little in recent decades, typically produced by inactivation of whole virus, the quantity and stability of the intact viral capsids in the final preparation being key for immunogenicity. However, these are exciting times and several promising novel FMD vaccine candidates have recently been developed. This includes the first FMD vaccine licensed for manufacture and use in the USA; this adenovirus-vectored FMD vaccine causes in vivo expression of viral capsids in vaccinated animals. Another promising vaccine candidate comprises stabilized empty FMDV capsids produced in vitro in a baculovirus expression system. Recombinant technologies are also being developed to improve otherwise conventionally produced inactivated vaccines, for example, by creating a chimeric vaccine virus to increase capsid stability and by inserting sequences into the vaccine virus for desired antigen expression. Other important areas of ongoing research include enhanced adjuvants, vaccine quality control procedures and predicting vaccine protection from immune correlates, thus reducing dependency on animal challenge studies. Globally, the degree of independent vaccine evaluation is highly variable, and this is essential for vaccine quality. Previously neglected, the importance of evaluating vaccination programme effectiveness and impact is increasingly being recognized. © 2016 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro
P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less