Science.gov

Sample records for emulsified zero-valent iron

  1. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.

    2005-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the contaminant's potential bioaccumulation in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water run-off. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. However, the application to marine environments is only just being explored. This paper discusses the potential use of EZVI in brackish and saltwater environments, with supporting laboratory data detailed. Laboratory studies were performed in 2005 to establish the effectiveness of EZVI to degrade trichloroethylene (TCE) in saltwater. Headspace vials were setup to determine the kinetic rate of TCE degradation using EZVI in seawater. The reaction vials were analyzed by Gas Chromatographic/Flame Ionization Detection (GC/FID) for ethene production after a 48 day period using a GC/FID Purge and Trap system. Analytical results showed that EZVI was very effective at degrading TCE. The reaction by-products (ethene, acetylene and ethane) were produced at 71% of the rate in seawater as in the fresh water controls. Additionally, iron within the EZVI particles was protected from oxidation of the corrosive seawater, allowing EZVI to perform in an environment where zero-valent iron alone could not compete. Laboratory studies were also performed to establish the effectiveness of emulsified zero-valent metal (EZVM) to remove dissolved-phase cadmium and lead found in seawater. EZVM is comprised of a combination of magnesium and iron metal surrounded by the

  2. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W.; Brooks, Kathleen B.; Geiger, Cherie L.; Clausen, Christian A.; Milum, Kristen M.

    2006-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the potential of the contaminant to bioaccumulate in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water runoff. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. Emulsified Zero-Valent Metal (EZVM) using metals such as iron and/or magnesium have been shown in the laboratory and on the bench scale to be effective at removing metals contamination in freshwater environments. The application to marine environments, however, is only just being explored. This paper discusses. the potential use of EZVI or EZVM in brackish and saltwater environments, with supporting laboratory data detailing its effectiveness on trichloroethylene, lead, copper, nickel and cadmium.

  3. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (DNAPL CONFERENCE)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  4. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (Battelle Conference)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) was conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island, SC. The EZVI technology was developed at the University of Central Fl...

  5. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  6. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (BATTELLE PRESENTATION)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The EZVI technology was developed at the University of Central ...

  7. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-04-01

    relative degradation contributions of the zero-valent iron (ZVI) versus biodegradation promoted by the emulsifying agents (completed laboratory...predominant clay lense was encountered between 8 and 10 ft bgs, and peat was typically encountered at a depth of approximately 18 ft bgs. Orange /brown...lenses sand, trace silt, fine grained, dense, light brown to orange W at er L ev el increase in grey colour, orange mottling NA NA NA NA NA NA Notes

  8. Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Wen, Chunyu; Liu, Dengfeng; Zhang, Wenjing; Li, Jintong; Jiang, Hanjie; Qin, Chongwei; Hong, Mei

    2015-01-01

    Emulsified nano-zero-valent iron (EZVI) is a modified form of bare nanoiron with improved transportability and targetability for the remediation of organic-solvents polluted soil and groundwater. In this work, EZVI (50-150 nm) was prepared by coating an emulsified vegetable oil membrane on the surface of Fe nanoparticles. EZVI was well-dispersed and less aggregation was observed. Batch experiments were conducted in anaerobic conditions to investigate the kinetics of nitrobenzene reduction by EZVI and the influences of oil concentration, initial iron content, and initial pH. Results indicated that the kinetics of nitrobenzene reduction by EZVI followed a pseudo-first-order kinetics. The observed rate constant of nitrobenzene is 0.0942 min-1. The oil concentration of 1 and 2 % tended to be preferred concentrations. The rate of nitrobenzene degradation and aniline formation increased with increasing iron content. The low pH is favorable to the nitrobenzene reduction by EZVI.

  9. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Woong-Sang; Gavaskar, Arun; Holdsworth, Thomas

    2005-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  10. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Sam; Gavaskar, Arun; Holdsworth, Thomas

    2004-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nano-scale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, non-aqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (V005) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  11. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-09-01

    value nZVI nano -scale ZVI O&M operation and maintenance ORP oxidation-reduction potential P&T pump -and-treat PCE tetrachloroethene PRB...grade surfactant, biodegradable oil, water, and ZVI particles (either nano - or micro -scale iron, nZVI, or mZVI), which form emulsion particles. The...is composed of food- grade surfactant, biodegradable oil, water, and ZVI particles (either nano - or micro -scale iron, nZVI, or mZVI), which form

  12. Zero-valent iron nanoparticles preparation

    SciTech Connect

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  13. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons

    SciTech Connect

    Kim, Y.H.; Carraway, E.R.

    2000-05-15

    The disappearance of pentachlorophenol (PCP) from aqueous solutions in contact with zero valent metals (ZVMs) may be due to dechlorination reactions or sorption to ZVM-related surfaces. Previously reported results on PCP and zero valent iron measured only PCP loss from aqueous solutions and attributed this loss to reaction. In this study, the total amount of unreacted PCP, both that in aqueous solution and that sorbed to ZVM-related surfaces, was measured using a modified extraction method. PCP dechlorination was confirmed by following the appearance of tetrachlorophenol isomers. The results indicate that the rate of dechlorination is much slower than previously reported. In their experiments, electrolytic zero valent iron with a surface area of 0.12 m{sup 2}/g resulted in an observed first-order rate constant of 3.9 x 10{sup {minus}3} h{sup {minus}1} or a half-life of approximately 7.4 days. Normalized to surface area, the rate constant (k{sub SA}) is 3.2 x 10{sup {minus}4} L m{sup {minus}2} h{sup {minus}1}. Four amended irons prepared by coating iron with palladium (Pd/Fe), platinum (Pt/Fe), nickel (Ni/Fe), and copper (Cu/Fe) were also used and showed slower removal rates as compared to unamended iron. Slower reaction rates obtained with amended irons as compared to iron have not been previously reported. Overall, this study conclusively demonstrates PCP dechlorination by iron and several bimetallic ZVMs and indicates that it is essential to separate reaction and sorption processes.

  14. DDT, DDD, AND DDE DECHLORINATION BY ZERO-VALENT IRON

    EPA Science Inventory

    Traditionally, destruction of DDT [1,1,1-trichIoro-2,2-bis(p-chlorophenyl)ethane] for environmental remediation required high-energy processes such as incineration. Here, the capability of powdered zero-valent iron to dechlorinate DDT and related compounds at room tempera...

  15. ZERO-VALENT IRON FOR HIGH-LEVEL ARSENITE REMOVAL

    EPA Science Inventory

    This study conducted by flow through column systems was aimed at investigating the feasibility of using zero-valent iron for arsenic remediation in groundwater. A high concentration arsenic solution (50 mg l-1) was prepared by using sodium arsenite (arsenic (III)) to simulate gr...

  16. Feasibility of amending slurry walls with zero-valent iron

    SciTech Connect

    Rabideau, A.J.; Shen, P.; Khandelwal, A.

    1999-04-01

    Rapid degradation of aqueous trichloroethylene (TCE) was observed in batch experiments conducted with soil/bentonite slurry wall materials amended with the addition of zero-valent iron. The first-order TCE decay constants for soil/bentonite/iron mixtures, when normalized to the available iron surface area, were approximately 1--2 orders of magnitude higher than observed in batch experiments with pure iron systems. Permeability tests indicated an increase in SB hydraulic conductivity roughly proportional to the amount of iron added. Based on the observed reaction rates and the assumption of sustained long-term performance, significantly less than one percent added iron would be required to reduce the diffusive flux of TCE across an installed slurry wall by over 10 orders of magnitude. However, the release of hydrogen gas was noted as a potential problem for low permeability systems containing zero-valent iron.

  17. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles.

    PubMed

    Su, Chunming; Puls, Robert W; Krug, Thomas A; Watling, Mark T; O'Hara, Suzanne K; Quinn, Jacqueline W; Ruiz, Nancy E

    2012-10-15

    A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) and its chlorinated daughter products. Two EZVI delivery methods were used: pneumatic injection and direct injection. In the pneumatic injection plot, 2180 L of EZVI containing 225 kg of iron (Toda RNIP-10DS), 856 kg of corn oil, and 22.5 kg of surfactant were injected to remedy an estimated 38 kg of CVOCs. In the direct injection plot, 572 L of EZVI were injected to treat an estimated 0.155 kg of CVOCs. After injection of the EZVI, significant reductions in PCE and trichloroethene (TCE) concentrations were observed in downgradient wells with corresponding increases in degradation products including significant increases in ethene. In the pneumatic injection plot, there were significant reductions in the downgradient groundwater mass flux values for PCE (>85%) and TCE (>85%) and a significant increase in the mass flux of ethene. There were significant reductions in total CVOC mass (86%); an estimated reduction of 63% in the sorbed and dissolved phases and 93% reduction in the PCE DNAPL mass. There are uncertainties in these estimates because DNAPL may have been mobilized during and after injection. Following injection, significant increases in dissolved sulfide, volatile fatty acids (VFA), and total organic carbon (TOC) were observed. In contrast, dissolved sulfate and pH decreased in many wells. The apparent effective remediation seems to have been accomplished by direct abiotic dechlorination by nanoiron followed by biological reductive dechlorination stimulated by the corn oil in the emulsion.

  18. Reductive dehalogenation of trichloroethylene using zero-valent iron

    SciTech Connect

    Gotpagar, J.; Grulke, E.; Bhattacharyya, D.

    1997-12-31

    Reductive dehalogenation of hazardous organics using zero-valent metals is a promising technology. The purpose of this study was to examine the effect of feed concentration, initial pH, metal loading and particle size of metal on the degradation of trichloroethylene (TCE), using zero-valent iron. The degradation rate was found to be first order with respect to the organic molecule, thus the conversion was independent of initial TCE concentration. The amount of TCE degraded at any given time was found to be directly proportional to the dissolved iron in solution. The metal surface area plays a crucial role in the process. Twofold increase in the pseudo first order rate constant was obtained when the metal particle size was decreased from 370 {mu}m by factor of 2.5. For iron surface area per unit volume (S/V) of solution < 1000 m{sup -1}, the TCE degradation rate constant increased linearly with S/V ratio. 20 refs., 8 figs., 1 tab.

  19. Synthesis, Characterization, and Properties of Zero-Valent Iron Nanoparticles

    SciTech Connect

    Baer, Donald R.; Tratnyek, P. G.; Qiang, You; Amonette, James E.; Linehan, John C.; Sarathy, Vaishnavi; Nurmi, J. T.; Wang, Chong M.; Antony, Jiji

    2007-04-04

    This chapter provides an overview of synthesis, characterization and property measurements techniques important for making understanding the nature of zero valent iron nanoparticles. The chemical reactivity of nanometer-sized materials can be quite different from that of either bulk forms of a material or the individual atoms and molecules that comprise it. Advances in our ability to synthesize, visualize, characterize and model these materials have created new opportunities to control the rates and products of chemical reactions in ways not previously possible. Zero valent iron (ZVI), including non-nanoparticle forms for iron, is one of the most promising remediation technologies for the removal of mobile chlorinated hydrocarbons and reducible inorganic anions for ground water. ZVI nanoparticles may have great potential to assist environmental remediation, but there are significant scientific and technological questions that remain to be answered. Understanding of ZVI reactive metal core-shell nanoparticles requires use of particles that are as well characterized and understood as possible. In this chapter we describe the issues and provide examples that include synthesis of nanoparticles, analytical characterization of the particles and finally measurements of their chemical properties.

  20. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.

    PubMed

    Kumar, Deepak; Roy, Rajdeep; Parashar, Abhinav; Raichur, Ashok M; Chandrasekaran, Natarajan; Mukherjee, Anita; Mukherjee, Amitava

    2017-01-19

    The present study deals with the toxicity assessment of two differently synthesized zero valent iron nanoparticles (nZVI, chemical and biological) as well as Fe(2+) ions on Artemia salina at three different initial concentrations of 1, 10, and 100 mg/L of these particles. The assessment was done till 96 h at time intervals of 24 h. EC50 value was calculated to evaluate the 50% mortality of Artemia salina at all exposure time durations. Between chemically and biologically synthesized nZVI nanoparticles, insignificant differences in the level of mortality were demonstrated. At even 24 h, Fe(2+) ion imparted complete lethality at the highest exposure concentration (100 mg/L). To understand intracellular oxidative stress because of zero valent iron nanoparticles, ROS estimation, SOD activity, GSH activity, and catalase activity was performed which demonstrated that ionic form of iron is quite lethal at high concentrations as compared with the same concentration of nZVI exposure. Lower concentrations of nZVI were more toxic as compared with the ionic form and was in order of CS-nZVI > BS-nZVI > Fe(2+) . Cell membrane damage and bio-uptake of nanoparticles were also evaluated for all three concentrations of BS-nZVI, CS-nZVI, and Fe(2+) using adult Artemia salina in marine water; both of which supported the observations made in toxicity assessment. This study can be further explored to exploit Artemia salina as a model organism and a biomarker in an nZVI prone aquatic system to detect toxic levels of these nanoparticles.

  1. Stabilization of arsenic sludge with mechanochemically modified zero valent iron.

    PubMed

    Liang, Yanjie; Min, Xiaobo; Chai, Liyuan; Wang, Mi; Liyang, Wenjun; Pan, Qinglin; Okido, Masazumi

    2017-02-01

    Modified zero valent iron (ZVI) is obtained from commercial iron powder co-ground with manganese dioxide (MnO2) in intensive mechanical stress. The result indicates that the modified ZVI is very effective in arsenic sludge stabilization with a declination of arsenic leaching contraction from 72.50 mg/L to 0.62 mg/L, much lower than that of ordinary ZVI (10.48 mg/L). The involved process, including mechanochemical activation, corrosion and arsenic adsorption, is characterized explicitly to verify the improved arsenic stabilization mechanism. It shows that the mechanically formed Fe-Mn binary oxides layer results in an intensive corrosion extent, generating a mass of corrosion products. Moreover, as the emergence of Mn will restrain the process of iron (hydr)oxides crystallization, the ultimate corrosion products of the modified ZVI predominates in amorphous iron (hydr)oxides, performing much better in arsenic absorption. According to the BCR analysis, unstable arsenic in sludge is easily transformed to residual fraction by the help of amorphous iron (hydr)oxides, resulting in a restrained environmental availability of arsenic sludge after the modified ZVI stabilization.

  2. Synchrotron speciation data for zero-valent iron nanoparticles

    EPA Pesticide Factsheets

    This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include linear combination fitting results (Table 6 and Figure 9) and ab-initio extended x-ray absorption fine structure spectroscopy fitting (Figure 10 and Table 7).Table 6: Linear combination fitting of the XAS data for the 5 commercial nZVI/ZVI products tested. Species proportions are presented as percentages. Goodness of fit is indicated by the chi^2 value.Figure 9: Normalised Fe K-edge k3-weighted EXAFS of the 5 commercial nZVI/ZVIproducts tested. Dotted lines show the best 4-component linear combination fit ofreference spectra.Figure 10: Fourier transformed radial distribution functions (RDFs) of the five samplesand an iron metal foil. The black lines in Fig. 10 represent the sample data and the reddotted curves represent the non-linear fitting results of the EXAFS data.Table 7: Coordination parameters of Fe in the samples.This dataset is associated with the following publication:Chekli, L., B. Bayatsarmadi, R. Sekine, B. Sarkar, A. Maoz Shen, K. Scheckel , W. Skinner, R. Naidu, H. Shon, E. Lombi, and E. Donner. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review. Richard P. Baldwin ANALYTICA CHIMICA ACTA. Elsevier Science Ltd, New York, NY, USA, 903: 13-35, (2016).

  3. Treatment of distillery wastewater by the nano-scale zero-valent iron and the supported nano-scale zero-valent iron.

    PubMed

    Homhoul, Phatkanok; Pengpanich, Sitthiphong; Hunsom, Mali

    2011-01-01

    The treatment of wastewater from the distillery industry was carried out by using nano-scale- and supported nano-scale zero-valent iron at a laboratory scale and ambient temperature. Effects of dilution, pH, mixing rate, zero-valent iron dosage, and amount of support for the zero-valent iron were investigated. All parameters had a significant effect on the removal efficiency of all investigated pollutants. Increasing the number of dilutions and the nano-scale zero-valent iron dosage led to the increase of removal efficiency of pollutants. Higher removal efficiency was achieved in an acidic initial pH of wastewater. The reduction of all pollutants was limited by the kinetics of the pollutant destruction/reduction by nano-scale zero-valent iron particles at a mixing rate greater than 170 rpm. At optimum condition, greater than 95, 94, and 64% of color, chemical oxygen demand, and biochemical oxygen demand were removed, respectively, within 6 hours. Additionally, the presence of a support had a significant effect on pollutant removal.

  4. Tactic response of bacteria to zero-valent iron nanoparticles.

    PubMed

    Ortega-Calvo, José-Julio; Jimenez-Sanchez, Celia; Pratarolo, Paolo; Pullin, Huw; Scott, Thomas B; Thompson, Ian P

    2016-06-01

    The microbial assessment of pollutant toxicity rarely includes behavioral responses. In this study, we investigated the tactic response of Pseudomonas putida G7, a representative of soil bacterium, towards engineered zero-valent iron nanoparticles (nZVIs), as a new end-point assessment of toxicity. The study integrated the characterization of size distribution and charge of nZVIs and tactic reaction response by means of inverted capillary assay and computer-assisted motion analysis of motility behavior. Iron nanoparticles (diameter ≤ 100 nm) were prepared in the absence of oxygen to prevent aggregation, and then exposed in aerobic conditions. We first demonstrate that iron nanoparticles can elicit a negative tactic response in bacteria at low but environmentally-relevant, sub-lethal concentrations (1-10 μg/L). Cells were repelled by nZVIs in the concentration gradients created inside the capillaries, and a significant increase in turning events, characteristic of negative taxis, was detected under exposure to nZVIs. These tactic responses were not detectable after sustained exposure of the nanoparticles to oxygen. This new behavioral assessment may be prospected for the design of sensitive bioassays for nanomaterial toxicity.

  5. Zero-valent iron colloid emplacement in sand columns

    SciTech Connect

    Cantrell, K.J.; Kaplan, D.I.

    1997-05-01

    Application of chemically reactive barriers to mitigate contaminant migration is an active area of research and development. Studies were conducted to evaluate a novel approach of emplacing chemically reactive barriers composed of zero-valent iron (Fe{sup 0}) by injecting suspensions of colloidal-size Fe{sup 0} particles into porous media. The specific objective of this study was to evaluate the effect of influent colloid concentration, rate, and volume of colloidal suspensions on Fe{sup 0} colloid emplacement in sand columns. Relatively even distributions of Fe{sup 0} throughout a sand column were obtained at low influent colloid concentrations and high injection rates. As the concentration of influent suspensions was increased, a point was reached beyond which a significant increase in the filtration of Fe{sup 0} particles near the front of the column was observed. This point was also found to occur at lower influent colloid concentrations as the injection rate was decreased, i.e., there was an interactive effect of influent colloid concentration and injection rate on the extent of filtration that occurred near the front of the column. As the volume of the colloidal suspension injected into the column was increased, the distribution of Fe{sup 0} colloids within the column became increasingly even.

  6. Analytical Characterisation of Nanoscale Zero-Valent Iron: A ...

    EPA Pesticide Factsheets

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed. In recent years, manufactured nanoparticles (MNPs) have attracted increasing interest for their potential applications in the treatment of contaminated soil and water. In compar

  7. Microbiological characteristics in a zero-valent iron reactive barrier.

    PubMed

    Gu, Baohua; Watson, David B; Wu, Liyou; Phillips, Debra H; White, David C; Zhou, Jizhong

    2002-08-01

    Zero-valent iron (Fe0)-based permeable reactive barrier treatment has been generating great interest for passive groundwater remediation, yet few studies have paid particular attention to the microbial activity and characteristics within and in the vicinity of the Fe0-barrier matrix. The present study was undertaken to evaluate the microbial population and community composition in the reducing zone of influence by Fe0 corrosion in the barrier at the Oak Ridge Y-12 Plant site. Both phospholipid fatty acids and DNA analyses were used to determine the total microbial population and microbial functional groups, including sulfate-reducing bacteria, denitrifying bacteria, and methanogens, in groundwater and soil/iron core samples. A diverse microbial community was identified in the strongly reducing Fe0 environment despite a relatively high pH condition within the Fe0 barrier (up to pH approximately 10). In comparison with those found in the background soil/groundwater samples, the enhanced microbial population ranged from approximately 1 to 3 orders of magnitude and appeared to increase from upgradient of the barrier to downgradient soil. In addition, microbial community composition appeared to change over time, and the bacterial types of microorganisms increased consistently as the barrier aged. DNA analysis indicated the presence of sulfate-reducing and denitrifying bacteria in the barrier and its surrounding soil. However, the activity of methanogens was found to be relatively low, presumably as a result of the competition by sulfate/metal-reducing bacteria and denitrifying bacteria because of the unlimited availability of sulfate and nitrate in the site groundwater. Results of this study provide evidence of a diverse microbial population within and in the vicinity of the iron barrier, although the important roles of microbial activity, either beneficially or detrimentally, on the longevity and enduring efficiency of the Fe0 barriers are yet to be evaluated.

  8. Microbiological characteristics in a zero-valent iron reactive barrier

    SciTech Connect

    Gu, Baohua; Watson, David B; Wu, Liyou; Phillips, Debra Helen; White, David C.; Zhou, Jizhong

    2002-01-01

    Zero-valent iron (Fe{sup 0})-based permeable reactive barrier treatment has been generating great interest for passive groundwater remediation, yet few studies have paid particular attention to the microbial activity and characteristics within and in the vicinity of the Fe{sup 0}-barrier matrix. The present study was undertaken to evaluate the microbial population and community composition in the reducing zone of influence by Fe{sup 0} corrosion in the barrier at the Oak Ridge Y-12 Plant site. Both phospholipid fatty acids and DNA analyses were used to determine the total microbial population and microbial functional groups, including sulfate-reducing bacteria, denitrifying bacteria, and methanogens, in groundwater and soil/iron core samples. A diverse microbial community was identified in the strongly reducing Fe{sup 0} environment despite a relatively high pH condition within the Fe{sup 0} barrier (up to pH {approx} 10). In comparison with those found in the background soil/groundwater samples, the enhanced microbial population ranged from {approx} 1 to 3 orders of magnitude and appeared to increase from upgradient of the barrier to downgradient soil. In addition, microbial community composition appeared to change overtime, and the bacterial types of microorganisms increased consistently as the barrier aged. DNA analysis indicated the presence of sulfate-reducing and denitrifying bacteria in the barrier and its surrounding soil. However, the activity of methanogens was found to be relatively low, presumably as a result of the competition by sulfate/metal-reducing bacteria and denitrifying bacteria because of the unlimited availability of sulfate and nitrate in the site groundwater. Results of this study provide evidence of a diverse microbial population within and in the vicinity of the iron barrier, although the important roles of microbial activity, either beneficially or detrimentally, on the longevity and enduring efficiency of the Fe{sup 0} barriers are yet

  9. Reduction of Aromatic Hydrocarbons by Zero-Valent Iron and Palladium Catalyst

    SciTech Connect

    Kim, Young-Hun; Shin, Won Sik; Ko, Seok-Oh; Kim, Myung-Chul

    2004-03-31

    Permeable reactive barrier (PRB) is an alternative technology for soil and groundwater remediation. Zero valent iron, which is the most popular PRB material, is only applicable to halogenated aliphatic organics and some heavy metals. The objective of this study was to investigate reductive dechlorination of halogenated compounds and reduction of non-halogenated aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for PRBs. A group of small aromatic hydrocarbons such as monochlorophenols, phenol and benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. The current study demonstrates reduction of aromatic compounds by ZVMs and modified catalysts and implicates that PRB is applicable not only for halogenated organic compounds but nonhalogenated aromatic compounds such as PAHs.

  10. Textile dye degradation using nano zero valent iron: A review.

    PubMed

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites.

  11. Recovery of indium ions by nanoscale zero-valent iron

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Su, Yiming; Wen, Zhipan; Zhang, Yalei; Zhou, Xuefei; Dai, Chaomeng

    2017-03-01

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH)2 with In(OH)3. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca2+ and HPO4 2- have more negative influence on In(III) recovery compared with Na+, NO3 -, HCO3 -, and SO4 2-. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  12. Can zero-valent iron nanoparticles remove waterborne estrogens?

    PubMed

    Jarošová, Barbora; Filip, Jan; Hilscherová, Klára; Tuček, Jiří; Šimek, Zdeněk; Giesy, John P; Zbořil, Radek; Bláha, Luděk

    2015-03-01

    Steroidal estrogens are one of the most challenging classes of hazardous contaminants as they can cause adverse effects to biota in extremely low concentrations. They emerge in both waste waters and surface waters serving as a source of drinking water. Environmental Quality Standards for 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), promulgated within the EU Water Framework Directive, are 0.4 and 0.035 ng L(-1), respectively. Because nanoscale zero-valent iron (nZVI) particles have been previously used in numerous remediation technologies and have the advantage of possible magnetic separation, interaction of nZVI with E2 and EE2 in water was investigated to assess the potential role of nZVI in removing steroidal estrogens. A mixture of E2 and EE2 dissolved in water was shaken with varying doses of nZVI for 1-5 h. Concentration-dependent removal of the estrogens was observed but removal did not increase significantly with time. Concentrations of the estrogens were determined by HPLC/MS/MS and a biodetection reporter gene assay. Sorption and nonspecific oxygen-mediated oxidation of estrogens were identified as the most probable removal mechanisms. Two independent experiments confirmed that significant decrease of estrogens concentration is achieved when at least 2 g L(-1) of nZVI is applied. The presented study provides insights into the mechanisms of nZVI interaction with steroidal estrogens under aerobic conditions prevailing in currently applied water treatment technologies.

  13. Remediation of Explosives Contaminated Groundwater With Zero-Valent Iron

    DTIC Science & Technology

    2011-10-01

    effect of [Fe(0)] discussed above. One possibility is that both effects are due to greater reduction of the passive film with more time and/or capacity...Environmental Chemistry. American Chemical Society, New Orleans, LA, pp. in press. Nam, S. and Tratnyek, P.G., 2000. Reduction of azo dyes with zero-valent

  14. Reductive dechlorination of chlorinated solvents by zero-valent iron, iron oxide and iron sulfide minerals

    SciTech Connect

    Sivavec, T.M.; Horney, D.P.

    1996-10-01

    The degradation of chlorinated solvents by reduction at the surface of zero-valent metals and bimetallic systems has emerged as an important approach to the in-situ remediation of ground water. Reduction by iron metal was studied in batch and column systems to develop a mechanistic understanding of the reaction chemistry and to determine the factors that affect dechlorination rate and long term performance in field applications.

  15. Effect of Zero-Valent Iron on Removal of Escherichia coli O157:H7 from Agricultural Waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel water filtration system using zero-valent iron (ZVI) is being investigated as a simple and inexpensive approach to reducing E. coli O157:H7 in water for both pre- and post-harvest processes. Purpose: This study was initiated to determine the effectiveness of zero-valent iron in the removal ...

  16. REDUCTION OF AZO DYES WITH ZERO-VALENT IRON. (R827117)

    EPA Science Inventory

    The reduction of azo dyes by zero-valent iron metal (Fe0) at pH 7.0 in 10 mM HEPES buffer was studied in aqueous, anaerobic batch systems. Orange II was reduced by cleavage of the azo linkage, as evidenced by the production of sulfanilic acid (a substituted ani...

  17. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  18. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron

    SciTech Connect

    Agrawal, A.; Tratnyek, P.G.

    1994-03-18

    Recent laboratory and field experiments have shown that some halogenated hydrocarbons undergo rapid reductive dehalogenation with zero-valent iron and the application of this process is being developed for in-situ remediation of contaminated groundwater. However, from can also reduce other organic substances and is commonly used to synthesize reduction products nitro compounds.

  19. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review

    EPA Science Inventory

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their te...

  20. REMOVAL OF HIGH-LEVEL ARSENIC BY ZERO-VALENT IRON

    EPA Science Inventory

    The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the st...

  1. HIGH-LEVEL ARSENITE REMOVAL FROM GROUNDWATER BY ZERO-VALENT IRON

    EPA Science Inventory

    The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the st...

  2. GROUND WATER REMEDIATION OF CHROMIUM USING ZERO-VALENT IRON IN A PERMEABLE REACTIVE BARRIER

    EPA Science Inventory

    A series of laboratory experiments were performed to elucidate the chromium transformation and precipitation reactions caused by the corrosion of zero-valent iron in water-based systems. Reaction rates were determined for chromate reduction in the presence of different types of ...

  3. Zero-valent iron on Mars: An alternative energy source for methanogens

    NASA Astrophysics Data System (ADS)

    Chastain, Brendon K.; Kral, Timothy A.

    2010-07-01

    Zero-valent iron, montmorillonite-like smectites, and CO 2 gas are known to exist on Mars, and work was performed to investigate the ability of methanogens to subsist on these materials. After 71 days of incubation at 55 °C, mean methane concentration as percent of headspace volume was 19.80 ± 1.76% (mean ± SE) for replicates containing elemental iron and 0.50 ± 0.15% for those lacking elemental iron.

  4. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    PubMed

    Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-01-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.

  5. Zero Valent Iron: Impact of Anions Present during Synthesis on Subsequent Nanoparticle Reactivity

    SciTech Connect

    Moore, Kirsten; Forsberg, Brady; Baer, Donald R.; Arnold, William A.; Penn, R. Lee

    2011-10-01

    Zero-valent iron particles are an effective remediation technology for groundwater contaminated with halogenated organic compounds. In particular, nano-scale zero-valent iron is a promising material for remediation due to its high specific surface area, which results in faster rate constants and more effective use of the iron. An aspect of iron nanoparticle reactivity that has not been explored is the impact of anions present during iron metal nanoparticle synthesis. Solutions containing chloride, phosphate, sulfate, and nitrate anions and ferric ions were used to generate iron oxide nanoparticles. The resulting materials were dialyzed to remove dissolved byproducts and then dried and reduced by hydrogen gas at high temperature. The reactivity of the resulting zero valent iron nanoparticles was quantified by monitoring the kinetics as well as products of carbon tetrachloride reduction, and significant differences in reactivity and chloroform yield were observed. The reactivity of nanoparticles prepared in the presence of sulfate and phosphate demonstrated the highest reactivity and chloroform yield. Furthermore, substantial variations in the solid-state products of oxidation (magnetite, iron sulfide, and goethite, among others) were also observed.

  6. Ground water remediation of chromium using zero-valent iron in a permeable reactive barrier

    SciTech Connect

    Puls, R.W.; Powell, R.M.; Paul, C.J.; Blowes, D.

    1998-09-01

    A series of laboratory experiments were performed to elucidate the chromium transformation and precipitation reactions caused by the corrosion of zero-valent iron in water-based systems. Reaction rates were determined for chromate reduction in the presence of different types of iron and in systems with iron mixed with aquifer materials. Various geochemical parameters were measured to confirm the proposed reactions. Laboratory experiments were scaled up to pilot and full-scale field demonstrations. Intensive geochemical sampling in the field tests corroborate laboratory results and successfully demonstrate the effectiveness of this innovative in situ approach to remediate chromate-contaminated ground water using a permeable reactive barrier composed of zero-valent iron.

  7. Heterogeneous reductive dehalogenation of PCB contaminated transformer oil and brominated diphenyl ethers with zero valent iron.

    PubMed

    Habekost, A; Aristov, N

    2012-09-01

    Reductive dechlorination and debromination of halogenated biphenyls (PCBs) and diphenyl ethers (PBDEs) occurs efficiently at moderately elevated temperatures (350-600 °C) with zero valent iron (iron powder) in a nitrogen atmosphere. The proton donors tested were waste transformer oil, iso-octane, and n-decane. Observation of production of biphenyl and diphenyl ether and their condensation products indicates that the reaction is not simple pyrolysis, but a reduction. No halogenated organic products are observed.

  8. Comparison of characteristics of montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    How, Ho Kuok; Wan Zuhairi W., Y.

    2015-09-01

    In this study, synthesized montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI) are compared physically and chemically. The samples were prepared using chemical reduction method that includes sodium borohydride and ethanol. Due to the tendency of nZVI to aggregate, montmorillonite is used as a supporting material. TEM and FESEM images show that the M-nZVI has decreased the aggregation by dispersing the particles on the surface of montmorillonite whereas images of nZVI show chain-like particle due to aggregation. Both images also show particles synthesized are nanoparticles. With less aggregation, the surface area of the M-nZVI is greater than nZVI which is 45.46 m2/g and 10.49 m2/g respectively. XRD patterns have shown Fe0 are synthesized and small amount of iron oxides are produced. M-nZVI has the capability in reducing aggregation which might lead to the increase in reactivity of the particles thus enhancing the performance of nZVI.

  9. Sorption of PCE in a reactive zero-valent iron system

    SciTech Connect

    Campbell, T.J.; Burris, D.R.

    1995-12-01

    The degradation of the chlorinated solvents perchloroethylene (PCE) and trichloroethylene (TCE) by reduction on the surface of zero-valent iron has emerged in recent years as a potentially viable approach to the remediation of chlorinated solvent-contaminated groundwaters. The sorption of PCE in a batch reactive zero-valent iron system was examined in this study. Aqueous PCE concentrations and total system PCE masses were determined in batch time-series experiments used to ascertain degradation kinetics. Sorbed concentrations were calculated using the difference between the aqueous phase and total system masses. The results showed Langmuir isotherm behavior which is consistent with a model of a finite number of available sorption sites. The kinetics of sorption could not be determined since degradation was also occurring. Knowledge of sorption to reactive and non-reactive sites is of importance in gaining a thorough understanding of the performance-behavior of the flow-through reactive systems envisioned for remediation technologies.

  10. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review.

    PubMed

    Fu, Fenglian; Dionysiou, Dionysios D; Liu, Hong

    2014-02-28

    Recent industrial and urban activities have led to elevated concentrations of a wide range of contaminants in groundwater and wastewater, which affect the health of millions of people worldwide. In recent years, the use of zero-valent iron (ZVI) for the treatment of toxic contaminants in groundwater and wastewater has received wide attention and encouraging treatment efficiencies have been documented. This paper gives an overview of the recent advances of ZVI and progress obtained during the groundwater remediation and wastewater treatment utilizing ZVI (including nanoscale zero-valent iron (nZVI)) for the removal of: (a) chlorinated organic compounds, (b) nitroaromatic compounds, (c) arsenic, (d) heavy metals, (e) nitrate, (f) dyes, and (g) phenol. Reaction mechanisms and removal efficiencies were studied and evaluated. It was found that ZVI materials with wide availability have appreciable removal efficiency for several types of contaminants. Concerning ZVI for future research, some suggestions are proposed and conclusions have been drawn.

  11. Remediation of TNT and RDX in Groundwater Using Zero-Valent Iron Permeable Reactive Barriers

    DTIC Science & Technology

    2008-04-01

    outside diameter ORP oxidation reduction potential P&T pumping and treatment PRB permeable reactive barrier PTA Pilot Test Area PV present value PVC... States Environmental Protection Agency UHU ultra high vacuum UV ultraviolet XPS x-ray photoelectron spectroscopy ZVI zero-valent iron...groundwater typically involve groundwater extraction and treatment (pump-and-treat) with treatment by carbon adsorption or ultraviolet (UV) oxidation

  12. Environmental application and ecological significance of nano-zero valent iron.

    PubMed

    Yirsaw, Biruck D; Megharaj, Mallavarapu; Chen, Zuliang; Naidu, Ravi

    2016-06-01

    Toxicity studies considering both the bare and stabilized forms of zero valent iron nanoparticles (nZVI) could be timely, given that ecological risks identified are minimized through modification or with substitution of approaches in the synthesis, development and environmental application of the nanoparticles before succeeding to volume production. This review is focused on the fate, transport and toxicological implications of the bare nZVI and surface modified particles used for environmental applications.

  13. Zero-valent iron removal rates of aqueous Cr(VI) measured under flow conditions

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-30

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron Fe(0) was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a gournwater remediation technology that replaces the sand in a filter pack of a conventioanl well with a reactive material, such as Fe(0).

  14. Preparation and Characterization of Nanoscale Zero-Valent Iron-Loaded Porous Sepiolite for Decolorizing Methylene Blue in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Qingmiao; Ren, Gaofeng; Jia, Feifei; Song, Shaoxian

    2017-02-01

    The preparation and characterization of nanoscale zero-valent iron-loaded porous sepiolite, as well as its application in the decolorization of methylene blue in aqueous solution, have been studied in this work through the measurements of field emission scanning electron microscope with energy dispersive spectrometry, x-ray photoelectron spectrometry, Fourier transform infrared spectroscopy and specific surface area. The results showed that nanoscale zero-valent iron particles were successfully loaded on the surface and interior pores of sepiolite through physical adsorption. It was revealed that the decoloration capacity of methylene blue on nanoscale zero-valent iron-loaded porous sepiolite in water was comparable to that of nanoscale zero-valent iron, and nine times higher than that of natural sepiolite. This indicates that porous sepiolite was a good supporter for the loading of nanoscale zero-valent iron and nanoscale zero-valent iron-loaded sepiolite was a good decolorant because of its high decoloration efficiency and easy separation.

  15. Quantitative evaluation of pathways involved in trichloroethylene reduction by zero-valent metals: Iron and zinc

    SciTech Connect

    Arnold, W.; Roberts, A.L.; Burris, D.R.; Campbell, T.J.

    1995-12-31

    In order to design in situ remediation systems using zero-valent metals, the mechanism and kinetics of chlorinated solvent degradation by zero-valent metals need clarification. These issues are addressed by conducting detailed investigations of the pathways involved in trichloroethylene (TCE) reduction by two zero-valent metals. Analyses are based on batch reaction data for chloroethylene reduction by iron and zinc. Experiments were conducted using TCE and each readily available reaction product of TCE degradation as a starting material and monitoring the disappearance of the parent chemical and the appearance of reaction products over time. Models were developed by working backwards through the hypothesized reaction sequence. Determining rate constants for the latter steps in the pathway, inserting them into the more complex models for more highly oxidized compounds, and obtaining rate constants for the remaining steps in the transformation of the oxidized species was repeated until a model for trichloroethylene was developed. Results indicate that reactions may not occur via a process of sequential hydrogenolysis or hydrogenation. Ethylene and/or ethane production are too rapid to be accounted for in this manner. The product distribution, especially the presence of acetylene, can only be explained by invoking reductive elimination reactions.

  16. Degradation of Energetic Compounds using Zero-Valent Iron (ZVI)

    DTIC Science & Technology

    2012-03-01

    dinitotoluen DNX: hexahydro-1,3-dinitroso-5nitro-1,3,5-triazine ERDC: Engineer Research and Development Center FID: flame ionization detector GC/MS: gas...Aesar (Ward Hill, MA). These irons were used as received without pretreatment . Specific surface areas of Master Builders iron and the high-purity iron...0.2 mm i.d., 0.33 µm film thickness, J&W, Wilmington, DE) and a flame ionization detector (FID). The injected volume of gas sample was 100 µL and

  17. In situ remediation of chromium contaminated groundwater using zero valent iron

    SciTech Connect

    Blowes, D.W.; Ptacek, C.J.; Hanton-Fong, C.J.; Jambor, J.L.

    1995-12-01

    In situ porous reactive walls, using zero-valent iron as a reductant, are an alternative technology for the treatment of groundwater contaminated with electroactive elements, such as Cr(VI). Laboratory column and batch experiments were conducted to assess the treatment of Cr(VI) using zero-valent iron in the form of iron filings. Batch tests were conducted with and without calcite addition. Batch test results indicate that removal using iron filings is rapid, with initial Cr(VI) concentrations reduced from approximately 20 mg/L to < 0.05 mg/L within 3 hours. Iron filings retained from the batch tests were examined mineralogically. The results indicate that the most abundant secondary minerals are goethite, lepidocrocite, maghemite and hematite. Of these minerals, the most abundant was goethite. No discrete chromium-bearing phases were detected, but chromium-rich zones, containing up to 27.3 wt.% Cr as Cr(OH){sub 3}, were detected within the iron oxyhydroxides, most notably within the goethite. A flow-through column experiment, conducted at a flow rate of 10 m/a indicated continuing treatment of Cr(VI) at concentrations of approximately 20 mg/L to <0.05 mg/L for more than 130 pore volumes.

  18. [Reduction of chromium (VI) by nanoscale zero-valent iron supported on Al-pillared bentonite].

    PubMed

    Yin, Li-Jing; Li, Yi-Min; Zhang, Lu-Ji; Peng, Yuan-Fei; Ying, Zhe-Lan

    2009-04-15

    In the presence of Al-pillared bentonite with good sorption capacity, nanoscale zero-valent iron supported on Al-pillared bentonite (NZVI/Al-PILC) was prepared with NaBH4 and FeSO4 aqueous solution. The structure of NZVI/Al-PILC was characterized by X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET). The effects of pH values and initial chromium (VI) concentrations on its removal rate by NZVI/Al-PILC were investigated, and were compared with those of unsupported nanoscale zero-valent iron (NZVI) containing the same iron mount of NZVI/Al-PILC. The results indicate that in the same experimental condition, the chromium (VI) removal by NZVI/Al-PILC reached 100% after 120 min. The removal is not only much higher than that (63.0%) of the NZVI containing same iron mount, but also superior to the sum of removal (75.4%) by NZVI containing the same iron amount and the Al-pillared bentonite containing the same clay amount with NZVI/Al-PILC.

  19. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.

    PubMed

    Zhu, Huijie; Jia, Yongfeng; Wu, Xing; Wang, He

    2009-12-30

    Nano-sized zero-valent iron is an effective adsorbent for arsenic removal from drinking water. However, its application may be limited in public water system and small scale water treatment system due to its tiny particle size. In the present work, nanoscale zero-valent iron was supported onto activated carbon (NZVI/AC) by impregnating carbon with ferrous sulfate followed by chemical reduction with NaBH(4). Approximate 8.2 wt% of iron was loaded onto carbon and SEM analysis showed that the iron particles in the pores of carbon were needle-shaped with the size of 30-500 x 1000-2000 nm. Kinetics study revealed that adsorption of arsenite and arsenate by NZVI/AC was fast in the first 12h and the equilibrium was achieved in approximately 72 h. The adsorption capacity of the synthesized sorbent for arsenite and arsenate at pH 6.5 calculated from Langmuir adsorption isotherms in batch experiments was 18.2 and 12.0mg/g, respectively. Phosphate and silicate markedly decreased the removal of both arsenite and arsenate, while the effect of other anions and humic acid was insignificant. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption but ferrous iron (Fe(2+)) was found to suppress arsenite adsorption. NZVI/AC can be effectively regenerated by elution with 0.1M NaOH.

  20. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition.

  1. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  2. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  3. [Removal of arsenite from drinking water by activated carbon supported nano zero-valent iron].

    PubMed

    Zhu, Hui-Jie; Jia, Yong-Feng; Wu, Xing; Wang, He

    2009-06-15

    Nano zero-valent iron was loaded onto activated carbon by deoxidizing Fe2+ in aqueous solution and approximately 8.2% (wt) of iron was loaded it. The size of the needle-shaped iron particles in the pores of carbon was (30-500) x (1 000-3 000) nm. The adsorption capacity for arsenic was approximately 1.997 mg/g activated carbon supported nano zero-valent iron (NZVI/AC) in the 2 mg/L As(III) solution at pH 6.5 and (25 +/- 2) degrees C. The uptake of arsenic by NZVI/AC was rapid in the first 12 h (94.3%) and equilibrium was achieved at 72 h (99.86%). As(III) was partly oxidized by the absorbent in the process of absorption. The presence of phosphate and silicate ions significantly decreased arsenic removal rate while the effect of other common ions such as sulfate, carbonate and oxalate was insignificant. NZVI/AC was effectively regenerated after adsorption of arsenic when elution was applied with 0.1 mol/L NaOH solution. The results suggest that NZVI/AC is an ideal candidate for the treatment of arsenic contaminated drinking water.

  4. Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu; Wang, Pei; Ma, Jun; Liu, Huiling; Ning, Ping

    2015-08-01

    Nano zero-valent iron (NZVI) was innovatively and successfully modified by using hydroxyethyl cellulose (HEC) and hydroxypropylmethyl cellulose (HPMC) as dispersants. The systematic characterization observations (including XRD, SEM and TEM) illustrate that, compared with bare nano zero-valent iron particles (BNZVI), the particle sizes of hydroxyethyl cellulose modified (ENZVI) and hydroxypropylmethyl cellulose modified (PNZVI) were decreased, while the dispersity and antioxidizability of ENZVI and PNZVI particles were increased. The discoloration efficiencies of ENZVI, PNZVI, and BNZVI were compared by using dyes (including orange II, methyl orange, methyl blue, and methylene blue) as target pollutant. The results show that both the discoloration efficiency and reaction rate of ENZVI and PNZVI are higher than that of BNZVI. In addition, effects of dispersant content, dye type, pH value, initial dye concentration, iron dosage, and reaction temperature on discoloration efficiencies were studied. The results show that discoloration efficiency was decreased by increasing initial pH value and dye concentration, and it was increased with the increase the iron dosage and reaction temperature. Under optimized NZVI addition of 0.7 g L-1, the discoloration efficiencies of ENZVI and PNZVI were increased to 96.33% and 98.62%, respectively. And the possible discoloration pathway and dispersant modification mechanism of NZVI were discussed. This study suggests hydroxyethyl cellulose and hydroxypropylmethyl cellulose dispersed NZVI can be utilized as a promising modified nano-material for degradation of dye wastewater.

  5. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  6. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    SciTech Connect

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  7. Utilization of food industry wastes for the production of zero-valent iron nanoparticles.

    PubMed

    Machado, S; Grosso, J P; Nouws, H P A; Albergaria, J T; Delerue-Matos, C

    2014-10-15

    The proper disposal of the several types of wastes produced in industrial activities increases production costs. As a consequence, it is common to develop strategies to reuse these wastes in the same process and in different processes or to transform them for use in other processes. This work combines the needs for new synthesis methods of nanomaterials and the reduction of production cost using wastes from citrine juice (orange, lime, lemon and mandarin) to produce a new added value product, green zero-valent iron nanoparticles that can be used in several applications, including environmental remediation. The results indicate that extracts of the tested fruit wastes (peel, albedo and pulp fractions) can be used to produce zero-valent iron nanoparticles (nZVIs). This shows that these wastes can be an added value product. The resulting nZVIs had sizes ranging from 3 up to 300 nm and distinct reactivities (pulp>peel>albedo extracts). All the studied nanoparticles did not present a significant agglomeration/settling tendency when compared to similar nanoparticles, which indicates that they remain in suspension and retain their reactivity.

  8. Hybrid biological, electron beam and zero-valent nano iron treatment of recalcitrant metalworking fluids.

    PubMed

    Thill, Patrick G; Ager, Duane K; Vojnovic, Borivoj; Tesh, Sarah J; Scott, Thomas B; Thompson, Ian P

    2016-04-15

    Hybrid approaches for the remediation and detoxification of toxic recalcitrant industrial wastewater were investigated. The focus was waste metalworking fluid, which was selected as a representative model of other waste streams that are toxic, recalcitrant and that require more sustainable routes of safe disposal. The hybrid approaches included biodegradation, electron beam irradiation and zero-valent nano iron advanced oxidation processes that were employed individually and in sequence employing a factorial design. To compare process performance operationally exhausted and pristine metalworking fluid were compared. Sequential hybrid electron beam irradiation, biological, nanoscale zero-valent iron and biological treatment lead to synergistic detoxification and degradation of both recalcitrant streams, as determined by complementary surrogates and lead to overall improved COD removal of 92.8 ± 1.4% up from 85.9 ± 3.4% for the pristine metalworking fluid. Electron beam pre-treatment enabled more effective biotreatment, achieving 69.5 ± 8% (p = 0.005) and 24.6 ± 4.8% (p = 0.044) COD reductions.

  9. Kinetic controls on the performance of remediation technologies based on zero-valent iron

    SciTech Connect

    Tratnyek, P.G.; Scherer, M.M.

    1998-07-01

    The kinetics of dechlorination by zero-valent iron are usually best described by surface-area normalized, pseudo first-order rate constants (k{sub SA}). For input parameters in preliminary design calculations and generalized modeling exercises, typical values of k{sub SA} for the major groundwater contaminants have been obtained by averaging previously published data. These average values of k{sub SA} (k{sub SA}{sup avg})are also appropriate for correlation analysis, which can be used to assess the role that chemical structure plays in determining rates of dechlorination by zero-valent iron. Toward this end, the authors have developed a quantitative structure-activity relationship (QSAR) that relates k{sup avg}{sub SA} to energies of the lowest unoccupied molecular orbital (E{sub LUMO}) for the various chlorinated solvents. The WSAR can be used to predict k{sub SA}'s for compounds for which experimental data are not yet available.

  10. Processes affecting reductive dechlorination of chlorinated solvents by zero-valent iron

    SciTech Connect

    Matheson, L.J.; Tratnyek, P.G.

    1993-12-31

    Zero-valent iron may participate in the reductive dechlorination process by three different mechanisms: direct, electrolytic reduction; reduction by hydrogen produced during the corrosion process; and reduction by dissolved (ferrous) iron that is also produced by corroding iron. The first step of electrolytic reduction is presumably, the transfer of one electron from the metal surface to the organic molecule. This results in an organic anion radical that may then lose a halide anion to give a carbon-centered radical, and oxidized iron, which is eventually released to the solution as Fe{sup 2+}. The goal of this research is to provide a comprehensive survey of the mechanisms that affect the performance of this reactive barrier technology.

  11. Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600

    SciTech Connect

    Fogwell, Thomas W.; Santina, Pete

    2013-07-01

    Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium, arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in

  12. Applicability of nano zero valent iron (nZVI) in sono - Fenton process

    NASA Astrophysics Data System (ADS)

    Taha, M. R.; Ibrahim, A. H.; Amat, R. C.; Azhari, A. W.

    2014-04-01

    Fenton process is one of the advanced oxidation processes (AOPs) used to remove complex organic pollutants in wastewater. In this study, instead of iron sulfate (FeSO4), nano zero valent iron (nZVI) was used as a major source of ferrous iron (Fe2+). In order to enhance the process, ultrasound was utilized in this study. Results show that, with the aid of ultrasound, nZVI produced more Fe2+ compared to FeSO4 at pH 2. Furthermore, combination of higher intensity and longer sonication time in Fenton process acceleratde the chemical oxygen demand (COD) removal from palm oil mill effluent (POME). Through the process, 80% of COD content was removed within 2 hours instead of 24 hours of silent degradation.

  13. Dechlorination of 1,2,3-trichloropropane by zero-valent iron

    SciTech Connect

    Focht, R.M.; Gillham, R.W.

    1995-12-01

    This study investigated the dechlorination of aqueous 1,2,3-trichloropropane in the presence of zero-valent iron. Using flow-through column procedures, the rate of dechlorination was significantly enhanced by the presence of iron, with the half life decreasing in proportion to the iron surface area to solution volume ratio. Unlike previous results obtained for chlorinated C{sub 1} and C{sub 2} compounds, half-lives increased significantly over time, at rates ranging from 5.0 to 13.9 minutes per pore volume of water passed through the column. No accumulation of chlorinated products of degradation was detected, and the principal products of degradation were Cl{sup -} and propene. The products of degradation and the trends in pH suggest reductive dechlorination and dehydrochlorination to be the degradation mechanisms.

  14. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction.

    PubMed

    Ambika, Selvaraj; Devasena, M; Nambi, Indumathi Manivannan

    2016-10-01

    Understanding contaminant degradation by different sized zero valent iron (ZVI) particles is one important aspect in addressing the long-term stability of these particles in field studies. In this study, meso zero valent iron (mZVI) particles were synthesised in a milling time of 10 h using ball milling technique. The efficacy of mZVI particles for removal of phenol was quantitatively evaluated in comparison with coarse zero valent iron (cZVI) and nano zero valent iron (nZVI) particles. Phenol degradation experiments were carried out in sacrificial batch mode at room temperature independently with cZVI, nZVI and mZVI under varied pH conditions of 3, 4, 6, 7, 8 and 10. Batch experiments substantiating the reactivity of mZVI under unbuffered pH system were also carried out and compared with buffered and poorly buffered pH systems. mZVI particles showed consistent phenol degradation at circum-neutral pH with efficiency of 44%, 67%, and 89% in a span of 5, 10 and 20 min respectively. The dissolved iron species and residual iron formation were also measured as a function of pH. Unbuffered systems at circum-neutral pH produced less residual iron when compared to buffered and poorly buffered systems. At this pH, oxidation of Fe(2+) produced a different oxidant Ferryl ion, which was found to effectively participate in phenol degradation.

  15. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  16. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.

    PubMed

    Moraci, Nicola; Calabrò, Paolo S

    2010-11-01

    Long-term behaviour is a major issue related to the use of zero-valent iron (ZVI) in permeable reactive barriers for groundwater remediation; in fact, in several published cases the hydraulic conductivity and removal efficiency were progressively reduced during operation, potentially compromising the functionality of the barrier. To solve this problem, the use of granular mixtures of ZVI and natural pumice has recently been proposed. This paper reports the results of column tests using aqueous nickel and copper solutions of various concentrations. Three configurations of reactive material (ZVI only, granular mixture of ZVI and pumice, and pumice and ZVI in series) are discussed. The results clearly demonstrate that iron-pumice granular mixtures perform well both in terms of contaminant removal and in maintaining the long-term hydraulic conductivity. Comparison with previous reports concerning copper removal by ZVI/sand mixtures reveals higher performance in the case of ZVI/pumice.

  17. Zero-valent iron-promoted dechlorination of polychlorinated biphenyls (PCBs)

    SciTech Connect

    Chuang, Fei-Wen; Larson, R.A.

    1995-12-01

    Zero-valent iron promoted the dechlorination of PCBs (Aroclors 1221 and 1254) at elevated temperatures in an oxygen-limited environment. At temperatures higher than 300{degrees}C, dechlorination of Aroclor 1221 began to occur; at 400{degrees}C, the major reaction product, biphenyl, was observed in highest yield. (At this temperature most of the PCBs were dechlorinated to biphenyl within 10 min.) At temperatures of 500{degrees}C or higher, dechlorination and other reactions of PCBs took place. At 600{degrees}C, almost all PCBs were destroyed by reactions other than hydrogenolytic dechlorination. Similar reactions were observed with the more highly chlorinated Aroclor 1254. Water or other impurities associated with the iron surface may donate protons or hydrogen atoms to the PCBs and take part in other reactions.

  18. Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors.

    PubMed

    Carpenter, Alexis Wells; Laughton, Stephanie N; Wiesner, Mark R

    2015-08-01

    Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25-5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment.

  19. Remediating RDX-contaminated water and soil using zero-valent iron

    SciTech Connect

    Singh, J.; Comfort, S.D.; Shea, P.J.

    1998-09-01

    Soil and water contaminated with RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) pose a serious threat to the environment and human health. The objective was to determine the potential for using zero-valent iron (Fe{sup 0}) to remediate RDX-contaminated water and soil. Mixing an aqueous solution of 32 mg RDX L{sup {minus}1} (spiked with {sup 14}C-labeled RDX) with 10 g Fe{sup 0} L{sup {minus}1} resulted in complete RDX destruction within 72 h. Nitroso derivatives of RDX accounted for approximately 26% of the RDX transformed during the first 24 h; these intermediates disappeared within 96 h ad the remaining {sup 14}C products were water soluble and not strongly sorbed by iron surfaces. When RDX-contaminated soil was treated with a single amendment of Fe{sup 0} in a static soil microcosm, more than 60% of the initial {sup 14}C-RDX was recovered as {sup 14}CO{sub 2} after 112 d. Treating surface and subsurface soils containing 3,600 mg RDX kg{sup {minus}1} with 50 g Fe{sup 0} kg{sup {minus}1} at a constant soil water content resulted in a 52% reduction in extractable RDX following 12 mo of static incubation. A second Fe{sup 0} addition at 12 mo further reduced the initial extractable RDX by 71% after 15 mo. These results support the use of zero-valent iron for in situ remediation of RDX-contaminated soil.

  20. Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors

    PubMed Central

    Carpenter, Alexis Wells; Laughton, Stephanie N.; Wiesner, Mark R.

    2015-01-01

    Abstract Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25–5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment. PMID:26339183

  1. USE OF PRETREATMENT ZONES AND ZERO-VALENT IRON FOR THE REMEDIATION OF CHLOROALKENES IN AN OXIC AQUIFER

    EPA Science Inventory

    Pre-treatment zones (PTZs) composed of sand, 10% zero-valent iron [Fe(0)]/sand, and 10% pyrite (FeS2)/sand were examined for their ability to prolong Fe(0) reactivity in aboveground column reactors and a subsurface permeable reactive barrier (PRB). The test site had an acidic, o...

  2. Partial oxidation (“aging”) and surface modification decrease the toxicity of nano-sized zero valent iron.

    EPA Science Inventory

    Nanosize zero-valent iron (nZVI) is used as a redox-active catalyst for in situ remediation of contaminated ground waters. In aqueous environments, nZVI oxidizes over time (i.e., “ages”) to magnetite and other oxides. For remediation, hi...

  3. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS USING ZERO-VALENT IRON: GEOCHEMICAL AND MICROBIOLOGICAL EFFECTS

    EPA Science Inventory

    Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, NC and the Denver Federal Center, CO sites. These ground water treatment systems use zero-valent iron filings (Peerless Meta...

  4. Gas-bubbled nano zero-valent iron process for high concentration arsenate removal.

    PubMed

    Tanboonchuy, Visanu; Hsu, Jia-Chin; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2011-02-28

    In this study, batch experiments were performed to investigate a novel process for high concentration arsenate removal in the presence of air and/or CO(2) bubbling. The pretreatment step, CO(2) bubbling at 300 mL/min for 5 min, was taken to adjust the solution pH to an acidic environment, followed by air bubbling at 300 mL/min for 10 min to increase dissolved oxygen in the solution. In the treatment period, the nano-scale zero-valent iron was applied to remove aqueous arsenate of 3000 μg/L, while the treatment system was continuously bubbled by 300 mL/min of air. Such a process resulted in outstanding performance in arsenate removal. Furthermore, in the field groundwater application, the arsenate removal rate for the proposed process was 5 times faster than the rate measured when the system was pretreated by acidic chemical species only.

  5. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.

    PubMed

    Zhang, Zhi-Yong; Lu, Mang; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min

    2012-12-01

    In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and used for the reductive dehalogenation of short chain chlorinated paraffins (SCCPs) in the laboratory. The results show that the dechlorination rate of chlorinated n-decane (CP(10)) by NZVI increased with decreased solution pH. Increasing the loading of NZVI enhanced the dechlorination rate of CP(10). With an increase in temperature, the degradation rate increased. The reduction of CP(10) by NZVI was accelerated with increasing the concentration of humic acid up to 15 mg/L but then was inhibited. The dechlorination of CP(10) within the initial 18 h followed pseudo-first order rate model. The formation of intermediate products indicates a stepwise dechlorination pathway of SCCPs by NZVI. The carbon chain length and chlorination degree of SCCPs have a polynominal impact on dechlorination reactions.

  6. Injection of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids

    SciTech Connect

    Truex, Michael J.; Vermeul, Vincent R.; Mendoza, Donaldo P.; Fritz, Brad G.; Mackley, Rob D.; Oostrom, Martinus; Wietsma, Thomas W.; Macbeth, Tamzen

    2011-02-18

    Approximately 190 kg of two micron-diameter zero-valent iron (ZVI) particles were injected into a test zone in the top two meters of an unconfined aquifer within a trichloroethene (TCE) source area. A shear-thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to four meters from a single injection well. The ZVI particles were mixed in-line with the injection water, shear-thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 days after injection. These results suggest that ZVI can be directly injected into an aquifer with shear-thinning fluids and extends the applicability of ZVI to situations where other emplacement methods may not be viable.

  7. Zero-valent iron for the removal of soluble uranium in simulated DOE site groundwater

    SciTech Connect

    Bostick, W.D.; Jarabek, R.J.; Fiedor, J.N.

    1997-12-31

    Groundwater at the Bear Creek Valley Characterization Area, located at the Oak Ridge Y-12 Plant, is contaminated with regulated metals and volatile organic compounds (VOCs) due to former site activities and disposal practices. The contaminant of principle concern, from the perspective of protecting human health, is soluble uranium, which is present in some waters at concentrations up to a few parts-per-million. We present product speciation and relative reaction kinetics; for removal of soluble uranium under oxic and anoxic conditions with use of zero-valent iron. Under oxic conditions, U(VI) is rapidly and strongly sorbed to hydrous ferric oxide particulate ({open_quotes}rust{close_quotes}), whereas uranium is slowly and incompletely reduced to U(IV) under anoxic conditions.

  8. Installation of a subsurface groundwater treatment wall composed of granular zero-valent iron

    SciTech Connect

    Yamane, C.L.; Warner, S.D.; Gallinatti, J.D.

    1995-12-01

    A subsurface treatment wan (consisting of granular, zero-valent iron and gravel) and low-permeability slurry wall system was installed as the final remedy at a former semiconductor manufacturing facility in the south San Francisco Bay area. The property has been vacant since 1983, and the former facility`s lease recently expired. This treatment wall replaced a groundwater pump and treat system that was installed as an interim remedy in 1987. While the pump and treat system may have been acceptable to regulatory agencies as a final site remedy, the treatment wall was proposed and eventually selected as the final remedy because it would eliminate above-ground treatment systems on the property and thereby have little to no effect on the property`s future use; it would eliminate the necessity for weekly operation and maintenance and therefore avoid access issues that might arise after the tenant`s lease expired; and it would greatly reduce total remediation costs.

  9. Microbial reduction of nitrate in the presence of zero-valent iron and biochar.

    PubMed

    Oh, Seok-Young; Seo, Yong-Deuk; Kim, Beomseok; Kim, In Young; Cha, Daniel K

    2016-01-01

    The denitrification of nitrate (NO3(-)) by mixed cultures in the presence of zero-valent iron [Fe(0)] and biochar was investigated through a series of batch experiments. It was hypothesized that biochar may provide microbes with additional electrons to enhance the anaerobic biotransformation of nitrate in the presence of Fe(0) by facilitating electron transfer. When compared to the anaerobic transformation of nitrate by microbes in the presence of Fe(0) alone, the presence of biochar significantly enhanced anaerobic denitrification by microbes with Fe(0). Graphite also promoted the anaerobic microbial transformation of nitrate with Fe(0), and it was speculated that electron-conducting graphene moieties were responsible for the improvement. The results obtained in this work suggest that nitrate can be effectively denitrified by microbes with Fe(0) and biochar in natural and engineered systems.

  10. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor.

    PubMed

    Kong, Qiang; Ngo, Huu Hao; Shu, Li; Fu, Rong-Shu; Jiang, Chun-Hui; Miao, Ming-sheng

    2014-08-30

    This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe(2+) dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

  11. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.

    PubMed

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E

    2014-08-01

    Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50=2.4μm) are investigated in column tests using columns of 40cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from -62mV to -80mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.

  12. Multicomponent reactive transport in an in situ zero-valent iron cell

    SciTech Connect

    Yabusaki, Steven B. ); Cantrell, Kirk J. ); Sass, Bruce; Steefel, Carl

    2000-12-01

    Data collected from a field study of in situ zero-valent iron treatment for TCE were analyzed in the context of coupled transport and reaction processes. The focus of this analysis was to understand the behavior of chemical components, including contaminants, in groundwater transported through the iron cell of a pilot-scale funnel and gate treatment system. A multicomponent reactive transport simulator was used to simultaneously model mobile and nonmobile components undergoing equilibrium and kinetic reactions including TCE degradation, parallel iron dissolution reactions, precipitation of secondary minerals, and complexation reactions. The resulting mechanistic model of coupled processes reproduced solution chemistry behavior observed in the iron cell with a minimum of calibration. These observations included the destruction of TCE and cis-1,2-DCE; increases in pH and hydrocarbons; and decreases in EH, alkalinity, dissolved O2 and CO2, and major ions (i.e., Ca, Mg, Cl, sulfate, nitrate). Mineral precipitation in the iron zone was critical to correctly predicting these behaviors. The dominant precipitation products were ferrous hydroxide, siderite, aragonite, brucite, and iron sulfide. In the first few centimeters of the reactive iron cell, these precipitation products are predicted to account for a 3% increase in mineral volume per year, which could have implications for the longevity of favorable barrier hydraulics and reactivity. The inclusion of transport was key to understanding the interplay between rates of transport and rates of reaction in the field.

  13. Improvements in nanoscale zero-valent iron production by milling through the addition of alumina

    NASA Astrophysics Data System (ADS)

    Ribas, D.; Cernik, M.; Martí, V.; Benito, J. A.

    2016-07-01

    A new milling procedure for a cost-effective production of nanoscale zero-valent iron for environmental remediation is presented. Conventional ball milling of iron in an organic solvent as Mono Ethylene Glycol produces flattened iron particles that are unlikely to break even after very long milling times. With the aim of breaking down these iron flakes, in this new procedure, further milling is carried out by adding an amount of fine alumina powder to the previously milled solution. As the amount of added alumina increases from 9 to 54 g l-1, a progressive decrease of the presence of flakes is observed. In the latter case, the appearance of the particles formed by fragments of former flakes is rather homogeneous, with most of the final nanoparticles having an equivalent diameter well below 1 µm and with an average particle size in solution of around 400 nm. An additional increase of alumina content results in a highly viscous solution showing worse particle size distribution. Milled particles, in the case of alumina concentrations of 54 g l-1, have a fairly large specific surface area and high Fe(0) content. These new particles show a very good Cr(VI) removal efficiency compared with other commercial products available. This good reactivity is related to the absence of an oxide layer, the large amount of superficial irregularities generated by the repetitive fracture process during milling and the presence of a fine nanostructure within the iron nanoparticles.

  14. Reduction of 1,2-dibromoethane in the presence of zero-valent iron

    SciTech Connect

    Rajagopal, V.K.; Burris, D.R.

    1999-08-01

    The degradation reaction of 1,2-dibromoethane (ethylene dibromide or EDB) in water was studied in the presence of zero-valent iron (acid-cleaned, cast iron) in well-mixed batch aqueous systems. The observed products were ethylene and bromide ions. Carbon and bromine mass recoveries of >95% were obtained. Bromoethane and vinyl bromide were not observed. The reduction rates of bromoethane and vinyl bromide with iron indicate that they should have been observed if they were significant reaction intermediates for EDB. The results indicate that reductive {beta}-elimination may be the dominant reaction pathway. Reaction kinetics are rapid and pseudo-first order. The activation energy was determined to be 50 kJ/mol, indicating that the reaction rate may not be aqueous phase diffusion controlled but rather controlled by the chemical reaction rate on the iron surface. Metallic iron may be a suitable treatment approach for EDB-contaminated groundwater in above-ground, as well as in situ applications, due to rapid kinetics and nontoxic products.

  15. Zero-valent iron pretreatment for enhancing the biodegradability of Azo dyes.

    PubMed

    Perey, Jennie R; Chiu, Pei C; Huang, Chin-Pao; Cha, Daniel K

    2002-01-01

    Azo dyes are a group of chemicals that are largely resistant to aerobic biodegradation and persist in wastewater treatment processes. This study proposed that zero-valent iron can be used to reduce the azo bond, cleaving the dye molecule into products that are more amenable to mineralization by bacteria in biological treatment processes such as activated sludge. Batch anaerobic reduction experiments were performed using two azo dyes, orange G and orange II, to determine reaction kinetics and to identify reduction products. Iron-treated dye solutions were subjected to batch biodegradation tests and respirometric analyses to screen for enhanced biodegradability over parent dyes. Results indicate that treatment of orange G and orange II with scrap iron produces aniline and sulfanilic acid as significant products that are degraded by an acclimated culture within 24 hours. Respirometric data illustrated that iron-treated dye solutions exert a significantly higher biochemical oxygen demand than the solutions containing orange G and orange II, demonstrating that recalcitrant azo dyes can be aerobically biodegraded after iron pretreatment.

  16. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions.

    PubMed

    Wu, Yuxin; Versteeg, Roelof; Slater, Lee; LaBrecque, Douglas

    2009-05-12

    Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO(3) and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO(3) as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO(3) dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO(3) forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO(3) precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.

  17. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions

    SciTech Connect

    Wu, Yuxin; Versteeg, R.; Slater, L.; LaBrecque, D.

    2009-06-01

    Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO{sub 3} and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO{sub 3} as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO{sub 3} dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO{sub 3} forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO{sub 3} precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.

  18. Novel zero-valent iron-assembled reactor for strengthening anammox performance under low temperature.

    PubMed

    Ren, Long-Fei; Lv, Lu; Zhang, Jian; Gao, Baoyu; Ni, Shou-Qing; Yang, Ning; Zhou, Qingxin; Liu, Xiaoyong

    2016-10-01

    To further expand the application of anammox biotechnology, a novel zero-valent iron-assembled upflow anaerobic sludge bed reactor was employed to strengthen anammox performance under low temperature and shock load. Packed with sponge iron and polyester sponge, this novel reactor could speed up the recovery of anammox activity in 12 days and improve the adaptability of anammox bacteria at the temperature of 10-15 °C. The high nitrogen loading rate of 1109.2 mg N/L/day could be adapted in 27 days and the new nitrogen pathway under the effect of sponge iron was clarified by batch experiment. Moreover, the real-time quantitative PCR analysis and Illumina MiSeq sequencing verified the dominant status of Candidatus Kuenenia stuttgartiensis and planctomycete KSU-1, as well as demonstrated the positive role of sponge iron on anammox microorganisms' proliferation. The findings might be beneficial to popularize anammox-related processes in municipal and industrial wastewater engineering.

  19. Use of agar agar stabilized milled zero-valent iron particles for in situ groundwater remediation

    NASA Astrophysics Data System (ADS)

    Schmid, Doris; Velimirović, Milica; Wagner, Stephan; Micić Batka, Vesna; von der Kammer, Frank; Hofmann, Thilo

    2015-04-01

    A major obstacle for use of nanoscale zero-valent iron (nZVI) particles as a nontoxic material for effective in situ degradation of chlorinated aliphatic hydrocarbons (CAHs) is the high production cost. For that reason, submicro-scale milled zero-valent iron particles were recently developed (milled ZVI, UVR-FIA, Germany) by grinding macroscopic raw materials of elementary iron as a cheaper alternative to products produced by solid-state reduction. However, milled ZVI particles tend to aggregate and due to the rather large particle size (d50= 11.9 µm) also rapidly sediment. To prevent aggregation and consequently sedimentation of milled ZVI particles and therefore improve the mobility after in situ application, the use of a stabilizer is considered in literature as a most promising option. In this study, milled ZVI particles (1 g L-1 of particle concentration) were stabilized by environmentally friendly polymer agar agar (>0.5 g L-1), which had a positive impact on the milled ZVI stability. Sedimentation rate was significantly decreased by increasing the suspension viscosity. Column transport experiments were performed for bare and agar agar stabilized milled ZVI particles in commercially available fine grained quartz sand (DORSILIT® Nr.8, Gebrüder Dorfner GmbH Co, Germany) and different porous media collected from brownfields. The experiments were carried out under field relevant injection conditions of 100 m d-1. The maximal travel distance (LT) of less than 10 cm was determined for non-stabilized suspension in fine grained quartz sand, while agar agar (1 g L-1) stabilized milled ZVI suspension revealed LT of 12 m. Similar results were observed for porous media from brownfields showing that mobility of agar agar stabilized particle suspensions was significantly improved compared to bare particles. Based on the mobility data, agar agar stabilized milled zero-valent iron particles could be used for in situ application. Finally, lab-scale batch degradation

  20. Enhanced removal of pentachlorophenol by a novel composite: nanoscale zero valent iron immobilized on organobentonite.

    PubMed

    Li, Yimin; Zhang, Yun; Li, Jianfa; Zheng, Xuming

    2011-12-01

    Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI particles on the bentonite was observed. Its performance on removing pentachlorophenol (PCP) was investigated by batch experiments. Results showed NZVI/CTMA-Bent could rapidly and completely dechlorinate PCP to phenol with an efficiency of 96.2%. It was higher than the sum (54.5%) of reduction by NZVI (31.5%) and adsorption by CTMA-Bent (23.0%) separately. The kinetic studies indicated the removal rate of PCP was positively related to the adsorption. We proposed that the adsorption of PCP by CTMA-Bent enhanced the mass transfer of PCP from aqueous to iron surface. Besides, NZVI/CTMA-Bent exhibited good stability and reusability, and CTMA-Bent could also reduce the amount of iron ions released into the solution.

  1. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.

    PubMed

    Shi, Li-na; Zhang, Xin; Chen, Zu-liang

    2011-01-01

    Bentonite-supported nanoscale zero-valent iron (B-nZVI) was synthesized using liquid-phase reduction. The orthogonal method was used to evaluate the factors impacting Cr(VI) removal and this showed that the initial concentration of Cr(VI), pH, temperature, and B-nZVI loading were all importance factors. Characterization with scanning electron microscopy (SEM) validated the hypothesis that the presence of bentonite led to a decrease in aggregation of iron nanoparticles and a corresponding increase in the specific surface area (SSA) of the iron particles. B-nZVI with a 50% bentonite mass fraction had a SSA of 39.94 m(2)/g, while the SSA of nZVI and bentonite was 54.04 and 6.03 m(2)/g, respectively. X-ray diffraction (XRD) confirmed the existence of Fe(0) before the reaction and the presence of Fe(II), Fe(III) and Cr(III) after the reaction. Batch experiments revealed that the removal of Cr (VI) using B-nZVI was consistent with pseudo first-order reaction kinetics. Finally, B-nZVI was used to remediate electroplating wastewater with removal efficiencies for Cr, Pb and Cu > 90%. Reuse of B-nZVI after washing with ethylenediaminetetraacetic acid (EDTA) solution was possible but the capacity of B-nZVI for Cr(VI) removal decreased by approximately 70%.

  2. [Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron].

    PubMed

    Zhu, Hui-jie; Jia, Yong-feng; Yao, Shu-hu; Wu, Xing; Wang, Shu-ying

    2009-12-01

    A new adsorbent, activated carbon impregnated with nano zero-valent iron was prepared, which size of the needle-shaped iron particles in the pores of carbon was (30-500) nm x (1000-3000) nm and approximately 8.2% of iron was loaded onto it. The arsenate removal percentage was 99.5% by 1.5 g/L NZVI/AC in the 2 mg/L arsenic solution at pH 6.5 and (25 +/- 2) degrees C. The adsorption capacity was about 15.4 mg/g when equilibrium concentration was 1.0 mg/L. Kinetics revealed that uptake of arsenate ion by NZVI/AC was 91.4% in the first 12 h and equilibrium time was about 72 h. The intraparticle diffusion model was applied to study the mechanics of arsenate in the activated carbon. The presence of phosphate and silicate could significantly decrease arsenate removal while the effects of the other anions and cations on the arsenic removal were neglectable. NZVI/AC can be effectively regenerated when elution is done with 0.1 mol/L NaOH solution. Our results suggest that NZVI/AC is a suitable candidate for drinking water treatment due to its high reactivity.

  3. Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive Barrier

    SciTech Connect

    Johnson, R. L.; Thoms, R. B.; Johnson, R. O.; Nurmi, J. T.; Tratnyek, Paul G.

    2008-07-01

    Core samples taken from a zero-valent iron permeable reactive barrier (ZVI PRB) at Cornhusker Army Ammunition Plant, Nebraska, were analyzed for physical and chemical characteristics. Precipitates containing iron and sulfide were present at much higher concentrations in native aquifer materials just upgradient of the PRB than in the PRB itself. Sulfur mass balance on core solids coupled with trends in ground water sulfate concentrations indicates that the average ground water flow after 20 months of PRB operation was approximately twenty fold less than the regional ground water velocity. Transport and reaction modeling of the aquifer PRB interface suggests that, at the calculated velocity, both iron and hydrogen could diffuse upgradient against ground water flow and thereby contribute to precipitation in the native aquifer materials. The initial hydraulic conductivity (K) of the native materials is less than that of the PRB and, given the observed precipitation in the upgradient native materials, it is likely that K reduction occurred upgradient to rather than within the PRB. Although not directly implicated, guar gum used during installation of the PRB is believed to have played a role in the precipitation and flow reduction processes by enhancing microbial activity.

  4. Enhancing zero valent iron based natural organic matter removal by mixing with dispersed carbon cathodes.

    PubMed

    Liu, Peng; Keller, Jurg; Gernjak, Wolfgang

    2016-04-15

    Former studies have shown that adding granular activated carbon (GAC) cathodes could enhance the overall performance of the zero valent iron (ZVI) process for organics removal. The present study evaluates for the first time the performance of such an enhanced ZVI process to remove natural organic matter (NOM), an important water quality parameter in drinking water. Lab-scale batch tests were conducted with surface reservoir feed water from a drinking water plant. In the GAC enhanced ZVI process dissolved organic carbon (DOC) and UV254 were reduced by 61±3% and 70±2%, respectively, during 24h treatment corresponding to 1.8min empty bed contact time. The process was superior to ZVI alone, particularly during the earlier stages of the process due to the synergistically increased iron dissolution rate. Besides GAC, graphite and anthracite also prove to be suitable and potentially more cost-effective options as cathode materials for the enhanced ZVI process, whereby electrically conductive graphite clearly outperformed anthracite. The dominant mechanisms in terms of NOM removal from surface water were found to be coagulation following iron dissolution and adsorption in the case of employing GAC. Oxidation was also occurring to a lesser degree, converting some non-biodegradable into biodegradable DOC.

  5. Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron

    SciTech Connect

    Ming-Chin Chang; Hung-Yee Shu; Wen-Pin Hsieh; Min-Chao Wang

    2007-02-15

    The sites contaminated with recalcitrant polycyclic aromatic hydrocarbons (PAHs) are serious environmental problems ubiquitously. Some PAHs have proven to be carcinogenic and hazardous. Therefore, the innovative PAH in situ remediation technologies have to be developed instantaneously. Recently, the nanoscale zero-valent iron (ZVI) particles have been successfully applied for dechlorination of organic pollutants in water, yet little research has investigated for the soil remediation so far. The objective in this work was to take advantage of nanoscale ZVI particles to remove PAHs in soil. The experimental factors such as reaction time, particle diameter and iron dosage and surface area were considered and optimized. From the results, both microscale and nanoscale ZVI were capable to remove the target compound. The higher removal efficiencies of nanoscale ZVI particles were obtained because the specific surface areas were about several dozens larger than that of commercially microscale ZVI particles. The optimal parameters were observed as 0.2 g iron/2 mL water in 60 min and 150 rpm by nanoscale ZVI. Additionally, the results proved that nanoscale ZVI particles are a promising technology for soil remediation and are encouraged in the near future environmental applications. Additionally, the empirical equation developed for pyrene removal efficiency provided the good explanation of reaction behavior. Ultimately, the calculated values by this equation were in a good agreement with the experimental data. 19 refs., 9 figs., 2 tabs.

  6. [Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zero-valent iron nanoparticles].

    PubMed

    He, Jing; Wang, Xiang-Yu; Wang, Pei; Liu, Kun-Qian

    2015-03-01

    Nano zerovalent iron ( NZVI) technology has attracted tremendous amount of interests for degrading a number of environmental contaminants found both in surface water and underground water. However, these nanoscale particles are prone to aggregate, which may result in the decrease of its reactivity in liquid phase. Iron nanoparticles (Fe NPs) modified with polyacrylic acid (PAA) has enhanced the dispersion of NZVI and reduced its agglomeration. For the first time, PAA modified NPs (PAA-Fe NPs) were used for degradation of methylene blue in water phase. The PAA-Fe NPs prepared were characterized in terms of TEM, SEM, XRD and specific surface area. The results indicated that, the surface area of PAA-Fe NPs was increased, compared with unmodified pristine zero-valent iron NPs, and PAA-Fe NPs were smoother with smaller particle size. With addition of 0.1 g x L(-1) of PAA, the decolorization efficiency of methylene blue by PAA-Fe NPs was 98.84% in 60 min, which was 27.32% higher than that of pristine Fe NPs. Decolorization efficiencies were also affected by initial pH value, initial concentration of methylene blue, dosage of PAA-Fe NPs, and degradation temperature. Kinetic analyses based on the experimental data illustrated that the decolorization reaction of methylene blue fitted well to the pseudo first-order kinetics model.

  7. Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: preparation, characterization and influence factors.

    PubMed

    Pang, Zhihua; Yan, Mengyue; Jia, Xiaoshan; Wang, Zhenxing; Chen, Jianyu

    2014-02-01

    An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion on organo-montmorillonite and was present as a core-shell structure with a particle size range of nanoscale iron between 30-90 nm, characterized by XRD, SEM, TEM, XRF, ICP-AES, and XPS. The results of the degradation of BDE-209 by M-NZVI showed that the efficiency of M-NZVI in removing BDE-209 was much higher than that of NZVI. The efficiency of M-NZVI in removing BDE-209 decreased as the pH and the initial dissolved oxygen content of the reaction solution increased, but increased as the proportion of water in the reaction solution increased.

  8. Recent advances and future perspectives of nanosized zero- valent iron for extraction of heavy elements from metallurgical sludges

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. Yu; Levina, V. V.; Kolesnikov, E. A.; Chuprunov, K. O.; Gusev, A. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    Advanced oxidation processes with nanosized zero-valent iron have presented great potential in wastewater treatment technology and now experience both increasing popularity and reliable technical improvements. Besides wastewater treatment, there is another promising application for an emerging technology of iron nanoparticles - as Fenton-like catalyst for extraction of valuable elements from poor and secondary raw materials such as metallurgical sludges. In present research, we carried out a set of experiments with emphasis on the physicochemical mechanisms and their relationship to the performance. In particular, we examined complex acidic - hydrogen peroxide leaching of zinc from blast furnace sludge with nanosized zero-valent iron as Fenton-like catalyst. Results of the experiments showed promising potential for subsequent application in extraction of heavy and rare-earth elements.

  9. Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance

    SciTech Connect

    Korte, NE

    2001-06-11

    This report briefly reviews issues regarding the implementation of the zero-valent iron permeable reactive barrier (PRB) technology at sites managed by the U.S. Department of Energy (DOE). Initially, the PRB technology, using zero-valent iron for the reactive media, was received with great enthusiasm, and DOE invested millions of dollars testing and implementing PRBs. Recently, a negative perception of the technology has been building. This perception is based on the failure of some deployments to satisfy goals for treatment and operating expenses. The purpose of this report, therefore, is to suggest reasons for the problems that have been encountered and to recommend whether DOE should invest in additional research and deployments. The principal conclusion of this review is that the most significant problems have been the result of insufficient characterization, which resulted in poor engineering implementation. Although there are legitimate concerns regarding the longevity of the reactive media, the ability of zero-valent iron to reduce certain chlorinated hydrocarbons and to immobilize certain metals and radionuclides is well documented. The primary problem encountered at some DOE full-scale deployments has been an inadequate assessment of site hydrology, which resulted in misapplication of the technology. The result is PRBs with higher than expected flow velocities and/or incomplete plume capture. A review of the literature reveals that cautions regarding subsurface heterogeneity were published several years prior to the full-scale implementations. Nevertheless, design and construction have typically been undertaken as if the subsurface was homogeneous. More recently published literature has demonstrated that hydraulic heterogeneity can cause so much uncertainty in performance that use of a passive PRB is precluded. Thus, the primary conclusion of this review is that more attention must be given to site-specific issues. Indeed, the use of a passive PRB requires

  10. Design and evaluation of an in-situ ground water treatment wall composed of zero-valent iron

    SciTech Connect

    Gallinatti, J.D.; Warner, S.D.; Yamane, C.L.; Szerdy, F.S.; Hankins, D.A.; Major, D.W.

    1995-09-01

    An in-situ permeable treatment wall using zero-valent iron for the remediation of ground water affected by chlorinated volatile organic compounds (VOCs) was recently constructed in Sunnyvale, California. Because this site was the first full-scale application of this technology as a final remedy of VOC-affected ground water, it provides a framework for assessing the factors that must be considered when moving from laboratory studies of this treatment technology to design and construction of a full-scale treatment system. Experience from this case study is valuable for both practical design considerations and as incentives for future research. The patented treatment process, licensed by Environmental Technologies Inc., utilizes granular zero-valent iron as a porous medium to enhance the degradation of VOCs dissolved in ground water. The dissolved VOCs, such as 1,1,1-trichloroethylene (TCE), that pass through the granular iron matrix are transformed through the oxidation of the iron and reductive dechlorination of the organic compound to a final end product consisting chiefly of chloride and ethylene. The degradation process appears to be abiotic and half-lifes of the transformations are several orders of magnitude faster in the presence of zero-valent granular iron than observed in the ambient environment.

  11. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes.

    PubMed

    Lai, Peng; Zhao, Hua-zhang; Wang, Chao; Ni, Jin-ren

    2007-08-17

    Advanced treatment of coking wastewater was investigated experimentally with coagulation and zero-valent iron (ZVI) processes. Particular attention was paid to the effect of dosage and pH on the removal of chemical oxygen demand (COD) in the two processes. The results showed that ZVI was more effective than coagulation for advanced treatment of coking wastewater. The jar tests revealed that maximal COD removal efficiency of 27.5-31.8% could be achieved under the optimal condition of coagulation, i.e. 400mg/L of Fe(2)(SO(4))3 as coagulant at pH 3.0-5.0. On the other hand, the COD removal efficiency could be up to 43.6% under the idealized condition of ZVI upon 10 g/L active carbon and 30 g/L iron being dosed at pH 4.0. The mechanisms for COD removal in ZVI were dominated by coagulation, precipitation and oxidation-reduction. ZVI would also enhance the biodegradability of effluent by increasing BOD5/COD from 0.07 to 0.53. Moreover, some ester compounds could be produced in the reaction. Although ZVI was found more efficient than coagulation in eliminating low molecular weight (<2000 Da) compounds in the wastewater, there were still a few residual contaminants which could hardly be eliminated by either of the process.

  12. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching.

    PubMed

    Klimkova, Stepanka; Cernik, Miroslav; Lacinova, Lenka; Filip, Jan; Jancik, Dalibor; Zboril, Radek

    2011-02-01

    Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.

  13. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-05

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  14. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    PubMed

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  15. Bioinhibitory effect of hydrogenotrophic bacteria on nitrate reduction by nanoscale zero-valent iron.

    PubMed

    An, Yi; Dong, Qi; Zhang, Keqiang

    2014-05-01

    Hydrogenotrophic bacteria (HTB) were introduced into a nitrate removal system, which used nanoscale zero-valent iron (nZVI) as reductant, to investigate its bioinhibitory effect. Based on the results, it was noted that addition of HTB culture (10-50 mL) led to 58.9-91.4% decrease in the first observed rate constant (kobs1), which represented the nitrate removal rate by nZVI, and a reduction in the generated poisonous by-products from 94.9% to 38.5%. In other words, HTB had a significant inhibitory effect on nitrate reduction by nZVI. However, the pathway of this bioinhibition only prevented the occurrence of chemical reduction, but not competition for nitrate. Furthermore, FeOOH coating was observed on the surface of nZVI, instead of Fe3O4 or Fe2O3, which could prevent electron transmission from nZVI to nitrate. Considering that FeOOH was the product of iron corrosion, the result indicated that HTB could inhibit chemical reduction by enhancing the reaction between nZVI and water.

  16. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater.

    PubMed

    Zhang, Yaobin; Jing, Yanwen; Quan, Xie; Liu, Yiwen; Onu, Pascal

    2011-01-01

    Waste scrap iron was packed into an upflow anaerobic sludge blanket (UASB) reactor to form a zero valent iron (ZVI) - UASB reactor system for treatment of azo dye wastewater. The ZVI acted as a reductant to decrease ORP in the reactor by more than 40 mv and functioned as an acid buffer to increase the pH in the reactor from 5.44 to 6.29, both of which improved the performance of the anaerobic reactor. As a result, the removal of color and COD in this reactor was 91.7% and 53%, respectively, which was significantly higher than that of a reference UASB reactor without ZVI. The UV-visible spectrum demonstrated that absorption bands of the azo dye from the ZVI-UASB reactor were substantially reduced. The ZVI promoted methanogenesis, which was confirmed by an increase in CH(4) content in the biogas from 47.9% to 64.8%. The ZVI bed was protected well from rusting, which allowed it to function stably. The effluent could be further purified only by pH adjustment because the Fe(2+) released from ZVI served as a flocculent.

  17. Effects of dissolved oxygen on dye removal by zero-valent iron.

    PubMed

    Wang, Kai-Sung; Lin, Chiou-Liang; Wei, Ming-Chi; Liang, Hsiu-Hao; Li, Heng-Ching; Chang, Chih-Hua; Fang, Yung-Tai; Chang, Shih-Hsien

    2010-10-15

    Effects of dissolved oxygen concentrations on dye removal by zero-valent iron (Fe(0)) were investigated. The Vibrio fischeri light inhibition test was employed to evaluate toxicity of decolorized solution. Three dyes, Acid Orange 7 (AO7, monoazo), Reactive Red 120 (RR120, diazo), and Acid Blue 9 (AB9, triphenylmethane), were selected as model dyes. The dye concentration and Fe(0) dose used were 100 mg L(-1) and 30 g L(-1), respectively. Under anoxic condition, the order for dye decolorization was AO7>RR120>AB9. An increase in the dissolved oxygen concentrations enhanced decolorization and chemical oxygen demand (COD) removal of the three dyes. An increase in gas flow rates also improved dye and COD removals by Fe(0). At dissolved oxygen of 6 mg L(-1), more than 99% of each dye was decolorized within 12 min and high COD removals were obtained (97% for AO7, 87% for RR120, and 93% for AB9). The toxicity of decolorized dye solutions was low (I(5)<40%). An increase in DO concentrations obviously reduced the toxicity. When DO above 2 mg L(-1) was applied, low iron ion concentration (13.6 mg L(-1)) was obtained in the decolorized AO7 solution.

  18. Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier.

    PubMed

    Chen, Liang; Liu, Fei; Liu, Yulong; Dong, Hongzhong; Colberg, Patricia J S

    2011-04-15

    This study simulated benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier (ZVI PRB) that reduces trichloroethylene (TCE). The effects of elevated pH (10.5) and the presence of a common TCE dechlorination by product [cis-1,2-dichloroethene (cis-1,2-DCE)] on benzene and toluene biodegradation were evaluated in batch experiments. The data suggest that alkaline pH (pH 10.5), often observed down gradient of ZVI PRBs, inhibits Fe(III)-mediated biotransformation of both benzene and toluene. Removal was reduced by 43% for benzene and 26% for toluene as compared to the controls. The effect of the addition of cis-1,2-DCE on benzene and toluene biodegradation was positive and resulted in removal that was greater than or equal to the controls. These results suggest that, at least for cis-1,2-DCE, its formation may not be toxic to iron-reducing benzene and toluene degrading bacteria; however, for microbial benzene and toluene removal down gradient of a ZVI PRB, it may be necessary to provide pH control, especially in the case of a biological PRB that is downstream from a ZVI PRB.

  19. Reductive Dechlorination of Trichloroethene by Zero-valent Iron Nanoparticles: Reactivity Enhancement through Sulfidation Treatment.

    PubMed

    Han, Yanlai; Yan, Weile

    2016-12-06

    Zero-valent iron nanoparticles (nZVI) synthesized in the presence of reduced sulfur compounds have been shown to degrade trichloroethene (TCE) at significantly higher rates. However, the applicability of sulfidation as a general means to enhance nZVI reactivity under different particle preparation conditions and the underlying cause for this enhancement effect are not well understood. In this study, the effects of sulfidation reagent, time point of sulfidation, and sulfur loading on the resultant particles were assessed through TCE degradation experiments. Up to 60-fold increase in TCE reaction rates was observed upon sulfidation treatment, with products being fully dechlorinated hydrocarbons. While the reactivity of these sulfur-treated nZVI (S-nZVI) was relatively unaffected by the sulfidation reagent (viz., sodium sulfide, dithionite, or thiosulfate) or the sequence of sulfidation relative to iron reduction, TCE reaction rates were found to depend strongly on sulfur to iron ratio. At a low sulfur loading, TCE degradation was accelerated with increasing sulfur dose. The rate constant reached a limiting value, however, as the sulfur to iron mole ratio was greater than 0.025. Different from previous propositions that iron sulfidation leads to more efficient TCE or tetrachloroethene (PCE) degradation by enabling depassivation of iron surface, affording catalytic pathways, or facilitating electron transfer, we show that the role of sulfur in nZVI lies essentially in its ability to poison hydrogen recombination, which drives surface reactions to favor reduction by atomic hydrogen. This implies that the reactivity of S-nZVI is contaminant-specific and is selective against the background reaction of water reduction. As the effect of sulfur manifests through surface processes, sulfidation represents a broadly applicable surface modification approach to modulate or increase the reactivity of nZVI for treating TCE and other related contaminants.

  20. Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles.

    PubMed

    Kakavandi, Babak; Kalantary, Roshanak Rezaei; Farzadkia, Mahdi; Mahvi, Amir Hossein; Esrafili, Ali; Azari, Ali; Yari, Ahmad Reza; Javid, Allah Bakhsh

    2014-01-01

    Recently, adsorption process has been introduced as a favorable and effective technique for the removal of metal ions from aqueous solutions. In the present study, bimetallic nanoparticles consisting of zero valent iron and silver were loaded on the activated carbon powder for the preparation of a new adsorbent (PAC-Fe(o)/Ag). The above adsorbent was characterized by using XRD, SEM and TEM techniqes. Experimental data were exploited for kinetic, equilibrium and thermodynamic evaluations related to the adsorption processes. The Cr(VI) adsorption process was found to be favorable at pH 3 and it reached equilibrium state within 60 min. The stirring rate did not have a significant effect on the adsorption efficiency. Furthermore, the monolayer adsorption capacity of Cr(VI) based on the Langmuir model was measured to be 100 mg/g. The experimental equilibrium data were fitted to the Freundlich adsorption and pseudo second-order models. According to the thermodynamic study, the adsorption process was spontaneous and endothermic in nature, indicating the adsorption capacity increases with increasing the temperature. The results also revealed that the synthesized composite can be potentially applied as a magnetic adsorbent to remove Cr(VI) contaminants from aqueous solutions.

  1. Oxidative stress induced in microorganisms by zero-valent iron nanoparticles.

    PubMed

    Ševců, Alena; El-Temsah, Yehia S; Joner, Erik J; Černík, Miroslav

    2011-01-01

    Nanoscale zero-valent iron particles (nZVI), with sizes smaller than 100 nm, are promising for environmental remediation of polluted water, soil and sediments. nZVI particles have high potential for migration in the environment and are likely to interact not only with pollutant chemicals but also with living organisms. For these reasons, an environmental concern is rising with respect to unintended effects that need to be weighed against the benefits of remediation. The nZVI particles have a tendency to release electrons and Fe(2+). The Fe(2+) can convert less reactive hydrogen peroxide to more reactive oxygen species, particularly hydroxyl radicals, via the Fenton reaction. Hydroxyl radicals show strong biochemical activity and can react directly with membrane lipids, proteins and DNA. Reactive oxygen species are normally scavenged by antioxidants and various enzymes; however, elevated concentrations of ROS in microbial cells can result in oxidative stress. Cells under severe oxidative stress show various dysfunctions of membrane lipids, proteins and DNA. This review focuses on the processes resulting in oxidative stress and on up-to-date studies of nZVI-induced intracellular changes leading to such stress in microorganisms.

  2. Synergistic degradation of deca-BDE by an enrichment culture and zero-valent iron.

    PubMed

    Chen, Xingjuan; Chen, Guilan; Qiu, Mengde; Sun, Guoping; Guo, Jun; Xu, Meiying

    2014-01-01

    Debromination of decabromodiphenyl ether (deca-BDE) by microbe and by zero-valent iron (ZVI) has been reported previously. However, no study has indicated the presence of microorganisms and their effect on ZVI-mediated reduction of deca-BDE. Synergistic degradation of deca-BDE by an enrichment culture and ZVI was studied. It was found that synergistic effects enhanced the debromination of deca-BDE as well as promoting the reduction of lower brominated products. ZVI stimulated microbial debromination by serving as an electron donor. Correlation analysis also confirmed that ZVI was capable of enhancing microbial population in the debromination of deca-BDE. Conversely, the enrichment culture produced acid which maintained pH stability and stimulated the oxidation of ZVI. The enrichment culture supplied its energy requirements by the oxidation of ZVI and concomitant reduction of deca-BDE, but incapable of growth and reduction of BDE-209 without ZVI and vice versa. Compared to the initial culture, the microbial community of the enrichment culture became dominated by several bacterial genera based on the results of 16S rRNA-gene pyrosequencing.

  3. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu; Du, Yi; Ma, Jun

    2016-12-01

    For the first time, carbon spheres-supported nanoscale zero-valent iron (NZVI/CSs) were successfully synthesized as functionalized composite via liquid phase reduction method and adopted for removal of a typical antibiotic, metronidazole (MNZ), from wastewater. The resultant composite (NZVI/CSs) exhibit higher reactivity, excellent stability, enhanced dispersion, and improved longevity over the reaction course due to the presence of the charged carboxyl groups and hydroxyl groups on the surfaces of CSs. The results show that 94.18% of MNZ was removed using NZVI/CSs after 6 min, while only 36.45% and 8.78% of MNZ were removed using NZVI and CSs, respectively. The galvanic cell system between NZVI and CSs was essential for enhancing MNZ reduction in aqueous solution. Furthermore, the new findings include kinetics for MNZ removal by NZVI/CSs composite could be well expressed by a revised two-parameter pseudo-first-order model. Finally, the possible degradation mechanism was proposed, which was based on the analysis of degraded products by high performance liquid chromatography-mass spectrometry (HPLC-MS). Different important factors impacting on MNZ removal (including mass ratio of NZVI to CSs, initial concentration, pH value and solution temperature) were investigated as well. Overall, this study provides a promising alternative material and environmental pollution management option for antibiotic wastewater treatment.

  4. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.

    PubMed

    Min, Jee-Eun; Kim, Meejeong; Pardue, John H; Park, Jae-Woo

    2008-02-01

    The feasibility of using zero-valent iron (ZVI) and peat mixture as in situ barriers for contaminated sediments and groundwater was investigated. Trichloroethylene (TCE) and nitrate (NO(3)(-)), redox sensitive contaminants were reduced by ZVI and peat soil mixture under anaerobic condition. Peat was used to support the sorption of TCE, microbial activity for biodegradation of TCE and denitrification while TCE and nitrate were reduced by ZVI. Decreases in TCE concentrations were mainly due to ZVI, while peat supported denitrifying microbes and further affected the sorption of TCE. Due to the competition of electrons, nitrate reduction was inhibited by TCE, while TCE reduction was not affected by nitrate. From the results of peat and sterilized peat, it can be concluded that peat was involved in both dechlorination and denitrification but biological reduction of TCE was negligible compared to that of nitrate. The results from hydrogen and methane gas analyses confirmed that hydrogen utilization by microbes and methanogenic process had occurred in the ZVI-peat system. Even though effect of the peat on TCE reduction were quantitatively small, ZVI and peat contributed to the removal of TCE and nitrate independently. The 16S rRNA analysis revealed that viable bacterial diversity was narrow and the most frequently observed genera were Bacillus and Staphylococcus spp.

  5. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    NASA Astrophysics Data System (ADS)

    Sunardi; Ashadi; Budi Rahardjo, Sentot; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M – 0.005 M aqueous of FeSO4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV–visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001–0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm.

  6. Enhanced dewaterability of sewage sludge with zero-valent iron-activated persulfate oxidation system.

    PubMed

    Hu, Lingling; Liao, Yu; He, Chun; Pan, Wenqi; Liu, Shangkun; Yang, Yichang; Li, Shuzhen; Sun, Lianpeng

    2015-01-01

    The potential benefits of zero-valent iron-activated persulfate (Na2S2O8) oxidation in enhanced dewaterability of sludge, along with the associated mechanisms were investigated in this study. The sludge dewaterability was evaluated in terms of specific resistance to filtration (SRF) and water content. Based on these indexes, it was observed that ZVI-S2O8(2) oxidation effectively improved sludge dewaterability. The optimal conditions to give preferable dewaterability were found when the molar ratio of ZVI/S2O8(2-) was 5:1 and pH value was 3.0. The most important mechanism was proposed to be the degradation of extracellular polymeric substances (EPS) incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix fluorescence spectra revealed that the powerful SO4- and ·OH generated from ZVI-S2O8(2-) system destroyed the particular functional groups of fluorescing substances (aromatic protein-like and tryptophan protein-like substances), resulting in the release of bound water and the subsequent enhancement of dewaterability. Therefore, ZVI/S2O8(2-) oxidation is an alternative approach showing great potential to be applied in sludge treatment plants.

  7. [Synchronous treatment of heavy metal ions and nitrate by zero-valent iron].

    PubMed

    Zhang, Zhen; Hao, Zhi-Wei; Liu, Wen-Li; Xu, Xin-Hua

    2009-03-15

    The wastewater which contains bivalent copper and nitrate, bivalent nickel and nitrate, hexavalent chromium and nitrate were simultaneously treated by the zero-valent iron (Fe(0)) system to investigate the feasibility of using Fe(0) for the remediation of contaminated groundwater. The experimental results indicate that nitrate has no obvious effect on the removal of heavy metals, and different heavy metal has different impacts on the removal of nitrate. Bivalent copper accelerates the nitrate removal percentage and the reaction rate. 50 mg x L(-1) bivalent copper made the nitrate removal percentage in 120 min increase from 38.2% to 95.0%, meanwhile made k(obs) of the nitrate reduction increase from 0.004 3 to 0.033 9 min(-1). And the more the concentrations of bivalent copper are, the higher the nitrate removal percentage and the reaction rate are. And it is the bivalent copper that makes the apparent activation energy of the nitrate reduction by Fe(0) decrease from 40.8 k x mol(-1) to 21.1 kJ x mol(-1), which leads to the increase of the reaction rate. When Fe(0) simultaneously treats the wastewater containing bivalent nickel and nitrate, they have no obvious effects on each other. When Fe(0) simultaneously treats the wastewater containing hexavalent chromium and nitrate, the results show the nitrate concentration remains unchanged, and prove that hexavalent chromium decreases the nitrate removal speed.

  8. Effects of nano zero-valent iron on Klebsiella oxytoca and stress response.

    PubMed

    Saccà, Maria Ludovica; Fajardo, Carmen; Nande, Mar; Martín, Margarita

    2013-11-01

    Nano zero-valent iron (NZVI) is a new option for contaminated soil and groundwater treatment, despite little is known on their impact on environmental microorganisms. Klebsiella oxytoca K5 strain, isolated from the NZVI-treated soil, was used to investigate the bacterial, phenotypical and molecular response to commercial NZVI exposure. Cytotoxicity assays at three NZVI concentrations (1, 5 and 10 mg mL(-1)) suggested a negligible bacteriostatic effect and the lack of bactericidal effect. Structural changes were analysed by electronic microscopy. Scanning electron microscopy revealed the presence of NZVI around some bacterial cells, but no apparent morphological changes were seen. NZVI attachment to the cell surface was confirmed by transmission electron microscopy, although most of them were not affected. A proteomic approach (two-dimensional electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry) was used to investigate NZVI impact. For the first time to our knowledge, results revealed that exposure of a soil bacterium to NZVI resulted in the overproduction of tryptophanase, associated with oxidative stress response. K5 may set up an adaptative stress response involving indole as a signal molecule to inform the bacterial population about environmental changes. These findings would improve knowledge on the molecular mechanisms underlying bacterial response to NZVI exposure.

  9. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process.

    PubMed

    Lai, Peng; Zhao, Hua-Zhang; Zeng, Ming; Ni, Jin-Ren

    2009-03-15

    Experiments were conducted to investigate the behavior of the integrated system with biofilm reactors and zero-valent iron (ZVI) process for coking wastewater treatment. Particular attention was paid to the performance of the integrated system for removal of organic and inorganic nitrogen compounds. Maximal removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH(3)-N) and total inorganic nitrogen (TIN) were up to 96.1, 99.2 and 92.3%, respectively. Moreover, it was found that some phenolic compounds were effectively removed. The refractory organic compounds were primarily removed in ZVI process of the integrated system. These compounds, with molecular weights either ranged 10,000-30,000 Da or 0-2000 Da, were mainly the humic acid (HA) and hydrophilic (HyI) compounds. Oxidation-reduction and coagulation were the main removal mechanisms in ZVI process, which could enhance the biodegradability of the system effluent. Furthermore, the integrated system showed a rapid recovery performance against the sudden loading shock and remained high efficiencies for pollutants removal. Overall, the integrated system was proved feasible for coking wastewater treatment in practical applications.

  10. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species.

    PubMed

    Ma, Xingmao; Gurung, Arun; Deng, Yang

    2013-01-15

    Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids×Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0-1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (>200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species.

  11. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater.

    PubMed

    Lee, J W; Cha, D K; Oh, Y K; Ko, K B; Song, J S

    2009-05-15

    This study investigated reductive transformation of iodine by zero-valent iron (ZVI), and the subsequent detoxification of iodine-laden wastewater. ZVI completely reduced aqueous iodine to non-toxic iodide. Respirometric bioassay illustrated that the presence of iodine increase the lag phase before the onset of oxygen consumption. The length of lag phase was proportional to increasing iodine dosage. The reduction products of iodine by ZVI did not exhibit any inhibitory effect on the biodegradation. The cumulative biological oxidation associated with iodine toxicity was closely fitted to Gompertz model. When iodine-laden wastewater was continuously fed to a bench-scale activated sludge unit, chemical oxygen demand (COD) removal efficiencies decreased from above 90% to below 80% along with a marked decrease in biomass concentration. On the other hand, the COD removal efficiency and biomass concentration remained constant in the integrated ZVI-activated sludge system. Respirometric bioassay with real iodine-laden LCD manufacturing wastewater demonstrated that ZVI was effective for detoxifying iodine and consequently enhancing biodegradability of wastewater. This result suggested that ZVI pretreatment may be a feasible option for the removal of iodine in LCD processing wastewater, instead of more costly processes such as adsorption and chemical oxidation, which are commonly in the iodine-laden LCD wastewater treatment facility.

  12. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    PubMed Central

    Jang, Min-Hee; Lim, Myunghee; Hwang, Yu Sik

    2014-01-01

    Objectives Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1) the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2) assessing their potential environmental risks using in situ field scale applications. PMID:25518840

  13. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.

    PubMed

    Du, Jingjing; Lu, Jinsuo; Wu, Qiong; Jing, Chuanyong

    2012-05-15

    Chromite ore processing residue (COPR) poses a great environmental and health risk with persistent Cr(VI) leaching. To reduce Cr(VI) and subsequently immobilize in the solid matrix, COPR was incubated with nanoscale zero-valent iron (nZVI) and the Cr(VI) speciation and leachability were studied. Multiple complementary analysis methods including leaching tests, X-ray powder diffraction, X-ray absorption near edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to investigate the immobilization mechanism. Geochemical PHREEQC model calculation agreed well with our acid neutralizing capacity experimental results and confirmed that when pH was lowered from 11.7 to 7.0, leachate Cr(VI) concentrations were in the range 358-445mgL(-1) which contributed over 90% of dissolved Cr from COPR. Results of alkaline digestion, XANES, and XPS demonstrated that incubation COPR with nZVI under water content higher than 27% could result in a nearly complete Cr(VI) reduction in solids and less than 0.1mgL(-1) Cr(VI) in the TCLP leachate. The results indicated that remediation approaches using nZVI to reduce Cr(VI) in COPR should be successful with sufficient water content to facilitate electron transfer from nZVI to COPR.

  14. Modelling the remediation of contaminated groundwater using zero-valent iron barrier

    SciTech Connect

    Kwong, S.; Small, J.; Tahar, B.

    2007-07-01

    This paper presents results of modelling studies on remediation of groundwater contaminated with uranium using a zero-valent iron permeable reactive barrier (ZVI PRB) at the U.S. Oak Ridge Y-12 site that are used to establish modelling techniques that are of value to other sites such as in the UK. A systematic modelling methodology has been developed to study the problem by using a suite of modelling tools. Firstly a conceptual basis of the main chemical processes representing the remediation of uranium by the ZVI PRB is developed. Two main effects involving reduction and corrosion have been identified as being relevant for the remediation processes. These are then formulated and implemented using the reactive chemical model PHREEQC to provide underpinning chemical input parameters for subsequent reactive solute transport modelling using the TRAFFIC and PHAST codes. Initial results shows that modelling can be a very cost-effective means to study the hydrogeological and geochemical processes involved and to aid understanding of the remediation concept. The modelling approaches presented and lessons learnt are thought to be relevant to other cases of contaminated land study and are likely to be of value to site management concepts which consider on-site disposal of contaminated soils and materials. (authors)

  15. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation.

    PubMed

    Calderon, Blanca; Fullana, Andres

    2015-10-15

    Zero valent iron nanoparticles (nZVI) represent a promising agent for environmental remediation. Nevertheless, their application presents some limitations regarding their rapid oxidation and aggregation in the media. The aim of this study was to determine the effect that nZVI aging has in heavy metal remediation in water. Contaminants studied were Zn, Cd, Ni, Cu and Cr, which are typical elements found in ground and wastewater. Results show a high contaminant removal capacity by the nZVI in the first 2 h of reaction. Nevertheless, for longer reaction times, some of the metal ions that had already been adsorbed in the nZVI were delivered to the water. Cd and Ni show the maximum delivery percentages (65 and 27% respectively after 21 days of contact time). The starting delivery time was shortened when applying lower nZVI amounts. No re-dissolution of Cr was observed in any circumstance because it was the only element incorporated into the nanoparticles core, as TEM images showed. Contaminant release from nZVI is probably due to nanoparticles oxidation caused by aging, which produced a pH decrease and nZVI surface crystallization.

  16. Effective removal of nemacide fosthiazate from an aqueous solution using zero-valent iron.

    PubMed

    Wu, Junxue; Shen, Chongyang; Zhang, Hongyan; Lu, Weilan; Zhang, Yun; Wang, Chengju

    2015-09-15

    In this study, the removal of fosthiazate in an aqueous solution using zero valent iron (ZVI) and the related removal reaction mechanism were investigated. The results indicate that the dissipation of fosthiazate adheres to a pseudo-first order reaction law. The apparent rate constant of fosthiazate removal could be improved by increasing the ZVI dosage, control temperature and initial pH. The observed pseudo-first-order degradation rate constants (Kobs) of fosthiazate removal using ZVI were varied in the different electrolyte solutions, and were determined as follows: Kobs (MgSO4) < Kobs (KCl) < Kobs (Control)

  17. Zero-valent iron-activated persulfate oxidation of a commercial alkyl phenol polyethoxylate.

    PubMed

    Temiz, Kubra; Olmez-Hanci, Tugba; Arslan-Alaton, Idil

    2016-01-01

    Aqueous Triton X-45 (TX-45; 20 mg/L; original total organic carbon (TOC) = 14 mg/L), a representative, commercially important alkylphenol polyethoxylate, was subjected to persulfate (PS) oxidation activated with zero-valent iron (ZVI) nanoparticles. After optimization of the ZVI/PS treatment combination (1 g/L ZVI; 2.5 mM PS at pH5) in terms of pH (3-9), ZVI (0.5-5 g/L) and PS (0.5-5.0 mM) concentrations, TX-45 could be efficiently (>90%) degraded within short treatment periods (<60 min) accompanied with significant (>40%) TOC removals. The degree of PS consumption and Fe release was also followed during the experiments and a positive correlation existed between enhanced TX-45 removals and ZVI-activated PS consumption rates accompanied with a parallel Fe release. Acute toxicity tests were conducted using two different bioassays to examine the toxicological safety of the ZVI/PS oxidation system. Acute toxicity profiles significantly decreased from an original value of 66% relative inhibition to 21% and from 16% relative inhibition to non-toxic values according to Vibrio fischeri and Pseudokirchneriella subcapitata bioassays, respectively. The photobacterium V. fischeri appeared to be more sensitive to TX-45 and its degradation products than the microalgae P. subcapitata.

  18. Degradation of carbon tetrachloride in the presence of zero-valent iron.

    SciTech Connect

    Alvarado, J. S.; Rose, C.; LaFreniere, L.; Environmental Science Division

    2010-01-01

    Efforts to achieve the decomposition of carbon tetrachloride through anaerobic and aerobic bioremediation and chemical transformation have met with limited success because of the conditions required and the formation of hazardous intermediates. Recently, particles of zero-valent iron (ZVI) have been used with limited success for in situ remediation of carbon tetrachloride. We studied a modified microparticulate product that combines controlled-release carbon with ZVI for stimulation of in situ chemical reduction of persistent organic compounds in groundwater. With this product, a number of physical, chemical, and microbiological processes were combined to create very strongly reducing conditions that stimulate rapid, complete dechlorination of organic solvents. In principle, the organic component of ZVI microparticles is nutrient rich and hydrophilic and has high surface area capable of supporting the growth of bacteria in the groundwater environment. In our experiments, we found that as the bacteria grew, oxygen was consumed, and the redox potential decreased to values reaching -600 mV. The small modified ZVI particles provide substantial reactive surface area that, in these conditions, directly stimulates chemical dechlorination and cleanup of the contaminated area without accumulation of undesirable breakdown products. The objective of this work was to evaluate the effectiveness of ZVI microparticles in reducing carbon tetrachloride under laboratory and field conditions. Changes in concentrations and in chemical and physical parameters were monitored to determine the role of the organic products in the reductive dechlorination reaction. Laboratory and field studies are presented.

  19. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.

    PubMed

    HonetschlÄgerová, Lenka; Janouškovcová, Petra; Kubal, Martin

    2016-01-01

    Laboratory column experiments were conducted to evaluate the effect of previously described silica coating method on the transport of nanoscale zero-valent iron (nZVI) in porous media. The silica coating method showed the potential to prevent the agglomeration of nZVI. Transport experiments were conducted using laboratory-scale sand-packed columns at conditions that were very similar of natural groundwater. Transport properties of non-coated and silica-coated nZVI are investigated in columns of 40 cm length, which were filled with porous media. A suspension was injected in three different Fe particle concentrations (100, 500, and 1000 mg/L) at flow 5  mL/min. Experimental results were compared using nanoparticle attachment efficiency and travel distances which were calculated by classical particle filtration theory. It was found that non-coated particles were essentially immobile in porous media. In contrast, silica-coated particles showed significant transport distances at the tested conditions. Results of this study suggest that silica can increase nZVI mobility in the subsurface.

  20. Impact of nanoscale zero valent iron on bacteria is growth phase dependent.

    PubMed

    Chaithawiwat, Krittanut; Vangnai, Alisa; McEvoy, John M; Pruess, Birgit; Krajangpan, Sita; Khan, Eakalak

    2016-02-01

    The toxic effect of nanoscale zero valent iron (nZVI) particles on bacteria from different growth phases was studied. Four bacterial strains namely Escherichia coli strains JM109 and BW25113, and Pseudomonas putida strains KT2440 and F1 were experimented. The growth curves of these strains were determined. Bacterial cells were harvested based on the predetermined time points, and exposed to nZVI. Cell viability was determined by the plate count method. Bacterial cells in lag and stationary phases showed higher resistance to nZVI for all four bacterial strains, whereas cells in exponential and decline phases were less resistant to nZVI and were rapidly inactivated when exposed to nZVI. Bacterial inactivation increased with the concentration of nZVI. Furthermore, less than 14% bacterial inactivation was observed when bacterial cells were exposed to the filtrate of nZVI suspension suggesting that the physical interaction between nZVI and cell is necessary for bacterial inactivation.

  1. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.

    PubMed

    Machado, S; Pacheco, J G; Nouws, H P A; Albergaria, J T; Delerue-Matos, C

    2015-11-15

    In the last decades nanotechnology has become increasingly important because it offers indisputable advantages to almost every area of expertise, including environmental remediation. In this area the synthesis of highly reactive nanomaterials (e.g. zero-valent iron nanoparticles, nZVI) is gaining the attention of the scientific community, service providers and other stakeholders. The synthesis of nZVI by the recently developed green bottom-up method is extremely promising. However, the lack of information about the characteristics of the synthetized particles hinders a wider and more extensive application. This work aims to evaluate the characteristics of nZVI synthesized through the green method using leaves from different trees. Considering the requirements of a product for environmental remediation the following characteristics were studied: size, shape, reactivity and agglomeration tendency. The mulberry and pomegranate leaf extracts produced the smallest nZVIs (5-10 nm), the peach, pear and vine leaf extracts produced the most reactive nZVIs while the ones produced with passion fruit, medlar and cherry extracts did not settle at high nZVI concentrations (931 and 266 ppm). Considering all tests, the nZVIs obtained from medlar and vine leaf extracts are the ones that could present better performances in the environmental remediation. The information gathered in this paper will be useful to choose the most appropriate leaf extracts and operational conditions for the application of the green nZVIs in environmental remediation.

  2. Removal Rates of Aqueous Cr(VI) by Zero-Valent Iron Measured Under Flow Conditions

    SciTech Connect

    Kaplan, D.I.

    2002-05-10

    Studies were undertaken to measure the rate of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). The pseudo-first-order rate coefficients measured under flow conditions were comparable to those previously measured under batch conditions that had significantly greater ratios of solution volume to Fe(0) surface area. Between the range of 20 and 100 weight percent Fe(0), there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry had only marginal effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  3. Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation

    SciTech Connect

    Truex, Michael J.; Macbeth, Tamzen; Vermeul, Vincent R.; Fritz, Brad G.; Mendoza, Donaldo P.; Mackley, Rob D.; Wietsma, Thomas W.; Sandberg, Greg; Powell, Thomas; Powers, Jeff; Pitre, Emile; Michalsen, Mandy M.; Ballock-Dixon, Sage; Zhong, Lirong; Oostrom, Martinus

    2011-06-27

    The effectiveness of in situ treatment using zero-valent iron to remediate sites with non-aqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene source area, combining moderate-temperature (maximum 50oC) subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate dechlorination and dissolution rates by a factor of 4 to 6 based on organic daughter products and a factor 8-16 using a chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization at ambient groundwater temperature (~10oC) and as temperature was increased up to about 50oC. Increased reaction and contaminant dissolution were observed with increased temperature, but volatilization was minimal during the test because in situ reactions maintained low aqueous-phase TCE concentrations.

  4. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    PubMed

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  5. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  6. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.

    PubMed

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-22

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  7. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron.

    PubMed

    Nakatsuji, Yusuke; Salehi, Zeinab; Kawase, Yoshinori

    2015-04-01

    Batch experiments were conducted to examine mechanisms for removal of p-nitrophenol (PNP) from aqueous solution using zero-valent iron (ZVI). Removal of PNP using ZVI was mainly attributed to three mechanisms: degradation, precipitation and adsorption. A complete removal of 30 mg L(-1) PNP with ZVI dosage of 1000 mg L(-1) achieved within 30 min at pH 3. The PNP removal rate in the acidic solutions was significantly suppressed at higher pH. The modified Langmuir-Hinshelwood kinetic model could successfully describe the PNP removal process using ZVI at different pH conditions. Total organic carbon (TOC) removal efficiencies were found to be almost independent of pH. While the TOC removal at lower pH was profoundly affected by the reductive and/or oxidative degradation, the adsorption was favorable at higher pH. The effect of dissolved oxygen on PNP removal was investigated at pH 3 where a maximum contribution of oxidative degradation could be expected. The PNP removal in the anoxic system purged with nitrogen gas was quick as well as that in the system being open to the air. However, the TOC removal under the anoxic condition was negligible as compared with that in the oxic system. The profiles of the intermediates formed during the PNP degradation indicated that the reductive degradation was predominant in the initial phase of the removal and subsequently the oxidative degradation occurred.

  8. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    USGS Publications Warehouse

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  9. Immobilization of chromate in hyperalkaline waste streams by green rusts and zero-valent iron.

    PubMed

    Rogers, Christine M; Burke, Ian T; Ahmed, Imad A M; Shaw, Samuel

    2014-01-01

    Zero-valent iron (ZVI) and green rusts can be used as reductants to convert chromium from soluble, highly toxic Cr(VI) to insoluble Cr(III). This study compared the reduction rates of Cr(VI) by ZVI and two carbonate green rust phases in alkaline/hyperalkaline solutions. Batch experiments were carried out with synthetic chromate solutions at pH 7.7-12.3 and a chromite ore processing residue (COPR) leachate (pH approximately 12.2). Green rust removes chromate from high pH solutions (pH 10-12.5) very rapidly (<400 s). Chromate reduction rates for both green rust phases were consistently higher than for ZVI throughout the pH range studied; the surface area normalized rate constants were two orders of magnitude higher in the COPR leachate solution at pH 12.2. The performances of both green rusts were unaffected by changes in pH. In contrast, ZVI exhibited a marked decline in reduction rate with increasing pH to become almost ineffective above pH12.

  10. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    PubMed

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  11. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.

  12. Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets.

    PubMed

    Li, Zhaohui; Kirk Jones, H; Zhang, Pengfei; Bowman, Robert S

    2007-08-01

    Chromate transport through columns packed with zeolite/zero valent iron (Z/ZVI) pellets, either untreated or treated with the cationic surfactant hexadecyltrimethylammonium (HDTMA), was studied at different flow rates. In the presence of sorbed HDTMA, the chromate retardation factor increased by a factor of five and the pseudo first-order rate constant for chromate reduction increased by 1.5-5 times. The increase in rate constant from the column studies was comparable to a six-fold increase in the rate constant determined in a batch study. At a fast flow rate, the apparent delay in chromate breakthrough from the HDTMA modified Z/ZVI columns was primarily caused by the increase in chromate reduction rate constant. In contrast, at a slower flow rate, the retardation in chromate transport from the HDTMA modified Z/ZVI columns mainly originated from chromate sorption onto the HDTMA modified Z/ZVI pellets. Due to dual porosity, the presence of immobile water was responsible for the earlier breakthrough of chromate in columns packed with zeolite and Z/ZVI pellets. The results from this study further confirm the role of HDTMA in enhancing sorption and reduction efficiency of contaminants in groundwater remediation.

  13. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent.

  14. Ultrasound-assisted synthesis of nanosized zero-valent iron for metal cations extraction and wastewater treatment applications

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. Yu; Lysov, D. V.; Levina, V. V.; Mazov, I. N.; Gusev, A. A.; Yudintseva, T. I.; Kuznetsov, D. V.

    2016-01-01

    Nanosized zero-valent iron has shown good results in wastewater treatment and activation of physicochemical processes. Its applications in modern industry are complicated by high production costs of nanomaterials produced via existing synthesis routes. Therefore there is a need of cheap and high-productive methods of nanosized zero-valent iron with advanced functional properties. Improvement of oxidative conditions with additions may find its place in extraction of rare-earth metals, where high cost of nanomaterials could be viable. In this paper we studied an effect of ultrasonic irradiation on specific surface area and particle size of nanosized zero-valent iron synthesized by methods of chemical precipitation with high- temperature reduction in hydrogen flow and sodium borohydride reduction. Obtained results showed significant decrease of particle size and differences in particles morphology depending on presence of ultrasonication during synthesis and on chosen method. For ultrasonic-assisted synthesis with 100% amplitude, particle size calculated from specific surface area was 70 nm for sample synthesized by chemical precipitation with high-temperature reduction and 35 nm for borohydide reduction method compared to 63 nm for reference sample without ultrasonication.

  15. Ligand effects on nitrate reduction by zero-valent iron: Role of surface complexation.

    PubMed

    Song, Xiaojie; Chen, Zhihao; Wang, Xiaomeng; Zhang, Shujuan

    2017-05-01

    Surface passivation is a key limiting factor in the application of zero-valent iron (ZVI) for water remediation. Addition of ligands is a useful approach to overcome this issue. In this work, a small amount of acetylacetone (AA) (0.5 mM) was found highly efficient to enhance the reduction of nitrate by ZVI at near neutral conditions (pH 6.0) with the formation of considerable black coating on ZVI. At an initial nitrate concentration of 20 mg N/L, the pseudo first-order reduction rate constant of nitrate in the ZVI-AA-NO3(-) system was 0.0991 h(-1), which was 52 times higher than that in the ZVI-NO3(-) system. Under otherwise identical conditions, the other five ligands, including EDTA, formate, acetate, oxalate, and phosphate, had negligible effects. Based on the pKa values of these ligands and the final species of iron, the ligand effects on nitrate reduction by ZVI were summarized from three aspects: (1) the ability to offer potentially dissociable protons from the ligands; (2) the complexation ability to eliminate iron (hydr)oxide precipitates from the surface of ZVI; and (3) the ability to lower down the redox potentials of iron species. The good performance of AA in these three aspects makes it advantage over the other ligands. A cycle test up to six runs demonstrates that AA could continuously take effect in the ZVI system. The results here point out the potential of AA as an effective ligand in ZVI system for enhanced contaminant transformation.

  16. Mobility, Deposition and Remobilization of pre-Synthesis Stabilized Nano-scale Zero Valent Iron in Long Column Experiments

    NASA Astrophysics Data System (ADS)

    de Boer, C. V.; O'Carroll, D. M.; Sleep, B.

    2014-12-01

    Reactive zero-valent iron is currently being used for remediation of contaminated groundwater. Permeable reactive barriers are the current state-of-the-practice method for using zero-valent iron. Instead of an excavated trench filled with granular zero-valent iron, a relatively new and promising method is the injection of a nano-scale zero-valent iron colloid suspension (nZVI) into the subsurface using injection wells. One goal of nZVI injection can be to deposit zero valent iron in the aquifer and form a reactive permeable zone which is no longer bound to limited depths and plume treatment, but can also be used directly at the source. It is very important to have a good understanding of the transport behavior of nZVI during injection as well as the fate of nZVI after injection due to changes in the flow regime or water chemistry changes. So far transport was mainly tested using commercially available nZVI, however these studies suggest that further work is required as commercial nZVI was prone to aggregation, resulting in low physical stability of the suspension and very short travel distances in the subsurface. In the presented work, nZVI is stabilized during synthesis to significantly increase the physical suspension stability. To improve our understanding of nZVI transport, the feasibility for injection into various porous media materials and controlled deposition, a suite of column experiments are conducted. The column experiments are performed using a long 1.5m column and a novel nZVI measuring technique. The measuring technique was developed to non-destructively determine the concentration of nano-scale iron during the injection. It records the magnetic susceptibility, which makes it possible to get transient nZVI retention profiles along the column. These transient nZVI retention profiles of long columns provide unique insights in the transport behavior of nZVI which cannot be obtained using short columns or effluent breakthrough curves.

  17. Study of the presence of PCDDs/PCDFs on zero-valent iron nanoparticles.

    PubMed

    Calderon, Blanca; Lundin, Lisa; Aracil, Ignacio; Fullana, Andres

    2017-02-01

    Studies show that nanoscale zero-valent iron (nZVI) particles enhance the formation of chlorinated compounds such as polychlorinated dioxins and furans (PCDD/Fs) during thermal processes. However, it is unclear whether nZVI acts as a catalyst for the formation of these compounds or contains impurities, such as PCDD/Fs, within its structure. We analyzed the presence of PCDD/Fs in nZVI particles synthesized through various production methods to elucidate this uncertainty. None of the 2,3,7,8-substituted congeners were found in the commercially-produced nZVI, but they were present in the laboratory-synthesized nZVI produced through the borohydride method, particularly in particles synthesized from iron (III) chloride rather than from iron sulfate. Total PCDD/F WHO-TEQ concentrations of up to 35 pg/g were observed in nZVI particles, with hepta- and octa-chlorinated congeners being the most abundant. The reagents used in the borohydride method were also analyzed, and our findings suggest that FeCl3 effectively contains PCDD/Fs at concentrations that could explain the concentrations observed in the nZVI product. Both FeCl3 and nZVI showed a similar PCDD/F patterns with slight differences. These results suggest that PCDD/Fs might transfer from FeCl3 to nZVI during the production method, and thus, care should be taken when employing certain nZVI for environmental remediation.

  18. Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

    PubMed Central

    Gu, Cheng; Jia, Hanzhang; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.

    2010-01-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH4, resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of discrete regions of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of ~ 5 Å. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the XRD results since the diameter of elemental Fe is 2.5 Å. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene:non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnano-scale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, e.g. as components of constructed reactive domains such as reactive caps for contaminated sediments. PMID:20446730

  19. Mechanism of Co(II) adsorption by zero valent iron/graphene nanocomposite.

    PubMed

    Xing, Min; Xu, Lejin; Wang, Jianlong

    2016-01-15

    Nanoscale zero valent iron (ZVI)/graphene (GF) composite was prepared and characterized by Brunauer-Emmett-Teller (BET) surface area measurement and zeta potential determination. The adsorption isotherm of Co(II) in aqueous solution, as well as the influence of pH values and ionic strengths was studied. The mechanism of Co(II) adsorption by GF was investigated through analyzing the sorption products at initial pH of 3.0, 6.0 and 9.0 using high-resolution transmission electron microscope with energy dispersive X-ray detector (HRTEM-EDX), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), Raman spectra, X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) measurement. The results indicated that Langmuir isotherm model fitted well and the adsorption capacity was 131.58 mg g(-1) at 30°C. Adsorption capacity was not significantly influenced by ionic strength and kept high at pH 4.0∼9.0. The detail information of GF-Co interaction at different initial pH values was obtained using XAFS analysis combined with other characterization methods. Coordination numbers (CN) and interatomic distances (R) of both Fe and Co were given. At pH 3.0 and pH 6.0, the Co-substituted iron oxides transformed to CoFe2O4-like structure, while at pH 9.0 they changed to green rust-like phases. Co occupied preferentially in the octahedral sites in acid solution. The adsorption mechanism of Co(II) was attributed to inner-sphere complexation and dissolution/re-precipitation of the substituted metal oxides.

  20. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron.

    PubMed

    Liang, Liping; Sun, Wu; Guan, Xiaohong; Huang, Yuying; Choi, Wonyong; Bao, Hongliang; Li, Lina; Jiang, Zheng

    2014-02-01

    The effect of weak magnetic field (WMF) on Se(IV) removal by zero valent iron (ZVI) was investigated as functions of pH and initial Se(IV) concentrations. The presence of WMF significantly accelerated Se(IV) removal and extended the working pH range of ZVI from 4.0-6.0 to 4.0-7.2. The WMF induced greater enhancement in Se(IV) removal by ZVI at lower initial Se(IV) concentrations. The influence of WMF on Se(IV) removal by ZVI was associated with a more dramatic drop in ORP and a more rapid release of Fe(2+) compared to the case without WMF. SEM and XRD analysis revealed that WMF accelerated the corrosion of ZVI and the transformation of amorphous iron (hdyr)oxides to lepidocrocite. XANES analyses showed that WMF expedited the reduction of Se(IV) to Se(0) by ZVI at pH 6.0 when its initial concentration was ≤20.0 mg L(-1). Se(IV) dosed at 40.0 mg L(-1) was removed by ZVI via adsorption followed by reduction to Se(0) at pH 7.0 but via adsorption at 7.2 in the presence of WMF. Regardless of WMF, Se(IV) applied at 40.0 mg L(-1) was removed by reduction at pH 4.0-6.0. The WMF-induced improvement in Se(IV) removal by ZVI may be mainly attributable to the Lorentz force and magnetic field gradient force. Employing WMF to enhance Se(IV) removal by ZVI is a promising and environmental-friendly method since it does not need extra energy and costly reagents.

  1. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.

    PubMed

    Liu, Yan; Li, Shibin; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-08-01

    Nitrate contamination in drinking water is a major threat to public health. This study investigated the efficiency of denitrification of aqueous solutions in the co-presence of synthesized nanoscale zero-valent iron (nZVI; diameter: 20-80 nm) and a previously isolated Paracoccus sp. strain YF1. Various influencing factors were studied, such as oxygen, pH, temperature, and anaerobic corrosion products (Fe(2+), Fe(3+) and Fe3O4). With slight toxicity to the strain, nZVI promoted denitrification efficiency by providing additional electron sources under aerobic conditions. For example, 50 mg L(-1) nZVI increased the nitrate removal efficiency from 66.9% to 85.2%. However, a high concentration of nZVI could lead to increased production of Fe(2+), a toxic ion which could compromise the removal efficiency. Kinetic studies suggest that denitrification by both free cells, and nZVI-amended cells fitted well to the zero-order model. Temperature and pH are the major factors affecting nitrate removal and cell growth, with or without the presence of nZVI. In this study, nitrate removal and cell growth increased in the pH range of 6.5-8.0, and temperature range of 25-35 °C. These conditions favor the growth of the strain, which dominated denitrification in all scenarios involved. As for anaerobic corrosion products, compared with Fe(2+) and Fe(3+), Fe3O4 promoted denitrification by serving as an electron donor. Finally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirmed attachments of nZVI on the surface of the cell, and the formation of iron oxides. This study indicated that, as an electron donor source with minimal cellular toxicity, nZVI could be used to promote denitrification efficiency under biotic conditions.

  2. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples.

    PubMed

    Dou, Xiaomin; Li, Rui; Zhao, Bei; Liang, Wenyan

    2010-10-15

    Galvanic couples composed of zero-valent iron and activated carbon (Fe(0)/AC) were investigated for As(V) removal from water. The effects of Fe(0) to AC mass ratio (FCR), solution pH, ionic strength and co-existing anions (phosphate, carbonate, silicate, nitrate, chloride and sulfate) and humic acid (HA) on As(V) removal were evaluated. The results showed that the optimum mass ratio was 1:1, and Fe(0)/AC with this ratio was more effective for As(V) removal than Fe(0) and AC alone at pH of 7 and ion strength of 0.03 M NaCl. The enhanced performance for As(V) removal was fulfilled through an accelerated corrosion process of Fe(0), which meant more corrosion products for efficient As(V) removal. The As(V) removal followed a pseudo-first order reaction. The rate constants (k) for 1:1 Fe(0)/AC and Fe(0) alone were 0.802 and 0.330 h(-1), respectively. Potentiodynamic polarization scans further confirmed that Fe(0) corrosion was promoted when Fe(0) was coupled with AC. Except silicates, other co-existing anions promoted As(V) removal. No reduction form of As (As(III) or As(0)) could be detected on iron corrosion products (ICPs) and in solutions. Identified ICPs included poorly crystallized lepidocrocite (gamma-FeOOH) and magnetite/maghemite (Fe(3)O(4)/gamma-Fe(2)O(3)) for both of Fe(0)/AC and Fe(0) systems. In conclusion, the Fe(0)/AC couple exhibited higher As removal performance than that of Fe(0) alone from water.

  3. Zero valent iron produces dichloroacetamide from chloramphenicol antibiotics in the absence of chlorine and chloramines.

    PubMed

    Chu, Wenhai; Ding, Shunke; Bond, Tom; Gao, Naiyun; Yin, Daqiang; Xu, Bin; Cao, Zhongqi

    2016-11-01

    Dichloroacetamide (DCAcAm) is an important type of nitrogenous disinfection byproduct. This study is the first to report that DCAcAm can be formed in the absence of chlorinated disinfectants (chlorine and chloramines). This can occur through reduction of three chloramphenicol (CAP) antibiotics by zero valent iron (ZVI). The effects of key experimental parameters, including reaction time, ZVI dose, pH, temperature, water type, and the presence of humic acid (HA) on the formation of DCAcAm were ascertained. The DCAcAm yields from three CAPs all presented the trend of increasing first and then decreasing with time and also increased with increasing ZVI dosage. DCAcAm yields from the ZVI reduction route were higher than those resulting from the chlorination of some previously identified DCAcAm precursors. Acidic conditions favored the formation of DCAcAm by the ZVI route. In addition, lower temperatures increased DCAcAm yields at extended contact times (>12 h). DCAcAm formed from the three CAPs in the presence of HA was lower than in the absence of HA. The formation potential of DCAcAm from the reduction of authentic waters spiked with CAPs by ZVI showed good linear correlations with initial concentrations of the three CAPs. This allows the formation of DCAcAm from the reduction of CAPs by ZVI to be predicted. Given that many wastewater and drinking water distribution networks contain unlined cast iron pipes, reactions between CAPs and ZVI may contribute to the formation of DCAcAm in such systems.

  4. Impact of sample preparation on mineralogical analysis of zero-valent iron reactive barrier materials

    SciTech Connect

    Phillips, Debra Helen; Gu, Baohua; Watson, David B; Roh, Yul

    2003-03-01

    Permeable reactive barriers (PRBs) of zero-valent iron (Fe{sup 0}) are increasingly being used to remediate contaminated ground water. Corrosion of Fe{sup 0} filings and the formation of precipitates can occur when the PRB material comes in contact with ground water and may reduce the lifespan and effectiveness of the barrier. At present, there are no routine procedures for preparing and analyzing the mineral precipitates from Fe{sup 0} PRB material. These procedures are needed because mineralogical composition of corrosion products used to interpret the barrier processes can change with iron oxidation and sample preparation. The objectives of this study were (i) to investigate a method of preparing Fe{sup 0} reactive barrier material for mineralogical analysis by X-ray diffraction (XRD), and (ii) to identify Fe mineral phases and rates of transformations induced by different mineralogical preparation techniques. Materials from an in situ Fe{sup 0} PRB were collected by undisturbed coring and processed for XRD analysis after different times since sampling for three size fractions and by various drying treatments. We found that whole-sample preparation for analysis was necessary because mineral precipitates occurred within the PRB material in different size fractions of the samples. Green rusts quickly disappeared from acetone-dried samples and were not present in air-dried and oven-dried samples. Maghemite/magnetite content increased over time and in oven-dried samples, especially after heating to 105 C. We conclude that care must be taken during sample preparation of Fe{sup 0} PRB material, especially for detection of green rusts, to ensure accurate identification of minerals present within the barrier system.

  5. Reductive precipitation of uranium(VI) by zero-valent iron

    SciTech Connect

    Gu, B.; Dickey, M.J.; Yin, X.; Dai, S.; Liang, L.

    1998-11-01

    This study was undertaken to determine the effectiveness of zero-valent iron (Fe{sup 0}) and several adsorbent materials in removing uranium (U) from contaminated groundwater and to investigate the rates and mechanisms that are involved in the reactions. Fe{sup 0} filings were used as reductants, and the adsorbents included peat materials, iron oxides, and a carbon-based sorbent (Cercona Bone-Char). Results indicate that Fe{sup 0} filings are much more effective than the adsorbents in removing uranyl (UO{sub 2}{sup 2+}) from the aqueous solution. Nearly 100% of U was removed through reactions with Fe{sup 0} at an initial concentration up to 76 mM. Results from the batch adsorption and desorption and from spectroscopic studies indicate that reductive precipitation of U on Fe{sup 0} is the major reaction pathway. Only a small percentage of UO{sub 2}{sup 2+} appeared to be adsorbed on the corrosion products of Fe{sup 0} and could be desorbed by leaching with a carbonate solution. The study also showed that the reduced U(IV) species on Fe{sup 0} surfaces could be reoxidized and potentially remobilized when the reduced system becomes more oxidized. Results of this research support the application of the permeable reactive barrier technology using Fe{sup 0} as a reactive media to intercept U and other groundwater contaminants migrating to the tributaries of Bear Creek at the US Department of Energy`s Y-12 Plant located in Oak Ridge, TN.

  6. Zero-valent Iron Emplacement in Permeable Porous Media Using Polymer Additions

    SciTech Connect

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2007-02-15

    At the Hanford Site in Washington, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments to enhance the barrier’s reductive capacity using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The aqueous pressure increased by a maximum of 25 KPa during infiltration, but a decrease in permeability was not observed. Under optimal conditions, the 0.6% amended Fe0 concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced Fe (II) in the ISRM barrier.

  7. Polymeric coatings eliminate the bactericidal effects of Nanoscale zero-valent iron to Escherichia coli

    NASA Astrophysics Data System (ADS)

    Lowry, G. V.; Gregory, K.; Li, Z.

    2009-12-01

    Nanoscale zero-valent iron (NZVI) particles that are used in aquifer remediation may come in contact with subsurface bacteria, and may adversely affect subsurface bacteria. Studies showed that NZVI is toxic toward E. coli at concentrations as low as a few mg/L. However, NZVI particles used in remediation are coated with polymers or natural organic matter (NOM). It is unclear how these surface coatings may affect the bactericidal properties of NZVI. The objectives of this study were to assess the effect that (i) coatings (both anthropogenic and natural) and (ii) particle oxidative state have on the bactericidal properties of NZVI on a gram-negative bacteria, Escherichia coli. Bacteria (106 cells/L) were exposed to 100 mg/L of bare or coated NZVI for 60 minutes under either aerobic or anaerobic conditions. Bacteria were plated at specified times over 60 minutes to determine the number of viable bacteria in the reactor. Bare NZVI was cytotoxic at only 100 mg/L NZVI with over 5 log kill after 60 minutes of exposure. Exposure under aerobic conditions resulted in less than 1 log kill. The lower bactericidal effects were due to rapid oxidation of the iron to Fe(II) and Fe(III) mineral phases that are not toxic. All organic coatings on NZVI decreased or eliminated NZVI cytotoxicity when exposed at the same NZVI concentrations as in the bare case. The decrease in bactericidal effects of coated NZVI over bare NZVI was due to electrosteric repulsions afforded by the coatings that inhibited contact of NZVI with the bacteria. The inhibition of attachment to bacteria was confirmed with TEM and with NZVI sedimentation studies. Application of coatings may be considered as a means of decreasing the effects of NZVI on subsurface bacteria in field application.

  8. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion.

    PubMed

    Yang, Yu; Guo, Jialiang; Hu, Zhiqiang

    2013-11-01

    Nano zero valent iron (NZVI), although being increasingly used for environmental remediation, has potential negative impact on methanogenesis in anaerobic digestion. In this study, NZVI (average size = 55 ± 11 nm) showed inhibition of methanogenesis due to its disruption of cell integrity. The inhibition was coincident with the fast hydrogen production and accumulation due to NZVI dissolution under anaerobic conditions. At the concentrations of 1 mM and above, NZVI reduced methane production by more than 20%. At the concentration of 30 mM, NZVI led to a significant increase in soluble COD (an indication of cell disruption) and volatile fatty acids in the mixed liquor along with an accumulation of H2, resulting in a reduction of methane production by 69% (±4% [standard deviation]). By adding a specific methanogenesis inhibitor-sodium 2-bromoethanesulfonate (BES) to the anaerobic sludge containing 30 mM NZVI, the amount of H2 produced was only 79% (±1%) of that with heat-killed sludge, indicating the occurrence of bacterially controlled hydrogen utilization processes. Quantitative PCR data was in accordance with the result of methanogenesis inhibition, as the level of methanogenic population (dominated by Methanosaeta) in the presence of 30 mM NZVI decreased significantly compared to that of the control. On the contrary, ZVI powder (average size <212 μm) at the same concentration (30 mM) increased methane production presumably due to hydrogenotrophic methanogenesis of hydrogen gas that was slowly released from the NZVI powder. While it is a known fact that NZVI disrupts cell membranes, which inhibited methanogenesis described herein, the results suggest that the rapid hydrogen production due to NZVI dissolution also contribute to methanogenesis inhibition and lead to bacterially controlled hydrogenotrophic processes.

  9. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene.

    PubMed

    Xiu, Zong-Ming; Jin, Zhao-Hui; Li, Tie-Long; Mahendra, Shaily; Lowry, Gregory V; Alvarez, Pedro J J

    2010-02-01

    Nano-scale zero-valent iron particles (NZVI) are increasingly being used to treat sites contaminated with chlorinated solvents. This study investigated the effect of NZVI on dechlorinating microorganisms that participate in the anaerobic bioremediation of such sites. NZVI can have a biostimulatory effect associated with water-derived cathodic H(2) production during its anaerobic corrosion (730+/-30 micromol H(2) was produced in 166 h in abiotic controls with 1 g/L NZVI) or an inhibitory effect upon contact with cell surfaces (assessed by transmission electron microscopy). Methanogens, which are known to compete for H(2) with dechlorinators, were significantly biostimulated by NZVI and methane production increased relative to NZVI-free controls from 58+/-5 to 275+/-2 micromol. In contrast, bacteria dechlorinating TCE were inhibited by NZVI, and the first-order degradation rate coefficient decreased from 0.115+/-0.005 h(-1) (R(2)=0.99) for controls to 0.053+/-0.003 h(-1) (R(2)=0.98) for treatments with 1 g/L NZVI. Ethene production from TCE was initially inhibited by NZVI, but after 331 h increased to levels observed for an NZVI-free system (7.6+/-0.3 micromol ethene produced in 502 h compared to 11.6+/-0.5 mmol in the NZVI-free system and 3.8+/-0.3 micromol ethene for NZVI alone). Apparently, cathodic H(2) was utilized as electron donor by dechlorinating bacteria, which recovered following the partial oxidation and presumably passivation of the NZVI. Overall, these results suggest that reductive treatment of chlorinated solvent sites with NZVI might be enhanced by the concurrent or subsequent participation of bacteria that exploit cathodic depolarization and reductive dechlorination as metabolic niches.

  10. Weak magnetic field accelerates chromate removal by zero-valent iron.

    PubMed

    Feng, Pian; Guan, Xiaohong; Sun, Yuankui; Choi, Wonyong; Qin, Hejie; Wang, Jianmin; Qiao, Junlian; Li, Lina

    2015-05-01

    Weak magnetic field (WMF) was employed to improve the removal of Cr(VI) by zero-valent iron (ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a WMF, and the WMF-induced improvement was more remarkable at higher Cr(VI) concentration and higher pH. Fe2+ was not detected until Cr(VI) was exhausted, and there was a positive correlation between the WMF-induced promotion factor of Cr(VI) removal rate and that of Fe2+ release rate in the absence of Cr(VI) at pH4.0-5.5. These phenomena imply that ZVI corrosion with Fe2+ release was the limiting step in the process of Cr(VI) removal. The superimposed WMF had negligible influence on the apparent activation energy of Cr(VI) removal by ZVI, indicating that WMF accelerated Cr(VI) removal by ZVI but did not change the mechanism. The passive layer formed with WMF was much more porous than without WMF, thereby facilitating mass transport. Therefore, WMF could accelerate ZVI corrosion and alleviate the detrimental effects of the passive layer, resulting in more rapid removal of Cr(VI) by ZVI. Exploiting the magnetic memory of ZVI, a two-stage process consisting of a small reactor with WMF for ZVI magnetization and a large reactor for removing contaminants by magnetized ZVI can be employed as a new method of ZVI-mediated remediation.

  11. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    NASA Astrophysics Data System (ADS)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  12. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles.

    PubMed

    Gil-Díaz, Mar; Alonso, Juan; Rodríguez-Valdés, Eduardo; Pinilla, Paloma; Lobo, Maria Carmen

    2014-01-01

    The use of nanoscale zero-valent iron (nZVI) as a new tool for the treatment of polluted soils and groundwater has received considerable attention in recent years due to its high reactivity, in situ application and cost-effectiveness. The objectives of this study were to investigate the effectiveness of using a commercial stabilised suspension of nZVI to immobilise As in brownfield soil and to investigate its impact on Fe availability in the treated soil. The phytotoxicities of the soil samples were also evaluated using a germination test with two plant species: barley (Hordeum vulgare L) and common vetch (Vicia sativa L). Two doses of the commercial nZVI suspension were studied, 1% and 10%, and two soil-nanoparticle interaction times, 72 h and 3 mo, were used to compare the stabilities of the soils treated with nZVI. The As availability was evaluated using a sequential extraction procedure and the toxicity characteristics leaching procedure (TCLP) test. The application of nZVI significantly decreased the availability of As in the soil. The immobilisation of As was more effective and more stable over time with the 10% dose than with the 1% dose of the commercial nZVI suspension. The application of nZVI did not induce an important increase in Fe mobility because the Fe leachability was less than 2 mg L(-1) over the time period studied. The lower availability of As in the soil led to a decrease in the phytotoxicity of the soil to barley and vetch germination. Thus, the proposed nanotechnology could be a potential alternative for the in situ remediation of As-polluted soils and could be combined with remediation processes where plants are involved.

  13. Foam-assisted delivery of nanoscale zero valent iron in porous media

    SciTech Connect

    Ding, Yuanzhao; Liu, Bo; Shen, Xin; Zhong, Lirong; Li, Xiqing

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through the unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.

  14. ZERO-VALENT IRON REMOVAL RATES OF AQUEOUS Cr(VI) MEASURED UNDER FLOW CONDITIONS

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-01

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). Dissolved Cr(VI) concentration, dissolved O2 concentration, and Eh data indicated that Cr(VI) removal from the aqueous phase was mass-transfer limited. All pseudo-first-order regression fits to the data were significant (P≤0.05), however, they did not capture many of the salient aspects of the data, including that the removal rate often decreased as contact time increased. As such, application of these rate coefficients to predict long-term Cr(VI) removal were compromised. The rate coefficients measured under flow conditions were comparable to those measured previously under batch conditions with significantly greater solution:solid ratios. Between the range of 20 and 100 wt-% Fe(0) in the column, there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry (0.2 M NaHCO3, distilled water, and a carbonate-dominated groundwater) had only marginal, if any, effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  15. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media.

    PubMed

    Tsakiroglou, Christos; Terzi, Katerina; Sikinioti-Lock, Alexandra; Hajdu, Kata; Aggelopoulos, Christos

    2016-09-01

    A variety of aqueous suspensions (nanofluids) of zero-valent nano-particles (nZVI) are prepared by wet chemistry techniques, their stability and longevity is evaluated by physic-chemical methods of characterization, and their reactivity toward the dechlorination of per-chloro-ethylene (PCE) is examined with tests in batch reactors. For assessing the mobility, longevity and reactivity of nZVI suspensions (nanofluids), under flow-through conditions, visualization multiphase flow and transport tests are performed on a glass-etched pore network. The nZVI breakthrough curves are constructed by measuring the transient variation of the iron concentration in the effluent with atomic absorption spectroscopy. The capacity of nZVI to remediate the bulk phase of PCE is quantified by detecting the mass loss rate of PCE ganglia trapped in glass-etched pore networks during the continuous injection of nZVI suspension or pure water. The nZVI injection in porous media is simulated as an advection- dispersion process by accounting for the attachment/detachment of nanoparticles on the pore-walls, and describing the kinetics of PCE dissolution and reaction by 1st order equations. Visualization experiments reveal that the gradual elimination of PCE ganglia by the injected nZVI is associated with the preferential "erosion" of the upstream interfacial regions. The step controlling the overall process kinetics might be either (i) the enhanced PCE dissolution or (ii) the direct reaction of bulk PCE with the nZVI deposited upon the ganglia interfaces. Inverse modeling of the experiments under the simplifying assumption of one active mechanism indicates that the estimated kinetic coefficients are increasing functions of the flow rate.

  16. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion.

    PubMed

    Huang, Yu-Xi; Guo, Jialiang; Zhang, Chunyang; Hu, Zhiqiang

    2016-01-01

    Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size = 55 ± 11 nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.62 ± 0.26 h(-1) with its half-life of 0.26 ± 0.03 h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27 atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI.

  17. Chlorine and carbon isotope measurements can help assessing the effectivenes of a zero valent iron barrier

    NASA Astrophysics Data System (ADS)

    Cretnik, S.; Audi, C.; Bernstein, A.; Palau, J.; Soler, A.; Elsner, M.

    2012-04-01

    Chlorinated aliphatic hydrocarbons (CAH's) such as trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinylchloride (VC) are extensively used in industrial applications. One of the most promising remediation techniques for CAH's in groundwater is their removal via abiotic reductive dechlorination using Zero Valent Iron (ZVI). This is applied for the treatment of contaminated sites by installing permeable reactive barriers (PRB). In this study, isotope fractionation of chlorinated ethylenes in transformation by cast iron has been investigated, because such types of iron are commonly used in PRBs. Batch experiments have been carried out in closed flasks, containing cast iron with aqueous solutions of TCE, cDCE and VC. These substrates and their respective products have been monitored by headspace samplings for their concentration (by GC-FID) and isotope fractionation of carbon and chlorine (by GC-IRMS). A decreasing reactivity trend was observed when compounds contain less chlorine atoms, with differences in rate constants of about one order of magnitude between each of the substances TCE > cDCE > VC. This resulted in the accumulation of products with fewer chlorine atoms. Therefore a similar observation can be expected if degradation in the field is incomplete, for example in the case of aged or improperly designed PRB. Pronounced carbon and chlorine isotope fractionation was measured for each of the compounds, and characteristic dual isotope plots (C, Cl) were obtained for TCE and cDCE. These results may serve as an important reference for the interpretation of isotope data from field sites, since stable isotope fractionation is widely recognized as robust indicator for such pollutant transformations. However, carbon isotope fractionation in a given parent compound may be caused by either abiotic or biotic degradation. In the field, it can therefore be difficult to delineate the contribution of abiotic transformation by PRB in the presence of ongoing

  18. Mechanisms of NOx removal from flue gas by zero valent iron

    SciTech Connect

    Shiao-Shing Chen; Chih-Yu Cheng; Jung-Chun Chang; Chih-Hui Tang

    2006-06-15

    Chemical reaction between nitric oxide (NO) and zero valent iron (ZVI) was studied in a packed-bed column process with high temperatures based on ZVI strong reducing abilities. For six controlled temperatures of 523- 773 K and 400 ppm of NO (typical flue gas temperature and concentration), under short empty bed contact time, NO was completely removed for temperature of 573-773 K but not for 523 K. Breakthrough curves were conducted for the five working temperatures, and the results indicated that NO reductions by ZVI were varied from 2 to 26.7 mg NO/g ZVI. Higher temperature and longer EBCT achieved better NO removal efficiency. X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were conducted to analyze the crystal structure and oxidation state of the reacted ZVI. Three layers of iron species were detected by XRD: ZVI, Fe{sub 3}O{sub 4}, and Fe{sub 2}O{sub 3}. ZVI was the most prevalent species, and Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} were less from the XRD analysis. By ESCA, the oxidation state on the reacted ZVI surface was determined, and the species was identified as Fe{sub 2}O{sub 3}, which is the most oxidizing species for iron. Therefore, three layers from the ZVI core to the ZVI surface can be identified: ZVI, Fe{sub 3}O{sub 4}, and Fe{sub 2}O{sub 3}. Combining the results from XRD and ESCA, the mechanisms for ZVI and NO can be proposed as two consecutive reactions from lower oxidation state (ZVI) in the core to higher oxidation state on the iron surface (Fe{sub 2}O{sub 3}). Because there was only {lt}5% ZVI used to remove NO comparing to theoretical ZVI used based on the proposed stoichiometry, it can be concluded that the heterogeneous reaction only occurred on the ZVI surface instead of on bulk of the ZVI. 11 refs., 8 figs., 3 tabs.

  19. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well

  20. The removal of uranium onto carbon-supported nanoscale zero-valent iron particles

    NASA Astrophysics Data System (ADS)

    Crane, Richard A.; Scott, Thomas

    2014-12-01

    In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe2+ to Fe3+ (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C6H5O7)·H2O] to Fe0; and (iii) a larger surface area (108.67 compared to 88.61 m2 g-1). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.

  1. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite.

    PubMed

    Zboril, Radek; Andrle, Marek; Oplustil, Frantisek; Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek; Sharma, Virender K

    2012-04-15

    Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3'-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (≈ 10(-2)s(-1)) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10(-8)-10(-6)s(-1)). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  2. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    NASA Astrophysics Data System (ADS)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  3. Degradation of Perchloroethene by zero-valent iron evaluated by carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Leitner, Simon; Watzinger, Andrea; Reichenauer, Thomas G.

    2014-05-01

    Perchloroethene (PCE) is a widely spread groundwater contaminant in formally used industrial sites. Zero valent iron (ZVI) is used for in situ chemical reduction (ISCR) of PCE contaminants in the groundwater. A key factor in the application of in situ remediation technologies is a proper monitoring of contaminant reduction. The measurement of the stable isotope ratio is a promising method that is already used for quantifying microbial degradation of chlorinated contaminants. The carbon isotope ratio of PCE, measured by - isotope ratio mass spectrometry coupled to a gas chromatograph via a combustion interface (GC-C-IRMS), increases during degradation of PCE and can be directly related to the degree of degradation. It can be used to directly quantify chemical degradation and thus serves as a useful monitoring tool for groundwater remediation. An experiment to determine the carbon isotopic fractionation factor was performed as a lab experiment using Nanofer Star (NANOIRON). Two different PCE concentrations (c1: 220mgL-1, c2: 110mgL-1) mixed with 0.5 g of ZVI were sealed under deoxygenated conditions in 250 ml glas bottles locked with mininert caps. The bottles were incubated on a shaker for 865 h. Samples were taken weekly to measure the change in the carbon isotopic ratio of PCE as well as its concentration. Results showed a strong increase in the carbon isotope ratio (δ-value) of PCE (start: -27 o end: -4 ), which indicates a significant dechlorination process of PCE. Beside PCE also one degradation product (Trichloroethylene - TCE) was measured. TCE was further dechlorinated as indicated by the δ-value change of TCE from -26 o to -4 oȦn unexpected intermediate value of -45 o for TCE was observed in the experiment. This fluctuation could be induced by the time depending concentration due to degradation and conversation processes. Furthermore, it seems that the progress of the δ-value is affected by the starting concentration of PCE (δ-value of c1 < c2) as

  4. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water.

    PubMed

    Crane, R A; Dickinson, M; Popescu, I C; Scott, T B

    2011-04-01

    The current work presents a comparative and site specific study for the application of zero-valent iron nanoparticles (nano-Fe(0)) and magnetite nanoparticles (nano-Fe(3)O(4)) for the removal of U from carbonate-rich environmental water taken from the Lişava valley, Banat, Romania. Nanoparticles were introduced to the Lişava water under surface and deep aquifer oxygen conditions, with a U(VI)-only solution studied as a simple system comparator. Thebatch systems were analysed over an 84 day reaction period, during which the liquid and nanoparticulate solids were periodically sampled to determine chemical evolution of the solutions and particulates. Results indicated that U was removed by all nano-Fe(0) systems to <10 μg L(-1) (>98% removal) within 2 h of reaction, below EPA and WHO specified drinking water regulations. Similar U concentrations were maintained until approximately 48 h. X-ray photoelectron spectroscopy analysis of the nanoparticulate solids confirmed partial chemical reduction of U(VI) to U(IV) concurrent with Fe oxidation. In contrast, nano-Fe(3)O(4) failed to achieve >20% U removal from the Lişava water. Whilst the outer surface of both the nano-Fe(0) and nano-Fe(3)O(4) was initially near-stoichiometric magnetite, the greater performance exhibited by nano-Fe(0) is attributed to the presence of a Fe(0) core for enhanced aqueous reactivity, sufficient to achieve near-total removal of aqueous U despite any competing reactions within the carbonate-rich Lişava water. Over extended reaction periods (>1 week) the chemically simple U(VI)-only solution treated using nano-Fe(0) exhibited near-complete and maintained U removal. In contrast, appreciable U re-release was recorded for the Lişava water solutions treated using nano-Fe(0). This behaviour is attributed to the high stability of U in the presence of ligands (predominantly carbonate) within the Lişava water, inducing preferential re-release to the aqueous phase during nano-Fe(0) corrosion. The

  5. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    PubMed

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L(-1). The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (ksa) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn(2+) to ZnCl3(-) and ZnCl4(2-); from CrO4(2-) to CaCrO4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal.

  6. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.

    PubMed

    Dong, Haoran; Ahmad, Kito; Zeng, Guangming; Li, Zhongwu; Chen, Guiqiu; He, Qi; Xie, Yankai; Wu, Yanan; Zhao, Feng; Zeng, Yalan

    2016-04-01

    This study investigated the effect of fulvic acid (FA) on the colloidal stability and reactivity of nano zero-valent iron (nZVI) at pH 5, 7 and 9. The sedimentation behavior of nZVI differed at different pH. A biphasic model was used to describe the two time-dependent settling processes (i.e., a rapid settling followed by a slower settling) and the settling rates were calculated. Generally, the settling of nZVI was more significant at the point of zero charge (pHpzc), which could be varied in the presence of FA due to the adsorption of FA on the nZVI surface. More FA was adsorbed on the nZVI surface at pH 5-7 than pH 9, resulting in the varying sedimentation behavior of nZVI via influencing the electrostatic repulsion among particles. Moreover, it was found that there was a tradeoff between the stabilization and the reactivity of nZVI as affected by the presence of FA. When FA concentration was at a low level, the adsorption of FA on the nZVI surface could enhance the particle stabilization, and thus facilitating the Cr(VI) reduction by providing more available surface sites. However, when the FA concentrations were too high to occupy the active surface sites of nZVI, the Cr(VI) reduction could be decreased even though the FA enhanced the dispersion of nZVI particles. At pH 9, the FA improved the Cr(VI) reduction by nZVI. Given the adsorption of FA on the nZVI surface was insignificant and its effect on the settling behavior of nZVI particles was minimal, it was proposed that the FA formed soluble complexes with the produced Fe(III)/Cr(III) ions, and thus reducing the degree of passivation on the nZVI surface and facilitating the Cr(VI) reduction.

  7. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    PubMed

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  8. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution.

    PubMed

    Petala, Eleni; Dimos, Konstantinos; Douvalis, Alexios; Bakas, Thomas; Tucek, Jiri; Zbořil, Radek; Karakassides, Michael A

    2013-10-15

    MCM-41-supported nanoscale zero-valent iron (nZVI) was sytnhesized by impregnating the mesoporous silica martix with ferric chloride, followed by chemical reduction with NaHB4. The samples were studied with a combination of characterization techniques such as powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Mössbauer spectroscopy, N2 adsorption measurements, transmission electron microscopy (TEM), magnetization measurements, and thermal analysis methods. The experimental data revealed development of nanoscale zero-valent iron particles with an elliptical shape and a maximum size of ∼80 nm, which were randomly distributed and immobilized on the mesoporous silica surface. Surface area measurements showed that the porous MCM-41 host matrix maintains its hexagonal mesoporous order structure and exhibits a considerable high surface area (609 m(2)/g). Mössbauer and magnetization measurements confirmed the presence of core-shell iron nanoparticles composed of a ferromagnetic metallic core and an oxide/hydroxide shell. The kinetic studies demonstrated a rapid removal of Cr(VI) ions from the aqueous solutions in the presence of these stabilized nZVI particles on MCM-41, and a considerably increased reduction capacity per unit mass of material in comparison to that of unsupported nZVI. The results also indicate a highly pH-dependent reduction efficiency of the material, whereas their kinetics was described by a pseudo-first order kinetic model.

  9. Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV).

    PubMed

    Ling, Lan; Pan, Bingcai; Zhang, Wei-xian

    2015-03-15

    Increasing evidences suggest that nanoscale zero-valent iron (nZVI) is an effective agent for treatment and removal of selenium from water. For example, 1.3 mM selenite was quickly removed from water within 3 min with 5 g/L nZVI. In this work, reaction mechanisms of selenite [Se(IV)] in a single core-shell structured nanoscale zero-valent iron (nZVI) particle were studied with the method of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) integrated with X-ray energy dispersive spectroscopy (XEDS). This method was utilized to visualize solid phase translocation and transformation of Se(IV) such as diffusion, reduction, deposition and the effect of surface defects in a single nanoparticle. Se(IV) was reduced to Se(-II) and Se(0), which then formed a 0.5 nm layer of selenium at the iron oxide-Fe(0) interface at a depth of 6 nm from the surface. The results provided near atomic-resolution proof on the intraparticle diffusion-reduction of Se(IV) induced by nZVI. The STEM mapping also discovered that defects on the surface layer accelerate the diffusion of selenium and increase the capacity of nZVI for selenium sequestration.

  10. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials.

    PubMed

    Sun, Zhiming; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L; Xi, Yunfei

    2013-12-15

    A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI/diatomite composites were characterised by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI/diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesised nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilising nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation.

  11. Investigation into the potential toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community

    NASA Astrophysics Data System (ADS)

    Zabetakis, Kara M.

    The microbiological impact of zero-valent iron remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to bare and coated iron nanoparticles. Changes in population numbers and metabolic activity were analyzed using qPCR and were compared to those of a blank, negative, and positive control to assess for microbial toxicity. Additionally, these results were compared to those of samples exposed to an equal concentration of iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three iron treatments were equally toxic to total Bacteria and Archaea populations, as compared with the controls. Therefore, toxicity appears to result either from the release of iron ions and the generation of reactive oxygen species, or from alteration of the redox system and the disruption of microbial metabolisms. There does not appear to be a unique nanoparticle-based toxicity.

  12. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review.

    PubMed

    Sun, Yuankui; Li, Jinxiang; Huang, Tinglin; Guan, Xiaohong

    2016-09-01

    For successful application of a zero-valent iron (ZVI) system, of particular interest is the performance of ZVI under various conditions. The current review comprehensively summarizes the potential effects of the major influencing factors, such as iron intrinsic characteristics (e.g., surface area, iron impurities and oxide films), operating conditions (e.g., pH, dissolved oxygen, iron dosage, iron pretreatment, mixing conditions and temperature) and solution chemistry (e.g., anions, cations and natural organic matter) on the performance of ZVI reported in literature. It was demonstrated that all of the factors could exert significant effects on the ZVI performance toward contaminants removal, negatively or positively. Depending on the removal mechanisms of the respective contaminants and other environmental conditions, an individual variable may exhibit different effects. On the other hand, many of these influences have not been well understood or cannot be individually isolated in experimental or natural systems. Thus, more research is required in order to elucidate the exact roles and mechanisms of each factor in affecting the performance of ZVI. Furthermore, based on these understandings, future research may attempt to establish some feasible strategies to minimize the deteriorating effects and utilize the positive effects so as to improve the performance of ZVI.

  13. Transport of zero-valent iron nanoparticles in carbonate-rich porous aquifers

    NASA Astrophysics Data System (ADS)

    Laumann, S.; Micic, V.; Hofmann, T.

    2012-04-01

    Use of nanoscale zero-valent iron (nZVI) for in situ dechlorination of chlorinated solvents in groundwater is a promising remediation technology, due to a high dechlorination efficiency of nZVI and possible applications in e.g., great depth or under above-ground infrastructure. The success of the in situ nZVI dechlorination strongly depends on the particle delivery to the contaminants. Previous studies reported a limited transport of nZVI through porous media (cm- to dm-range) and this has been recognized as one of the major obstacles in a widespread utilization of this technology (TRATNYEK & JOHNSON, 2006). Factors that limit the transport are particle aggregation and deposition onto the aquifer solids. Both depend on particle properties (e.g., size, shape, iron content, surface coating, surface charge), on concentrations of suspensions, and on site-specific parameters, such as the groundwater chemistry and the properties and inhomogeneity of the aquifer material. Adsorbed anionic polyelectrolyte coatings provide electrostatic double layer repulsions between negatively charged nZVI particles (SALEH ET AL., 2007), hindering their aggregation and also deposition on the negatively charged quartz surfaces (usually prevailing in aquifers). However, it is shown that the presence of surface charge heterogeneities in the aquifer effects the particle transport (JOHNSON ET AL., 1996). Carbonates, iron oxides, and the edges of clay minerals, for instance, carry a positive surface charge at neutral pH (often encountered in groundwater). This leads to a favorable deposition of negatively charged nZVI particles onto carbonates, metal oxide impurities or clay edges, and finally to a decreased particle transport. Considering the high proportion of carbonates commonly encountered in Alpine porous aquifers, in this study we aimed to evaluate the transport of commercially available polyelectrolyte coated nZVI (polyacrylic acid coated-nZVI, NANOIRON s.r.o., CZ) in both quartz and

  14. Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system.

    PubMed

    Cheng, Rong; Cheng, Can; Liu, Guo-Hua; Zheng, Xiang; Li, Guanqing; Li, Jie

    2015-12-01

    Nanoscale zero-valent iron (nZVI) is an environmentally benign material that has been widely used as a reducing agent to treat environmental pollutants. In this study, nZVI was used as a heterogeneous Fenton catalyst in an nZVI/H2O2 system to remove pentachlorophenol (PCP) from water. The PCP degradation process in the nZVI/H2O2 system was completed within 1h. The relative Cl(-) concentration increased throughout the test period (6h), indicating that the performance of the oxidative system in terms of dechlorination was excellent. The initial H2O2 concentration significantly influenced the PCP removal rate, and nZVI performed better than commercial zero-valent iron as a catalyst. Moreover, magnetite (Fe3O4), which was the main product of the corrosion of nZVI, was found to perform well as an adsorbent and catalyst, so it allowed the nZVI to be effectively reused.

  15. Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron.

    PubMed

    Chen, Bing; Wang, Xikui; Wang, Chen; Jiang, Wenqiang; Li, Shuping

    2011-09-01

    The degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron (US-Fe(0))was investigated and an evident synergistic effect was observed. The synergetic effect is mainly due to the increase of ()OH radical concentration from Fenton's reaction. The ()OH radical concentrations in sole sonication and US-Fe(0) process were detected by using terephthalic acid as a fluorescent probe and found that ()OH radicals were generated continuously during sonication and the production of ()OH radicals in US-Fe(0) process was much higher than that in sole sonication. The degradation of direct sky blue 5B followed a pseudo-first-order kinetics and the degradation rate constants were found to be 0.0206 and 0.169 min(-1) with sole sonication and US-Fe(0) process respectively. It was also found that the degradation ratio of direct sky blue 5B increased with the increase of zero-valent iron dosage and decrease of pH value of the dye aqueous solution. The degradation mechanism of direct sky blue 5B with US-Fe(0) process was discussed by the changes of UV-Vis spectrogram of the dye during degradation. The dramatic changes of UV spectra showed a disappearance of both azo and aromatic groups during the degradation.

  16. Conjunctive effect of CMC-zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

    NASA Astrophysics Data System (ADS)

    Madhavi, Vemula; Prasad, Tollamadugu Naga Venkata Krishna Vara; Reddy, Balam Ravindra; Reddy, Ambavaram Vijay Bhaskar; Gajulapalle, Madhavi

    2014-04-01

    Chromium is an important industrial metal used in various products and processes but at the same time causing lethal environmental hazards. Remediation of Cr-contaminated soils poses both technological and economic challenges, as conventional methods are often too expensive and difficult to operate. Zero-valent iron particles at nanoscale are proposed to be one of the important reductants of Cr(VI), transforming the same into nontoxic Cr(III). In the present investigation, soils contaminated with Cr(VI) are allowed to react with the various loadings of zero-valent iron nanoparticles (Fe0) for a reaction period of 24 h. Fe0 nanoparticles were synthesized by the reduction of ferrous sulfate in the presence of sodium borohydride and stabilized with carboxy methyl cellulose and were characterized by scanning electron microscopy, energy dispersion spectroscopy, X-ray diffraction, UV-vis spectrophotometer, Fourier transform-infra red spectrophotometer, Raman spectroscopy, dynamic light scattering technique and zeta potential. Further, this work demonstrates the potential utilization of farm yard manure (FYM) and Fe0 nanoparticles in combination and individually for the effective remediation of Cr(VI)-contaminated soils. An increase in the reduction of Cr(VI) from 60 to 80 % was recorded with the increase in the loading of Fe0 nanoparticles from 0.1 to 0.3 mg/100 g individually and in combination with FYM ranging from 50 to 100 mg/100 g soil.

  17. Arsenic chemistry with sulfide, pyrite, zero-valent iron, and magnetite

    NASA Astrophysics Data System (ADS)

    Sun, Fenglong

    The aim of this thesis is to study the immobilization reactions of arsenic in water. Since compounds containing iron or sulfide are common in most natural and engineered systems, the research focused on the redox reactions and adsorption of arsenic with sulfide, pyrite, zero-valent iron (ZVI), and magnetite which were studied through wet chemistry methods and spectroscopic techniques. The kinetic and thermodynamic information of the reactions of As(V) with S(-II), As(V)/As(III) with pyrite and surface-oxidized pyrite, As(V) with ZVI and acid-treated ZVI, As(III) with magnetite was used to identify mechanisms. The necessity to maintain strictly anoxic conditions was emphasized for the study of arsenic redox chemistry with sulfides and ZVI. The major findings of this research can be stated as follows. First, dissolved sulfide reduced As(V) to lower valences to form a yellow precipitate at acidic pH. The reaction involved the formation of thioarsenic intermediate species. Dissolved O2, granular activated carbon (GAC) and dissolved Fe(II) inhibited the removal of As(V) by sulfide. Elemental sulfur catalyzed the reduction of As(V) by sulfide, which implied the possible benefit of using sulfur-loaded GAC for arsenic removal. Possible reaction mechanisms were discussed. Second, As(III) adsorbed on pristine pyrite over a broader pH range than on surface-oxidized pyrite, while As(V) adsorbed over a narrower pH range with pristine pyrite. As(V) was completely reduced to As(III) on pristine pyrite at acidic pH but not at higher pH. The reduction was first-order with respect to As(V). As(V) was not reduced on surface-oxidized pyrite at pH = 4--11. The different behaviors of As(V) and As(III) on pristine and surface oxidized pyrite determines the toxicity and mobility of arsenic under oxic/anoxic environments. Third, commercial ZVI reduced As(V) to As(III) at low pH (<9) but not at higher pH. Acid-treated ZVI reduced As(V) to As(0), indicated by wet chemical analyses and by

  18. EFFECTS OF NATURAL ORGANIC MATTER, ANTHROPOGENIC SURFACTANTS, AND MODEL QUINONES ON THE REDUCTION OF CONTAMINANTS BY ZERO-VALENT IRON. (R827117)

    EPA Science Inventory

    Recent studies of contaminant reduction by zero-valent iron metal (Fe0) have highlighted the role of iron oxides at the metal–water interface and the effect that sorption has at the oxide–water interface on contaminant reduction kinetics. The results s...

  19. In situ remediation of ground water contaminated with chromate and chlorinated solvents using zero-valent iron: A field study

    SciTech Connect

    Puls, R.W.; Paul, C.J.; Powell, R.W.

    1995-12-01

    A small-scale field test was recently initiated to evaluate the in situ remediation of ground water contaminated with chromate and chlorinated organics using a permeable reactive barrier. The barrier was composed of an iron metal-coarse sand-native aquifer solid mixture, and was installed using a staggered {open_quotes}fence{close_quotes} design through large hollow-stem augers. The objectives of the project were to evaluate the ability of the cylinders or {open_quotes}fence posts{close_quotes} to remove contaminants from solution immediately downgradient and adjacent to the iron cylinders, evaluate the resultant changes in aqueous geochemistry induced by the presence of the zero-valent iron, and identify chemical, physical and biological processes which may affect long-term performance of such remedial technologies.

  20. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.

    PubMed

    Busch, J; Meißner, T; Potthoff, A; Bleyl, S; Georgi, A; Mackenzie, K; Trabitzsch, R; Werban, U; Oswald, S E

    2015-10-01

    The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 5.3m in a confined, natural aquifer. The injection/extraction rate was 500L/h. Approximately 1.2kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers.

  1. Hydraulic and geochemical performance of a permeable reactive barrier containing zero-valent iron, Denver Federal Center

    USGS Publications Warehouse

    McMahon, P.B.; Dennehy, K.F.; Sandstrom, M.W.

    1999-01-01

    The hydraulic and geochemical performance of a 366 m long permeable reactive barrier (PRB) at the Denver Federal Center; Denver, Colorado, was evaluated. The funnel and gate system, which was installed in 1996 to intercept and remediate ground water contaminated with chlorinated aliphatic hydrocarbons (CAHs), contained four 12.2 m wide gates filled with zero-valent iron. Ground water mounding on the upgradient side of the PRB resulted in a tenfold increase in the hydraulic gradient and ground water velocity through the gates compared to areas of the aquifer unaffected by the PRB. Water balance calculations for April 1997 indicate that about 75% of the ground water moving toward the PRB from upgradient areas moved through the gates. The rest of the water either accumulated on the upgradient side of the PRB or bypassed the PRB. Chemical data from monitoring wells screened down-gradient, beneath, and at the ends of the PRB indicate that contaminants had not bypassed the PRB, except in a few isolated areas. Greater than 99% of the CAH mass entering the gates was retained by the iron. Fifty-one percent of the CAH carbon entering one gate was accounted for in dissolved C1 and C2 hydrocarbons, primarily ethane and ethene, which indicates that CAHs may adsorb to the iron prior to being dehalogenated. Treated water exiting the gates displaced contaminated ground water at a distance of at least 3 m downgradient from the PRB by the end of 1997. Measurements of dissolved inorganic ions in one gate indicate that calcite and siderite precipitation in the gate could reduce gate porosity by about 0.35% per year. Results from this study indicate that funnel and gate systems containing zero-valent iron can effectively treat ground water contaminated with CAHs. However, the hydrologic impacts of the PRB on the flow system need to be fully understood to prevent contaminants from bypassing the PRB.

  2. ENVIRONMENTAL RESEARCH BRIEF: LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS USING ZERO-VALENT IRON: AN EVALUATION AT TWO SITES

    EPA Science Inventory

    Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, NC and the Denver Federal Center, CO sites. These groundwater treatment systems use zero-valent iron filings to intercept an...

  3. Zero-valent iron/biotic treatment system for perchlorate-contaminated water: lab-scale performance, modeling, and full-scale implications

    EPA Science Inventory

    The computer program AQUASIM was used to model biological treatment of perchlorate-contaminated water using zero-valent iron corrosion as the hydrogen gas source. The laboratory-scale column was seeded with an autohydrogenotrophic microbial consortium previously shown to degrade ...

  4. The use of Zero-valent iron biosand filters to reduce E. coli O157:H12 in irrigation water applied to spinach plants in a field setting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminated irrigation water is a potential source for the introduction of foodborne pathogens on to produce commodities. Zero-valent iron (ZVI) may provide a simple cheap method to mitigate the contamination of produce groups through irrigation water. A small field scale system was utilized to e...

  5. Use of zero-valent iron biosand filters to reduce E. coli O157:H12 in irrigation water applied to spinach plants in a field setting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Zero-valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Purpose: To evaluate the use of ZVI-filtration in decontaminating E. coli O157:H12 in irrigation water and on spinach plants in a small, field-scale...

  6. Enhanced removal of soluble Cr(VI) by using zero-valent iron composite supported by surfactant-modified zeolites.

    PubMed

    Dang, Hongyu; Zhang, Yongxiang; Du, Peiwen

    2014-01-01

    Zero-valent iron (ZVI) was immobilized onto surfactant-modified zeolites (SMZ) using calcium alginate. Scanning electron microscopy showed that ZVI powder was uniformly immobilized on the surface of the SMZ. The added ZVI powder resulted in enhanced dichromate removal efficiency and the heterogeneous surface of the composite. The adsorption of dichromate onto the ZVI-SMZ composites fitted well to a pseudo-second-order model and the Langmuir adsorption isotherm. The maximum dichromate adsorption capacity of the composite was 2.49 mg/g at the temperature of 293 K. Higher removal efficiency was obtained at pH lower than 7. X-ray photoelectron spectrometry revealed that the composites combined the strong reductive quality of ZVI and superior adsorption of SMZ.

  7. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron.

    PubMed

    Long, Yu-Yang; Zhang, Chi; Du, Yao; Tao, Xiao-Qing; Shen, Dong-Sheng

    2014-03-01

    Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g(-1) of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity.

  8. Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system.

    PubMed

    Zha, Yiming; Zhou, Ziqing; He, Haibo; Wang, Tianlin; Luo, Liqiang

    2016-01-01

    Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption-desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h.

  9. Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane

    NASA Astrophysics Data System (ADS)

    Liu, Chunyi; Li, Xiang; Ma, Bomou; Qin, Aiwen; He, Chunju

    2014-12-01

    The functionalizing nanoporous polyacrylonitrile-based oxidized membrane (PAN-OM) firmly immobilized with highly reactive nanoscale zero-valent iron (NZVI) are successfully prepared via an innovative in situ synthesis method. Due to the formation of ladder structure, the PAN-OM present excellent thermal and chemical stabilities as a new carrier for the in-situ growth of NZVI via firm chelation and reduction action, respectively, which prevent the aggregation and release of NZVI. The developed NZVI-immobilized membrane present effective decolorizing efficiency to both anionic methyl blue and cationic methylene blue with a pseudo-first-order decay and degrading efficiency to trichloroethylene (TCE). The regeneration and stability results show that NZVI-immobilized membrane system can be regenerated without obvious performance reduction, which remain the reactivity after half a year storage period. These results suggest that PAN-based oxidized membrane immobilized with NZVI exhibit significant potential for environmental applications.

  10. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+Soultion : Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Dai, C.; Zhang, Y.

    2015-12-01

    The nanoscale particle and low oxidation reduction potential make nano zero-valent iron (nZVI) an efficient sorbent and reductant for treating many kinds of organic contaminants and heavy metals.The structures of nanoscale zero-valent iron (nZVI) particles are evolving in reactions, and the reactions are influenced by the evolved structures. In order to understand the detail removal process, it is important to investigate the interactions between reactions and structural evolution. In this work, reactions between nZVI and Co2+ at different initial concentrations in anoxic aqueous solutions (to eliminate the effects of O2) were tracked for 10 days using a variety of methods including inductively coupled plasma optical emission spectrometry (ICP-OES), high resolution-transmission electron microscopy (HR-TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). Continuous removal and reduction of Co2+ by nZVI caused by structural evolution were revealed in reaction processes. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the corrosion rate of nZVI, was deemed as the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results showed that the formation and dissolution of sheet structure impacts on the ratio of Fe (0) on nZVI's surface and the surface reduction of Co2+. The cavity structure provides the possibility of Co migrating from surface to inside of nZVI leading a continuous removal. A subacidity condition could accelerate the evolution to improve the removal of Co2+ and the results of structural controlled reactions further indicated that the removal was suspended by sheet structure and enhanced by cavity structure. The results in this study revealed "structural influence" for fully and dynamically understanding nZVI's reactions.

  11. Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects.

    PubMed

    Wilkin, Richard T; Puls, Robert W; Sewell, Guy W

    2003-01-01

    Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, North Carolina, and the Denver Federal Center, Colorado, sites. These ground water treatment systems use zero-valent iron filings (Peerless Metal Powders Inc.) to intercept and remediate chlorinated hydrocarbon compounds at the Denver Federal Center (funnel-and-gate system) and overlapping plumes of hexavalent chromium and chlorinated hydrocarbons at Elizabeth City (continuous wall system). Zero-valent iron at both sites is a long-term sink for carbon, sulfur, calcium, silicon, nitrogen, and magnesium. After about four years of operation, the average rates of inorganic carbon (IC) and sulfur (S) accumulation are 0.09 and 0.02 kg/m2/year, respectively, at Elizabeth City where upgradient waters contain <400 mg/L of total dissolved solids (TDS). At the Denver Federal Center site, upgradient ground water contains 1000 to 1200 mg/L TDS and rates of IC and S accumulation are as high as 2.16 and 0.80 kg/m2/year, respectively. At both sites, consistent patterns of spatially variable mineral precipitation and microbial activity are observed. Mineral precipitates and microbial biomass accumulate the fastest near the upgradient aquifer-Fe0 interface. Maximum net reductions in porosity due to the accumulation of sulfur and inorganic carbon precipitates range from 0.032 at Elizabeth City to 0.062 at the Denver Federal Center (gate 2) after about four years. Although pore space has been lost due the accumulation of authigenic components, neither site shows evidence of pervasive pore clogging after four years of operation.

  12. AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand.

    PubMed

    Wan, Junfeng; Klein, Jonathan; Simon, Stephane; Joulian, Catherine; Dictor, Marie-Christine; Deluchat, Véronique; Dagot, Christophe

    2010-09-01

    The combined processes of biological As(III) oxidation and removal of As(III) and As(V) by zero-valent iron were investigated with synthetic water containing high As(III) concentration (10 mg L(-1)). Two up-flow fixed-bed reactors (R1 and R2) were filled with 2 L of sieved sand (d = 3 ± 1 mm) while zero-valent iron powder (d = 76 μm; 1% (w/w) of sand) was mixed evenly with sand in R2. Thiomonas arsenivorans was inoculated in the two reactors. The pilot unit was studied for 33 days, with HRT of 4 and 1 h. The maximal As(III) oxidation rate was 8.36 mg h(-1) L(-1) in R1 and about 45% of total As was removed in R2 for an HRT of 1 h. A first order model fitted well with the As(III) concentration evolution at the different levels in R1. At the end of the pilot monitoring, batch tests were conducted with support collected at different levels in R1. They showed that bacterial As(III) oxidation rate was correlated with the axial length of reactor, which could be explained by biomass distribution in reactor or by bacterial activity. In opposition, As(III) oxidation rate was not stable in R2 due to the simultaneous bacterial As(III) oxidation and chemical removal by zero-valent iron and its oxidant products. However, a durable removal of total As was realized and zero-valent iron was not saturated by As over 33 days in R2. Furthermore, the influence of zero-valent iron and its oxidant corrosion products on the evolution of As(III)-oxidizing bacteria diversity was highlighted by the molecular fingerprinting method of PCR-DGGE using aoxB gene as a functional marker of aerobic As(III) oxidizers.

  13. Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis.

    PubMed

    Wang, Wenbing; Wu, Yanqing

    2017-01-01

    1,1,1-Trichloroethane (1,1,1-TCA), a dense non-aqueous phase liquid (DNAPL), is relatively slow to remediate naturally; combination of zero-valent iron and immobilized microorganism is a potential means to accelerate DNAPL biodegradation. We first adopted high density luffa sponge (HDLS) as immobilized microorganism carrier. The experimental results demonstrated that (1) the supernatant liquid microorganisms were the optimal immobilized microorganisms for HDLS and (2) the combination of zero-valent iron and immobilized microorganisms accelerated 1,1,1-TCA transformation. Furthermore, in the long-term remediation process, anaerobic microorganisms produced reductant H2S which was beneficial to zero-valent iron PRBs. Through further study of the microbial community, we found that majority of the sulfate-reducing bacteria (SRB) perfectly adapted to the process of 1,1,1-TCA co-metabolism dechlorination. Desulfobulbus and Desulfococcus potentially were the special SRB that contributed significantly to TCA co-metabolism. Additionally, 1,1,1-TCA induced the generation of new SRB and stimulated the growth of majority of dominating methanogens. The results indicated that they played a constructive role in accelerating the dechlorination of 1,1,1-TCA, reduction of sulfate, and improving the production of CH4. Consequently, combination of zero-valent iron and immobilized microorganisms for remediating groundwater by contaminated 1,1,1-TCA is a sustainable and green remediation technology. Especially for groundwater of SO4(2-) type contaminated by 1,1,1-TCA, in the long-term course of combination degradation, cyclic utilization of H2S to prolong the service life of zero-valent iron PRBs. H2 and CH4 generated to capture as potential energy resource. Based on this, a tentative reaction mechanism for Fe(0) biodegradation of 1,1,1-TCA was proposed.

  14. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  15. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  16. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  17. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Chen, Chi-Chun; Chen, Po-En

    2010-12-15

    In this study, a synthesized cation exchange resin supported nano zero-valent iron (NZVI) complex forming NZVI-resin was proposed for the decoloration of an azo dye Acid Blue 113 (AB 113), taking into account reaction time, initial dye concentration, NZVI dose and pH. From results, the successful decoloration of the AB 113 solution was observed using a NZVI-resin. Increasing the iron load to 50.8 mg g(-1), the removal efficiencies of the AB 113 concentration increased exponentially. With an initial dye concentration of 100 mg l(-1) and nano iron load of 50.8 mg g(-1), the best removal efficiencies were obtained at 100 and 12.6% for dye concentration and total organic carbon, respectively. Color removal efficiency was dependent on initial dye concentration and iron load. Moreover, the removal rates followed modified pseudo-first order kinetic equations with respect to dye concentration. Thus, the observed removal rate constants (k) were 0.137-0.756 min(-1) by NZVI loads of 4.9-50.8 mg g(-1). Consequently, the NZVI-resin performed effectively for the decoloration of AB 113 azo dye, offering great potential in the application of NZVI-resins in larger scale column tests and further field processes.

  18. Comparisons of the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles.

    PubMed

    Xie, Yingying; Fang, Zhanqiang; Qiu, Xinhong; Tsang, Eric Pokeung; Liang, Bin

    2014-08-01

    Our previous reports showed that nano zero-valent iron (nZVI), steel pickle liquor for the synthesis of nZVI (S-nZVI), nZVI immobilised in mesoporous silica microspheres (SiO2@FeOOH@Fe) and nano Ni/Fe bimetallic particles (Ni/Fe) have been proved to show good property for elimination of polybrominated diphenyl ethers (PBDEs). However, it is necessary to compare their reactivity, reusability and stability when applied to in situ remediation. In this study, the performances of different iron-based nanoparticles were compared through reusability, sedimentation and iron dissolution experiments. The SiO2@FeOOH@Fe and Ni/Fe nanoparticles were shown to have higher reusability and stability, as they could be reused more than seven times, and that the SiO2@FeOOH@Fe can effectively avoid leaching iron ions into the solution and causing secondary pollution in the reaction. This study may serve as a reference for PBDE remediation in the future.

  19. Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (VI) removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Xiong, Kun; Gao, Yuan; Zhou, Lin; Zhang, Xianming

    2016-09-01

    Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica-carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI-MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N2 adsorption and desorption. The results show that nZVI-MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI-MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI-MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.

  20. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite.

    PubMed

    Li, Zi-Jie; Wang, Lin; Yuan, Li-Yong; Xiao, Cheng-Liang; Mei, Lei; Zheng, Li-Rong; Zhang, Jing; Yang, Ju-Hua; Zhao, Yu-Liang; Zhu, Zhen-Tai; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-06-15

    Zero-valent iron nanoparticle (ZVI-np) and its graphene composites were prepared and applied in the removal of uranium under anoxic conditions. It was found that solutions containing 24 ppm U(VI) could be completely cleaned up by ZVI-nps, regardless of the presence of NaHCO3, humic acid, mimic groundwater constituents or the change of solution pH from 5 to 9, manifesting the promising potential of this reactive material in permeable reactive barrier (PRB) to remediate uranium-contaminated groundwater. In the measurement of maximum sorption capacity, removal efficiency of uranium kept at 100% until C0(U) = 643 ppm, and the saturation sorption of 8173 mg U/g ZVI-nps was achieved at C0(U) = 714 ppm. In addition, reaction mechanisms were clarified based on the results of SEM, XRD, XANES, and chemical leaching in (NH4)2CO3 solution. Partially reductive precipitation of U(VI) as U3O7 was prevalent when sufficient iron was available; nevertheless, hydrolysis precipitation of U(VI) on surface would be predominant as iron got insufficient, characterized by releases of Fe(2+) ions. The dissolution of Fe(0) cores was assigned to be the driving force of continuous formation of U(VI) (hydr)oxide. The incorporation of graphene supporting matrix was found to facilitate faster removal rate and higher U(VI) reduction ratio, thus benefitting the long-term immobilization of uranium in geochemical environment.

  1. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

    PubMed

    Di Palma, L; Gueye, M T; Petrucci, E

    2015-01-08

    Iron sulphate (FeSO4) and colloidal nano zero-valent iron (nZVI) as reducing agents were compared, with the aim of assessing their effectiveness in hexavalent chromium [Cr(VI)] removal from a contaminated industrial soil. Experiments were performed on soil samples collected from an industrial site where a nickel contamination, caused by a long-term productive activity, was also verified. The influence of reducing agents amount with respect to chromium content and the effectiveness of deoxygenation of the slurry were discussed. The soil was fully characterized before and after each test, and sequential extractions were performed to assess chemico-physical modifications and evaluate metals mobility induced by washing. Results show that both the reducing agents successfully lowered the amount of Cr(VI) in the soil below the threshold allowed by Italian Environmental Regulation for industrial reuse. Cr(VI) reduction by colloidal nZVI proved to be faster and more effective: the civil reuse of soil [Cr(VI)<2mg/kg] was only achieved using colloidal nZVI within 60min adopting a nZVI/Cr(VI) molar ratio of 30. The reducing treatment resulted in an increase in the amount of chromium in the oxide-hydroxide fraction, thus confirming a mechanism of chromium-iron hydroxides precipitation. In addition, a decrease of nickel (Ni) and lead (Pb) content in soil was also observed when acidic conditions were established.

  2. Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer.

    PubMed

    Daoud, Waseem; Ebadi, Taghi; Fahimifar, Ahmad

    2015-01-01

    Hexavalent chromium Cr(VI) is of particular environmental concern due to its toxicity, mobility, and challenging removal from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. Moreover, it does not form insoluble compounds in aqueous solutions; therefore, separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, trivalent Cr(III) cations are the opposite and, like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI)-Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. Permeable reactive barriers (PRBs) with zero-valent iron (ZVI) have been used to remediate contaminated groundwater with metals, but using ZVI in remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation, and difficulty in separation of iron from the treated solution. Thus, the technology used in the present study is developed to address these problems by placing a layer of bentonite after the PRB layer to remove iron from the treated water. The removal rates of Cr(VI) under different values of pH were investigated, and the results indicated the highest adsorption capacity at low pH.

  3. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    PubMed

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  4. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-11-01

    Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.

  5. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water.

    PubMed

    Liu, Airong; Liu, Jing; Zhang, Wei-Xian

    2015-01-01

    The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions.

  6. Influences of nanoscale zero valent iron loadings and bicarbonate and calcium concentrations on hydrogen evolution in anaerobic column experiments.

    PubMed

    Paar, Hendrik; Ruhl, Aki Sebastian; Jekel, Martin

    2015-01-01

    The estimation of nanoscale zero-valent iron (nZVI) reactivity after its injection into the subsurface is essential for its application in groundwater remediation. In the present study H₂ generation of commercially available nZVI and novel milled nZVI flakes were investigated in column experiments with varying nZVI loads (ranging from 8 to 43 g nZVI per kg sand). H₂ evolution rates were determined for column experiments without and with hydrogen carbonate and/or calcium. On average 0.29 mmol H₂/L per g Fe⁰ evolved within the first 30 days in column experiments with spherical, commercial nZVI particles. The H₂ evolution developed almost independently of the water matrices applied. The application of nZVI flakes resulted in lower H₂ generation rates. In general corrosion rates accelerated linearly with increasing initial amounts of iron. This was evident in experiments with both particle types. Concentration profiles of carbonate and calcium in influent and effluent were used to estimate corrosion products and precipitates. Despite the presence of high concentrations of inorganic carbon, Fe²⁺ reacted preferably with hydroxide ions to form ferrous hydroxide which is the precursor of magnetite. As a result only minor passivation of the reactive nZVI was observed.

  7. Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero valent iron.

    PubMed

    Jiang, Xiao; Qiao, Junlian; Lo, Irene M C; Wang, Lei; Guan, Xiaohong; Lu, Zhanpeng; Zhou, Gongming; Xu, Chunhua

    2015-01-01

    A weak magnetic field (WMF) was proposed to enhance paramagnetic Cu(2+) ions removal by zero valent iron (ZVI). The rate constants of Cu(2+) removal by ZVI with WMF at pH 3.0-6.0 were -10.8 to -383.7 fold greater than those without WMF. XRD and XPS analyses revealed that applying a WMF enhanced both the Cu(2+) adsorption to the ZVI surface and the transformation of Cu(2+) to Cu(0) by ZVI. The enhanced Cu(2+) sequestration by ZVI with WMF was accompanied with expedited ZVI corrosion and solution ORP drop. The uneven distribution of paramagnetic Cu(2+) along an iron wire in an inhomogeneous MF verified that the magnetic field gradient force would accelerate the paramagnetic Cu(2+) transportation toward the ZVI surface due to the WMF-induced sharp decay of magnetic flux intensity from ZVI surface to bulk Cu(2+) solution. The paramagnetic Fe(2+) ions generated by ZVI corrosion would also accumulate at the position with the highest magnetic flux intensity on the ZVI surface, causing uneven distribution of Fe(2+), and facilitate the local galvanic corrosion of ZVI, and thus, Cu(2+) reduction by ZVI. The electrochemical analysis verified that the accelerated ZVI corrosion in the presence of WMF partly arose from the Lorentz force-enhanced mass transfer.

  8. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min.

  9. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality.

    PubMed

    Zhang, Yaobin; Liu, Yiwen; Jing, Yanwen; Zhao, Zhiqiang; Quan, Xie

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality. The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI. The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV. Iron ion dissolution from the ZVI could buffer acidity in the reactor, the amount of which was related to the COD concentration. Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one. Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  10. Arsenic removal from geothermal waters with zero-valent iron--effect of temperature, phosphate and nitrate.

    PubMed

    Tyruvola, Konstantina; Nikolaidis, Nikolaus P; Veranis, Nikolaus; Kallithrakas-Kontos, Nikolaso; Koulouridakis, Pavlos E

    2006-07-01

    Field column studies and laboratory batch experiments were conducted in order to assess the performance of zero-valent iron in removing arsenic from geothermal waters in agricultural regions where phosphates and nitrates were present. A field pilot study demonstrated that iron filings could remove arsenic, phosphate and nitrate from water. In addition, batch studies were performed to evaluate the effect of temperature, phosphate and nitrate on As(III) and As(V) removal rates. All batch experiments were conducted at three temperatures (20, 30 and 40 degrees C). Pseudo-first-order reaction rate constants were calculated for As(III), As(V), phosphate, nitrate and ammonia for all temperatures. As(V) exhibited greater removal rates than As(III). The presence of phosphate and nitrate decreased the rates of arsenic removal. The temperature of the water played a dominant role on the kinetics of arsenic, phosphate and nitrate removal. Nitrate reduction resulted in the formation of nitrite and ammonia. In addition, the activation energy, Eact, and the constant temperature coefficient, theta were determined for each removal process.

  11. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    PubMed

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity.

  12. Enhanced ultrasound-assisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron.

    PubMed

    Yuan, Na; Zhang, Gaoke; Guo, Sheng; Wan, Zhen

    2016-01-01

    In this study, the rectorite-supported nanoscale zero-valent iron (nZVI/R) was synthesized through a reduction method. X-ray diffraction analysis showed the existence of the nZVI in the nZVI/R composite and X-ray photoelectron spectroscopy analysis indicated that the nZVI particles were partly oxidized into iron oxide. Scanning electron microscopy analysis revealed that the nZVI particles were highly dispersed on the surface of the rectorite. The specific surface area of the nZVI/R composite is 21.43 m(2)/g, which was higher than that of rectorite (4.30 m(2)/g) and nZVI (17.97 m(2)/g). In the presence of ultrasound (US), the degradation of methyl orange and metronidazole by the nZVI/R composite was over 93% and 97% within 20 min, respectively, which is much higher than that by the rectorite and the nZVI. The degradation ratio of methyl orange and metronidazole by the nZVI/R composite under US was 1.7 and 1.8 times as high as that by the nZVI/R composite without US, respectively. The mechanism of the enhanced degradation of methyl orange and metronidazole under US irradiation was studied. These results indicate that the US/nZVI/R process has great potential application value for treatment of dye wastewater and medicine wastewater.

  13. Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water.

    PubMed

    Chen, Haifeng; Cao, Yu; Wei, Enze; Gong, Tingting; Xian, Qiming

    2016-03-01

    Halonitromethanes (HNMs), as an emerging class of disinfection by-products containing nitrogen (N-DBPs) in drinking water, have possessed public health concerns. Two most studied materials, graphene and nanometer-sized zero-valent iron, have been successfully combined into binary nanocomposites (G-nZVI) via facile carbonization and calcinations of glucose and ferric chloride, which was used in the removal of HNMs from drinking water in this study. When the Fe/C mass ratio was 1:5, the as-prepared G-nZVI hybrids comprised numerous dispersed Fe(0) nanoparticles with a range of 5-10 nm in diameter. Batch experimental results indicated that the as-prepared G-nZVI could effectively remove trichloronitromethane (TCNM), a dominant in the group of HNMs from drinking water. About 99% of initial TCNM could be adsorbed and degraded under 60 mg/L G-nZVI dosage within 120 min. Kinetic studies indicated that the removal of TCNM by G-nZVI followed a pseudo first order rate (R(2) > 0.9). The degradation pathways of TCNM by G-nZVI nanocomposites might include dechlorination and denitration of TCNM. The Fe was in the form of iron oxides in the graphene material shape which was then restored to Fe(0) again via calcinations. These results indicated that the synthesized G-nZVI nanocomposites could be a powerful material to remove HNMs from drinking water.

  14. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.

    PubMed

    Luo, Jinghuan; Song, Guangyu; Liu, Jianyong; Qian, Guangren; Xu, Zhi Ping

    2014-12-01

    Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.

  15. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process.

    PubMed

    Chen, Shiao-Shing; Cheng, Chih-Yu; Li, Chi-Wang; Chai, Pao-Hsuan; Chang, Yu-Min

    2007-04-02

    Fluidized zero valent iron (ZVI) process was conducted to reduce hexavalent chromium (chromate, CrO(4)(2-)) to trivalent chromium (Cr(3+)) from electroplating wastewater due to the following reasons: (1) Extremely low pH (1-2) for the electroplating wastewater favoring the ZVI reaction. (2) The ferric ion, produced from the reaction of Cr(VI) and ZVI, can act as a coagulant to assist the precipitation of Cr(OH)(3(s)) to save the coagulant cost. (3) Higher ZVI utilization for fluidized process due to abrasive motion of the ZVI. For influent chromate concentration of 418 mg/L as Cr(6+), pH 2 and ZVI dosage of 3g (41 g/L), chromate removal was only 29% with hydraulic detention time (HRT) of 1.2 min, but was increased to 99.9% by either increasing HRT to 5.6 min or adjusting pH to 1.5. For iron species at pH 2 and HRT of 1.2 min, Fe(3+) was more thermodynamically stable since oxidizing agent chromate was present. However, if pH was adjusted to 1.5 or 1, where chromate was completely removed, high Fe(2+) but very low Fe(3+) was present. It can be explained that ZVI reacted with chromate to produce Fe(2+) first and the presence of chromate would keep converting Fe(2+) to Fe(3+). Therefore, Fe(2+) is an indicator for complete reduction from Cr(VI) to Cr(III). X-ray diffraction (XRD) was conducted to exam the remained species at pH 2. ZVI, iron oxide and iron sulfide were observed, indicating the formation of iron oxide or iron sulfide could stop the chromate reduction reaction.

  16. Remediation of chromate-contaminated groundwater using zero-valent iron: Field test at USCG Support Center, Elizabeth City, North Carolina

    SciTech Connect

    Puls, R.W.; Paul, C.J.; Powell, R.M.

    1996-12-31

    A field test was conducted near an old hard-chrome plating facility on the USCG Support Center near Elizabeth City, North Carolina to evaluate the in situ remediation of ground water contaminated by hexavalent chromium using a passive permeable reactive barrier composed of a zero-valent iron-sand-aquifer material mixture. The remedial effectiveness of this innovative in situ technology was in situ technology was monitored over a one year period.

  17. Dechlorination of PCBs in the simulative transformer oil by microwave-hydrothermal reaction with zero-valent iron involved.

    PubMed

    Liu, Xitao; Zhao, Wei; Sun, Ke; Zhang, Guixiang; Zhao, Ye

    2011-01-01

    The conventional hydrothermal reaction with iron powder, NaOH and H(2)O as reactants was reported to occur at temperature above 423K, and iron oxides (Fe(3)O(4) and NaFeO(2)) and hydrogen were produced. In this study, microwave heating was adopted to take the place of conventional heating to induce the hydrothermal reaction. Under microwave irradiation, NaOH and H(2)O absorbed microwave energy by space charge polarization and dipolar polarization and instantly converted it into thermal energy, which initiated the hydrothermal reaction that involved with zero-valent iron. X-ray diffraction (XRD) analysis found Fe(3)O(4)/NaFeO(2) and confirmed the occurrence of microwave-induced hydrothermal reaction. The developed microwave-hydrothermal reaction was employed for the dechlorination of PCBs. Hexadecane containing 100mgL(-1) of Aroclor1254 was used as simulative transformer oil, and the dechlorination of PCBs was evaluated by GC/ECD, GC/MS and ion chromatography. For PCBs in 10mL simulative transformer oil, almost complete dechlorination was achieved by 750W microwave irradiation for 10min, with 0.3g iron powder, 0.3g NaOH and 0.6mL H(2)O added. The effects of important factors including microwave power and the amounts of reactants added, on the dechlorination degree were investigated, moreover, the dechlorination mechanism was suggested. Microwave irradiation combined with the common and cheap materials, iron powder, NaOH and H(2)O, might provide a fast and cost-effective method for the treatment of PCBs-containing wastes.

  18. Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst.

    PubMed

    Weng, Chih-Huang; Lin, Yao-Tung; Chang, Cheng-Kuan; Liu, Na

    2013-05-01

    Decolourization of direct azo dye, direct blue 15 (DB15), by an advanced Fenton process coupled with ultrasonic irradiation (Fenton/US) was investigated. Zero-valent iron (ZVI) aggregates were used as the catalyst. A positive synergistic effect occurred when Fenton's reagent was combined with ultrasonic irradiation. Experimental results showed that the optimum conditions for decolourization were pH 3.0, Fe(0) 1g/L, H(2)O(2) 5.15×10(-3)mol/L with ultrasound density of 120W/L at 60kHz. These conditions yielded 99% decolouration of 4.7×10(-5) M DB15 (4130 ADMI) solution within 10min. DB15 decolouration follows the first-order decolouration kinetics. Although the solutions containing H(2)CO(3), Cl(-), ClO(4)(-), NO(3)(-) and SO(4)(2-) ions did not have a significant effect on the decolouration, the H(2)PO(4)(-) ion did decrease the decolouration rate. High ultrasonic input power accelerated the reaction and increased decolourization efficiency. The cost effectiveness of this process at high ultrasound density could be controlled despite the high electricity costs incurred by the process. ZVI aggregates were reusable; however, an increase in the number of times ZVI was recycled decreased the decolourization rate. This study demonstrates that a Fenton/US process can effectively decolour the direct azo dye DB15 in wastewater.

  19. Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes.

    PubMed

    Kowalski, Krzysztof P; Søgaard, Erik G

    2014-12-01

    Arsenic in drinking water is concerning millions of people around the world, even though many solutions to the problem have come up in recent years. One of the promising solutions for removing arsenic from water is by implementation of a zero-valent iron (ZVI) in the drinking water production. The purpose of this work was to study a treatment of As pollution based on the ZVI, aeration and sand filtration that was monitored for period of 45 months. In applied configuration and conditions ZVI was not able to remove arsenic alone, but it worked as a source of ferrous ions that during its oxidation enabled to co-precipitate arsenic compounds in the sand filter. The results show that after a lag phase of about 6 months, it was possible to achieve water production with an As content from 20 μg L(-1) to below 5 μg L(-1). The treatment also enabled to remove phosphates that were present in groundwater and affected As uptake by hindering its co-precipitation with Fe compounds. Determination of colony forming units on As amended agar helped to find arsenic resistant bacteria at each stage of treatment and also in the sand filter backwash sludge. Bacterial communities found in groundwater, containing low concentration of As, were found to have high As resistance. The results also indicate that the lag phase might have been also needed to initiate Fe ions release by corrosion from elemental Fe by help of microbial activity.

  20. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    PubMed

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  1. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron.

    PubMed

    Song, Hocheol; Jeon, Byong-Hun; Chon, Chul-Min; Kim, Yongje; Nam, In-Hyun; Schwartz, Franklin W; Cho, Dong-Wan

    2013-11-01

    The feasibility of using granular ferric hydroxide (GFH) with zero-valent iron (Fe(0)) for its potential utility in enhancing nitrate reduction was investigated. The addition of 10gL(-1) GFH to 25gL(-1) Fe(0) significantly enhanced nitrate removal, resulting in 93% removal of 52.2mg-NL(-1) in 36-h as compared to 23% removal with Fe(0) alone. Surface analyses of the reacted Fe(0)/GFH revealed the presence of magnetite on the Fe(0) surface, which probably served as an electron mediator for nitrate reduction. Addition of GFH to Fe(0) also resulted in lower solution pH compared to Fe(0). The rate enhancing effect of GFH on nitrate reduction was attributed to the combined effects of magnetite formation and pH buffering by GFH. GFH amendment (100gL(-1)) significantly increased reduction capacity and longevity of Fe(0) to complete several nitrate reduction cycles before inactivation, giving a total nitrate removal of 205mg-NL(-1), while unamended Fe(0) gave only 20mg-NL(-1) before inactivation during the first reduction cycle. The overall result demonstrated the potential utility of Fe(0)/GFH system that may be developed into a viable technology for removal of nitrate from groundwater.

  2. Enhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar

    NASA Astrophysics Data System (ADS)

    Yan, Jingchun; Qian, Linbo; Gao, Weiguo; Chen, Yun; Ouyang, Da; Chen, Mengfang

    2017-02-01

    Composite of nanoscale Zero Valent Iron (nZVI) loaded on Biochar (BC) was prepared and characterized as hydrogen peroxide (H2O2) activator for the degradation of trichloroethylene (TCE). nZVI is homogeneously loaded on lamellarly structured BC surfaces to form nZVI/BC with specific surface area (SBET) of 184.91 m2 g‑1, which can efficiently activate H2O2 to achieve TCE degradation efficiency of 98.9% with TOC removal of 78.2% within 30 min under the conditions of 0.10 mmol L‑1 TCE, 1.13 g L‑1 nZVI/BC and 1.50 mmol L‑1 H2O2. Test results from the Electron Spin Resonance (ESR) measurement and coumarin based fluorescent probe technology indicated that •OH radicals were the dominant species responsible for the degradation of TCE within the nZVI/BC-H2O2 system. Activation mechanism of the redox action of Fe2+/Fe3+ generated under both aerobic and anaerobic conditions from nZVI and single electron transfer process from BC surface bound C–OH to H2O2 promoted decomposition of H2O2 into •OH radicals was proposed.

  3. Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil.

    PubMed

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Li, Ting; Li, Yun; Deng, Ouping; Gong, Guoshu

    2014-12-01

    The Pb removal efficiencies from contaminated soils by low molecular weight organic acid (LMWOA) and nanoscale zero-valent iron (nZVI) were investigated through batch soil washing experiments. Results showed that significant promotion on Pb-removal with the mixed solutions of LMWOA and nZVI (p < 0.05). The Pb removal efficiencies reached 64% and 83% for mine and farmland soil by addition of 0.2 M citric acid and 2.0 g L−1 nZVI, respectively. They decreased with increasing pH from 3 to 9. The mixed solutions of LMWOA and nZVI induced Pb(II) releases processes including a rapid desorption within 4 h and a slow desorption in the following hours. The second-order model was the most appropriate for describing the kinetic processes of Pb(II) desorption. The main fractions of Pb removal were exchangeable and reducible. Compared with LMWOA, the loss rates of nitrogen, phosphorus and potassium decreased after washing with the mixed solutions. Our study suggests that combining of LMWOA and nZVI would be a promising alternative approach for remediation Pb-contaminated soils.

  4. Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes

    PubMed Central

    2014-01-01

    A series of nanocomposites consisting of zero-valent iron nanoparticles (ZVI NPs) encapsulated in SiO2 microspheres were successfully synthesized through a successive two-step method, i.e., the wet chemical reduction by borohydride followed by a modified Stöber method. The as-synthesized nanocomposites were characterized using X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer, and inductively coupled plasma-atomic emission spectrometer. The catalytic performance of SiO2-encapsulated ZVI nanocomposites for the degradation of organic dyes was investigated using methylene blue (MB) as the model dye in the presence of H2O2. The results showed that the degradation efficiency and apparent rate constant of the degradation reaction were significantly enhanced with increased ZVI NPs encapsulated in SiO2 microspheres, whereas the dosage of H2O2 remarkably promoted degradation rate without affecting degradation efficiency. The content-dependent magnetic property ensured the excellent magnetic separation of degradation products under an external magnet. This strategy for the synthesis of SiO2-encapsulated ZVI NPs nanocomposites was low cost and easy to scale-up for industrial production, thereby enabling promising applications in environmental remediation. PMID:25258615

  5. Treatment of phenol-containing wastewater by photoelectro-Fenton method using supported nanoscale zero-valent iron.

    PubMed

    Babuponnusami, Arjunan; Muthukumar, Karuppan

    2013-03-01

    This study presents the degradation of phenol by the photoelectro-Fenton method using nano zero-valent iron (nZVI) immobilized in polyvinyl alcohol-alginate beads. The effect of nZVI loading, H(2)O(2) concentration, pH, and initial phenol concentration on phenol degradation and chemical oxygen demand reduction was studied. The scanning electron microscope images of the nZVI beads were used to analyze their morphology, and their diameters were in the range of 500-600 μm. The concentration of nZVI in the beads was varied from 0.1 to 0.6 g/L. Fe(2+) leakage of 1 and 3 % was observed with 0.5 and 0.6 g/L of nZVI, respectively, and the observed beads' fracture frequency was 2 %, which confirmed the stability of the beads. The optimum operating conditions that arrived for better degradation were 0.5 g/L of nZVI, pH 6.2, and 400 mg H(2)O(2)/L. The treatment of effluent by this method increased the biodegradability index of the effluent, and the degradation data were found to follow pseudo first-order kinetics.

  6. Nanosilver and Nano Zero-Valent Iron Exposure Affects Nutrient Exchange Across the Sediment-Water Interface.

    PubMed

    Buchkowski, Robert W; Williams, Clayton J; Kelly, Joel; Veinot, Jonathan G C; Xenopoulos, Marguerite A

    2016-01-01

    To examine how nanoparticles influence biogeochemical cycles in streams, we studied the acute impact of nanosilver (nAg) and nanoparticulate zero-valent iron (nZVI) exposure on nutrient and oxygen exchange across the sediment-water interface of two streams (agricultural canal and wetland) that differed in their water quality and sediment characteristics. At the agricultural site, nAg increased oxygen consumption and decreased N2 flux rates from that observed in control incubations. nZVI caused sediment-water systems from both streams to go hypoxic within 1.5 h of exposure. N2 flux rates were at least an order of magnitude higher in nZVI treatments as compared to control. Water column nitrate and nitrite concentrations were not impacted by nZVI exposure but total dissolved phosphorus concentrations were higher in cores treated with nZVI. nAg and nZVI exposure to surface water ecosystems can disrupt ecological function across the sediment-water interface.

  7. Improving dewaterability of waste activated sludge by combined conditioning with zero-valent iron and hydrogen peroxide.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Zhang, Xiwang; Yuan, Zhiguo

    2014-12-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel method based on combined conditioning with zero-valent iron (ZVI) and hydrogen peroxide (HP) at pH 2.0 to improve dewaterability of a full-scale waste activated sludge (WAS). The combination of ZVI (0-750mg/L) and HP (0-750mg/L) at pH 2.0 substantially improved the WAS dewaterability due to Fenton-like reactions. The highest improvement in WAS dewaterability was attained at 500mg ZVI/L and 250mg HP/L, when the capillary suction time of the WAS was reduced by approximately 50%. Particle size distribution indicated that the sludge flocs were decomposed after conditioning. Economic analysis showed that combined conditioning with ZVI and HP was a more economically favorable method for improving WAS dewaterability than the classical Fenton reaction based method initiated by ferrous salts and HP.

  8. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.

    PubMed

    Kumar, Naresh; Millot, Romain; Battaglia-Brunet, Fabienne; Omoregie, Enoma; Chaurand, Perrine; Borschneck, Daniel; Bastiaens, Leen; Rose, Jérôme

    2016-03-01

    Impacts of subsurface biogeochemical processes over time have always been a concern for the long-term performance of zero valent iron (Fe(0))-based permeable reactive barriers (PRBs). To evaluate the biogeochemical impacts, laboratory experiments were performed using flow-through glass columns for 210 days at controlled temperature (20 °C). Two different particle sizes of Fe(0) were used in the columns, and to simulate indigenous microbial activity, extra carbon source was provided in the two columns (biotic columns) and the remaining two columns were kept abiotic using gamma radiations. Heavy metals (Zn, As) were removed efficiently in all the columns, and no exhaustion of treatment capability or clogging was observed during our experimental duration. Newly formed Fe mineral phases and precipitates were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and micro-XRF techniques in solid phase at the end of the experiment. In addition, 16S rRNA gene extraction was used for microbial community identification in biotic columns. During the incubation, microbial population shifted in favor of Desulfosporosinus species (sulfate-reducing bacteria) from initial dominance of Acidithiobacillus ferrooxidans in sediments. Dominant mineral phases detected in biotic columns were mackinawite (FeS) and sulfate green rust, while in abiotic columns, magnetite/maghemite phases were more prevalent.

  9. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co2+ Solution: Interactional Performance and Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei

    2015-09-01

    The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions.

  10. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.

    PubMed

    Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-03-01

    The mobility of nanoscale zero-valent iron (nZVI), which is used for in situ groundwater remediation, is affected by chemical and physical heterogeneities within aquifers. Carbonate minerals in porous aquifers and the presence of divalent cations reduce nZVI mobility. This study assesses the potential for enhancing the mobility of polyacrylic acid coated nZVI (PAA-nZVI) in such aquifers through the co-injection of polyelectrolytes (natural organic matter, humic acid, carboxymethyl cellulose, and lignin sulfonate). When applied at the same concentration, all of the polyelectrolytes produced similar enhancement of PAA-nZVI mobility in carbonate porous media. This increase in mobility was a result of increased repulsion between PAA-nZVI and the carbonate matrix. Lignin sulfonate, an environmentally friendly and inexpensive agent, was identified as the most suitable polyelectrolyte for field applications. The greatest increase in PAA-nZVI mobility was achieved with co-injection of lignin sulfonate at concentrations ≥50 mg L(-1); at these concentrations the maximum PAA-nZVI travel distance in carbonate porous media was twice of that in the absence of lignin sulfonate.

  11. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction.

  12. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.

    PubMed

    Cho, Dong-Wan; Song, Hocheol; Schwartz, Franklin W; Kim, Bokseong; Jeon, Byong-Hun

    2015-04-01

    Magnetite nanoparticles were used as an additive material in a zero-valent iron (Fe0) reaction to reduce nitrate in groundwater and its effects on nitrate removal were investigated. The addition of nano-sized magnetite (NMT) to Fe0 reactor markedly increased nitrate reduction, with the rate proportionally increasing with NMT loading. Field emission scanning electron microscopy analysis revealed that NMT aggregates were evenly distributed and attached on the Fe0 surface due to their magnetic properties. The rate enhancement effect of NMT is presumed to arise from its role as a corrosion promoter for Fe0 corrosion as well as an electron mediator that facilitated electron transport from Fe0 to adsorbed nitrate. Nitrate reduction by Fe0 in the presence of NMT proceeded much faster in groundwater (GW) than in de-ionized water. The enhanced reduction of nitrate in GW was attributed to the adsorption or formation of surface complex by the cationic components in GW, i.e., Ca2+ and Mg2+, in the Fe0-H2O interface that promoted electrostatic attraction of nitrate to the reaction sites. Moreover, the addition of NMT imparted superior longevity to Fe0, enabling completion of four nitrate reduction cycles, which otherwise would have been inactivated during the first cycle without an addition of NMT. The results demonstrate the potential applicability of a Fe0/NMT system in the treatment of nitrate-contaminated GW.

  13. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.

    PubMed

    Kim, Hong-Seok; Ahn, Jun-Young; Kim, Cheolyong; Lee, Seockheon; Hwang, Inseong

    2014-10-01

    Effects of anions (NO3(-), HCO3(-), Cl(-), SO4(2-)) and humic acid on the reactivity and core/shell chemistries of polyacrylic acid-coated nanoscale zero-valent iron (PAA-NZVI) and inorganically modified NZVI (INORG-NZVI) particles were investigated. The reactivity tests under various ion concentrations (0.2-30mN) revealed the existence of a favorable molar ratio of anion/NZVI that increased the reactivity of NZVI particles. The presence of a relatively small amount of humic acid (0.5mgL(-1)) substantially decreased the INORG-NZVI reactivity by 76%, whereas the reactivity of PAA-NZVI decreased only by 12%. The XRD and TEM results supported the role of the PAA coating of PAA-NZVI in impeding the oxidation of the Fe(0) core by groundwater solutes. This protective role provided by the organic coating also resulted in a 2.3-fold increase in the trichloroethylene (TCE) reduction capacity of PAA-NZVI compared to that of INORG-NZVI in the presence of anions/humic acid. Ethylene and ethane were simultaneously produced as the major reduction products of TCE in both NZVI systems, suggesting that a hydrodechlorination occurred without the aid of metallic catalysts. The PAA coating, originally designed to improve the mobility of NZVI, enhanced TCE degradation performances of NZVI in the presence of anions and humic acid.

  14. Sequestration of Ag(I) from aqueous solution as Ag(0) nanostructures by nanoscale zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Yan, Jing; Dai, Chaomeng; Li, Yuting; Zhu, Yan; Zhou, Xuefei

    2015-11-01

    This study investigates the application of nanoparticle zero valent iron (nZVI) to sequester Ag(I) as Ag(0) nanostructures from aqueous solution. Batch experiments were performed with nZVI exposed to aqueous Ag(I) to investigate the effects of environmental parameters, including nZVI dose, temperature and pH. High temperature facilitates Ag(I) sequestration, and the rate constants are determined to be 0.02, 0.12, and 0.31 mg L/m2 at 30, 50, and 60 °C, respectively. Ag(I) sequestration was adversely affected by adding nitric acid to the solution due to significant acid washing, decreasing the available nZVI active sites. Characterization techniques including TEM, XRD, and HR-XPS revealed that nZVI is oxidized to lepidocrocite and magnetite/maghemite and confirmed the formation of nanocrystalline silver. HR-XPS analysis indicated that Ag2O forms rapidly as an intermediate due to Ag(I) adsorption onto the FeOOH layer. The Ag(0) nanostructures that are formed are fractal, spherical, and dendritic or rod-like, respectively, in morphology by FE-TEM images at different Ag/Fe mass ratios. A general reaction model for the interaction Ag(I) with nZVI is proposed. Our results suggest that nZVI is effective for Ag(I) removal.

  15. Functional chitosan-stabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound.

    PubMed

    Jin, Xiaoying; Zhuang, Zechao; Yu, Bing; Chen, Zhengxian; Chen, Zuliang

    2016-01-20

    Chitosan-stabilized nanoscale zero-valent iron (CS-nZVI) was prepared and used for the removal of acid fuchsine (AF) from aqueous solution with the assistance of ultrasound. More than 98.9% of AF was removed using CS-nZVI, aged CS-nZVI (exposed to air for 2 months), while only 14.6% removal efficiency was achieved after 15 min by chitosan alone with the assistance of ultrasound. Scanning electron microscopy (SEM) confirmed that chitosan polymers were arranged in a homocentric layered structure. Thus, the polymer can prevent the aggregation of nZVI and increase their anti-oxidation capacity. X-ray diffraction (XRD) also suggested that the chitosan used in synthesis may protect nZVI nanoparticles from air oxidation. Different factors impacting on the removal of AF using CS-nZVI showed that the reduction increased when dosage and temperature increased, but decreased when pH and initial concentration rose. Kinetic studies revealed that the removal of AF fitted well to the pseudo-first-order model. The apparent activation energy was 55.34 kJ/mol, indicating a chemically controlled reaction. Finally, the application of CS-nZVI in dyeing wastewater led to a removal efficiency of 99% of AF, while the reuse test confirmed that AF's removal efficiency declined from 99.6 to 39.3% after seven cycles.

  16. Removal of para-nitrochlorobenzene from aqueous solution on surfactant-modified nanoscale zero-valent iron/graphene nanocomposites.

    PubMed

    Wu, Yan; Luo, Hanjin; Wang, Hou

    2014-01-01

    This study demonstrated a remarkably simple and efficient method for the synthesis of nanoscale zero-valent iron (NZVI)/graphene (GN) nanocomposites. In order to prevent the agglomeration and restack of nanocomposites, chemical functionalization of nanocomposites with cetyltrimethylammonium bromide was proposed. The adsorption performance of surfactant-modified NZVI/GN nanocomposites was evaluated for the removal of para-nitrochlorobenzene (p-NCB) from aqueous solutions. The characteristics of nanocomposites were characterized by X-ray diffraction, BET surface area, Fourier transform infrared spectrum, thermogravimetric analysis and scanning electron microscopy. The effect factors including initial solution pH, contact time, reaction temperature, dosage, initial concentration of humic acid (HA) on the adsorption property of p-NCB onto surfactant-modified nanocomposites were investigated. The adsorption kinetics fitted well with pseudo-second-order model. The adsorption capacity of p-NCB on surfactant-modified nanocomposites inferred from the Langmuir model was 105.15 mg/g at 293 K. The thermodynamic parameters indicated that the adsorption of p-NCB onto surfactant-modified nanocomposites was an exothermic and spontaneous process. HA had a strong suppression effect on p-NCB uptake in the adsorption experiment.

  17. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads.

    PubMed

    Chang, Jaewon; Woo, Heesoo; Ko, Myoung-Soo; Lee, Jaesang; Lee, Seockheon; Yun, Seong-Taek; Lee, Seunghak

    2015-08-15

    A new material was developed and evaluated for the targeted removal of trichlorophenol (TCP) from among potential interferents which are known to degrade removal activity. To achieve TCP-targeted activity, an alginate bead containing nanoscale palladium/zero-valent iron (Pd/nZVI) was coated with a highly hydrophobic oleic acid layer. The new material (Pd/nZVI-A-O) preferentially sorbed TCP from a mixture of chlorinated phenols into the oleic acid cover layer and subsequently dechlorinated it to phenol. The removal efficacy of TCP by Pd/nZVI-A-O was not affected by co-existing organic substances such as Suwannee River humic acid (SRHA), whereas the material without the oleic acid layer (Pd/nZVI-A) became less effective with increasing SRHA concentration. The inorganic substances nitrate and phosphate significantly reduced the reactivity of Pd/nZVI-A, however, Pd/nZVI-A-O showed similar TCP removal efficacies regardless of the initial inorganic ion concentrations. The influence of bicarbonate on the TCP removal efficacies of both Pd/nZVI-A and Pd/nZVI-A-O was not significant. The findings from this study suggest that Pd/nZVI-A-O, with its targeted, constant reactivity for TCP, would be effective for treating this contaminant in surface water or groundwater containing various competitive substrates.

  18. Electromagnetic Borehole Flowmeter Surveys at Selected In Situ Redox Manipulation Barrier Wells, Zero-Valent Iron Site, Hanford, Washington

    SciTech Connect

    Newcomer, Darrell R.

    2009-02-09

    Ambient (i.e., static) and dynamic (i.e., pumping-induced) electromagnetic borehole flowmeter (EBF) surveys were performed in 10 selected In Situ Redox Manipulation (ISRM) barrier wells to characterize the distribution of in-well vertical flow conditions and to infer the relative hydraulic conductivity distribution in the upper-part of the unconfined aquifer. These wells are located in two areas where the aquifer is targeted for testing of zero-valent iron injection to mend a failed portion of the ISRM barrier at the 100 D Area, Hanford Site. Each of these two areas consists of a group of five wells, one group to the southwest and one group to the northeast. The upper ~15 to 20 ft (~4.6 to 6.1 m) of the unconfined aquifer was characterized for in-well vertical flow conditions and vertical profile information regarding relative hydraulic conductivity. At some well site locations, the upper ~2 to 3 ft (~0.6 to 1 m) of the well-screen interval could not be characterized under pumping (dynamic) conditions because of the presence of the pump.

  19. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics.

    PubMed

    Liang, Da-wei; Yang, Yu-han; Xu, Wei-wei; Peng, Si-kan; Lu, Shan-fu; Xiang, Yan

    2014-08-15

    Nanoscale zero-valent iron (nZVI) has been considered as an effective agent for reductive debromination of polybrominated diphenyl ethers (PBDEs). But the high lipophilicity of PBDEs will hinder their debromination owing to the inefficient contact of PBDEs with nZVI. In this study, different ionic forms of surfactants were investigated aiming to promote PBDE debromination, and the beneficial effects of surfactant were found to be: nonionic polyethylene glycol octylphenol ether (Triton X-100, TX)>cationic cetylpyridinium chloride (CPC)>anionic sodium dodecyl benzenesulfonate (SDDBS). Except for with SDDBS, the promotion effect for PBDE debromination was positively related to the surfactant concentrations until a critical micelle concentration (CMC). The debromination process of octa-BDE and its intermediates could be described as a consecutive reaction. The corresponding rate constants (k) for the debromination of parent octa-BDE (including nona- to hepta-BDEs), the intermediates hexa-, penta-, and tetra-BDEs are 1.24 × 10(-1) h(-1), 8.97 × 10(-2) h(-1), 6.50 × 10(-2) h(-1) and 2.37 × 10(-3) h(-1), respectively.

  20. Synthesis and characterization of porous zero-valent iron nanoparticles for remediation of chromium-contaminated wastewater.

    PubMed

    Lin, Kuen-Song; Dehvari, Khalilalrahman; Liu, Yeu-Jye; Kuo, Hua; Hsu, Pei-Ju

    2013-04-01

    The physical and chemical properties of porous zero-valent iron nanoparticles (ZVINs) have highly been acknowledged in the decontamination of heavy metal containing wastes and groundwater. In the present work, the treatment of Cr-contaminant through adsorption onto the ZVINs has been studied. The morphology, crystal structure, and surface composition of Fe(O) nanoparticles were investigated by field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. X-ray absorption near edge structure (XANES) revealed that the Cr(VI) species reduce to Cr(III) while oxidizing the ZVINs to Fe2O3, Fe3O4 or FeO electrochemically. Furthermore, the nitrogen adsorption-desorption isotherm of the porous nanoparticles was similar to a type IV curve with an obvious mesopore-characteristic H3 hysteresis loop, whereas the sizes of mesopores were in the range of 30-50 nm. Experimentally, the efficiency for Cr(VI) removal in the range of 150-300 ppm was found to be > 99.9%. Remarkably, the reduction reaction was completed within 10 min in the absence of additional pH controls. This work also highlights the utility of X-ray absorption spectroscopy (XAS) coupled with conventional characterization methods to comprehensively study the speciation and possible reaction pathway in adsorption process.

  1. Enhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar

    PubMed Central

    Yan, Jingchun; Qian, Linbo; Gao, Weiguo; Chen, Yun; Ouyang, Da; Chen, Mengfang

    2017-01-01

    Composite of nanoscale Zero Valent Iron (nZVI) loaded on Biochar (BC) was prepared and characterized as hydrogen peroxide (H2O2) activator for the degradation of trichloroethylene (TCE). nZVI is homogeneously loaded on lamellarly structured BC surfaces to form nZVI/BC with specific surface area (SBET) of 184.91 m2 g−1, which can efficiently activate H2O2 to achieve TCE degradation efficiency of 98.9% with TOC removal of 78.2% within 30 min under the conditions of 0.10 mmol L−1 TCE, 1.13 g L−1 nZVI/BC and 1.50 mmol L−1 H2O2. Test results from the Electron Spin Resonance (ESR) measurement and coumarin based fluorescent probe technology indicated that ∙OH radicals were the dominant species responsible for the degradation of TCE within the nZVI/BC-H2O2 system. Activation mechanism of the redox action of Fe2+/Fe3+ generated under both aerobic and anaerobic conditions from nZVI and single electron transfer process from BC surface bound C–OH to H2O2 promoted decomposition of H2O2 into ∙OH radicals was proposed. PMID:28230207

  2. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.

    PubMed

    Ji, Min-Kyu; Park, Won-Bae; Khan, Moonis Ali; Abou-Shanab, Reda A I; Kim, Yongje; Cho, Yunchul; Choi, Jaeyoung; Song, Hocheol; Jeon, Byong-Hun

    2012-04-01

    Nitrate (NO(3)(-)) is a commonly found contaminant in groundwater and surface water. It has created a major water quality problem worldwide. The laboratory batch experiments were conducted to investigate the feasibility of HCl-treated zero-valent iron (Fe(0)) combined with different adsorbents as hybrid systems for simultaneous removal of nitrate (NO(3)(-)) and ammonium (NH(4)(+)) ions from aqueous solution. The maximum NO(3)(-) removal in combined Fe(0)-granular activated carbon (GAC), Fe(0)-filtralite and Fe(0)-sepiolite systems was 86, 96 and 99%, respectively, at 45 °C for 24 h reaction time. The NO(3)(-) removal rate increased with the increase in initial NO(3)(-) concentration. The NO(3)(-) removal efficiency by hybrid systems was in the order of sepiolite > filtralite > GAC. The NH(4)(+) produced during the denitrification process by Fe(0) was successfully removed by the adsorbents, with the removal efficiency in the order of GAC > sepiolite > filtralite. Results of the present study suggest that the use of a hybrid system could be a promising technology for achieving simultaneous removal of NO(3)(-) and NH(4)(+) ions from aqueous solution.

  3. Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes.

    PubMed

    Mao, Zhou; Wu, Qingzhi; Wang, Min; Yang, Yushi; Long, Jia; Chen, Xiaohui

    2014-01-01

    A series of nanocomposites consisting of zero-valent iron nanoparticles (ZVI NPs) encapsulated in SiO2 microspheres were successfully synthesized through a successive two-step method, i.e., the wet chemical reduction by borohydride followed by a modified Stöber method. The as-synthesized nanocomposites were characterized using X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer, and inductively coupled plasma-atomic emission spectrometer. The catalytic performance of SiO2-encapsulated ZVI nanocomposites for the degradation of organic dyes was investigated using methylene blue (MB) as the model dye in the presence of H2O2. The results showed that the degradation efficiency and apparent rate constant of the degradation reaction were significantly enhanced with increased ZVI NPs encapsulated in SiO2 microspheres, whereas the dosage of H2O2 remarkably promoted degradation rate without affecting degradation efficiency. The content-dependent magnetic property ensured the excellent magnetic separation of degradation products under an external magnet. This strategy for the synthesis of SiO2-encapsulated ZVI NPs nanocomposites was low cost and easy to scale-up for industrial production, thereby enabling promising applications in environmental remediation.

  4. Electrospun Carbon Nanofibers with Surface Attached Zero Valent Iron Nanoparticles for Heavy Metal Remediation in Ground and Wastewater

    NASA Astrophysics Data System (ADS)

    Mucha, Nikhil Reddy

    Rapid growth of worldwide industrialization and population is leading to extensive environmental pollution. Industrial activities have resulted in elevated concentrations of a wide range of heavy metal ions in ground and waste water. Heavy metal ions such as Chromium, Copper and Nickel are highly toxic. Various methods have been attempted to remove them from water including filtration, chemical precipitation, electrodeposition etc., but these methods suffer from limitations such as disposal of metal residual sludge, membrane clogging, intensive energy consumption, and high cost. Zero valent Iron nanoparticles (nZVI) possess large capacity for remediating heavy metals in water owing to their large surface area; high reactivity, non-toxicity, and ease of production. In this study, a hierarchical nanostructure, i.e. electrospun carbon nanofibers with surface attached ZVI nanoparticles (nZVI ECNFs), were prepared by growing nZVI on ECNFs using a redox reaction. This novel nanomaterial was evaluated for heavy metal removal from a series of aqueous model solutions. nZVI ECNFs outperformed stand-alone nZVI in all cases. It is envisioned that nZVI ECNFs is going to serve as a novel ZVI based nanomaterial for efficient heavy metal remediation in contaminated ground water as well as in waste water treatment.

  5. Sulfur and oxygen isotope tracing in zero valent iron based In situ remediation system for metal contaminants.

    PubMed

    Kumar, Naresh; Millot, Romain; Battaglia-Brunet, Fabienne; Négrel, Philippe; Diels, Ludo; Rose, Jérôme; Bastiaens, Leen

    2013-01-01

    In the present study, controlled laboratory column experiments were conducted to understand the biogeochemical changes during the microbial sulfate reduction. Sulfur and oxygen isotopes of sulfate were followed during sulfate reduction in zero valent iron incubated flow through columns at a constant temperature of 20±1°C for 90 d. Sulfur isotope signatures show considerable variation during biological sulfate reduction in our columns in comparison to abiotic columns where no changes were observed. The magnitude of the enrichment in δ(34)S values ranged from 9.4‰ to 10.3‰ compared to initial value of 2.3‰, having total fractionation δS between biotic and abiotic columns as much as 6.1‰. Sulfur isotope fractionation was directly proportional to the sulfate reduction rates in the columns. Oxygen isotopes in this experiment seem less sensitive to microbial activities and more likely to be influenced by isotopic exchange with ambient water. A linear relationship is observed between δ(34)S and δ(18)O in biotic conditions and we also highlight a good relationship between δ(34)S and sulfate reduction rate in biotic columns.

  6. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates.

    PubMed

    Kong, Xin; Wei, Yonghong; Xu, Shuang; Liu, Jianguo; Li, Huan; Liu, Yili; Yu, Shuyao

    2016-07-01

    Excessive acidification occurs frequently in food waste (FW) anaerobic digestion (AD) due to the high carbon-to-nitrogen ratio of FW. In this study, zero-valent iron (ZVI) was applied to prevent the excessive acidification. All of the control groups, without ZVI addition (pH∼5.3), produced little methane (CH4) and had high volatile fatty acids/bicarbonate alkalinity (VFA/ALK). By contrast, at OLR of 42.32gVS/Lreactor, the pH of effluent from the reactors with 0.4g/gVSFWadded of ZVI increased to 7.8-8.2, VFA/ALK decreased to <0.1, and the final CH4 yield was ∼380mL/gVSFWadded, suggesting inhibition of excessive acidification. After adding powdered or scrap metal ZVI to the acidogenic reactors, the fractional content of butyric acid changed from 30-40% to 0%, while, that of acetic acid increased. These results indicate that adding ZVI to FW digestion at high OLRs could eliminate excessive acidification by promoting butyric acid conversion and enhancing methanogen activity.

  7. Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite.

    PubMed

    Chen, Lili; Feng, Shaojie; Zhao, Donglin; Chen, Shaohua; Li, Feifei; Chen, Changlun

    2017-03-15

    In this work, zero-valent iron-polyaniline-graphene aerogel composite (Fe-PANI-GA) was prepared and applied in the removal of U(VI) from aqueous solutions by batch sorption experiments. The experimental results showed that the Fe-PANI-GA composite had an excellent removal capacity for the removal of U(VI) in acidic solutions. The results also showed that the maximum removal capacity of the Fe-PANI-GA toward U(VI) was 350.47mg/g at pH 5.5. The sorption kinetics data were well-described by pseudo-second-order. The sorption isotherms of U(VI) fitted well with Langmuir isotherm and exhibited better removal efficiency with the increase of temperature. The thermodynamic parameters (ΔG, ΔS, ΔH) indicated that the sorption of U(VI) on the Fe-PANI-GA was an endothermic and spontaneous process. Moreover, removal mechanisms were studied based on the results of XRD, FTIR and XPS. Both U(VI) sorption and partially reductive precipitation of U(VI) to U(IV) contributed to the removal of U(VI) on Fe-PANI-GA. Therefore, Fe-PANI-GA was an economic and effective material for the removal of uranium from nuclear waste in practical application.

  8. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.

    PubMed

    Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-09-01

    Nanoscale zero-valent iron (NZVI) particles can be used for in situ groundwater remediation. The spatial particle distribution plays a very important role in successful and efficient remediation, especially in heterogeneous systems. Initial sand permeability (k 0) influences on spatial particle distributions were investigated and quantified in homogeneous and heterogeneous systems within the presented study. Four homogeneously filled column experiments and a heterogeneously filled tank experiment, using different median sand grain diameters (d 50), were performed to determine if NZVI particles were transported into finer sand where contaminants could be trapped. More NZVI particle retention, less particle transport, and faster decrease in k were observed in the column studies using finer sands than in those using coarser sands, reflecting a function of k 0. In heterogeneous media, NZVI particles were initially transported and deposited in coarse sand areas. Increasing the retained NZVI mass (decreasing k in particle deposition areas) caused NZVI particles to also be transported into finer sand areas, forming an area with a relatively homogeneous particle distribution and converged k values despite the different grain sizes present. The deposited-particle surface area contribution to the increasing of the matrix surface area (θ) was one to two orders of magnitude higher for finer than coarser sand. The dependency of θ on d 50 presumably affects simulated k changes and NZVI distributions in numerical simulations of NZVI injections into heterogeneous aquifers. The results implied that NZVI can in principle also penetrate finer layers.

  9. Simulation of antimony adsorption on nano-zero valent iron and kaolinite and analyzing the influencing parameters.

    PubMed

    Saeidnia, Setareh; Asadollahfardi, Gholamreza; Darban, Ahmad Khodadadi; Mohseni, Mehdi

    2016-01-01

    Antimony is one of the most toxic pollutants in industrial and mineral wastewaters threatening the life of humans and other creatures. We simulated the adsorption of antimony in the presence of nano-zero valent iron (nZVI) adsorbent, on kaolinite and in the presence of nZVI coated on kaolinite from mineral wastewater using VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of antimony by applying simulation. The simulation was performed using an adsorption model of a diffuse layer model. The results of the simulation indicated that the nZVI concentration, initial concentrations of antimony and pH factor are effective on the adsorption of antimony. In the conducted stimulation, the optimum pH was 2-5 and the highest adsorption occurred in an acidic state. With increasing initial concentrations of antimony in the simulation, we concluded that nZVI had absorbed various concentrations above 90% and, by increasing the concentration of nZVI, antimony adsorption rate increased. The increased surface area of nZVI and the expansion of more interchangeable surfaces available for reaction with antimony ions causes more antimony ions to be adsorbed. In all cases, the coefficient of determination between the laboratory results and the model predictions that was obtained was more than 0.9.

  10. Remediation of DDTs contaminated soil in a novel Fenton-like system with zero-valent iron.

    PubMed

    Cao, Menghua; Wang, Linling; Wang, Li; Chen, Jing; Lu, Xiaohua

    2013-02-01

    Application of a novel Fenton-like system with zero-valent iron, EDTA and Air (ZVI/EDTA/Air) was investigated to degrade dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene (DDE) in the actual contaminated soil from an organochlorine pesticide site. It was found DDTs in the soil were effectively degraded by the system at room temperature, ambient atmosphere pressure and near neutral pH. The dosages of EDTA and ZVI were the dominant factors influencing the removal of contaminants. An increase of EDTA from 0.05 to 0.2 mM and ZVI from 1 to 5 g L(-1) improved the removal of the contaminants significantly. However, excessive amount of EDTA led to a negative effect on the degradation process. Meanwhile, EDTA was simultaneously degraded so as to avoid the secondary pollution risk on soil remediation. Only a small amount of 4,4'-DDE and 2,2-bis(4-chlorophenyl)-1-chloroethylene (4,4'-DDMU) generated as the intermediates of DDT degradation during the process. Our investigation suggests that the Fenton-like system is a promising alternative for remediation of organochlorine pesticides contaminated soils.

  11. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene

    SciTech Connect

    Farrell, J.; Kason, M.; Melitas, N.; Li, T.

    2000-02-01

    This research investigated the long-term performance of zero-valent iron for mediating the reductive dechlorination of trichloroethylene (TCE). Over a 2-year period, rates of TCE dechlorination in columns packed with iron filings were measured in simulated groundwaters containing either 3 mM CaSO{sub 4}, 5 mM CaCl{sub 2}, or 5 mM Ca(NO{sub 3}){sub 2}. At early elapsed times, TCE reaction rates were pseudo-first-order in TCE concentration and were independent of the solution pH. With increasing elapsed time, reaction rates deviated from pseudo-first-order behavior due to reactive site saturation and increased iron surface passivation toward the influent end of each column. The extent of passivation was dependent on both the TCE concentration and the background electrolyte solution. For most of the investigation, TCE reaction rates in 3 mM CaSO{sub 4} and 5 mM CaCl{sub 2} solutions were statistically identical at the 0.05 confidence level. However, TCE reaction rates in 5 mM Ca(NO{sub 3}){sub 2} were slower. In columns operated using chloride- and sulfate-containing waters, the effective half-life for TCE dechlorination increased from approximately 400 min after 10 days elapsed to approximately 2,500 min after 667 days. The effective TCE half-life in the nitrate-containing water increased from approximately 1,500 min after 10 days to approximately 3,500 min after 667 days. Measurements of iron corrosion rates in nitrate and chloride solutions showed that nitrate contributed to increased iron surface passivation and decreased rates of iron corrosion. Corrosion current measurements indicated that halocarbon reduction on fresh iron surfaces was cathodically controlled, whereas on aged iron surfaces, iron corrosion was anodically controlled. Anodic control of iron corrosion contributed to the development of reactive site saturation with time and to similar reaction rates for TCE and perchloroethylene. Passivation of the iron surfaces was found to be dependent on the

  12. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.

    PubMed

    Liu, Tongzhou; Rao, Pinhua; Lo, Irene M C

    2009-05-01

    The influences of various geochemical constituents, such as humic acid, HCO(3)(-), and Ca(2+), on Cr(VI) removal by zero-valent iron (Fe(0)) were investigated in a batch setting. The collective impacts of humic acid, HCO(3)(-), and Ca(2+) on the Cr(VI) reduction process by Fe(0) appeared to significantly differ from their individual impacts. Humic acid introduced a marginal influence on Fe(0) reactivity toward Cr(VI) reduction, whereas HCO(3)(-) greatly enhanced Cr(VI) removal by maintaining the solution pH near neutral. The Cr(VI) reduction rate constants (k(obs)) were increased by 37.8% and 78.3%, respectively, with 2 mM and 6 mM HCO(3)(-) in solutions where humic acid and Ca(2+) were absent. Singly present Ca(2+) did not show a significant impact to Cr(VI) reduction. However, probably due to the formation of passivating CaCO(3), further addition of Ca(2+) to HCO(3)(-) containing solutions resulted in a decrease of k(obs) compared to solutions containing HCO(3)(-) alone. Ca(2+) enhanced humic acid adsorption led to a minor decrease of Cr(VI) reduction rates. In Ca(2+)-free solutions, humic acid increased the amount of total dissolved iron to 25 mg/l due to the formation of soluble Fe-humate complexes and stably dispersed fine Fe (oxy)hydroxide colloids, which appeared to suppress iron precipitation. In contrast, the coexistence of humic acid and Ca(2+) significantly promoted the aggregation of Fe (oxy)hydroxides, with which humic acid co-aggregated and co-precipitated. These aggregates would progressively be deposited on Fe(0) surfaces and impose long-term impacts on the permeability of PRBs.

  13. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).

    PubMed

    Guan, Xiaohong; Sun, Yuankui; Qin, Hejie; Li, Jinxiang; Lo, Irene M C; He, Di; Dong, Haoran

    2015-05-15

    Over the past 20 years, zero-valent iron (ZVI) has been extensively applied for the remediation/treatment of groundwater and wastewater contaminated with various organic and inorganic pollutants. Based on the intrinsic properties of ZVI and the reactions that occur in the process of contaminants sequestration by ZVI, this review summarizes the limitations of ZVI technology and the countermeasures developed in the past two decades (1994-2014). The major limitations of ZVI include low reactivity due to its intrinsic passive layer, narrow working pH, reactivity loss with time due to the precipitation of metal hydroxides and metal carbonates, low selectivity for the target contaminant especially under oxic conditions, limited efficacy for treatment of some refractory contaminants and passivity of ZVI arising from certain contaminants. The countermeasures can be divided into seven categories: pretreatment of pristine ZVI to remove passive layer, fabrication of nano-sized ZVI to increase the surface area, synthesis of ZVI-based bimetals taking advantage of the catalytic ability of the noble metal, employing physical methods to enhance the performance of ZVI, coupling ZVI with other adsorptive materials and chemically enhanced ZVI technology, as well as methods to recover the reactivity of aged ZVI. The key to improving the rate of contaminants removal by ZVI and broadening the applicable pH range is to enhance ZVI corrosion and to enhance the mass transfer of the reactants including oxygen and H(+) to the ZVI surface. The characteristics of the ideal technology are proposed and the future research needs for ZVI technology are suggested accordingly.

  14. Novel sequential process for enhanced dye synergistic degradation based on nano zero-valent iron and potassium permanganate.

    PubMed

    Wang, Xiangyu; Liu, Peng; Fu, Minglai; Ma, Jun; Ning, Ping

    2016-07-01

    A novel synergistic technology based on nano zero-valent iron (NZVI) and potassium permanganate (KMnO4) was developed for treatment of dye wastewater. The synergistic technology was significantly superior, where above 99% of methylene blue (MB) was removed, comparatively, removal efficiencies of MB with the sole technology of NZVI and KMnO4 at pH 6.39 being 52.9% and 63.1%, respectively. The advantages of this technology include (1) the in situ formed materials (manganese (hydr)oxides, iron hydroxides and MnFe oxide), resulting in the stable and high removal efficiency of MB and (2) high removal capacity in a wide range of pH value. Compared with simultaneous addition system of NZVI and KMnO4, MB removal was remarkably improved by sequential addition system, especially when KMnO4 addition time was optimized at 20 min. Analyses of crystal structure (XRD), morphological difference (FE-SEM), element valence and chemical groups (XPS) of NZVI before and after reaction had confirmed the formation of in situ materials, which obviously enhanced removal of MB by oxidation and adsorption. More importantly, the roles of in situ formed materials and degradation mechanism were innovatively investigated, and the results suggested that NCH3 bond of MB molecule was attacked by oxidants (KMnO4 and in situ manganese (hydr)oxides) at position C1 and C9, resulting in cleavage of chromophore. This study provides new insights about an applicable technology for treatment of dye wastewater.

  15. Removal of nitrobenzene by immobilized nanoscale zero-valent iron: Effect of clay support and efficiency optimization

    NASA Astrophysics Data System (ADS)

    Li, Xiaoguang; Zhao, Ying; Xi, Beidou; Mao, Xuhui; Gong, Bin; Li, Rui; Peng, Xing; Liu, Hongliang

    2016-05-01

    In this study, natural clays were used as the support for nanoscale zero-valent iron (nZVI) to fulfill affordable and efficient decontamination materials. In comparison with the kaolinite (K) and montmorillonite (M) supported nZVI materials (K-nZVI and M-nZVI), Hangjin clay supported nZVI (HJ-nZVI) exhibited the best performance for nitrobenzene (NB) removal because of its favorable characteristics, such as higher specific surface area (SSA, 82.0 m2 g-1), larger pore volume (0.1198 cm3 g-1) and bigger average pore diameter (6.2 nm). The NB removal efficiency achieved by HJ-nZVI (93.2 ± 2.8%) was much higher than these achieved by HJ clay alone (38.2 ± 2.3%), nZVI alone (52.3 ± 2.5%) and by the combined use of nZVI and HJ clay (70.2 ± 1.3%). The superior performance of HJ-nZVI was associated with three aspects: the even distribution of nZVIs onto HJ clay, higher payload efficiency of nZVIs and the stronger adsorption capability of HJ clay support. Higher SSA, larger pore volume, favorable cation exchange capacity and structural negative charges all facilitated the payload of iron onto HJ clay. The adsorption process accelerated the reduction via increasing the local concentration of aqueous NB. The high efficiency of HJ-nZVI for decontamination warranted its promising prospect in remediation applications.

  16. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.

    PubMed

    Dong, Haoran; Xie, Yankai; Zeng, Guangming; Tang, Lin; Liang, Jie; He, Qi; Zhao, Feng; Zeng, Yalan; Wu, Yanan

    2016-02-01

    Nanoscale zero-valent iron (NZVI) particles are usually modified with surface coating to mitigate the particle stability in water during the environmental application. However, the surface coating may not only influence the particle stabilization but also the particle cytotoxicity. In this study, we investigated the dual effects of carboxymethyl cellulose (CMC) on the colloidal stability and cytotoxicity of NZVI towards gram-negative Escherichia coli (E. coli) and discussed the interrelation between particle stability and cytotoxicity. The effect of CMC concentration, ionic strength (Ca(2+)) and aging treatment on the particle cytotoxicity were also examined. Specifically, the aqueous stability of NZVI suspensions with CMC ratio dose-dependently strengthened within 1 h. The inactivation of E. coli by bare NZVI was significant and concentration- and time-dependent. On the contrary, an increasing reduction in cytotoxicity of NZVI with CMC ratio increasing was observed, even though the particles became more dispersed. TEM analysis demonstrates the membrane disruption and the cellular internalization of nanoparticles after exposure of E. coli to NZVI. However, in the case of CMC-modified NZVI (CNZVI), the bacterial cell wall displays an outer shell of a layer of nanoparticles attached around the outer membrane, but the cell membrane was kept intact. The presence of Ca(2+) can either increase or decrease the cytotoxicity of NZVI and CNZVI, depending on the concentration. The aged NZVI and CNZVI particles did not seem to present obvious bactericidal effect due to the transformation of Fe(0) to the less toxic or non-toxic iron oxides, as indicated by the XRD analysis.

  17. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment.

  18. Capture and storage of hydrogen gas by zero-valent iron.

    PubMed

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means.

  19. Interfacial phenomena affecting contaminant remediation with zero-valent iron metal

    SciTech Connect

    Tratnyek, P.G.; Johnson, T.; Schattauer, A.

    1995-12-31

    The purposes of this paper are to discuss the importance of oxygen (or anoxia) in organic contaminant degradation by granular iron metal, and to explore the various ways in which corrosion, precipitation, and mass transport effects on iron reactivity reflect interfacial phenomena. Studies illustrating the importance of zone-scale and grain-scale interfaces are summarized. The effect of O{sub 2} on dechlorination rates is also briefly discussed, along with possible reaction mechanisms.

  20. Applying an electric field in a built-in zero valent iron--anaerobic reactor for enhancement of sludge granulation.

    PubMed

    Liu, Yiwen; Zhang, Yaobin; Quan, Xie; Chen, Shuo; Zhao, Huimin

    2011-01-01

    A zero valent iron (ZVI) bed with a pair of electrodes was installed in an upflow anaerobic sludge blanket (UASB) reactor to create an enhanced condition to increase the rate of anaerobic granulation. The effects of an electric field and ZVI on granulation were investigated in three UASB reactors operated in parallel: an electric field enhanced ZVI-UASB reactor (reactor R1), a ZVI-UASB reactor (reactor R2) and a common UASB reactor (reactor R3). When a voltage of 1.4 V was supplied to reactor R1, COD removal dramatically increased from 60.3% to 90.7% over the following four days, while the mean granule size rapidly grew from 151.4 μm to 695.1 μm over the following 38 days. Comparatively, COD removal was lower and the increase in granule size was slower in the other two reactors (in the order: R1 > R2 > R3). The electric field caused the ZVI to more effectively buffer acidity and maintain a relatively low oxidation-reduction potential in the reactor. In addition, the electric field resulted in a significant increase in ferrous ion leaching and extracellular polymeric substances (EPS) production. These changes benefited methanogenesis and granulation. Scanning electron microscopy (SEM) images showed that different microorganisms were dominant in the external and internal layers of the reactor R1 granules. Additionally, fluorescence in situ hybridization (FISH) analysis indicated that the relative abundance of methanogens in reactor R1 was significantly greater than in the other two reactors. Taken together, these results suggested that the use of ZVI combined with an electric field in an UASB reactor could effectively enhance the sludge granulation.

  1. Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study.

    PubMed

    Liu, Fenglin; Yang, JingHe; Zuo, Jiane; Ma, Ding; Gan, Lili; Xie, Bangmi; Wang, Pei; Yang, Bo

    2014-08-01

    Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China, so finding a cost-effective method to remove phosphorus from non-point pollution sources is very important for the health of the aqueous environment. Graphene was selected to support nanoscale zero-valent iron (nZVI) for phosphorus removal from synthetic rainwater runoff in this article. Compared with nZVI supported on other porous materials, graphene-supported nZVI (G-nZVI) could remove phosphorus more efficiently. The amount of nZVI in G-nZVI was an important factor in the removal of phosphorus by G-nZVI, and G-nZVI with 20 wt.% nZVI (20% G-nZVI) could remove phosphorus most efficiently. The nZVI was very stable and could disperse very well on graphene, as characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FT-IR) and Raman spectroscopy were used to elucidate the reaction process, and the results indicated that Fe-O-P was formed after phosphorus was adsorbed by G-nZVI. The results obtained from X-ray diffraction (XRD) indicated that the reaction product between nZVI supported on graphene and phosphorus was Fe₃(PO₄)₂·8H₂O (Vivianite). It was confirmed that the specific reaction mechanism for the removal of phosphorus with nZVI or G-nZVI was mainly due to chemical reaction between nZVI and phosphorus.

  2. Transformation of chlorinated hydrocarbons using aquocobalamin or coenzyme F{sub 430} in combination with zero-valent iron

    SciTech Connect

    Morra, M.J.; Borek, V.; Koolpe, J.

    2000-06-01

    More effective methods are necessary for the remediation of soils, sediments, and ground waters contaminated with halogenated organic compounds. The authors objective was to determine the feasibility and utility of using a tetrapyrrole-Fe(0) mixture for reductive dehalogenation of synthetic organic contaminants. Aquocobalamin or coenzyme F{sub 430} was combined with Fe(0) in aqueous systems containing either a single chlorinated compound or mixtures of chlorinated compounds, and substrate disappearance was monitored using gas chromatography-mass spectrometry (GC-MS). Zero-valent iron effectively dehalogenated CCl{sub 4} at low to neutral pH values, while increases in CCl{sub 4} dehalogenation resulting from inclusion of tetrapyrrole catalysts along with Fe(0) occurred only at basic pH values. Rates of CCl{sub 4} disappearance increased with additional aquocobalamin, but reached a maximum and decreased at higher aquocobalamin concentrations. overall dehalogenation rates may thus be a function of Fe(0)'s limited reactive surface area. There was a trend for both tetrapyrrole catalysts to promote the disappearance of halogenated compounds in a mixed substrate containing 20 compounds. Studies with five individual substrates likewise showed trends for increased substrate removal with F{sub 430} beyond that for Fe(0) alone. This increase is most important for compounds such as 1,2-dichloroethane and 1,4-dichlorobenzene that are not readily dehalogenated by Fe(0). Chloride concentrations in the reaction mixtures indicated that reductive dehalogenation was the dominant process responsible for substrate disappearance. Use of a combination of aquocobalamin or coenzyme F{sub 430} and Fe(0) may effectively promote dehalogenation, thus producing fewer products and more complete dehalogenation of the target substrates than can be achieved using only one of the abiotic reductants alone.

  3. Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures.

    PubMed

    Koenig, Joanna C; Boparai, Hardiljeet K; Lee, Matthew J; O'Carroll, Denis M; Barnes, Robert J; Manefield, Michael J

    2016-05-05

    Nanoscale zero valent iron (nZVI) and organochlorine respiring bacteria (ORB) are two technologies used to detoxify chlorinated aliphatic hydrocarbons (CAHs). nZVI can rapidly detoxify high CAH concentrations, but is quickly oxidised and unable to degrade certain CAHs (e.g., 1,2-dichlorothane). In contrast, ORB can dechlorinate CAHs resistant to nZVI (e.g., 1,2-dichlorothane) but are inhibited by other CAHs of concern degradable by nZVI (e.g., chloroform and carbon tetrachloride). Combining the two was proposed as a unique treatment train to overcome each technology's shortcomings. In this study, this combined remedy was investigated using a mixture of 1,2-dichloroethane, degradable by ORB but not nZVI, and 1,1,2-trichloroethane, susceptible to both. Results indicated that nZVI rapidly dechlorinated 1,1,2-trichloroethane when supplied above 0.5 g/L, however ORB were inhibited and unable to dechlorinate 1,2-dichloroethane. pH increase and ionic species associated with nZVI did not significantly impact ORB, pinpointing Fe(0) particles as responsible for ORB inhibition. Below 0.05 g/L nZVI, ORB activity was stimulated. Results suggest that combining ORB and nZVI at appropriate doses can potentially treat a wider range of CAHs than each individual remedy. At field sites where nZVI was applied, it is likely that in situ nZVI concentrations were below the threshold of negative consequences.

  4. Simultaneous removal of NO and SO{sub 2} by high-temperature fluidized zero-valent iron processes

    SciTech Connect

    Shiao-Shing Chen; Chih-Yu Cheng; Chung-Cheng Wei; Chao-Heng Tseng

    2007-03-15

    A new approach to simultaneously remove nitrogen monoxide (NO) and sulfur dioxide (SO{sub 2}) by zero valent iron (ZVI) was investigated. Three different parameters, temperature, flux, and ZVI dosage, were tested in fluidized ZVI column studies containing 500 ppmv of NO and SO{sub 2}, respectively. Under the ZVI dosage of 0.5 g at flux of 0.6 L/cm{sub 2} min for temperature 573 K, there is neither NO nor SO{sub 2} reduction. For 623 K and 673 K, complete removal for NO and 90% removal for SO{sub 2} were achieved. For temperatures of 723 K and 773 K, 100% removal was achieved for both NO and SO{sub 2}. The amounts of NO or SO{sub 2} reduction increased as temperature increased, and linearities were observed with both correlation coefficients 0.97. Compared with NO, SO{sub 2} had earlier breakthrough because of a slower diffusion rate and less reactivity but higher mass reduction because of a higher molecular weight for SO{sub 2}. At the same temperature, both NO and SO{sub 2} reductions were constant regardless of either flux or ZVI dosage variation, but breakthrough time was affected by both flux and ZVI dosage. A parameter weight of ZVI/flux (W/F) was developed to represent these two parameters and assess the breakthrough time of NO and SO{sub 2}. Higher breakthrough time was achieved for higher W/F value. Longer breakthrough time and more NO and SO{sub 2} mass reduction were achieved for combined NO and SO{sub 2} than individual NO or SO{sub 2} treated by ZVI, and both oxidation and reduction reactions occurred. 15 refs., 8 figs., 1 tab.

  5. Nano-scale zero valent iron transport in a variable aperture dolomite fracture and a glass fracture

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Sleep, B. E.; Cui, Z.; Zhou, Z.

    2014-12-01

    Experiments and numerical simulations are being performed to understand the transport behavior of carboxymethyl cellulose polymer stabilized nano-scale zero valent iron (nZVI) in a variable aperture dolomite rock fracture and a variable aperture glass replica of a fractured slate. The rock fracture was prepared by artificially inducing a fracture in a dolomite block along a stylolite, and the glass fracture was prepared by creating molds with melted glass on two opposing sides of a fractured slate rock block. Both of the fractures were 0.28 m in length and 0.21 m in width. Equivalent hydraulic apertures are about 110 microns for the rock fracture and 250 microns for the glass replica fracture. Sodium bromide and lissamine green B (LGB) serve as conservative tracers in the rock fracture and glass replica fracture, respectively. A dark box set-up with a light source and digital camera is being used to visualize the LGB and CMC-nZVI movement in the glass fracture. Experiments are being performed to determine the effects of water specific discharge and CMC concentration on nZVI transport in the fractures. Transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry were performed to determine the stability and characteristics of the CMC-nZVI mixture. The transport of bromide, LGB, CMC, and CMC-nZVI in both fractures is being evaluated through analysis of the effluent concentrations. Time-lapse images are also being captured for the glass fracture. Bromide, LGB, and CMC recoveries have exceeded 95% in both fractures. Significant channeling has been observed in the fractures for CMC transport due to viscous effects.

  6. Polyelectrolyte multilayer-assisted immobilization of zero-valent iron nanoparticles onto polymer nanofibers for potential environmental applications.

    PubMed

    Xiao, Shili; Wu, Siqi; Shen, Mingwu; Guo, Rui; Huang, Qingguo; Wang, Shanyuan; Shi, Xiangyang

    2009-12-01

    We report a facile approach to synthesizing and immobilizing zero-valent iron nanoparticles (ZVI NPs) onto polyelectrolyte (PE) multilayer-assembled electrospun polymer nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning were assembled with multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and polyacrylic acid (PAA) through electrostatic layer-by-layer assembly. The formed PAA/PDADMAC multilayers onto CA nanofibers were then used as a nanoreactor to complex Fe(II) ions through the binding with the free carboxyl groups of PAA for subsequent reductive formation of ZVI NPs. Combined scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetry analysis studies demonstrate that the ZVI NPs are successfully synthesized and uniformly distributed into the PE multilayers assembled onto the CA nanofibers. The produced hybrid nanofibrous mats containing ZVI NPs were found to exhibit superior capability to decolorize acid fuchsin, an organic dye in dyeing wastewater. We show that the loading capacity of ZVI NPs can be tuned by changing the number of PE layers and the cycles of binding/reduction process. Increasing the number of the binding/reduction cycles leads to a slight bigger size of the ZVI NPs, which is not beneficial for improving the reactivity of ZVI NPs. The present approach to synthesizing and immobilizing ZVI NPs onto polymer nanofibers opens a new avenue to fabricating various fiber-based composite materials with a high surface area to volume ratio for environmental, catalytic, and sensing applications.

  7. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.

    PubMed

    Lee, Hongshin; Lee, Hye-Jin; Kim, Hyung-Eun; Kweon, Jihyang; Lee, Byeong-Dae; Lee, Changha

    2014-01-30

    In aqueous solution, zero-valent iron (ZVI, Fe(0)) is known to activate oxygen (O2) into reactive oxidants such as hydroxyl radical and ferryl ion capable of oxidizing contaminants. However, little is known about the effect of the particle size of ZVI on the yield of reactive oxidants. In this study, the production of reactive oxidants from nanoparticulate and microparticulate ZVIs (denoted as nZVI and mZVI, respectively) was comparatively investigated in the presence of O2 and EDTA. To quantify the oxidant yield, excess amount of methanol was employed, and the formation of its oxidation product, formaldehyde (HCHO), was monitored. The concentration of HCHO in the nZVI/O2 system rapidly reached the saturation value, whereas that in the mZVI/O2 system gradually increased throughout the entire reaction time. The mZVI/O2 system exhibited higher yields of HCHO than the nZVI/O2 system under both acidic and neutral pH conditions. The higher oxidant yields in the mZVI/O2 system are mainly attributed to the less reactivity of the mZVI surface with hydrogen peroxide (H2O2) relative to the surface of nZVI, which minimize the loss of H2O2 by ZVI (i.e., the two-electron reduction of H2O2 into water). In addition, the slow dissolution of Fe(II) from mZVI was found to be partially responsible for the higher oxidant yields at neutral pH.

  8. Reductive dehalogenation of trichloroethylene with zero-valent iron: Surface profiling microscopy and rate enhancement studies

    SciTech Connect

    Gotpagar, J.; Lyuksyutov, S.; Cohn, R.; Grulke, E.; Bhattacharyya, D.

    1999-11-23

    Mechanistic aspects of the reductive dehalogenation of trichloroethylene using zerovalent iron are studied with three different surface characterization techniques. These include scanning electron microscopy, surface profilometry, and atomic force microscopy. It was found that the pretreatment of an iron surface by chloride ions causes enhancement in the initial degradation rates. This enhancement was attributed to the increased roughness of the iron surface due to crevice corrosion obtained by pretreatment. The results indicate that the fractional active site concentration for the reactive sorption of trichloroethylene is related to the number of defects/abnormalities present on the surface of the iron. This was elucidated with the help of atomic force microscopy. Two possible mechanisms include (1) a direct hydrogenation in the presence of defects acting as catalyst and (2) an enhancement due to the two electrochemical cells operating in proximity to each other. The result of this study has potential for further research to achieve an increase in the reaction rates by surface modifications in a practical scenario.

  9. Deployment of an innovative thermally enhanced soil mixing process augmented with zero-valent iron.

    SciTech Connect

    Lynch, P. L.

    1999-01-15

    An innovative in-situ soil treatment process, referred to as soil mixing/thermally enhanced soil vapor extraction (SM/TESVE), was used to remediate the 317 Area of Argonne National Laboratory-East (i.e., Argonne), which is contaminated with volatile organic compounds (VOCs). Following the initial soil treatment, polishing was required to reduce residual concentrations of contaminants. A study of polishing methods was conducted. It determined that injecting metallic iron particles into the soil, in conjunction with soil mixing, would reduce residual VOC concentrations more effectively than the original conventional soil ventilation approach. After the effectiveness of iron injection was verified, it replaced the soil ventilation step. The modified process involved mixing the soil while hot air and steam were injected into it. Off-gases were captured in a hood over the treatment area. During this process, an iron slurry, consisting of up to 50% iron particles in water with guar gum added as a thickening agent, was injected and mixed into the soil by the mixing equipment. Approximately 6,246 m{sup 3} (8, 170 yd{sup 3}) of soil was treated during this project. Confirmatory samples were then collected. In these samples, VOC concentrations were usually reduced by more than 80%.

  10. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations.

    PubMed

    Li, Xuan; Yang, Yuechao; Gao, Bin; Zhang, Min

    2015-01-01

    Because of its strong pollutant degradation ability, nanoscale zerovalent iron (NZVI) has been introduced to soils and groundwater for remediation purposes, but its impacts on plants are still not very clear. In this work, the effects of low concentration (10-320 μmol/L) NZVI particles on seed germination and growth of peanut plants were evaluated. The exposure of peanut seeds to NZVI at all the tested concentrations altered the seed germination activity, especially the development of seedlings. In comparison with the deionized water treated controls (CK), all of the NZVI treatments had significantly larger average lengths. Further investigations with transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) suggested that NZVI particles may penetrate the peanut seed coats to increase the water uptake to stimulate seed germination. The growth experiments showed that although NZVI at a relatively high concentration (320 μmol/L) showed phytotoxicity to the peanut plants, the lower concentrations of NZVI particles stimulated the growth and root development of the plants. At certain concentrations (e.g., 40 and 80 μmol/L), the NZVI treated samples were even better than the ethylenediaminetetraacetate-iron (EDTA-Fe) solution, a commonly used iron nutrient solution, in stimulating the plant growth. This positive effect was probably due to the uptake of NZVI by the plants, as indicated in the TEM analyses. Because low concentrations of NZVI particles stimulated both the seedling development and growth of peanut, they might be used to benefit the growth of peanuts in large-scale agricultural settings.

  11. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron.

    PubMed

    Johnson, Richard L; Nurmi, James T; O'Brien Johnson, Graham S; Fan, Dimin; O'Brien Johnson, Reid L; Shi, Zhenqing; Salter-Blanc, Alexandra J; Tratnyek, Paul G; Lowry, Gregory V

    2013-02-05

    The fate of nano zerovalent iron (nZVI) during subsurface injection was examined using carboxymethylcellulose (CMC) stabilized nZVI in a very large three-dimensional physical model aquifer with detailed monitoring using multiple, complementary detection methods. A fluorescein tracer test in the aquifer plus laboratory column data suggested that the very-aggressive flow conditions necessary to achieve 2.5 m of nZVI transport could be obtained using a hydraulically constrained flow path between injection and extraction wells. However, total unoxidized nZVI was transported only about 1 m and <2% of the injected nZVI concentration reached that distance. The experimental data also indicated that groundwater flow changed during injection, likely due to hydrogen bubble formation, which diverted the nZVI away from the targeted flow path. The leading edge of the iron plume became fully oxidized during transport. However, within the plume, oxidation of nZVI decreased in a fashion consistent with progressive depletion of aquifer "reductant demand". To directly quantify the extent of nZVI transport, a spectrophotometric method was developed, and the results indicated that deployment of unoxidized nZVI for groundwater remediation will likely be difficult.

  12. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions

    SciTech Connect

    Yuxin Wu; Roelof Versteeg; Lee Slater; Doug Labrecque

    2009-05-01

    Calcium carbonate is a major secondary mineral precipitate that influences PRB reactivity and hydraulic performance. In this study, we conducted column experiments to investigate electrical signatures resulting from concurrent CaCO3 and iron oxides precipitation in two simulated PRB media. Solid phase analysis identified CaCO3 (calcite and aragonite) as a major mineral phase throughout the columns, with magnetite being another major phase present close to the influent. Electrical measurements revealed a consistent decrease in conductivity and polarization magnitude of both columns, suggesting that the electrically insulating CaCO3 dominates the electrical response despite the presence of both electrically conductive iron oxides and CaCO3 precipitates. SEM/EDX imaging suggests that the electrical properties result from the geometrical arrangement of the mineral phases. The CaCO3 forms an insulating film on ZVI/magnetite surfaces, which we assume restricts redox-driven transfer of electric charge between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss.

  13. Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism.

    PubMed

    Yoon, In-Ho; Bang, Sunbaek; Kim, Kyoung-Woong; Kim, Min Gyu; Park, Sang Yoon; Choi, Wang-Kyu

    2016-01-01

    In this study, batch experiments were conducted to investigate the effect of the concentration of ferrous [Fe(II)] ions on selenate [Se(VI)] removal using zero-valent iron (ZVI). The mechanism of removal was investigated using spectroscopic and image analyses of the ZVI-Fe(II)-Se(VI) system. The test to remove 50 mg/L of Se(VI) by 1 g/L of ZVI resulted in about 60% removal of Se(VI) in the case with absence of Fe(II), but other tests with the addition of 50 and 100 mg/L of the Fe(II) had increased the removal efficiencies about 93 and 100% of the Se(VI), respectively. In other batch tests with the absence of ZVI, there were little changes on the Se(VI) removal by the varied concentration of the Fe(II). From these results, we found that Fe(II) ion plays an accelerator for the reduction of Se(VI) by ZVI with the stoichiometric balance of 1.4 (=nFe(2+)/nSe(6+)). Under anoxic conditions, the batch test revealed about 10% removal of the Se(VI), indicating that the presence of dissolved oxygen increased the kinetics of Se(VI) removal due to the Fe(II)-containing oxides on the ZVI, as analyzed by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS). The X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectra also showed that the reductive process of Se(VI) to Se(0)/Se(-II) occurred in the presence of the both ZVI and Fe(II). The final product of iron corrosion was lepidocrocite (γ-FeOOH), which acts as an electron transfer barrier from Fe(0) core to Se(VI). Therefore, the addition of Fe(II) enhanced the reactivity of ZVI through the formation of iron oxides (magnetite) favoring electron transfer during the removal of Se(VI), which was through the exhaustion of the Fe(0) core reacted with Se(VI).

  14. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types.

    PubMed

    Yirsaw, Biruck Desalegn; Mayilswami, Srinithi; Megharaj, Mallavarapu; Chen, Zuliang; Naidu, Ravi

    2016-05-01

    In this study, the influence of soil types on the effect of the commercial form of C-nZVI on tissue concentrations, cellular component, reproduction outcome in Eisenia fetida, and the soil health was investigated. C-nZVI at concentration level of 3 g kg(-1) soil showed no effect on the survival of E. fetida in the three soil types. However, varying effects such as concentration-dependent increase in tissue iron concentration, lipid peroxidation, and damage to DNA molecules by C-nZVI were observed. C-nZVI at an exposure concentration of 60 mg kg(-1) soil induced oxidative stress in E. fetida. Tissue Fe concentration appeared correlated to the DNA damage. Oxidative stress and DNA damage may explain the toxicity mechanisms of nZVI to E. fetida. Graphical Abstract Reactive oxygen species induced by nZVI.

  15. Diversity of Contaminant Reduction Reactions by Zero-Valent Iron: Role of the Reductate

    SciTech Connect

    Miehr, R; Tratnyek, Paul G.; Bandstra, J; Scherer, Michelle; Alowitz, M; Bylaska, Eric J.

    2004-01-01

    The reactions of 8 model contaminants with 9 types of granular Fe(0) were studied in batch experiments using consistent experimental conditions. The model contaminants (herein referred to as reductates because they were reduced by the iron metal) included cations (Cu2+), anions (CrO42-; NO3-; and 5,5,7,7-indigotetrasulfonate), and neutral species (2-chloroacetophenone; 2,4,6-trinitrotoluene; carbon tetrachloride; and trichloroethene). The diversity of this range of reductates offers a uniquely broad perspective on the reactivity of Fe(0). Rate constants for disappearance of the reductates vary over as much as 4 orders of magnitude for particular reductates (due to differences in the 9 types of iron) but differences among the reductates were even larger, ranging over almost 7 orders of magnitude. Various ways of summarizing the data all suggest that relative reactivities with Fe(0) varies in the order: Cu2, I4S > 2CAP, TNT > CT, Cr6 > TCE > NO3. Although the reductate h as the largest effect on disappearance kinetics, more subtle differences in reactivity due to the type of Fe(0) suggests that removal of Cr6 and NO3 (the inorganic anions) involves adsorption to oxides on the Fe(0), whereas the disappearance kinetics of all other types of reductants is favored by reduction on comparatively oxide-free metal. Correlation analysis of the disappearance rate constants using descriptors of the reductates calculated by molecular modeling (energies of the lowest unoccupied molecular orbitals, LUMO, highest occupied molecular orbitals, HOMO, and HOMO-LUMO gaps) showed that reactivities generally increase with decreasing ELUMO and increasing EGAP (and, therefore, increasing chemical hardness h).

  16. Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen

    PubMed Central

    Lee, Changha; Keenan, Christina R.; Sedlak, David L.

    2008-01-01

    In the presence of oxygen, organic compounds can be oxidized by zero-valent iron or dissolved Fe(II). However, this process is not a very effective means of degrading contaminants because the yields of oxidants are usually low (i.e., typically less than 5% of the iron added is converted into oxidants capable of transforming organic compounds). The addition of polyoxometalate (POM) greatly increases the yield of oxidants in both systems. The mechanism of POM enhancement depends on solution pH. Under acidic conditions, POM-mediates the electron transfer from nanoparticulate zero-valent iron (nZVI) or Fe(II) to oxygen, increasing the production of hydrogen peroxide, which is subsequently converted to hydroxyl radical through the Fenton reaction. At neutral pH values, iron forms a complex with POM, preventing iron precipitation on the nZVI surface and in bulk solution. At pH 7, the yield of oxidant approaches the theoretical maximum in the nZVI/O2 and the Fe(II)/O2 systems when POM is present, suggesting that coordination of iron by POM alters the mechanism of the Fenton reaction by converting the active oxidant from ferryl ion to hydroxyl radical. Comparable enhancements in oxidant yields are also observed when nZVI or Fe(II) are exposed to oxygen in the presence of silica-immobilized POM. PMID:18678027

  17. Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles.

    PubMed

    Kim, Jee Yeon; Lee, Changha; Love, David C; Sedlak, David L; Yoon, Jeyong; Nelson, Kara L

    2011-08-15

    This study demonstrates the inactivation of MS2 coliphage (MS2) by nano particulate zerovalent iron (nZVI) and ferrous ion (Fe[II]) in aqueous solution. For nZVI, the inactivation efficiency of MS2 under air-saturated conditions was greater than that observed under deaerated conditions, indicating that reactions associated with the oxidation of nZVI were mainly responsible for the MS2 inactivation. Under air-saturated conditions, the inactivation efficiency increased with decreasing pH for both nZVI and Fe(II), associated with the pH-dependent stability of Fe(II). Although the Fe(II) released from nZVI appeared to contribute significantly to the virucidal activity of nZVI, several findings suggest that the nZVI surfaces interacted directly with the MS2 phages, leading to their inactivation. First, the addition of 1,10-phenanthroline (a strong Fe(II)-chelating agent) failed to completely block the inactivation of MS2 by nZVI. Second, under deaerated conditions, a linear dose-log inactivation curve was still observed for nZVI. Finally, ELISA analysis indicated that nZVI caused more capsid damage than Fe(II).

  18. Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite.

    PubMed

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-04-01

    A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H2O2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L(-1) nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L(-1) of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L(-1) of nano-Fe/Ca/CaO and 20 mM H2O2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H2O2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples.

  19. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.

    PubMed

    Kirschling, Teresa L; Gregory, Kelvin B; Minkley, Edwin G; Lowry, Gregory V; Tilton, Robert D

    2010-05-01

    Nanoscale zerovalent iron (NZVI) particles are a promising technology for reducing trichloroethylene (TCE) contamination in the subsurface. Prior to injecting large quantities of nanoparticles into the groundwater it is important to understand what impact the particles will have on the geochemistry and indigenous microbial communities. Microbial populations are important not only for nutrient cycling, but also for contaminant remediation and heavy metal immobilization. Microcosms were used to determine the effects of NZVI addition on three different aquifer materials from TCE contaminated sites in Alameda Point, CA, Mancelona, MI, and Parris Island, SC. The oxidation and reduction potential of the microcosms consistently decreased by more than 400 mV when NZVI was added at 1.5 g/L concentrations. Sulfate concentrations decreased in the two coastal aquifer materials, and methane was observed in the presence of NZVI in Alameda Point microcosms, but not in the other two materials. Denaturing gradient gel electrophoresis (DGGE) showed significant shifts in Eubacterial diversity just after the Fe(0) was exhausted, and quantitative polymerase chain reaction (qPCR) analyses showed increases of the dissimilatory sulfite reductase gene (dsrA) and Archaeal 16s rRNA genes, indicating that reducing conditions and hydrogen created by NZVI stimulate both sulfate reducer and methanogen populations. Adding NZVI had no deleterious effect on total bacterial abundance in the microcosms. NZVI with a biodegradable polyaspartate coating increased bacterial populations by an order of magnitude relative to controls. The lack of broad bactericidal effect, combined with the stimulatory effect of polyaspartate coatings, has positive implications for NZVI field applications.

  20. Monitoring of Zero-Valent Iron Permeable Reactive Barriers: Electrical Properties and Barrier Aging

    NASA Astrophysics Data System (ADS)

    Labrecque, D. J.; Adkins, P. L.; Slater, L. D.; Versteeg, R.; Sharpe, R.

    2007-12-01

    An innovative method of groundwater remediation invented in the 1990"s, Permeable Reactive Barriers, use sand-sized grains of scrap iron placed in trenches or injected under pressure to remediate a number of organic and inorganic contaminants. Monitoring the aging of these barriers becomes increasingly important as many of these barriers approach their predicted life spans. In-situ resistivity and induced polarization studies have been conducted at six barriers at four different sites: Monticello, Utah; the Denver Federal Center; Kansas City, Missouri; and East Helena, Montana. As some barriers tend to age dramatically faster than others, for this study we consider low permeability barriers as of greater age, as "old" barriers tend to loose permeability rather than exhaust reactive materials. One complicating factor is that two of the barriers studied appear to have issues related to installation. One site, the former Asarco Smelter Site near East Helena, Montana, has been instrumented with an autonomous monitoring system allowing continuous monitoring of the evolution of a relatively new (less than three years old) barrier. The barrier showed surprisingly rapid evolution over the first year of monitoring with changes in both resistivity and chargeability of tens of percent per month. In general, the electrical properties of all of the barriers studied follow a pattern. New barriers are fairly resistive with in-situ conductivity only a few times background (outside the barrier) values. Older barriers get increasingly conductive, with failed barriers showing values of over 100 S/m. The induced polarization response is more complicated. Chargeability values increase over time for young barriers, are largest for healthy barriers in the middle of their lifespan, and decrease as the barrier ages.

  1. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.

    PubMed

    Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke

    2016-12-15

    The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm).

  2. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI): risk mitigation or trade-off?

    NASA Astrophysics Data System (ADS)

    Grieger, K.; Fjordbøge, A.; Hartmann, N.; Eriksson, E.; Baun, A.

    2009-12-01

    The use of nanoscaled particles in environmental remediation is gaining increasing amounts of attention in recent years, including the use of zero-valent iron nanoparticles (nZVI) for soil and groundwater remediation. The main advantages of its use include high degrees of reactivity towards a wide range of contaminants, enhanced mobility of the often coated particles, and its cost-effective in situ applications. Numerous studies have shown that compared to larger sized iron particles nZVI may have some superior properties, due to high surface areas and small sizes associated with nanoscale dimensions. While the use and further development of nZVI is understandably heralded as an environmentally-beneficial technology, the potentials risks of introducing these nanoparticles into the environment also needs to be considered. To date most research has focused on the potential benefits of nZVI and very little research has investigated its potential health and environmental risks. Nonetheless, some recent studies have documented adverse effects from its exposure including the generation of reactive oxygen species (ROS), oxidative stress, bactericidal effects, DNA damage, and inflammatory responses. Moreover, field site injections often involve the use of large quantities of nZVI (10-50 g/L) which may be directly injected into groundwater flow. Combined with the pursuit of designing more mobile and reactive particles, this may potentially lead to risks related to environmental exposures of substantial concentrations. In this study, we provide a brief synopsis of the expected environmental benefits and potential risks of nZVI, particularly focusing on its environmental fate and behavior and potential role as contaminant carrier. These are some areas of primary concern for risk assessors. Furthermore, we estimate and compare the span between probable environmental concentrations from its use in the field and concentrations which have been shown to cause adverse effects in

  3. Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene

    PubMed Central

    Li, Jing; Zhou, Qingxiang; Liu, Yongli; Lei, Man

    2017-01-01

    Abstract In this study, nanoscale zero-valent iron nanoparticles (NZVIs) were coated with silica and polydopamine using a two-step process. The coated nanoparticles were applied as adsorbents for removal of two common polycyclic aromatic hydrocarbons pollutants, phenanthrene (PHE) and anthracene (ANT) from aqueous system. Adsorption kinetics followed a pseudo-second-order model. Isotherms and thermodynamics were investigated and the results indicated that the adsorption process fit best to the Freundlich model and exhibited the characteristics of an exothermal physical adsorption process. Owing to their superparamagnetic characteristics and stability, these adsorbents could be easily collected and recycled for reuse. PMID:28179954

  4. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.

    PubMed

    Schmid, Doris; Micić, Vesna; Laumann, Susanne; Hofmann, Thilo

    2015-10-01

    The high specific surface area and high reactivity of nanoscale zero-valent iron (nZVI) particles have led to much research on their application to environmental remediation. The reactivity of nZVI is affected by both the water chemistry and the properties of the particular type of nZVI particle used. We have investigated the reactivity of three types of commercially available Nanofer particles (from Nanoiron, s.r.o., Czech Republic) that are currently either used in, or proposed for use in full scale environmental remediation projects. The performance of one of these, the air-stable and thus easy-to-handle Nanofer Star particle, has not previously been reported. Experiments were carried out first in batch shaking reactors in order to derive maximum reactivity rates and provide a rapid estimate of the Nanofer particle's reactivity. The experiments were performed under near-natural environmental conditions with respect to the pH value of water and solute concentrations, and results were compared with those obtained using synthetic water. Thereafter, the polyelectrolyte-coated Nanofer 25S particles (having the highest potential for transport within porous media) were chosen for the experiments in column reactors, in order to elucidate nanoparticle reactivity under a more field-site realistic setting. Iopromide was rapidly dehalogenated by the investigated nZVI particles, following pseudo-first-order reaction kinetics that was independent of the experimental conditions. The specific surface area normalized reaction rate constant (kSA) value in the batch reactors ranged between 0.12 and 0.53Lm(-2)h(-1); it was highest for the uncoated Nanofer 25 particles, followed by the polyacrylic acid-coated Nanofer 25S and air-stable Nanofer Star particles. In the batch reactors all particles were less reactive in natural water than in synthetic water. The kSA values derived from the column reactor experiments were about 1000 times lower than those from the batch reactors, ranging

  5. Modeling Polymer Stabilized Nano-scale Zero Valent Iron Transport Experiments in Porous Media to Understand the Transport Behavior

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Krol, M.; Sleep, B. E.

    2015-12-01

    A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40

  6. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.

    PubMed

    Sun, Yuqing; Chen, Season S; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Feng, Yujie; Li, Xiang-Dong

    2017-01-01

    Zero-valent iron (ZVI) was tested for the removal of 150 μg L(-1) As(V) and 350 μg L(-1) Se(VI) in high-salinity (ionic strength 0.35-4.10 M) flowback water of hydraulic fracturing. Over 90% As(V) and Se(VI) was removed by 2.5 g L(-1) ZVI in Day-14 flowback water up to 96-h reaction, with the remaining concentration below the maximum contaminant level for As(V) and criterion continuous concentration for Se(VI) recommended by US EPA. The kinetics of As(V) and Se(VI) removal followed a pseudo-second-order rate expression with the observed rates of 4.51 × 10(-2)-4.91 × 10(-1) and 3.48 × 10(-2)-6.58 × 10(-1) h(-1) (with 0.5-10 g L(-1) ZVI), respectively. The results showed that Se(VI) removal significantly decreased with increasing ionic strength, while As(V) removal showed little variation. Common competing anions (nitrate, bicarbonate, silicate, and phosphate), present in shallow groundwater and stormwater, caused marginal Se(VI) desorption (2.42 ± 0.13%) and undetectable As(V) desorption from ZVI. The competition between As(V) and Se(VI) for ZVI removal depended on the initial molar ratio and surface sites, which occurred when the Se(VI) concentration was higher than the As(V) concentration in this study. The characterization of As(V)- and Se(VI)-loaded ZVI by X-ray diffraction and Raman analysis revealed that ZVI gradually converted to magnetite/maghemite corrosion products with lepidocrocite in flowback water over 30 days. Similar corrosion compositions were confirmed in aerobic and anaerobic conditions regardless of the molar ratio of As(V) to Se(VI). The high reactivity and stability of ZVI showed its suitability for in-situ prevention of As(V) and Se(VI) migration due to accidental leakage, spillage, or overflow of flowback water.

  7. Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials.

    PubMed

    Ma, Yanjun; Metch, Jacob W; Vejerano, Eric P; Miller, Ian J; Leon, Elena C; Marr, Linsey C; Vikesland, Peter J; Pruden, Amy

    2015-01-01

    As nanomaterials in consumer products increasingly enter wastewater treatment plants, there is concern that they may have adverse effects on biological wastewater treatment. Effects of silver (nanoAg), zero-valent iron (NZVI), titanium dioxide (nanoTiO₂) and cerium dioxide (nanoCeO₂) nanomaterials on nitrification and microbial community structure were examined in duplicate lab-scale nitrifying sequencing batch reactors (SBRs) relative to control SBRs that received no nanomaterials or ionic/bulk analogs. Nitrification function was not measurably inhibited in the SBRs by any of the materials as dosing was initiated at 0.1 mg/L and sequentially increased every 14 days to 1, 10, and 20 mg/L. However, SBRs rapidly lost nitrification function when the Ag⁺ experiment was repeated at a continuous high load of 20 mg/L. Shifts in microbial community structure and decreased microbial diversity were associated with both sequential and high loading of nanoAg and Ag⁺, with more pronounced effects for Ag⁺. Bacteroidetes became more dominant in SBRs dosed with Ag⁺, while Proteobacteria became more dominant in SBRs dosed with nanoAg. The two forms of silver also had distinct effects on specific bacterial genera. A decrease in nitrification gene markers (amoA) was observed in SBRs dosed with nanoAg and Ag⁺. In contrast, impacts of NZVI, nanoTiO₂, nanoCeO₂ and their analogs on microbial community structure and nitrification gene markers were limited. TEM-EDS analysis indicated that a large portion of nanoAg remained dispersed in the activated sludge and formed Ag–S complexes, while NZVI, nanoTiO₂ and nanoCeO₂ were mostly aggregated and chemically unmodified. Overall, this study suggests a high threshold of the four nanomaterials in terms of exerting adverse effects on nitrification function. However, distinct microbial community responses to nanoAg indicate potential long-term effects.

  8. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media.

    PubMed

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2016-01-01

    Microscale zero valent iron (mZVI) is a promising material for in-situ contaminated groundwater remediation. However, its usefulness has been usually inhibited by mZVI particles' low mobility in saturated porous media for sedimentation and deposition. In our study, laboratory experiments, including sedimentation studies, rheological measurements and transport tests, were conducted to investigate the feasibility of xanthan gum (XG) being used as a coating agent for mZVI particle stabilization. In addition, the effects of XG concentration, flow rate, grain diameter and water chemistry on XG-coated mZVI (XG-mZVI) particle mobility were explored by analyzing its breakthrough curves and retention profiles. It was demonstrated that XG worked efficiently to enhance the suspension stability and mobility of mZVI particles through the porous media as a shear thinning fluid, especially at a higher concentration level (3 g/L). The results of the column study showed that the mobility of XG-mZVI particles increased with an increasing flow rate and larger grain diameter. At the highest flow rate (2.30 × 10(-3) m/s) within the coarsest porous media (0.8-1.2 mm), 86.52% of the XG-mZVI flowed through the column. At the lowest flow rate (0.97 × 10(-4) m/s) within the finest porous media (0.3-0.6 mm), the retention was dramatically strengthened, with only 48.22% of the particles flowing through the column. The XG-mZVI particles appeared to be easily trapped at the beginning of the column especially at a low flow rate. In terms of two representative water chemistry parameters (ion strength and pH value), no significant influence on XG-mZVI particle mobility was observed. The experimental results suggested that straining was the primary mechanism of XG-mZVI retention under saturated condition. Given the above results, the specific site-related conditions should be taken into consideration for the design of a successful delivery system to achieve a compromise between

  9. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter

    SciTech Connect

    Zhang, Man; He, Feng; Zhao, Dongye; Hao, Xiaodi

    2011-01-01

    Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited by desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, {approx}44% of TCE sorbed in the potting soil was degraded in 30 h, compared to {approx}82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1 x cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith Farm

  10. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.

    PubMed

    Zhang, Man; He, Feng; Zhao, Dongye; Hao, Xiaodi

    2011-03-01

    Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited by desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, ∼ 44% of TCE sorbed in the potting soil was degraded in 30 h, compared to ∼ 82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1 × cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith Farm soil, the

  11. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles.

    PubMed

    Jiamjitrpanich, Waraporn; Polprasert, Chongrak; Parkpian, Preeda; Delaune, R D; Jugsujinda, Aroon

    2010-01-01

    This study evaluated the application of nanoscale metallic particles (nanoscale zero-valent iron (nZVI) particles) in the remediation of TNT in contaminated water and soil samples. The effects of treatment dosages of synthesized nZVI particles and reaction time on degradation rate of TNT were determined. The synthesized nZVI particles (99.99% pure) size distribution was between 20-100 nm (average particle size 80 nm), with a surface area of 21.63 +/- 0.24 m(2)/g. The optimum dosage of nZVI for degradation of 10 mg/L TNT in the contaminated water was 2000 mg/L (w/v) at a reaction time 20 min. However, trace level of TNT remained since the BOD(5) and COD levels at the optimum nZVI treatment dosage were 834 +/- 8 mg/L and 1280 +/- 900 mg/L, respectively. The BOD(5)/COD ratio was 0.65, which was higher than the BOD(5)/COD ratios for the other nZVI dosages which supports the beneficial effect of using nZVI particles for enhancing degradation of TNT. The observed first-order degradation rate of TNT at 25 degrees C was 0.137 min(-1) corresponding to a degradation rate of 0.156 L/m(2) h. In experiments using sandy clay loam soil containing 20 mg/kg TNT in slurry form (1:2 soil to solution ratio, the optimum nZVI treatment dosage that resulted in 99.88% TNT removal was 5000 mg/kg soil. Less toxic intermediate products and their concentrations following degradation were 2-ADNT and 4-ADNT at 0.90 and 0.10 mg/kg, respectively. Results of this study indicate it is feasible to use nZVI for the remediation of TNT-contaminated water and soil samples as a pre-treatment step however secondary treatments such as phyto-remediation or other biological processes may be needed to remove any residue or intermediate products of TNT degradation.

  12. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling.

    PubMed

    Morrison, Stan J; Metzler, Donald R; Dwyer, Brian P

    2002-05-01

    Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.

  13. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling

    NASA Astrophysics Data System (ADS)

    Morrison, Stan J.; Metzler, Donald R.; Dwyer, Brian P.

    2002-05-01

    Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe 3O 4), calcite (CaCO 3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH) 2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO 2, V 2O 3), sulfides (As 2S 3, ZnS), iron minerals (FeSe 2, FeMoO 4) and carbonate (MnCO 3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.

  14. [Preparation of nano zero-valent iron/Sargassum horneri based activated carbon for removal of Cr (VI) from aqueous solution].

    PubMed

    Zeng, Gan-Ning; Wu, Xiao; Zheng, Lin; Wu, Xi; Tu, Mei-Ling; Wang, Tie-Gan; Ai, Ning

    2015-02-01

    Nanoscale zero-valent iron supported on Sargassum horneri activated carbon (NZVI/SAC) was synthesized by zinc chloride activation and incipient wetness method, and characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XRD confirmed the existence of nano zero-valent iron, and SEM revealed that the material consisted of mainly 30-150 nm spherical particles aggregated into chains of individual units. The valence state of iron conformed with the nuclear-shell model. The effects of NZVI loading on AC, pH and the initial concentration of Cr(VI) on the removal of Cr(VI) were investigated. The final Cr(VI) removal percentage was up to 100% under the following conditions: 30 degrees C, pH = 2, NZVI/SAC dosage of 2 g x L(-1) and the amounts of NZVI loaded on SAC of 30%. And the equilibrium time was 10 minutes. These results showed that NZVI/SAC could be potentially applied for removal of high concentration Cr(VI). By analyzing the chemical change of NZVI/ SAC, we demonstrated that Cr(VI) was mainly reduced to insoluble Cr (III) compound in the reaction when pH was less than 4, and adsorbed by NZVI and SAC when pH was over 4.

  15. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions.

    PubMed

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from -3.4±0.3 to -4.3±0.3‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from -7.0±0.4 to -13.6±1.2‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO4(-)). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO).

  16. Application of response surface methodology (RSM) for the removal of methylene blue dye from water by nano zero-valent iron (NZVI).

    PubMed

    Khosravi, Morteza; Arabi, Simin

    In this study, iron zero-valent nanoparticles were synthesized, characterized and studied for removal of methylene blue dye in water solution. The reactions were mathematically described as the function of parameters such as nano zero-valent iron (NZVI) dose, pH, contact time and initial dye concentration, and were modeled by the use of response surface methodology. These experiments were carried out as a central composite design consisting of 30 experiments determined by the 2(4) full factorial designs with eight axial points and six center points. The results revealed that the optimal conditions for dye removal were NZVI dose 0.1-0.9 g/L, pH 3-11, contact time 20-100 s, and initial dye concentration 10-50 mg/L, respectively. Under these optimal values of process parameters, the dye removal efficiency of 92.87% was observed, which very close to the experimental value (92.21%) in batch experiment. In the optimization, R(2) and R(2)adj correlation coefficients for the model were evaluated as 0.96 and 0.93, respectively.

  17. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Tang, Jing; Zeng, Guangming; Yang, Guide; Xie, Xia; Zhou, Yaoyu; Pang, Ya; Fang, Yan; Wang, Jiajia; Xiong, Weiping

    2015-04-01

    In this study, nanoscale zero-valent iron particles immobilized on mesoporous silica (nZVI/SBA-15) were successfully prepared for effective degradation of p-nitrophenol (PNP). The nZVI/SBA-15 composites were characterized by N2 adsorption/desorption, transmission electron microscopy (TEM), UV-vis spectrum and X-ray photoelectron spectroscopy (XPS). Results showed that abundant ultrasmall nanoscale zero-valent iron particles were formed and well dispersed on mesoporous silica (SBA-15). Batch experiments revealed that PNP removal declined from 96.70% to 16.14% as solution pH increased from 3.0 to 9.0. Besides, degradation equilibrium was reached within 5 min, which was independent of initial PNP concentration. Furthermore, only a little PNP elimination on SBA-15 indicated that nZVI immobilized on mesoporous silica was mainly responsible for the target contaminant removal. The UV-vis spectrum and XPS measurement confirmed that the PNP removal was a reductive degradation process, which was further proved by the detected intermediates using gas chromatography-mass spectrometry (GC/MS). The excellent antioxidation ability had been discovered with more than 80% of PNP being removed by nZVI/SBA-15 treated with 30 days' exposure to air. These results demonstrated the feasible and potential application of nZVI/SBA-15 composites in organic wastewater treatment.

  18. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles.

    PubMed

    Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong

    2017-03-03

    Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL(-1) and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants.

  19. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation.

    PubMed

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-03-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg(-1) of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg(-1) nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg(-1) nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI.

  20. The ecotoxic potential of a new zero-valent iron nanomaterial, designed for the elimination of halogenated pollutants, and its effect on reductive dechlorinating microbial communities.

    PubMed

    Schiwy, Andreas; Maes, Hanna M; Koske, Daniel; Flecken, Mirkko; Schmidt, Kathrin R; Schell, Heico; Tiehm, Andreas; Kamptner, Andre; Thümmler, Silke; Stanjek, Helge; Heggen, Marc; Dunin-Borkowski, Rafal E; Braun, Jürgen; Schäffer, Andreas; Hollert, Henner

    2016-09-01

    The purpose of this study was to assess the ecotoxic potential of a new zero-valent iron nanomaterial produced for the elimination of chlorinated pollutants at contaminated sites. Abiotic dechlorination through the newly developed nanoscale zero-valent iron material and its effects on dechlorinating bacteria were investigated in anaerobic batch and column experiments. The aged, i.e. oxidized, iron material was characterization with dynamic light scattering, transmission electron microscopy and energy dispersive x-ray analysis, x-ray diffractometry and cell-free reactive oxygen measurements. Furthermore, it was evaluated in aerobic ecotoxicological test systems with algae, crustacean, and fish, and also applied in a mechanism specific test for mutagenicity. The anaerobic column experiments showed co-occurrence of abiotic and biological dechlorination of the common groundwater contaminant perchloroethene. No prolonged toxicity of the nanomaterial (measured for up to 300 days) towards the investigated dechlorinating microorganism was observed. The nanomaterial has a flake like appearance and an inhomogeneous size distribution. The toxicity to crustacean and fish was calculated and the obtained EC50 values were 163 mg/L and 458 mg/L, respectively. The nanomaterial showed no mutagenicity. It physically interacted with algae, which had implications for further testing and the evaluation of the results. Thus, the newly developed iron nanomaterial was slightly toxic in its reduced state but no prolonged toxicity was recorded. The aquatic tests revealed a low toxicity with EC50 values ≥ 163 mg/L. These concentrations are unlikely to be reached in the aquatic environment. Hence, this nanomaterial is probably of no environmental concern not prohibiting its application for groundwater remediation.

  1. An Experimental Study of Micron-Size Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer-Enhanced Fluids

    SciTech Connect

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2005-12-22

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. In these zones, groundwater moves relatively fast and is able to oxidize iron more rapidly. There is also a possibility that the high-permeability flow paths are deficient in reducing equivalents (e.g. reactive iron), required for barrier performance. One way enhancement of the current barrier reductive capacity can be achieved is by the addition of micron-scale zero-valent iron to the high-permeability zones within the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments (Ringold Unit E gravels) using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Polymers were used to create a suspension viscous enough to keep the Fe0 in solution for extended time periods to improve colloid movement into the porous media without causing a permanent detrimental decrease in hydraulic conductivity. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone in between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments.

  2. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  3. Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation.

    PubMed

    Suanon, Fidèle; Sun, Qian; Li, Mingyue; Cai, Xiang; Zhang, Youchi; Yan, Yijun; Yu, Chang-Ping

    2017-01-05

    Lab scale and single stage high solid anaerobic digestion of sewage sludge spiked with freshly synthesized nanoscale zero valent iron (nZVI) and commercial iron powder (IP) under mesophilic condition (37±1°C) was performed. The effects of both additives on methane yield, and pharmaceutical and personal care product (PPCP) removal were investigated. Results showed that methane yield was increased by 25.2% and 40.8% in the presence of nZVI (0.1%) and IP (1.6%), respectively. Removal efficiencies of chemical oxygen demand were 54.4% and 66.2% in the presence of nZVI and IP, respectively, which were higher compared to the control group (44.6%). In addition, most PPCPs could be partly or completely removed during the anaerobic digestion process. The application of nZVI and IP showed positive impact on the removal of chlorinated PPCPs (p<0.05), but did not show significant impact on other PPCPs (p>0.05). Our finding suggests that the application of nZVI and IP in anaerobic digestion could be a promising way to enhance methane yield but had less improvement on PPCP degradation.

  4. Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr(6+) and Cd(2+) from aqueous solution.

    PubMed

    Kong, Xiangke; Han, Zhantao; Zhang, Wei; Song, Le; Li, Hui

    2016-03-15

    Zeolite-supported microscale zero-valent iron (Z-mZVI) was synthesized and used to remove heavy metal cation (Cd(2+)) and anion (Cr(6+)) from aqueous solution. Transmission electron microscope (TEM) confirmed that mZVI (100-200 nm) has been successfully loaded and efficiently dispersed on zeolite. Atomic absorption Spectroscopy (AAS) revealed the amount of stabilized mZVI was about 1.3 wt.%. The synthesized Z-mZVI has much higher reduction ability and adsorption capacity for Cr(6+) and Cd(2+) compared to bare nanoscale zero-valent iron (nZVI) and zeolite. Above 77% Cr(6+) and 99% Cd(2+) were removed by Z-mZVI, while only 45% Cr(6+) and 9% Cd(2+) were removed by the same amount iron of nZVI, and 1% Cr(6+) and 39% Cd(2+) were removed by zeolite alone with an initial concentration of 20 mg/L Cr(6+) and 200 mg/L Cd(2+). The removal of Cr(6+) by Z-mZVI follows the pseudo first-order kinetics model, and X-ray photoelectron spectroscopy (XPS) analysis confirmed that Cr(6+) was reduced to Cr(3+) and immobilized on the surface of Z-mZVI. The removal mechanisms for Cr(6+) include reduction, adsorption of Cr(3+) hydroxides and/or mixed Fe(3+)/Cr(3+) (oxy)hydroxides. The pseudo-second-order kinetic model indicated that chemical sorption might be rate-limiting in the sorption of Cd(2+) by Z-mZVI. This synthesized Z-mZVI has shown the potential as an efficient and promising reactive material for removing various heavy metals from wastewater or polluted groundwater.

  5. TREATMENT OF 1,2-DIBROMO-3-CHLOROPROPANE AND NITRATE-CONTAMINATED WATER WITH ZERO-VALENT IRON OR HYDROGEN/PALLADIUM CATALYSTS. (R825689C054,R825689C078)

    EPA Science Inventory

    Abstract

    The abilities of zero-valent iron powder and hydrogen with a palladium catalyst (H2/Pd-alumina) to hydrodehalogenate 1,2-dibromo-3-chloropropane (DBCP) to propane under water treatment conditions (ambient temperature and circumneutral pH) were compa...

  6. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.

    PubMed

    Calabrò, P S; Moraci, N; Suraci, P

    2012-03-15

    This paper presents the results of laboratory column tests aimed at defining the optimum weight ratio of zero-valent iron (ZVI)/pumice granular mixtures to be used in permeable reactive barriers (PRBs) for the removal of nickel from contaminated groundwater. The tests were carried out feeding the columns with aqueous solutions of nickel nitrate at concentrations of 5 and 50 mg/l using three ZVI/pumice granular mixtures at various weight ratios (10/90, 30/70 and 50/50), for a total of six column tests; two additional tests were carried out using ZVI alone. The most successful compromise between reactivity (higher ZVI content) and long-term hydraulic performance (higher Pumice content) seems to be given by the ZVI/pumice granular mixture with a 30/70 weight ratio.

  7. Permeable reactive barrier of coarse sand-supported zero valent iron for the removal of 2,4-dichlorophenol in groundwater.

    PubMed

    Gao, Weichun; Zhang, Yongxiang; Zhang, Xiaoye; Duan, Zhilong; Wang, Youhao; Qin, Can; Hu, Xiao; Wang, Hao; Chang, Shan

    2015-11-01

    In this study, coarse sand-supported zero valent iron (ZVI) composite was synthesized by adding sodium alginate to immobilize. Composite was detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). SEM results showed that composite had core-shell structure and a wide porous distribution pattern. The synthesized composite was used for degradation of 2,4-dichlorophenol (2,4-DCP) contamination in groundwater. Experimental results demonstrated that degradation mechanism of 2,4-DCP using coarse sand-supported ZVI included adsorption, desorption, and dechlorination. 2,4-DCP adsorption was described as pseudo-second-order kinetic model. It was concluded that dechlorination was the key reaction pathway, ZVI and hydrogen are prime reductants in dechlorination of 2,4-DCP using ZVI.

  8. The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs.

    PubMed

    Peeters, Kelly; Lespes, Gaëtane; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2016-05-01

    Among the different nanoparticles (NPs) that are used in the remediation of contaminated environmental waters, iron nanoparticles (FeNPs) are the most frequently applied. However, if these FeNPs remain in the waters after the treatment, they can cause a hazard to the environment. In this work the time dependent size distribution of iron particles was investigated in Milli-Q water, forest spring water and landfill leachate after a variety of FeNP treatments. The efficiency of the metal removal by the FeNPs was also examined. The concentrations of the metals in the aqueous samples were determined before and after the nano-remediation by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that the settling and removal of the FeNPs after the treatment of the waters was related to the sample characteristics and the ways of dispersing the NPs. When mixing was used for the dispersion, the nano zero-valent iron (nZVI), FeONPs and Fe3O4NPs settled quickly in the Milli-Q water, the forest spring water and the landfill leachate. Dispersion with tertramethylammonium hydroxide (TMAH) resulted in a slower settling of the iron aggregates. In the Milli-Q and forest spring waters treated with FeONPs and dispersed by TMAH, the nanosized iron remained in solution as long as 24 h after the treatment and could represent a potential threat in environmental waters with a low ionic strength. The removal of the metals strongly depended on the type of FeNPs, the chemical speciation of the elements and the sample matrix. If the FeNPs are contaminated by a particular metal, this contaminant could be, during the NPs treatment, released into the water that is being remediated.

  9. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).

    PubMed

    Fu, Rongbing; Yang, Yingpin; Xu, Zhen; Zhang, Xian; Guo, Xiaopin; Bi, Dongsu

    2015-11-01

    In this study, the synthesis and characterization of sepiolite-supported nanoscale zero-valent iron particles (S-NZVI) was investigated for the adsorption/reduction of Cr(VI) and Pb(II) ions. Nanoscale zero-valent iron (NZVI) supported on sepiolite was successfully used to remove Cr(VI) and Pb(II) from groundwater with high efficiency. The removal mechanism was proposed as a two-step interaction including both the physical adsorption of Cr(VI) and Pb(II) on the surface or inner layers of the sepiolite-supported NZVI particles and the subsequent reduction of Cr(VI) to Cr(III) and Pb(II) to Pb(0) by NZVI. The immobilization of the NZVI particles on the surface of sepiolite could help to overcome the disadvantage of NZVI particles, which have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both the effective surface area and reaction performance. The techniques of XRD, XPS, BET, Zeta potential, and TEM were used to characterize the S-NZVI and interaction between S-NZVI and heavy metals. The appropriate S-NZVI dosage was 1.6 g L(-1). The removal efficiency of Cr(VI) and Pb(II) by S-NZVI was not affected to any considerable extent by the presence of co-existing ions, such as H2PO4(-), SiO3(2-), Ca(2+) and HCO3(-). The Cr(VI) and Pb(II) removal kinetics followed a pseudo-first-order rate expression, and both Langmuir isotherm model and Freundlich isotherm model were proposed. The results suggested that supporting NZVI on sepiolite had the potential to become a promising technique for in situ heavy metal-contaminated groundwater remediation.

  10. Nanoscale zero-valent iron for the removal of Zn2+, Zn(II)-EDTA and Zn(II)-citrate from aqueous solutions.

    PubMed

    Kržišnik, Nina; Mladenovič, Ana; Škapin, Andrijana Sever; Škrlep, Luka; Ščančar, Janez; Milačič, Radmila

    2014-04-01

    The parameters which influence the removal of different zinc (Zn) species: Zn(2+), Zn(II)-EDTA and Zn(II)-citrate from aqueous solutions by nanoparticles of zero-valent iron (nZVI) were investigated at environmental relevant pH values. Untreated, surface modified and silica-fume supported nZVI were applied at different iron loads and contact times to Zn solutions, which were buffered to pH 5.3, 6.0 and 7.0. The results revealed that pH, the type of nZVI, the iron load, the contact time, and the Zn species all had a significant influence on the efficiency of removal. Zn(2+), Zn(II)-EDTA and Zn(II)-citrate were the most effectively removed from aqueous solutions by untreated nZVI. Zn(2+) removal was governed mainly by adsorption onto precipitated iron oxides. Complete removal of Zn(2+) and Zn(II)-citrate was obtained at all pH values investigated. The removal of strong Zn(II)-EDTA complex was successful only at acidic pH, which favored degradation of Zn(II)-EDTA. Consequently, the released Zn(2+) was completely removed from the solution by adsorption onto iron oxides.

  11. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    PubMed

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.

  12. Effect of the addition of zero valent iron (Fe(0)) on the batch biological sulphate reduction using grass cellulose as carbon source.

    PubMed

    Mulopo, Jean; Schaefer, L

    2013-12-01

    Mineral mining generates acidic, saline, metal-rich mine waters, often referred to as acid mine drainage (AMD). Treatment of AMD and recovering saleable products during the treatment process are a necessity since water is, especially in South Africa, a scarce commodity. The aim of the study presented here was to investigate the effect of zero valent iron (Fe(0)) on the biological removal of sulphate from AMD in batch reactors. The performance of the reactors was assessed by means of sulphate reduction, chemical oxygen demand (COD), volatile fatty acid (VFA) utilisation and volatile suspended solids (VSS) concentration. To this end, three batch reactors, A, B and C (volume 2.5 L), were operated similarly with the exception of the addition of grass cuttings and iron filings. Reactors A and B received twice as much grass (100 g) as C (50 g). Reactor A received no iron filings to act as a control, while reactors B and C received 50-g iron filings for the experimental duration. The results showed that Fe(0) appears to provide sustained sulphate removal when sufficient grass substrate is available. In reactors A and C, sulphate removal efficiency was higher when the COD concentration was lower due to utilisation. In reactor B, sulphate removal efficiency was accompanied by an accumulation of COD as hydrogen (H2) provided by the Fe(0) was utilised for sulphate reduction. Furthermore, these results showed the potential of Fe(0) to enhance the participation of microorganisms in sulphate reduction.

  13. Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Ex-periments

    SciTech Connect

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2006-03-20

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. Laboratory experiments have been conducted to investigate whether barrier reductive capacity can be enhanced by adding micron-scale zero-valent iron to the high-permeability zones within the aquifer using shear-thinning fluids containing polymers. Porous media were packed in a wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone between two low-permeability zones or a high-permeability channel sur-rounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The 0.6% amended Fe0 concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced iron in the ISRM barrier. Calculations show that a 1-m-long Fe0 amended zone with an average concentration of 0.6% w/w iron subject to a groundwater velocity of 1 m/day will have an estimated longevity of 7.2 years.

  14. SCANNING ELECTRON ANALYSIS OF IRON FILINGS FROM A ZERO-VALENT IRON PERMEABLE BARRIER USED FOR GROUND WATER RESTORATION

    EPA Science Inventory

    Permeable iron reactive barriers have become a popular way to remediate contaminated ground water. Although this technology has been in use for about a decade, there is still little knowledge about long-term performance issues (l). One of the biggest concerns is the corrosion of ...

  15. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.

    PubMed

    Kim, Hak-Hyeon; Lee, Hongshin; Kim, Hyung-Eun; Seo, Jiwon; Hong, Seok Won; Lee, Jeong-Yong; Lee, Changha

    2015-12-01

    The production of reactive oxidants from nanoparticulate zero-valent iron (nZVI) and ferrous ion (Fe(II)) in the presence of oxygen was greatly enhanced by the addition of tetrapolyphosphate (TPP) as an iron-chelating agent. Compared to other ligands, TPP exhibited superior activity in improving the oxidant yields. The nZVI/TPP/O2 and the Fe(II)/TPP/O2 systems showed similar oxidant yields with respect to the iron consumed, indicating that nZVI only serves as a source of Fe(II). The degradation efficacies of selected organic compounds were also similar in the two systems. It appeared that both hydroxyl radical (OH) and ferryl ion (Fe(IV)) are produced, and OH dominates at acidic pH. However, at pH > 6, little occurrence of hydroxylated oxidation products suggests that Fe(IV) is a dominant oxidant. The degradation rates of selected organic compounds by the Fe(II)/TPP/O2 system had two optimum points at pH 6 and 9, and these pH-dependent trends are likely attributed to the speciation of Fe(IV) with different reactivities.

  16. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM).

    PubMed

    Liu, Airong; Zhang, Wei-xian

    2014-09-21

    An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

  17. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.

    PubMed

    Rao, Pinhua; Mak, Mark S H; Liu, Tongzhou; Lai, Keith C K; Lo, Irene M C

    2009-04-01

    The effects of humic acid (HA) on As(V) removal by zero-valent iron (Fe(0)) from groundwater, associated with corrosion products analyses, were investigated using batch experiments. It was found that arsenic was rapidly removed from groundwater possibly due to its adsorption and co-precipitation with the corrosion products of Fe(0). The removal rate of arsenic by Fe(0) was inhibited in the presence of HA probably because of the formation of soluble Fe-humate in groundwater which hindered the production of iron precipitates. A longer reaction time was then required for arsenic removal. Such an influence of HA on arsenic removal increased with increasing HA concentration from 5 to 25mgL(-1). The binding capacity of HA for dissolved Fe was estimated to be about 0.75mg Femg(-1) HA. When the complexation of HA with dissolved Fe was saturated, further corrosion of Fe(0) would produce precipitates, which significantly accelerated the removal of arsenic from groundwater via adsorption and co-precipitation with the corrosion products. Iron (hydr)oxides such as maghemite, lepidocrocite, and magnetite were characterized by XRD analyses as the corrosion products, while As(V) was found on the surface of these corrosion products as detected by fourier transform infrared spectrometry and X-ray photoelectron spectroscopy.

  18. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.

    PubMed

    Tang, Cilai; Huang, Yong H; Zeng, Hui; Zhang, Zengqiang

    2014-12-15

    Batch tests were conducted to investigate the roles of dissolved Fe(2+) and corrosion products, and the involved mechanisms in selenate (Se(VI)) removal by zero-valent iron (ZVI). The results showed that insignificant Se(VI) removal (4-7.5%) was observed in the presence of ZVI or Fe(2+) alone. However, external supply of dissolved ferrous ion dramatically enhanced Se(VI) removal in the presence of ZVI. Selenate removal efficiency increased with increasing Fe(2+) concentration. Selenate removal sustained only if Fe(2+) was supplied continuously. Both sequential extraction experiments and XPS analysis showed that selenate was reduced step by step, with elemental selenium and adsorbed selenite as the dominant reductive products. Selenite and elemental selenium could be further reduced to selenide, with continuous Fe(2+) supply and sufficient reaction time. In the ZVI-Se(VI)-Fe(2+) system, ZVI was the major electron donor for selenate reduction. Fe(2+) functioned as electron donor as well and was consumed with a Fe(2+):Se stoichiometry of ∼1:1. It also facilitated the transformation of the passive layer of iron coatings to a medium (e.g., magnetite) favoring electron transfer and thus enhanced selenate reduction. Iron corrosion products were media for electron transfer and reactive interfaces for selenium adsorption and reduction. These findings provided a new approach to overcome ZVI surface passivation for long-term application.

  19. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge.

    PubMed

    Suanon, Fidèle; Sun, Qian; Mama, Daouda; Li, Jiangwei; Dimon, Biaou; Yu, Chang-Ping

    2016-01-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas renewable energy. In this study, two different iron nanoparticles [nanoscale zero-valent iron (nZVI) and magnetite (Fe3O4)] were used in the mesophilic AD processes (37 ± 1 °C) to improve biogas production. In addition, changes of heavy metal (Cd, Co, Cu, Zn, Ni and Cr) speciation during AD of sludge with and without iron nanoparticles have been investigated. Concentrations of metals in the initial sludge were as follows: 63.1, 73.4, 1102.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis) for Cd, Co, Cu, Zn, Ni and Cr, respectively. Sequential fractionation showed that metals were predominantly bonded to organic matter and carbonates in the initial sludge. Compared with AD without iron nanoparticles, the application of iron nanoparticles (at dose of 0.5% in this study) showed positive impact not only on biogas production, but also on improvement of metals stabilization in the digestate. Metals were found concentrated in Fe-Mn bound and residual fractions and little was accumulated in the liquid digestate and most mobile fractions of solid digestate (water soluble, exchangeable and carbonates bound). Therefore, iron nanoparticles when properly used, could improve not only biogas yield, but also regulate and control the mobilization of metals during AD process. However, our study also observed that iron nanoparticles could promote the immobilization of phosphorus within the sludge during AD, and more research is needed to fully address the mechanism behind this phenomenon and the impact on future phosphorus reuse.

  20. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions.

    PubMed

    Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke

    2015-06-01

    Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal.

  1. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.

    PubMed

    El-Temsah, Yehia S; Sevcu, Alena; Bobcikova, Katerina; Cernik, Miroslav; Joner, Erik J

    2016-02-01

    Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg(-1) DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil.

  2. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge.

    PubMed

    Mikhailov, Ivan; Komarov, Sergey; Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis

    2017-01-05

    Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1g/l addition of nZVI and 0.05M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15min treatment with 0.1M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  3. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil.

    PubMed

    Su, Huijie; Fang, Zhanqiang; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-07-01

    In this study, a biochar-supported nanoscale zero-valent iron (nZVI@BC) material was used for in situ remediation of hexavalent chromium-contaminated soil. Sedimentation tests and column experiments were used to compare the stability and mobility of nZVI@BC and bare-nZVI. The immobilisation efficiency of chromium, toxic effect of chromium and the content of iron were assessed through leaching tests and pot experiments. Sedimentation tests and transport experiments indicated that nZVI@BC with nZVI to BC mass ratio of 1:1 exhibited better stability and mobility than that of bare-nZVI. The immobilisation efficiency of Cr(VI) and Crtotal was 100% and 92.9%, respectively, when the soil was treated with 8 g/kg of nZVI@BC for 15 days. Moreover, such remediation effectively reduced the leachability of Fe caused by bare-nZVI. In addition, pot experiments showed that such remediation reduced the phytotoxicity of Cr and the leachable Fe and was favourable for plant growth.

  4. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.

    PubMed

    Li, Hui; Zhao, Yong-sheng; Han, Zhan-tao; Hong, Mei

    2015-01-01

    The growing use of nanoscale zero-valent iron (NZVI) in the remediation of contaminated groundwater raises concerns regarding its transport in aquifers. Laboratory-scale sand-packed column experiments were conducted with bare and sucrose-modified NZVI (SM-NZVI) to improve our understanding of the transport of the nanoparticles in saturated porous media, as well as the role of media size, suspension injection rate and concentration on the nanoparticle behavior. As the main indicative parameters, the normalized effluent concentration was measured and the deposition rate coefficient (k) was calculated for different simulated conditions. Overall, compared to the high retention of bare NZVI in the saturated silica column, SM-NZVI suspension could travel through the coarse sand column easily. However, the transport of SM-NZVI particles was not very satisfactory in a smaller size granular matrix especially in fine silica sand. Furthermore, the value of k regularly decreased with the increasing injection rate of suspension but increased with suspension concentration, which could reflect the role of these factors in the SM-NZVI travel process. The calculation of k-value at the tests condition adequately described the experimental results from the point of deposition dynamics, which meant the assumption of first-order deposition kinetics for the transport of NZVI particles was reasonable and feasible.

  5. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model

    NASA Astrophysics Data System (ADS)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.

    2015-06-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.

  6. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms.

    PubMed

    Saccà, Maria Ludovica; Fajardo, Carmen; Costa, Gonzalo; Lobo, Carmen; Nande, Mar; Martin, Margarita

    2014-06-01

    Nanosized zero-valent iron (nZVI) is a new option for the remediation of contaminated soil and groundwater, but the effect of nZVI on soil biota is mostly unknown. In this work, nanotoxicological studies were performed in vitro and in two different standard soils to assess the effect of nZVI on autochthonous soil organisms by integrating classical and molecular analysis. Standardised ecotoxicity testing methods using Caenorhabditis elegans were applied in vitro and in soil experiments and changes in microbial biodiversity and biomarker gene expression were used to assess the responses of the microbial community to nZVI. The classical tests conducted in soil ruled out a toxic impact of nZVI on the soil nematode C. elegans in the test soils. The molecular analysis applied to soil microorganisms, however, revealed significant changes in the expression of the proposed biomarkers of exposure. These changes were related not only to the nZVI treatment but also to the soil characteristics, highlighting the importance of considering the soil matrix on a case by case basis. Furthermore, due to the temporal shift between transcriptional responses and the development of the corresponding phenotype, the molecular approach could anticipate adverse effects on environmental biota.

  7. Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water.

    PubMed

    Petala, Eleni; Baikousi, Maria; Karakassides, Michael A; Zoppellaro, Giorgio; Filip, Jan; Tuček, Jiří; Vasilopoulos, Konstantinos C; Pechoušek, Jiří; Zbořil, Radek

    2016-04-21

    A magnetic photocatalytic material composed of nanoscale zero-valent iron (nZVI) homogeneously distributed over a mesoporous nanocrystalline TiO2 matrix has been prepared by a multistage chemical process, including sol-gel technique, wet impregnation, and chemical reduction. X-ray powder diffraction and Raman spectroscopy were used for the structural and chemical characterization of the magnetic photocatalyst, while bulk magnetization measurements and scanning/transmission electron microscopy were employed to determine the physical and textural properties of the photocatalyst. The synthesized nZVI@TiO2 photocatalyst shows very high efficiency in the removal of hexavalent chromium, Cr(vi), from water. The degradation rate follows a pseudo-first-order kinetic model. Most importantly, the remarkable efficiency of the photocatalyst is found to be due to the synergistic contributions of both counterparts, nZVI and TiO2, as validated by comparative experiments with neat TiO2 and nZVI@TiO2 under UV-C irradiation and without irradiation. New insights into the mechanism of synergistic degradation of chromium(vi) and suppressed oxidation of nZVI particles in the composite material are proposed and therein discussed.

  8. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion.

    PubMed

    Su, Lianghu; Zhen, Guangyin; Zhang, Longjiang; Zhao, Youcai; Niu, Dongjie; Chai, Xiaoli

    2015-12-01

    A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0).

  9. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process.

    PubMed

    Shen, Jinyou; Ou, Changjin; Zhou, Zongyuan; Chen, Jun; Fang, Kexiong; Sun, Xiuyun; Li, Jiansheng; Zhou, Lin; Wang, Lianjun

    2013-09-15

    A combined zero-valent iron (ZVI) reduction and Fenton oxidation process was tested for the pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater. Operating conditions were optimized and overall performance of the combined process was evaluated. For ZVI process, almost complete reduction of nitroaromatic compounds was observed at empty bed contact time (EBCT) of 8h. For Fenton process, the optimal pH, H₂O₂ to Fe(II) molar ratio, H₂O₂ dosage and hydraulic retention time (HRT) were found to be 3.0, 15, 0.216 mol/L and 5h, respectively. After pretreatment by the combined ZVI-Fenton process under the optimal conditions, aromatic organic compound removal was as high as 77.2%, while the majority of COD remained to be further treated by sequent biological process. The combined anaerobic-aerobic process consisted of an anaerobic baffled reactor (ABR) and a moving-bed biofilm reactor (MBBR) was operated for 3 months, fed with ZVI-Fenton effluent. The results revealed that the coupled ZVI-Fenton-ABR-MBBR system was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly aromatic compounds concentration, COD concentration, color and acute toxicity. These results indicate that the combined ZVI-Fenton process offers bright prospects for the pretreatment of wastewater containing nitroaromatic compounds.

  10. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Jiao, Weizhou; Qin, Yuejiao; Luo, Shuai; Feng, Zhirong; Liu, Youzhi

    2017-02-01

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO4 and NaBH4 were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10-20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s-1, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1-9.

  11. Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Chang, Chi-Chen

    2009-08-15

    The challenging national effluent standards for color and organic concentration enforce the industrial concern most the techniques providing fast and efficient solution for the strenuous dye wastewater treatment before outflow. The best remediation technique pursuit is urgently demand for the industrial, government, academia and community. In this study, a di-azo dye, C.I. Acid Black 24, synthesized wastewater was successfully removed synchronously its total color and total organic carbon (TOC) using an integrated innovation technology by coupling the zero-valent iron (ZVI) nanoparticles with UV/H(2)O(2) oxidation process. The nanosized ZVI (NZVI) primarily reduced color successfully following coupling UV/H(2)O(2) oxidation process for the residual organic mineralization resulting reduction with oxidation process (Re-Ox) for total color removal and organic mineralization. From the experimental data, the Re-Ox process consumed shorter time than UV/H(2)O(2) oxidation process alone to obtain total color removal of dye wastewater. Moreover, the residual TOC of dye wastewater after NZVI reduction from 45 to 100% was effectively mineralized by UV/H(2)O(2) process. By using proposed processes integration with NZVI dosage of 0.3348 g l(-1) and hydrogen peroxide concentration of 23.2 mM, in only 10 min the AB24 color was complete eliminated and in 90 min the TOC was 93.9% removed. Thus, the coupling Re-Ox process was developed to provide a superior solution for dye wastewater treatment.

  12. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    PubMed Central

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-01-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176

  13. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite.

    PubMed

    Chen, Wei-fang; Zhang, Jinghui; Zhang, Xiaomao; Wang, Weiya; Li, Yuxiang

    2016-01-01

    Nano-zero-valent iron/activated carbon (nZVI/AC) composite was evaluated for its effectiveness in the stabilization of Cu, Pb, Cd, and Cr in dredged river sediment. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) were adopted to compare the effects of nZVI/AC dosage, particle size, time duration, and temperature on heavy metal leachability. The results show that leachability dropped considerably with the addition of nZVI/AC and powdered particles in the size of 0.075-0.18 mm was more effective in stabilization than granular ones. Stabilization effect was stable in long-term and robust against changes in temperature. Tessier sequential extraction revealed that heavy metals were associated with solid particle, inorganic or organic matters in sediment. The addition of nZVI/AC was able to convert relatively weakly bound heavy metals into more strongly bound species and thus reduce the bioavailability and toxicity. Also, the standard potential of heavy metals may decide the mechanism of stabilization process.

  14. Degradation mechanisms of DDX induced by the addition of toluene and glycerol as cosubstrates in a zero-valent iron pretreated soil.

    PubMed

    Velasco, Antonio; Aburto-Medina, Arturo; Shahsavari, Esmaeil; Revah, Sergio; Ortiz, Irmene

    2017-01-05

    Abiotic and biotic processes can be used to remediate DDX (DDT, DDD, DDE, and DDNS) contaminated soils; these processes can be fostered using specific carbon-amendments to stimulate particular soil indigenous microbial communities to improve rates or extent of degradation. In this study, toluene and glycerol were evaluated as cosubstrates under aerobic and anoxic conditions to determine the degradation efficiencies of DDX and to elucidate possible degradation mechanisms. Slurry microcosms experiments were performed during 60 days using pretreated soil with zero-valent iron (ZVI). Toluene addition enhanced the percentage of degradation of DDX. DDNS was the main compound degraded (around 86%) under aerobic conditions, suggesting cometabolic degradation of DDX by toluene-degrading soil bacteria. Glycerol addition under anoxic conditions favored the abiotic degradation of DDX mediated by sulfate-reducing bacteria activity, where DDT was the main compound degraded (around 90%). The 16S rDNA metagenomic analyses revealed Rhodococcus ruber and Desulfosporosinus auripigmenti as the predominant bacterial species after 40 days of treatment with toluene and glycerol additions, respectively. This study provides evidence of biotic and abiotic DDX degradation by the addition of toluene and glycerol as cosubstrates in ZVI pretreated DDX-contaminated soil.

  15. Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes.

    PubMed

    Wang, Xiangyu; Wang, Anqi; Ma, Jun; Fu, Minglai

    2017-01-01

    For the first time, an integrated green technology by coupling functional nanoscale zero-valent iron (NZVI) with ultrasound (US) was innovatively developed for the enhanced decolorization of malachite green (MG) and methylene blue (MB). The functional NZVI (TP-Fe) was successfully fabricated via a facile, one-step and environmentally-benign approach by directly introducing high pure tea polyphenol (TP), where TP contenting abundant epicatechin was employed as reductant, dispersant and capping agent. Note that neither additional extraction procedure nor protection gas was needed during the entire synthesis process. Affecting factors (including US frequency, initial pH, dye concentration, and reaction temperature) were investigated. Results show that TP-Fe exhibited enhanced activity, antioxidizability and stability over the reaction course, which could be attributed to the functionalization of TP on NZVI and the invigorating effect of US (i.e., improving the mass transfer rate, breaking up the aggregates of TP-Fe nanoparticles, and maintaining the TP-Fe surface activity). The kinetics for MG and MB decolorization by the TP-Fe/US system could be well described by a two-parameter pseudo-first-order decay model, and the activation energies of MG and MB decolorization in this new system were determined to be 21 kJ mol(-1) and 24 kJ mol(-1), respectively. In addition, according to the identified reaction products, a possible mechanism associated with MG and MB decolorization with the TP-Fe/US system was proposed.

  16. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    PubMed

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  17. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity.

    PubMed

    Huang, Danlian; Xue, Wenjing; Zeng, Guangming; Wan, Jia; Chen, Guomin; Huang, Chao; Zhang, Chen; Cheng, Min; Xu, Piao

    2016-12-01

    This paper investigated how sodium alginate (SA)-modified nanoscale zero-valent iron (NZVI), play a constructive role in the remediation of cadmium (Cd) contaminated river sediments. The changes of the fraction of Cd, enzyme activities (urease, catalase, dehydrogenase) and bacterial community structures with the treatment by SNZVI were observed. The sequential extraction experiments demonstrated that most mobile fractions of Cd were transformed into residues (the maximum residual percentage of Cd increases from 15.49% to 57.28% after 30 days of incubation at 0.1 wt% SA), with the decrease of bioavailability of Cd. Exclusive of dehydrogenase, the activities of the other two enzymes tested were enhanced with the increase of incubation time, which indicated that dehydrogenase might be inhibited by ferric ions formed from SNZVI whereas no obvious inhibition was found for other enzymes. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analyses were used for the detection of microbial community changes, and the results showed that SNZVI and NZVI could increase bacterial taxa and improve bacterial abundance. All the experimental findings of this study provide new insights into the potential consequences of SNZVI treatments on the metal Cd immobilization in contaminated river sediments.

  18. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community.

    PubMed

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-16

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlate(TM) technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  19. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    PubMed

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.

  20. Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study.

    PubMed

    Sheng, Guodong; Hu, Jun; Li, Hui; Li, Jiaxing; Huang, Yuying

    2016-04-01

    Herein, the reduction of nanoscale zero-valent iron (NZVI) and adsorption of layered double hydroxides (LDH) to sequester Cr(VI) were well combined by the immobilization of NZVI onto LDH surface (NZVI/LDH). The characterization results revealed that LDH decreased NZVI aggregation and thus increased Cr(VI) sequestration. The batch results indicated that Cr(VI) sequestration by NZVI/LDH was higher than that of NZVI, and superior to the sum of reduction and adsorption. The LDH with good anion exchange property allowed the adsorption of Cr(VI), facilitating interfacial reaction by increasing the local concentration of Cr(VI) in the NZVI vicinity. X-ray absorption near edge structure (XANES) results indicated that Cr(VI) was almost completely reduced to Cr(III) by NZVI/LDH, but Cr(VI) was partly reduced to Cr(III) by NZVI with a trace of Cr(VI) adsorbed on corrosion products. The coordination environment of Cr from extended X-ray absorption fine structure (EXAFS) analysis revealed that LDH could be a good scavenger for the insoluble products produced during reaction. So, the insoluble products on NZVI could be reduced, and its reactivity could be maintained. These results demonstrated that NZVI/LDH exhibits multiple functionalities relevant to the remediation of Cr(VI)-contaminated sites.

  1. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.

    PubMed

    Dong, Haoran; Zeng, Guangming; Zhang, Chang; Liang, Jie; Ahmad, Kito; Xu, Piao; He, Xiaoxiao; Lai, Mingyong

    2015-06-01

    This study investigated the interaction between Cu2+ and nano zero-valent iron (NZVI) coated with three types of stabilizers (i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu2+ uptake, colloidal stability and mobility of surface-modified NZVI (SM-NZVI) in the presence of Cu2+. The uptake of Cu2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu2+. The presence of Cu2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu2+ caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu2+ complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu2+ may be contributing to this straining effect.

  2. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants?

    PubMed

    Wang, Shanquan; Chen, Siyuan; Wang, Yu; Low, Adrian; Lu, Qihong; Qiu, Rongliang

    2016-12-01

    Due to massive production and improper handling, organohalide compounds are widely distributed in subsurface environments, primarily in anoxic groundwater, soil and sediment. Compared to traditional pump-and-treat or dredging-and-disposal treatments, in situ remediation employing abiotic or biotic reductive dehalogenation represents a sustainable and economic solution for the removal of organohalide pollutants. Both nanoscale zero-valent iron (nZVI) and organohalide-respiring bacteria remove halogens through reductive dehalogenation and have been extensively studied and successfully applied for the in situ remediation of chloroethenes and other organohalide pollutants. nZVI and microbial reductive dehalogenation (Bio-RD) complement each other to boost reductive dehalogenation efficiency, suggesting that the integration of nZVI with Bio-RD (Bio-nZVI-RD) may constitute an even more promising strategy for the in situ remediation of organohalide pollutants. In this review, we first provide an overview of the current literature pertaining to nZVI- and organohalide-respiring bacteria-mediated reductive dehalogenation of organohalide pollutants and compare the pros and cons of individual treatment methods. We then highlight recent studies investigating the implementation of Bio-nZVI-RD to achieve rapid and complete dehalogenation and discuss the halogen removal mechanism of Bio-nZVI-RD and its prospects for future remediation applications. In summary, the use of Bio-nZVI-RD facilitates opportunities for the effective in situ remediation of a wide range of organohalide pollutants.

  3. Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system.

    PubMed

    Zhou, Haimei; Shen, Yuanyuan; Lv, Ping; Wang, Jianji; Li, Pu

    2015-03-02

    Fenton and Fenton-like oxidation has been already demonstrated to be efficient for the degradation of imidazolium ionic liquids (ILs), but little is known for their degradation pathway and kinetics in such systems. In this work, degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides ([Cnmim]Br, n=2, 4, 6, 8, and 10) were investigated in an ultrasound nanoscale zero-valent iron/hydrogen peroxide (US-nZVI/H2O2) system. For this purpose, 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as a representative ionic liquid to optimize pH value, nZVI dose, and H2O2 concentration for the degradation reaction. Then, the degradation kinetics of [Cnmim]Br was investigated under optimal conditions, and their degradation intermediates were monitored by gas chromatography-mass spectrometry (GC-MS). It was shown that the degradation of [Cnmim]Br in such a heterogeneous Fenton-like system could be described by a second order kinetic model, and a number of intermediate products were detected. Based on these intermediate products, detailed pathways were proposed for the degradation of [Cnmim]Br in the ultrasound-assisted nZVI/H2O2 system. These findings may be useful for the better understanding of degradation mechanism of the imidazolium ILs in aqueous solutions.

  4. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag].

    PubMed

    Chen, Zhong-lin; Li, Jin-chunzi; Wang, Bin-yuan; Fan, Lei-tao; Shen, Ji-min

    2015-08-01

    The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  5. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  6. Degradation of 4-Chloro-3,5-Dimethylphenol by a Heterogeneous Fenton-Like Reaction Using Nanoscale Zero-Valent Iron Catalysts

    PubMed Central

    Xu, Lejin; Wang, Jianlong

    2013-01-01

    Abstract Degradation of 4-chloro-3,5-dimethylphenol (PCMX) by a heterogeneous Fenton-like process using nanoparticulate zero-valent iron (nZVI) and hydrogen peroxide (H2O2) at pH 6.3 was investigated. Interactive effects of three factors—initial PCMX concentration, nZVI dosage, and H2O2 concentration—were investigated using the response surface method based on the Box–Behnken design. Experimental results showed that complete decomposition of PCMX and 65% of total organic carbon removal were observed after 30 min of reaction at neutral pH under recommended reaction conditions: nZVI, 1.0 g/L; H2O2, 18 mM; and initial PCMX concentration, 0.15 g/L. Based on the effects of scavengers n-butanol and KI, removal of PCMX was mainly attributed to the attack of •OH, especially the surface-bonded •OH. A possible degradation pathway of PCMX was proposed. PMID:23781127

  7. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate.

    PubMed

    Wijesekara, S S R M D H R; Basnayake, B F A; Vithanage, Meththika

    2014-01-01

    The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI's potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g(-1)) and Zn (28.38 mg g(-1)). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.

  8. A Two and Half-Year-Performance Evaluation of a Field Test on Treatment of Source Zone Tetrachloroethene and Its Chlorinated Daughter Products Using Emulsified Zaro Valent Iron Nanoparticles

    EPA Science Inventory

    A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) ...

  9. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    SciTech Connect

    Jin, Xiaoying; Chen, Zhengxian; Zhou, Rongbing; Chen, Zuliang

    2015-01-15

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe{sup 0} nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L{sup −1} (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min.

  10. Application of ultrasound to enhance the zero-valent iron-initiated abiotic degradation of halogenated aliphatic compounds

    NASA Astrophysics Data System (ADS)

    Ruiz, Nancy Elaine

    Permeable iron barriers, while effective as a near-passive in situ remediation technology for halogenated organic solvents, are susceptible to the loss of reactivity over time, most probably due to a build up of corrosion products or other precipitates on the iron surface. If such material can be removed, a barrier's lifetime can be significantly extended. This proof-of-concept project employed ultrasonic energy to rejuvenate an iron surface. Through batch studies, iron's capacity to degrade dissolved chlorinated solvents under various conditions before and after sonication was examined. The impact of iron pretreatment, groundwater quality, and sonication and the nature of the deposits formed on iron during solvent degradation were determined in order to evaluate the physical mechanism of ultrasonic enhancement of iron and to develop guidelines for barrier design and an ultrasound delivery system for a future field study. Iron (coarse filings, 100-mesh powder, or foamed pellets) placed in deoxygenated natural groundwater was exposed to 330 W-hr of ultrasonic energy prior to the introduction of trichloroethylene (TCE). The iron was also subjected to various pretreatments to create surface conditions with differing rates of activity for chlorinated solvent degradation. Aqueous concentrations of TCE and any degradation products were monitored over time. Geochemical modeling indicated that an iron barrier in this water would be subject to heavy precipitation of carbonates and hydroxides. Sonication positively impacted iron's degradation of chlorinated solvents, probably most directly linked to an increase in active specific surface area, achieved by removing deposits and/or etching the surface, as suggested by scanning electron micrographs. X-Ray photoelectron spectroscopy (XPS) analysis indicated that sonication also changes the chemical composition of the outermost 40 Angstroms of an iron surface. For some degraded irons, activity was restored to near initial rates

  11. Exploring the Role of Nanoscale Zero Valent Iron and Bacteria on the Degradation of a Multi-component Chlorinated Solvent at the Field Scale

    NASA Astrophysics Data System (ADS)

    Kocur, C. M.; Lomheim, L.; Boparai, H.; Chowdhury, A. I.; Weber, K.; Austrins, L. M.; Sleep, B. E.; Edwards, E.; O'Carroll, D. M.

    2013-12-01

    Nanoscale zero valent iron (nZVI) has advanced as a technology for the remediation of priority source zone contaminants in response to early laboratory studies that showed rapid rates of compound degradation. The challenges associated with the delivery of nZVI particles (eg. rapid aggregation and settling) were partially resolved with the addition of a polyelectrolyte polymers, like Carboxymethyl cellulose, that significantly improves the colloidal stability of particles allowing for more controlled injection and transport in the subsurface. Following nZVI application and abiotic contaminant degradation nZVI oxidizes and yields reducing conditions. These reducing conditions are ideal for many dechlorinating bacteria. Given this, application of nZVI for abiotic contaminant degradation followed by bioremediation has become an area of active research interest. In this study nZVI was injected into a contaminated sandy subsurface area. Concentrations of a range of chlorinated compounds, including chlorinated ethenes, ethanes, and methanes were monitored in detail following nano-particle injection in order to access short term abiotic degradation. Monitoring continued over a 2 year period to evaluate the long term effects of nZVI injection on the bacterial communities and the biotic degradation of targeted chlorinated compounds. The study focusses on the degradation and evolution of intermediate compounds from reaction with targeted contaminant compounds along the nZVI flow path. Bacterial populations were quantified before injection to confirm that beneficial chloride reducing bacteria were present on site. The microbiological response to the injection of nZVI was studied and the performance of bacteria along the nZVI flow path and outside the nZVI affected area will be compared.

  12. Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms

    NASA Astrophysics Data System (ADS)

    Tan, Lei; Liang, Bin; Fang, Zhanqiang; Xie, Yingying; Tsang, Eric Pokeung

    2014-12-01

    E-waste sites are one of the main sources of the pollutant decabromodiphenyl ether (BDE209); contaminated farmland and water bodies urgently need to be remediated. As a potential in situ remediation technology, nano zero-valent iron (nZVI) technology effectively removes PBDEs. However, the humic acid (HA) and heavy metals in the contaminated sites affect the remediation effects. In this study, we explored the influence of HA and transition metals on the removal of PBDEs by nZVI. The specific surface area and average size of the nZVI particles we prepared were 35 m2/g and 50-80 nm, respectively. The results showed that HA inhibited the removal of PBDEs; as the concentration of HA increased, its inhibitory effect intensified and the k obs decreased. However, the three metal ions (Cu2+, Co2+, and Ni2+) enhanced the removal of PBDEs. The enhancement effect was followed the order Ni2+ > Cu2+ > Co2+. As the concentration of metal ions increased, the promotion effect improved. The synergistic effect of HA and the metal ions was manifested in the combination of the inhibitory effect and the enhancement effect. The values of the first-order kinetic constants ( k obs) under the combined effect were between the values of the rate constants under the individual components. The inhibitory mechanism was the chemisorption of HA, i.e., the benzene carboxylic and phenolic hydroxyl groups in HA occupied the surfactant reactive sites of nZVI, thus inhibiting the removal of BDE209. The promotion mechanism of Cu2+, Co2+, and Ni2+ can be explained by their reduction to zero valence on the nZVI surface; furthermore, Ni2+ strongly affects the debromination and dehydrogenation of BDE209, leading to a stronger promotability than Cu2+or Co2+.

  13. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.

    PubMed

    El-Temsah, Yehia S; Joner, Erik J

    2013-06-01

    Nano-sized zero valent iron (nZVI) has been studied for in situ remediation of contaminated soil and ground water. However, little is known about its effects on organisms in soil and aquatic ecosystems. In this study, the effect of nZVI on degradation of DDT and its ecotoxicological effects on collembola (Folsomia candida) and ostracods (Heterocypris incongruens) were investigated. Two soils were used in suspension incubation experiments lasting for 7 and 30 d; a spiked (20 mg DDT kg(-1)) sandy soil and an aged (>50 years) DDT-polluted soil (24 mg DDT kg(-1)). These were incubated with 1 or 10 g nZVI kg(-1), and residual toxicity in soil and the aqueous phase tested using ecotoxicological tests with collembola or ostracods. Generally, addition of either concentration of nZVI to soil led to about 50% degradation of DDT in spiked soil at the end of 7 and 30 d incubation, while the degradation of DDT was less in aged DDT-polluted soil (24%). Severe negative effects of nZVI were observed on both test organisms after 7 d incubation, but prolonged incubation led to oxidation of nZVI which reduced its toxic effects on the tested organisms. On the other hand, DDT had significant negative effects on collembolan reproduction and ostracod development. We conclude that 1 g nZVI kg(-1) was efficient for significant DDT degradation in spiked soil, while a higher concentration was necessary for treating aged pollutants in soil. The adverse effects of nZVI on tested organisms seem temporary and reduced after oxidation.

  14. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment.

  15. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    PubMed

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  16. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction.

    PubMed

    Jiang, Zhenmao; Zhang, Shujuan; Pan, Bingcai; Wang, Wenfeng; Wang, Xiaoshu; Lv, Lu; Zhang, Weiming; Zhang, Quanxing

    2012-09-30

    To reveal how the distribution of nanoscale zero-valent iron (nZVI) affect their reduction efficiency of its polymer-based composites and to further develop a simple strategy to tune the structure of the composites, we prepared four nZVI-polymerstyrene anion exchanger composites with similar nZVI loadings (13.5-14.4 Fe % in mass) but different distributions just through varying the concentration of NaBH(4) (0.9, 1.8, 3.6, and 7.2% in mass) solution during reduction of nZVI precursor (FeCl(4)(-) anions). As observed by SEM-EDX images, increasing the NaBH(4) concentration resulted in a more uniform nZVI distribution within the polymer, and thereto higher NH(4)(+)N production, faster reaction rate and more gaseous products during its reduction of nitrate and nitrite. nZVI distribution of the composites was suggested to greatly depend upon two processes, the hydrolyzation of anionic FeCl(4)(-) into cationic Fe(3+) and the reduction of both Fe(III) species by NaBH(4). Higher NaBH(4) concentration favored its faster diffusion into the inside polymer and in situ reduction of Fe(III) species into nZVI, causing a more uniform nZVI distribution. The results reported herein suggest that adjusting the NaBH(4) concentration was a simple and effective method to control the nZVI distribution in the supporting polymers, and indirectly tune the reactivity of the resultant nZVI hybrids.

  17. Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils.

    PubMed

    Oleszczuk, Patryk; Kołtowski, Michał

    2017-02-01

    The aim of this study was to investigate co-application of biochar and nano zero-valent iron (nZVI) in order to increase the degradation of PAHs and reduce the toxicity of soils historically contaminated with these compounds. To performed the experiment biochar, biochar with nZVI (2 g kg(-1) or 10 g kg(-1) soil), or nZVI alone (2 g kg(-1) or 10 g kg(-1) soil) were added to the PAHs contaminated soils. The soils alone and soils with amendments were aged by mixing for 7 and 30 days. After that the chemical analysis were carried out and total (Ctot) and Cfree PAH content in the samples were determined. Moreover, the toxicity of aqueous extracts were investigated using the Microtox(®) (Vibrio fischeri) method. Results showed that any of used nZVI dose did not reduce the content of Ctot or Cfree PAHs in contaminated soils, but biochar applied both alone and together with the nZVI significantly reduced Ctot and Cfree PAHs. However, no significant differences in PAH reduction were found between biochar alone and biochar with nZVI addition. This indicates that the observed reduction was mostly associated with the sorption properties of biochar. Moreover, only in the case of co-application of biochar and nZVI reduction of the toxicity of nZVI to V. fischeri was observed. The toxic effect was different and depend on the type of soil and their properties including total organic carbon and black carbon content, which may affect the PAHs reduction efficiency.

  18. Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. 1998 annual progress report

    SciTech Connect

    Weathers, L.

    1998-06-01

    'Previous research findings indicate that both zero valent iron and sulfate reducing bacteria (SRB) can yield significant decreases in Cr(VI) or U(VI) concentrations due to abiotic and microbial reduction, respectively. The major hypothesis associated with this research project is that a combined abiotic-biological system can synergistically combine both processes to maximize metal ion reduction in an engineered permeable reactive barrier. The overall goal of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. Successful completion of this goal requires testing of the two hypotheses listed above by evaluating: (1) the rates of abiotic metal ion reduction, and (2) the rates of microbial metal ion reduction in microbial and combined abiotic/microbial reduction systems under a range of environmental conditions. This report summarizes work after one and one-half years of a three year project. Abiotic studies: The thrust of the abiotic research conducted to date has been to determine the rates of Cr(VI) reduction in batch reactors and to evaluate the role of aquifer materials on those rates. Experiments have been conducted to determine the rates of reduction by Fe(II) and Fe(O). The parameters that have been evaluated are the effect of pH and the presence of sulfide and aquifer material.'

  19. Bioaccumulation and toxic effects of decabromodiphenyl ether in the presence of nanoscale zero-valent iron in an earthworm-soil system.

    PubMed

    Liang, Jun; Xia, Xiaoqian; Zaman, Waqas Qamar; Zhang, Wei; Lin, Kuangfei; Hu, Shuangqing; Lin, Zhifen

    2017-02-01

    In this study, the bioaccumulation and toxic effects of decabromodiphenyl ether (BDE209) (1 and 10 mg kg(-1)) were investigated in the earthworm Eisenia fetida in the presence of different levels of nanoscale zero-valent iron (nZVI) (100, 500, and 1000 mg kg(-1)) in an earthworm-soil system. The results demonstrated that compared to single BDE209 exposure, the addition of high levels of nZVI significantly (P < 0.05) inhibited growth and respiration, while increased the avoidance response of earthworms. The perturbations of antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) and the malondialdehyde (MDA) content clearly revealed that oxidative stress was induced by the two chemicals. The histopathological observations of the body wall of earthworms under a combined exposure of 10 mg kg(-1) BDE209 with 500 or 1000 mg kg(-1) nZVI illustrated the presence of a serious injury in the intestinal tissues after a 28-day exposure. Additionally, a gas chromatography-mass spectrometry analysis revealed that the coexistence of high level of nZVI significantly (P < 0.05) decreased the bioaccumulation of BDE209 in earthworms; BDE208 and BDE206 were the predominant congeners of debrominated metabolites, and 4,6-dibromobenzene-1,2,3,5-tetraol along with benzene-1,2,4,5-tetraol were determined as the two main intermediates. The possible degradation pathways were proposed on the basis of the identified products. This work provides useful information on the biological effects of BDE209 and nZVI.

  20. Potential artifacts in interpretation of differential breakthrough of colloids and dissolved tracers in the context of transport in a zero-valent iron permeable reactive barrier

    USGS Publications Warehouse

    Zhang, P.; Johnson, W.P.; Piana, M.J.; Fuller, C.C.; Naftz, D.L.

    2001-01-01

    Many published studies have used visual comparison of the timing of peak breakthrough of colloids versus conservative dissolved tracers (hereafter referred to as dissolved tracers or tracers) in subsurface media to determine whether they are advected differently, and to elucidate the mechanisms of differential advection. This purely visual approach of determining differential advection may have artifacts, however, due to the attachment of colloids to subsurface media. The attachment of colloids to subsurface media may shift the colloidal peak breakthrough to earlier times, causing an apparent "faster" peak breakthrough of colloids relative to dissolve tracers even though the transport velocities for the colloids and the dissolved tracers may actually be equivalent. In this paper, a peak shift analysis was presented to illustrate the artifacts associated with the purely visual approach in determining differential advection, and to quantify the peak shift due to colloid attachment. This peak shift analysis was described within the context of microsphere and bromide transport within a zero-valent iron (ZVI) permeable reactive barrier (PRB) located in Fry Canyon, Utah. Application of the peak shift analysis to the field microsphere and bromide breakthrough data indicated that differential advection of the microspheres relative to the bromide occurred in the monitoring wells closest to the injection well in the PRB. It was hypothesized that the physical heterogeneity at the grain scale, presumably arising from differences in inter- versus intra-particle porosity, contributed to the differential advection of the microspheres versus the bromide in the PRB. The relative breakthrough (RB) of microspheres at different wells was inversely related to the ionic strength of ground water at these wells, in agreement with numerous studies showing that colloid attachment is directly related to solution ionic strength.

  1. Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms.

    PubMed

    Sun, Xuan; Kurokawa, Tomoyo; Suzuki, Moe; Takagi, Minoru; Kawase, Yoshinori

    2015-01-01

    Effects of pH and dissolved oxygen on mechanisms for decolorization and total organic carbon (TOC) removal of cationic dye methylene blue (MB) by zero-valent iron (ZVI) were systematically examined. Decolorization and TOC removal of MB by ZVI are attributed to the four potential mechanisms, i.e. reduction, degradation, precipitation and adsorption. The contributions of four mechanisms were quantified at pH 3.0, 6.0 and 10.0 in the oxic and anoxic systems. The maximum efficiencies of decolorization and TOC removal of MB were found at pH 6.0. The TOC removal efficiencies at pH 3.0 and 10.0 were 11.0 and 17.0%, respectively which were considerably lower as compared with 68.1% at pH 6.0. The adsorption, which was favorable at higher pH but was depressed by the passive layer formed on the ZVI surface at alkaline conditions, characterized the effects of pH on decolorization and TOC removal of MB. The efficiencies of decolorization and TOC removal at pH 6.0 under the anoxic condition were 73.0 and 59.0%, respectively, which were comparable to 79.9 and 55.5% obtained under the oxic condition. In the oxic and anoxic conditions, however, the contributions of removal mechanisms were quite different. Although the adsorption dominated the decolorization and TOC removal under the oxic condition, the contribution of precipitation was largely superior to that of adsorption under the anoxic condition.

  2. Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron: Synergetic effect, efficiency optimization and mechanism.

    PubMed

    Li, Xiaoguang; Zhao, Ying; Xi, Beidou; Meng, Xiaoguang; Gong, Bin; Li, Rui; Peng, Xing; Liu, Hongliang

    2017-02-01

    In this study, a novel nanoscale zero-valent iron (nZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2(#) clay" (HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange (MO) in aqueous solution by nZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported nZVI (HJ/nZVI) mass ratio (HJ-nZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe(0) dosage, the HJ-nZVI1 and HJ-nZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and nZVIs, or the sum of HJ clay and nZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the nZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-nZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and pH were negatively correlated to the efficiency. HJ clay not only works as a carrier for nZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-nZVI for decontamination gives it great potential for use in a variety of remediation applications.

  3. THE APPLICATION OF IN SITU PERMEABLE REACTIVE (ZERO-VALENT IRON) BARRIER TECHNOLOGY FOR THE REMEDIATION OF CHROMATE-CONTAMINATED GROUNDWATER: A FIELD TEST

    EPA Science Inventory

    A small-scale field test was initiated in September 1994 to evaluate the in situ remediation of groundwater contaminated with chromate using a permeable reactive barrier composed of a mixture of zero-valent Fe, sand and aquifer sediment. The site used was an old chrome-plating f...

  4. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters.

    PubMed

    Toli, Aikaterini; Chalastara, Konstantina; Mystrioti, Christiana; Xenidis, Anthimos; Papassiopi, Nymphodora

    2016-07-01

    The objective of present study was to obtain the fixation of nano zero valent iron (nZVI) particles on a permeable matrix and evaluate the performance of this composite material for the removal of Cr(VI) from contaminated waters. The experiments were carried out using the cationic resin Dowex 50WX2 as porous support of the iron nanoparticles. The work was carried out in two phases. The first phase involved the fixation of nZVI on the resin matrix. The resin granules were initially mixed with a FeCl3 solution to obtain the adsorption of Fe(III). Then the Fe(III) loaded resin (RFe) was treated with polyphenol solutions to obtain the reduction of Fe(III) to the elemental state. Two polyphenol solutions were tested as reductants, i.e. green tea extract and gallic acid. Green tea was found to be inefficient, probably due to the relatively big size of the contained polyphenol molecules, but gallic acid molecules were able to reach adsorbed Fe(III) and reduce the cations to the elemental state. The second phase was focused on the investigation of Cr(VI) reduction kinetics using the nanoiron loaded resins (R-nFe). It was found that the reduction follows a kinetic law of first order with respect to Cr(VI) and to the embedded nanoiron. Compared to other similar products, this composite material was found to have comparable performance regarding reaction rates and higher degree of iron utilization. Namely the rate constant for the reduction of Cr(VI), in the presence of 1 mM nZVI, was equivalent to 1.4 h of half-life time at pH 3.2 and increased to 24 h at pH 8.5. The degree of iron utilization was as high as 0.8 mol of reduced Cr(VI) per mole of iron. It was also found that this composite material can be easily regenerated and reused for Cr(VI) reduction without significant loss of efficiency.

  5. Mg(OH)2 Supported Nanoscale Zero Valent Iron Enhancing the Removal of Pb(II) from Aqueous Solution.

    PubMed

    Liu, Minghui; Wang, Yonghao; Chen, Luntai; Zhang, Yan; Lin, Zhang

    2015-04-22

    In this article, a novel composite (Mg(OH)2 supported nanoscale zerovalent iron (denoted as nZVI@Mg(OH)2) was prepared and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy method. The morphology analysis revealed that Mg(OH)2 appeared as self-supported flower-like spheres, and nano Fe0 particles were uniformly immobilized on the surface of their "flower petals", thus aggregation of Fe0 particles was minimized. Then the Pb(II) removal performance was tested by batch experiments. The composite presented exceptional removal capacity (1986.6 mg/g) compared with Mg(OH)2 and nanoscale zerovalent iron due to the synergistic effect. Mechanisms were also explored by a comparative study of the phase, morphology, and surface valence state of composite before and after reaction, indicating that at least three paths are involved in the synergistic removal process: (1) Pb(II) adsorption by Mg(OH)2 (companied with ion exchange reaction); (2) Pb(II) reduction to Pb0 by nanoscale zerovalent iron; and (3) Pb(II) precipitation as Pb(OH)2. The hydroxies provided by Mg(OH)2 can dramatically promote the role of nanoscale zerovalent iron as reducer, thus greatly enhancing the whole Pb(II) sequestration process. The excellent performance shown in our research potentially provides an alternative technique for Pb(II) pollution treatment.

  6. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    EPA Science Inventory

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  7. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron.

    PubMed

    Klausen, J; Ranke, J; Schwarzenbach, R P

    2001-08-01

    Granular iron is used in reactive permeable barriers for the reductive treatment of organic and inorganic groundwater contaminants. The technology is well established, however, its long-term performance and the importance of the groundwater composition are not yet well understood. Here, the influence of chloride, nitrate, silicate, and Aldrich humic acid on the reactivity of Master Builder iron was studied under anoxic conditions using small packed columns and 2-nitrotoluene (2-NT) as a model contaminant. After initially complete reduction of 2-NT to 2-aminotoluene (2-AT) in the column, possibly under mass-transfer controlled conditions, the reactivity of the iron was found to decrease substantially. In the presence of chloride, this decrease was slowed while exposure to silicate resulted in a very quick loss of iron reactivity. Nitrate was found to interfere strongly with the effect of chloride. These observations are interpreted in terms of corrosion inhibition/promotion and competition. Our results suggest that reactive barrier performance may be strongly affected by the composition of the treated groundwater.

  8. Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites

    DTIC Science & Technology

    2002-01-01

    limited by the formation of a stable hydrogen film produced from the reduction of protons on the metal surface. However, processes that consume hydrogen...gas and thereby interfere with the formation of this hydrogen film , such as mixing with water that is undersaturated with respect to hydrogen or the...extractable carbon. Total sulfur measurements were made with a UIC sulfur coulometer system. Iron samples were covered with V2O5 and combusted in the

  9. ARSENATE AND ARSENITE REMOVAL BY ZERO-VALENT IRON: KINETICS, REDOX TRANSFORMATION, AND IMPLICATIONS FOR IN SITU GROUNDWATER REMEDIATION

    EPA Science Inventory

    Batch tests were performed utilizing four zerovalent iron (Fe0) filings (Fisher, Peerless, Master Builders, and Aldrich) to remove As(V) and As(III) from water. One gram of metal was reacted headspace-free at 23 °C for up to 5 days in the dark with 41.5 mL of 2 mg L-1 As(V), or A...

  10. Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose

    PubMed Central

    2014-01-01

    In this work, synthetic nanoscale zerovalent iron (NZVI) stabilized with two polymers, Starch and Carboxymethyl cellulose (CMC) were examined and compared for their ability in removing As (III) and As (V) from aqueous solutions as the most promising iron nanoparticles form for arsenic removal. Batch operations were conducted with different process parameters such as contact time, nanoparticles concentration, initial arsenic concentration and pH. Results revealed that starch stabilized particles (S-nZVI) presented an outstanding ability to remove both arsenate and arsenite and displayed ~ 36.5% greater removal for As (V) and 30% for As (III) in comparison with CMC-stabilized nanoparticles (C-nZVI). However, from the particle stabilization viewpoint, there is a clear trade off to choosing the best stabilized nanoparticles form. Removal efficiency was enhanced with increasing the contact time and iron loading but reduced with increasing initial As (III, V) concentrations and pH. Almost complete removal of arsenic (up to 500 μg/L) was achieved in just 5 min when the S-nZVI mass concentration was 0.3 g/L and initial solution pH of 7 ± 0.1. The maximum removal efficiency of both arsenic species was obtained at pH = 5 ± 0.1 and starched nanoparticles was effective in slightly acidic and natural pH values. The adsorption kinetics fitted well with pseudo-second-order model and the adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 14 mg/g for arsenic (V), and 12.2 mg/g for arsenic (III). It could be concluded that starch stabilized Fe0 nanoparticles showed remarkable potential for As (III, V) removal from aqueous solution e.g. contaminated water. PMID:24860660

  11. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.

    PubMed

    Dror, Ishai; Jacov, Osnat Merom; Cortis, Andrea; Berkowitz, Brian

    2012-07-25

    A new composite material based on deposition of nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented, for catalytic transformation of organic contaminants in water. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours. A field experiment where contaminated groundwater containing a mixture of industrial and agricultural persistent pollutants was conducted together with a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions.

  12. Field Application of Nanoscale Zero-Valent Iron Particles to In-Situ Treatment of Trichloroethylene in an Aquifer with an Oxic Condition

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Kim, C.; Huynh, T. N.; Hwang, I.

    2013-12-01

    Nanoscale zero-valent iron (NZVI) is a promising reactive medium for rapid in situ remediation of various contaminants including chlorinated solvents, in the groundwater and soil. However, once NZVI particles are injected into an aquifer, they can have poor mobility and reactivity due to their aggregation tendency and to interactions with groundwater solutes such as anions, dissolved organic matter (NOM), and oxygen. Therefore, key technical challenges in the field application are to distribute NZVI particles effectively within the contaminated area, and to maintain the reactivity of NZVI particles while they are delivered. Field studies were conducted to evaluate: (i) mobility of a polymer-coated NZVI in an aquifer with a strong oxic condition, (ii) effect of dissolved oxygen on the degradation of TCE, and (iii) effects of dissolved anions and oxygen on the sustainability of injected NZVI. Initially, natural gradient and forced gradient tracer tests were carried out to investigate the hydrogeological characteristics of the site before injecting NZVI. Preferential flow paths of the groundwater identified by the tracer tests were towards northeast and northwest. The NZVI slurry was then prepared on site and injected at a concentration of up to 10 g/L into the subsurface having area of 140 ft2. A total of approximately 66 pounds of the coated NZVI were successfully injected. During the field injections, NZVI particles were observed in a monitoring well located 13 feet downgradient from the injection well. Iron monitoring data showed that the NZVI could reasonably be delivered under the oxic condition that could enhance the formation of iron oxides, which could be deleterious for the NZVI transport. TCE degradation was more active at the wells with high DO concentrations, based on the correlation between TCE concentrations and DO or NZVI concentrations. It was suspected that solid or liquid form of ferrous ion from the oxidation of NZVI caused a Fenton reaction in

  13. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.

    PubMed

    Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin

    2016-01-01

    This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability.

  14. Monitoring the injection of microscale zero-valent iron particles for groundwater remediation by means of complex electrical conductivity imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, A.; Velimirovic, M.; Tosco, T.; Kemna, A.; Sapion, H.; Klaas, N.; Sethi, R.; Bastiaens, L.

    2015-12-01

    The injection of nano- and microscale zerovalent iron (ZVI) particles has emerged as a promising technique for groundwater remediation. In particular, ZVI injections offer a suitable alternative for the remediation of areas not accessible with other techniques, such as areas characterized by low hydraulic conductivity. In such cases, the injection is performed at high pressure in order to create preferential flow paths (i.e., fractures). Particle injection via fracturing demands an adequate monitoring of the ZVI delivery to track the migration path of the particles as well as to delineate the extension and distribution of the iron slurry. However, characterization of ZVI injections is to date based mainly on the analysis of groundwater and soil samples, thus, limiting the spatio-temporal resolution of the investigation and making it not suitable for real-time monitoring. To overcome this, here we present the application of the complex conductivity (CC) imaging method to characterize the delivery of guar gum stabilized microscale ZVI (GG-mZVI) particles during a field-scale injection by hydraulic fracturing. Our results demonstrated that CC images provide not only an improved characterization of the contaminant distribution, but also valuable information to identify the migration pathway of the injected GG-mZVI. The relatively short acquisition time of CC datasets permitted to obtain monitoring data with enhanced temporal resolution, i.e., after each injection (every ~15 minutes), while still covering an extended area of investigation in comparison to conventional geochemical monitoring by means of soil and water samples. As presented in Figure 1, the CC images revealed an increase (~20%) in the induced electrical polarization (Φ), upon delivery of ZVI into the targeted area, due to the accumulation of ZVI. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through

  15. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.

    PubMed

    Tseng, Hui-Hsin; Su, Jhih-Gang; Liang, Chenju

    2011-08-30

    The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.

  16. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.

    PubMed

    Danish, Muhammad; Gu, Xiaogang; Lu, Shuguang; Naqvi, Muhammad

    2016-07-01

    Chlorinated organic solvents (COSs) are extensively detected in contaminated soil and groundwater that pose long-term threats to human life and environment. In order to degrade COSs effectively, a novel catalytic composite of natural zeolite-supported nano zero valent iron (Z-nZVI) was synthesized in this study. The performance of Z-nZVI-catalyzed sodium percarbonate (SPC) in a heterogeneous Fenton-like system was investigated for the degradation of COSs such as 1,1,1-trichloroethane (1,1,1-TCA) and trichloroethylene (TCE). The surface characteristics and morphology of the Z-nZVI composite were tested using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Total pore volume, specific surface area, and pore size of the natural zeolite and the Z-nZVI composite were measured using Brunauer-Emmett-Teller (BET) method. SEM and TEM analysis showed significant elimination of aggregation and well dispersion of iron nano particles on the framework of natural zeolite. The BET N2 measurement analysis indicated that the surface area of the Z-nZVI composite was 72.3 m(2)/g, much larger than that of the natural zeolite (0.61 m(2)/g). For the contaminant analysis, the samples were extracted with n-hexane and analyzed through gas chromatograph. The degradation of 1,1,1-TCA and TCE in the Z-nZVI-catalyzed percarbonate system were 48 and 39 % respectively, while strong augmentation was observed up to 83 and 99 %, respectively, by adding the reducing agent (RA), hydroxyl amine (NH2OH•HCl). Probe tests validated the presence of OH(●) and O2 (●-) which were responsible for 1,1,1-TCA and TCE degradation, whereas both free radicals were strengthened with the addition of RA. In conclusion, the Z-nZVI/SPC oxidation with reducing agent shows potential technique for degradation of groundwater contaminated by 1,1,1-TCA and TCE.

  17. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media

    NASA Astrophysics Data System (ADS)

    Strutz, Tessa J.; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-08-01

    Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2 m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1 m/h and elemental iron input concentrations (Fe0in) of 0.6, 10, and 17 g/L. Concentrations of Fe0 in the sand were determined by magnetic susceptibility scans, which provide detailed Fe0 distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe0 concentrations of about 14-18 g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a

  18. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.

    PubMed

    Gomathi Devi, L; Girish Kumar, S; Mohan Reddy, K; Munikrishnappa, C

    2009-05-30

    Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The

  19. Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: Effects of pH on iron dissolution and formation of iron oxide/hydroxide layer.

    PubMed

    Fujioka, Nanae; Suzuki, Moe; Kurosu, Shunji; Kawase, Yoshinori

    2016-02-01

    The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0.

  20. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A.D.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  1. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.

    PubMed

    Chekli, L; Brunetti, G; Marzouk, E R; Maoz-Shen, A; Smith, E; Naidu, R; Shon, H K; Lombi, E; Donner, E

    2016-09-01

    The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to n

  2. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue.

    PubMed

    Watts, Mathew P; Coker, Victoria S; Parry, Stephen A; Pattrick, Richard A D; Thomas, Russell A P; Kalin, Robert; Lloyd, Jonathan R

    2015-03-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4-7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity

  3. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    DOE PAGES

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; ...

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions.more » In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  4. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    SciTech Connect

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A. D.; Thomas, Russell A. P.; Kalin, Robert; Lloyd, Jonathan R.

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  5. Aquifer modification: an approach to improve the mobility of nanoscale zero-valent iron particles used for in situ groundwater remediation

    NASA Astrophysics Data System (ADS)

    MicicBatka, Vesna; Schmid, Doris; Marko, Florian; Velimirovic, Milica; Wagner, Stephan; von der Kammer, Frank; Hofmann, Thilo

    2015-04-01

    Successful emplacement of nanoscale zero-valent iron (nZVI) within the contaminated source zone is a prerequisite for the use of nZVI technology in groundwater remediation. Emplacement of nZVI is influenced i.e., by the injection technique and the injection velocity applied, as well as by the mobility of nZVI in the subsurface. Whereas processes linked to the injection can be controlled by the remediation practitioners, the mobility of nZVI in the subsurface remains limited. Even though mobility of nZVI is somewhat improved by surface coating with polyelectrolytes, it is still greatly affected by the groundwater composition and physical and chemical heterogeneities of aquifer grains. In order to promote mobility of nZVI it is needed to alter the surface charge heterogeneities of aquifer grains. Modifying the aquifer grain's surfaces by means of polyelectrolyte coating is an approach proposed to increase the overall negative surface charge of the aquifer grain surfaces, hinder deposition of nZVI onto aquifer grains, and finally promote nZVI mobility. In this study the effect of different polyelectrolytes on the nZVI mobility is tested in natural sands deriving from real brownfield sites that are proposed to be remediated using the nZVI technology. Sands collected from brownfield sites were characterized in terms of grain size distribution, mineralogical and chemical composition, and organic carbon content. Furthermore, surface charge of these sands was determined in both, low- and high ionic strength background solutions. Finally, changes of the sand's surface charges were examined after addition of the proposed aquifer modifiers, lignin sulfonate and humic acid. Surface charge of brownfield sands in low ionic strength background solution is more negative compared to that in high ionic strength background solution. An increase in negative surface potential of brownfield sand was recorded when aquifer modifiers were applied in a background solution with low ionic

  6. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration.

    PubMed

    Mak, Mark S H; Lo, Irene M C; Liu, Tongzhou

    2011-12-01

    A column study was conducted using a combination of zero-valent iron (Fe(0)) and iron oxide-coated sand (IOCS) for removing Cr(VI) and As(V) from groundwater. The removal efficiency and mechanism of Cr(VI) and As(V), the effects of humic acid (HA), and the various configurations of Fe(0) and IOCS were investigated. The results showed that the use of an Fe(0) and IOCS mixture in a completely mixed configuration can achieve the highest removal of both Cr(VI) and As(V), whilst the effects of HA were marginal in using these reactive materials. The solid phase analysis revealed the occurrence of the synergistic effect in these reactive materials as Fe(2+) can be adsorbed onto the IOCS and transform the iron oxides to magnetite, providing more reactive surface area for Cr(VI) reduction and reducing the passivation on the Fe(0). As(V) can then be removed by adsorption onto these iron corrosion products. HA can be adsorbed onto the IOCS so that the impacts of the deposition of HA aggregates on the Fe(0) surface can be reduced, thus enhancing the Fe(0) corrosion.

  7. An insight in magnetic field enhanced zero-valent iron/H2O2 Fenton-like systems: Critical role and evolution of the pristine iron oxides layer

    PubMed Central

    Xiang, Wei; Zhang, Beiping; Zhou, Tao; Wu, Xiaohui; Mao, Juan

    2016-01-01

    This study demonstrated the synergistic degradation of 4-chlorophenol (4-CP) achieved in a magnetic field (MF) enhanced zero-valent iron (ZVI)/H2O2 Fenton-like (FL) system and revealed an interesting correlative dependence relationship between MF and the pristine iron oxides layer (FexOy) on ZVI particles. First, a comparative investigation between the FL and MF-FL systems was conducted under different experimental conditions. The MF-FL system could suppress the duration of initial lag degradation phase one order of magnitude in addition of the significant enhancement in overall 4-CP degradation. Monitoring of intermediates/products indicated that MF would just accelerate the Fenton reactions to produce hydroxyl radical more rapidly. Evolutions of simultaneously released dissolved iron species suggested that MF would not only improve mass-transfer of the initial heterogeneous reactions, but also modify the pristine ZVI surface. Characterizations of the specific prepared ZVI samples evidenced that MF would induce a special evolution mechanism of the ZVI particles surface depending on the existence of FexOy layer. It comprised of an initial rapid point dissolution of FexOy and a following pitting corrosion of the exposed Fe0 reactive sites, finally leading to appearance of a particular rugged surface topography with numerous adjacent Fe0 pits and FexOy tubercles. PMID:27053228

  8. An insight in magnetic field enhanced zero-valent iron/H2O2 Fenton-like systems: Critical role and evolution of the pristine iron oxides layer

    NASA Astrophysics Data System (ADS)

    Xiang, Wei; Zhang, Beiping; Zhou, Tao; Wu, Xiaohui; Mao, Juan

    2016-04-01

    This study demonstrated the synergistic degradation of 4-chlorophenol (4-CP) achieved in a magnetic field (MF) enhanced zero-valent iron (ZVI)/H2O2 Fenton-like (FL) system and revealed an interesting correlative dependence relationship between MF and the pristine iron oxides layer (FexOy) on ZVI particles. First, a comparative investigation between the FL and MF-FL systems was conducted under different experimental conditions. The MF-FL system could suppress the duration of initial lag degradation phase one order of magnitude in addition of the significant enhancement in overall 4-CP degradation. Monitoring of intermediates/products indicated that MF would just accelerate the Fenton reactions to produce hydroxyl radical more rapidly. Evolutions of simultaneously released dissolved iron species suggested that MF would not only improve mass-transfer of the initial heterogeneous reactions, but also modify the pristine ZVI surface. Characterizations of the specific prepared ZVI samples evidenced that MF would induce a special evolution mechanism of the ZVI particles surface depending on the existence of FexOy layer. It comprised of an initial rapid point dissolution of FexOy and a following pitting corrosion of the exposed Fe0 reactive sites, finally leading to appearance of a particular rugged surface topography with numerous adjacent Fe0 pits and FexOy tubercles.

  9. Final Laboratory Treatabilty Report for: Emulsified Zero Valent Iron Treatment of Chlorinated Solvent DNAPL Source Areas. Revision 1.0

    DTIC Science & Technology

    2006-01-23

    is no soil in the test reactors. A possible source of the pH decrease could be from the partial dissolution and degradation of the vegetable oil...result of the use of deionized water to construct the test reactors rather than natural groundwater. Micronutrients and additional microorganisms...biodegradation were not observed to a significant degree in the laboratory tests conducted to date, likely because site groundwater and soil were not

  10. Final Laboratory Treatability Report for: Emulsified Zero Valent Iron Treatment of Chlorinated Solvent DNAPL Source Areas (Rev 1)

    DTIC Science & Technology

    2006-01-23

    the microorganisms in KB-1TM. There is no buffering capacity in the treatments as there is no soil in the test reactors. A possible source of the pH...reactors rather than natural groundwater. Micronutrients and additional microorganisms that may assist in breaking down the vegetable oil into...laboratory tests conducted to date, likely because site groundwater and soil were not used in the test reactors. GeoSyntec Consultants TR0173

  11. [Influence of inorganic ions and humic acid on the removal of Pb(II) and Hg(II) in water by zero-valent iron].

    PubMed

    Shi, Qiu-Ling; Zhou, Xin; Zhang, Jin-Zhong; Qiu, Xin-Kai

    2014-08-01

    The effects of Ca2+, Cl- and humic acid (HA) on the removal rates of Pb(II) and Hg(II) in water by zero-valent (ZVI) and the kinetic characteristics were studied, and the removal mechanism of Pb(II) and Hg(II) by ZVI were preliminarily investigated using X-ray diffraction (XRD). The results indicated that the removal mechanism of Pb(II) might mainly be attributed to the adsorption and co-precipitation of ZVI, while that of Hg(II) might mainly be attributed to the oxidation-reduction of ZVI. With the increase of Ca2+ concentration, the removal rates of Hg(II) and Pb(II) showed the trends of gradual increase and slight decrease, respectively. The Hg(II) removal increased with increasing Cl- concentration, whereas no obvious increase in Pb(II) removal was observed. The removal rates of Hg(II) and Pb(II) showed the trends of slow increase and slow decrease with increasing HA concentration, respectively. When Ca2+, Cl- and HA coexisted, the removal rates of Hg(II) and Pb(II) reached 99.71% and 97.95%, respectively. The removal processes of Pb(II) and Hg(II) could be described by pseudo first-order reaction kinetic equations when Ca2+, Cl- and HA existed alone and in combination. The removal rate constant of Pb(II) was the maxinum (0.024 0 min(-1)) when 5 mg x L(-1) HA existed alone, whereas that of Hg(II) was the maximum (0.0169 min(-1)) when 0.80 mmol x L(-1) Ca2+ existed alone.

  12. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)-CO3/Ca-U(VI)-CO3 complexes.

    PubMed

    Zhang, Zhibin; Liu, Jun; Cao, Xiaohong; Luo, Xuanping; Hua, Rong; Liu, Yan; Yu, Xiaofeng; He, Likai; Liu, Yunhai

    2015-12-30

    The influence of U(VI)-CO3 and Ca-U(VI)-CO3 complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (qe) and distribution constant (Kd) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the qe and Kd values of NZVI were 5-10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0-3.5 times higher than the 100% red soil column. The U(VI)-CO3 complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO-UO2CO3(-) or SO-UO2 (CO3)2(3-). XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  13. Enhanced zero-valent metal permeable wall treatment of contaminated groundwater

    SciTech Connect

    Reinhart, D.R.; Clausen, C.A.; Geiger, C.

    1997-12-31

    On-going research at the University of Central Florida, supported by NASA, is investigating the use of sonicated zero-valent metal permeable treatment walls to remediate chlorinated solvent contaminated groundwater. Use of ultrasound within the treatment wall is proposed to enhance and/or restore the activity of the zero-valent metal. Batch studies designed to evaluate the destruction of chlorinated hydrocarbons using enhanced zero-valent metal reduction found a nearly three-fold increase in reaction rates after ultrasound treatment. Column studies substantiated these results. It is hypothesized that ultrasound serves to remove corrosion products from the iron surface and will prolong the reactive life and efficiency of the permeable treatment wall, thus decreasing long-term costs of wall construction and maintenance.

  14. Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE™ studies.

    PubMed

    Feng, Nan; Ghoveisi, Hossein; Bitton, Gabriel; Bonzongo, Jean-Claude J

    2016-12-01

    Zero valent iron (ZVI) has been widely tested and used in remediation of both contaminated soils and groundwater, and in general, the in situ amendment of the contaminated media is used as remediation approach. However, concerns remain as to the potential detrimental effects of both the immobilized ZVI and the adsorbed pollutants as the treated system could undergo transformations over time. Accordingly, plans for soil remediation by in situ immobilization of sorbents should include a long-term monitoring of the treated systems. Here, we report on a comparative study in which artificially Cu-contaminated sandy and organic soils characterized by different metal binding capacities were treated by either (i) in situ immobilization of ZVI in the soils, or (ii) by a ZVI amendment followed by magnetic retrieval of formed ZVI-Cu complexes prior to plant growth studies. The latter relies on the combination of the high metal adsorption capacity and magnetism of ZVI. Two plant species, Lactuca sativa (lettuce) and Brassica juncea (Indian mustard) were used to assess the efficiency of the two treatment methods in eliminating the bioavailable fraction of Cu. Overall, the results showed that, if soil remediation by in situ immobilization reduces the bio-accessible fraction of Cu, treatment using ZVI amendment followed by magnetic separation performs better. The latter resulted in less Cu accumulated in the shoots and roots of plants. In parallel to the plant growth study, we used MetPLATE™, a short-term bioassay based on the inhibition of the β-galactosidase enzyme by the bioavailable fraction of heavy metal cations, to predict the efficiency of the two treatment methods with regard to the elimination of Cu phyto-toxicity. The results of the bioassay confirmed the trends of phyto-toxicity results, suggesting that MetPLATE™ could be an adequate alternative to the more expensive, labor intensive, and time consuming plant growth studies.

  15. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    PubMed

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe(0)) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P < 0.05) in the quantities of tet (except tet(W)) and intI1 genes was observed at Fe(0) dosage of 5 g/L, whereas no significant differences (P > 0.05) were found for all gene targets between digesters with Fe(0) dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe(0). Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe(0) could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe(0) can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge.

  16. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    SciTech Connect

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.

  17. Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. Year one technical progress report

    SciTech Connect

    Weathers, L.J.; Katz, L.E.

    1997-10-01

    'The objective of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. The major goals for Year 1 were to establish the sulfate reducing mixed culture, to obtain sources of iron metal, and to conduct background experiments which will establish baseline rates for abiotic chromium reduction rates. Research completed to date is described.'

  18. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke

    2016-07-19

    The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.

  19. Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism.

    PubMed

    Arshadi, M; Soleymanzadeh, M; Salvacion, J W L; SalimiVahid, F

    2014-07-15

    In this study, the synthesis and characterization of a new adsorbent containing nanoscale zerovalent iron particles (NZVI) decorated sineguelas waste (S-NaOH-NZVI) from agriculture biomass was investigated for the adsorption/reduction of inorganic pollution such as Pb(II) ions. The combination of ZVI particles on the surface of sineguelas waste can help to overcome the disadvantage of ultra-fine powders which may have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. The synthesized materials were characterized with different methods such as FT-IR, BET, XRD, TEM and pHPZC. Good dispersion of NZVI particles (ca. 10-70nm) on the sineguelas waste was observed. The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The adsorption of Pb(II) ions has been studied in terms of pseudo-first- and second-order kinetics, and the Freundlich, Langmuir and Langmuir-Freundlich isotherms models have also been used to the equilibrium adsorption data. The adsorption kinetics followed the mechanism of the pseudo-second-order equation. The thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the adsorption of Pb(II) ions were feasible, spontaneous and endothermic at 25-80°C. XRD analysis indicated the presence of Pb(0) on the S-NaOH-NZVI surface. This study suggests that the modified sineguelas waste by NZVI particles can be prepared at low cost and the materials are environmentally benign for the removal of Pb(II) ions, and likely many other heavy metal ions, from water.

  20. pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water.

    PubMed

    Katsoyiannis, Ioannis A; Ruettimann, Thomas; Hug, Stephan J

    2008-10-01

    Corrosion of zerovalent iron (ZVI) in oxygen-containing water produces reactive intermediates that can oxidize various organic and inorganic compounds. We investigated the kinetics and mechanism of Fenton reagent generation and As(III) oxidation and removal by ZVI (0.1m2/g) from pH 3-11 in aerated water. Observed half-lives for the oxidation of initially 500 microg/L As(III) by 150 mg Fe(0)/L were 26-80 min at pH 3-9. At pH 11, no As(III) oxidation was observed during the first two hours. Dissolved Fe(III) reached 325, 140, and 6 microM at pH 3, 5, and 7. H2O2 concentrations peaked within 10 min at 1.2, 0.4, and < 0.1 microM at pH 3, 5, and 7, and then decreased to undetectable levels. Addition of 2,2'-bipyridine (1-3 mM), prevented Fe(II) oxidation by O2 and H2O2 and inhibited As(III)oxidation. 2-propanol (14 mM), scavenging OH-radicals, quenched the As(III) oxidation at pH 3, but had almost no effect at pH 5 and 7. Experimental data and kinetic modeling suggest that As(III) was oxidized mainly in solution by the Fenton reaction and removed by sorption on newly formed hydrous ferric oxides. OH-radials are the main oxidant for As(III) at low pH, whereas a more selective oxidant oxidizes As(III) at circumneutral pH.

  1. USING ZERO-VALENT METAL NANOPARTICLES TO REMEDIATE ORGANIC CONTAMINANTS

    EPA Science Inventory

    The transport of organic contaminants down the soil profile constitutes a serious threat to the quality of ground water. Zero-valent metals are considered innocuous abiotic agents capable of mediating decontamination processes in terrestrial systems. In this investigation, ze...

  2. Reductive elimination of chlorinated ethylenes by zero-valent metals

    SciTech Connect

    Roberts, A.L.; Totten, L.A.; Arnold, W.A.; Burris, D.R.; Campbell, T.J.

    1996-08-01

    To date it does not appear to have been demonstrated in the literature that halogenated ethylenes can undergo reductive {beta}-elimination to alkynes under environmental conditions. The purpose of this paper is to provide experimental evidence that such pathways may be involved in the reaction of chloroethylenes with zero-valent metals as well as to speculate on the significance of the products that may result. Calculations indicate that reductive {beta}-elimination reactions of chloroethylenes are in fact comparable energetically to hydrogenolysis at neutral pH. Experiments were therefore initiated to assess whether {beta}-elimination reactions of chlorinated ethylenes could occur in the presence of two zero-valent metals, Fe and Zn. 76 refs., 3 figs., 1 tab.

  3. Reduction of concentrated nitrate by using in situ synthesized zero-valent copper.

    PubMed

    Belay, Tihitinna Asmellash; Lin, F M; Lin, C Y; Hsiao, H M; Chang, M F; Liu, J C

    2015-01-01

    Although zero-valent iron represents a promising approach for reduction of nitrate (NO(3)(-)) in water, its application in concentrated nitrate is limited by surface passivation. In this study, an alternative approach using in situ synthesized zero-valent copper (Cu(0)) produced by borohydride (NaBH(4)) was investigated. Complete reduction was observed within 55 min by reacting 677 mg-N/L of NO(3)(-) with CuO (0.312 g/L) and NaBH(4) (4.16 g/L) at 60 °C. The pseudo-first-order rate constant was 0.059 min(-1), and it increased threefold when the CuO dose was increased to 1.24 g/L. Increasing the NaBH(4) dose produced less nitrite (NO(2)(-)) throughout the experiments, indicating that it is the primary agent for reducing NO(2)(-). The initial pH exerted a significant effect on the reaction rate, and NO(3)(-) was rapidly reduced when the initial pH was less than 4. Based on the research findings, possible reaction pathways for NO(3)(-) reduction by Cu(0) are proposed in this work.

  4. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation.

    PubMed

    Li, Lingyun; Hu, Jiwei; Shi, Xuedan; Fan, Mingyi; Luo, Jin; Wei, Xionghui

    2016-09-01

    Engineered nanoscale zero-valent metals (NZVMs) representing the forefront of technologies have been considered as promising materials for environmental remediation and antimicrobial effect, due to their high reducibility and strong adsorption capability. This review is focused on the methodology for synthesis of bare NZVMs, supported NZVMs, modified NZVMs, and bimetallic systems with both traditional and green methods. Recent studies have demonstrated that self-assembly methods can play an important role for obtaining ordered, controllable, and tunable NZVMs. In addition to common characterization methods, the state-of-the-art methods have been developed to obtain the properties of NZVMs (e.g., granularity, size distribution, specific surface area, shape, crystal form, and chemical bond) with the resolution down to subnanometer scale. These methods include spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), electron energy-loss spectroscopy (EELS), and near edge X-ray absorption fine structure (NEXAFS). A growing body of experimental data has proven that nanoscale zero-valent iron (NZVI) is highly effective and versatile. This article discusses the applications of NZVMs to treatment of heavy metals, halogenated organic compounds, polycyclic aromatic hydrocarbons, nutrients, radioelements, and microorganisms, using both ex situ and in situ methods. Furthermore, this paper briefly describes the ecotoxicological effects for NZVMs and the research prospects related to their synthesis, modification, characterization, and applications.

  5. Partial oxidation (“aging”) and surface modification decrease the toxicity of nano-sized zero valent iron     

    EPA Science Inventory

    Zero-valent iron (nZVI) is a redox-active nanomaterial used for in situ remediation of contaminated groundwater. To assess the effect of “aging” and surface modification on its potential neurotoxicity, cultured rodent microglia and neurons were exposed to fresh nZVI, “aged” (>11...

  6. Emplacement of zero-valent metal for remediation of deep contaminant plumes

    SciTech Connect

    Hubble, D.W.; Gillham, R.W.; Cherry, J.A.

    1997-12-31

    Some groundwater plumes containing chlorinated solvent contaminants are found to be so deep that current in situ remediation technologies cannot be economically applied. Also, source zones are often found to be too deep for removal or inaccessible due to surface features. Plumes emanating from these sources require containment or treatment. Containment technologies are available for shallow sites (< 15 m) and are being developed for greater depths. However, it is important to advance the science of reactive treatment - both for cut off of plumes and to contain and treat source zones. Zero-valent metal technology has been used for remediation of solvent plumes at sites in Canada, the UK and at several industrial and military sites in the USA. To date, all of the plumes treated with zero-valent metal (granular iron) have been at depths less than 15 m. This paper gives preliminary results of research into methods to emplace granular iron at depths in the range of 15 to 60 m. The study included review of available and emerging methods of installing barrier or reactive material and the selection, preliminary design and costing of several methods. The design of a treatment system for a 122 m wide PCE plume that, immediately down gradient from its source, extends from a depth of 24 to 37 m below the ground surface is used as a demonstration site. Both Permeable Reactive Wall and Funnel-and-Gate{trademark} systems were considered. The emplacement methods selected for preliminary design and costing were slurry wall, driven/vibrated beam, deep soil mixing and hydrofracturing injection. For each of these methods, the iron must be slurried for ease of pumping and placement using biodegradable polymer viscosifiers that leave the iron reactive.

  7. Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants

    SciTech Connect

    Fennelly, J.P.; Roberts, A.L.

    1998-07-01

    Information concerning the pathways and products of reaction of 1,1,1-trichloroethane (1,1,1-TCA) with zero-valent metals may be critical to the success of in situ treatment techniques. Many researchers assume that alkyl polyhalides undergo reduction via stepwise hydrogenolysis (replacement of halogen by hydrogen). Accordingly, 1,1,1-TCA should react to 1,1-dichloroethane (1,1-DCA), to chloroethane, and finally to ethane. Experiments conducted in laboratory-scale batch reactors indicate, however, that with zinc, iron, and two bimetallic reductants (nickel-plated iron and copper-plated iron) this simplistic stepwise scheme cannot explain observed results. 1,1,1-TCA was found to react rapidly with zinc to form ethane and 1,1-DCA. Independent experiments confirmed that 1,1-DCA reacts too slowly to represent an intermediate in the formation of ethane. In reactions with iron, nickel/iron, and copper/iron, cis-2-butene, ethylene, and 2-butyne were also observed as minor products. Product ratios were dependent on the identity of the metal or bimetallic reductant, with zinc resulting in the lowest yield of chlorinated product. For reactions with iron and bimetallic reductants, a scheme involving successive one-electron reduction steps to form radicals and carbenoids can be invoked to explain the absence of observable intermediates, as well as the formation of products originating from radical or possibly from carbenoid coupling.

  8. Biphasic reduction model for predicting the impacts of dye-bath constituents on the reduction of tris-azo dye Direct Green-1 by zero valent iron (Fe(0)).

    PubMed

    Kumar, Raja; Sinha, Alok

    2017-02-01

    Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe(0) was investigated. Organic acids improved dye reduction by augmenting Fe(0) corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its 'salting out' effect on the bulk solution and by Cl(-) anion-mediated pitting corrosion of iron surface. (NH4)2SO4 induced 'salting out' effect accompanied by enhanced iron corrosion by SO4(2-) anion and buffering effect of NH4(+) improved the reduction rates. However, at 2g/L (NH4)2SO4 concentration, complexating of SO4(2-) with iron oxides decreased Fe(0) reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and 'salting in' effect in solution, and due to it masking the Fe(0) surface. Decolouration obeyed biphasic reduction kinetics (R(2)>0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH2.

  9. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.

    PubMed

    Pang, Su-Yan; Jiang, Jin; Ma, Jun

    2011-01-01

    Previous studies have shown that the corrosion of zerovalent iron (ZVI) by oxygen (O(2)) via the Fenton reaction can lead to the oxidation of various organic and inorganic compounds. However, the nature of the oxidants involved (i.e., ferryl ion (Fe(IV)) versus hydroxyl radical (HO(•))) is still a controversial issue. In this work, we reevaluated the relative importance of these oxidants and their role in As(III) oxidation during the corrosion of nanoscale ZVI (nZVI) in air-saturated water. It was shown that Fe(IV) species could react with sulfoxides (e.g., dimethyl sulfoxide, methyl phenyl sulfoxide, and methyl p-tolyl sulfoxide) through a 2-electron transfer step producing corresponding sulfones, which markedly differed from their HO(•)-involved products. When using these sulfoxides as probe compounds, the formation of oxidation products indicative of HO(•) but no generation of sulfone products supporting Fe(IV) participation were observed in the nZVI/O(2) system over a wide pH range. As(III) could be completely or partially oxidized by nZVI in air-saturated water. Addition of scavengers for solution-phase HO(•) and/or Fe(IV) quenched As(III) oxidation at acidic pH but had little effect as solution pH increased, highlighting the importance of the heterogeneous iron surface reactions for As(III) oxidation at circumneutral pH.

  10. Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals

    SciTech Connect

    Jory A. Yarmoff; Christopher Amrhein

    2002-04-23

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  11. ZERO-VALENT IRON PRB APPLICATION EXPANDS TO ARSENIC REMOVAL

    EPA Science Inventory

    The U.S. EPA Office of Research and Development’s National Risk Management Research Laboratory (NRMRL) and Region 8 have begun evaluating performance of a pilot-scale permeable reactive barrier (PRB) to treat arsenic-contaminated ground water at the ASARCO Superfund near Helena, ...

  12. FUNDAMENTAL STUDIES OF THE REMOVAL OF CONTAMINANTS FROM GROUND AND WASTE WATERS VIA REDUCTION BY ZERO-VALENT METALS

    SciTech Connect

    Yarmoff, Jory A.; Amrhein, Christopher

    2000-06-01

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many sites. Both in situ reactive barriers and above-ground reactors are being developed and field tested at this time. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

  13. Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles

    DOEpatents

    Leseman, Zayd; Luhrs, Claudia; Phillips, Jonathan; Soliman, Haytham

    2016-04-12

    Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).

  14. Formation of hydrocarbons from the reduction of aqueous CO{sub 2} by zero-valent metal

    SciTech Connect

    Hardy, L.I.; Gillham, R.W.

    1995-12-01

    The reduction of aqueous CO{sub 2} by zero-valent iron was studied in batch and column experiments. Ten hydrocarbons up to C5 were identified as products of the reduction process and were shown to have Anderson-Schultz-Flory (ASF) product distributions. A direct consequence of the ASF product distribution is that a significant mass of hydrophobic hydrocarbons may remain attached to the iron surface. The slow desorption of these products may become the rate-limiting step in dehalogenation of chlorinated organics. Based on a reaction mechanism proposed for the electro-reduction of aqueous CO{sub 2} with nickel electrodes, iron acts as both a reactant, by corroding to supply electrons, and as a catalyst by promoting the formation and growth of hydrocarbon chains. Water is also a reactant in the system.

  15. Reduction of N-nitrosodimethylamine with zero-valent zinc.

    PubMed

    Han, Ying; Chen, Zhong-lin; Tong, Li-na; Yang, Lei; Shen, Ji-min; Wang, Bin-yuan; Liu, Yue; Liu, Yu; Chen, Qian

    2013-01-01

    N-Nitrosodimethylamine (NDMA) is known as the disinfection by-product and the pollutant in the source water. Reduction with zero-valent zinc (Zn(0)) was investigated as a potential technology to treat NDMA. The results showed that Zn(0) was effective for NDMA reduction at initial pH 7.0. There were lag period and rapid period during the process, the corresponding zero-order rate constant (k(zero)) was 2.968 ± 0.245 μg L(-1) h(-1) ([Zn(0)](0) = 10g L(-1)),the mass normalized pseudo-first-order rate (k(M)) was 0.1215 ± 0.0171 L g(-1) h(-1). The reactivity of zinc on NDMA removal was consistent with the zinc corrosion rate. NDMA had little effect on the corrosion of zinc. Lower solution pH benefited the reduction of NDMA with Zn(0). The consumption of the oxygen and the localized acidification should be the cause of the shift from lag to rapid reaction period in the aerobic experiments. 1,1-dimethylhydrazine (unsymmetrical dimethylhydrazine, UDMH), dimethylamine (DMA) were detected as the products of NDMA degradation. The nitrogen mass balance at 24 h was 56%, the loss can be due to the formation of ammonium, the degradation of UDMH and other unmeasured products. DMA formed during the degradation of UDMH with Zn(0), the nitrogen loss could be caused by the formation of unmeasured products. Catalytic hydrogenation is proposed to be the mechanism based on the results and the redox properties of zinc and NDMA. One reduction process is: the active hydrogen atoms initially cleave and reduce the N=O bond in NDMA, generating UDMH. Then the N-N bond in UDMH is cleaved to form DMA and ammonium.

  16. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent metal - field experiment results

    NASA Astrophysics Data System (ADS)

    Dror, I.; Merom Jacov, O.; Berkowitz, B.

    2010-12-01

    A new composite material based on deposition of nanosized zero valent iron (ZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with ZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nanosized ZVI by preventing agglomeration of iron particles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material and in turn faster rates of remediation. The ability of the material to degrade or transform rapidly and completely a large spectrum of water pollutants will be demonstrated, based on results from two field site experiments where polluted groundwater containing a mixture of industrial and agricultural persistent pollutants was treated. In addition a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions will be presented.

  17. The experimental study of Cr6+ contaminated water remediation by zero-valent nano-Fe

    NASA Astrophysics Data System (ADS)

    Sun, X. N.; Liu, A. P.; Chen, Q. F.; Wang, X.

    2015-09-01

    In recent years, researchers have developed a number of new types of zero-valent nano-Fe remediation materials applied in the remediation of contaminated soil and water, which has attracted wide attentions. This paper selected soil leaching wastewater severely contaminated by chromium as target of the study and chose zero-valent nano-Fe, Na2SO3 and NaHSO3 for comparison experiments to study the effects on removing Cr6+ under experimental conditions of different pH values, dosages and reaction times. As is shown in the experiments, zero-valent nano-Fe has the highest removal rates for Cr6+, while the reaction of Na2SO3 is the slowest under the same conditions. However, both removal rates are prone to be stable after 10 min. Dosages do not make a distinct difference and the pH value has the least effect on the repair of zero-valent nano-Fe.

  18. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  19. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT).

    PubMed

    Lee, Chunwoo; Batchelor, Bill; Park, Sung Hyuk; Han, Dong Suk; Abdel-Wahab, Ahmed; Kramer, Timothy A

    2011-12-15

    Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77±0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  20. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    SciTech Connect

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-06-01

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental

  1. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    PubMed

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials.

  2. Zero-valent sulphur is a key intermediate in marine methane oxidation.

    PubMed

    Milucka, Jana; Ferdelman, Timothy G; Polerecky, Lubos; Franzke, Daniela; Wegener, Gunter; Schmid, Markus; Lieberwirth, Ingo; Wagner, Michael; Widdel, Friedrich; Kuypers, Marcel M M

    2012-11-22

    Emissions of methane, a potent greenhouse gas, from marine sediments are controlled by anaerobic oxidation of methane coupled primarily to sulphate reduction (AOM). Sulphate-coupled AOM is believed to be mediated by a consortium of methanotrophic archaea (ANME) and sulphate-reducing Deltaproteobacteria but the underlying mechanism has not yet been resolved. Here we show that zero-valent sulphur compounds (S(0)) are formed during AOM through a new pathway for dissimilatory sulphate reduction performed by the methanotrophic archaea. Hence, AOM might not be an obligate syntrophic process but may be carried out by the ANME alone. Furthermore, we show that the produced S(0)--in the form of disulphide--is disproportionated by the Deltaproteobacteria associated with the ANME. Our observations expand the diversity of known microbially mediated sulphur transformations and have significant implications for our understanding of the biogeochemical carbon and sulphur cycles.

  3. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-02-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T'-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications.

  4. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    PubMed Central

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-01-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105

  5. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    NASA Astrophysics Data System (ADS)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  6. Neutral zero-valent s-block complexes with strong multiple bonding

    NASA Astrophysics Data System (ADS)

    Arrowsmith, Merle; Braunschweig, Holger; Celik, Mehmet Ali; Dellermann, Theresa; Dewhurst, Rian D.; Ewing, William C.; Hammond, Kai; Kramer, Thomas; Krummenacher, Ivo; Mies, Jan; Radacki, Krzysztof; Schuster, Julia K.

    2016-09-01

    The metals of the s block of the periodic table are well known to be exceptional electron donors, and the vast majority of their molecular complexes therefore contain these metals in their fully oxidized form. Low-valent main-group compounds have recently become desirable synthetic targets owing to their interesting reactivities, sometimes on a par with those of transition-metal complexes. In this work, we used stabilizing cyclic (alkyl)(amino)carbene ligands to isolate and characterize the first neutral compounds that contain a zero-valent s-block metal, beryllium. These brightly coloured complexes display very short beryllium-carbon bond lengths and linear beryllium coordination geometries, indicative of strong multiple Be-C bonding. Structural, spectroscopic and theoretical results show that the complexes adopt a closed-shell singlet configuration with a Be(0) metal centre. The surprising stability of the molecule can be ascribed to an unusually strong three-centre two-electron π bond across the C-Be-C unit.

  7. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd; Soliman, Haytham; Zea, Hugo

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current work is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.

  8. Rapid degradation of endosulfan by zero-valent zinc in water and soil.

    PubMed

    Cong, Lujing; Guo, Jing; Liu, Jisong; Shi, Haiyan; Wang, Minghua

    2015-03-01

    Endosulfan has been included in the list of persistent organic pollutants (POPs) in 2011. The degradation of endosulfan by zero-valent zinc in water and soil was first investigated. The results showed that >90% endosulfan could be degraded in 180 min. The degradation was accelerated under acidic conditions with the absence of dissolved oxygen, while the nature of the soil only exhibited a negligible effect. The half-life was decreased from 130.75 min to 41.75 min with the increment of Zn(0) from 0.1 g to 1 g in soil. The use of Zn(0) was more effective than Fe(0) for the degradation of endosulfan with a half-life of 110 min and 330 min. The cationic surfactant was more effective at enhancing the degradation of endosulfan than anionic and nonionic surfactant. The degradation pathway was speculated, and four chlorine of endosulfan were proposed to be reduced. The method exhibited obvious advantages over traditional endosulfan treatments, and the research results will lay a foundation for practical application of the method.

  9. Optimization of Nanoscale Zero-Valent Iron for the Remediation of Groundwater Contaminants

    DTIC Science & Technology

    2012-03-22

    monoxide, formic acid , and long-chain aliphatic hydrocarbons not detected by the analytical methods used here [12,47]. If, rather than being...this pathway include relatively non-toxic formic acid , carbon monoxide, hydrochloric acid , and methane [47]. However, PCE, a carcinogenic chlorinated...and catalysis of nZVI, to be submitted for publication in the journal Environmental Technology Reviews. This critical review article replaces the

  10. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  11. Remediation of Explosives in Groundwater Using a Zero-Valent Iron Permeable Reactive Barrier

    DTIC Science & Technology

    2008-05-01

    Material Safety Data Sheet MS/MSD Matrix spike/matrix spike duplicate MW Monitoring Well O&M operations and maintenance ORP Oxidation ...trichloroethene TNT 2,4,6-trinitrotroluene USEPA United States Environmental Protection Agency XPS x-ray photoelectron spectroscopy viii...treatment (pump & treat) with treatment by carbon adsorption or UV oxidation systems, both of which are costly to install and have short life cycles (e.g

  12. Removal of nitrate by zero-valent iron and pillared bentonite.

    PubMed

    Li, Jianfa; Li, Yimin; Meng, Qingling

    2010-02-15

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10h even when the nitrate solution was fed at nearly neutral pH.

  13. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: A field investigation

    NASA Astrophysics Data System (ADS)

    Liang, Liyuan; Moline, Gerilynn R.; Kamolpornwijit, Wiwat; West, Olivia R.

    2005-08-01

    Geochemical and mineralogical changes were evaluated at a field Fe 0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO 3- groundwater. In the 5-year study period, the Fe 0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe 0 interface. Elsewhere, Fe 0 filings were loose with some cementation. Fe 0 corrosion and pore volume reduction at this site are more severe due to the presence of NO 3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe 0 and transported outside the PRB. Based on the equilibrium reductions of NO 3- and SO 42- by Fe 0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.

  14. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.

    PubMed

    Liang, Liyuan; Moline, Gerilynn R; Kamolpornwijit, Wiwat; West, Olivia R

    2005-08-01

    Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-year study period, the Fe0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.

  15. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.

    PubMed

    Liang, Liyuan; Moline, Gerilynn R; Kamolpornwijit, Wiwat; West, Olivia R

    2005-11-01

    Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-yr study period, the Fe0 remained reactive as shown in pore water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-yr treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 yr of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.

  16. Remediation of Explosives in Groundwater Using Zero-Valent Iron In Situ Treatment Wells

    DTIC Science & Technology

    2008-03-01

    Phase 1) ................................................................. 14 3.6.1 Groundwater Chemical Analysis ...27 5.2 Performance Confirmation Methods ...5.3 Data Analysis , Interpretation, and Evaluation ........................................................................ 29 5.3.1 Groundwater Pumping

  17. MINERAL PARAGENESIS OF FINE-GRAINED PRECIPITATES IN PERMEABLE REACTIVE BARRIERS OF ZERO-VALENT IRON

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  18. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: identification of reaction by-products and pathways.

    PubMed

    Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer

    2015-07-15

    Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction.

  19. Fundamental studies of the removal of contaminants from ground and waste waters via reduction by zero-valent metals. 1998 annual progress report

    SciTech Connect

    Yarmoff, J.A.; Amrhein, C.

    1998-06-01

    'Contaminated groundwater and surface waters are a problem throughout the US and the world. In many instances, the types of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium, chromium, uranium, arsenic, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition, the careless disposal of cleaning solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. Oxyanions of selenium, nitrogen, arsenic, vanadium, uranium, chromium, and molybdenum are contaminants in agricultural areas of the Western US. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California, the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis. Both in-situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. Only limited success has been achieved in the field, partly because the basic surface chemical reactions are not well understood. The authors are performing fundamental

  20. Evaluating Trichloroethylene Degradation Using Differing Nano- and Micro-Scale Iron Particles

    NASA Technical Reports Server (NTRS)

    Berger, Cristina M.; Geiger, Cherie L.; Clausen, Christian A.; Billow, Alexa M.; Quinn, Jacqueline W.; Brooks, Kathleen B.

    2006-01-01

    Trichioroethylene, or TCE, is a central nervous system depressant and possible carcinogen, as well as a persistent groundwater pollutant. TCE exists in the aquifer either as free product in the form of a dense non-aqueous phase liquid (DNAPL) or as a dissolved-phase constituent. It is only slightly soluble in water, so dissolution of the contaminant is a long-term process and in-situ remediation is difficult. To remedy this, NASA and the University of Central Florida developed Emulsified Zero-Valent Iron, or EZVI. The emulsion droplet contains ZVI particles and water encapsulated by an oil/surfactant membrane, and effectively penetrates to degrade DNAPL-phase TCE. To maximize the efficiency of this process, several commercially available ZVIs of radically different particle sizes and morphologies both in emulsion and as neat (unemulsified) metal were evaluated for relative effectiveness at TCE degradation.

  1. Laboratory comparison of four iron-based filter materials for water treatment of trace element contaminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory investigation was conducted to evaluate four iron-based filter materials for trace element contaminant water treatment. The iron-based filter materials evaluated were zero valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and iron oxide/hydroxide (IOH). Only fi...

  2. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron

    NASA Technical Reports Server (NTRS)

    Furukawa, Yoko; Kim, Jin-Wook; Watkins, Janet; Wilkin, Richard T.

    2002-01-01

    Ferrihydrite, which is known to form in the presence of oxygen and to be stabilized by the adsorption of Si, PO4 and SO4, is ubiquitous in the fine-grained fractions of permeable reactive barrier (PRB) samples from the U.S. Coast Guard Support Center (Elizabeth City, NC) and the Denver Federal Center (Lakewood, CO) studied by high-resolution transmission electron microscopy and selected area electron diffraction. The concurrent energy-dispersive X-ray data indicate a strong association between ferrihydrite and metals such as Si, Ca, and Cr. Magnetite, green rust 1, aragonite, calcite, mackinawite, greigite and lepidocrocite were also present, indicative of a geochemical environment that is temporally and spatially heterogeneous. Whereas magnetite, which is known to form due to anaerobic Fe0 corrosion, passivates the Fe0 surface, ferrihydrite precipitation occurs away from the immediate Fe0 surface, forming small (<0.1 microm) discrete clusters. Consequently, Fe0-PRBs may remain effective for a longer period of time in slightly oxidized groundwater systems where ferrihydrite formation occurs compared to oxygen-depleted systems where magnetite passivation occurs. The ubiquitous presence of ferrihydrite suggests that the use of Fe0-PRBs may be extended to applications that require contaminant adsorption rather than, or in addition to, redox-promoted contaminant degradation.

  3. CARBON AND SULFUR ACCUMULATION AND IRON MINERAL TRANSFORMATION IN PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    EPA Science Inventory

    Permeable reactive barrier technology is an in-situ approach for remediating groundwater contamination that combines subsurface fluid flow management with passive chemical treatment. Factors such as the buildup of mineral precipitates, buildup of microbial biomass (bio-fouling...

  4. Laboratory evaluation of zero valent iron and sulfur modified iron filter materials for agricultural drainage water treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On site filter treatment systems have the potential to remove nutrients and pesticides from agricultural subsurface drainage waters. The effectiveness and efficiency of this type of drainage water treatment will depend on the actual filter materials utilized. Two promising filter materials that coul...

  5. (η(4)-Butadiene)Sn(0) Complexes: A New Approach for Zero-Valent p-Block Elements Utilizing a Butadiene as a 4π-Electron Donor.

    PubMed

    Kuwabara, Takuya; Nakada, Marisa; Hamada, Jumpei; Guo, Jing Dong; Nagase, Shigeru; Saito, Masaichi

    2016-09-07

    Research on zero-valent p-block elements is a recent hot topic in synthetic and theoretical chemistry because of their novel electronic states having two lone pairs in both the s- and p-orbitals. It is considered that σ-donating ligands bearing large substituents are essential to stabilize these species. Herein, we propose a new approach using butadiene as a 4π-electron donor to stabilize zero-valent group 14 elements. During our study to explore the coordination chemistry of stannacyclopentadienyl ligands, unexpected products, in which the tin atom is coordinated by a butadiene in a η(4)-fashion, were obtained. Because butadiene is a neutral 4π-electron donating ligand, the formal oxidation number of the tin atoms of the products should be zero, which is supported by X-ray diffraction analysis and theoretical calculations. A mechanism for the formation of the products is also described.

  6. Field test on the treatment of source zone chloroethenes using emulsified zerovalent iron

    EPA Science Inventory

    This talk summarizes the research activities currently underway at the Solid Waste Management Unit 45 (Site 45), Marine Corps Recruit Depot, Parris Island, South Carolina. A pilot field test was initiated in 2005 at this site to evaluate the effectiveness of nanoscale emulsified...

  7. Zero valent zinc nanoparticles promote neuroglial cell proliferation: A biodegradable and conductive filler candidate for nerve regeneration.

    PubMed

    Aydemir Sezer, Umran; Ozturk, Kevser; Aru, Basak; Yanıkkaya Demirel, Gulderen; Sezer, Serdar; Bozkurt, Mehmet Recep

    2017-01-01

    Regeneration of nerve, which has limited ability to undergo self-healing, is one of the most challenging areas in the field of tissue engineering. Regarding materials used in neuroregeneration, there is a recent trend toward electrically conductive materials. It has been emphasized that the capacity of conductive materials to regenerate such tissue having limited self-healing ability improves their clinical utility. However, there have been concerns about the safety of materials or fillers used for conductance due to their lack of degradability. Here, we attempt to use poly(Ɛ-caprolactone) (PCL) matrix consisting of varying proportions of zero valent zinc nanoparticles (Zn NPs) via electrospinning. These conductive, biodegradable, and bioactive materials efficiently promoted neuroglial cell proliferation depending on the amount of Zn NPs present in the PCL matrix. Chemical characterizations indicated that the incorporated Zn NPs do not interact with the PCL matrix chemically and that the Zn NPs improved the tensile properties of the PCL matrix. All composites exhibited linear conductivity under in vitro conditions. In vitro cell culture studies were performed to determine the cytotoxicity and proliferative efficiency of materials containing different proportions of Zn NPs. The results were obtained to explore new conductive fillers that can promote tissue regeneration.

  8. Degradation of Toxic Chemicals by Zero-Valent Metal Nanoparticles - A Literature Review

    DTIC Science & Technology

    2005-11-01

    2 2.2 Kinetics of Reductive Dechlorination .................................................................. 3 2.3 Zinc versus Iron...available.[see for example 7, 10-14] 2.2 Kinetics of Reductive Dechlorination It is apparent that proton availability may influence the rate of...relationship between bulk pH and availability of protons at the metal surface is unknown. Kinetic studies by Matheson and Tratnyek showed that the

  9. Fundamental studies of the removal of contaminants from ground and waste waters via reduction by zero-valent metals. Annual progress report, September 1, 1996--August 31, 1997

    SciTech Connect

    Yarmoff, J.A.; Amrhein, C.

    1997-01-01

    'Contaminated groundwater is a problem throughout the US and the world. In many instances the tvpes of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium. chromium. uranium. arsenic. and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition. the careless disposal of cleaning solvents. such as carbon tetrachloride and trichloroethylene. has further contaminated many groundwaters at these sites. In agricultural areas of the western US, shallow groundwaters have become contaminated with high levels of selenate, chromate, and uranyl. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California. the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. At sites where solid-propellant rocket motors were tested or disposed of, high concentrations of perchlorate and trichloroethylene are being found in the groundwater. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used, on an experimental basis, for the reductive dechlorination of solvents and the removal of toxic trace elements. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the

  10. Reaction mechanisms involved in reduction of halogenated hydrocarbons using sulfated iron

    SciTech Connect

    Hassan, S.M.; Cipollone, M.G.; Wolfe, N.L.

    1995-12-01

    Experiments were carried out to investigate the mechanisms and pathways involved in the reduction of halogenated hydrocarbons represented by trichloroethylene (TCE) and tetrachloroethylene (PCE) with sulfated iron aqueous media. Results suggested that iron sulfide acted as the dehalogenation center. Zero-valent iron acted as a generator for molecular hydrogen through its reaction with water. Results of experiments in which iron sulfide was replaced by other transition metal sulfides and experiments in which zero-valent iron was replaced by other sources of molecular hydrogen will be reported. The main reduction product of chloroethylene derivatives was ethyne which under the catalytic reaction of zero-valent iron was reduced further to ethene and finally to ethane. Intermediate products were identified using GC-MS. Mechanisms and pathways will be presented.

  11. A Bis(silylenyl)pyridine Zero-Valent Germanium Complex and Its Remarkable Reactivity.

    PubMed

    Zhou, Yu-Peng; Karni, Miriam; Yao, Shenglai; Apeloig, Yitzhak; Driess, Matthias

    2016-11-21

    The synthesis, reactivity, and electronic structure of the unique germylone iron carbonyl complex [SiNSi]Ge(0) →Fe(CO)4 is reported. The compound was obtained in 49 % yield from the reaction of the bis(N-heterocyclic silylenyl)pyridine pincer ligand SiNSi (1,6-C5 NH3 -[EtNSi(N(t) Bu)2 CPh]2 ) with GeCl2 ⋅(dioxane) to give the corresponding chlorogermyliumylidene chloride precursor [SiNSi]Ge(II) Cl(+)  Cl(-) , which was further reduced with K2 Fe(CO)4 . Single-crystal X-ray diffraction analysis of [SiNSi]Ge→Fe(CO)4 revealed that the Ge(0) center adopts a trigonal-pyramidal geometry with a Si-Ge-Si angle of 95.66(2)°. Remarkably, one of the Si(II) donor atoms in the complex is five-coordinated because of additional (pyridine)N→Si coordination. Unexpectedly, the reaction of [SiNSi]Ge→Fe(CO)4 with GeCl2 ⋅(dioxane) (one molar equivalent) yielded the first push-pull germylone-germylene donor-acceptor complex, [SiNSi]Ge→GeCl2 →Fe(CO)4 through the insertion of GeCl2 into the dative Ge(0) →Fe bond. The electronic features of the new compounds were investigated by DFT calculations.

  12. Experimental Determination of the Dissolution Kinetics of Zero-Valent Iron in the Presence of Organic Complexants

    SciTech Connect

    Pierce, Eric M.; Wellman, Dawn M.; Lodge, Alex M.; Rodriguez, Elsa A.

    2007-08-17

    Single-pass flow-through tests were conducted under conditions of relatively constant dissolved O2 [O2 (aq)] over the pH(23°C) range (from 7 to 12) and temperature (23° to 90°C) in the presence of EDTA and EDDHA to maintain dilute conditions and minimize the formation of a partially oxidized surface film and Fe-bearing secondary phase(s) during testing. These results indicate that the corrosion of Fe(0) is relatively insensitive to pH and temperature and the forward rate is 3 to 4 orders of magnitude higher than when a passive film and corrosion products are present. Tests conducted with Amasteel (a low carbon steel) and 99Tc-bearing Fe(0) metal indicated that the forward dissolution rates for both metals were similar, if not identical. In other words, under these test conditions the presence of P and 99Tc in the 99Tc-bearing Fe(0) metal appeared to have little effect on the forward dissolution rate and subsequent release of 99Tc.

  13. DIRECT PUSH METHODS FOR LOCATING AND COLLECTING CORES OF AQUIFER SEDIMENT AND ZERO-VALENT IRON FROM PERMEABLE REACYTIVE BARRIERS

    EPA Science Inventory

    It is often necessary to collect core samples that do not fit the normal sampling protocol. This Field Innovation Forum submission describes new methodology that enables researchers to collect soil samples in situations where the normal vertical sampling techniques will deliver ...

  14. Reduction of Hexavalent Chromium by Green Tea Polyphenols and Green Tea Nano Zero-Valent Iron (GT-nZVI).

    PubMed

    Chrysochoou, M; Reeves, K

    2017-03-01

    This study reports on the direct reduction of hexavalent chromium [Cr(VI)] by green tea polyphenols, including a green tea solution and pure epigallocatechin gallate (EGCG) solution. A linear trend was observed between the amount of reduced Cr(VI) and the amount of added polyphenols. The green tea solution showed a continued decrease in the observed stoichiometry with increasing pH, from a maximum of 1.4 mol per gallic acid equivalent (GAE) of green tea at pH 2.5, to 0.2 mol/GAE at pH 8.8. The EGCG solution exhibited different behavior, with a maximum stoichiometry of 2 at pH 7 and minimum of 1.6 at pH 4.4 and 8.9. When green tea was used to first react with Fe(3+) and form GT-nZVI, the amount of Cr(VI) reduced by a certain volume of GT-nZVI was double compared to green tea, and 6 times as high considering that GT-nZVI only contains 33 % green tea.

  15. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats

    PubMed Central

    Shevtsov, M. A.; Parr, M. A.; Ryzhov, V. A.; Zemtsova, E. G.; Arbenin, A. Yu; Ponomareva, A. N.; Smirnov, V. M.; Multhoff, G.

    2016-01-01

    Mesoporous silica nanoparticles (MSNs) impregnated with zero-valent Fe (Fe(0) @ MCM-41) represent an attractive nanocarrier system for drug delivery into tumor cells. The major goal of this work was to assess whether MSNs can penetrate the blood-brain barrier in a glioblastoma rat model. Synthesized MSNs nanomaterials were characterized by energy dispersive X-ray spectroscopy, measurements of X-ray diffraction, scanning electron microscopy and Mössbauer spectroscopy. For the detection of the MSNs by MR and for biodistribution studies MSNs were labeled with zero-valent Fe. Subsequent magnetometry and nonlinear-longitudinal-response-M2 (NLR-M2) measurements confirmed the MR negative contrast enhancement properties of the nanoparticles. After incubation of different tumor (C6 glioma, U87 glioma, K562 erythroleukemia, HeLa cervix carcinoma) and normal cells such as fibroblasts and peripheral blood mononuclear cells (PBMCs) MSNs rapidly get internalized into the cytosol. Intracellular residing MSNs result in an enhanced cytotoxicity as Fe(0) @ MCM-41 promote the reactive oxygen species production. MRI and histological studies indicated an accumulation of intravenously injected Fe(0) @ MCM-41 MSNs in orthotopic C6 glioma model. Biodistribution studies with measurements of second harmonic of magnetization demonstrated an increased and dose-dependent retention of MSNs in tumor tissues. Taken together, this study demonstrates that MSNs can enter the blood-brain barrier and accumulate in tumorous tissues. PMID:27386761

  16. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: promotion effect of in-situ generated carbon center radicals.

    PubMed

    Dong, Guohui; Ai, Zhihui; Zhang, Lizhi

    2014-12-01

    In this study, nanoscale zero-valent copper (nZVC) was synthesized with a facile solvothermal method and used for the aerobic removal of azo contaminants at neutral pH for the first time. We found that both Cu(I) and OH generated during the nZVC induced molecular oxygen activation process accounted for the rapid total destruction of azo contaminants in the nZVC/Air system, where nZVC could activate molecular oxygen to produce H2O2, and also release Cu(I) to break the -NN- bond of azo contaminants via the sandmeyer reaction for the generation of carbon center radicals. The in-situ generated carbon center radicals would then react with OH produced by the Cu(I) catalyzed decomposition of H2O2, resulting in the generation of low molecular weight organic acids and their subsequent mineralization. The indispensible role of Cu(I) catalyzed sandmeyer reaction and the promotion effect of in-situ generated carbon center radicals on the rapid total destruction of azo contaminants in the nZVC/Air system were confirmed by gas chromatography-mass spectrometry analysis. This study can deepen our understanding on the degradation of organic pollutant with molecular oxygen activated by zero valent metal, and also provide a new method to remove azo contaminants at neutral pH.

  17. Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years.

    PubMed

    Su, Chunming; Puls, Robert W; Krug, Thomas A; Watling, Mark T; O'Hara, Suzanne K; Quinn, Jacqueline W; Ruiz, Nancy E

    2013-08-01

    Nanoscale zerovalent iron (NZVI) such as Toda Kogyo RNIP-10DS has been used for site remediation, yet information is lacking regarding how far injected NZVI can travel, how long it lasts, and how it transforms to other minerals in a groundwater system. Previous