Sample records for emulsifiers

  1. Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate.

    PubMed Central

    Rosenberg, E; Perry, A; Gibson, D T; Gutnick, D L

    1979-01-01

    The purified extracellular emulsifying factor produced by Arthrobacter RAG-1 (EF-RAG) emulsified light petroleum oil, diesel oil, and a variety of crude oils and gas oils. Although kerosine and gasoline were emulsified poorly by EF-RAG, they were converted into good substrates for emulsification by addition of aromatic compounds, such as 2-methylnaphthalene. Neither aromatic nor aliphatic fractions of crude oil were emulsified by EF-RAG; however, mixtures containing both fractions were emulsified. Pure aliphatic or aromatic hydrocarbons were emulsified poorly by EF-RAG. Binary mixtures containing an aliphatic and an aromatic hydrocarbon, however, were excellent substrates for EF-RAG-induced emulsification. Of a variety of alkylcyclohexane and alkylbenzene derivatives tested, only hexyl- or heptylbenzene and octyl- or decylcyclohexane were effectively emulsified by EF-RAG. These data indicate that for EF-RAG to induce emulsification of hydrocarbons in water, the hydrocarbon substrate must contain both aliphatic and cyclic components. With binary mixtures of methylnaphthalene and hexadecane, maximum emulsion was obtained with 25% hexadecane. PMID:453821

  2. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    PubMed

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  3. Understanding the effect of emulsifiers on bread aeration during breadmaking.

    PubMed

    Garzón, Raquel; Hernando, Isabel; Llorca, Empar; Rosell, Cristina M

    2018-04-24

    Much research has been done to explain the action of emulsifiers during breadmaking, but there is still plenty unknown to elucidate their functionality despite their diverse chemical structure. The aim of the present study was to provide some light on the role of emulsifiers on air incorporation into the dough and gas bubbles progress during baking and their relationship with bread features. Emulsifiers like diacetyl tartaric acid ester of monoglycerides (DATEM), sodium stearoyl lactylate (SSL), distilled monoglyceride (DMG-45 and DMG-75), lecithin and polyglycerol esters of fatty acids (PGEF) were tested in very hydrated doughs. Emulsifiers increase the maximum dough volume during proofing. Emulsifiers increase the number of bubbles incorporated during mixing, observing higher number of bubbles, particularly with PGEF. Major changes in dough occurred at 70 K when bubble size augmented, becoming more heterogeneous. DMG-75 produced the biggest bubbles. As a consequence, emulsifiers tend to increase the number of gas cells with lower size in the bread crumb, but led to greater crumb firmness, which suggested different interactions between emulsifiers and gluten, affecting protein polymerization during baking. The progress of the bubbles during baking allowed the differentiation of emulsifiers, which could explain their performance in breadmaking. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Swirling cavitation improves the emulsifying properties of commercial soy protein isolate.

    PubMed

    Yang, Feng; Liu, Xue; Ren, Xian'e; Huang, Yongchun; Huang, Chengdu; Zhang, Kunming

    2018-04-01

    Since emulsifying properties are important functional properties of soy protein, many physical, chemical, and enzymatic methods have been applied to treat soy protein to improve emulsifying properties. In this study, we investigated the effects of swirling cavitation at different pressures and for different times on emulsifying and physicochemical properties of soy protein isolate (SPI). The SPI treated with swirling cavitation showed a significant decrease in particle size and increase in solubility. Emulsions formed from treated SPI had higher emulsifying activity and emulsifying stability indexes, smaller oil droplet sizes, lower flocculation indexes, higher adsorbed proteins, lower interfacial protein concentrations, and lower creaming indexes than those formed from untreated SPI, indicating that swirling cavitation improved the emulsifying properties of the SPI. Furthermore, swirling cavitation treatment significantly enhanced the surface hydrophobicity, altered the disulfide bond and exposed sulfhydryl group contents of the SPI. The secondary structure of the SPI was also influenced by swirling cavitation, with an increase in β-sheet content and a decrease in α-helix, β-turn, and random coil contents. In addition, several significant correlations between physicochemical and emulsifying properties were revealed by Pearson correlation analysis, suggesting that the physicochemical changes observed in treated SPI, including the decreased particle size, increased solubility and surface hydrophobicity, and enhanced β-sheet formation, may explain the improved emulsifying properties of the isolate. Thus, our findings implied that swirling cavitation treatment may be an effective technique to improve the emulsifying properties of SPI. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Emulsification of hydrocarbons by subsurface bacteria

    USGS Publications Warehouse

    Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

    1991-01-01

    Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions, indicating a high probability of biosurfactant production.

  6. [Study on extracting and separating curcuminoids from Curcuma longa rhizome using ultrasound strengthen by microemulsion].

    PubMed

    Yue, Chun-Hua; Zheng, Li-Tao; Guo, Qi-Ming; Li, Kun-Ping

    2014-05-01

    To establish a new method for the extraction and separation of curcuminoids from Curcuma longa rhizome by cloud-point preconcentration using microemulsions as solvent. The spectrophotometry was used to detect the solubility of curcumin in different oil phase, emulsifier and auxiliary emulsifier, and the microemulsion prescription was used for false three-phase figure optimization. The extraction process was optimized by uniform experiment design. The curcuminoids were separated from microemulsion extract by cloud-point preconcentration. Oil phase was oleic acid ethyl ester; Emulsifier was OP emulsifier; Auxiliary emulsifier was polyethylene glycol(peg) 400; The quantity of emulsifier to auxiliary emulsifier was the ratio of 5: 1; Microemulsion prescription was water-oleic acid ethyl ester-mixed emulsifier (0.45:0.1:0.45). The optimum extraction process was: time for 12.5 min, temperature of 52 degrees C, power of 360 W, frequency of 400 kHz, and the liquid-solid ratio of 40:1. The extraction rate of curcuminoids was 92.17% and 86.85% in microemulsion and oil phase, respectively. Curcuminoids is soluble in this microemulsion prescription with good extraction rate. This method is simple and suitable for curcuminoids extraction from Curcuma longa rhizome.

  7. Influence of Emulsified Asphalt on the Mechanical Property and Microstructure of Cement-Stabilized Gravel under Freezing and Thawing Cycle Conditions.

    PubMed

    Wang, Yiqi; Tan, Yiqiu; Guo, Meng; Wang, Xinglong

    2017-05-06

    Properties of cement-stabilized gravel modified by emulsified asphalt under freezing and thawing cycle conditions were investigated by adjusting the dosage of cement. Mercury intrusion porosimetry (MIP) and Scanning electron microscopy (SEM) were introduced to analyze the influential mechanism. The results indicate that cement emulsified asphalt stabilized gravel with 5 wt % of cement performed well in both mechanics and frost-resistance. Although the addition of emulsified asphalt would lead to a partial decrease of strength, it can extend the process of strength loss and improve the freezing resistance. The main reason for this is that the permeability can be improved by the filling effects of emulsified asphalt. The frost-heave stress caused by the phase transition of water can also be remitted by emulsified asphalt, the elasticity modulus of which is much lower than the matrix. The generating speed of the micro crack can also be slowed down by emulsified asphalt.

  8. 7 CFR 58.631 - Emulsifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.631 Emulsifiers. Emulsifiers shall be clean and wholesome and consist of one or more of those...

  9. 7 CFR 58.631 - Emulsifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.631 Emulsifiers. Emulsifiers shall be clean and wholesome and consist of one or more of those...

  10. The role of endogenous lipids in the emulsifying properties of cocoa

    NASA Astrophysics Data System (ADS)

    Gould, Joanne; Furse, Samuel; Wolf, Bettina

    2016-03-01

    This paper describes a study in which the emulsifying properties of cocoa material with and without its lipid fraction were explored. This study was motivated by the commercial interest in naturally-occurring particulate emulsifiers as opposed to the chemically modified emulsifying particles presently available for commercial use. The hypothesis was that endogenous lipids from cocoa were responsible for driving the formation of stable oil-in-water (o/w) emulsions. The data presented includes relative quantification of phospholipids from different commercially available cocoa material using 31P NMR spectroscopy and analyses of the emulsifying power of delipidified cocoa material. The commercially available cocoa material comprised several phospholipids, with phosphatidylcholine being the most abundant in all samples. Dispersions of delipidified cocoa material were found to drive the formation of o/w emulsions despite the absence of lipids. We therefore concluded that the emulsifying behaviour of cocoa material is not entirely reliant upon the endogenous lipids. This suggests that cocoa material may have a new and potentially widespread use in industrial food preparation and may inform manufacturing strategies for novel food grade emulsifiers.

  11. Effect of nonionic compound emulsifiers Tween80 and Span80 on the properties of microencapsulated phase change materials.

    PubMed

    Zhan, Shiping; Zhou, Zhiyi; Wang, Weijing; Zhao, Qicheng; Hou, Weimin

    2014-01-01

    In this article, the nonionic compound emulsifiers Tween80 and Span80 were used to prepare microcapsules containing phase change materials (microPCMs) with melamine-formaldehyde (MF) shells by in situ polymerization method. The effects of compound emulsifiers Tween80 and Span80 on the structure, morphologies and properties of microPCMs containing paraffin were studied. SEM morphological investigation suggests that a complex of Tween80 and Span80 as emulsifiers are optimal for the fabrication of microPCMs in this study compared to Tween60 or OP-10. The diameter distributions of microPCMs synthesized with different amounts of compound emulsifiers are uniform, whereas compound emulsifiers' amount affect the mean diameter of microPCMs decreasing from 5.34 to 3.05 µm. These microPCMs with the core/shell weight ratio 3/1 have smoother surface and a higher core content of 68.7% than other core/shell ratio. Anti-osmosis measurements indicate that microPCMs have good compactness and stable performance compared to those synthesized by one type of emulsifier.

  12. Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1.

    PubMed

    Mohebali, Ghasemali; Kaytash, Ashk; Etemadi, Narges

    2012-10-01

    Water-oil emulsions occur throughout oil production, transportation, and processing. The breaking of the water/oil emulsion improves oil quality and as a consequence chemically synthesized de-emulsifiers are commonly used in the petroleum industries. Microbial de-emulsifiers represent potential alternatives to the chemicals and may become important products for petroleum industries. The main goal of this work was isolation, identification, and characterization of an efficient de-emulsifying bacterium. Following a multi-step enrichment programme a de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1was isolated from the oil-polluted sandy bank of Siri Island, Iran. The presence of an oil phase in growth medium was found to be unnecessary for production of the de-emulsifier. The de-emulsifying activity of both the whole culture and the cells of this strain was examined using a model multiple water-crude oil (w/o/w) emulsion. This w/o/w emulsion was used for the first time in microbial de-emulsification research. Whole cells of strain RIPI5-1 exhibited high de-emulsifying activity during the late-exponential growth and stationary phases; de-emulsifying activity of the whole culture was highest during the early-exponential growth phase. The time course of de-emulsification by whole culture and whole cells of strain RIPI5-1 was investigated; the initial rate (DeI(1)) of breaking of the multiple water-crude oil emulsion by whole culture and whole cells was calculated as 11% and 54%, respectively. However, overall de-emulsification (DeI(8.5)) for whole culture and whole cells was calculated as 63% and 72%, respectively. A clear correlation was observed between cell surface hydrophobicity and the de-emulsifying activity of whole cells. With the water/kerosene emulsion, emulsion half-life (t(1/2)) was found to be <0.5h. The potential activity of this strain was also explained using a complex oilfield emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence.

    PubMed

    Paraszkiewicz, Katarzyna; Frycie, Aleksandra; Słaba, Mirosława; Długoński, Jerzy

    2007-10-01

    The influence of cadmium, zinc and lead on fungal emulsifier synthesis and on the growth of filamentous fungus Curvularia lunata has been studied. Tolerance to heavy metals established for C. lunata was additionally compared with the sensitivity exhibited by strains of Curvularia tuberculata and Paecilomyces marquandii-fungi which do not secrete compounds of emulsifying activity. Although C. lunata, as the only one out of all studied fungi, exhibited the lowest tolerance to heavy metals when grown on a solid medium (in conditions preventing emulsifier synthesis), it manifested the highest tolerance in liquid culture - in conditions allowing exopolymer production. Cadmium, zinc and lead presented in liquid medium up to a concentration of 15 mM had no negative effect on C. lunata growth and stimulated emulsifier synthesis. In the presence of 15 mM of heavy metals, both the emulsifier and 24-h-old growing mycelium exhibited maximum sorption capacities, which were determined as 18.2 +/- 2.67, 156.1 +/- 10.32 mg g(-1) for Cd2+, 22.2 +/- 3.40, 95.2 +/- 14.21 mg g(-1) for Zn2+ and 51.1 +/- 1.85, 230.0 +/- 28.47 mg g(-1) for Pb2+ respectively. The results obtained by us in this work indicate that the emulsifier acts as a protective compound increasing the ability of C. lunata to survive in heavy metal polluted environment. Enhancement of exopolymer synthesis in the presence of Cd2+, Zn2+ and Pb2+ may also suggest, at least to some extent, a metal-specific nature of emulsifier production in C. lunata. Due to accumulation capability and tolerance to heavy metals, C. lunata mycelium surrounded by the emulsifier could be applied for toxic metal removal.

  14. [Treatment of wrinkles of the upper lip by emulsified fat or "Nanofat": Biological and clinical study about 4 cases].

    PubMed

    Mesguich Batel, F; Bertrand, B; Magalon, J; François, P; Velier, M; Veran, J; Mallet, S; Jouve, E; Sabatier, F; Casanova, D

    2018-02-01

    Emulsified fat injection showed its interest in aesthetic facial surgery. The adipose tissue harvested is mechanically emulsified and filtered. The suspension obtained is injected into the dermis through small diameter needles (27 to 30 gauges). The objective of our study was to evaluate the biological composition of emulsified fat and its clinical effectiveness in the treatment of peri-oral wrinkles in 4 patients aged 50 to 59 years. Each patient received an intradermal injection of emulsified fat in the peri-oral wrinkles prepared from abdominal fat under local anesthesia. The cell viability, stromal vascular fraction (FVS) composition in emulsified fat and the adipocyte differentiation capacity of mesenchymal stem cells (MSC) were studied. The clinical results were evaluated by standardized photographs, 3D microphotography, confocal microscopy, and self-evaluation of patient satisfaction over a period of 4 months. The biological study of the emulsified fat found a lysis of all the adipocytes. The mean number of FVS cells was 126,330±2758 cells by cc of emulsified fat with preserved cell viability (85.1±6.84 %) and a good proportion of regeneratives cells (18.77±6.2 %). The clinical study found a tendency to decrease the volume of wrinkles on standardized photography and 3D microphotography no significative. Patients were satisfied with treatment with an average score of 7±1.15/10 to 4 months. Intradermal injection of emulsified fat seems to be an interesting treatment of face wrinkles. Our study has shown its safety, but additional studies seems necessary to confirm its clinical efficacy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Arabinoxylan-lipids-based edible films and coatings. 2. Influence of sucroester nature on the emulsion structure and film properties.

    PubMed

    Phan The, D; Péroval, C; Debeaufort, F; Despré, D; Courthaudon, J L; Voilley, A

    2002-01-16

    This work is a contribution to better knowledge of the influence of the structure of films on their functional properties obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil (HPKO), and emulsifiers. The sucroesters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. They improve the moisture barrier properties. Several sucroesters having different esterification degrees were tested. Both lipophilic (90% of di and tri-ester) and hydrophilic (70% of mono-ester) sucrose esters can ensure the stability of the emulsion used to form the film, especially during preparation and drying. These emulsifiers confer good moisture barrier properties to emulsified films.

  16. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Zhouyang; Runge, Troy

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  17. Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals

    DOE PAGES

    Xiang, Zhouyang; Runge, Troy

    2015-07-21

    This study investigated the possibilities of making valuable products from corn ethanol byproducts and providing the beverage industries more variety of high quality emulsifiers other than gum arabic. An arabinoxylan-protein gum (APG) was extracted from distillers' grains (DG), a low-value corn ethanol byproduct, and modified through acylation with succinic anhydride. The effects of pH and degree of substitution (DS) on the emulsifying properties of succinylated APG, referred to as SAPG, were investigated. Emulsion particle size and stability of APG and gum arabic were comparable at pH 3.5–6.5. Succinylation could enhance the emulsifying properties of APG. Compared to gum arabic, atmore » pH < 5, SAPG emulsions had larger particle size but comparable stability, whereas at pH > 5, SAPG had much smaller particle size and better stability than gum arabic. The results suggested that SAPG, compared to gum arabic, could be a comparable emulsifier at low pH values and a better emulsifier at neutral pH values.« less

  18. Study on adsorption properties of synthetic materials on marine emulsified oil

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Peng, Shitao; Wang, Xiaoli; Zhou, Ran; Luo, Lei

    2018-02-01

    As an effective measure for marine oil spill recovery, adsorption treatment can be adopted in areas where mechanical recovery is not applicable. This experiment is mainly aimed at studying the adsorption properties of synthetic materials on emulsified oil. The emulsified oil was prepared by simulating the emulsification process of marine oil spill via a wave-current flume, and the adsorption weights of synthetic materials on emulsified oil were obtained by performing a field adsorption experiment. Polypropylene, nano-polypropylene and hydrophobic melamine sponge were tested by adsorbing a variety of emulsified oils according to the Adsorption Property Test Method (Version F-726) defined by ASTM. Their adsorption weights on emulsified oil (with initial thickness of 5 mm and water content of 20.86%) are 5.42 g/g, 23.5 g/g and 82.15g/g, respectively, which, compared with that on gear oil in the initial state, are respective decreases of 46.39%, 19.88% and 11.84%, demonstrating obvious decreases in their adsorption performances.

  19. Effect of extruded wheat flour as a fat replacer on batter characteristics and cake quality.

    PubMed

    Román, Laura; Santos, Isabel; Martínez, Mario M; Gómez, Manuel

    2015-12-01

    The effects of three levels of fat replacement (1/3, 2/3, and 3/3) by extruded flour paste and the effects of the presence of emulsifier on layer cake batter characteristics and final cake quality were studied. Replacement of oil by extruded flour paste modified the batter density and microscopy, reducing the number of air bubbles and increasing their size, while emulsifier incorporation facilitated air entrapment in batter. Emulsifier addition also increased the elastic and viscous moduli of the batter, while oil reduction resulted in a less structured batter. Emulsifier incorporation leads to good quality cakes, minimizing the negative effect of oil reduction, maintaining the volume and reducing the hardness of cakes. Furthermore, consumer acceptability of the reduced fat cakes was improved by the addition of emulsifier. Thus, the results confirmed the positive effect of partial oil substitution (up to 2/3) by extruded flour paste on the quality of reduced fat cakes when emulsifier was incorporated.

  20. Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.

    PubMed

    Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang

    2017-11-01

    The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.

  1. 7 CFR 58.722 - Emulsifying agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.722 Emulsifying agents. Emulsifying agents shall be those permitted by the Food and Drug Administration for the specific pasteurized process cheese product, and shall be free from extraneous material...

  2. 7 CFR 58.722 - Emulsifying agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.722 Emulsifying agents. Emulsifying agents shall be those permitted by the Food and Drug Administration for the specific pasteurized process cheese product, and shall be free from extraneous material...

  3. Development of Pales Weevil Larvae on an Emulsified Synthetic Diet

    Treesearch

    H.A. Thomas

    1971-01-01

    The effect of adding an emulsifier to an artificial diet for pales weevil larvae was studied. The hypothesis was that fat-soluble ingredients would be better dispersed in the aqueous media, possibly leading to improved larval growth. The results suggest some Improvement occurred when the emulsifier was incorporated.

  4. Emulsion of an in-situ surfactant in petroleum. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Three emulsifiers were tested for their ability to reduce the viscosity of heavy oils. A reduction of 25% viscosity is achieved using polybutene. A reduction of 50% viscosity is achieved using a concentrated ionic detergent obtained from SANDOZ. The most promising emulsifiers is a lipopeptide. Preliminary studies show this emulsifier reduces the viscosity of heavy oils by as much as 80%. It is also able to reduce the surface tension of water by 35%. This emulsifier is also biodegradable and less toxic than synthetic surfactants. (DMC)

  5. The Ratios of Pre-emulsified Duck Skin for Optimized Processing of Restructured Ham.

    PubMed

    Shim, Jae-Yun; Kim, Tae-Kyung; Kim, Young-Boong; Jeon, Ki-Hong; Ahn, Kwang-Il; Paik, Hyun-Dong; Choi, Yun-Sang

    2018-02-01

    The purpose of this study was to investigate the quality of duck ham formulated with duck skin through the pre-emulsification process. The experiments to investigate the quality characteristics of duck ham were carried out to measure proximate composition, cooking loss, emulsion stability, pH, color, texture profile analysis, apparent viscosity, and sensory characteristics. Duck ham was prepared with various ratios of duck skin in pre-emulsion as follows: Control (duct skin 30%), T1 (duck skin 20% + pre-emulsified duck skin 10%), T2 (duck skin 15% + pre-emulsified duck skin 15%), T3 (duck skin 10% + pre-emulsified duck skin 20%), and T4 (pre-emulsified duck skin 30%). As the ratio of duck skin to pre-emulsified skin changed, the quality of duck ham in terms of moisture content, fat content, cooking loss, emulsion stability, lightness, textural analysis, apparent viscosity, and overall acceptability changed. The moisture content of T2 was the highest ( p <0.05) and that of the control and T4 was the lowest ( p <0.05). The fat content of control was higher than all treatments ( p <0.05). T2 had the lowest values in cooking loss, total expressible fluid, fat separation, hardness, springiness, and gumminess ( p <0.05). The score of overall acceptability of all treatments with pre-emulsified skin was higher than control ( p <0.05). Therefore, the pre-emulsification process can improve the quality characteristics of duck ham and 1:1 ratio of duck skin and pre-emulsified skin was the proper ratio to improve the quality characteristics of duck ham.

  6. Surface Enrichment by Conventional and Polymerizable Sulfated Nonylphenol Ethoxylate Emulsifiers in Water-Based Pressure-Sensitive Adhesive

    Treesearch

    Jilin Zhang; Yuxi Zhao; Matthew R. Dubay; Steven J. Severtson; Larry E. Gwin; Carl J. Houtman

    2013-01-01

    Comparisons of properties are made for pressure-sensitive adhesives (PSAs) generated via emulsion polymerization using both conventional and reactive emulsifiers. The emulsifiers are ammonium salts of sulfated nonylphenol ethoxylates with similar chemical structures and hydrophilic−lipophilic balances. The polymerizable surfactant possesses a reactive double...

  7. 21 CFR 172.834 - Ethoxylated mono- and diglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... emulsifier in whipped vegetable oil toppings and topping mixes Not to exceed 0.45 percent by weight of the finished whipped vegetable oil toppings. 4. As an emulsifier in icings and icing mixes Not to exceed 0.5... by weight of the finished frozen desserts. 6. As an emulsifier in edible vegetable fat-water...

  8. Effects of Vegetable Oil Type and Lipophilic Emulsifiers on the Induction Period of Fat Crystallization.

    PubMed

    Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji

    2015-01-01

    The induction period of crystallization, which is defined as the time required for oil to start to crystallize, is useful indicator of the freeze-thaw stability of food emulsions such as mayonnaise. We investigated the induction period of vegetable oils with low melting points, such as rapeseed and soybean oils, which are commonly employed for mayonnaise production. The induction period was measured by monitoring the temperature of a specimen during storage at low temperature. The induction period depended on the type of oil and lipophilic emulsifier, emulsifier concentration, and storage temperature. The effect of the oil type on the induction period depended on the composition of the oil. Differential scanning calorimetry (DSC) analyses of the lipophilic emulsifiers suggested that the melting trend of the emulsifier is strongly related to the induction period.

  9. Foaming and emulsifying properties of pectin isolated from different plant materials

    NASA Astrophysics Data System (ADS)

    Yancheva, Nikoleta; Markova, Daniela; Murdzheva, Dilyana; Vasileva, Ivelina; Slavov, Anton

    2016-03-01

    The foaming and emulsifying properties of pectins obtained from waste rose petals, citrus pressings, grapefruit peels and celery were studied. It was found that the highest foaming capacity showed pectin derived from celery. The effect of pectin concentration on the foaming capacity of pectin solutions was investigated. For all the investigated pectins increasing the concentration led to increase of the foaming capacity. Emulsifying activity and emulsion stability of model emulsion systems (50 % oil phase) with 0.6 % pectic solutions were determined. The highest emulsifying activity and stability showed pectin isolated by dilute acid extraction from waste rose petals.

  10. Influence of high dose of phytase and an emulsifier on performance, apparent metabolisable energy and nitrogen retention in broilers fed on diets containing soy oil or tallow.

    PubMed

    Zaefarian, F; Romero, L F; Ravindran, V

    2015-01-01

    The effects of high dose of microbial phytase and an emulsifier on the performance, apparent metabolisable energy (AME) and nitrogen (N) retention in broilers fed on diets containing different fat sources were examined in a 5-week trial. Two fat sources (soy oil and tallow), two inclusion levels of E. coli phytase (500 or 1000 phytase units (FTU)/kg diet) and two inclusion levels of lysolecithin emulsifier (0 or 3.5 g/kg of diet) were evaluated in a 2 × 2 × 2 factorial arrangement of treatments. Throughout the 5-week trial, soy oil supplementation improved weight gain and feed per gain compared with tallow, but had no effect on feed intake. The high dose of phytase increased the weight gain and feed intake and lowered the feed per gain during d 1-21, but had no effect on performance parameters over the whole trial period. An effect of emulsifier was observed for feed intake during d 1-21 and over the whole trial period. Addition of emulsifier increased feed intake compared with diets without emulsifier. During weeks 1, 2, 3 and 5, birds fed on soy oil-based diets had higher nitrogen-corrected AME (AMEN) compared with those fed on tallow-based diets. During weeks 2, 3 and 5, the effect of phytase was significant for AMEN, with the high dose increasing the AMEN. During week 2, AMEN was increased with emulsifier addition. During weeks 1, 2, 3 and 5, birds fed on soy oil-based diets had higher fat retention compared with those fed on tallow-based diets. The high dose of phytase improved the retention of fat during week 5 and the addition of emulsifier resulted in higher fat retention during week 1. During weeks 2, 3 and 5, an interaction between fat source × phytase × emulsifier was observed for N retention. In soy oil-based diets, emulsifier plus 1000 FTU/kg phytase increased N retention compared with other groups, while in tallow-based diets, emulsifier addition increased N retention in diets with 500 FTU/kg, but not in 1000 FTU/kg diet. Overall, the present data suggest that the dietary fat source influenced performance, AMEN and fat retention in broiler chickens. There is opportunity to improve bird performance during d 1-21, AMEN and fat retention with higher doses of microbial phytase. Addition of the emulsifier increased the AMEN during week 2 and tract retention of fat during week 1, but this effect was not translated into improvements in performance.

  11. Effect of a single dose of emulsified versus capsular fish oils on plasma phospholipid fatty acids over 48 hours

    USDA-ARS?s Scientific Manuscript database

    Emulsified fish oil supplements provide an alternative to encapsulated fish oils. Oil-in-water emulsions may offer an advantage in digestion and absorption thereby increasing the bioavailability of fatty acids. We evaluated the effect of three oil-in-water emulsified fish oils (Emulsion B, Emulsion ...

  12. Saving energy and reducing emissions of both polycyclic aromatic hydrocarbons and particulate matter by adding bio-solution to emulsified diesel.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chun-Chi; Chen, Chung-Bang

    2006-09-01

    Development of emulsified diesel has been driven by the need to reduce emissions from diesel engines and to save energy. Emulsification technology and bio-solution (NOE-7F) were used to produce emulsified diesel in this study. The experimental results indicated that there were no significant separation layers in W13 (13 wt % water + 87 wt % PDF), W16 (16 wt % water + 84 wt % PDF), W19 (19 wt % water + 81 wt % PDF), E13 (13 wt % NOE-7F water + 87 wt % PDF), E16 (16 wt % NOE-7F water + 83 wt % PDF), and E19 (19 wt % NOE-7F water + 81 wt % PDF) after premium diesel fuel (PDF) was emulsified for more than 30 days. In addition, there was no significant increase in damage from using these six emulsified fuels after the operation of the diesel generator for more than one year. The energy saving and reduction of particulate matter (PM) and total polycyclic aromatic hydrocarbons (PAHs) for W13, W16, W19, E13, E16 and E19, respectively, were 3.90%, 30.9%, 27.6%; 3.38%, 37.0%, 34.9%; 2.17%, 22.2%, 15.4%; 5.87%, 38.6%, 49.3%; 5.88%, 57.8%, 58.0%; and 4.75%, 31.1%, 47.3%, compared with PDF. The above results revealed that the bio-solution (NOE-7F) had a catalytic effect which elevated the combustion efficiency and decreased pollutant emissions during the combustion process. Furthermore, bio-solution (NOE-7F) can stabilize the emulsified fuels and enhance energy saving. Thus, emulsified fuels are highly suitable for use as alternative fuels. Due to the increasing price of diesel, emulsified diesel containing NOE-7F has potential for commercial application.

  13. Potential of L-fucose isolated from Brown Seaweeds as Promising Natural Emulsifier compare to Carboxymethyl Cellulose (CMC)

    NASA Astrophysics Data System (ADS)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Lestari, F. P.; Desnasari, D.; Santoso, I. P. M.

    2018-02-01

    L-fucose has been understood as sulfated polysaccharides and it could be extracted and fractionated from brown algae. These polysaccharides contains carbohydrate, sulfate, and protein that may be used as emulsifier. This research was aimed to study the emulsification properties of L-fucose through the determination of total dissolved solids (TDS), color CIE L*a*b* and stability of oil-in-water emulsion. As much as 0.5% of high concentrated L-fucose and 0.5% of carboxymethyl cellulose (CMC) were used as emulsifier in a 10% (v/v) oil-in-water (O/W) emulsion. The emulsifier was added to O/W emulsions and then heated at 72°C. Result of stability emulsion and TDS showed that L-fucose was comparable to the CMC but remarkable changed the color of O/W emulsion. Heating process significantly reduced the stability O/W emulsion when L-fucose was applied. As conclusion, L-fucose might be used as natural emulsifier in O/W emulsion but in the low heat treatment of food processing. This study may provide valuable information for utilizing natural emulsifier from abundant resources from nature.

  14. Competitive displacement of sodium caseinate by low-molecular-weight emulsifiers and the effects on emulsion texture and rheology.

    PubMed

    Munk, M B; Larsen, F H; van den Berg, F W J; Knudsen, J C; Andersen, M L

    2014-07-29

    Low-molecular-weight (LMW) emulsifiers are used to promote controlled destabilization in many dairy-type emulsions in order to obtain stable foams in whippable products. The relation between fat globule aggregation induced by three LMW emulsifiers, lactic acid ester of monoglyceride (LACTEM), saturated monoglyceride (GMS), and unsaturated monoglyceride (GMU) and their effect on interfacial protein displacement was investigated. It was found that protein displacement by LMW emulsifiers was not necessary for fat globule aggregation in emulsions, and conversely fat globule aggregation was not necessarily accompanied by protein displacement. The three LMW emulsifiers had very different effects on emulsions. LACTEM induced shear instability of emulsions, which was accompanied by protein displacement. High stability was characteristic for emulsions with GMS where protein was displaced from the interface. Emulsions containing GMU were semisolid, but only low concentrations of protein were detected in the separated serum phase. The effects of LACTEM, GMS, and GMU may be explained by three different mechanisms involving formation of interfacial α-gel, pickering stabilization and increased exposure of bound casein to the water phase. The latter may facilitate partial coalescence. Stabilizing hydrocolloids did not have any effect on the LMW emulsifiers' ability to induce protein displacement.

  15. Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein.

    PubMed

    Xu, Xingfeng; Zhong, Junzhen; Chen, Jun; Liu, Chengmei; Luo, Liping; Luo, Shunjing; Wu, Lixin; McClements, David Julian

    2016-12-15

    The emulsifying properties of partially hydrolyzed rice glutelin (H-RG, 2% degree of hydrolysis) were compared to those of whey isolate protein (WPI), a commonly used protein-based emulsifier. The surface load of WPI (1% emulsifier, d32=167.5nm) was 2.8 times lower than that of H-RG (3% emulsifier, d32=159.0nm). Emulsions containing WPI-coated lipid droplets had better stability to pH changes (2-8), NaCl addition (0-500mM) and thermal processing (30-90°C, 0 or 200mM NaCl). Nevertheless, H-RG emulsions were stable over a range of conditions: pH 6-8; NaCl≤200 (pH 7); temperatures≤90°C in the absence of salt (pH 7); and temperatures≤50°C in the presence of 200mM NaCl (pH 7). This study indicates that H-RG may be utilized as a natural emulsifier in the development of label-friendly emulsion-based food products, but that further work is needed to increase the range of applications. Copyright © 2016. Published by Elsevier Ltd.

  16. Self-emulsifying excipient platform for improving technological properties of alginate-hydroxypropylcellulose pellets.

    PubMed

    Mannina, Paolo; Segale, Lorena; Giovannelli, Lorella; Bonda, Andrea Foglio; Pattarino, Franco

    2016-02-29

    In this work, alginate, alginate-pectin and alginate-hydroxypropylcellulose pellets were produced by ionotropic gelation and characterized. Ibuprofen was selected as model drug; it was suspended in the polymeric solution in crystalline form or dissolved in a self-emulsifying phase and then dispersed into the polymeric solution. The self-emulsifying excipient platform composed of Labrasol (PEG-8 caprylic/capric glycerides) and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), able to solubilize the drug was used to improve the technological and biopharmaceutical properties of the alginate pellets. The pellets had diameters between 1317 and 2026 μm and a high drug content (>51%). DSC analysis showed the amorphous state of drug in the pellets containing the self-emulsifying phase. All the systems restricted drug release in conditions simulating the gastric environment and made the drug completely available at a pH value typical for the intestine. Only alginate-HPC systems containing the drug solubilized into the self-emulsifying phase showed the ability to partially control the release of ibuprofen at neutral pH. The self-emulsifying excipient platform is a useful tool to improve technological and biopharmaceutical properties of alginate-HPC pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Efficiency of emulsifier-free emulsions and emulsions containing rapeseed lecithin as delivery systems for vectorization and release of coenzyme Q10: physico-chemical properties and in vitro evaluation.

    PubMed

    Kaci, M; Arab-Tehrany, E; Dostert, G; Desjardins, I; Velot, E; Desobry, S

    2016-11-01

    To improve the encapsulation and release of coenzyme Q10 (CoQ10), emulsifier-free-emulsions were developed with a new emulsification process using high-frequency ultrasound (HFU) at 1.7MHz. Nano-emulsions containing CoQ10 were prepared with or without rapeseed lecithin as an emulsifier. The emulsions prepared with HFU were compared with an emulsion of CoQ10 containing emulsifier prepared with the same emulsification technique as well as with emulsions prepared with low-frequency ultrasound coupled with high-pressure homogenization (LFU+HPH). The physico-chemical properties of the emulsions were determined by average droplet size measurement with nano-droplet tracking analysis, droplet surface charge with ζ potential measurement, surface tension and rheological behaviour. Emulsions made by LFU+HPH with an emulsifier showed lower droplet sizes due to cavitation generated by the HFU process. Surface tension results showed that there was no significant difference between emulsions containing lecithin emulsifier regardless of the preparation process or the inclusion of CoQ10. In vitro biocompatibility tests were performed on human mesenchymal stem cells in order to show the cytotoxicity of various formulations and the efficiency of CoQ10-loaded emulsions. In vitro tests proved that the vectors were not toxic. Furthermore, CoQ10 facilitated a high rate of cell proliferation and metabolic activity especially when in an emulsifier-free formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-12-01

    Natural biopolymers, whey protein isolate (WPI) and gum arabic (GA), were used to fabricate emulsion-based delivery systems for vitamin E-acetate. Stable delivery systems could be formed when vitamin E-acetate was mixed with sufficient orange oil prior to high pressure homogenization. WPI (d32=0.11 μm, 1% emulsifier) was better than GA (d32=0.38 μm, 10% emulsifier) at producing small droplets at low emulsifier concentrations. However, WPI-stabilized nanoemulsions were unstable to flocculation near the protein isoelectric point (pH 5.0), at high ionic strength (>100mM), and at elevated temperatures (>60 °C), whereas GA-stabilized emulsions were stable. This difference was attributed to differences in emulsifier stabilization mechanisms: WPI by electrostatic repulsion; GA by steric repulsion. These results provide useful information about the emulsifying and stabilizing capacities of natural biopolymers for forming food-grade vitamin-enriched delivery systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein

    NASA Astrophysics Data System (ADS)

    Mehmood Khan, Nasir; Mu, Tai-Hua; Sun, Hong-Nan; Zhang, Miao; Chen, Jing-Wang

    2015-04-01

    In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200-600 MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.

  20. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.

    PubMed

    Yi, BoRa; Kim, Mi-Ja; Lee, JaeHwan

    2018-03-01

    The antioxidative or prooxidative properties of astaxanthin at the concentrations of 0, 10, and 100 μM were determined in oil-in-water (O/W) emulsions containing neutral, anionic, and cationic emulsifiers, which was Tween 20, sodium dodecyl sulfate, cetyltrimethylammonium bromide (CTAB), respectively, under chlorophyll photosensitization. The oxidative parameters and headspace volatiles were analyzed in O/W emulsions. In the 24 h period of visible light irradiation, 100 μM of astaxanthin acted as an antioxidant in O/W emulsions containing neutral and anionic emulsifiers. However, astaxanthin in O/W emulsions with a cationic emulsifier was neither an antioxidant nor a prooxidant. The profiles of volatile compounds showed that astaxanthin served as a singlet oxygen quencher in O/W emulsions containing neutral and anionic emulsifiers. However, in O/W emulsion with a cationic emulsifier, astaxanthin was neither a singlet oxygen quencher nor a free radical scavenger because prooxidant properties of CTAB overwhelmed the antioxidant effects of astaxanthin. Therefore, the antioxidant properties of astaxanthin were influenced by the emulsifier charges in O/W emulsions. Astaxanthin is a lipid-soluble pigment and has antioxidant, anticancer, and anti-inflammatory properties and beneficial effects on cardiovascular diseases. Many lipid-based foods are displayed on the shelves in the markets under fluorescent light. The addition of astaxanthin can extend the shelf life of O/W emulsion type foods such as beverage and dressing products under visible light irradiation. Also, oxidative stability in emulsion type foods containing astaxanthin rich natural ingredients can be predicted. © 2018 Institute of Food Technologists®.

  1. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats.

    PubMed

    Guo, Jiao; Zhou, Cheng; Liang, Peng; Huang, Han; Li, Fengshan; Chen, Xiangdong; Liu, Jin

    2014-01-01

    Spinal cord is an important target of volatile anesthetics in particular for the effect of immobility. Intrathecal injection of volatile anesthetics has been found to produce subarachnoid anesthesia. The present study was designed to compare spinal anesthetic effects of emulsified volatile anesthetics, and to investigate the correlation between their spinal effects and general effect of immobility. In this study, halothane, isoflurane, enflurane and sevoflurane were emulsified by 30% Intralipid. These emulsified volatile anesthetics were intravenously and intrathecally injected, respectively. ED50 of general anesthesia and EC50 of spinal anesthesia were determined. The durations of general and spinal anesthesia were recorded. Correlation analysis was applied to evaluate the anesthetic potency of volatile anesthetics between their spinal and general effects. ED50 of general anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.41 ± 0.07, 0.54 ± 0.07, 0.74 ± 0.11 and 0.78 ± 0.08 mmol/kg, respectively, with significant correlation to their inhaled MAC (R(2) = 0.8620, P = 0.047). For intrathecal injection, EC50 of spinal anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.35, 0.27, 0.33 and 0.26 mol/L, respectively, which could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (R(2) = 0.9627, P = 0.013). In conclusion, potency and efficacy of the four emulsified volatile anesthetics in spinal anesthesia were similar and could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (MAC × olive oil/gas partition coefficients).

  2. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats

    PubMed Central

    Guo, Jiao; Zhou, Cheng; Liang, Peng; Huang, Han; Li, Fengshan; Chen, Xiangdong; Liu, Jin

    2014-01-01

    Spinal cord is an important target of volatile anesthetics in particular for the effect of immobility. Intrathecal injection of volatile anesthetics has been found to produce subarachnoid anesthesia. The present study was designed to compare spinal anesthetic effects of emulsified volatile anesthetics, and to investigate the correlation between their spinal effects and general effect of immobility. In this study, halothane, isoflurane, enflurane and sevoflurane were emulsified by 30% Intralipid. These emulsified volatile anesthetics were intravenously and intrathecally injected, respectively. ED50 of general anesthesia and EC50 of spinal anesthesia were determined. The durations of general and spinal anesthesia were recorded. Correlation analysis was applied to evaluate the anesthetic potency of volatile anesthetics between their spinal and general effects. ED50 of general anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.41 ± 0.07, 0.54 ± 0.07, 0.74 ± 0.11 and 0.78 ± 0.08 mmol/kg, respectively, with significant correlation to their inhaled MAC (R2 = 0.8620, P = 0.047). For intrathecal injection, EC50 of spinal anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.35, 0.27, 0.33 and 0.26 mol/L, respectively, which could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (R2 = 0.9627, P = 0.013). In conclusion, potency and efficacy of the four emulsified volatile anesthetics in spinal anesthesia were similar and could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (MAC × olive oil/gas partition coefficients). PMID:25674241

  3. Application of D-optimal experimental design method to optimize the formulation of O/W cosmetic emulsions.

    PubMed

    Djuris, J; Vasiljevic, D; Jokic, S; Ibric, S

    2014-02-01

    This study investigates the application of D-optimal mixture experimental design in optimization of O/W cosmetic emulsions. Cetearyl glucoside was used as a natural, biodegradable non-ionic emulsifier in the relatively low concentration (1%), and the mixture of co-emulsifiers (stearic acid, cetyl alcohol, stearyl alcohol and glyceryl stearate) was used to stabilize the formulations. To determine the optimal composition of co-emulsifiers mixture, D-optimal mixture experimental design was used. Prepared emulsions were characterized with rheological measurements, centrifugation test, specific conductivity and pH value measurements. All prepared samples appeared as white and homogenous creams, except for one homogenous and viscous lotion co-stabilized by stearic acid alone. Centrifugation testing revealed some phase separation only in the case of sample co-stabilized using glyceryl stearate alone. The obtained pH values indicated that all samples expressed mild acid value acceptable for cosmetic preparations. Specific conductivity values are attributed to the multiple phases O/W emulsions with high percentages of fixed water. Results of the rheological measurements have shown that the investigated samples exhibited non-Newtonian thixotropic behaviour. To determine the influence of each of the co-emulsifiers on emulsions properties, the obtained results were evaluated by the means of statistical analysis (ANOVA test). On the basis of comparison of statistical parameters for each of the studied responses, mixture reduced quadratic model was selected over the linear model implying that interactions between co-emulsifiers play the significant role in overall influence of co-emulsifiers on emulsions properties. Glyceryl stearate was found to be the dominant co-emulsifier affecting emulsions properties. Interactions between the glyceryl stearate and other co-emulsifiers were also found to significantly influence emulsions properties. These findings are especially important as they can be used for development of the product that meets users' requirements, as represented in the study. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  5. Enteral Formula Containing Egg Yolk Lecithin Improves Diarrhea.

    PubMed

    Akashi, Tetsuro; Muto, Ayano; Takahashi, Yayoi; Nishiyama, Hiroshi

    2017-09-01

    Diarrhea often occurs during enteral nutrition. Recently, several reports showed that diarrhea improves by adding egg yolk lecithin, an emulsifier, in an enteral formula. Therefore, we evaluated if this combination could improve diarrhea outcomes. We retrospectively investigated the inhibitory effects on watery stools by replacing a polymeric fomula with that containing egg yolk lecithin. Then, we investigated the emulsion stability in vitro. Next, we examined the lipid absorption using different emulsifiers among bile duct-ligated rats and assessed whether egg yolk lecithin, medium-chain triglyceride, and dietary fiber can improve diarrhea outcomes in a rat model of short bowel syndrome. Stool consistency or frequency improved on the day after using the aforementioned combination in 13/14 patients. Average particle size of the egg yolk lecithin emulsifier did not change by adding artificial gastric juice, whereas that of soy lecithin and synthetic emulsifiers increased. Serum triglyceride concentrations were significantly higher in the egg yolk lecithin group compared with the soybean lecithin and synthetic emulsifier groups in bile duct-ligated rats. In rats with short bowels, the fecal consistency was a significant looser the dietary fiber (+) group than the egg yolk lecithin (+) groups from day 6 of test meal feedings. The fecal consistency was also a significant looser the egg yolk lecithin (-) group than the egg yolk lecithin (+) groups from day 4 of test meal feeding. The fecal consistency was no significant difference between the medium-chain triglycerides (-) and egg yolk lecithin (+) groups. Enteral formula emulsified with egg yolk lecithin promotes lipid absorption by preventing the destruction of emulsified substances by gastric acid. This enteral formula improved diarrhea and should reduce the burden on patients and healthcare workers.

  6. Stabilizing effect of cetostearyl alcohol and glyceryl monostearate as co-emulsifiers on hydrocarbon-free O/W glyceride creams.

    PubMed

    Ballmann, C; Mueller, B W

    2008-01-01

    The structure of a stable O/W cream is characterized by a more or less pronounced mixed crystal bilayer. The addition of co-emulsifiers in order to achieve a soft formulation often leads to a mixed crystal bilayer network of high viscosity and even phase separation. In order to ovoid this components of different chemical identities are used which often are not inert or harmless if they are absorbed. For this reason it seems to be interesting to use only components from one chemical family, e.g. to use only glycerides and their derivatives because in the case of absorption they are metabolized. The disadvantages of glyceride creams are, however, their low viscosity. The aim of this investigation was to find the optimum amount of co-emulsifier as consistency excipient for the basic formulation of an O/W glyceride cream. This was achieved by using differential scanning calorimetry; thermogravimetry, oscillation rheology and various stress tests. The amount of co-emulsifier used should not be too high, as it would crystallize increasingly during storage which gives the preparation an optical inhomogenity and a lack in softness which is needed for a suitable cosmetic acceptance. A slightly higher concentration than is necessary for the mixed emulsifier system can be advantageous, as the formation of a separate crystalline lipophilic network in the preparation increases its viscosity which will lead to a higher physico-chemical stability of the formulation. These results were obtained with the co-emulsifiers glyceryl monostearate (Imwitor 900), cetylstearyl alcohol (Lanette O), and PEG-20-glycerolstearate (Tagat S2) as O/W emulsifier. As oil phase a mixture of Miglyol 812 (caprylic/capric triglyceride) and Avocado oil was used.

  7. Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.

    PubMed

    Borden, Mark A; Pu, Gang; Runner, Gabriel J; Longo, Marjorie L

    2004-06-01

    Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating-cooling followed by compression-expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.

  8. Formulation Strategies to Improve the Bioavailability of Poorly Absorbed Drugs with Special Emphasis on Self-Emulsifying Systems

    PubMed Central

    Gupta, Shweta; Kesarla, Rajesh

    2013-01-01

    Poorly water-soluble drug candidates are becoming more prevalent. It has been estimated that approximately 60–70% of the drug molecules are insufficiently soluble in aqueous media and/or have very low permeability to allow for their adequate and reproducible absorption from the gastrointestinal tract (GIT) following oral administration. Formulation scientists have to adopt various strategies to enhance their absorption. Lipidic formulations are found to be a promising approach to combat the challenges. In this review article, potential advantages and drawbacks of various conventional techniques and the newer approaches specifically the self-emulsifying systems are discussed. Various components of the self-emulsifying systems and their selection criteria are critically reviewed. The attempts of various scientists to transform the liquid self-emulsifying drug delivery systems (SEDDS) to solid-SEDDS by adsorption, spray drying, lyophilization, melt granulation, extrusion, and so forth to formulate various dosage forms like self emulsifying capsules, tablets, controlled release pellets, beads, microspheres, nanoparticles, suppositories, implants, and so forth have also been included. Formulation of SEDDS is a potential strategy to deliver new drug molecules with enhanced bioavailability mostly exhibiting poor aqueous solubility. The self-emulsifying system offers various advantages over other drug delivery systems having potential to solve various problems associated with drugs of all the classes of biopharmaceutical classification system (BCS). PMID:24459591

  9. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: the influence of colloidal structure on emulsions skin hydration potential.

    PubMed

    Savic, Snezana; Lukic, Milica; Jaksic, Ivana; Reichl, Stephan; Tamburic, Slobodanka; Müller-Goymann, Christel

    2011-06-01

    To be considered as a suitable vehicle for drugs/cosmetic actives, an emulsion system should have a number of desirable properties mainly dependent on surfactant used for its stabilization. In the current study, C(12-14) alkyl polyglucoside (APG)-mixed emulsifier of natural origin has been investigated in a series of binary (emulsifier concentration 10-25% (w/w)) and ternary systems with fixed emulsifier content (15% (w/w)) with or without glycerol. To elucidate the systems' colloidal structure the following physicochemical techniques were employed: polarization and transmission electron microscopy, X-ray diffraction (WAXD and SAXD), thermal analysis (DSC and TGA), complex rheological, pH, and conductivity measurements. Additionally, the emulsion vehicles' skin hydration potential was tested in vivo, on human skin under occlusion. In a series of binary systems with fixed emulsifier/water ratios ranging from 10/90 to 25/75 the predominance of a lamellar mesophase was found, changing its character from a liquid crystalline to a gel crystalline type. The same was observed in gel emulsions containing equal amounts of emulsifier and oil (15% (w/w)), but varying in glycerol content (0-25%). Different emulsion samples exhibited different water distribution modes in the structure, reflecting their rheological behavior and also their skin hydration capacity. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Effect of Grape Seed Proanthocyanidin-Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions.

    PubMed

    Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long

    2015-11-25

    The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.

  11. Emulsified systems based on glyceryl monostearate and potassium cetyl phosphate: scale-up and characterization of physical properties.

    PubMed

    Baby, André Rolim; Santoro, Diego Monegatto; Velasco, Maria Valéria Robles; Dos Reis Serra, Cristina Helena

    2008-09-01

    Introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3], mum) and rheology profile. Transposition occurred from a batch of 500-50,000g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic.

  12. Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb leaves.

    PubMed

    Xu, Qi-Xin; Shi, Jun-Jun; Zhang, Jian-Guo; Li, Ling; Jiang, Li; Wei, Zhao-Jun

    2016-12-01

    Plant polysaccharides are widely used in food industry as thickening and gelling agents and these attributes largely depend on their thermal, emulsifying and rheological properties. As known, the extraction methods always bring about the diversification of property and functions of polysaccharides. Thus, the Vaccinium bracteatum Thunb leaves polysaccharides (VBTLP) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The thermal, emulsifying and rheological properties of VBTLP were investigated in the present study. Within the range of 20-225°C, CHSS showed the highest peak temperature, whereas HBSS displayed the highest endothermic enthalpy and highest emulsifying activity, while, CASS showed the longest emulsifying stability. The VBTLP solutions exhibited non-Newtonian shear-thinning behavior within the concentrations of 0.6-2.5%. The apparent viscosity of VBTLP solution decreased under following conditions: acidic pH (4.0), alkaline pH (10.0), in the presence of Ca 2+ and at high temperature, while it increased in the presence of Na + and at freezing conditions. The modulus G' and G″ of VBTLP solutions were increased with increasing oscillation frequency, and the crossover frequency shifted to lower values when the polysaccharide content increased. The above results of thermal, emulsifying and rheological properties of VBTLPs supplied the basis for V. bracteatum leaves in potential industrial applications of foods. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of different emulsifiers on characteristics of eggless cake containing soy milk: Modeling of physical and sensory properties by mixture experimental design.

    PubMed

    Rahmati, Nazanin Fatemeh; Mazaheri Tehrani, Mostafa

    2014-09-01

    Emulsifiers of different structures and functionalities are important ingredients usually used in baking cakes with satisfactory properties. In this study, three emulsifiers including distilled glycerol mono stearate (DGMS), lecithin and sorbitan mono stearate (SMS) were used to bake seven eggless cakes containing soy milk and optimization was performed by using mixture experimental design to produce an eggless cake sample with optimized properties. Physical properties of cake batters (viscosity, specific gravity and stability), cake quality parameters (moisture loss, density, specific volume, volume index, contour, symmetry, color and texture) and sensory attributes of eggless cakes were analyzed to investigate functional potential of the emulsifiers and results were compared with those of control cake containing egg. Almost in all cases emulsifiers, compared to the control cake, changed properties of eggless cakes significantly. Regarding models of different response variables (except for some properties) and their high R(2) (99.51-100), it could be concluded that models obtained by mixture design were significantly fitted for the studied responses.

  14. Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil.

    PubMed

    Youssef, M K; Barbut, S

    2011-04-01

    The effects of fat reduction (25.0%, 17.5%, and 10.0%) and substituting beef fat with canola oil or pre-emulsified canola oil (using soy protein isolate, sodium caseinate or whey protein isolate) on cooking loss, texture and color of comminuted meat products were investigated. Reducing fat from 25 to 10% increased cooking loss and decreased hardness. Canola oil or pre-emulsified treatments showed a positive effect on improving yield and restoring textural parameters. Using sodium caseinate to pre-emulsify the oil resulted in the highest hardness value. Cohesiveness was affected by fat type and level. The color of reduced fat meat batters was darker for all, except the beef fat treatments. Using canola oil or pre-emulsified oil resulted in a significant reduction in redness. The results show that pre-emulsification can offset some of the changes in reduced fat meat products when more water is used to substitute for the fat and that pre-emulsification can also help to produce a more stable meat matrix. © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  15. Effect of Formulation Variables on Preparation of Celecoxib Loaded Polylactide-Co-Glycolide Nanoparticles

    PubMed Central

    Cooper, Dustin L.; Harirforoosh, Sam

    2014-01-01

    Polymer based nanoparticle formulations have been shown to increase drug bioavailability and/or reduce drug adverse effects. Nonsteroidal anti-inflammatory drugs (e.g. celecoxib) reduce prostaglandin synthesis and cause side effects such as gastrointestinal and renal complications. The aim of this study was to formulate celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a solvent evaporation process using didodecyldimethylammonium bromide or poly vinyl alcohol as stabilizer. Nanoparticles were characterized for zeta potential, particle size, entrapment efficiency, and morphology. Effects of stabilizer concentration (0.1, 0.25, 0.5, and 1% w/v), drug amount (5, 10, 15, and 20 mg), and emulsifier (lecithin) on nanoparticle characterization were examined for formula optimization. The use of 0.1, 0.25, and 0.5% w/v didodecyldimethylammonium bromide resulted in a more than 5-fold increase in zeta potential and a more than 1.5-fold increase in entrapment efficiency with a reduction in particle size over 35%, when compared to stabilizer free formulation. Nanoparticle formulations were also highly influenced by emulsifier and drug amount. Using 0.25% w/v didodecyldimethylammonium bromide NP formulations, peak zeta potential was achieved using 15 mg celecoxib with emulsifier (17.15±0.36 mV) and 20 mg celecoxib without emulsifier (25.00±0.18 mV). Peak NP size reduction and entrapment efficiency was achieved using 5 mg celecoxib formulations with (70.87±1.24 nm and 95.55±0.66%, respectively) and without (92.97±0.51 nm and 95.93±0.27%, respectively) emulsifier. In conclusion, formulations using 5 mg celecoxib with 0.25% w/v didodecyldimethylammonium bromide concentrations produced nanoparticles exhibiting enhanced size reduction and entrapment efficiency. Furthermore, emulsifier free formulations demonstrated improved zeta potential when compared to formulations containing emulsifier (p<0.01). Therefore, our results suggest the use of emulsifier free 5 mg celecoxib drug formulations containing 0.25% w/v didodecyldimethylammonium bromide for production of polymeric NPs that demonstrate enhanced zeta potential, small particle size, and high entrapment efficiency. PMID:25502102

  16. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.

  17. Production and partial characterization of bioemulsifier from a chromium-resistant actinobacteria.

    PubMed

    Colin, Verónica Leticia; Pereira, Claudia Elizabeth; Villegas, Liliana Beatriz; Amoroso, Maria Julia; Abate, Carlos Mauricio

    2013-01-01

    Surface-active compounds such as synthetic emulsifiers have been used for several decades, both for the degradation of hydrocarbons and increasing desorption of soil-bound metals. However, due to their high toxicity, low degradability, and production costs unaffordable for use in larger ecosystems, synthetic emulsifiers have been gradually replaced by those derived from natural sources such as plants or microbes. In previous studies, the bacterium Streptomyces sp. MC1 has shown the ability to reduce and/or accumulate Cr(VI), a highly promising advance in the development of methods for environmental clean-up of sites contaminated with chromium. Here, new studies on the production of emulsifier from this strain are presented. The cultivation factors that have a significant influence on emulsifier biosynthesis, as well as the interactions among them, were studied by factorial design. Based upon optimization studies, maximum bioemulsifier production was detected in the culture medium having an initial pH of 8 with phosphate 2.0 g L(-1) and Ca(+2) 1.0 g L(-1) added, with an emulsification index about 3.5 times greater compared to the basal value. Interestingly, in the presence of 5.0 g L(-1) Cr(VI), Streptomyces sp. MC1 retained about 65% of its emulsifier production ability. Partially purified emulsifier presented high thermo-stability and partial water solubility. These findings could have promising future prospects for the remediation of organic- and metal-contaminated sites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Assessment of Red Beet as a Natural Colorant, and Evaluation of Quality Properties of Emulsified Pork Sausage Containing Red Beet Powder during Cold Storage

    PubMed Central

    Jin, Sang-Keun; Choi, Jung-Seok; Moon, Sung-Sil; Jeong, Jin-Yeon

    2014-01-01

    The purpose of this study was to assess red beet as a natural colorant in emulsified pork sausage and to investigate the effect of red beet on quality characteristics of emulsified pork sausage during 20 d of cold storage. Red beet was prepared as a powder and a substitute with sodium nitrite at 0.5% and 1.0% levels in emulsified pork sausage. Red beet significantly increased the moisture content and pH (p<0.0001) and affected color traits. Lightness of emulsified pork sausage decreased by the addition of red beet powder (p<0.01), whereas lightness with red beet treatments slightly increased during 20 d of cold storage at 4℃ (p<0.05). Redness dramatically increased with red beet powder (p<0.0001). Color by sensory evaluation also showed a significant effect from red beet addition (p<0.05), whereas the other sensory properties such as flavor, tenderness, juiciness, and overall acceptability were not affected by the addition of red beet powder (p>0.05). Texture and 2-thiobabituric acid reactive substance were also not affected by red beet addition (p>0.05). Therefore, red beet could be a good natural colorant in emulsified pork sausage but it needs additional processing, such as betalain concentration and extraction as a juice, to be used as an antioxidant in meat products. PMID:26761285

  19. An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier.

    PubMed

    Vasiljevic, Dragana; Parojcic, Jelena; Primorac, Marija; Vuleta, Gordana

    2006-02-17

    Multiple W/O/W emulsions with high content of inner phase (Phi1=Phi2=0.8) were prepared using relatively low concentrations of lipophilic polymeric primary emulsifier, PEG 30-dipolyhydroxystearate, and diclofenac diethylamine (DDA) as a model drug. The investigated formulations were characterized and their stability over the time was evaluated by dynamic and oscillatory rheological measurements, microscopic analysis and in vitro drug release study. In vitro release profiles of the selected model drug were evaluated in terms of the effective diffusion coefficients and flux of the released drug. The multiple emulsion samples exhibited good stability during the ageing time. Concentration of the lipophilic primary emulsifier markedly affected rheological behaviour as well as the droplet size and in vitro drug release kinetics of the investigated systems. The multiple emulsion systems with highest concentration (2.4%, w/w) of the primary emulsifier had the lowest droplet size and the highest apparent viscosity and highest elastic characteristics. Drug release data indicated predominately diffusional drug release mechanism with sustained and prolonged drug release accomplished with 2.4% (w/w) of lipophilic emulsifier employed.

  20. [The application of the emulsified turpentine baths for the correction of the functional state of the cross-country skiers].

    PubMed

    Garnov, I O; Kuchin, A V; Loginova, T P; Varlamova, N G; Boiko, E R

    2016-01-01

    The baths with emulsified turpentine find the wide application in balneotherapy. They produce especially pronounced beneficial prophylactic effects in the patients presenting with microtrombosis and microvascular stasis. Moreover, these baths may be prescribed to improve microcirculation, increase the functional reserves and physical capacity in the athletes. At the same time, the current literature appears to contain no scientific publications on the application of emulsified turpentine baths for the restoration of the physical capacity of the professional ski runners. The lack of relevant information motivated the study reported in the present article. The main objective of the study involving 10 subjects was to evaluate the effectiveness of the modified emulsified turpentine baths as a method by which to restore and enhance the physical capacity of the professional cross-country skiers. The physical capacity of the athletes was evaluated from the results of the bicycle ergometer exercise test with the use of the «Oxycon Pro» system. The data obtained suggest that a course of the emulsified turpentine baths increases the activity of the cardiorespiratory system, improves the physical capacity, and enhances the functional reserves of the body in the anaerobic zone.

  1. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    PubMed

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  2. 21 CFR 184.1351 - Gum tragacanth.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the following conditions: Maximum Usage Levels Permitted Food (as served) Percent Function Baked goods and baking mixes, § 170.3(n)(1) of this chapter 0.2 Emulsifier and emulsifier salt, § 170.3(o)(8) of...

  3. 21 CFR 184.1339 - Guar gum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the following conditions: Maximum Usage Levels Permitted Food (as served) Percent Function Baked goods and baking mixes, § 170.3(n)(1) of this chapter 0.35 Emulsifier and emulsifier salts, § 170.3(o)(8) of...

  4. Polyamine sensitization in offshore workers handling drilling muds.

    PubMed

    Ormerod, A D; Wakeel, R A; Mann, T A; Main, R A; Aldridge, R D

    1989-11-01

    Oil-based mud, a complex mixture containing amines in emulsifiers, is used in offshore drilling operations. It is a skin irritant that occasionally gives rise to allergic contact sensitivity. In patch testing patients with allergy to drilling mud, we have identified polyamine (diethylenetriamine and triethylenetetramine) sensitivity in 5 patients. All 5 patients were also allergic to emulsifiers. These emulsifiers are cross-linked fatty acid amido-amines, in which unreacted amine groups are thought to cross-sensitize with these constituent polyamines. Cross-reactivity between ethylenediamine, diethylenetetramine and triethylenetetramine was found in 9 subjects.

  5. Small particle size lipid emulsions, satiety and energy intake in lean men.

    PubMed

    Chan, Y K; Budgett, S C; MacGibbon, A K; Quek, S Y; Kindleysides, S; Poppitt, S D

    2017-02-01

    Lipid emulsions have been proposed to suppress hunger and food intake. Whilst there is no consensus on optimal structural properties or mechanism of action, small particle size (small-PS) stable emulsions may have greatest efficacy. Fabuless®, a commercial lipid emulsion reported in some studies to decrease energy intake (EI), is a small-PS, 'hard' fat emulsion comprising highly saturated palm oil base (PS, 82nm). To determine whether small-PS dairy lipid emulsions can enhance satiety, firstly, we investigated 2 'soft' fat dairy emulsions generated using dairy and soy emulsifying agents (PS, 114nm and 121nm) and a non-emulsified dairy control. Secondly, we investigated a small-PS palmolein based 'hard' fat emulsion (fractionated palm oil, PS, 104nm) and non-emulsified control. This was a 6 arm, randomized, cross-over study in 18 lean men, with test lipids delivered in a breakfast meal: (i) Fabuless® emulsion (F EM ); (ii) dairy emulsion with dairy emulsifier (DE DE ); (iii) dairy emulsion with soy lecithin emulsifier (DE SE ); (iv) dairy control (DC ON ); (v) palmolein emulsion with dairy emulsifier (PE DE ); (vi) palmolein control (PC ON ). Participants rated postprandial appetite sensations using visual analogue scales (VAS), and ad libitum energy intake (EI) was measured at a lunch meal 3.5h later. Dairy lipid emulsions did not significantly alter satiety ratings or change EI relative to dairy control (DE DE , 4035kJ; DE SE , 3904kJ; DC ON , 3985kJ; P>0.05) nor did palm oil based emulsion relative to non-emulsified control (PE DE, 3902 kJ; PC ON, 3973kJ; P>0.05). There was no evidence that small-PS dairy lipid emulsions or commercial Fabuless altered short-term appetite or food intake in lean adults. Copyright © 2016. Published by Elsevier Inc.

  6. Effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins.

    PubMed

    Higuera-Barraza, O A; Torres-Arreola, W; Ezquerra-Brauer, J M; Cinco-Moroyoqui, F J; Rodríguez Figueroa, J C; Marquez-Ríos, E

    2017-09-01

    Food technologists are always looking to improve the functional properties of proteins. In this sense, in last years ultrasound has been used to improve some functional properties. For this reason, and considering that jumbo squid is an important fishery in northwest Mexico, the purpose of this research was to determine the effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins. Pulsed ultrasound (20kHz, 20, and 40% amplitude) was applied for 30, 60, and 90s to a protein extract prepared from giant squid mantle causing an increase (p<0.05) in surface hydrophobicity (S o ) from 108.4±1.4 to 239.1±2.4 after application of pulsed ultrasound at 40% of amplitude for 90s. The electrophoretic profile and the total and reactive sulfhydryl contents were not affected (p⩾0.05) by the ultrasound treatment. The emulsifying ability of the protein solution was improved (p<0.05), whereas the Emulsifier Activity Index (EAI) varied from123.67±5.52m 2 /g for the control and increased up to 217.7±3.8m 2 /g after application of the ultrasound. The Stability Emulsifier Index (EEI) was improved at 40% of amplitude by 60 and 90s. The results suggested that pulsed ultrasound used as pretreatment induced conformational changes in giant squid proteins, which improved the interfacial association between protein-oil phases, thus contributing to the improvement of their emulsifient properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    NASA Astrophysics Data System (ADS)

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari

    2017-07-01

    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  8. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  9. Switchable Pickering Emulsions Stabilized by Awakened TiO2 Nanoparticle Emulsifiers Using UV/Dark Actuation.

    PubMed

    Zhang, Qing; Bai, Rui-Xue; Guo, Ting; Meng, Tao

    2015-08-26

    In this work, switchable Pickering emulsions that utilize UV/dark manipulation employ a type of smart TiO2 nanoparticle as emulsifiers. The emulsifiers can be awakened when needed via UV-induced degradation of grafted silanes on TiO2 nanoparticles. By tuning the surface wettability of TiO2 nanoparticles in situ via UV/dark actuation, emulsions stabilized by the nanoparticles can be reversibly switched between the water-in-oil (W/O) type and oil-in-water (O/W) type for several cycles. Due to the convertible wettability, the smart nanoparticle emulsifiers can be settled in either the oil phase or the water phase as desired during phase separation, making it convenient for recycling. The present work provides a facile and noninvasive method to freely manipulate the formation, breakage, and switching of the emulsion; this method has promising potential as a powerful technique for use in energy-efficient and environmentally friendly industries.

  10. Covalent modification of soy protein isolate by (-)-epigallocatechin-3-gallate: effects on structural and emulsifying properties.

    PubMed

    Tao, Fei; Jiang, He; Chen, Wenwei; Zhang, Yongyong; Pan, Jiarong; Jiang, Jiaxin; Jia, Zhenbao

    2018-05-07

    Soy protein isolate (SPI) has promising applications in various food products because of its excellent functional properties and nutritional quality. The structural and emulsifying properties of covalently modified SPI by (-)-epigallocatechin-3-gallate (EGCG) were investigated. SPI was covalently modified by EGCG under alkaline conditions. SDS-PAGE analysis revealed that EGCG modification caused cross-linking of SPI proteins. Circular dichroism spectra demonstrated that the secondary structure of SPI proteins was changed by EGCG modification. In addition, the modifications resulted in the perturbation of the tertiary structure of SPI as evidenced by intrinsic fluorescence spectra and surface hydrophobicity measurements. Oil-in-water emulsions of modified SPI had smaller droplet sizes and better creaming stability compared to those from unmodified SPI. The covalent modification by EGCG improved the emulsifying property of SPI. This study provided an innovative approach for improving the emulsifying properties of proteins. This article is protected by copyright. All rights reserved.

  11. Influence of emulsifiers on the characteristics of polyurethane structures used as drug carrier

    PubMed Central

    2013-01-01

    Background Emulsifiers have a significant role in the emulsion polymerization by reducing the interfacial tension thus increasing the stability of colloidal dispersions of polymer nanostructures. This study evaluates the impact of four emulsifiers on the characteristics of polyurethane hollow structures used as drug delivery system. Results Polyurethane (PU) structures with high stability and sizes ranging from nano- to micro-scale were obtained by interfacial polyaddition combined with spontaneous emulsification. The pH of PU aqueous solutions (0.1% w/w) was slightly acidic, which is acceptable for products intended to be used on human skin. Agglomerated structures with irregular shapes were observed by scanning electron microscopy. The synthesized structures have melting points between 245-265°C and reveal promising results in different evaluations (TEWL, mexametry) on murine skin. Conclusions In this study hollow PU structures of reduced noxiousness were synthesized, their size and stability being influenced by emulsifiers. Such structures could be used in the pharmaceutical field as future drug delivery systems. PMID:23575277

  12. Effect of dynamic high pressure on emulsifying and encapsulant properties of cashew tree gum.

    PubMed

    Porto, Bruna Castro; Cristianini, Marcelo

    2018-04-15

    Dynamic high pressure (DHP) has been applied in the physical modification of biopolymers as polysaccharides, proteins and gums. It is known that DHP is able to promote degradation of polysaccharides (e.g. molecular weight reduction). However, few studies have assessed the effect of DHP on the emulsifying and encapsulating properties of polysaccharides. Thus, this study aimed to investigate the effect of DHP on the emulsifying (average droplet size and particle size distribution, optical and confocal scanning laser microscopy, rheology, zeta potential and electric conductivity, creaming index, and turbidity) and encapsulating (scanning electronic microscopy, flavor retention, average droplet size, and particle size distribution) properties of cashew tree gum (CG). The application of DHP process improved the emulsifying capacity of cashew tree gum (CG) by reducing the medium droplet size (D3,2 and D4,3), increasing the turbidity and improving the emulsion stability. However, no effect of DHP was observed on the encapsulating capacity of CG. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats

    PubMed Central

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355

  14. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats.

    PubMed

    He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei

    2011-01-01

    Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.

  15. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    EPA Science Inventory

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  16. In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles.

    PubMed

    Li, Yue; Driver, Michael; Winuprasith, Thunnalin; Zheng, Jinkai; McClements, David Julian; He, Lili

    2014-10-21

    Herein, we fabricated amphiphilic gold nanoparticles (GNPs) that can self-assemble at oil-water interfaces. We applied those GNPs for in situ SERS detection of emulsifier molecules within the interfacial region of oil in water (O/W) emulsion systems.

  17. Peroxidase mediated conjugation of corn fibeer gum and bovine serum albumin to improve emulsifying properties

    USDA-ARS?s Scientific Manuscript database

    The emulsifying properties of corn fiber gum (CFG), a naturally-occurring polysaccharide protein complex, were improved by kinetically controlled formation of hetero-covalent linkages with bovine serum albumin (BSA), using horseradish peroxidase. The formation of hetero-crosslinked CFG-BSA conjugate...

  18. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  19. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil

    USDA-ARS?s Scientific Manuscript database

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important nutrition and disease management properties. Presently fish oil (FO) supplementation relies on capsular triglyceride. Flavored emulsified lipid preparations may provide an improved approach to FO del...

  20. Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures.

    PubMed

    Cheong, Ai M; Tan, Chin P; Nyam, Kar L

    2018-01-01

    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p < 0.05) on the particle sizes, polydispersity index and hence the physical stability of nanoemulsions. Homogenisation parameters at 28,000 psi for three cycles produced the most stable homogeneous nanoemulsions that were below 130 nm, below 0.16, and above -40 mV of particle size, polydispersity index, and zeta potential, respectively. Field emission scanning electron microscopy micrograph showed that the optimised nanoemulsions had a good distribution within nano-range. The optimised nanoemulsions were proved to be physically stable for up to six weeks of storage at room temperature. The results from this study also provided valuable information in producing stable kenaf seed oil nanoemulsions for the future application in food and nutraceutical industries.

  1. Egress route of emulsified 20 centistokes silicone oil from anterior chamber of rabbit.

    PubMed

    Ohira, A; Chihara, E; Soji, T

    1994-07-01

    Silicone oil is used in recent clinical practice, however, it may cause adverse reactions in the eyes. When the high viscosity silicone oil is contaminated with low molecular weight silicone oil, the contamination may cause ocular toxicity or elevation of the intraocular pressure. To obtain information on the distribution of this preparation, emulsified 20 centistokes silicone oil was injected into the anterior chamber of rabbit eyes. The silicone oil droplets were visualized by light and electron microscopy by using oil soluble phthalocyanine blue. This copper containing dye remains in the tissue after removal of the silicone oil by organic solvents. Two and 4 weeks after an injection, the silicone emulsion was observed as numerous small vacuoles with blue precipitate at the margin of vacuoles within elongated trabecular endothelial cells, fibroblasts along the route of uveoscleral outflow and cells of the iris. Three hours after the injection, only a few vacuoles were present in these cells. These results demonstrated that the emulsified silicone oil leaves the anterior chamber through the conventional and unconventional routes. Phagocytosis by the trabecular endothelial cells and fibroblasts along the uveoscleral route caused an accumulation of the emulsified silicone oil in these cells. With chronic exposure to emulsified silicone oil, changes in the trabecular meshwork may lead to a reduction in the outflow of aqueous humor and cause glaucoma.

  2. The research about microscopic structure of emulsion membrane in O/W emulsion by NMR and its influence to emulsion stability.

    PubMed

    Xie, Yiqiao; Chen, Jisheng; Zhang, Shu; Fan, Kaiyan; Chen, Gang; Zhuang, Zerong; Zeng, Mingying; Chen, De; Lu, Longgui; Yang, Linlin; Yang, Fan

    2016-03-16

    This paper discussed the influence of microstructure of emulsion membrane on O/W emulsion stability. O/W emulsions were emulsified with equal dosage of egg yolk lecithin and increasing dosage of co-emulsifier (oleic acid or HS15). The average particle size and centrifugal stability constant of emulsion, as well as interfacial tension between oil and water phase were determined. The microstructure of emulsion membrane had been studied by (1)H/(13)C NMR, meanwhile the emulsion droplets were visually presented with TEM and IFM. With increasing dosage of co-emulsifier, emulsions showed two stable states, under which the signal intensity of characteristic group (orient to lipophilic core) of egg yolk lecithin disappeared in NMR of emulsions, but that (orient to aqueous phase) of co-emulsifiers only had some reduction at the second stable state. At the two stable states, the emulsion membranes were neater in TEM and emulsion droplets were rounder in IFM. Furthermore, the average particle size of emulsions at the second stable state was bigger than that at the first stable state. Egg yolk lecithin and co-emulsifier respectively arranged into monolayer and bilayer emulsion membrane at the two stable states. The microstructure of emulsion membrane was related to the stability of emulsion. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.

    PubMed

    Liu, Fuguo; Zhu, Zhenbao; Ma, Cuicui; Luo, Xiang; Bai, Long; Decker, Eric Andrew; Gao, Yanxiang; McClements, David Julian

    2016-12-21

    Chemically unstable lipophilic bioactives, such as polyunsaturated lipids, often have to be encapsulated in emulsion-based delivery systems before they can be incorporated into foods, supplements, and pharmaceuticals. The objective of this study was to develop highly concentrated emulsion-based fish oil delivery systems using natural emulsifiers. Fish oil-in-water emulsions were fabricated using a highly efficient dual-channel high-pressure microfluidizer. The impact of oil concentration on the formation, physical properties, and oxidative stability of fish oil emulsions prepared using two natural emulsifiers (quillaja saponins and rhamnolipids) and one synthetic emulsifier (Tween-80) was examined. The mean droplet size, polydispersity, and apparent viscosity of the fish oil emulsions increased with increasing oil content. However, physically stable emulsions with high fish oil levels (30 or 40 wt %) could be produced using all three emulsifiers, with rhamnolipids giving the smallest droplet size (d < 160 nm). The stability of the emulsions to lipid oxidation increased as the oil content increased. The oxidative stability of the emulsions also depended on the nature of the emulsifier coating the lipid droplets, with the oxidative stability decreasing in the following order: rhamnolipids > saponins ≈ Tween-80. These results suggest that rhamnolipids may be particularly effective at producing emulsions containing high concentrations of ω-3 polyunsaturated fatty acids-rich fish oil.

  4. The influence of carbohydrate-based fat replacers with and without emulsifiers on the quality characteristics of lowfat cake.

    PubMed

    Khalil, A H

    1998-01-01

    Physical and sensory characteristics of cakes prepared with either the carbohydrate-based fat replacers N-Flate, Paselli MD 10 and Litesse (0, 25, 50 and 75% of fat weight) or fat replacers plus emulsifier (mono- and diglycerides; 0 and 3% of flour weight) were studied. Specific gravity of the batter was significantly (p < or = 0.05) improved by using the carbohydrate-based fat replacers, especially at the 25 and 50% replacement levels. The combination of the emulsifier with either Paselli MD 10 or Litesse also enhanced the specific gravity. Cakes prepared with fat replacers at the 25 and 50% levels had higher volumes, specific volume and standing heights than those of the control. Cakes prepared with fat replacers at the 25, 50 and 75% levels were more compressible than the control. Cakes prepared with Paselli MD 10 had the highest volumes, specific volume, standing heights and compressibilities. Incorporation of emulsifier with fat replacers improved cake volumes, standing heights and compressibilities. Cakes prepared with fat replacers exhibited higher crust and crumb color values compared to the control. Cakes prepared with 25 or 50% fat replacers had higher mean scores for flavor, softness and eating quality than the control. Incorporation of emulsifier with fat replacers did not affect the crust color, crumb color and flavor, but significantly (p < or = 0.05) improved softness and eating quality.

  5. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (DNAPL CONFERENCE)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  6. Physical, rheological, functional and film properties of a novel emulsifier: Frost grape polysaccharide (FGP) from Vitis riparia Michx

    USDA-ARS?s Scientific Manuscript database

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essent...

  7. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (Battelle Conference)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) was conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island, SC. The EZVI technology was developed at the University of Central Fl...

  8. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (BATTELLE PRESENTATION)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The EZVI technology was developed at the University of Central ...

  9. 21 CFR 178.3400 - Emulsifiers and/or surface-active agents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... paperboard. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl] omega-hydroxypoly(oxyethylene) produced by the... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Emulsifiers and/or surface-active agents. 178.3400... substances: List of substances Limitations α-Alkyl-, α-alkenyl-, and α-alkylaryl-omega-hydroxypoly...

  10. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... follows: (1) As an emulsifier in ice cream, frozen custard, ice milk, fruit sherbet and nonstandardized... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  11. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... follows: (1) As an emulsifier in ice cream, frozen custard, ice milk, fruit sherbet and nonstandardized... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  12. 77 FR 30216 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Reasonably Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... them into the Maine SIP: Revised Chapter 131, Cutback Asphalt and Emulsified Asphalt Regulation... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. Dated: May 8, 2012. Ira W. Leighton... begins]. * * * * * * * Chapter 131 Cutback Asphalt and 09/15/2009 05/22/2012 [Insert Emulsified Asphalt...

  13. Enhanced bioavailability of EPA from emulsified fish oil preparations versus capsular triacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Pre-emulsified fish oil supplements, an alternative to capsular triacylglycerol, may enhance the uptake of LCn3 fatty acids it contains. A randomized, Latin-square crossover design was used to compare the effects of four fish oil supplement preparations on phospholipid (PLFA) and chylomicron fatty ...

  14. Field test on the treatment of source zone chloroethenes using emulsified zerovalent iron

    EPA Science Inventory

    This talk summarizes the research activities currently underway at the Solid Waste Management Unit 45 (Site 45), Marine Corps Recruit Depot, Parris Island, South Carolina. A pilot field test was initiated in 2005 at this site to evaluate the effectiveness of nanoscale emulsified...

  15. Effect of emulsifier and viscosity on oil separation in ready-to-use therapeutic food

    USDA-ARS?s Scientific Manuscript database

    Oil separation is a common food quality problem in ready-to-use therapeutic food (RUTF), the shelf-stable, peanut-based food used to treat severe acute malnutrition in home settings. Our objective was to evaluate the effect on oil separation of three emulsifiers at different concentrations in RUTF. ...

  16. 21 CFR 178.3400 - Emulsifiers and/or surface-active agents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... paperboard. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl] omega-hydroxypoly(oxyethylene) produced by the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Emulsifiers and/or surface-active agents. 178.3400...-alkylaryl-omega-hydroxypoly(oxyethylene) mixture consisting of 30 weight pct of α-(2,4,6-triisobutylphenyl...

  17. 21 CFR 178.3400 - Emulsifiers and/or surface-active agents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... paperboard. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl] omega-hydroxypoly(oxyethylene) produced by the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Emulsifiers and/or surface-active agents. 178.3400...-alkylaryl-omega-hydroxypoly(oxyethylene) mixture consisting of 30 weight pct of α-(2,4,6-triisobutylphenyl...

  18. 21 CFR 178.3400 - Emulsifiers and/or surface-active agents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... paperboard. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl] omega-hydroxypoly(oxyethylene) produced by the... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Emulsifiers and/or surface-active agents. 178.3400...-alkylaryl-omega-hydroxypoly(oxyethylene) mixture consisting of 30 weight pct of α-(2,4,6-triisobutylphenyl...

  19. 21 CFR 178.3400 - Emulsifiers and/or surface-active agents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... paperboard. α-[p-(1,1,3,3-Tetramethylbutyl)phenyl] omega-hydroxypoly(oxyethylene) produced by the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Emulsifiers and/or surface-active agents. 178.3400...-alkylaryl-omega-hydroxypoly(oxyethylene) mixture consisting of 30 weight pct of α-(2,4,6-triisobutylphenyl...

  20. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  1. Application of multiwalled carbon nanotubes and its magnetite derivative for emulsified oil removal from produced water.

    PubMed

    Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I

    2018-05-10

    Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.

  2. Studies on gum of Moringa oleifera for its emulsifying properties.

    PubMed

    Panda, Dibya Sundar

    2014-04-01

    Emulsion has been a form of presenting water insoluble substances for a long period of time. Now a day, it has been a way of presenting various intravenous additives and diagnostic agents in X-ray examinations. Various substances can be used as emulsifying agent, which can be operationally defined as a stabilizer of the droplets formed of the internal phase. Gum from Moringa oleifera was evaluated for its emulsifying properties. Castor oil emulsions 30 percent (o/w), containing 2 to 4% Moringa oleifera gum was prepared. Emulsions containing equivalent concentration of acacia were also prepared for comparison. All the emulsions prepared were stored at room temperature and studied for stability at various time intervals for 8 weeks. The prepared emulsions were evaluated for creaming rate, globule size and rate of coalescence. 23 factorial design was chosen to investigate the effects of centrifugation, pH, temperature changes and electrolytes on the creaming rate and globule size. The results of the investigations show that the gum of Moringa oleifera possesses better emulsifying properties as compared to gum acacia. Gum of Moringa oleifera could be used in pharmaceutical and non-pharmaceutical preparation.

  3. Development and evaluation of granule and emulsifiable concentrate formulations containing Derris elliptica extract for crop pest control.

    PubMed

    Wiwattanapatapee, Ruedeekorn; Sae-Yun, Attawadee; Petcharat, Jiraporn; Ovatlarnporn, Chitchamai; Itharat, Arunporn

    2009-12-09

    Derris elliptica Benth. extracts containing rotenone have long been used as natural insecticides, but time-consuming preparation processes and the short shelf life of the extract limit their use in pest control. In this study, stable water-dispersible granules and emulsifiable concentrate liquids containing Derris extract (equivalent to 5% w/w of rotenone) were developed with simple techniques. Accelerated degradation kinetics of rotenone in the Derris extract, and in both formulations, indicated that its degradation followed first-order kinetics. The predicted half-life (t(1/2)) and shelf life (t(90%)) at 30 degrees C of rotenone in Derris extract were 520 and 79 days, respectively. Derris granules and emulsifiable concentrate clearly prolong the stability of rotenone 8-fold (t(90%) = 633 days) and 1.4-fold (t(90%) = 110 days), respectively. The study of rotenone degradation after application onto plants indicated that both formulations would be effective for up to 3 days after spraying. Preliminary efficacy testing indicated that the Derris emulsifiable concentrate was clearly more effective than Derris water-dispersible granules in controlling Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae).

  4. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier.

    PubMed Central

    Cameron, D R; Cooper, D G; Neufeld, R J

    1988-01-01

    The mannoprotein which is a major component of the cell wall of Saccharomyces cerevisiae is an effective bioemulsifier. Mannoprotein emulsifier was extracted in a high yield from whole cells of fresh bakers' yeast by two methods, by autoclaving in neutral citrate buffer and by digestion with Zymolase (Miles Laboratories; Toronto, Ontario, Canada), a beta-1,3-glucanase. Heat-extracted emulsifier was purified by ultrafiltration and contained approximately 44% carbohydrate (mannose) and 17% protein. Treatment of the emulsifier with protease eliminated emulsification. Kerosene-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 5% sodium chloride or up to 50% ethanol in the aqueous phase. In the presence of a low concentration of various solutes, emulsions were stable to three cycles of freezing and thawing. An emulsifying agent was extracted from each species or strain of yeast tested, including 13 species of genera other than Saccharomyces. Spent yeast from the manufacture of beer and wine was demonstrated to be a possible source for the large-scale production of this bioemulsifier. PMID:3046488

  5. Enhance the anti-microorganism activity of cinnamon oil by xanthan gum as emulsifying agent

    NASA Astrophysics Data System (ADS)

    Lieu, Dong M.; Dang, Thuy T. K.; Nguyen, Huong T.

    2018-04-01

    The aim of this study was to evaluate the effect of emulsifying agents (tween 20, DMSO (Dimethyl Sulfoxide) and xanthan gum) to inhibit Escherichia coli; Staphylococcus aureus; Saccharomyces cerevisiae and Aspergillus niger by cinnamon oil (Cinnamomum Cassia). Cinnamon oil was added in the emulsifying agents independently: tween 20 (0.3% v/v). DMSO (0.3% v/v) and xanthan gum (0.3% w/v) at different concentrations and evaluated their anti-microorganism activity by agar disk diffusion, mycelial growth inhibition and growth inhibition in liquid phase. The result indicated that, cinnamon oil diluted in different emulsifying agents showed the difference of the anti-microorganism activity, in which DMSO showed the lowest result. Xanthan gum and tween 20 show good stable emulsion. The anti-microorganism effect of cinnamon oil in tween 20 and xanthan gum was not significant difference. However, cinnamon oil in xanthan gum showed anti-microorganism activity better than tween 20 at low concentration in agar disk diffusion. This suggests that, cinnamon oil could be encapsulated by xanthan gum to enhance the anti-microorganism activity.

  6. Adsorption at the biocompatible α-pinene-water interface and emulsifying properties of two eco-friendly surfactants.

    PubMed

    Trujillo-Cayado, Luis Alfonso; Ramírez, Pablo; Alfaro, María Carmen; Ruíz, Manuela; Muñoz, José

    2014-10-01

    In this contribution, we provide an accurate characterization at the α-pinene/water interface of two commercial polyoxytheylene glycerol ester surfactants which differ in the number of ethylene oxide (EO) groups, comprising a systematic analysis of interfacial pressure isotherms, dynamic curves, interfacial rheology and emulsifying properties. Polyoxyethylene glycerol esters derived from cocoa oil are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. α-Pinene is a renewable biosolvent completely insoluble in water, which could find numerous applications. Interfacial rheology and equilibrium interfacial pressure data fitted a rigorous reorientation model that assumes that the surfactant molecules, when adsorbed at the interface, can acquire two orientations. The surfactant with the highest number of EO groups (Levenol C201) turned out to be more surface active at the α-pinene/water interface. In addition, the surfactant with the lowest number of EO groups (Levenol H&B) is solubilized into the adjacent oil phase. Slightly concentrated α-pinene emulsions were obtained using both surfactants. Nevertheless, more stable α-pinene emulsions with smaller droplet sizes and lower polidispersity were obtained when Levenol C201 was used as emulsifier instead of Levenol H&B. The systematic characterization presented in this work provides important new findings on the interfacial and emulsifying properties of polyoxytheylene glycerol ester surfactants, which can be applied in the rational development of new biocompatible products. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    PubMed

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin.

    PubMed

    Xue, Jia; Michael Davidson, P; Zhong, Qixin

    2015-10-01

    Emulsions of essential oils are investigated as potential intervention strategies to improve food safety and are preferably prepared from generally-recognized-as-safe emulsifiers. Stable thyme oil nanoemulsions can be prepared using combinations of sodium caseinate (NaCas) and soy lecithin. The objective of the present research was to study the antimicrobial activity of these nanoemulsions and understand the impacts of emulsifier concentrations. 10 g/L thyme oil was emulsified using combinations of (A) 4% w/v NaCas and 0.5% w/v lecithin or (B) 2% w/v NaCas and 0.25% w/v lecithin by high shear homogenization. Combination A resulted in a transparent emulsion with a mean droplet diameter of 82.5 nm, while it was turbid for the Combination B with an average diameter of 125.5 nm. Nanoemulsified thyme oil exhibited quicker initial reductions of bacteria than free thyme oil in tryptic soy broth (TSB) and 2% reduced fat milk at 21 °C, due to the improved dispersibility of thyme oil. In TSB with 0.3 g/L thyme oil, it took less than 4 and 8 h for two nanoemulsions and free oil, respectively, to reduce Escherichia coli O157:H7 and Listeria monocytogenes to be below the detection limit. The emulsified thyme oil also demonstrated more significant reductions of bacteria initially (4 and 8 h) in 2% reduced fat milk than free thyme oil. Especially, with 4 g/L thyme oil, the nanoemulsion prepared with Combination A reduced L. monocytogenes to be below the detection limit after 72 h, while the free thyme oil treatment was only bacteriostatic and the turbid nanoemulsion treatment with Combination B resulted in about 1 log CFU/mL reduction. However, E. coli O157:H7 treated with 3 g/L emulsified thyme oil and Salmonella Enteritidis treated with 4 g/L emulsified thyme oil recovered to a higher extent in milk than free thyme oil treatments. The increased concentration of emulsifiers in Combination A apparently reduced the antimicrobials available to alter bacteria membrane permeability as tested by the crystal violet assay at low antimicrobial concentrations and short time (1 h). The findings suggest that nanoemulsions can be potentially used to incorporate thyme oil for use as antimicrobial preservatives in foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. UPTAKE AND EFFECTS OF DISPERSED OIL DROPLETS AND EMULSIFIED OIL BY ESTUARINE CRUSTACEANS IN THE GULF OF MEXICO

    EPA Science Inventory

    The results from this project will provide information on the extent of uptake of dispersed petroleum from the seawater and uptake of emulsified oil from the sediment by blue crabs and grass shrimp of different life history stages. The primary focus of the study will be eff...

  10. Comparative viscoelasticity studies: Corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces

    USDA-ARS?s Scientific Manuscript database

    A comparative study of both the bulk and air/liquid interfacial rheological responses was carried out by using four kinds of high molecular weight and highly branched polysaccharide emulsifiers, (a) corn fiber gum (CFG), (b) octenyl succinate anhydride-modified starch (OSA-s), (c) gum arabic (GA) an...

  11. Emulsifying and foaming properties of ultraviolet-irradiated egg white protein and sodium caseinate.

    PubMed

    Kuan, Yau-Hoong; Bhat, Rajeev; Karim, Alias A

    2011-04-27

    The physicochemical and functional properties of ultraviolet (UV)-treated egg white protein (EW) and sodium caseinate (SC) were investigated. UV irradiation of the proteins was carried out for 30, 60, 90, and 120 min. However, the SC samples were subjected to extended UV irradiation for 4 and 6 h as no difference was found on the initial UV exposure time. Formol titration, SDS-PAGE, and FTIR analyses indicated that UV irradiation could induce cross-linking on proteins and led to improved emulsifying and foaming properties (P < 0.05). These results indicated that the UV-irradiated EW and SC could be used as novel emulsifier and foaming agents in broad food systems for stabilizing and foaming purposes.

  12. Improving halva quality with dietary fibres of sesame seed coats and date pulp, enriched with emulsifier.

    PubMed

    Elleuch, Mohamed; Bedigian, Dorothea; Maazoun, Bouthaina; Besbes, Souhail; Blecker, Christophe; Attia, Hamadi

    2014-02-15

    Supplementation of halva with waste products of manufacturing, for example defatted sesame seed coats (testae) and date fibre concentrate, can improve its nutritional and organoleptic qualities. These constituents provide high fibre content and technological potential for retaining water and fat. Standard halva supplemented with date fibre concentrate, defatted sesame testae and emulsifier was evaluated for oil separation, texture and colour changes, sensory qualities and acceptability to a taste panel. Addition of both fibres with an emulsifier, improved emulsion stability and increased the hardness of halva significantly. The functional properties of sesame testae and date fibres promote nutrition and health, supplying polyphenol antioxidants and laxative benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Optimization of methylene blue removal by stable emulsified liquid membrane using Plackett–Burman and Box–Behnken designs of experiments

    PubMed Central

    Djenouhat, Meriem; Bendebane, Farida; Bahloul, Lynda; Samar, Mohamed E. H.

    2018-01-01

    The stability of an emulsified liquid membrane composed of Span80 as a surfactant, D2EHPA as an extractant and sulfuric acid as an internal phase was first studied according to different diluents and many operating parameters using the Plackett–Burman design of experiments. Then the removal of methylene blue from an aqueous solution has been carried out using this emulsified liquid membrane at its stability conditions. The effects of operating parameters were analysed from the Box–Behnken design of experiments. The optimization of the extraction has been realized applying the response surface methodology and the results showed that the dye extraction yielding 98.72% was achieved at optimized conditions. PMID:29515841

  14. Effect of binary organic solvents together with emulsifier on particle size and in vitro behavior of paclitaxel-encapsulated polymeric lipid nanoparticles.

    PubMed

    Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin

    2017-12-21

    Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates.

    PubMed

    Chen, Lin; Chen, Jianshe; Ren, Jiaoyan; Zhao, Mouming

    2011-03-23

    Soy protein isolate (SPI) was modified by ultrasound pretreatment (200 W, 400 W, 600 W) and controlled papain hydrolysis, and the emulsifying properties of SPIH (SPI hydrolysates) and USPIH (ultrasound pretreated SPIH) were investigated. Analysis of mean droplet sizes and creaming indices of emulsions formed by SPIH and USPIH showed that some USPIH had markedly improved emulsifying capability and emulsion stabilization against creaming during quiescent storage. Compared with control SPI and SPIH-0.58% degree of hydrolysis (DH), USPIH-400W-1.25% (USPIH pretreated under 400W sonication and hydrolyzed to 1.25% DH) was capable of forming a stable fine emulsion (d43=1.79 μm) at a lower concentration (3.0% w/v). A variety of physicochemical and interfacial properties of USPIH-400W products have been investigated in relation to DH and emulsifying properties. SDS-PAGE showed that ultrasound pretreatment could significantly improve the accessibility of some subunits (α-7S and A-11S) in soy proteins to papain hydrolysis, resulting in changes in DH, protein solubility (PS), surface hydrophobicity (H0), and secondary structure for USPIH-400W. Compared with control SPI and SPIH-0.58%, USPIH-400W-1.25% had a higher protein adsorption fraction (Fads) and a lower saturation surface load (Γsat), which is mainly due to its higher PS and random coil content, and may explain its markedly improved emulsifying capability. This study demonstrated that combined ultrasound pretreatment and controlled enzymatic hydrolysis could be an effective method for the functionality modification of globular proteins.

  16. Food Emulsifier Glycerin Monostearate Increases Internal Exposure Levels of Six Priority Controlled Phthalate Esters and Exacerbates Their Male Reproductive Toxicities in Rats.

    PubMed

    Gao, Hai-Tao; Xu, Run; Cao, Wei-Xin; Zhou, Xu; Yan, Ye-Hui-Mei; Lu, Lingeng; Xu, Qian; Shen, Yang

    2016-01-01

    Human beings are inevitably exposed to ubiquitous phthalate esters (PAEs). Processed, packaged foods are popular nowadays, in which emulsifiers are frequently added as food additives. It is unclear how emulsifiers affect the bioavailability of ingested PAEs contaminants and their toxicities. The purposes of our study were to explore whether food emulsifier Glycerin Monostearate (GMS) could increase the internal exposure levels of six priority controlled PAEs and affect their reproductive toxicities when male rats are exposed to PAEs mixture (MIXPs). The male rats were exposed to MIXPs by gavage for thirty days in combination with or without given GMS. Phthalate monoesters (MPAEs), primary metabolites of PAEs, in rat urine were used as biomarkers to predict the internal exposure levels of the six PAEs, and their concentrations were determined using UPLC-MS. The reproductive toxicity was evaluated using serum testosterone levels test and histopathology of testes. Results showed that compared to PAEs exposure alone, the internal exposure levels of PAEs increased by 30%-49% in the presence of GMS. PAEs exposure led to the reduction of testosterone level by 23.4%-42.1% in the presence and absence of GMS, respectively, compared to the baseline. Testosterone levels in MIXPs+GMS and DEHP+GMS group were decreased by 9.1% and 13.6%, respectively, compared with MIXPs and DEHP group. Histopathology showed that injuries of testis (deciduous spermatids) were observed, and GMS exacerbated the injuries. The results indicated food emulsifiers chronically taken up might increase safety risks of food PAEs contaminants.

  17. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  18. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  19. A Two and Half-Year-Performance Evaluation of a Field Test on Treatment of Source Zone Tetrachloroethene and Its Chlorinated Daughter Products Using Emulsified Zaro Valent Iron Nanoparticles

    EPA Science Inventory

    A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) ...

  20. Ultrasound Assisted Synthesis of Hydroxylated Soybean Lecithin from Crude Soybean Lecithin as an Emulsifier.

    PubMed

    Chiplunkar, Pranali P; Pratap, Amit P

    2017-10-01

    Soybean lecithin is a by-product obtained during degumming step of crude soybean oil refining. Crude soybean lecithin (CSL) contains major amount of phospholipids (PLs) along with minor amount of acylglycerols, bioactive components, etc. Due to presence of PLs, CSL can be used as an emulsifier. Crude soybean lecithin (CSL) was utilized to synthesize hydroxylated soybean lecithin (HSL) by hydroxylation using hydrogen peroxide and catalytic amount of lactic acid to enhance the hydrophilicity and emulsifying properties of CSL. To reduce the reaction time and to increase rate of reaction, HSL was synthesized under ultrasound irradiation. The effect of different operating parameters such as lactic acid, hydrogen peroxide, temperature, ultrasonic power and duty cycle in synthesis of HSL were studied and optimized. The surface tension (SFT), interfacial tension (IFT) and the critical micelle concentration (CMC) of the HSL (26.11 mN/m, 2.67 mN/m, 112 mg/L) were compared to CSL (37.53 mN/m, 6.22 mN/m, 291 mg/L) respectively. The HSL has better emulsion stability and low foaming characteristics as compared to CSL. Therefore, the product as an effective emulsifier can be used in food, pharmacy, lubricant, cosmetics, etc.

  1. Characterization of industrial wastes as raw materials for Emulsified Modified Bitumen (EMB) formulation

    NASA Astrophysics Data System (ADS)

    Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd

    2018-04-01

    This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.

  2. Foaming and emulsifying properties of porcine red cell protein concentrate.

    PubMed

    Salvador, P; Saguer, E; Parés, D; Carretero, C; Toldrà, M

    2010-08-01

    This work focuses on studying the effects of pH (7.0 and 4.5) and protein concentration on the foaming and emulsifying properties of fresh (F) and spray-dried (SD) porcine red cell protein (RCP) concentrates in order to evaluate the proper use of this blood protein as a functional food ingredient. Also, protein solubility is measured through the pH range from 3.0 to 8.0. In each case, all concentrates show a high solubility, although this is significantly affected by pH. Spray drying slightly reduces the solubility at mild acid and neutral conditions. The foaming capacity is found to be dependent on pH as well as on the drying treatment. SD-RCP concentrates show better foaming capacity than F-RCP. The minimum protein concentration required to attain the highest foaming capacity is found under acid pH for the spray-dried concentrates. Although F-RCP shows low foam stability at acid and neutral pH, spray drying and protein content enhance the stability of foams. Emulsifying properties show dependence on pH as well as on protein content. Furthermore, spray drying affects the emulsifying properties but in different ways, depending on pH and protein concentration.

  3. Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system.

    PubMed

    Tian, Huaixiang; Li, Danfeng; Xu, Ting; Hu, Jing; Rong, Yuzhi; Zhao, Bo

    2017-07-01

    Citral is one of the most important flavor compounds in fresh juice and lemon oil. Unfortunately, citral is chemically unstable and degrades over time in aqueous solutions. Here, citral nanoemulsions including a mixture of gelatin and Tween 20 as emulsifiers were produced in an effort to maintain the stability of citral in an acidic system. The mean droplet size and polydispersity index of the citral nanoemulsion were 467.83 nm and 0.259 respectively when the mass ratio of gelatin/Tween 20 was 3:1 and the total emulsifier concentration of the emulsion system was 10 g kg -1 . The citral nanoemulsion remained stable during storage for 14 days at 30 °C. Therefore this nanoemulsion system effectively protected citral from degradation and decreased the formation of off-flavor compounds (e.g. p-cymene, p-cresol and p-methylacetophenone) relative to a single emulsifier. The mixture of gelatin and Tween 20 enhanced the stability of citral under acidic conditions and could be used as an effective emulsifier to protect citral from degradation under acidic environments in the food industry. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Identification of outer membrane proteins with emulsifying activity by prediction of beta-barrel regions.

    PubMed

    Walzer, Gil; Rosenberg, Eugene; Ron, Eliora Z

    2009-01-01

    Microbial bioemulsifiers are secreted by many bacteria and are important for bacterial interactions with hydrophobic substrates or nutrients and for a variety of biotechnological applications. We have recently shown that the OmpA protein in several members of the Acinetobacter family has emulsifying properties. These properties of OmpA depend on the amino acid composition of four putative extra-membrane loops, which in various strains of Acinetobacter, but not in E. coli, are highly hydrophobic. As many Acinetobacter strains can utilize hydrophobic carbon sources, such as oil, the emulsifying activity of their OmpA may be important for the utilization and uptake of hydrocarbons. We assumed that if outer membrane proteins with emulsifying activity are physiologically important, they may exist in additional oil degrading bacteria. In order to identify such proteins, it was necessary to obtain bioinformatics-based predictions for hydrophobic extra-membrane loops. Here we describe a method for using protein sequence data for predicting the hydrophobic properties of the extra-membrane loops of outer membrane proteins. The feasibility of this method is demonstrated by its use to identify a new microbial bioemulsifier - OprG - an outer membrane protein of the oil degrading Pseudomonas putida KT2440.

  5. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  6. Effects of rice bran on sensory and physico-chemical properties of emulsified pork meatballs.

    PubMed

    Huang, S C; Shiau, C Y; Liu, T E; Chu, C L; Hwang, D F

    2005-08-01

    Four kinds of bran, which are milled from important rice cultivators in Taiwan, have high contents of dietary fiber, fat and protein. The use of rice bran in Kung-wan, an emulsified pork meatball, was investigated. It was found that protein and fat contents, and white index of meatballs decreased as the amount of bran increased. A texture profile analysis (TPA) also indicated the hardness, gumminess and chewiness of the Kung-wan decreased. The sensory scores of taste, texture and overall acceptability of meatballs with less than 10% added bran showed no significant difference from those for meatballs without bran. However, the added amount of 15% enriched meatballs resulted in inferior sensory scores. The bran's particle size profoundly affected the sensory and physico-chemical properties of the meat products. Meatballs enriched with smaller bran particles possessed higher TPA indices and sensory scores than those added with larger ones. No significant differences in proximate composition, cooking yield, color and sensory quality were found among emulsified meatballs enriched with four different kinds of bran. Conclusively, the suitable amount of rice bran that should be added to emulsified pork meatballs was less than 10% and a smaller particle size would result in better quality.

  7. Acacia gum as modifier of thermal stability, solubility and emulsifying properties of α-lactalbumin.

    PubMed

    de Oliveira, Fabíola Cristina; Dos Reis Coimbra, Jane Sélia; de Oliveira, Eduardo Basílio; Rodrigues, Marina Quadrio Raposo Branco; Sabioni, Rachel Campos; de Souza, Bartolomeu Warlene Silva; Santos, Igor José Boggione

    2015-03-30

    Protein-polysaccharide conjugates often display improved techno-functional properties when compared to their individual involved biomolecules. α-Lactalbumin:acacia gum (α-la:AG) conjugates were prepared via Maillard reaction by the dry-heating method. Conjugate formation was confirmed using results of absorbance, o-phthalaldehyde test, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography. Techno-functional properties (emulsifying characteristics, solubility, and thermal stability) were evaluated for α-la, α-la/AG mixtures and α-la:AG conjugates. Conjugate thermal stability was improved compared to pure α-la treated at the same conditions of conjugate formation. Response surface methodology was used to establish models to predict solubility and emulsifying activity as functions of the salt concentration, pH and reaction time. α-la:AG conjugate solubility is affected in a complex manner by the three factors analyzed. Emulsifying activity index (EAI) of α-la is significantly affected by pH, while the α-la:AG EAI is affected by the three analyzed factors. Both solubility and EAI are maximized with pH 8.0, NaCl concentration of 0.3 mol L(-1) and two days of Maillard reaction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Removal of Emulsified Oil from Water by Fruiting Bodies of Macro-Fungus (Auricularia polytricha)

    PubMed Central

    Yang, Xunan; Guo, Mengting; Wu, Yinghai; Wu, Qunhe; Zhang, Renduo

    2014-01-01

    The aim of this study was to investigate the feasibility of utilizing the fruiting bodies of a jelly macro-fungus Auricularia polytricha as adsorbents to remove emulsified oil from water. The effects of several factors, including temperature, initial pH, agitation speed, and adsorbent dosage, were taken into account. Results showed that the optimized conditions for adsorption of A. polytricha were a temperature of 35°C, pH of 7.5, and agitation speed of 100 rpm. The adsorption kinetics were characterized by the pseudo-first order model, which showed the adsorption to be a fast physical process. The Langmuir-Freundlich isotherm described the adsorption very well and predicted the maximum adsorption capacity of 398 mg g−1, under optimized conditions. As illustrated by scanning electron micrographs, the oil particles were adsorbed onto the hairs covering the bottom surface and could be desorbed by normal temperature volatilization. The material could be used as an emulsified oil adsorbent at least three times, retaining more than 95% of the maximum adsorption capacity. The results demonstrated that the fruiting bodies of A. polytricha can be a useful adsorbent to remove emulsified oil from water. PMID:24743498

  9. Grape seed and apple tannins: emulsifying and antioxidant properties.

    PubMed

    Figueroa-Espinoza, Maria Cruz; Zafimahova, Andrea; Alvarado, Pedro G Maldonado; Dubreucq, Eric; Poncet-Legrand, Céline

    2015-07-01

    Tannins are natural antioxidants found in plant-based foods and beverages, whose amphiphilic nature could be useful to both stabilize emulsions and protect unsaturated lipids from oxidation. In this paper, the use of tannins as antioxidant emulsifiers was studied. The main parameters influencing the stability of emulsions (i.e. tannins structure and concentration, aqueous phase pH, and ionic strength) were identified and optimized. Oil in water emulsions stabilized with tannins were compared with those stabilized with two commercial emulsifying agents, poly(vinyl alcohol) (PVA) and polyoxyethylene hydrogenated castor oil. In optimized conditions, the condensed tannins allowed to obtain a stability equivalent to that of PVA. Tannins presented good antioxidant activity in oil in water emulsion, as measured by the conjugated autoxidizable triene (CAT) assay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-09-01

    Significant laboratory and field research has demonstrated that zero-valent metals will reductively dehalogenate dissolved chlorinated solvents such as...Eekert, Servé W. M. Kengen, Gosse Schraa, and Alfons J. M. Stams. 1999. Anaerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes...and T. Holdsworth. 2005. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environmental Science Technology, vol 39

  11. Mitigation of NOx and smoke emissions in a diesel engine using novel emulsified lemon peel oil biofuel.

    PubMed

    Bragadeshwaran, Ashok; Kasianantham, Nanthagopal; Balusamy, Saravanan; Muniappan, SenthilKumar; Reddy, Dandu Madhu Sudan; Subhash, Randive Vishal; Pravin, Nashte Adarsh; Subbarao, Rayapati

    2018-06-25

    Lemon peel oil (LPO) is considered to be a viable alternative fuel for diesel engine applications due to its wider availability, renewable nature, easy extraction process, almost equivalent calorific value as neat diesel, and low viscosity. The present work aims to investigate the effect of novel emulsified LPO in a diesel engine in order to reduce the NOx emission without compromising the engine performance. A new ionic surfactant is introduced in the present study, namely methyl-dihydroxy propyl imidazolium chloride due to its higher hydrophilic-lipophilic balance value which helps to prepare stable water in oil emulsion. Also, Span 80 has been selected as another suitable surfactant for water in oil emulsion. Four emulsified fuel samples have been prepared using LPO, water, and different concentrations of surfactants. All the fuel samples are tested for their stability through gravitational technique for 7 days. Among the emulsified samples, 92% LPO + 5% water + 2% Span 80 + 1% methyl-dihydroxy propyl imidazolium chloride by volume (LPOE2) and 93.5% LPO + 5% water + 1.5% surfactant Span 80 by volume (LPOE4) have showed better stability when compared to other emulsion fuel samples. It is also revealed that the stability of LPO emulsion is improved by the addition of two emulsions. The experimental results showed that the brake thermal efficiency of LPO emulsion is reduced to 29.87 from 34.58% of pure LPO at full load condition. Oxides of nitrogen emission and smoke emission are reduced by 21-32 and 6-15% for the LPO emulsion samples compared to pure LPO. Moreover, the diesel engine operation with emulsified form of LPO increases the HC emission about 0.1 g/kWh for LPOE4 and 0.15 g/kWh for LPOE2 fuels from 0.053 g/kW for pure LPO at maximum power output condition. The reformulation of LPO into emulsified form increases the CO emission by 25-53% compared to pure LPO. Moreover, the reformulation of LPO into emulsions has resulted in lower cylinder pressure and heat release rate compared to pure LPO and diesel fuels.

  12. Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification.

    PubMed

    Gehrmann, Sandra; Bunjes, Heike

    2018-05-01

    Premix membrane emulsification is a possibility to produce colloidal emulsions as carrier systems for poorly water soluble drugs. During the extrusion of a coarse pre-emulsion through a porous membrane, the emulsion droplets are disrupted into smaller droplets. The influence of the membrane material on the emulsification success was investigated in dependence on the emulsifier. Premixed medium chain triglyceride (MCT) emulsions stabilized with five different emulsifiers were extruded through seven different hydrophilic polymeric membrane materials with pore sizes of 200nm. The resulting emulsions differed strongly in particle size and particle size distribution with a range of median particle sizes between 0.08μm and 11μm. The particle size of the emulsions did not depend mainly on the structure or thickness of the membrane but on the combination of emulsifier and membrane material. Contact angle measurements indicated that the wetting of the membrane with the continuous phase of the emulsion was decisive for achieving emulsions with colloidal particle sizes. The type of dispersed phase was of minor importance as basically the same results were obtained with peanut oil instead of MCT. To prove the assumption that only sufficiently hydrophilic membrane materials led to emulsions with colloidal particle sizes, two membrane materials were hydrophilized by plasma treatment. After hydrophilization, the emulsifying process led to emulsions with smaller particle sizes. The use of an alumina membrane (Anodisc®) improved the process even more. With this type of membrane, emulsions with a median particle size below 250nm and a narrow particle size distribution could be obtained with all investigated emulsifiers. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganea, Gabriela M.; Fakayode, Sayo O.; Losso, Jack N.; van Nostrum, Cornelus F.; Sabliov, Cristina M.; Warner, Isiah M.

    2010-07-01

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml - 1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 ± 0.002 mg ml - 1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 ± 5.6% after 96 h.

  14. Characterization of E 471 food emulsifiers by high-performance thin-layer chromatography-fluorescence detection.

    PubMed

    Oellig, Claudia; Brändle, Klara; Schwack, Wolfgang

    2018-07-13

    Mono- and diacylglycerol (MAG and DAG) emulsifiers, also known as food additive E 471, are widely used to adjust techno-functional properties in various foods. Besides MAGs and DAGs, E 471 emulsifiers additionally comprise different amounts of triacylglycerols (TAGs) and free fatty acids (FFAs). MAGs, DAGs, TAGs and FFAs are generally determined by high-performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to mass selective detection, analyzing the individual representatives of the lipid classes. In this work we present a rapid and sensitive method for the determination of MAGs, DAGs, TAGs and FFAs in E 471 emulsifiers by high-performance thin-layer chromatography with fluorescence detection (HPTLC-FLD), including a response factor system for quantitation. Samples were simply dissolved and diluted with t-butyl methyl ether before a two-fold development was performed on primuline pre-impregnated LiChrospher silica gel plates with diethyl ether and n-pentane/n-hexane/diethyl ether (52:20:28, v/v/v) as the mobile phases to 18 and 75 mm, respectively. For quantitation, the plate was scanned in the fluorescence mode at UV 366/>400 nm, when the cumulative signal for each lipid class was used. Calibration was done with 1,2-distearin and amounts of lipid classes were calculated with response factors and expressed as monostearin, distearin, tristearin and stearic acid. Limits of detection and quantitation were 1 and 4 ng/zone, respectively, for 1,2-distearin. Thus, the HPTLC-FLD approach represents a simple, rapid and convenient screening alternative to HPLC and GC analysis of the individual compounds. Visual detection additionally enables an easy characterization and the direct comparison of emulsifiers through the lipid class pattern, when utilized as a fingerprint. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Production of a Health-Beneficial Food Emulsifier by Enzymatic Partial Hydrolysis of Phospholipids Obtained from the Head of Autumn Chum Salmon.

    PubMed

    Shah, A K M Azad; Nagao, Toshihiro; Kurihara, Hideyuki; Takahashi, Koretaro

    2017-02-01

    Phospholipids and their partial hydrolysates, namely lysophospholipids (LPLs), have been widely used in food, pharmaceutical, and cosmetic products as highly efficient emulsifiers. This study was conducted to produce docosahexaenoic acid (DHA)-esterified LPLs by enzymatic modification of phospholipids obtained from the head of autumn chum salmon (Oncorhynchus keta). The emulsifying properties of the obtained LPLs were also evaluated. Two different types of substrates of salmon head phospholipids were prepared via silica gel and cold acetone precipitation. Enzymatic partial hydrolysis was carried out using immobilized phospholipase A 1 (PLA 1 ) and Lipozyme RM IM. Results showed that the increase in DHA in the LPLs was much higher in the silica-separated phospholipids than in the acetone-precipitated phospholipids. When silica-separated phospholipids were used as the substrate, the DHA content of the LPLs increased from 23.1% to 40.6% and 42.6% after 8 h of partial hydrolysis with Lipozyme RM IM and immobilized PLA 1 , respectively. The yield of the LPLs was comparatively higher in the Lipozyme RM IM than in the immobilized PLA 1 hydrolysis reaction. The critical micelle concentration values of the LPLs and purified lysophosphatidylcholine (LPC) were 100 mg/L and 5 mg/L, respectively. The surface tension values of the LPLs and LPC were reduced to 30.0 mN/m and 30.5 mN/m, respectively. The hydrophilic-lipophilic balance of the LPLs and LPC were 6.0 and 9.4, respectively. Based on the emulsifying properties observed, we conclude that LPLs derived from the phospholipids of salmon head lipids could be used as a health-beneficial emulsifier in the food industry.

  16. Conching Chocolate

    NASA Astrophysics Data System (ADS)

    Hunter, Gary L.; Chaikin, Paul; Blanco, Elena; Poon, Wilson

    2014-03-01

    ``Conching'' is an intermediate step in the processing of chocolate where hydrophilic solid particles, such as sugar and milk proteins, are aggressively mixed into a fatty, fluid phase containing emulsifier, e.g. molten cocoa butter with lecithin. During conching, the system evolves from a fine powder to a coarser granulated material and ultimately into a thick cohesive paste. Our goal is to better understand the evolution of chocolate during conching and the transition from an effectively dry to a wet or immersed granular material. In particular, we focus on how mixing times change in response to variations in solid particle volume fractions and emulsifier concentration. As a function of volume fraction, mixing times are well-described by a conventional form that diverges at a finite volume fraction. Furthermore, mixing times can be collapsed onto a universal curve as a function of mixing speed and emulsifier concentration.

  17. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.

    PubMed

    Pan, Yuanjie; Tikekar, Rohan V; Nitin, N

    2013-06-25

    Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (p<0.05) for emulsions stabilized using Tween 20 and oxidized lecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (p<0.05) in lecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Zhang, Shuang; Qi, Dongming; Zhang, Dong; Vance, George F.; Zhao, Hongting

    2017-02-01

    Emulsified oil wastewaters, arisen from oil industry and oil spill accidents, cause severe environmental and ecological problems. In this study, a series of pH-sensitive magnetic nanomaterials (MNPs) were synthesized and characterized for their evaluation in separation of emulsified oil from aqueous environments. A coprecipitation method was used to produce Fe3O4 magnetic nanoparticles that were coated in a 2-step process with first silica to form a surface for anchoring an (3-aminopropyl)triethoxysilane (APTES) molecular layer. Detailed studies were conducted on effects of MNPs dosage, APTES anchoring density (DA) and pH on oil-water separation performance of the synthetic MNPs. Results showed that, under both acidic and neutral conditions, MNPs with high DA exhibited enhanced oil-water separation performance, while under alkaline condition, the oil-water separation process was minimal. Alkaline conditions allowed the MNPs to be recycled up to 9 cycles without showing any significant decrease in oil-water separation efficiency. An examination of the oil-water separation mechanism found that electrostatic interaction and interfacial activity both played important roles in oil-water separation. In conclusion, pH-sensitive MNPs can be easily synthesized and recycled, providing a promising, cost-effective and environmentally-friendly process for the efficient treatment of emulsified oil wastewater.

  19. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.

    2011-01-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  20. Synthesis and Surface Activity of Cationic Amino Acid-Based Surfactants in Aqueous Solution.

    PubMed

    Greber, Katarzyna E

    2017-01-01

    I studied the possibility of using amino acid-based surfactants as emulsifiers at the same time as preservatives. Fourteen lipopeptides were synthesized employing a solid phase peptide synthesis procedure. All compounds were designed to be positively charged from +1 to +4 and acylated with fatty acid chain-palmitic and miristic. The surface activity of the obtained lipopeptides was tested using a semi-automatic tensiometer to calculate parameters describing the behavior of lipopeptides in the air/water interface. Such parameters as CMC, surface tension at the CMC point ( σ CMC ), effectiveness ( π CMC ), and efficiency (pC20) were measured. Emulsifying properties of all lipopeptides were also examined. The studies reveal that the surface active properties of synthesized compounds strongly depend on the length of alkyl chains as well as on the composition of amino acid polar heads. The critical micelle concentration decreases with increasing alkyl chain length of lipopeptides with the same polar head. The effectiveness and efficiency decrease when the number of amino acids in the polar head increases. All lipopeptides established a very weak emulsification power and created unstable water/Miglyol 812 and water/paraffin oil emulsions. Results suggest that lipopeptides cannot be used as emulsifiers; nonetheless, it is possible to use them as auxiliary surfactants with disinfectant properties in combination with more potent emulsifiers.

  1. Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis.

    PubMed

    Zarai, Zied; Balti, Rafik; Sila, Assaâd; Ben Ali, Yassine; Gargouri, Youssef

    2016-01-01

    Emulsions are widely used in food and pharmaceutical applications for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to fulfill the increasing demand for clean label excipients, natural polymers could be used to replace the potentially irritative synthetic surfactants used in emulsion formulation. In the present study, we have studied the properties of oil-in-water emulsions prepared with land snail gelatin (LSG) as the sole emulsifying agent, extracted and described for the first time. LSG was evaluated in terms of proximate composition, oil and water holding capacity, emulsifying and foaming properties, color and amino acid composition. Emulsions of trioctanoylglycerol (TC8) and olive oil were made at different gelatin/oil ratios and changes in droplet-size distribution were determined. The superior emulsifying properties of LSG, the susceptibility of gelatin protein emulsions increasing flocculation on storage, and the coalescence of gelatin emulsions following centrifugation were demonstrated. Furthermore, the effect of LSG on the activity of turkey pancreatic lipase (TPL) was evaluated through the pH-stat methodology with TC8 and olive oil emulsions. The LSG affected the TPL activity in a concentration-dependent way. Our results showed that LSG, comparably to gum arabic, increases the pancreatic lipase activity and improves its stability at the oil-water interface.

  2. Anti-Fouling Double-Skinned Forward Osmosis Membrane with Zwitterionic Brush for Oily Wastewater Treatment.

    PubMed

    Ong, Chi Siang; Al-Anzi, Bader; Lau, Woei Jye; Goh, Pei Sean; Lai, Gwo Sung; Ismail, Ahmad Fauzi; Ong, Yue Seong

    2017-07-31

    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m 2 .h and reverse salt transport of 1.6 ± 0.2 g/m 2 .h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.

  3. [Optimization of formulations for dietetic pastry products].

    PubMed

    Villarroel, M; Uquiche, E; Brito, G; Cancino, M

    2000-03-01

    Optimized formulations of dietetic pastry products such as cake and sponge cake premixes were formulated using the surface response methodology. % Emulsifier agent and baking time were the selected independent variables for cake, as well as % emulsifier agent % chlorinated flour the variables selected for sponge cake. Three different level of each variable summing up thirteen experimental formulae of each product were assessed to optimize the variables that could have some influence in the sensory characteristics of these dietetic products. The total sensory quality was determined for both dietetic products using the composite scoring test and a panel of 18 trained judges. Looking at the contour graphic and considering economic aspects the best combination of variables for cake formulation was 2% emulsifier agent and 48 minutes for baking time, With respect to sponge cake, the best combination was 6% emulsifier agent and 48% chlorinated flour. Shelf life studies showed that both dietetic formulations remained stable during storage conditions of 75 days at 30 degrees C. During this period, significant differences in sensory characteristics were not found (p < 0.05). Data of peroxide values were kept under the critical value reported for detection of organoleptic rancidity. Reported values of hedonic test showed that these dietetics pastry products had good acceptability, and open up marketing opportunities for new products with potential health benefits to consumers.

  4. Lipid composition and emulsifying properties of canola lecithin from enzymatic degumming.

    PubMed

    Xie, Meizhen; Dunford, Nurhan Turgut

    2017-03-01

    This study investigated the polar lipid composition and emulsifying properties of canola lecithin from enzymatic degumming (CLED). Phospholipase A 1 was used for enzymatic degumming of crude canola oil to collect lecithin sample. Canola lecithin from water degumming (CLWD) was also collected and served as the control. The results showed that the contents of phosphatidylethanolamine (PE) (2.99%) and phosphatidylcholine (PC) (6.59%) in CLED were significantly lower than that in CLWD (PE 15.55% and PC 21.93%); while the content of lysophosphatidylcholine (LPC) (19.45%) in CLED was significantly higher than that in CLWD (3.27%). Unsaturated fatty acids accounted for a higher percentage of the total fatty acids in CLED than in CLWD. CLED promoted more stable o/w emulsions than CLWD. This study provides a better understanding of the chemical nature of CLED, and important information for utilization of CLED as o/w emulsifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impact of Lipid Components and Emulsifiers on Plant Sterols Bioaccessibility from Milk-Based Fruit Beverages.

    PubMed

    Alvarez-Sala, Andrea; Garcia-Llatas, Guadalupe; Cilla, Antonio; Barberá, Reyes; Sánchez-Siles, Luis Manuel; Lagarda, María Jesús

    2016-07-20

    Sterol bioaccessibility (BA) of three plant sterol (PS)-enriched milk-based fruit beverages (MFb) with different fat contents (1.1-2.4%), lipid sources (animal or vegetable), and without or with emulsifiers (whey proteins enriched with milk fat globule membrane (MFGM) or soy lecithin) was evaluated after simulated gastrointestinal digestion. The BA of total PS followed the order 31.4% (MFbM containing milk fat and whey proteins enriched with MFGM) = 28.2% (MFbO containing extra virgin olive oil and soy lecithin) > 8.7% (MFb without fat addition). Total and individual PS content in the bioaccessible fractions followed the order MFbM > MFbO > MFb. Consequently, formulation with MFGM is proposed in beverages of this kind to ensure optimum bioavailability of PS. Our results suggest that the BA of PS is influenced by the type and quantity of fat and the emulsifier type involved.

  6. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes.

    PubMed

    Jiang, Jiang; Chen, Jie; Xiong, Youling L

    2009-08-26

    Structural unfolding of soy protein isolate (SPI) as induced by holding (0, 0.5, 1, 2, and 4 h) in acidic (pH 1.5-3.5) and alkaline (pH 10.0-12.0) pH solutions, followed by refolding (1 h) at pH 7.0, was analyzed. Changes in emulsifying properties of treated SPI were then examined. The pH-shifting treatments resulted in a substantial increase in protein surface hydrophobicity, intrinsic tryptophan fluorescence intensity, and disulfide-mediated aggregation, along with the exposure of tyrosine. After the pH-shifting processes, soy protein adopted a molten globule-like conformation that largely maintained the original secondary structure and overall compactness but lost some tertiary structure. These structural modifications, consequently, led to markedly improved emulsifying activity of SPI as well as the emulsion stability.

  7. Destabilization and Treatment of Emulsified Oils in Wastewaters by Electrocoagulation.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2016-11-01

      In this study, the optimum operating conditions for the treatment of emulsified oils by electrocoagulation were determined depending on droplet stability analysis. Zeta potential measurements were used as the indication of oil droplet charges. In addition, the effects of pH and ionic conductivity on the droplet sizes and surface charges were investigated. The studied emulsified oil droplet sizes were more sensitive to changes in pH rather than salt concentration. The droplets became larger and unstable in alkaline conditions. As the initial pH of wastewaters increased, the oil removal efficiency increased during the electrocoagulation experiments as well. The use of iron or aluminum electrodes resulted in higher removal efficiencies in comparison to stainless steel electrodes. In addition, the energy consumption for aluminum electrodes was much lower than iron electrodes. To obtain 98% oil removal efficiency, distance between the electrodes was recommended to be less than or equal to 1 cm.

  8. Control of chironamics in milkfish (Chanos chanos) ponds with Abate (Temephos) insecticide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, S.C.

    Larval chironomids (Chironomus longilobus (Kieffer) are serious competitors with milkfish Chanos chanos (Forskal) for benthic algae in commercial milkfish ponds in Taiwan. Chironomid larvae were effectively killed with temephos (Abate, 0, 0, 0', 0'-tetramethyl 0, 0'-thiodi-p-phenylene phosphorothioate) 50% emulsifiable concentrate when it was diluted 1:2,000 with seawater and applied to milkfish ponds to establish a concentration of 0.050 mg/liter of the active ingredient. This treatment did not harm milkfish and benthic algae. Residues found in the edible portions of milkfish after seven applications of Abate 50% emulsifiable concentrate ranged from 0.02 to 0.08 mg/kg, well below the 1.0 mg/liter approvedmore » by the World Health Organization for presence in human drinking water. The acute toxicity of Abate 50% emulsifiable concentrate to 13 other species of aquatic animals was determined in the laboratory.« less

  9. A minimal length rigid helical peptide motif allows rational design of modular surfactants

    NASA Astrophysics Data System (ADS)

    Mondal, Sudipta; Varenik, Maxim; Bloch, Daniel Nir; Atsmon-Raz, Yoav; Jacoby, Guy; Adler-Abramovich, Lihi; Shimon, Linda J. W.; Beck, Roy; Miller, Yifat; Regev, Oren; Gazit, Ehud

    2017-01-01

    Extensive work has been invested in the design of bio-inspired peptide emulsifiers. Yet, none of the formulated surfactants were based on the utilization of the robust conformation and self-assembly tendencies presented by the hydrophobins, which exhibited highest surface activity among all known proteins. Here we show that a minimalist design scheme could be employed to fabricate rigid helical peptides to mimic the rigid conformation and the helical amphipathic organization. These designer building blocks, containing natural non-coded α-aminoisobutyric acid (Aib), form superhelical assemblies as confirmed by crystallography and microscopy. The peptide sequence is amenable to structural modularity and provides the highest stable emulsions reported so far for peptide and protein emulsifiers. Moreover, we establish the ability of short peptides to perform the dual functions of emulsifiers and thickeners, a feature that typically requires synergistic effects of surfactants and polysaccharides. This work provides a different paradigm for the molecular engineering of bioemulsifiers.

  10. The National Shipbuilding Research Program. Trailer Mounted Water Recovery and Reuse System

    DTIC Science & Technology

    2000-11-30

    surfactants, and stabilize oil emulsions. • Sequestering or chelating agents bind problematic ions such as calcium or iron, which tend to form deposits on...cleaned parts. • Wetting/emulsifying agents (surfactants) help remove oil from dirty parts and stabilize the removed oil, preventing it from redepositing...neutralized; • The metal-loading can overcome the sequestering agents ’ capacity to keep the metals in solution; and • Oil and grease, if held in the emulsified

  11. Dial-A-Decon Solution Chemistry GAP Testing

    DTIC Science & Technology

    2012-04-01

    34 The tubes were serially diluted using Buttcrfield’s buffer solution and plated in triplicate on Tryptic Soy Agar. Plates were enumerated the...of 200 uL HD to 10 mL of the surfactant solution. The energy to create the oil in water (O/W) emulsions was provided by magnetic stirring. Solutions...emulsify a mixture of water and oil such as HD, one or more emulsifiers are required. Each surfactant system can be characterized by an HLB value

  12. Nanoparticle-Based Topical Ophthalmic Gel Formulation for Sustained Release of Hydrocortisone Butyrate.

    PubMed

    Yang, Xiaoyan; Trinh, Hoang M; Agrahari, Vibhuti; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2016-04-01

    This study was conducted to develop formulations of hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NP) suspended in thermosensitive gel to improve ocular bioavailability of HB for the treatment of bacterial corneal keratitis. PLGA NP with different surfactants such as polyvinyl alcohol (PVA), pluronic F-108, and chitosan were prepared using oil-in-water (O/W) emulsion evaporation technique. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential, and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when nanoparticles were suspended in thermosensitive gels and zero-order release kinetics was observed. In HCEC cell line, chitosan-emulsified NP showed the highest cellular uptake efficiency over PVA- and pluronic-emulsified NP (59.09 ± 6.21%, 55.74 ± 6.26%, and 62.54 ± 3.30%, respectively) after 4 h. However, chitosan-emulsified NP indicated significant cytotoxicity of 200 and 500 μg/mL after 48 h, while PVA- and pluronic-emulsified NP exhibited no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.

  13. The effect of clove bud powder at a spice level on antioxidant and quality properties of emulsified pork sausage during cold storage.

    PubMed

    Jin, Sang-Keun; Choi, Jung-Seok; Jeong, Jin-Yeon; Kim, Gap-Don

    2016-09-01

    Clove bud is a widely used spice in meat and meat products, and it contains high level of phenolic compounds. The effectiveness of the clove as a spice has not been fully studied at a general level of addition in the meat products. Therefore, in the present study, the antioxidant, antimicrobial, and nitrite scavenging abilities of clove bud powder (CBP) was assessed at spice level (0.1% and 0.2%) in emulsified pork sausage, during 6 weeks of cold storage. CBP had DPPH radical scavenging ability, but CBP addition at 0.1% and 0.2% did not decrease the TBARS value. An antimicrobial effect of CBP was also not observed during the cold storage. However, residual nitrite at storage weeks 4 and 6 was shown to be lower (P < 0.05). Addition of CBP decreased CIE L* and a* values, but it produced unacceptable sensory properties. Texture profile analysis was not affected by the addition of CBP in emulsified pork sausage (P > 0.05). The positive effect on nitrite scavenging could be expected by the addition of 0.2% CBP as a spice. However, antioxidant and antimicrobial abilities were not observed, as well as improvement in the quality of characteristics, in emulsified pork sausage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Emulsifying properties of legume proteins compared to β-lactoglobulin and Tween 20 and the volatile release from oil-in-water emulsions.

    PubMed

    Benjamin, O; Silcock, P; Beauchamp, J; Buettner, A; Everett, D W

    2014-10-01

    The emulsifying properties of plant legume protein isolates (soy, pea, and lupin) were compared to a milk whey protein, β-lactoglobulin (β-lg), and a nonionic surfactant (Tween 20). The protein fractional composition was characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The following emulsion properties were measured: particle diameter, shear surface ζ-potential, interfacial tension (IT), and creaming velocity. The effect of protein preheat treatment (90 °C for 10 min) on the emulsifying behavior and the release of selected volatile organic compounds (VOCs) from emulsions under oral conditions was also investigated in real time using proton transfer reaction-mass spectrometry. The legume proteins showed comparable results to β-lg and Tween 20, forming stable, negatively charged emulsions with particle diameter d3,2 < 0.4 μm, and maintained stability over 50 d. The relatively lower stability of lupin emulsions was significantly correlated with the low protein surface hydrophobicity and IT of the emulsion. After heating the proteins, the droplet size of pea and lupin emulsions decreased. The VOC release profile was similar between the protein-stabilized emulsions, and greater retention was observed for Tween 20-stabilized emulsions. This study demonstrates the potential application of legume proteins as alternative emulsifiers to milk proteins in emulsion products. © 2014 Institute of Food Technologists®

  15. Synergistic Combinations of a Pyrethroid Insecticide and an Emulsifiable Oil Formulation of Beauveria bassiana to Overcome Insecticide Resistance in Listronotus maculicollis (Coleoptera: Curculionidae).

    PubMed

    Wu, Shaohui; Kostromytska, Olga S; Koppenhöfer, Albrecht M

    2017-08-01

    The annual bluegrass weevil, Listronotus maculicollis (Kirby), is a major pest of golf course turf in eastern North America and has become particularly problematic owing to widespread development of insecticide resistance. As an alternative option to manage resistant adult L. maculicollis, we explored combinations of the pyrethroid insecticide bifenthrin with an emulsifiable oil formulation of the entomopathogenic fungus Beauveria bassiana strain GHA (Bb ES). Combinations synergistically enhanced mortality in both insecticide-susceptible and insecticide-resistant L. maculicollis adults in the laboratory when bifenthrin was used at LC50s for each population. To determine the component behind the synergism, technical spores of B. bassiana GHA and the emulsifiable oil carrier in the fungal formulation were tested separately or in combination with bifenthrin. In both separate and combined applications, the emulsifiable oil carrier was responsible for high mortality within 3 d after treatment and interacted synergistically with bifenthrin, whereas fungus-induced mortality started later. Strong synergism was also observed in three field experiments with a relatively resistant L. maculicollis population. Combinations of Bb ES and bifenthrin hold promise as an effective L. maculicollis management tool, particularly of pyrethroid-resistant populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    PubMed

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  17. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications.

    PubMed

    Singh, Bhupinder; Bandopadhyay, Shantanu; Kapil, Rishi; Singh, Ramandeep; Katare, O

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) possess unparalleled potential in improving oral bioavailability of poorly water-soluble drugs. Following their oral administration, these systems rapidly disperse in gastrointestinal fluids, yielding micro- or nanoemulsions containing the solubilized drug. Owing to its miniscule globule size, the micro/nanoemulsifed drug can easily be absorbed through lymphatic pathways, bypassing the hepatic first-pass effect. We present an exhaustive and updated account of numerous literature reports and patents on diverse types of self-emulsifying drug formulations, with emphasis on their formulation, characterization, and systematic optimization strategies. Recent advancements in various methodologies employed to characterize their globule size and shape, ability to encapsulate the drug, gastrointestinal and thermodynamic stability, rheological characteristics, and so forth, are discussed comprehensively to guide the formula-tor in preparing an effective and robust SEDDS formulation. Also, this exhaustive review offers an explicit discussion on vital applications of the SEDDS in bioavailability enhancement of various drugs, outlining an overview on myriad in vitro, in situ, and ex vivo techniques to assess the absorption and/ or permeation potential of drugs incorporated in the SEDDS in animal and cell line models, and the subsequent absorption pathways followed by them. In short, the current article furnishes an updated compilation of wide-ranging information on all the requisite vistas of the self-emulsifying formulations, thus paving the way for accelerated progress into the SEDDS application in pharmaceutical research.

  18. Effect of emulsifier type and concentration, aqueous phase volume and wax ratio on physical, material and mechanical properties of water in oil lipsticks.

    PubMed

    Beri, A; Norton, J E; Norton, I T

    2013-12-01

    Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aims of this work were (i) to investigate the effect of emulsifier type (polymer vs. monomer, and saturated vs. unsaturated chain) and concentration on droplet size and (ii) to investigate the effect of wax ratio (carnauba wax, microcrystalline wax, paraffin wax and performalene) and aqueous phase volume on material properties (Young's modulus, point of fracture, elastic modulus and viscous modulus). Emulsion formation was achieved using a high shear mixer. Results showed that the saturated nature of the emulsifier had very little effect on droplet size, neither did the use of an emulsifier with a larger head group (droplet size ~18-25 μm). Polyglycerol polyricinoleate (PGPR) resulted in emulsions with the smallest droplets (~3-5 μm), as expected from previous studies that show that it produces a thick elastic interface. The results also showed that both Young's modulus and point of fracture increase with increasing percentage of carnauba wax (following a power law dependency of 3), but decrease with increasing percentage of microcrystalline wax, suggesting that the carnauba wax is included in the overall wax network formed by the saturated components, whereas the microcrystalline wax forms irregular crystals that disrupt the overall wax crystal network. Young's modulus, elastic modulus and viscous modulus all decrease with increasing aqueous phase volume in the emulsions, although the slope of the decrease in elastic and viscous moduli is dependent on the addition of solid wax, as a result of strengthening the network. This work suggests the potential use for emulsions in lipstick applications, particularly when PGPR is used as an emulsifier, and with the addition of solid wax, as it increases network strength. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome.

    PubMed

    Chassaing, Benoit; Koren, Omry; Goodrich, Julia K; Poole, Angela C; Srinivasan, Shanthi; Ley, Ruth E; Gewirtz, Andrew T

    2015-03-05

    The intestinal tract is inhabited by a large and diverse community of microbes collectively referred to as the gut microbiota. While the gut microbiota provides important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multi-layered mucus structures that cover the intestinal surface, thereby allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro, might be promoting the increase in inflammatory bowel disease observed since the mid-twentieth century. Here we report that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in wild-type hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition and increased pro-inflammatory potential. Use of germ-free mice and faecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that the broad use of emulsifying agents might be contributing to an increased societal incidence of obesity/metabolic syndrome and other chronic inflammatory diseases.

  20. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due to biomass and/or gas production can be significant.

  1. SPE-UPLC-MS/MS for the determination of phthalate monoesters in rats urine and its application to study the effects of food emulsifier on the bioavailability of priority controlling PAEs.

    PubMed

    Xu, R; Gao, H T; Zhu, F; Cao, W X; Yan, Y H M; Zhou, X; Xu, Q; Ji, W L

    2016-02-15

    This research was mainly focused on the effects of food emulsifier on the bioavailability of six priority controlling phthalate acid esters (PAEs) for the further accurate assessment of their toxic effects, using the corresponding phthalate acid monoesters (PAMEs) in rats urine as biomarkers. Glycerin monostearate was chosen as typical food emulsifier. A method was established to determine PAMEs in urine from rats either in experimental group (integrated gavaged with glycerin monostearate and PAEs) or in control group (gavaged with PAEs only), by using solid-phase extraction (SPE) coupled with ultra performance liquid chromatography tandem mass spectrometry (SPE-UPLC-MS/MS). Extraction recoveries were more than 75% for all the PAMEs; the calibration curve was linear in the range of 1.0-1000.0ng/mL with R(2)>0.995; the limits of detection (LOD) were 0.30ng/mL-0.50ng/mL. In addition, by analysing quality control (QC) urine samples in 3 days, it showed that the method was precise and accurate, for the intra-day and inter-day RSD within 16%, and the accuracy more than 82%. Internal exposure amount of all PAEs in experimental group was significantly higher than that in control group with p values of less than 0.05 except for butyl benzyl phthalates (BBP) (P=0.07). The bioavailability of all PAEs ranged from 5.03% to 109.35% with the presence of food emulsifiers glycerin monostearate, observably higher than that without glycerin monostearate (1.12% to 54.39%). It indicated that food emulsifiers increased the bioavailability of PAEs and may lead to potential food safety risk, which should bring awareness and be further studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome

    PubMed Central

    Chassaing, Benoit; Koren, Omry; Goodrich, Julia; Poole, Angela; Srinivasan, Shanthi; Ley, Ruth E.; Gewirtz, Andrew T.

    2015-01-01

    Summary The intestinal tract is inhabited by a large diverse community of microbes collectively referred to as gut microbiota. While gut microbiota provide important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease (IBD) and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multilayered mucus structures that cover the intestinal surface thus allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine 1. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro 2, might be promoting the post-mid 20th century increase in IBD 3. Herein, we observed that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in WT hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition, and increased pro-inflammatory potential. Use of germ-free mice and fecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that broad use of emulsifying agents might be contributing to increased societal incidence of obesity/metabolic syndrome and other chronic inflammatory diseases. PMID:25731162

  3. Modeling complex and multi-component food systems in molecular dynamics simulations on the example of chocolate conching.

    PubMed

    Greiner, Maximilian; Sonnleitner, Bettina; Mailänder, Markus; Briesen, Heiko

    2014-02-01

    Additional benefits of foods are an increasing factor in the consumer's purchase. To produce foods with the properties the consumer demands, understanding the micro- and nanostructure is becoming more important in food research today. We present molecular dynamics (MD) simulations as a tool to study complex and multi-component food systems on the example of chocolate conching. The process of conching is chosen because of the interesting challenges it provides: the components (fats, emulsifiers and carbohydrates) contain diverse functional groups, are naturally fluctuating in their chemical composition, and have a high number of internal degrees of freedom. Further, slow diffusion in the non-aqueous medium is expected. All of these challenges are typical to food systems in general. Simulation results show the suitability of present force fields to correctly model the liquid and crystal density of cocoa butter and sucrose, respectively. Amphiphilic properties of emulsifiers are observed by micelle formation in water. For non-aqueous media, pulling simulations reveal high energy barriers for motion in the viscous cocoa butter. The work for detachment of an emulsifier from the sucrose crystal is calculated and matched with detachment of the head and tail groups separately. Hydrogen bonding is shown to be the dominant interaction between the emulsifier and the crystal surface. Thus, MD simulations are suited to model the interaction between the emulsifier and sugar crystal interface in non-aqueous media, revealing detailed information about the structuring and interactions on a molecular level. With interaction parameters being available for a wide variety of chemical groups, MD simulations are a valuable tool to understand complex and multi-component food systems in general. MD simulations provide a substantial benefit to researchers to verify their hypothesis in dynamic simulations with an atomistic resolution. Rapid rise of computational resources successively increases the complexity and the size of the systems that can be studied.

  4. The oil displacement effect evaluation of Different Displacing systems

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Zhang, Bowen; Li, Gen

    2018-02-01

    During the chemical flooding, the surfactant and the alkali play an emulsifying role. The emulsification can not only improve the displacement efficiency, but also expand the swept volume by the mechanism of emulsifying trapping. We select some chemical flooding systems including different kinds of surfactants, alkali/alkali-free and different emulsion degrees to make the comparative experiment and draw the conclusion that it is an effective way to enhance the recovery by increasing the emulsion stability without having to pursue the ultra-low interfacial tension.

  5. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  6. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  7. Characterization of Acinetobacter baumannii strain PS3 in degradation of food emulsifiers

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Tuan; Tran, Tuyet Nhung; Ha, Thi Bich Ngoc

    2018-04-01

    Strain SP3 revealed the abilty to utilizes emulsifier which is widely used in the preparation of drugs, vaccines, food, cosmetics and skin care products as its sole carbon and energy source. Generation time ranges from 1.4 to 2.1 h on the polysorbate family. Strain was identified as Acinetobacter baumannii based on 16S rRNA gene and it could dispose 27 % polysorbate 80 within a day. The proposed mechanism for polysorbate utilization belongs to the β-oxidation.

  8. Influence of non-ionic emulsifier type on the stability of cinnamaldehyde nanoemulsions: A comparison of polysorbate 80 and hydrophobically modified inulin.

    PubMed

    Sedaghat Doost, Ali; Dewettinck, Koen; Devlieghere, Frank; Van der Meeren, Paul

    2018-08-30

    Cinnamaldehyde nanoemulsions were formulated to enable its application in an aqueous environment. The pure cinnamaldehyde nanoemulsions, stabilized by polysorbate 80 (at concentrations >0.5%), had both a higher stability and smaller droplet size, whereas the emulsions containing hydrophobically modified inulin (HMI) formed a colloidal dispersion with larger particle size. Incorporation of sunflower oil (SO) allowed postponement of Ostwald ripening for a sufficiently long period of time (at least 60 days). Cryo-SEM and droplet size analyses of the nanoemulsions emulsified by HMI revealed no significant changes during storage. Under these conditions, HMI as an emulsifier exhibited a powerful resistance to high salt contents (up to 2 M) and high thermal processing temperatures (90 °C). The surfactant type and SO content had no marked influence on the antimicrobial activity of the nanoemulsions. This study provides precious information for a commercial formulation of nanoemulsions with durable physical stability under severe stress conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Microstructural, textural, and sensory properties of whole-wheat noodle modified by enzymes and emulsifiers.

    PubMed

    Niu, Meng; Hou, Gary G; Kindelspire, Julie; Krishnan, Padmanaban; Zhao, Siming

    2017-05-15

    With the utilization of enzymes including endoxylanase, glucose oxidase (GOX) and transglutaminase (TG), and emulsifiers comprising sodium stearoyl lactate (SSL) and soy lecithin, the microstructural, textural, and sensory properties of whole-wheat noodle (WWN) were modified. The development time and stability of whole-wheat dough (WWD) were enhanced by TG due to the formation of a more compact gluten network, and by SSL resulting from the enhanced gluten strength. Microstructure graphs by scanning electron microscopy (SEM) verified that TG and SSL promoted the connectivity of gluten network and the coverage of starch granules in WWN. TG increased the hardness and elasticity of cooked WWN, while two emulsifiers increased the noodle cohesiveness. Additionally, TG and SSL improved the sensory properties of noodle such as bite, springiness, and mouth-feel. The results suggest that TG and SSL are effective ingredients in enhancing the gluten strength of WWD and improving the qualities of WWN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Polycyclic aromatic hydrocarbon-emulsifier protein produced by Aspergillus brasiliensis (niger) in an airlift bioreactor following an electrochemical pretreatment.

    PubMed

    Sánchez-Vázquez, Victor; Shirai, Keiko; González, Ignacio; Gutiérrez-Rojas, Mariano

    2018-05-01

    An emulsifier protein (EP) was produced and easily separated from oil-contaminated water as an economical substrate when Aspergillus brasiliensis, pretreated in a solid state culture with a controlled electric field, was used in an airlift bioreactor. The hydrocarbon-EP comprised 19.5% of the total protein, its purification enhanced the specific emulsifying activity (EA) seven times. The influence of operational conditions (pH and salt concentration) on the EA were assessed to characterise the emulsion stability. The EA was increased by 19% in alkaline environments (pH 7-11), but it was not affected by the presence of salt (0-35 g L -1 ). On the other hand, preheating the EP samples (60 °C) enhanced the EA by 2.5 times. Based on analysis of its EA, this EP can be applied as a bioremediation enhancer in contaminated soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Solubility of ocular therapeutic agents in self-emulsifying oils. I. Self-emulsifying oils for ocular drug delivery: solubility of indomethacin, aciclovir and hydrocortisone.

    PubMed

    Czajkowska-Kośnik, Anna; Sznitowska, Małgorzata

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) were prepared by dissolving Cremophor EL, Tween 20, Tween 80 and Span 80 (1% or 5%) in oils (Miglyol 812 or castor oil). Solubilities of three ophthalmic drugs, namely aciclovir, hydrocortisone and indomethacin were determined in these systems. In addition, the effect of a small amount of water (0.5% and 2%) on solubilization properties of the systems was estimated. Of the three substances, indomethacin showed the best solubility in Miglyol while aciclovir was practically insoluble in this oil. The surfactants usually increased drug solubility in the oily phase. Only Tween 20 was found to decrease the solubility of aciclovir and hydrocortisone in Miglyol. Addition of a small amount of water to the oil/surfactant system increased solubility of hydrocortisone, but not of indomethacin. The results of the current study may be utilized to design a suitable composition of SEDDS and allow continuation of research on this type of drug carriers.

  12. Changes of lipid and fatty acid absorption induced by high dose of citric acid ester and lecithin emulsifiers.

    PubMed

    Sadouki, Mohamed; Bouchoucha, Michel

    2014-09-01

    To describe the effect of two food emulsifiers, lecithin (E322) and citric acid esters of mono-and diglycerides of fatty acids (E472c), on the intestinal absorption of lipids. The experiment was conducted on 24 male Wistar rats randomly assigned in three groups. For two groups of six rats, 30% of the lipid intake was replaced with lecithin (L) or citric acid ester of mono and diglycerides, (E); the remaining 12 rats were the control group (C). Diet and fecal fat analysis was used to determine the apparent lipid absorption (ALA) and fatty acids. ALA was significantly lower in the group E than in the groups C and L (p < 0.001). ALA of long saturated chain fatty acids decreased while the length of the carbon chains increased, and this decrease was higher in the group E. E472c emulsifier decreased the intestinal absorption of lipids.

  13. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study.

    PubMed

    Zhang, Ruojie; Zhang, Zipei; Zhang, Hui; Decker, Eric Andrew; McClements, David Julian

    2015-09-01

    The potential gastrointestinal fate of oil-in-water emulsions containing lipid phases from different sources was examined: vegetable oils (corn, olive, sunflower, and canola oil); marine oils (fish and krill oil); flavor oils (orange and lemon oil); and, medium chain triglycerides (MCT). The lowest rates and extents of lipid digestion were observed for emulsified flavor oil, followed by emulsified krill oil. There was no appreciable difference between the final amounts of free fatty acids released for emulsified digestible oils. Differences in the digestibility of emulsions prepared using different oils were attributed to differences in their compositions, e.g., fatty acid chain length and unsaturation. The particle size distribution, particle charge, microstructure, and macroscopic appearance of the emulsions during passage through the simulated GIT depended on oil type. The results of this study may facilitate the design of functional foods that control the digestion and absorption of triglycerides, as well as the bioaccessibility of hydrophobic bioactives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Preparation, characterization, and in vitro gastrointestinal digestibility of oil-in-water emulsion-agar gels.

    PubMed

    Wang, Zheng; Neves, Marcos A; Kobayashi, Isao; Uemura, Kunihiko; Nakajima, Mitsutoshi

    2013-01-01

    Soybean oil-in-water (O/W) emulsion-agar gel samples were prepared and their digestibility evaluated by using an in vitro gastrointestinal digestion model. Emulsion-agar sols were obtained by mixing the prepared O/W emulsions with a 1.5 wt % agar solution at 60 °C, and their subsequent cooling at 5 °C for 1 h formed emulsion-agar gels. Their gel strength values increased with increasing degree of polymerization of the emulsifiers, and the relative gel strength increased in the case of droplets with an average diameter smaller than 700 nm. Flocculation and coalescence of the released emulsion droplets depended strongly on the emulsifier type; however, the emulsifier type hardly affected the ζ-potential of emulsion droplets released from the emulsion-agar gels during in vitro digestion. The total FFA content released from each emulsion towards the end of the digestion period was nearly twice that released from the emulsion-agar gel, indicating that gelation of the O/W emulsion may have delayed lipid hydrolysis.

  15. Microencapsulation of essential oil for insect repellent in food packaging system.

    PubMed

    Chung, Seong Kyun; Seo, Ji Yeon; Lim, Jung Hoon; Park, Hyung Hwan; Yea, Myeong Jai; Park, Hyun Jin

    2013-05-01

    Microcapsules containing thyme oil were prepared by in situ polymerization, using melamine-formaldehyde prepolymer as a wall material and 3 different emulsifiers (pluronic F-127, tween 80, and sodium lauryl sulfate [SLS]). The general characteristics and release behavior of microcapsules, and their repellent effect against insects were investigated. The morphology of microcapsules using SLS was spherical shape with smooth surface. Microcapsules began to degrade at 150 °C. The particle size ranged from 1 to 10 μm and the loading efficiency of thyme oil was clearly affected by the emulsifier type. The highest loading efficiency appeared in microcapsules using SLS, which have good thermal resistance and smooth surface. The release rate of thyme oil from microcapsules was not only dependent on the storage temperature but also emulsifier type and microcapsules showed the sustained release properties for a long time. Diets, which were mixed with encapsulated thyme oil, expressed high insect repellent efficacy over 90% for 4 wk. © 2013 Institute of Food Technologists®

  16. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil.

    PubMed

    Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro

    2014-03-12

    Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.

  17. Effect of tartarate and citrate based food additives on the micellar properties of sodium dodecylsulfate for prospective use as food emulsifier.

    PubMed

    Banipal, Tarlok S; Kaur, Harjinder; Kaur, Amanpreet; Banipal, Parampaul K

    2016-01-01

    Citrate and tartarate based food preservatives can be used to enhance the emulsifying properties of sodium dodecylsulfate (SDS) based micellar system and thus making it appropriate for food applications. Exploration of interactions between the two species is the key constraint for execution of such ideas. In this work various micellar and thermodynamic parameters of SDS like critical micellar concentration (CMC), standard Gibbs free energy of micellization (ΔG(0)mic.) etc. have been calculated in different concentrations of disodium tartarate (DST) and trisodium citrate (TSC) in the temperature range (288.15-318.15)K from the conductivity and surface tension measurements. The parameters obtained from these studies reveal the competitive nature of both the additives with SDS for available positions at the air/water interface. TSC is found to be more effective additive in order to make SDS micellar system better for its potential applications as food emulsifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Implications of interfacial characteristics of food foaming agents in foam formulations.

    PubMed

    Rodríguez Patino, Juan M; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario

    2008-08-05

    The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption.

  19. Preparation of Nanoemulsions by Premix Membrane Emulsification: Which Parameters Have a Significant Influence on the Resulting Particle Size?

    PubMed

    Gehrmann, Sandra; Bunjes, Heike

    2017-08-01

    Oil-in-water emulsions with particle sizes smaller than 200 nm are interesting carrier systems for poorly water-soluble drugs. Such emulsions can be produced by premix membrane emulsification. In this study, it was systematically investigated which process and formulation parameters have a strong influence on the resulting quality of a triglyceride emulsion. The influence of the pre-emulsion quality and the emulsifier concentration was examined. Also a design of experiments (DoE) approach was carried out: variables included were emulsifier (poloxamer 188, Tween 80, and sucrose laurate [SL]), flow rate, cycle number, and membrane material (polyester, nylon, cellulose acetate, and aluminum oxide; pore sizes, 200 nm), and responses were d 50 value and span for particle size and distribution width. The quality of the pre-emulsion had no influence on the quality of the nanoemulsion after 5 extrusion cycles. The DoE evaluation indicated that an increase in flow rate was of minor importance, whereas an increase in cycle number had a strong impact on the decrease of particle size. The very hydrophilic alumina membrane in combination with the emulsifier which caused the lowest interfacial tension (SL) was the most suitable combination. However, in general, the favorable emulsifier was membrane dependent. Even smaller particle sizes (∼100 nm) could be achieved by using an alumina membrane with smaller pore sizes (100 nm). Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. A novel sample preparation method using rapid nonheated saponification method for the determination of cholesterol in emulsified foods.

    PubMed

    Jeong, In-Seek; Kwak, Byung-Man; Ahn, Jang-Hyuk; Leem, Donggil; Yoon, Taehyung; Yoon, Changyong; Jeong, Jayoung; Park, Jung-Min; Kim, Jin-Man

    2012-10-01

    In this study, nonheated saponification was employed as a novel, rapid, and easy sample preparation method for the determination of cholesterol in emulsified foods. Cholesterol content was analyzed using gas chromatography with a flame ionization detector (GC-FID). The cholesterol extraction method was optimized for maximum recovery from baby food and infant formula. Under these conditions, the optimum extraction solvent was 10 mL ethyl ether per 1 to 2 g sample, and the saponification solution was 0.2 mL KOH in methanol. The cholesterol content in the products was determined to be within the certified range of certified reference materials (CRMs), NIST SRM 1544 and SRM 1849. The results of the recovery test performed using spiked materials were in the range of 98.24% to 99.45% with an relative standard devitation (RSD) between 0.83% and 1.61%. This method could be used to reduce sample pretreatment time and is expected to provide an accurate determination of cholesterol in emulsified food matrices such as infant formula and baby food. A novel, rapid, and easy sample preparation method using nonheated saponification was developed for cholesterol detection in emulsified foods. Recovery tests of CRMs were satisfactory, and the recoveries of spiked materials were accurate and precise. This method was effective and decreased the time required for analysis by 5-fold compared to the official method. © 2012 Institute of Food Technologists®

  1. Development of solid self-emulsifying drug delivery system (SEDDS) I: use of poloxamer 188 as both solidifying and emulsifying agent for lipids.

    PubMed

    Shah, Ankita V; Serajuddin, Abu T M

    2012-10-01

    To develop solid self-emulsifying drug delivery systems (SEDDS) for lipids using poloxamer 188 as both solidifying and emulsifying agents. Mixtures of various lipids with poloxamer 188 and PEG 8000 were prepared at ~75°C. The molten mixtures, with and without dissolved drugs (fenofibrate and probucol), were then cooled to room temperature. When solids formed, they were characterized by powder XRD, DSC, microscopy using cross-polarization and confocal fluorescence techniques, dispersion test in water and particle size analysis of dispersions. When mixed with poloxamer 188 or PEG 8000, lipids consisting of monoesters of fatty acids with glycerol or propylene glycol formed solid systems, but not di- and tri-esters, which showed phase separation. Added to water, the solid systems containing poloxamer 188 started to disperse in water forming oil globules of 200-600 nm. No emulsification of lipids was observed from solids containing PEG 8000, indicating that the surfactant property of poloxamer 188 was responsible for emulsification. Powder XRD, DSC and microscopic examination revealed that poloxamer 188 and PEG 8000 maintained their crystallinity in solid systems, while the lipids were interspersed in between crystalline regions. The drug remained solubilized in the lipid phase. A novel solid SEDDS is developed where the drug can be solubilized in liquid lipids and then the lipidic solution can be converted to solid mass by dispersing into the microstructure of poloxamer 188.

  2. Biopharmaceutical insights of particulate emulsified systems - a prospective overview.

    PubMed

    Katamreddy, Jyothshna Devi; Yalavarthi, Prasanna Raju; D, Subba Rao; Battu, Sowjanya; Peesa, Jaya Preethi

    2018-05-10

    During the twenty-first century, drug discovery is expanding rapidly and a large number of chemical moieties are recognized. Many of them are poorly soluble and hence related biopharmaceutical constraints are to be addressed systematically. Among novel approaches to resolving biopharmaceutical issues, micro- and nano-emulsified systems serve as the best strategy for delivering both hydrophobic and hydrophilic drugs owing to their greater solubilization and transportation capabilities. Of late, the unique physical and biopharmaceutical properties of these liquid isotropic homogenous systems have gained substantive research importance. In addition nano/micro lipid systems share structural and functional similarity with that of the physiological lipids which offer better tolerance ability in the body. In this context, this article provides information on the historical emergence of particulate emulsified systems, importance and rationale of selection of carriers. It also encompasses the physicochemical principles that are responsible for the elevation of therapeutic outcomes of delivery systems. Detailed and schematic absorption of these drug delivery systems is explained here. Gastro-intestinal biochemistry necessary in the understanding of digestion process, lipolytic products formed, micellar structures, enzymes, transporters, mechanism of cell uptake involved after subsequent oral absorption are also emphasized. In addition, this article also explains disposition and pharmacokinetic properties of emulsified systems with real-time therapeutic research outcomes. The influence of biochemical compositions and biopharmaceutical principles on absorption and disposition patterns of ME/NEs was described in the article for the interest of readers and young researchers.

  3. Efficiency and protective effect of encapsulation of milk immunoglobulin G in multiple emulsion.

    PubMed

    Chen, C C; Tu, Y Y; Chang, H M

    1999-02-01

    Milk immunoglobulin G (IgG), separated with protein G affinity chromatography, and IgG in colostral whey were encapsulated by 0.5% (w/v) of Tween 80, sucrose stearate, or soy protein, which were used as secondary emulsifiers in the water in oil in water type multiple emulsion. The residual contents of separated IgG and IgG in colostral whey, ranging from 58.7 to 49.7% and from 13.2 to 21.3%, respectively, in the inner water phase (water phase surrounded by oil phase) with emulsifiers were determined by ELISA. However, the emulsion stability decreased after 24 h, and the residual IgG content in the inner water phase was lowered. Encapsulation of IgG in the multiple emulsion increased the stability of separated IgG against acid (pH 2.0) and alkali (pH 12.0) by 21-56% and 33-62%, respectively, depending on the emulsifier used. Moreover, multiple emulsion also provided a remarkable protective effect on separated IgG stability against proteases. The residual contents of separated IgG in multiple emulsion, using Tween 80 as secondary emulsifier, incubated for 2 h with pepsin (pH 2.0) and trypsin and chymotrypsin (pH 7.6) (enzyme/substrate = 1/20) were 35.4, 72.5, and 82.3%, whereas those of separated IgG in enzyme solution were only 7.2, 33. 1, and 35.2%, respectively. However, the separated IgG loss during the preparation of multiple emulsion was almost 41-50%.

  4. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    PubMed Central

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-01-01

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%. PMID:28468282

  5. A 2D tank test on remediation of nitrobenzene-contaminated aquifer using in-situ reactive zone with emulsified nanoscale zero-valent iron.

    PubMed

    Dong, Jun; Dong, Yang; Wen, Chunyu; Gao, Song; Ren, Liming; Bao, Qiburi

    2018-05-15

    Nitrobenzene (NB) is one of the most challenging pollutants for groundwater remediation due to its great harm and recalcitrance. Emulsified nanoscale zero-valent iron (EZVI) is considered as a promising agent for in-situ remediation of contaminated groundwater for its high reactivity, good durability and low cost. In this paper, 2D tank experiment was conducted to evaluate the effectiveness of enhanced remediation of NB-contaminated groundwater with EZVI. 9 L of EZVI solution was injected into aquifer to establish in-situ reactive zone (IRZ) before 40 d of NB contamination. Results indicate that injection of EZVI leads to 90% reduction of total NB, which is mainly converted to aniline (AN). NB concentration decreases along the flow path in the tank. Fe 2+ is generated from Fe 0 oxidation. Significant acetate and bicarbonate are released due to emulsified oil decomposition during the whole operation time. Groundwater pH maintains in neutral value (6.6-8.2) owing to the balance between organic acids and OH - released after iron oxidation. Drastic decrease of ORP and DO indicates the transformation from oxidizing to reducing condition, leading to the reduction of oxidative species (e.g. sulfate, nitrate) in subsurface. Calculation of reducing equivalents suggests that microbial breakdown of emulsified oil provides more electrons than Fe 0 oxidation does to the system. Both biotic and abiotic processes are involved in the enhanced degradation of NB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. [Study on self-microemulsifying membrane controlled-release drop pill of hawthorn leaves flavonoids].

    PubMed

    Wang, Jin-Xuan; Huang, Hong-Zhang; Li, Ning; Gao, Chong-Kai

    2014-03-01

    To prepare the hawthorn leaves flavonoids self-microemulsifying membrane controlled-release coated drop pill, and to study its release rate in vitro and pharmacokinetics study in vivo. In order to improve the dissolution of hawthorn leaves flavonoids, self-microemulsifying technology was used to prepare the hawthorn leaves flavonoids self-microemulsion. Hawthorn leaves flavonoids self-microemulsifying drop pill was prepared with the PEG 6000. Studies were made on the in vitro release of flavonoids from hawthorn leaves self-micro-emulsifying membrane-moderated coated drop pills and the in vivo pharmacokinetic in rats. The prescription of flavonoids from hawthorn leaves self-micro-emulsifying drop pills was 0.25 g of flavonoids from hawthorn leaves, 0.25 g of iodophenyl maleimide, 0.375 g of polyethylene glycol 400, 0.375 g of cremophor RH 40 and 2 g of polyethylene glycol 6000. The optimized prescription was 4 g of ethyl cellulose 20, 0.64 g of polyethylene glycol 400, 1.8 g of diethyl phthalate, and the weight of coating materials increased by 3.5%. Flavonoids from hawthorn leaves self-micro-emulsifying membrane-moderated coated drop pills complied with the design of sustained-release in 12 h in terms of in vitro release and in vivo pharmacokinetic parameters in rats, and its bioavailability was 2.47 times of quick-release drop pills. Slightly soluble flavonoids from hawthorn leaves could be made into sustained-release preparations by the self-micro-emulsifying and coating technology.

  7. Effect of processing on functional properties of animal blood plasma.

    PubMed

    Del Hoyo, P; Rendueles, M; Díaz, M

    2008-04-01

    A number of functional and physical properties such as solubility, foam capacity, emulsifying stability and interfacial tension were compared for standard plasma, plasma decationed by ion exchange and plasma deionized by ultrafiltration (UF). The changes in functional properties can determine the use of a protein as an additive to a food product or invalidate its use. All samples had good functional properties and hence could be used in the formulation of food products. Results showed that ion exchange and UF improved emulsifying capacity while having little effect on the other functional properties.

  8. Microbial biodiversity of Tang and Pirgal mud volcanoes and evaluation of bio-emulsifier and bio-demulsifier activities of Capnophile bacteria.

    PubMed

    Parsia, Yasaman; Sorooshian, Shahryar

    2017-12-01

    The data presented in this article is related to the Master thesis; entitled "Survey Aerobic Microbial Diversity Mud Volcanoes in Chabahar and Khash Ports in Southern Iran" by the first author of this article, year 2011, Islamic Azad University, Iran (reference number (Parsia, 2011) [1] of this article). This article shows microbial biodiversity and evaluates bio-emulsifier and bio-demulsifier abilities of capnophile isolates, in order to introduce a superior isolate for the Microbial Enhanced Oil Recovery (MEOR) process in the petrochemical industry.

  9. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions.

    PubMed

    De Neve, N; Vlaeminck, B; Gadeyne, F; Claeys, E; Van der Meeren, P; Fievez, V

    2018-03-16

    Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions (<50% protection), which showed oiling-off after enzymatic crosslinking. This study demonstrated that alternative emulsifier proteins can be used in combination with PPO extract to protect emulsified PUFA-rich oils against ruminal biohydrogenation. By applying the new protocol, 6.5 times less PPO extract was required.

  10. Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: a hydrodynamic sediment-attached isolate of freshwater origin.

    PubMed

    Chowdhury, S R; Manna, S; Saha, P; Basak, R K; Sen, R; Roy, D; Adhikari, B

    2011-12-01

    This work was aimed to isolate, purify and characterize an extracellular polysaccharide (EPS) produced by a freshwater dynamic sediment-attached micro-organism, Bacillus megaterium RB-05, and study its emulsifying potential in different hydrocarbon media. Bacillus megaterium RB-05 was found to produce EPSs in glucose mineral salts medium, and maximum yield (0.864 g l(-1) ) was achieved after 24-h incubation. The recovery rates of the polysaccharide material by ion-exchange and gel filtration chromatography were around 67 and 93%, respectively. As evident from HPLC and FT-IR analyses, the polysaccharide was found to be a heteropolymer-containing glucose, galactose, mannose, arabinose, fucose and N-acetyl glucosamine. Different oligosaccharide combinations namely hexose(3), hexose(4), hexose(5) deoxyhexose(1) and hexose(5) deoxyhexose(1) pentose(3) were obtained after partial hydrolysis of the polymer using MALDI-ToF-MS. The polysaccharide with an average molecular weight of 170 kDa and thermal stability up to 180°C showed pseudoplastic rheology and significant emulsifying activity in hydrocarbon media. Isolated polysaccharide was found to be of high molecular weight and thermally stable. The purified EPS fraction was composed of hexose, pentose and deoxyhexose sugar residues, which is a rare combination for bacterial polysaccharides. Emulsifying property was either better or comparable to that of other commercially available natural gums and polysaccharides. This is probably one of the few reports about characterizing an emulsifying EPS produced by a freshwater sediment-attached bacterium. The results of this study contribute to understand the influence of chemical composition and material properties of a new microbial polysaccharide on its application in industrial biotechnology. Furthermore, this work reconfirms freshwater dynamic sediment as a potential habitat for bioprospecting extracellular polymer-producing bacteria. This study will improve our knowledge on the exploitation of a nonconventional renewable resource, which also seems to be ecologically significant. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate.

    PubMed

    Zou, Liqiang; Liu, Wei; Liu, Chengmei; Xiao, Hang; McClements, David Julian

    2015-08-01

    The influence of emulsifier type on the ability of excipient emulsions to improve the solubility, stability, and bioaccessibility of powdered curcumin was examined. Oil-in-water emulsions prepared using three different emulsifiers (whey protein isolate, caseinate, or Tween 80) were mixed with curcumin powder and then incubated at either 30 °C (to simulate applications of salad dressings) or 100 °C (to simulate applications of cooking sauces). The transfer of curcumin into the excipient emulsions was appreciably higher for excipient emulsions held at 100 °C than those held at 30 °C, and was appreciably higher for surfactant-stabilized emulsions than protein-stabilized emulsions. For example, the amounts of curcumin transferred into emulsions held at 30 and 100 °C were 66 and 280 μg mL(-1) for Tween 80, but only 17 and 208 μg mL(-1) for caseinate. The total curcumin concentration in the digesta and mixed micelle phases collected after excipient emulsions were exposed to a simulated gastrointestinal tract (mouth, stomach, and small intestine) depended on emulsifier type. The total amount of curcumin within the digesta was higher for protein-stabilized emulsions than surfactant-stabilized ones, which was attributed to the ability of the proteins to protect curcumin from chemical degradation. For example, the digesta contained 204 μg mL(-1) curcumin for caseinate emulsions, but only 111 μg mL(-1) for Tween 80 emulsions. This study shows the potential of designing excipient emulsions to increase the oral bioavailability of curcumin for food and pharmaceutical applications.

  12. Stability of anthocyanin-rich w/o/w-emulsions designed for intestinal release in gastrointestinal environment.

    PubMed

    Frank, Kerstin; Walz, Elke; Gräf, Volker; Greiner, Ralf; Köhler, Karsten; Schuchmann, Heike Petra

    2012-12-01

    Anthocyanins belong to the most important hydrophilic plant pigments. Outside their natural environment, these molecules are extremely unstable. Encapsulating them in submicron-sized containers is one possibility to stabilize them for the use in bioactivity studies or functional foods. The containers have to be designed for a target release in the human gastrointestinal system. In this contribution, an anthocyanin-rich bilberry extract was encapsulated in the inner aqueous phase of water-in-oil-in-water-double emulsions. The physical stability as well as the release of free fatty acids and encapsulated, bioactive substances from the emulsions during an in vitro gastrointestinal passage were investigated. The focus was on the influence of emulsion microstructural parameters (for example, inner and outer droplet size, disperse phase content) and required additives (emulsifier systems), respectively. It could be shown that it is possible to stabilize anthocyanins in the inner phase of double emulsions. The release rate of free fatty acids during incubation was independent of the emulsifier used. However, the exterior (O/W)-emulsifier has an impact on the stability of multiple emulsions in gastrointestinal environment and, thus, the location of release. Long-chained emulsifiers like whey proteins are most suitable to transport a maximum amount of bioactive substances to the effective location, being the small intestine for anthocyanins. In addition, it was shown that the dominating release mechanism for entrapped matter was coalescence of the interior W(1) -droplets with the surrounding W(2) -phase. © 2012 Institute of Process Engineering in Life Science I: Food Process Engineering, Karlsruhe Institute of Technology (KIT).

  13. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    PubMed

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.

  14. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics.

    PubMed

    Glorieux, Seline; Goemaere, Olivier; Steen, Liselot; Fraeye, Ilse

    2017-09-01

    Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality.

  15. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics

    PubMed Central

    2017-01-01

    Summary Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality. PMID:29089852

  16. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols.

    PubMed

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Chen, Qian; Kong, Baohua

    2016-05-01

    The objective of this study was to investigate the emulsifying properties and oxidative stability of emulsions prepared with porcine myofibrillar proteins (MPs) and different lipids, including lard, glycerolized lard (GL) and purified glycerolized lard (PGL). The GL and PGL emulsions had significantly higher emulsifying activity indices and emulsion stability indices than the lard emulsion (P<0.05). The PGL emulsion presented smaller droplet sizes, thus decreasing particle aggregation and improving emulsion stability. The static and dynamic rheological observations of the emulsions showed that the emulsions had pseudo-plastic behavior, and the PGL emulsion presented a larger viscosity and a higher storage modulus (G') and loss modulus (G'') compared with the other two emulsions (P<0.05). The formation of thiobarbituric acid-reactive substances, carbonyl contents and total sulfhydryl contents was not significantly different between the emulsions with PGL, GL and lard (P<0.05). In general, lard diacylglycerols enhanced emulsifying abilities and had no adverse effects on the oxidation stability of the emulsions prepared with MPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enzymatic Preparation of a Homologous Series of Long-Chain 6- O-Acylglucose Esters and Their Evaluation as Emulsifiers.

    PubMed

    Liang, Min-Yi; Chen, Yongsheng; Banwell, Martin G; Wang, Yong; Lan, Ping

    2018-04-18

    Sugar fatty acid esters are nonionic surfactants that are widely exploited in the food and cosmetics industries, as well as in the oral care and medical supply fields. Accordingly, new methods for their selective synthesis and the "tuning" of their emulsifying properties are of considerable interest. Herein we report simple and irreversible enzymatic esterifications of d-glucose with seven fatty acid vinyl esters. The foaming and emulsifying effects of the resulting 6- O-acylglucose esters were then evaluated. In accord with expectations, when the length of the alkyl side chain associated with the 6- O-acylglucose esters increases, then their hydrophilic-lipophilic balance (HLB) values decrease, while the stabilities of the derived emulsions improve. In order to maintain good foaming properties, alkyl side chains of at least 9 to 11 carbons in length are required. In the first such assays on 6- O-acylglucose esters, most of those described herein are shown to be nontoxic to the HepG2, MCF-7, LNacp, SW549, and LO-2 cell lines.

  18. Online sensing and control of oil in process wastewater

    NASA Astrophysics Data System (ADS)

    Khomchenko, Irina B.; Soukhomlinoff, Alexander D.; Mitchell, T. F.; Selenow, Alexander E.

    2002-02-01

    Industrial processes, which eliminate high concentration of oil in their waste stream, find it extremely difficult to measure and control the water purification process. Most oil separation processes involve chemical separation using highly corrosive caustics, acids, surfactants, and emulsifiers. Included in the output of this chemical treatment process are highly adhesive tar-like globules, emulsified and surface oils, and other emulsified chemicals, in addition to suspended solids. The level of oil/hydrocarbons concentration in the wastewater process may fluctuate from 1 ppm to 10,000 ppm, depending upon the specifications of the industry and level of water quality control. The authors have developed a sensing technology, which provides the accuracy of scatter/absorption sensing in a contactless environment by combining these methodologies with reflective measurement. The sensitivity of the sensor may be modified by changing the fluid level control in the flow cell, allowing for a broad range of accurate measurement from 1 ppm to 10,000 ppm. Because this sensing system has been designed to work in a highly invasive environment, it can be placed close to the process source to allow for accurate real time measurement and control.

  19. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions.

    PubMed

    Schmidts, T; Dobler, D; Nissing, C; Runkel, F

    2009-10-01

    Multiple W/O/W emulsions for topical application using Span 80 as a lipophilic emulsifier were prepared. Several hydrophilic emulsifiers were tested in respect of their suitability for the preparation of multiple emulsions. In addition, the effect of different oil-phase compositions on emulsion stability was investigated. The physicochemical parameters of the formulations were characterized and their long-term stability was evaluated by means of rheological measurements, droplet size observations and conductivity analysis. As discovered, the modification of an oil-phase composition results in a decrease in the diffusion coefficient of water and water-soluble substances and, consequently, in enhanced stability. The influence of the release of electrolytes from the inner to the outer water phase on the emulsion stability behaviour was investigated. It was found, that the effect of the hydrophilic emulsifiers on the formulation properties is related not only to its HLB value, but rather to its chemical composition. As a result, polyethoxylated ethers of fatty alcohols (C=16-18) with HLBs between 15.3 and 16.2 appear to be the most suitable ones for creating stable formulations.

  20. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W.; Brooks, Kathleen B.; Geiger, Cherie L.; Clausen, Christian A.; Milum, Kristen M.

    2006-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the potential of the contaminant to bioaccumulate in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water runoff. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. Emulsified Zero-Valent Metal (EZVM) using metals such as iron and/or magnesium have been shown in the laboratory and on the bench scale to be effective at removing metals contamination in freshwater environments. The application to marine environments, however, is only just being explored. This paper discusses. the potential use of EZVI or EZVM in brackish and saltwater environments, with supporting laboratory data detailing its effectiveness on trichloroethylene, lead, copper, nickel and cadmium.

  1. Impact of Phospholipids and Tocopherols on the Oxidative Stability of Soybean Oil-in-Water Emulsions.

    PubMed

    Samdani, Gautam K; McClements, D Julian; Decker, Eric A

    2018-04-18

    Phospholipids have been shown to act synergistically with tocopherols and delay lipid oxidation in bulk oil. The synergistic activity between phospholipids and tocopherols is due to the ability of amino-group-containing phospholipids (e.g., phosphatidylethanolamine (PE) and phosphatidylserine (PS)) to convert oxidized tocopherol back into tocopherols. This study shows the effect of PE and PS on the antioxidant activity of different tocopherol homologues in oil-in-water emulsions. Effect of emulsifier type on the interaction between tocopherols and phospholipids was also studied. δ-Tocopherol and PE exhibited greater antioxidant activity as compared to α-tocopherol and PE. PS displayed 1.5-3 times greater synergism than PE with Tween 20 as emulsifier whereas both PE and PS had a similar antioxidant activity in the presence of α-tocopherol when bovine serum albumin was used as the emulsifier. This study is the first to show that PE and PS can act synergistically with tocopherols to inhibit lipid oxidation in oil-in-water emulsions and can present a new clean label antioxidant strategy for food emulsions.

  2. Evaluation of emulsion emulsified by starch nanocrystal: A preliminary study

    NASA Astrophysics Data System (ADS)

    Ahmad, Azfar Al Ariff; Lazim, Azwan Mat

    2018-04-01

    The starch nanocrystals (SNC) used in this study were made of sago starch and prepared by using sulfuric acid hydrolysis of sago starch. The aim of this study is to look at the potential of SNC as and emulsifier. Previously, the SNC underwent analytical analysis in order to understand and evaluate the isolated SNC. The ability of SNC as emulsifier was further investigated in this study. Emulsions with low, medium and high oil content has been prepared in function of different wt% of SNC. The emulsion stability against coalescence for two weeks has also been studied. Results showed that the emulsions prepared are steadily stable after one weeks of storage without any separation and changes. From the observation, there are two major factor contributed to the formation of emulsion and its stability, the SNC concentration and oil content. Relatively, higher percentage of SNC resulting a higher emulsion index, whereas no emulsion was formed if oil content exceeding 50% of the systems. The most suitable formulation to prepare Pickering Emulsion is the oil content around 45% and SNC concentration around 2 - 4%.

  3. The major proteins of the seed of the fruit of the date palm (Phoenix dactylifera L.): Characterisation and emulsifying properties.

    PubMed

    Akasha, Ibrahim; Campbell, Lydia; Lonchamp, Julien; Euston, Stephen R

    2016-04-15

    Proteins were extracted from the seeds of the fruit of the date palm. Proteomic analysis and SDS-PAGE electrophoresis of the extracted proteome suggested it is composed predominantly of the storage proteins glycinin and β-conglycinin, although over 300 proteins were detected, 91 of which were identified with confidence. In terms of protein type, the largest numbers of proteins were associated, not unexpectedly, with metabolism and energy functions, which reflected the requirements of the germinating and growing embryonic plant. The emulsifying properties of the extracted proteins were determined. Date seed protein exhibited a lower emulsifying activity than either whey protein concentrate or soy protein isolate, at each of the pH values tested. However, the stability of the emulsions produced with all three proteins was very similar at the different pH values. This combination of large emulsion droplet size and high emulsion stability properties suggested that the date proteins may adsorb as large protein oligomers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization and emulsifying properties of β-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction.

    PubMed

    Bi, Binwei; Yang, Hao; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2017-01-01

    Gum Acacia Seyal (ASY) is less valued than is gum Acacia Senegal, due to its poor emulsifying ability. The present study investigated the Maillard reaction between ASY and β-lactoglobulin (BLG) and its impact on the emulsifying properties of ASY. The reaction products of BLG/ASY mixture (r=1/4), prepared by dry-heating at 60°C and a relative humidity of 79%, as a function of incubation time, were characterized by SDS-PAGE, GPC-MALLS and DSC. The results showed that 12-24h of dry-heating under the given conditions was sufficient for conjugation, meanwhile avoiding the formation of deeply coloured and insoluble melanoidins. More than 64% of the protein was incorporated into ASY, resulting in a two-fold increase in arabinogalactan-protein (AGP) content and 3.5 times increase in weight-average molecular mass of ASY. The conjugation with BLG markedly improved the stability of ASY-stabilized emulsions and their resistance against severe conditions, such as low pH and high saline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development and investigation of a selective latex flocculant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, I.N.; Preobrazhenskii, B.P.; Tsyrlov, M.Ya.

    1982-01-01

    Investigations were made on the use of two synthetic latexes as selective flocculants in the flotation cleaning of coal. The most commonly used latex in the industry contained sodium dibutylnaphthalenesulfonate, which is a biologically ''hard'' emulsifier. It was determined that butadiene-styrene latexes may successfully be used as selective coal sludge flocculants. The most efficient was a latex synthesized using biodegradable emulsifiers--potassium soaps of disproportionated rosin with a small quantity of synthetic fatty acids. Also, it was concluded that the values of the ash level in the flotation concentrate and tailings could be controlled by regulating the latex consumption.

  6. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    PubMed

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  7. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice.

    PubMed

    Lecomte, Manon; Couëdelo, Leslie; Meugnier, Emmanuelle; Plaisancié, Pascale; Létisse, Marion; Benoit, Bérengère; Gabert, Laure; Penhoat, Armelle; Durand, Annie; Pineau, Gaëlle; Joffre, Florent; Géloën, Alain; Vaysse, Carole; Laugerette, Fabienne; Michalski, Marie-Caroline

    2016-03-01

    Enhanced adiposity and metabolic inflammation are major features of obesity that could be impacted by dietary emulsifiers. We investigated in high-fat fed mice the effects of using a new polar lipid (PL) emulsifier from milk (MPL) instead of soybean lecithin (soybean PL [SPL]) on adipose tissue and intestinal mucosa function. Four groups of C57BL6 mice received for 8 wks a low-fat (LF) diet or a high-fat diet devoid of PLs or an high-fat diet including MPL (high-fat-MPL) or SPL (high-fat-SPL). Compared with high-fat diet, high-fat-SPL diet increased white adipose tissue (WAT) mass (p < 0.05), with larger adipocytes (p < 0.05) and increased expression of tumor necrosis factor alpha, monochemoattractant protein-1, LPS-binding protein, and leptin (p < 0.05). This was not observed with high-fat-MPL diet despite similar dietary intakes and increased expression of fatty acid transport protein 4 and microsomal TG transfer protein, involved in lipid absorption, in upper intestine (p < 0.05). High-fat-MPL mice had a lower expression in WAT of cluster of differentiation 68, marker of macrophage infiltration, versus high-fat and high-fat-SPL mice (p < 0.05), and more goblet cells in the colon (p < 0.05). Unlike SPL, MPL in the high-fat diet did not induce WAT hypertrophy and inflammation but increased colonic goblet cells. This supports further clinical exploration of different sources of dietary emulsifiers in the frame of obesity outbreak. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Proximal chemical composition and functional properties of fresh meat of crab claws (Homalaspis plana)].

    PubMed

    Abugoch, L; Barrios, J; Guarda, A

    1996-12-01

    The research of alternative technological processes is being necessary in order to obtain a better utilization of hydrobiologic resources and food products, with higher added value. Crab (Homolaspis plana) is a crustacean found along the Chilean coast, whose flesh is exported as a frozen product. The resource crab is scantly studied in Chile and could became an excellent raw material for "delicatessen" products, with a high market value. The proximal composition, through the protein, fat, moisture and ashes content was determined. The non nitrogen extract was calculated by difference. The functional properties (water retention, emulsifying and gel-forming capacities) of fresh crab claws meat without additives were measured. The proximal composition for the claw meat was: 79,34 +/- 1.12% moisture, 16.75 +/- 1.29% protein, 1.86 +/- 0.11% ashes, 0.11 +/- 0.01 fat % and 1.93 +/- 1.07% N.N.E. In relation with the emulsifying capacity, claw meat was able to emulsify 2,259.03 +/- 73.04 g vegetal oil/g protein. The water retention was 154.49 +/- 6.85% representing the increase in mass percent; and the force of the gel formed in claw meat was 195.3 +/- 17.16 g-force x cm. According to these results, the claw crab is an attractive food, with a high protein and low fat content. Crab meat showed an excellent emulsifying capacity and water retention, so it can be used as a good raw material for the development of smearing products. In the case of gel-like products, further studies will be required, in order to optimize the conditions in which a stronger gel could be obtained.

  9. Selective factors governing in vitro β-carotene bioaccessibility: negative influence of low filtration cutoffs and alterations by emulsifiers and food matrices.

    PubMed

    Corte-Real, Joana; Richling, Elke; Hoffmann, Lucien; Bohn, Torsten

    2014-12-01

    Because of their putative health benefits, the biological fate of carotenoids after digestion has been met with much interest, and ex vivo methods using carotenoid standards to study their digestion and further metabolism have been developed. In the absence of a complex food matrix, that is, when studying isolated carotenoids, protocol conditions of gastrointestinal digestion models have to be adjusted. In this investigation, we hypothesized that certain selected factors would significantly influence the bioaccessibility of β-carotene in vitro. The factors considered included (i) type of lipid matrix employed (milk, cream, or oil), (ii) presence/absence of emulsifiers (e.g. lecithin and taurocholate), (iii) addition of a gastric lipase, and (iv) final filtration (20 or 200 nm) of the digesta. Adding an emulsifier mixture (10 mg lecithin + 50 mg monoolein + 5 mg oleic acid) enhanced β-carotene bioaccessibility 3 times (P < 0.001), whereas additional taurocholate and the presence/absence of gastric lipase added before intestinal digestion had no significant effect. β-Carotene bioaccessibility was superior with oil than with milk (18.8% ± 0.7% and 6.1% ± 0.7%, respectively; P = 0.03), especially after filtration, thus suggesting incomplete micelle formation after addition of milk. Filtration through 20 nm filters reduced carotenoid concentration in the aqueous fraction (from 7.1% ± 0.2% to 5.5% ± 0.2% in samples digested with canola oil, P < 0.001), indicating that not all formed micelles compared in size with those normally formed in vivo. When studying carotenoid standards during in vitro digestion, care should be taken to separate mixed micelles by filtration, and the choice of emulsifier and matrix should be considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Adelphi-Goddard emulsified fuel project. [using water/oil emulsions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.

  11. Effect of type of emulsifiers and antioxidants on oxidative stability, colour and fatty acid profile of low-fat beef burgers enriched with unsaturated fatty acids and phytosterols.

    PubMed

    Pennisi Forell, S C; Ranalli, N; Zaritzky, N E; Andrés, S C; Califano, A N

    2010-10-01

    Low-fat beef burgers were formulated using fresh lean meat, 9.9% oleic sunflower oil and 0.1% deodorized fish oil to obtain a product enriched in unsaturated fatty acids. The effect of two emulsifiers (whey proteins or egg white) and natural antioxidants (tocopherols and/or oregano-rosemary), as well as the influence of frozen storage on the oxidative stability, colour, and fatty acid (FA) profile was determined on the cooked products. Whey proteins protected better against oxidation than egg white, and tocopherols demonstrated an adequate antioxidant effect in formulations with egg white. For all the formulations the unsaturated/saturated FA ratio was higher than 5.8, showing a good lipid balance in the products. The consumption of 100g of the cooked product would provide 6% of the recommended daily intake of phytosterols suggested to decrease cholesterol and the risk of heart disease. Formulated low-fat burgers with pre-emulsified oils and phytosterols could be considered to be potentially functional foodstuffs. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of fluorinated polyacrylate latex emulsified with novel surfactants.

    PubMed

    Zhang, Cuifeng; Xu, Tingting; Bao, Zhongbin; Chen, Lijun

    2017-01-01

    The fluorinated polyacrylate latex were successfully prepared with semi- continuous seeded emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA) and hexafluorobutyl methacrylate (HFMA) which was initiated with potassium persulfate (KPS) initiator and emulsified with the novel mixed surfactants of sodium lauryl glutamate (SLG) and alkylphenol ethoxylates (OP-10). The structure of the resultant latex was confirmed by Fourier transform infrared spectroscopy (FTIR). The particle size of the latex was measured by Zetatrac dynamic light scattering detector. The film of latex was tested by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and contact angle (CA). The optimum conditions of preparing the novel fluorinated polyacrylate latex are optimized and the results are as follows: the amount of emulsifiers is 4.0%; mass ratio of SLG to OP-10 is 1:1, the amount of the initiator is 0.6%. The mass ratio of MMA to BA is 1:1 and the amount of HFMA is 7.0%. In this case, the conversion is high and the polymerization stability is good. In addition, the water resistance and thermal properties of the latex films were improved significantly in comparison with the film of the latex prepared without the fluorinated monomer.

  13. Synthesis and characterization of fluorinated polyacrylate latex emulsified with novel surfactants

    PubMed Central

    Zhang, Cuifeng; Xu, Tingting; Bao, Zhongbin; Chen, Lijun

    2017-01-01

    Abstract The fluorinated polyacrylate latex were successfully prepared with semi- continuous seeded emulsion polymerization of butyl acrylate (BA), methyl methacrylate (MMA) and hexafluorobutyl methacrylate (HFMA) which was initiated with potassium persulfate (KPS) initiator and emulsified with the novel mixed surfactants of sodium lauryl glutamate (SLG) and alkylphenol ethoxylates (OP-10). The structure of the resultant latex was confirmed by Fourier transform infrared spectroscopy (FTIR). The particle size of the latex was measured by Zetatrac dynamic light scattering detector. The film of latex was tested by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and contact angle (CA). The optimum conditions of preparing the novel fluorinated polyacrylate latex are optimized and the results are as follows: the amount of emulsifiers is 4.0%; mass ratio of SLG to OP-10 is 1:1, the amount of the initiator is 0.6%. The mass ratio of MMA to BA is 1:1 and the amount of HFMA is 7.0%. In this case, the conversion is high and the polymerization stability is good. In addition, the water resistance and thermal properties of the latex films were improved significantly in comparison with the film of the latex prepared without the fluorinated monomer. PMID:29491785

  14. Effect of emulsion size and shelf life of azadirachtin A on the bioefficacy of neem (Azadirachta indica A. Juss) emulsifiable concentrates.

    PubMed

    Kumar, L; Parmar, B S

    2000-08-01

    In a study of 33 recipes of neem oil based emulsifiable concentrates, the specific surface area of the emulsions and cream plus oil layer separation in emulsions at 24 h revealed a correlation of -0.6874 between them and correlations of -0.8940 and 0.6972, respectively, with bioefficacy (LC(50)) against the 3-day-old second-instar larvae of the Bihar hairy caterpillar, Spilosoma obliqua Walker. Nearly 96-99% of azadirachtin A in emulsifiable concentrates (aza-A content = 617.93-1149.65 ppm) degraded during the heat stability test at 54 +/- 1 degrees C for 14 days with half-lives ranging between 1.84 and 4.53 days. The LC(50) values against S. obliqua were, however, statistically at par in both the pre- and the post-heat-treated samples, suggesting a similar effect of azadirachtin A and its degradation products on the bioactivity. The half-life of azadirachtin A could be enhanced by storing the concentrates at lower temperatures. A low pH of the formulation solvent did not check the degradation of azadirachtin A, as reported with aqueous solutions in the literature.

  15. A facile method for emulsified oil-water separation by using polyethylenimine-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Qi, Dongming; Zhang, Dong; Lü, Yulan; Zhao, Hongting

    2018-04-01

    Oil spills and oily wastewater discharges from ships and industrial activities have serious impacts on the environment and human health. In this study, a class of easy-to-synthesize polyethylenimine (PEI)-coated Fe3O4 magnetic nanoparticles (MNPs) was successfully synthesized via a one-step coprecipitation method. The synthesized PEI-coated Fe3O4 MNPs were characterized by using multiple technologies and applied in emulsified oil-water separation for the first time. It was found that the PEI effectively tuned the surface charge and wettability of MNPs. As a result, the PEI-coated MNPs could successfully assemble at the oil-water interface and promote the coalescence of oil droplets, thereby facilitating the subsequent magnetic separation. Results showed that the oil-water separation performance was superior and enhanced with the increase of ionic strength. Recycling experiment indicated that the PEI-coated MNPs could be reused up to six times without showing a significant decrease in separation efficiency. All of these results suggested that the PEI-coated MNP could potentially be used as a class of promising nanomaterials for emulsified oil-water separation. [Figure not available: see fulltext.

  16. Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (-)-Epigallocatechin-3-gallate and NaCl.

    PubMed

    Feng, Xianchao; Chen, Lin; Lei, Na; Wang, Shuangxi; Xu, Xinglian; Zhou, Guanghong; Li, Zhixi

    2017-04-05

    The dose-dependent effects of (-)-epigallocatechin-3-gallate (EGCG; 0, 100, or 1000 ppm) on the textural properties and stability of a myofibrillar protein (MP) emulsion gel were investigated. Addition of EGCG significantly inhibited formation of carbonyl but promoted the loss of both thiol and free amine groups. Addition of EGCG, particularly at 1000 ppm, initiated irreversible protein modifications, as evidenced by surface hydrophobicity changes, patterns in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and differential scanning calorimetry. These results indicated that MP was modified by additive reactions between the quinone of EGCG and thiols and free amines of proteins. These adducts increased cooking loss and destabilized the texture, especially with a large EGCG dose. Confocal laser scanning microscopy and scanning electron microscopy images clearly indicated the damage to the emulsifying properties and the collapse of the internal structure when the MP emulsion gel was treated with a large EGCG dose. A high concentration of NaCl (0.6 M) improved modification of MP and increased the rate of deterioration of the internal structure, especially with the large EGCG dose (1000 ppm), resulting in an MP emulsion gel with extremely unstable emulsifying properties.

  17. Plasma secretin, plasma cholecystokinin, pancreaticobiliary secretion, and fat absorption: effect of duodenal osmolality and polysorbate 80.

    PubMed

    Olsen, O; Schaffalitzky de Muckadell, O B; Cantor, P

    1987-11-01

    In 20 normal persons we investigated the effects of duodenal osmolality on the release of secretin and cholecystokinin (CCK), pancreaticobiliary secretion, and fat absorption after intestinal infusion of emulsified oleic acid (pH 6.0). The release of CCK was found to be unaffected by the changes in osmolality, whereas the plasma levels of secretin were affected in parallel with volume and bicarbonate secretion. An inverse relation was found between fatty acid absorption and release of secretin and bicarbonate secretion but not between fatty acid absorption and release of CCK. It is suggested that the secretin and CCK cells respond differently to emulsified oleic acid.

  18. Properties of protein powders from arrowtooth flounder (Atheresthes stomias) and herring (Clupea harengus) byproducts.

    PubMed

    Sathivel, Subramaniam; Bechtel, Peter J; Babbitt, Jerry; Prinyawiwatkul, Witoon; Negulescu, Ioan I; Reppond, Kermit D

    2004-08-11

    Functional, nutritional, and thermal properties of freeze-dried protein powders (FPP) from whole herring (WHP), herring body (HBP), herring head (HHP), herring gonad (HGP), and arrowtooth flounder fillets (AFP) were evaluated. The FPP samples have desirable nutritional and functional properties and contained 63-81.4% protein. All FPP samples had desirable essential amino acid profiles and mineral contents. The emulsifying and fat adsorption capacities of all FPP samples were higher than those of soy protein concentrate. The emulsifying stability of WHP was lower than that of egg albumin but greater than that of soy protein concentrate. Thermal stability of the FPP samples is in the following order: HGP > HBP > WHP > HHP > AFP.

  19. Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems.

    PubMed

    Içten, Elçin; Purohit, Hitesh S; Wallace, Chelsey; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2017-05-30

    The improvements in healthcare systems and the advent of the precision medicine initiative have created the need to develop more innovative manufacturing methods for the delivery and production of individualized dosing and personalized treatments. In accordance with the changes observed in healthcare systems towards more innovative therapies, this paper presents dropwise additive manufacturing of pharmaceutical products (DAMPP) for small scale, distributed manufacturing of individualized dosing as an alternative to conventional manufacturing methods A dropwise additive manufacturing process for amorphous and self-emulsifying drug delivery systems is reported, which utilizes drop-on-demand printing technology for automated and controlled deposition of melt-based formulations onto inert tablets. The advantages of drop on demand technology include reproducible production of droplets with adjustable sizing and high placement accuracy, which enable production of individualized dosing even for low dose and high potency drugs. Flexible use of different formulations, such as lipid-based formulations, allows enhancement of the solubility of poorly water soluble and highly lipophilic drugs with DAMPP. Here, DAMPP is used to produce solid oral dosage forms from melts of an active pharmaceutical ingredient and a surfactant. The dosage forms are analyzed to show the amorphous nature, self-emulsifying drug delivery system characteristics and dissolution behavior of these formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    PubMed Central

    Kelly, Alan L.

    2017-01-01

    The effects of the initial emulsion structure (droplet size and emulsifier) on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT) digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI)-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN)-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers. PMID:28930195

  1. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH.

    PubMed

    Zeeb, Benjamin; Saberi, Amir Hossein; Weiss, Jochen; McClements, David Julian

    2015-03-21

    Delivery systems based on filled hydrogel particles (microgels) can be fabricated from natural food-grade lipids and biopolymers. The potential for controlling release characteristics by modulating the electrostatic interactions between emulsifier-coated lipid droplets and the biopolymer matrix within hydrogel particles was investigated. A multistage procedure was used to fabricate calcium alginate beads filled with lipid droplets stabilized by non-ionic, cationic, anionic, or zwitterionic emulsifiers. Oil-in-water emulsions stabilized by Tween 60, DTAB, SDS, or whey protein were prepared by microfluidization, mixed with various alginate solutions, and then microgels were formed by simple extrusion into calcium solutions. The microgels were placed into a series of buffer solutions with different pH values (2 to 11). Lipid droplets remained encapsulated under acidic and neutral conditions, but were released under highly basic conditions (pH 11) due to hydrogel swelling when the alginate concentration was sufficiently high. Lipid droplet release increased with decreasing alginate concentration, which could be attributed to an increase in the pore size of the hydrogel matrix. These results have important implications for the design of delivery systems to entrap and control the release of lipophilic bioactive components within filled hydrogel particles.

  2. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib.

    PubMed

    Perlman, M E; Murdande, S B; Gumkowski, M J; Shah, T S; Rodricks, C M; Thornton-Manning, J; Freel, D; Erhart, L C

    2008-03-03

    Torcetrapib is a highly lipophilic (Clog P=7.45) and water insoluble cholesteryl ester transfer protein (CETP) inhibitor developed for the treatment of atherosclerosis. Self-emulsifying drug delivery system (SEDDS) formulations have been developed to reduce the food effect observed in early clinical trials using medium chain triglyceride (MCT) softgels and to increase the dose per capsule. MCT/Triacetin/Polysorbate 80/Capmul MCM (20/30/20/30) (MTPC) increased fasted exposure and thus reduced the food effect from 5- to 3-fold in dogs at a dose of 90 mg. Self-emulsifying formulations also accelerated absorption and generally decreased variability. Use of the lipophilic, GRAS cosolvent triacetin allowed a 2-fold increase in the dose per capsule. For the three formulations evaluated in dogs that showed significant differences in absorption, emulsion droplet size did not appear to play a significant role. Absorption did increase with Cremophor RH40 content, and at 50% Cremophor RH40 there was no food effect (at 30 mg). High polar surfactant content also resulted in poor dose proportionality, while there was good dose proportionality for MTPC. Studies of in vitro lipolysis are being conducted to aid in understanding the in vitro/in vivo relationships for torcetrapib SEDDS absorption.

  3. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems.

    PubMed

    Cofrades, S; Antoniou, I; Solas, M T; Herrero, A M; Jiménez-Colmenero, F

    2013-11-01

    The aim of this paper was to prepare and characterise multiple emulsions and assess their utility as pork backfat replacers in meat gel/emulsion model systems. In order to improve the fat content (in quantitative and qualitative terms) pork backfat was replaced by a water-in-oil-in-water emulsion (W1/O/W2) prepared with olive oil (as lipid phase), polyglycerol ester of polyricinoleic acid (PGPR) as a lipophilic emulsifier, and sodium caseinate (SC) and whey protein concentrate (WP) as hydrophilic emulsifiers. The emulsion properties (particle size and distribution, stability, microstructure) and meat model system characteristics (composition, texture, fat and water binding properties, and colour) of the W1/O/W2, as affected by reformulation, were evaluated. Multiple emulsions showed a well-defined monomodal distribution. Freshly prepared multiple emulsions showed good thermal stability (better using SC) with no creaming. The meat systems had good water and fat binding properties irrespective of formulation. The effect on texture by replacement of pork backfat by W1/O/W2 emulsions generally depends on the type of double emulsion (associated with the hydrophilic emulsifier used in its formulation) and the fat level in the meat system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Production of coconut protein powder from coconut wet processing waste and its characterization.

    PubMed

    Naik, Aduja; Raghavendra, S N; Raghavarao, K S M S

    2012-07-01

    Virgin coconut oil (VCO) has been gaining popularity in recent times. During its production, byproducts such as coconut skim milk and insoluble protein are obtained which are underutilized or thrown away to the environment at present. This study deals with utilization of these byproducts to obtain a value-added product, namely, coconut protein powder. When coconut milk was subjected to centrifugation, three phases, namely, fat phase (coconut cream), aqueous phase (coconut skim milk), and solid phase (insoluble protein) were obtained. The coconut skim milk and insoluble protein were mixed and homogenized before spray drying to obtain a dehydrated protein powder. The proximate analysis of the powder showed high protein content (33 % w/w) and low fat content (3 % w/w). Protein solubility was studied as a function of pH and ionic content of solvent. Functional properties such as water hydration capacity, fat absorption capacity, emulsifying properties, wettability, and dispersibility of coconut protein powder were evaluated along with morphological characterization, polyphenol content, and color analysis. Coconut protein powder has shown to have good emulsifying properties and hence has potential to find applications in emulsified foods. Sensory analysis showed high overall quality of the product, indicating that coconut protein powder could be a useful food ingredient.

  5. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles.

    PubMed

    Xie, ShuYu; Wang, SiLiang; Zhao, BaoKai; Han, Chao; Wang, Ming; Zhou, WenZhong

    2008-12-01

    Most proteins are hydrophilic and poorly encapsulated into the hydrophobic matrix of solid lipid nanoparticles (SLN). To solve this problem, poly (lactic-co-glycolic acid) (PLGA) was utilized as a lipophilic polymeric emulsifier to prepare hydrophilic protein-loaded SLN by w/o/w double emulsion and solvent evaporation techniques. Hydrogenated castor oil (HCO) was used as a lipid matrix and bovine serum albumin (BSA), lysozyme and insulin were used as model proteins to investigate the effect of PLGA on the formulation of the SLN. The results showed that PLGA was essential for the primary w/o emulsification. In addition, the stability of the w/o emulsion, the encapsulation efficiency and loading capacity of the nanoparticles were enhanced with the increase of PLGA concentration. Furthermore, increasing PLGA concentration decreased zeta potential significantly but had no influence on particle size of the SLN. In vitro release study showed that PLGA significantly affected the initial burst release, i.e. the higher the content of PLGA, the lower the burst release. The released proteins maintained their integrity and bioactivity as confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and biological assay. These results demonstrated that PLGA was an effective emulsifier for the preparation of hydrophilic protein-loaded SLN.

  6. Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers.

    PubMed

    Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua

    2018-05-02

    The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.

  7. Self-double-emulsifying drug delivery system (SDEDDS): a new way for oral delivery of drugs with high solubility and low permeability.

    PubMed

    Qi, Xiaole; Wang, Lishuang; Zhu, Jiabi; Hu, Zhenyi; Zhang, Jie

    2011-05-16

    Water-in-oil-in-water (w/o/w) double emulsions are potential for enhancing oral bioavailability of drugs with high solubility and low permeability, but their industrial application is limited due to the instability. Herein, we developed a novel formulation, self-double-emulsifying drug delivery systems (SDEDDS) by formulating mixtures of hydrophilic surfactants and water-in-oil (w/o) emulsions, which were easier to be stable through formulations optimization. SDEDDS can spontaneously emulsify to water-in-oil-in-water (w/o/w) double emulsions in the mixed aqueous gastrointestinal environment, with drugs encapsulated in the internal water phase of the double emulsions. We employed SDEDDS to improve the oral absorption of pidotimod, a peptide-like drug with high solubility and low permeability. The optimized pidotimod-SDEDDS were found to be stable up to 6 months under 25°C. Plasma concentration-time profiles from pharmacokinetic studies in rats dosed with SDEDDS showed 2.56-fold (p<0.05) increased absorption of pidotimod, compared to the pidotimod solution. Histopathologic studies confirmed that SDEDDS exerted absorption promoting effect without serious local damages. These studies demonstrate that SDEDDS may be a promising strategy for peroral delivery of peptide and peptidomimetic drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Emulsifying properties of acidic subunits of soy 11S globulin.

    PubMed

    Liu, M; Lee, D S; Damodaran, S

    1999-12-01

    The emulsifying properties of the acidic subunits (AS11S) isolated from soy glycinin (11S) have been studied. The isolated AS11S existed in solution mainly as a dimer species. Circular dichroic analysis indicated only a slight increase in aperiodic structure and no significant difference in beta-sheet structure when compared with those of soy 11S. At similar experimental conditions, the emulsifying properties of AS11S were superior to those of soy 11S and heat-denatured 11S. Emulsions prepared with 1% AS11S remained very stable without any visible oil separation for more than a month under gentle agitating conditions, whereas those prepared with 1% 11S collapsed and separated into phases within 2-3 days. The AS11S-stabilized emulsions were very stable below 0.15 M ionic strength. Studies on the rate of adsorption and surface tension reduction at the air-water interface showed that AS11S was significantly more surface active than soy 11S. It is proposed that, because the mass fraction of acidic subunits in soy 11S is approximately 60% and it is relatively easy to separate the acidic subunits from soy 11S, it may be industrially feasible to develop an economical process to isolate functional acidic subunits for use in emulsion-based food products.

  9. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  10. Rapidly disintegrating vagina retentive cream suppositories of progesterone: development, patient satisfaction and in vitro/in vivo studies.

    PubMed

    Bendas, Ehab Rasmy; Basalious, Emad B

    2016-01-01

    Our objective was to develop novel vagina retentive cream suppositories (VRCS) of progesterone having rapid disintegration and good vaginal retention. VRCS of progesterone were prepared using oil in water (o/w) emulsion of mineral oil or theobroma oil in hard fat and compared with conventional vaginal suppositories (CVS) prepared by hard fat. VRCS formulations were tested for content uniformity, disintegration, melting range, in vitro release and stability studies. The most stable formulation (VRCS I) was subjected to scaling-up manufacturing and patients' satisfaction test. The rapid disintegration, good retentive properties are applicable through the inclusion of emulsified theobroma oil rather than hydrophilic surfactant into the hard fat bases. The release profile of progesterone from VRCS I showed a biphasic pattern due to the formation of progesterone reservoir in the emulsified theobroma oil. All volunteers involved in patients' satisfaction test showed high satisfactory response to the tested formulation (VRCS). The in vivo pharmacokinetic study suggests that VRCS of progesterone provided higher rate and extent of absorption compared to hard fat based suppositories. Our results proposed that emulsified theobroma oil could be promising to solve the problems of poor patients' satisfaction and variability of drug absorption associated with hard fat suppositories.

  11. Development of rectal self-emulsifying suspension of a moisture-labile water-soluble drug.

    PubMed

    Kauss, Tina; Gaubert, Alexandra; Tabaran, Luc; Tonelli, Giovanni; Phoeung, Thida; Langlois, Marie-Hélène; White, Nick; Cartwright, Anthony; Gomes, Melba; Gaudin, Karen

    2018-01-30

    Self-emulsifying drug delivery systems, commonly used for oral delivery of poorly soluble compounds, were used to formulate water soluble but moisture labile compounds for rectal application. The objective was to use the oily phase of the system to formulate a liquid, non-aqueous product while obtaining the advantages of self-emulsification, rapid contact with the rectal mucosa and rapid absorption post-administration. Ceftriaxone was used as a model drug and the human bile salt sodium chenodeoxycholate was used as an absorption enhancer. After preliminary screening of 23 excipients, based on their emulsification ability and emulsion fineness in binary and ternary mixtures, a full factorial design was used to screen different formulations of three preselected excipients. The optimal formulation contained 60% of excipients, namely Capryol 90, Kolliphor EL and Kolliphor PS20 in 4 : 6 : 6 ratio and 40% of a powder blend that included 500 mg of ceftriaxone. Characterization of the system showed that it complied with the requirements for rectal administration, in particular rapid emulsification in a small quantity of liquid. Rabbit bioavailability showed rapid absorption of ceftriaxone, achieving 128% bioavailability compared to powder control formulation. These results demonstrated the potential of self-emulsifying formulations for rectal administration of Class 3 BCS drugs. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Scalable Method to Produce Biodegradable Nanoparticles that Rapidly Penetrate Human Mucus

    PubMed Central

    Xu, Qingguo; Boylan, Nicholas J.; Cai, Shutian; Miao, Bolong; Patel, Himatkumar; Hanes, Justin

    2013-01-01

    Mucus typically traps and rapidly removes foreign particles from the airways, gastrointestinal tract, nasopharynx, female reproductive tract and the surface of the eye. Nanoparticles capable of rapid penetration through mucus can potentially avoid rapid clearance, and open significant opportunities for controlled drug delivery at mucosal surfaces. Here, we report an industrially scalable emulsification method to produce biodegradable mucus-penetrating particles (MPP). The emulsification of diblock copolymers of poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) using low molecular weight (MW) emulsifiers forms dense brush PEG coatings on nanoparticles that allow rapid nanoparticle penetration through fresh undiluted human mucus. In comparison, conventional high MW emulsifiers, such as polyvinyl alcohol (PVA), interrupts the PEG coating on nanoparticles, resulting in their immobilization in mucus owing to adhesive interactions with mucus mesh elements. PLGA-PEG nanoparticles with a wide range of PEG MW (1, 2, 5, and 10 kDa), prepared by the emulsification method using low MW emulsifiers, all rapidly penetrated mucus. A range of drugs, from hydrophobic small molecules to hydrohilic large biologics, can be efficiently loaded into biodegradable MPP using the method described. This readily scalable method should facilitate the production of MPP products for mucosal drug delivery, as well as potentially longer-circulating particles following intravenous administration. PMID:23751567

  13. A novel surfactant-free lipid-based formulation for improving oral bioavailability of loratadine using colloidal silicon dioxide as emulsifier and solid carrier.

    PubMed

    Huang, Ri; Tan, Yonggang; Shen, Lao; Wang, Tao; Quan, Dongqin

    2018-05-08

    The purpose of this study was to develop an innovative surfactant-free lipid-based formulation (LF) for improving oral bioavailability of loratadine based on using solid particles colloidal silicon dioxide (CSD) as emulsifier and solid carrier. Loratadine was dissolved in oil solution with the aid of co-solvent and LF were prepared by a simple adsorption and milling technique. The LF Powder was evaluated in terms of angle of repose and X-ray powder diffraction. After dispersing and emulsifying in water, the particle size and morphology were also characterized. In vitro dissolution and pharmacokinetic behavior in vivo were also studied. Orthogonal design indicated that the amount of CSD in formulations had a major and significant influence on emulsification. The optimal formulation showed LF with good flowability and without crystallization or deposition of loratadine in it. After dispersing in water, an emulsion with mean droplet size of 1.2μm was obtained. Although the dissolution of drug from LF was slower in vitro in acidic aqueous solution, pharmacokinetic studies in vivo showed that the bioavailability of loratadine increased 2.49-fold by CF compared to commercial tablet. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Self-nanoemulsifying drug delivery system for enhanced bioavailability and improved hepatoprotective activity of biphenyl dimethyl dicarboxylate.

    PubMed

    El-Laithy, Hanan M

    2008-07-01

    Biphenyl Dimethyl Dicarboxylate (BDD) is insoluble in aqueous solution and the bioavailability after oral administration is low. Self-nanoemulsifying drug delivery system (SNEDDS) containing BDD has been successfully prepared using carefully selected ingredients which are less affected by pH and ionic strength changes to improve its bioavailability. SNEDDS is an isotropic mixture of lipid, surfactant, and cosurfactant which are spontaneously emulsified in aqueous medium under gentle digestive motility in the gastrointestinal tract. Pseudo ternary phase diagrams composed of various excipients were plotted to identify self -nano -emulsifying area. Droplet size changes upon dilution with aqueous media and in vitro release of BDD from SNEDDS in 0.1N HCl and phosphate buffer (pH 7.4) were studied and compared with commercial chinese pilules and Pennel capsules. The hepatoprotective activity upon oral administration of SNEDDS against carbon tetrachloride-induced oxidative stress in albino rats was assessed by measuring biochemical parameters like serum glutamic oxalacetate transaminase (SGOT), serum glutamic pyruvate transaminase (SGPT) and lactate dehydrogenase (LDH). Results showed that using a proper ratio of Tween 80 to Transcutol as surfactant and co-surfactant respectively and Miglyol 812 as oil to surfactants mixture resulted in production of infinitely diluted formulations in nano droplet size range. BDD self nano emulsified formula composed of 20% Miglyol 812, 60% Tween 80 and 20% Transcutol released 99% of the drug very rapidly within 10-15 minutes regardless of the pH condition. The oral absorption and bioavailability of BDD self nano emulsified formula in albino rats were significantly enhanced (P<0.01) with an average improvement of 1.7 and 6-folds that of commercial chinese pilules and Pennel capsules respectively. This improvement was also confirmed histopathologically in chemically injured rats and by the significant decrease in elevated liver enzymes level.

  15. Variation in emulsion stabilization behavior of hybrid silicone polymers with change in molecular structure: Phase diagram study.

    PubMed

    Mehta, Somil C; Somasundaran, P; Kulkarni, Ravi

    2009-05-15

    Silicone oils are widely used in cosmetics and personal care applications to improve softness and condition skin and hair. Being insoluble in water and most hydrocarbons, a common mode of delivering them is in the form of emulsions. Currently most applications use polyoxyethylene (non-ionic) modified siloxanes as emulsifiers to stabilize silicone oil emulsions. However, ionically grafted silicone polymers have not received much attention. Ionic silicones have significantly different properties than the non-ionic counterpart. Thus considerable potential exists to formulate emulsions of silicones with different water/silicone oil ratios for novel applications. In order to understand the mechanisms underlying the effects of hydrophilic modifications on the ability of hybrid silicone polymers to stabilize various emulsions, this article focuses on the phase diagram studies for silicone emulsions. The emulsifying ability of functional silicones was seen to depend on a number of factors including hydrophilicity of the polymer, nature of the functional groups, the extent of modification, and the method of emulsification. It was observed that the region of stable emulsion in a phase diagram expanded with increase in shear rate. At a given shear rate, the region of stable emulsion and the nature of emulsion (water-in-oil or oil-in-water) was observed to depend on hydrophilic-hydrophobic balance of the hybrid silicone emulsifier. At a fixed amount of modification, the non-ionically modified silicone stabilized an oil-in-water emulsion, whereas the ionic silicones stabilized inverse water-in-oil emulsions. This was attributed to the greater hydrophilicity of the polyoxyethylene modified silicones than the ionic counterparts. In general, it is postulated that with progressive increase in hydrophilicity of hybrid silicone emulsifiers, their tendency to stabilize water-in-oil emulsion decreases with corresponding increase in oil-in-water emulsion. Further, this behavior is hypothesized to depend on the nature of modifying functional groups. Thus a hybrid silicone polymer can be tailored by selecting the nature and degree of hydrophilicity to obtain a desired silicone emulsion.

  16. ESR studies on the influence of physiological dissolution and digestion media on the lipid phase characteristics of SEDDS and SEDDS pellets.

    PubMed

    Abdalla, Ahmed; Mäder, Karsten

    2009-02-09

    The aim of the current study is the evaluation of a recently optimized SEDDS, composed of Solutol HS15 and medium chain glycerides, and self-emulsifying pellets by means of ESR. Tempol-benzoate (TB)-loaded SEDDS were produced and electron spin resonance (ESR) spectroscopy was used to evaluate the diluted self-emulsifying mixtures. Moreover, ESR in vitro digestion experiments were carried out to have an insight on the characteristics of the different phases formed during the digestion process and to evaluate the distribution and the localization of TB in these phases. In addition, self-emulsifying pellets were produced using nitroxide-loaded SEDDS and the microenvironment within the pellets during release process was monitored in an online process using ESR spectroscopy. After dilution of nitroxide-loaded SEDDS, the percent of TB localized in the lipophilic compartment was decreasing with increasing the surfactant fraction in the mixture. Moreover, it was found that different phases with variable viscosity and polarity were produced as a result of the enzymatic digestion of SEDDS in physiologically relevant media. This change in lipid composition has largely affected the distribution and the localization of the spin probe during the digestion process. A rapid increase in the mobility of the spin probe inside the pellets was noticed after exposure to the release media. Additionally, TB was localized within the self-emulsifying mixture environment for the time of the experiment. ESR is considered a powerful non-invasive tool to assess the microenvironment of the diluted SEDDS and to monitor in vitro digestion process. Digestion induces a change in lipid composition which can affect the solubilization capacity of the administered drug. Therefore, monitoring in vitro digestion process using ESR spectroscopy will help in providing greater understanding of the interaction between the administered drug and the digested lipid vehicles.

  17. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides.

    PubMed

    Sagalowicz, L; Guillot, S; Acquistapace, S; Schmitt, B; Maurer, M; Yaghmur, A; de Campo, L; Rouvet, M; Leser, M; Glatter, O

    2013-07-02

    The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.

  18. Optimization of Manufacturing Conditions for Improving Storage Stability of Coffee-Supplemented Milk Beverage Using Response Surface Methodology.

    PubMed

    Ahn, Sung-Il; Park, Jun-Hong; Kim, Jae-Hoon; Oh, Duk-Geun; Kim, Moojoong; Chung, Donghwa; Jhoo, Jin-Woo; Kim, Gur-Yoo

    2017-01-01

    This study aimed at optimizing the manufacturing conditions of a milk beverage supplemented with coffee, and monitoring its physicochemical and sensory properties during storage. Raw milk, skim milk powder, coffee extract, and emulsifiers were used to manufacture the beverage. Two sucrose fatty acid esters, F110 and F160, were identified as suitable emulsifiers. The optimum conditions for the beverage manufacture, which can satisfy two conditions at the same time, determined by response surface methodology (RSM), were 5,000 rpm primary homogenization speed and 0.207% sucrose fatty acid emulsifier addition. The particle size and zeta-potential of the beverage under the optimum condition were 190.1 nm and - 25.94±0.06 mV, respectively. In comparison study between F110 added group (GF110) and F160 added group (GF160) during storage, all samples maintained its pH around 6.6 to 6.7, and there was no significant difference ( p <0.05). In addition, GF110 showed significantly higher zeta-potential than GF160 ( p <0.05). The particle size of GF110 and GF160 were approximately 190.1 and 223.1 nm, respectively at initial. However, size distribution of the GF160 tended to increase during storage. Moreover, increase of the particle size in GF160 was observed in microphotographs of it during storage. The L* values gradually decreased within all groups, whereas the a* and b* values did not show significant variations ( p <0.05). Compared with GF160, bitterness, floating cream, and rancid flavor were more pronounced in the GF110. Based on the result obtained from the present study, it appears that the sucrose fatty acid ester F110 is more suitable emulsifier when it comes to manufacturing this beverage than the F160, and also contributes to extending product shelf-life.

  19. Optimization of Manufacturing Conditions for Improving Storage Stability of Coffee-Supplemented Milk Beverage Using Response Surface Methodology

    PubMed Central

    Kim, Jae-Hoon; Oh, Duk-Geun; Kim, Moojoong; Chung, Donghwa

    2017-01-01

    This study aimed at optimizing the manufacturing conditions of a milk beverage supplemented with coffee, and monitoring its physicochemical and sensory properties during storage. Raw milk, skim milk powder, coffee extract, and emulsifiers were used to manufacture the beverage. Two sucrose fatty acid esters, F110 and F160, were identified as suitable emulsifiers. The optimum conditions for the beverage manufacture, which can satisfy two conditions at the same time, determined by response surface methodology (RSM), were 5,000 rpm primary homogenization speed and 0.207% sucrose fatty acid emulsifier addition. The particle size and zeta-potential of the beverage under the optimum condition were 190.1 nm and - 25.94±0.06 mV, respectively. In comparison study between F110 added group (GF110) and F160 added group (GF160) during storage, all samples maintained its pH around 6.6 to 6.7, and there was no significant difference (p<0.05). In addition, GF110 showed significantly higher zeta-potential than GF160 (p<0.05). The particle size of GF110 and GF160 were approximately 190.1 and 223.1 nm, respectively at initial. However, size distribution of the GF160 tended to increase during storage. Moreover, increase of the particle size in GF160 was observed in microphotographs of it during storage. The L* values gradually decreased within all groups, whereas the a* and b* values did not show significant variations (p<0.05). Compared with GF160, bitterness, floating cream, and rancid flavor were more pronounced in the GF110. Based on the result obtained from the present study, it appears that the sucrose fatty acid ester F110 is more suitable emulsifier when it comes to manufacturing this beverage than the F160, and also contributes to extending product shelf-life. PMID:28316475

  20. 21 CFR 172.610 - Arabinogalactan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... intended effect as an emulsifier, stabilizer, binder, or bodying agent: Essential oils, nonnutritive... food in accordance with the following conditions: (a) Arabinogalactan is a polysaccharide extracted by...

  1. 21 CFR 172.610 - Arabinogalactan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... intended effect as an emulsifier, stabilizer, binder, or bodying agent: Essential oils, nonnutritive... food in accordance with the following conditions: (a) Arabinogalactan is a polysaccharide extracted by...

  2. Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic.

    PubMed

    Uchida, H; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Tokiwa, Y; Nakahara, T

    2000-08-01

    Various microorganisms were screened for their ability to degrade poly(tetramethylene succinate)-co-(tetramethylene adipate) (PBSA). Strain BS-3, which was newly isolated from a soil sample, was selected as the best strain. From taxonomical studies, the strain was tentatively ascribed to belong to the genus Acidovorax, most probably to the species A. delafieldii. Strain BS-3 could degrade both solid and emulsified PBSA, and also emulsified poly(tetramethylene succinate). During the degradation, a lipase activity was observed in the culture broth. This lipase activity was induced more strongly by PBSA than by tributyrin or triolein which are typical substrates of lipase. These observations strongly suggest that this lipase was involved in the PBSA biodegradation in strain BS-3.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diehl, J.F.; Adam, S.; Delincee, H.

    Toxicological evaluation of irradiated foodstuffs requires knowledge of radiation-induced chemical changes. A review of the literature reveals much information on the radiation chemistry of pure substances, e.g., dilute solutions of individual carbohydrates. Much less is known about the interactions of food constituents during irradiation. In an effort to remedy this situation, radiation effects on various compounds have been studied in systems of increasing complexity. In one approach, gas chromatography was used to investigate the radiolysis of tehalose in pure solution and in the presence of amino acids or proteins. In another approach, radiation-induced aggregation of proteins and of (/sup 14/C)tryptophanmore » with proteins was studied in the absence and presence of carbohydrates (trehalose, starch), emulsified sunfower oil, and a mixture of carbohydrates and emulsified sunflower oil.« less

  4. The effects of formulation on the immunostimulatory activity of dihydroheptaprenol.

    PubMed

    Roth, James A; Hibbard, Beth; Frank, Dagmar E; Kesl, Lyle; Robb, Edward J

    2002-01-01

    Holstein steer calves received a single injection of Miglyol (Sasol Chemical Industries, Ltd.) subcutaneously as a placebo, dihydroheptaprenol (DHP) (4 mg/kg) emulsified with lecithin subcutaneously, DHP in solution in Miglyol (4 mg/kg) subcutaneously, or DHP in solution in Miglyol (4 mg/kg) intranasally. The DHP emulsified in lecithin emulsion administered subcutaneously caused a substantial increase in body temperature, total leukocyte count, total neutrophil count, neutrophil cytochrome-c reduction, and neutrophil iodination 24 hours after administration and, for some of the parameters, at 48 hours. The DHP formulation in Miglyol did not have any of these effects when administered subcutaneously or intranasally. The carrier and formulation of DHP apparently have major effects on the biologic activity of DHP.

  5. In vivo postprandial bioavailability of interesterified-lipids in sodium-caseinate or chitosan based O/W emulsions.

    PubMed

    Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P

    2015-03-15

    Recent studies have shown that it should be possible to control lipid bioavailability through food structural approaches. Nevertheless, the gastrointestinal-tract physiological conditions must also be considered. To get a better understanding of this phenomenon, we evaluated the effect of emulsification, as well as the use of sodium caseinate or chitosan, on the postprandial bioavailability of interesterified-lipids in O/W emulsions after oral gastric feeding Sprague-Dawley rats. We verified that emulsification may increase lipid absorption, as determined after feeding sodium-caseinate emulsions. However, this result could not be generalised. Interesterified-lipids that were emulsified with chitosan were equally absorbed as those contained in non-emulsified interesterified-lipids/distilled-water blends. Copyright © 2014. Published by Elsevier Ltd.

  6. 21 CFR 131.149 - Dry cream.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: (1) Emulsifiers. (2) Stabilizers. (3) Anticaking agents. (4) Antioxidants. (5) Nutritive carbohydrate... “sweetened” if no characterizing flavoring ingredients are used but nutritive carbohydrate sweetener is added...

  7. Functional Properties of Pea (Pisum sativum, L.) Protein Isolates Modified with Chymosin

    PubMed Central

    Barać, Miroljub; Čabrilo, Slavica; Pešić, Mirjana; Stanojević, Slađana; Pavlićević, Milica; Maćej, Ognjen; Ristić, Nikola

    2011-01-01

    In this paper, the effects of limited hydrolysis on functional properties, as well as on protein composition of laboratory-prepared pea protein isolates, were investigated. Pea protein isolates were hydrolyzed for either 15, 30 and 60 min with recombined chymosin (Maxiren). The effect of enzymatic action on solubility, emulsifying and foaming properties at different pH values (3.0; 5.0; 7.0 and 8.0) was monitored. Chymosin can be a very useful agent for improvement of functional properties of isolates. Action of this enzyme caused a low degree of hydrolysis (3.9–4.7%), but improved significantly functional properties of pea protein isolates (PPI), especially at lower pH values (3.0–5.0). At these pH values all hydrolysates had better solubility, emulsifying activity and foaming stability, while longer-treated samples (60 min) formed more stable emulsions at higher pH values (7.0, 8.0) than initial isolates. Also, regardless of pH value, all hydrolysates showed improved foaming ability. A moderate positive correlation between solubility and emulsifying activity index (EAI) (0.74) and negative correlation between solubility and foam stability (−0.60) as well as between foam stability (FS) and EAI (−0.77) were observed. Detected enhancement in functional properties was a result of partial hydrolysis of insoluble protein complexes. PMID:22272078

  8. Sintering of wax for controlling release from pellets.

    PubMed

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  9. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs.

    PubMed

    Badawi, Mariam A; El-Khordagui, Labiba K

    2014-07-16

    Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (p<0.05) on emulsion CQAs, the emulsifier blend composition exerting prominent main and interaction effects. Scanning electron microscopy (SEM) of emulsion-electrospun NFs and desirability functions allowed modeling of emulsion CQAs to predict electrospinnable formulations. A QbD approach successfully built quality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours.

    PubMed

    Aluko, Rotimi E; Mofolasayo, Olawunmi A; Watts, Beverley M

    2009-10-28

    Commercial yellow pea seed flours prepared by a patented wet-milling process and pea protein isolate (PPI) were analyzed for emulsifying and foaming properties at pH 3.0, 5.0, and 7.0 and compared to soybean protein isolate (SPI). PPI and SPI formed emulsions with significantly smaller (p < 0.05) oil droplet sizes, 16-30 and 23-54 microm, respectively, than flours that primarily contained fiber such as Centara III and IV, or those that consisted mainly of starch: Centu-tex, Uptake 80 and Accu-gel. PPI was a better emulsifier than SPI at pH 7.0, and a better foaming agent at pH 3.0 and pH 7.0, although foaming capacity varied with sample concentration. Centu-tex and Uptake 80 have exactly the same chemical composition, but the latter has a much smaller flour particle size range, and had significantly smaller (p < 0.05) emulsion oil droplets. Incorporation of pea starch into SPI emulsions produced a synergistic effect that led to significant increases (p < 0.05) in emulsification capacity (reduced emulsion oil droplet size) when compared to SPI or starch alone. These results showed that PPI had generally significantly higher (p < 0.05) emulsion and foam forming properties than SPI, and that pea starch could be used to improve the quality of SPI-stabilized food emulsions.

  11. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems.

    PubMed

    Vasconcelos, Teófilo; Marques, Sara; Sarmento, Bruno

    2018-02-01

    Self-emulsifying drug delivery systems (SEDDS) are one of the most promising technologies in the drug delivery field, particularly for addressing solubility and bioavailability issues of drugs. The development of these drug carriers excessively relies in visual observations and indirect determinations. The present manuscript intended to describe a method able to measure the emulsification of SEDDS, both micro and nano-emulsions, able to measure the droplet size and to evaluate the physical stability of these formulations. Additionally, a new process to evaluate the physical stability of SEDDS after emulsification was also proposed, based on a cycle of mechanical stress followed by a resting period. The use of a multiparameter continuous evaluation during the emulsification process and stability was of upmost value to understand SEDDS emulsification process. Based on this method, SEDDS were classified as fast and slow emulsifiers. Moreover, emulsification process and stabilization of emulsion was subject of several considerations regarding the composition of SEDDS as major factor that affects stability to physical stress and the use of multicomponent with different properties to develop a stable and robust SEDDS formulation. Drug loading level is herein suggested to impact droplets size of SEDDS after dispersion and SEDDS stability to stress conditions. The proposed protocol allows an online measurement of SEDDS droplet size during emulsification and a rationale selection of excipients based on its emulsification and stabilization performance. Copyright © 2017. Published by Elsevier B.V.

  12. Characterization of flaxseed oil emulsions.

    PubMed

    Lee, Pei-En; Choo, Wee-Sim

    2015-07-01

    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).

  13. Emulsifying and Foaming Properties of Different Protein Fractions Obtained from a Novel Lupin Variety AluProt-CGNA(®) (Lupinus luteus).

    PubMed

    Burgos-Díaz, César; Piornos, José A; Wandersleben, Traudy; Ogura, Takahiro; Hernández, Xaviera; Rubilar, Mónica

    2016-07-01

    The use of vegetable proteins as food ingredient is becoming increasingly important due to their high versatility and environmental acceptability. This work describes a chemical characterization and techno-functional properties (emulsifying and foaming properties) of 3 protein fractions obtained from a protein-rich novel lupin variety, AluProt-CGNA(®) . This nongenetically modified variety have a great protein content in dehulled seeds (60.6 g protein/100 g, dry matter), which is higher than soybean and other lupin varieties. A simple procedure was utilized to obtain 3 different fractions by using alkali solubilization and isoelectric precipitation. Fractions 1 and 3 were mainly composed of protein and polysaccharides (NNE), whereas fraction 2 was mainly composed by protein (97%, w/w). Fraction 3 presented interesting and potential foaming properties in comparison to the other fractions evaluated in the study. Besides, its solubility, foaming and emulsifying capacity were practically not affected by pH variations. The 3 fractions also presented good emulsion stability, reaching values above a 95%. SDS-PAGE showed that fractions 1 and 2 contained mainly conglutin α, β, and δ, but in different ratios, whereas fraction 3 contained mainly conglutin γ and albumins. The results of this work will provide better understanding for the utilization of each protein fractions as potential ingredients in food industry. © 2016 Institute of Food Technologists®

  14. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.

    PubMed

    Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan

    2016-10-01

    In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Interfacial and emulsifying properties of designed β-strand peptides.

    PubMed

    Dexter, Annette F

    2010-12-07

    The structural and surfactant properties of a series of amphipathic β-strand peptides have been studied as a function of pH. Each nine-residue peptide has a framework of hydrophobic proline and phenylalanine amino acid residues, alternating with acidic or basic amino acids to give a sequence closely related to known β-sheet formers. Surface activity, interfacial mechanical properties, electronic circular dichroism (ECD), droplet sizing and zeta potential measurements were used to gain an overview of the peptide behavior as the molecular charge varied from ±4 to 0 with pH. ECD data suggest that the peptides form polyproline-type helices in bulk aqueous solution when highly charged, but may fold to β-hairpins rather than β-sheets when uncharged. In the uncharged state, the peptides adsorb readily at a macroscopic fluid interface to form mechanically strong interfacial films, but tend to give large droplet sizes on emulsification, apparently due to flocculation at a low droplet zeta potential. In contrast, highly charged peptide states gave a low interfacial coverage, but retained good emulsifying activity as judged by droplet size. Best emulsification was generally seen for intermediate charged states of the peptides, possibly representing a compromise between droplet zeta potential and interfacial binding affinity. The emulsifying properties of β-strand peptides have not been previously reported. Understanding the interfacial properties of such peptides is important to their potential development as biosurfactants.

  16. The oxidative stability of omega-3 oil-in-water nanoemulsion systems suitable for functional food enrichment: A systematic review of the literature.

    PubMed

    Bush, Linda; Stevenson, Leo; Lane, Katie E

    2017-10-23

    There is growing demand for functional food products enriched with long chain omega-3 polyunsaturated fatty acids (LCω3PUFA). Nanoemulsions, systems with extremely small droplet sizes have been shown to increase LCω3PUFA bioavailability. However, nanoemulsion creation and processing methods may impact on the oxidative stability of these systems. The present systematic review collates information from studies that evaluated the oxidative stability of LCω3PUFA nanoemulsions suitable for use in functional foods. The systematic search identified seventeen articles published during the last 10 years. Researchers used a range of surfactants and antioxidants to create systems which were evaluated from 7 to 100 days of storage. Nanoemulsions were created using synthetic and natural emulsifiers, with natural sources offering equivalent or increased oxidative stability compared to synthetic sources, which is useful as consumers are demanding natural, cleaner label food products. Equivalent vegetarian sources of LCω3PUFA found in fish oils such as algal oils are promising as they provide direct sources without the need for conversion in the human metabolic pathway. Quillaja saponin is a promising natural emulsifier that can produce nanoemulsion systems with equivalent/increased oxidative stability in comparison to other emulsifiers. Further studies to evaluate the oxidative stability of quillaja saponin nanoemulsions combined with algal sources of LCω3PUFA are warranted.

  17. Shear flow behaviour and emulsion-stabilizing effect of natural polysaccharide-protein gum in aqueous system and oil/water (O/W) emulsion.

    PubMed

    Amid, Bahareh Tabatabaee; Mirhosseini, Hamed

    2013-03-01

    The main objective of the current work was to characterize the shear rheological flow behaviour and emulsifying properties of the natural biopolymer from durian seed. The present study revealed that the extraction condition significantly affected the physical and functional characteristics of the natural biopolymer from durian seed. The dynamic oscillatory test indicated that the biopolymer from durian seed showed more gel (or solid) like behaviour than the viscous (or liquid) like behaviour (G'>G″) at a relatively high concentration (20%) in the fixed frequency (0.1 Hz). This might be explained by the fact that the gum coils disentangle at low frequencies during the long period of oscillation, thus resulting in more gel like behaviour than the viscous like behaviour. The average droplet size of oil in water (O/W) emulsions stabilized by durian seed gum significantly varied from 0.42 to 7.48 μm. The results indicated that O/W emulsions showed significant different stability after 4 months storage. This might be interpreted by the considerable effect of the extraction condition on the chemical and molecular structure of the biopolymer, thus affecting its emulsifying capacity. The biopolymer extracted by using low water to seed (W/S) ratio at the low temperature under the alkaline condition showed a relatively high emulsifying activity in O/W emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli.

    PubMed

    Chen, Guan-Wen; Lin, Yu-Hsin; Lin, Chia-Hua; Jen, Hsiao-Chin

    2018-04-06

    This study utilized pomelo steam distillation to isolate pomelo peel essential oil. The constituents were then analyzed through gas chromatography-mass spectrometry (GC-MS), and the antibacterial activity of the essential oil emulsions at different homogenizer speed conditions and concentrations of water-soluble chitosan (degree of acetylation, DA = 54.8%) against S. aureus and E. coli was examined. Analysis of the essential oil composition identified a total of 33 compounds with the main constituent, limonene accounting for 87.5% (940.07 mg/g) of the total. The pomelo peel oil was emulsified through homogenization at 24,000 rpm, resulting in a minimal inhibitory concentration (MIC) for E. coli that was 1.9 times lower than that of the essential oil without homogenization. In addition, a mixture of 0.4% essential oil emulsion and 0.03% water-soluble chitosan had the strongest synergetic antibacterial effect on S. aureus and E. coli at pH 7.4. In comparison with chitosan alone, the MIC value of this mixture was significantly 2.4 and 2.5 times lower. Hence, this study suggests using a mixture of emulsified pomelo peel oil and water-soluble chitosan to develop a novel natural food preservative, and that the processability of food, as well as the economic value of the byproducts of the Taiwan Matou pomelo and chitosan, could be increased.

  19. Physicochemical and FTIR Study of Diesel-Hydrogen Peroxide Fuel Blend

    NASA Astrophysics Data System (ADS)

    Saad Khan, Muhammad; Ahmed, Iqbal; Lal, Bhajan; Idris, Al-Amin; Albeirutty, Muhammad H.; Ayoub, Muhammad; Sufian, Suriati binti

    2018-04-01

    Physicochemical properties of combustion fuels play a key role in determining the qualitative and quantitative characteristics, reliability and health effects associated with emissions. This paper reports the preparation of polysaccharide (PS) based emulsifier for stable blending of petroleum diesel-hydrogen peroxide (H2O2) and investigated the influence of H2O2 as diesel fuel blends on the physicochemical properties and characteristics. The quantity of PS-emulsifier was kept at 5 volume % (vol. %) and the volume ratio of H2O2 were varied 5-15 vol. % to reference diesel (RD), respectively. The blended diesel/H2O2 fuel were prepared under inert oxygen (O2) gas closed heating system; afterthought, physiochemical properties of diesel/H2O2 blend were evaluated at standard ASTM D-975 testing method. The kinetic properties show the interaction of RD and H2O2 blend at presence of PS emulsifier which exhibit the phenomenon to diminish the interfacial tension among the two different phases to form a homogenized stable solution. Results revealed that H2O2 is capable of enhancing the diesel fuel properties and showed that the addition of H2O2 in a diesel fuel blend are lied within the ranges of standard ASTM D-975. Due to further oxygen atom present in H2O2, it can facilitate the combustion process which ultimately effect on exhaust emission.

  20. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agent. Wine vinegar Amount sufficient for the purpose Remove sulfur dioxide from wine prior to fermentation to produce vinegar. Emulsifiers containing fatty acid esters 1.25 Bleaching agent. (d) Residual...

  1. Preparation and mechanical properties of edible rapeseed protein films.

    PubMed

    Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin

    2011-03-01

    Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.

  2. Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film

    NASA Astrophysics Data System (ADS)

    Abid, S.; Raza, Z. A.; Rehman, A.

    2016-10-01

    Polymeric nanostructures have gained importance in medical science as drug delivery carriers due to their biocompatibility and biodegradability. Polyhydroxybutyrate (PHB) is one of the natural biodegradable polymers used to deliver drugs in the form of nano/microcapsules. In this study, solvent evaporation method has been used for the synthesis of PHB nanospheres using poly(vinyl) alcohol (PVA) both as emulsifier and stabilizer. The produced PHB nanospheres were analyzed using dynamic light scattering and scanning electron microscopy. The size of nanospheres decreased whereas the zeta potential increased on increasing the concentration of emulsifier. The PHB nanospheres were then deposited into porous thin film on a glass surface and characterized against bulk PHB film by using atomic force microscopy, contact angle measurement and x-ray diffraction.

  3. Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization.

    PubMed

    Spernath, Aviram; Yaghmur, Anan; Aserin, Abraham; Hoffman, Roy E; Garti, Nissim

    2002-11-06

    Water-dilutable food-grade microemulsions consisting of ethoxylated sorbitan esters, and in some cases blended with other emulsifiers, water, (R)-(+)-limonene, ethanol, and propylene glycol, have been prepared. These microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. Lycopene, an active natural lipophilic antioxidant from tomato, has solubilized in water-in-oil, bicontinuous, and oil-in-water types of microemulsions up to 10 times the oil [(R)-(+)-limonene] dissolution capacity. The effects of aqueous-phase dilution, nature of surfactant (hydrophilic-lypophilic balance), and mixed surfactant on solubilization capacity and solubilization efficiency were studied. Structural aspects studied by self-diffusion NMR were correlated to the solubilization capacity, and transformational structural changes were identified.

  4. Evaluation of the Properties Magnesium Phosphate Cement with Emulsified Asphalt

    NASA Astrophysics Data System (ADS)

    Du, Jia-Chong; Shen, Ruei-Siang; Zhou, Yu-Zhun

    2017-10-01

    Three type mixtures of magnesium phosphate cement with emulsified asphalt for evaluation their properties. The mixtures of the samples were fabricated and allowed them 2 hours, seven and twenty eight days curing before tested by compressive strength, Marshall stability and indirect tensile strength to probe into their engineering properties. The test results show that all tests have the greatest values at the 28 days curing and too much asphalt emulsion may cause too soft as result of low stability. The compressive strength of Type-III mixture has the greatest value, no matter what curing time is. The Marshall stability test and indirect tensile strength of the Type-III mixture are qualified by the specification required for fast maintenance. The more asphalt emulsion added, the less compressive strength has.

  5. Inert Reassessment Document for Poly(oxyethylene)(5) sorbitan monooleate

    EPA Pesticide Factsheets

    The sorbitan fatty acid esters and polysorbates are inert ingredients used as surfactants, related adjuvants of surfactants, emulsifiers, buffering agents, and corrosion inhibitors in a variety of pesticide products.

  6. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification

    PubMed Central

    Garaiova, Iveta; Guschina, Irina A; Plummer, Sue F; Tang, James; Wang, Duolao; Plummer, Nigel T

    2007-01-01

    Background The health benefits of increased intakes of omega-3 fatty acids are well established but palatability often presents a problem. The process of emulsification is used in the food industry to provide a wider spectrum of use, often with the result of increased consumption. Moreover, as emulsification is an important step in the digestion and absorption of fats, the pre-emulsification process may enhance digestion and absorption. In this study the levels of plasma fatty acid and triacylglycerol (TAG) following the ingestion of either an oil mixture or an emulsified oil mixture have been compared. Methods In this randomised cross-over study, 13 volunteers received the oil mixture and 11 received the oil emulsion as part of an otherwise fat free meal. Blood samples were collected at 0, 1.5, 3, 4.5, 6, 7.5 and 9 hours after ingestion of oil, separated and stored at -20°C. Plasma triacylglycerols were assessed spectrophotometrically and fatty acids were determined by gas chromatography. Following a washout period of twenty days the procedure was repeated with the assignments reversed. Results The postprandial plasma TAG and the C18:3 (n-6), C18:3(n-3), C20:5(n-3) and C22:6 (n-3) polyunsaturated fatty acid (PUFA) levels for the emulsified oil group were increased significantly (P = 0.0182; P = 0.0493; P = 0.0137; P < 0.0001; P = 0.0355 respectively) compared with the non-emulsified oil group. The C16:0 and C18:0 saturated fatty acids, the C18:1 (n-9) monounsaturated fatty acid and the C18:2 PUFA were not significantly different for the oil and emulsified oil groups. Conclusion Pre-emulsification of an oil mixture prior to ingestion increases the absorption of longer chain more highly unsaturated fatty acids (especially eicosapentaenoic acid and docosahexaenoic acid) but does not affect absorption of shorter chain less saturated fatty acids, suggesting that pre-emulsification of fish oils may be a useful means of boosting absorption of these beneficial fatty acids. Trial registration: Current Controlled Trials ISRCTN43202606 PMID:17254329

  7. The effect of emulsifying salts on the turbidity of a diluted milk system with varying pH and protein concentration.

    PubMed

    Culler, M D; Saricay, Y; Harte, F M

    2017-06-01

    Solutions of 10 commonly used emulsifying salts (ES) listed in the Code of Federal Regulations (21CFR133.179) for pasteurized process cheese were tested for their effect on the turbidity of a diluted milk system at different pH and protein concentrations to characterize the conditions that affect micellar structure. Emulsifying salt solutions were made by mixing the ES in a 1-in-20 dilution of water in skim milk ultrafiltrate (3 kDa molecular weight cut-off) to obtain ES concentrations from 0 to 248 mM. Skim milk was added to solutions containing nanopure water, skim milk ultrafiltrate, and a specific ES ranging in concentration from 0 to 248 mM and pH 5, 5.8, 6.8, 7.8, and 8.8. The turbidity of the samples was measured as the optical density at 400 nm immediately after mixing (time, t = 0), after 30 s (t = 30s), and after 30 min (t = 30min). Emulsifying salts were found to cause a decrease in the turbidity of the system, which was modeled using an exponential decay model, where C* represents a threshold salt concentration at which rapid dissociation occurs. At pH values 5.8 and 6.8, the ES caused the greatest decrease in turbidity of the diluted milk system. At pH 5, the ES had the least effect on the turbidity of the system. Sodium hexametaphosphate was found to have the strongest dissociative effect, with a C* value of 0.33 mM for t = 0 at pH 6.8. In contrast, the largest C* value calculated at pH 6.8 was monosodium phosphate at 278.22 mM. Increased time resulted in lower C* values. The model established for this study can be used to predict the dissociation of casein micelles in the presence of various types of ES. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Presidential Green Chemistry Challenge: 2009 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2009 award winner, Eastman Chemical Co., makes esters for emollients and emulsifiers in cosmetics with immobilized enzymes, saving energy and avoiding strong acids and organic solvents.

  9. SPILLCLEAN

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent for oil spill cleanups comes in either concentrate or original formula. Being a surfactant-type product, it emulsifies oil so it can then be lifted and separated from the hard surface.

  10. 21 CFR 172.846 - Sodium stearoyl lactylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) As an emulsifier or stabilizer in liquid and solid edible fat-water emulsions intended for use as... finished edible fat-water emulsion. (4) As a formulation aid, processing aid, or surface-active agent in...

  11. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  12. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... solid-state, edible vegetable fat-water emulsions intended for use as substitutes for milk or cream in... finished edible vegetable fat-water emulsion. (5) As an emulsifier in cake icings and cake fillings, with...

  13. 40 CFR 721.10686 - Fatty acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... significant new use is any use other than as adhesion promoters for asphalt applications or emulsifiers for asphalt applications. (ii) [Reserved] (b) Specific requirements. The provisions of subpart A of this part...

  14. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications

    PubMed Central

    Yang, Yunqi; Fang, Zhiwei; Chen, Xuan; Zhang, Weiwang; Xie, Yangmei; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2017-01-01

    Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil–water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields. PMID:28588490

  15. Octenylsuccinate starch spherulites as a stabilizer for Pickering emulsions.

    PubMed

    Wang, Chan; Fu, Xiong; Tang, Chuan-He; Huang, Qiang; Zhang, Bin

    2017-07-15

    This study investigated structure and morphology of starch spherulites prepared from debranched waxy maize and waxy potato starches. Debranched waxy potato starch favored the formation of B-type crystals with longer branch chains (average chain length, 26.14), whereas A-type polymorphic aggregates were generated from debranched waxy maize under same recrystallization condition. Spherulites had smaller particle size distribution (D[3,2], ∼3.7μm), higher dissociation temperature (80-120°C) and crystallinity (80∼90%), compared to native waxy starches. Intact spherulites could be used as an edible particle emulsifier after modifying by octenylsuccinic anhydride (OSA). The emulsion produced using 2wt.% of octenylsuccinate (OS) starch spherulites as emulsifier was quite stable over 2months, and its Pickering emulsions displayed protective effect on stability of oil droplets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Studies on the development of latent fingerprints by the method of solid-medium ninhydrin.

    PubMed

    Yang, Ruiqin; Lian, Jie

    2014-09-01

    A new series of fingerprint developing membrane were prepared using ninhydrin as the developing agent, and pressure-sensitive emulsifiers as the encapsulated chemicals. The type of emulsifier, plastic film, concentration of the developing agent, modifying ions and thickness of the membrane were studied in order to get the optimized fingerprint developing effect. The membrane can be successfully applied to both latent sweat fingerprints and blood fingerprint on many different surfaces. The sensitivity of the method toward the latent sweat fingerprint is 0.1 mg/L amino acid. The membrane can be applied to both porous and non-porous surfaces. Fingerprints that are difficult to develop on surfaces such as leather, glass and heat-sensitive paper using traditional chemical methods can be successfully developed with this membrane. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.

    PubMed

    Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-08-01

    Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. © 2016 Institute of Food Technologists®

  18. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine.

    PubMed

    Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio

    2017-09-20

    Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, C max of 610 ± 65.0 μg mL -1 and T max of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.

  19. Oil-in-water emulsification using confined impinging jets.

    PubMed

    Siddiqui, Shad W; Norton, Ian T

    2012-07-01

    A confined impinging jet mixing device has been used to investigate the continuous sunflower oil/water emulsification process under turbulent flow conditions with oil contents between 5% (v/v) and 10% (v/v). Various emulsifiers (Tween20, Span80, Whey Protein, Lecithin and Sodium Dodecylsulphate) varying in molecular weights have been studied. Mean droplet sizes varied with the emulsifiers used and smallest droplets were obtained under fully turbulent flow regime, i.e. at the highest jet flow rate and highest jet Reynolds Number conditions. Sodium Dodecylsulfate (SDS) produced droplets in the range of 3.8 μm while 6 μm droplets were obtained with Whey Protein. Similar droplet sizes were obtained under fully turbulent flow conditions (610 mL/min; Reynolds Number=13,000) for oil content varying between 5% (v/v) and 10% (v/v). To investigate the smallest droplet size possible in the device, the emulsion was passed through the geometry multiple times. Multi-pass emulsification resulted in reduction in droplet size indicating that longer residence in the flow field under high shear condition allowed for breakage of droplets as well as the time for the emulsifier to stabilize the newly formed droplets, decreasing the impact of coalescence. This was confirmed by timescale analysis of the involved process steps for the droplet data obtained via experiments. Dependence of mean droplet size on the o/w interfacial tension and peak energy dissipation was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Hydrophilic microspheres from water-in-oil emulsions by the water diffusion technique.

    PubMed

    Trotta, Michele; Chirio, Daniela; Cavalli, Roberta; Peira, Elena

    2004-08-01

    In this study, we developed and evaluated a novel method to produce insulin-loaded hydrophilic microspheres allowing high encapsulation efficiency and the preservation of peptide stability during particle processing. The preparation method used the diffusion of water by an excess of solvent starting from a water-in-solvent emulsion. The water dispersed phase containing albumin or lactose, or albumin-lactose in different weight ratios, and insulin was emulsified in water-saturated triacetin with and without emulsifiers, producing a water-in-triacetin emulsion. An excess of triacetin was added to the emulsion so that water could be extracted into the continuous phase, allowing the insulin-loaded microsphere precipitation. Insulin stability within the microspheres after processing was evaluated by reverse-phase and size-exclusion high-performance liquid chromatography. The water diffusion extraction process provided spherical microparticles of albumin or albumin-lactose. The mean diameter of the microspheres prepared with or without emulsifiers ranged from 2 to 10 microm, and the encapsulation efficiency of insulin was between 60% and 75%, respectively. The analysis of microsphere content after processing showed that insulin did not undergo any chemical modification within microspheres. The use of lactose alone led to the formation of highly viscous droplets that coalesced during the purification step. The water extraction procedures successfully produced insulin-loaded hydrophilic microspheres allowing the preservation of peptide stability. The type of excipient and the size of the disperse phase of the primary w/o emulsion were crucial determinants of microsphere characteristics.

  1. Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability.

    PubMed

    Mahmood, Tariq; Akhtar, Naveed; Manickam, Sivakumar

    2014-05-12

    Multiple emulsions have excellent encapsulating potential and this investigation has been aimed to encapsulate two different plant extracts as functional cosmetic agents in the W/O/W multiple emulsions and the resultant system's long term stability has been determined in the presence of a thickener, hydroxypropyl methylcellulose (HPMC). Multiple W/O/W emulsions have been generated using cetyl dimethicone copolyol as lipophilic emulsifier and a blend of polyoxyethylene (20) cetyl ether and cetomacrogol 1000® as hydrophilic emulsifiers. The generated multiple emulsions have been characterized with conductivity, pH, microscopic analysis, phase separation and rheology for a period of 30 days. Moreover, long term shelf-storage stability has been tested to understand the shelf-life by keeping the generated multiple emulsion formulations at 25 ± 10°C and at 40 ± 10% relative humidity for a period of 12 months. It has been observed that the hydrophilic emulsifiers and HPMC have considerably improved the stability of multiple emulsions for the followed period of 12 months at different storage conditions. These multiple emulsions have shown improved entrapment efficiencies concluded on the release rate of conductometric tracer entrapped in the inner aqueous phase of the multiple emulsions. Multiple emulsions have been found to be stable for a longer period of time with promising characteristics. Hence, stable multiple emulsions loaded with green tea and lotus extracts could be explored for their cosmetic benefits.

  2. Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content.

    PubMed

    Calligaris, Sonia; Plazzotta, Stella; Valoppi, Fabio; Anese, Monica

    2018-05-01

    Combinations of ultrasound (US) and high-pressure homogenization (HPH) at low-medium energy densities were studied as alternative processes to individual US and HPH to produce Tween 80 and whey protein stabilized nanoemulsions, while reducing the energy input. To this aim, preliminary trials were performed to compare emulsification efficacy of single and combined HPH and US treatments delivering low-medium energy densities. Results highlighted the efficacy of US-HPH combined process in reducing the energy required to produce nanoemulsions stabilized with both Tween 80 and whey protein isolate. Subsequently, the effect of emulsifier content (1-3% w/w), oil amount (10-20% w/w) and energy density (47-175 MJ/m 3 ) on emulsion mean particle diameter was evaluated by means of a central composite design. Particles of 140-190 nm were obtained by delivering 175 MJ/m 3 energy density at emulsions containing 3% (w/w) Tween 80 and 10% (w/w) oil. In the case of whey protein isolate stabilized emulsions, a reduced emulsifier amount (1% w/w) and intermediate energy density (120 MJ/m 3 ) allowed a minimum droplet size around 220-250 nm to be achieved. Results showed that, in both cases, at least 50% of the energy density should be delivered by HPH to obtain the minimum particle diameter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation.

    PubMed

    Pandey, Sanjeev K; Patel, Dinesh K; Thakur, Ravi; Mishra, Durga P; Maiti, Pralay; Haldar, Chandana

    2015-04-01

    This study was carried out to synthesize quercetin (Qt) embedded poly(lactic acid) (PLA) nanoparticles (PLA-Qt) and to evaluate anti-cancer efficacy of PLA-Qt by using human breast cancer cells. PLA-Qt were synthesized by using novel emulsified nanoprecipitation technique with varying dimension of 32 ± 8 to 152 ± 9 nm of PLA-Qt with 62 ± 3% (w/w) entrapment efficiency by varying the concentration of polymer, emulsifier, drug and preparation temperature. The dimension of PLA-Qt was measured through transmission electron microscopy indicating larger particle size at higher concentration of PLA. The release rate of Qt from PLA-Qt was found to be more sustained for larger particle dimension (152 ± 9 nm) as compared to smaller particle dimension (32 ± 8 nm). Interaction between Qt and PLA was verified through spectroscopic and calorimetric methods. Delayed diffusion and stronger interaction in PLA-Qt caused the sustained delivery of Qt from the polymer matrix. In vitro cytotoxicity study indicate the killing of ∼ 50% breast cancer cells in two days at 100 μg/ml of drug concentration while the ∼ 40% destruction of cells require 5 days for PLA-Qt (46 ± 6 nm; 20mg/ml of PLA). Thus our results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV

    PubMed Central

    Lin, Chih-Wei; Chang, Ching-Yun; Chen, Wei-Lin; Lin, Shih-Chang; Liao, Chien-Chun; Chang, Jui-Yuan; Liu, Chia-Chyi; Hu, Alan Yung-Chih; Lu, Tsung-Chun; Chou, Ai-Hsiang; Wu, Suh-Chin; Chong, Pele; Huang, Ming-Hsi

    2013-01-01

    Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time. PMID:23838466

  5. Stable bioemulsifiers are produced by Acinetobacter bouvetii UAM25 growing in different carbon sources.

    PubMed

    Ortega-de la Rosa, Nestor D; Vázquez-Vázquez, Jose L; Huerta-Ochoa, Sergio; Gimeno, Miquel; Gutiérrez-Rojas, Mariano

    2018-06-01

    Acinetobacter species are identified as producing surface-active and emulsifying molecules known as bioemulsifiers. Production, characterization and stability of bioemulsifiers produced by Acinetobacter bouvetii UAM25 were studied. A. bouvetii UAM25 grew in three different carbon and energy sources: ethanol, a glycerol-hexadecane mixture and waste cooking oil in an airlift bioreactor, showing that bioemulsifier production was growth associated. The three purified bioemulsifiers were lipo-heteropolysaccharides of high molecular weight (4866 ± 533 and 462 ± 101 kDa). The best carbon source and energy for bioemulsifier production was wasted cooking oil, with a highest emulsifying capacity (76.2 ± 3.5 EU mg -1 ) as compared with ethanol (46.6 ± 7.1 EU mg -1 ) and the glycerol-hexadecane mixture (49.5 ± 4.2 EU mg -1 ). The three bioemulsifiers in our study displayed similar macromolecular structures, regardless of the nature (hydrophobic or hydrophilic) of the carbon and energy source. Bioemulsifiers did not decrease surface tension, but the emulsifying capacity of all of them was retained under extreme variation in salinity (0-50 g NaCl L -1 ), pH (3-10) and temperature (25-121 °C), indicative of remarkable stability. These findings contribute to understanding of the relationship between: production, physical properties, chemical composition and stability of bioemulsifiers for their potential applications in biotechnology, such as bioremediation of hydrocarbon-contaminated soil and water.

  6. Comparative Emulsifying Properties of Octenyl Succinic Anhydride (OSA)-Modified Starch: Granular Form vs Dissolved State

    PubMed Central

    Marefati, Ali; Gutiérrez, Gemma; Wahlgren, Marie; Rayner, Marilyn

    2016-01-01

    The emulsifying ability of OSA-modified and native starch in the granular form, in the dissolved state and a combination of both was compared. This study aims to understand mixed systems of particles and dissolved starch with respect to what species dominates at droplet interfaces and how stability is affected by addition of one of the species to already formed emulsions. It was possible to create emulsions with OSA-modified starch isolated from Quinoa as sole emulsifier. Similar droplet sizes were obtained with emulsions prepared at 7% (w/w) oil content using OSA-modified starch in the granular form or molecularly dissolved but large differences were observed regarding stability. Pickering emulsions kept their droplet size constant after one month while emulsions formulated with OSA-modified starch dissolved exhibited coalescence. All emulsions stabilized combining OSA-modified starch in granular form and in solution showed larger mean droplet sizes with no significant differences with respect to the order of addition. These emulsions were unstable due to coalescence regarding presence of free oil. Similar results were obtained when emulsions were prepared by combining OSA-modified granules with native starch in solution. The degree of surface coverage of starch granules was much lower in presence of starch in solution which indicates that OSA-starch is more surface active in the dissolved state than in granular form, although it led to unstable systems compared to starch granule stabilized Pickering emulsions, which demonstrated to be extremely stable. PMID:27479315

  7. Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy bean.

    PubMed

    Barac, Miroljub B; Pesic, Mirjana B; Stanojevic, Sladjana P; Kostic, Aleksandar Z; Bivolarevic, Vanja

    2015-05-01

    The aim of this work was to compare functional properties including solubility, emulsifying and foaming properties of native and thermally treated adzuki, soy and pea protein isolates prepared under the same conditions. These functional properties were tested at four pH values: pH 3.0, pH 5.0, pH 7.0 and pH 8.0. The lowest solubility at all pH values were obtained for isolate of adzuki whereas isolates of soybean had the highest values at almost all pHs. Thermal treatment reduced solubility of soy and pea isolates at all pH values, whereas solubility of adzuki isolate was unchanged, except at pH 8. Native isolate of adzuki had the best emulsifying properties at pH 7.0 whereas at the other pH values some of native pea and soybean protein isolates were superior. After thermal treatment, depending on tested pH and selected variety all of three species could be a good emulsifier. Native soy protein isolates formed the most stable foams at all pHs. Thermal treatment significantly improved foaming properties of adzuki isolate, whereas reduced foaming capacity of soy and pea isolates, but could improve foam stability of these isolates at specific pH. Appropriate selection of legume seed as well as variety could have great importance in achievement of desirable functional properties of final products. All three tested species could find specific application in wide range of food products.

  8. Cyclosporine a loaded solid lipid nanoparticles: optimization of formulation, process variable and characterization.

    PubMed

    Varia, Jigisha K; Dodiya, Shamsunder S; Sawant, Krutika K

    2008-01-01

    Solid lipid nanoparticles (SLNs) loaded with Cyclosporine A using glyceryl monostearate (GMS) and glyceryl palmitostearate (GPS) as lipid matrices were prepared by melt-homogenization using high-pressure homogenizer. Various process parameters such as homogenization pressure, homogenization cycles and formulation parameters such as ratio of drug: lipid, emulsifier: lipid and emulsifier: co-emulsifier were optimized using particle size and entrapment efficiencies as the dependent variables. The mean particle size of optimized batches of the GMS SLN and GPS SLN were found to be 131 nm and 158 nm and their entrapment efficiencies were 83 +/- 3.08% and 97 +/- 2.59% respectively. To improve the handling processing and stability of the prepared SLNs, the SLN dispersions were spray dried and its effect on size and reconstitution parameters were evaluated. The spray drying of SLNs did not significantly alter the size of SLNs and they exhibited good redispersibility. Solid state studies such as Infra Red Spectroscopy and Differential Scanning Calorimetry indicated absence of any chemical interaction between Cyclosporine A and the lipids. Scanning Electron Microscopy of optimized formulations showed spherical shape with smooth and non porous surface. In vitro release studies revealed that GMS based SLNs released the drug faster (41.12% in 20 hours) than GPS SLNs (7.958% in 20 hours). Release of Cyclosporine A from GMS SLN followed Higuchi equation better than first order while release from GPS SLN followed first order better than Higuchi model.

  9. Evaluating the ready biodegradability of two poorly water-soluble substances: comparative approach of bioavailability improvement methods (BIMs).

    PubMed

    Sweetlove, Cyril; Chenèble, Jean-Charles; Barthel, Yves; Boualam, Marc; L'Haridon, Jacques; Thouand, Gérald

    2016-09-01

    Difficulties encountered in estimating the biodegradation of poorly water-soluble substances are often linked to their limited bioavailability to microorganisms. Many original bioavailability improvement methods (BIMs) have been described, but no global approach was proposed for a standardized comparison of these. The latter would be a valuable tool as part of a wider strategy for evaluating poorly water-soluble substances. The purpose of this study was to define an evaluation strategy following the assessment of different BIMs adapted to poorly water-soluble substances with ready biodegradability tests. The study was performed with two poorly water-soluble chemicals-a solid, anthraquinone, and a liquid, isodecyl neopentanoate-and five BIMs were compared to the direct addition method (reference method), i.e., (i) ultrasonic dispersion, (ii) adsorption onto silica gel, (iii) dispersion using an emulsifier, (iv) dispersion with silicone oil, and (v) dispersion with emulsifier and silicone oil. A two-phase evaluation strategy of solid and liquid chemicals was developed involving the selection of the most relevant BIMs for enhancing the biodegradability of tested substances. A description is given of a BIM classification ratio (R BIM), which enables a comparison to be made between the different test chemical sample preparation methods used in the various tests. Thereby, using this comparison, the BIMs giving rise to the greatest biodegradability were ultrasonic dispersion and dispersion with silicone oil or with silicone oil and emulsifier for the tested solid chemical, adsorption onto silica gel, and ultrasonic dispersion for the liquid one.

  10. Enteral Nutrition With an Enteral Formula Containing Egg Yolk Lecithin After Percutaneous Endoscopic Gastrostomy: A Case Series

    PubMed Central

    Akashi, Tetsuro; Hashimoto, Risa; Ohno, Akihisa; Matsumoto, Kazuhide; Nakamura, Yukari

    2018-01-01

    The occurrence of diarrhea at the beginning of enteral nutrition complicates the continuation of enteral nutrition. Recently, studies in Japan indicated that diarrhea could be improved by changing the enteral formula to one that is emulsified with egg yolk lecithin. In this study, we administered the enteral formula K-2S plus, which is emulsified with egg yolk lecithin, to 15 patients (four men and 11 women; mean age, 79.9 ± 2.0 years) after they had undergone a percutaneous endoscopic gastrostomy (PEG) to prevent the occurrence of diarrhea related to enteral nutrition. Two days after the PEG, the patients would receive 200 mL K-2S plus intermittently three times daily; thereafter, the amount of K-2S plus was increased according to the patient’s condition. The administration rate was scheduled as 200 mL/h when 200 mL were administered at one time. For ≥ 300 mL, the scheduled administration rate was 300 mL/h. When we administered K-2S plus at the beginning of enteral nutrition after the PEG, the dose of the enteral formula could be increased without any occurrence of diarrhea or vomiting. Five patients had received intravenous nutrition before the PEG; thus, we were concerned about diarrhea in these patients. In conclusion, an enteral formula emulsified with egg yolk lecithin may be safely used at the time of enteral nutrition initiation without causing diarrhea. PMID:29707085

  11. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits.

    PubMed

    Warsi, Musarrat H; Anwar, Mohammed; Garg, Vaidehi; Jain, Gaurav K; Talegaonkar, Sushama; Ahmad, Farhan J; Khar, Roop K

    2014-10-01

    Poor drug penetration and rapid clearance after topical instillation of a drug formulation into the eyes are the major causes for the lower ocular bioavailability from conventional eye drops. Along with this, poor encapsulation efficiency of hydrophilic drug in polymeric nanoparticles remains a major formulation challenge. Taking this perspective into consideration, dorzolamide (DZ)-loaded PLGA nanoparticles were developed employing two different emulsifiers (PVA and vitamin E TPGS) and the effects of various formulation and process variables on particle size and encapsulation efficiency were assessed. Nanoparticles emulsified with vitamin E TPGS (DZ-T-NPs) were found to possess enhanced drug encapsulation (59.8±6.1%) as compared to those developed with PVA as emulsifier (DZ-P-NPs). Transcorneal permeation study revealed a significant enhancement in permeation (1.8-2.5 fold) as compared to solution. In addition, ex vivo biodistribution study showed a higher concentration of drug in the aqueous humour (1.5-2.3 fold). Histological and IR-camera studies proved the non-irritant potential of the formulations. Pharmacoscintigraphic studies revealed the reduced corneal clearance, as well as naso-lachrymal drainage in comparison to drug solution. Furthermore, efficacy study revealed that DZ-P-NPs and DZ-T-NPs significantly reduced the intraocular pressure by 22.81% and 29.12%, respectively, after a single topical instillation into the eye. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH.

    PubMed

    Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca

    2018-02-05

    In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Optimization of chlorphenesin emulgel formulation.

    PubMed

    Mohamed, Magdy I

    2004-10-11

    This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 2(3) factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activity, and stability. Commercially available CHL topical powder was used for comparison. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. They also exhibited higher drug release and antifungal activity than the CHL powder. It was found that the emulsifying agent concentration had the most pronounced effect on the drug release from the emulgels followed by the oil phase concentration and finally the type of the gelling agent. The drug release from all the emulgels was found to follow diffusion-controlled mechanism. Rheological studies revealed that the CHL emulgels exhibited a shear-thinning behavior with thixotropy. Stability studies showed that the physical appearance, rheological properties, drug release, and antifungal activity in all the prepared emulgels remained unchanged upon storage for 3 months. As a general conclusion, it was suggested that the CHL emulgel formulation prepared with HPMC with the oil phase concentration in its low level and emulsifying agent concentration in its high level was the formula of choice since it showed the highest drug release and antifungal activity.

  14. 21 CFR 172.834 - Ethoxylated mono- and diglycerides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of the finished frozen desserts. 6. As an emulsifier in edible vegetable fat-water emulsions intended... finished vegetable fat-water emulsions. (d) When the name “polyglycerate 60” is used in labeling it shall...

  15. 21 CFR 184.1333 - Gum ghatti.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Arsenic (as AL). Not more than 3 parts per million (0.0003 percent); (ii) Ash (acid-insoluble). Not more... Function Beverages and beverage bases, nonalcoholic, § 170.3(n)(3) of this chapter 0.2 Emulsifier and...

  16. 76 FR 67640 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Attainment Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... chemical precursors are sulfur dioxide (SO 2 ), nitrogen oxides (NO X ), ammonia (NH 3 ), and volatile... emulsified asphalt paving; cement kilns; glass furnaces; industrial, commercial, and institutional (ICI...

  17. 21 CFR 172.838 - Polysorbate 65.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... emulsions intended for use as substitutes for milk or cream in beverage coffee, with or without one or a... emulsion. (5) As an emulsifier in cake icings and cake fillings, with or without one or a combination of...

  18. 21 CFR 172.842 - Sorbitan monostearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... alone as a rehydration aid in the production of active dry yeast in an amount not to exceed 1 percent by weight of the dry yeast. (7) As an emulsifier, alone or in combination with polysorbate 60, in the...

  19. DEMONSTRATION BULLETIN: SFC OLEOFILTRATION SYSTEM - INPLANT SYSTEMS, INC.

    EPA Science Inventory

    SFC Oleofiltration System (SFC System) is a hydrocarbon recovery technology that utilizes an amine-coated ceramic granule to separate suspended and mechanically emulsified hydrocarbons from aqueous solutions. The granules reportedly also separate some chemical emulsions and red...

  20. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... use as a binder, emulsifier, and anticaking agent in food in accordance with good manufacturing... common or usual name of the fatty acid salt or salts contained therein. (2) The words “food grade,” in...

  1. Reflection crack sealing study : final report.

    DOT National Transportation Integrated Search

    1969-06-01

    This study is primarily an evaluation of the effectiveness of "Reclamite" when used as a sealant material for reflection cracks. A secondary objective was to determine the performance of our presently used material - cationic emulsified asphalt (RS-3...

  2. Field manual for crack sealing in asphalt pavements.

    DOT National Transportation Integrated Search

    2006-01-01

    This field manual was developed as a product of research project 4061 Comparison of Hot Poured Crack Sealant to Emulsified Asphalt Crack Sealant conducted by The University of Texas at Austin Center for Transportation Research (CTR). Organizati...

  3. Protocol for Enhanced in situ Bioremediation Using Emulsified Edible Oil

    DTIC Science & Technology

    2006-05-01

    of molecular hydrogen include natural organic matter, fuel hydrocarbons, landfill leachate , or added organic substrates. Hydrogen is generated by... Phytoremediation of Chlorinated and Recalcitrant Compounds, p. 47-53. APPENDIX A SUBSTRATE CALCULATIONS Excel spreadsheets are

  4. Emulsifying and foaming properties of amaranth seed protein isolates.

    PubMed

    Fidantsi, A; Doxastakis, G

    2001-07-01

    The emulsifying and foaming properties of amaranth seed protein isolates prepared by wet extraction methods, such as isoelectric precipitation and dialysis, were investigated. The various isolates differ from each other in many ways. The isolate prepared by isoelectric precipitation mainly contains the globulin but not the albumin fraction and a considerable amount of polysaccharides, while the other isolate prepared by the dialysis method contains all the globulin and albumin fractions. The protein-polysaccharide complexes enhance emulsion stability due to steric repulsion effects. Measurements of the emulsion stability show that the studied protein isolates act as effective stabilizing agents. Foam expansion is dominated by the surface activity and availability of protein in the solution, while foam stability is determined by the properties of the interfacial layer. The results show that amaranth protein isolates act as an effective foaming agent. Both foaming properties intensified from the presence of protein-polysaccharide complexes.

  5. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  6. Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion

    NASA Astrophysics Data System (ADS)

    Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.

    2018-05-01

    The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.

  7. Thermochromic microcapsules with highly transparent shells obtained through in-situ polymerization of urea formaldehyde around thermochromic cores for smart wood coatings.

    PubMed

    Zhu, Xiaodong; Liu, Yu; Li, Zhao; Wang, Weicong

    2018-03-05

    In this paper, thermochromic microcapsules were synthesized in situ polymerization with urea formaldehyde as shell material and thermochromic compounds as core material. The effects of emulsifying agent and conditions on surface morphology and particle size of microcapsules were studied. It was found that the size and surface morphology of microcapsules were strongly depending on stirring rate and the ratio of core to shell. The stable and small size spherical microcapsules with excellent transparency can be obtained at an emulsifying agent to core to shell ratio as 1:5:7.5 under mechanical stirring at 12 krpm for 15 min. Finally, the thermochromic property was discussed by loading microcapsules in wood and wood coatings. Results indicate that microcapsules can realize the thermochromic property while incorporated with wood and coatings, and could have high potential in smart material fabrication.

  8. New functionalities of Maillard reaction products as emulsifiers and encapsulating agents, and the processing parameters: a brief review.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Alitheen, Noorjahan Banu Mohamed; Tan, Chin-Ping; Lai, Oi-Ming

    2017-03-01

    Non-enzymatic browning has been a wide and interesting research area in the food industry, ranging from the complexity of the reaction to its applications in the food industry as well as its ever-debatable health effects. This review provides a new perspective to the Maillard reaction apart from its ubiquitous function in enhancing food flavour, taste and appearance. It focuses on the recent application of Maillard reaction products as an inexpensive and excellent source of emulsifiers as well as superior encapsulating matrices for the entrapment of bioactive compounds. Additionally, it will also discuss the latest approaches employed to perform the Maillard reaction as well as several important reaction parameters that need to be taken into consideration when conducting the Maillard reaction. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin.

    PubMed

    Huang, Tao; Tu, Zong-Cai; Shangguan, Xinchen; Wang, Hui; Sha, Xiaomei; Bansal, Nidhi

    2018-04-25

    Rheological, microstructural and emulsifying properties of fish gelatin phosphorylated using sodium trimetaphosphate (STMP) were studied. Phosphorylation was carried out at 50 °C for 0, 0.5, 1 or 2 h. Rheological behaviors indicated that phosphorylation decreased gelation rate constant (k gel ) and apparent viscosity of gelatin solutions. Phosphorylation time was inversely proportional to tan δ; gelling and melting points of fish gelatin gels; however gel properties could be improved by short time of phosphorylation. Scanning electron microscopy and atomic force microscopy revealed that longer time of phosphorylation resulted in looser gel network with more aggregation. Longer phosphorylation time could stabilize fish gelatin emulsions, and endowed emulsions with smaller particle size and lower coefficient viscosity, but higher ζ-potential values. These results suggested that phosphorylation could be applied to obtain fish gelatin with varying functional properties suitable for numerous industrial applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of protein concentrates, emulsifiers on textural and sensory characteristics of gluten free cookies and its immunochemical validation.

    PubMed

    Sarabhai, Swati; Indrani, D; Vijaykrishnaraj, M; Milind; Arun Kumar, V; Prabhasankar, P

    2015-06-01

    The effect of 5, 7.5 and 10 % protein concentrates namely soya protein isolate (SPI), whey protein concentrate (WPC) and addition of 0.5 % emulsifiers such as glycerol monostearate (GMS), sodium stearoyl- 2- lactylate (SSL) and lecithin (LEC) on the rheological, sensory and textural characteristics of cookies with rice flour and its immunochemical validation was studied. The results showed that the use of 7.5 % SPI/WPC along with GMS significantly improved the quality characteristics of cookies with rice flour. Dot-Blot and Western-blot studies of cookies with 7.5 % of SPI or WPC confirmed that the anti-gliadin did not recognize these proteins. Carry- through process using ELISA kit confirmed that gluten was within the permissible limit in all the stages of processing and hence these cookies can be consumed by people suffering from celiac disease.

  11. Genetic and chemical analyzes of transformations in compost compounds during biodegradation of oiled bleaching earth with waste sludge.

    PubMed

    Piotrowska-Cyplik, Agnieszka; Cyplik, Paweł; Marecik, Roman; Czarny, Jakub; Szymański, Andrzej; Wyrwas, Bogdan; Framski, Grzegorz; Chrzanowski, Lukasz; Materna, Katarzyna

    2012-06-01

    Composting of oiled bleaching earth with waste sludge and corn straw was carried out to investigate the ability of microorganisms to synthesize biosurfactants that might decrease the surface tension of composts. Analytical results and changes in the surface tension suggest that biodegradation of fatty by-products was the consequence of emulsifying properties of higher fatty acids. The surface tension for isolates from all composting phases was between 37 and 43 mN m(-1). No substances synthesized by microorganisms that might be able to decrease the surface tension were detected in composts. Tensammetric, TLC and HPLC-MS results and changes in surface tension suggest that biodegradation of fatty by-products results from the emulsifying properties of higher fatty acids. A decrease in fatty content from 144 to 6 mg g(-1) dry matter was obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of sodium caseinate concentration and storage conditions on the oxidative stability of oil-in-water emulsions.

    PubMed

    O' Dwyer, Sandra P; O' Beirne, David; Eidhin, Deirdre Ní; O' Kennedy, Brendan T

    2013-06-01

    The oxidative stability of various oils (sunflower, camelina and fish) and 20% oil-in-water (O/W) emulsions, were examined. The mean particle size decreased from 1179 to 325 nm as sodium caseinate (emulsifier) concentration was increased from 0.25% to 3% in O/W emulsions (P<0.05). Increasing the microfluidisation pressure from 21 to 138 MPa, resulted in a particle size decrease from 289 to 194 nm (P<0.05). Emulsified oils had lower detectable lipid hydroperoxide and p-Anisidine values than their corresponding bulk oils (P<0.05). The lipid hydroperoxide and p-Anisidine values of emulsions generally decreased as sodium caseinate concentration increased, and similarly decreased as microfluidisation pressure increased (P<0.05). Increasing storage temperature of the emulsions from 5 to 60°C, resulted in lower detectable lipid oxidation products during storage (P<0.05). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Integrated process for the removal of emulsified oils from effluents in the steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, J.M.; Rios, G.; Gutierrez, B.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicatedmore » coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.« less

  14. Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium occidentale L.).

    PubMed

    Porto, Bruna Castro; Augusto, Pedro E D; Terekhov, Anton; Hamaker, Bruce R; Cristianini, Marcelo

    2015-09-20

    Dynamic high pressure (DHP) appears to be an alternative approach to physical modification of polysaccharides aimed improving their technological properties. Therefore, its effect on the functional properties of polysaccharides (i.e., oil absorption capacity, emulsifier, and rheology) needs to be investigated. Cashew tree gum (CG) is a biological macromolecule that has been proposed to be used as an emulsifier in beverage emulsions. To the best of our knowledge, none of the articles in the literature investigates the effect of DHP on the CG properties. This work presents a study on the evaluation of the effects of DHP on functional characteristics of CG, including rheological properties, molecular weight, glycosyl-linkage analysis, solubility, swelling and oil absorption capacity (OAC). The results suggest that DHP is able to modify the technological properties of cashew tree gum (increasing solubility and decreasing apparent viscosity). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  16. Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability

    PubMed Central

    2014-01-01

    Background and aims Multiple emulsions have excellent encapsulating potential and this investigation has been aimed to encapsulate two different plant extracts as functional cosmetic agents in the W/O/W multiple emulsions and the resultant system’s long term stability has been determined in the presence of a thickener, hydroxypropyl methylcellulose (HPMC). Methods Multiple W/O/W emulsions have been generated using cetyl dimethicone copolyol as lipophilic emulsifier and a blend of polyoxyethylene (20) cetyl ether and cetomacrogol 1000® as hydrophilic emulsifiers. The generated multiple emulsions have been characterized with conductivity, pH, microscopic analysis, phase separation and rheology for a period of 30 days. Moreover, long term shelf-storage stability has been tested to understand the shelf-life by keeping the generated multiple emulsion formulations at 25 ± 10°C and at 40 ± 10% relative humidity for a period of 12 months. Results It has been observed that the hydrophilic emulsifiers and HPMC have considerably improved the stability of multiple emulsions for the followed period of 12 months at different storage conditions. These multiple emulsions have shown improved entrapment efficiencies concluded on the release rate of conductometric tracer entrapped in the inner aqueous phase of the multiple emulsions. Conclusion Multiple emulsions have been found to be stable for a longer period of time with promising characteristics. Hence, stable multiple emulsions loaded with green tea and lotus extracts could be explored for their cosmetic benefits. PMID:24885994

  17. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.

    PubMed

    Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J

    2014-08-25

    Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Inhibitory effect of BCG cell-wall skeletons (BCG-CWS) emulsified in squalane on tumor growth and metastasis in mice.

    PubMed

    Yoo, Yung Choon; Hata, Katsusuke; Lee, Kyung Bok; Azuma, Ichiro

    2002-08-01

    The antimetastatic effect of BCG-CWS, which was emulsified in an oil-in-water form with either Drakeol 6VR mineral oil (BCG-CWS/DK) or squalane (BCG-CWS/SQA), on lung metastasis produced by highly metastatic murine tumor cells, Colon26-M3.1 carcinoma cells and B16-BL6 melanoma cells, was investigated in syngeneic mice. An intravenous (i.v.) administration of BCG-CWS (100 mg/mouse) 1 day after tumor inoculation significantly inhibited tumor metastasis of both Colon26-M3.1 carcinoma and B16-BL6 melanoma cells in experimental lung metastasis models. No differences in the antitumor activity of the two oil-based formulations (BCG-CWS/DK and BCG-CWS/SQA) were obverved. However, BCG-CWS/SQA administered through subcutaneous (s.c.) route was shown to be effective only when it was consecutively injected (3 times) after tumor inoculation. An in vivo analysis for tumor-induced angiogenesis showed that a single i.v. administration of BCG-CWS/SQA inhibited the number of tumor-induced blood vessels and suppressed tumor growth. Furthermore, the multiple administration of BCG-CWS/SQA given at on week intervals led to a significant reduction in spontaneous lung metastasis of B16-BL6 melanoma cells in a spontaneous metastasis model. These results suggest that BCG-CWS emulsified with squalane is a potent inhibitory agent of lung metastasis, and that the antimetastatic effect of BCG-CWS is related to the suppression of tumor growth and the inhibition of tumor-induced angiogenesis.

  19. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers.

    PubMed

    Reiner, S J; Reineccius, G A; Peppard, T L

    2010-06-01

    The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.

  20. Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs).

    PubMed

    Bakhtyar, Sajida; Gagnon, Marthe Monique

    2012-09-01

    Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients.

  1. In vitro digestion of the self-emulsifying lipid excipient Labrasol(®) by gastrointestinal lipases and influence of its colloidal structure on lipolysis rate.

    PubMed

    Fernandez, Sylvie; Jannin, Vincent; Chevrier, Stéphanie; Chavant, Yann; Demarne, Frédéric; Carrière, Frédéric

    2013-12-01

    Labrasol(®) is a self-emulsifying excipient used to improve the oral bioavailability of poorly water-soluble drugs. It is a mixture of acylglycerols and PEG esters, these compounds being substrates for digestive lipases. The characterization of Labrasol(®) gastrointestinal lipolysis is essential for understanding its mode of action. Labrasol(®) lipolysis was investigated using either individual enzymes (gastric lipase, pancreatic lipase-related protein 2, pancreatic carboxyl ester hydrolase) or a combination of enzymes under in vitro conditions mimicking first the gastric phase of lipolysis and second the duodenal one. Specific methods for quantifying lipolysis products were established in order to determine which compounds in Labrasol(®) were preferentially hydrolyzed. Gastric lipase showed a preference for di- and triacylglycerols and the main acylglycerols remaining after gastric lipolysis were monoacylglycerols. PEG-8 diesters were also hydrolyzed to a large extent by gastric lipase. Most of the compounds initially present in Labrasol(®) were found to be totally hydrolyzed after the duodenal phase of lipolysis. The rate of Labrasol(®) hydrolysis by individual lipases was found to vary significantly with the dilution of the excipient in water and the resulting colloidal structures (translucent dispersion; opaque emulsion; transparent microemulsion), each lipase displaying a distinct pattern depending on the particle size. The lipases with distinct substrate specificities used in this study were found to be sensitive probes of phase transitions occurring upon Labrasol(®) dilution. In addition to their use for developing in vitro digestion models, these enzymes are interesting tools for the characterization of self-emulsifying lipid-based formulations.

  2. Synthesis and characterization of oleic acid surface modified magnetic iron oxide nanoparticles by using biocompatible w/o microemulsion for heavy metal removal

    NASA Astrophysics Data System (ADS)

    Rose, Laili Che; Suhaimi, Hamdan; Mamat, Mazidah; Lik, Thang Zhe

    2017-09-01

    Oleic acid modified magnetic iron oxide nanoparticles (OA-MIONs) was prepared for removal of Cu2+ ion from aqueous solution. OA-MIONs was prepared by W/O microemulsion template which composed of mixed non-ionic surfactants and 1-hexanol as emulsifier. The effect of weight ratio of the constituent of microemulsion template on the physical and chemical properties of OA-MIONs was studied by characterization using Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis. FT-IR spectra showed that all templates shared similar chemical structure with slight difference in the peak intensity. Scanning electron micrograph illustrated that the OA-MIONs synthesized via template with the lowest weight ratio of emulsifier to heptane had a more regular spherical shape and was well-distributed. XRD had confirmed that the identity of synthesized OA-MIONs was Fe3O4. Based on the characterization result, the template with lowest weight ratio of emulsifier to heptane was chosen for the heavy metal adsorption study. The adsorption capacity OA-MIONs as a function of pH, contact time and adsorbent dosage were studied. The adsorption process reached equilibrium for 90 minutes and successfully adsorbed 43% of Cu2+ ion from aqueous solution. The adsorption behavior was well described by Langmuir isotherm. The maximum adsorption capacity was determined and found to be 555.56 mg/g. The value of Langmuir equilibrium parameter, RL was found between 0 and 1, suggested that a favorable monolayer adsorption process had taken out.

  3. Composition of legume soaking water and emulsifying properties in gluten-free bread.

    PubMed

    Huang, San; Liu, Yuling; Zhang, Weihan; Dale, Kylie J; Liu, Silu; Zhu, Jingnan; Serventi, Luca

    2018-04-01

    Soaking of legumes results in the loss of macronutrients, micronutrients and phytochemicals. Fibre, protein and phytochemicals found in legumes exert emulsifying activity that may improve the structure and texture of gluten-free bread. The legume soaking water of haricot beans, garbanzo chickpeas, whole green lentils, split yellow peas and yellow soybeans were tested in this study for functional properties and use as food ingredients. Composition, physicochemical properties and effect on the quality of gluten-free bread were determined for each legume soaking water. Haricot beans and split yellow peas released the highest amount of solids in the legume soaking water: 1.89 and 2.38 g/100 g, respectively. Insoluble fibre was the main constituent of haricot beans legume soaking water, while water-soluble carbohydrates and protein were the major fraction of split yellow peas. High quantities of phenolics (∼400 µg/g) and saponins (∼3 mg/g) were found in the legume soaking water of haricot beans, whole green lentils and split yellow peas. High emulsifying activity (46 and 50%) was found for the legume soaking water of garbanzo chickpeas and split yellow peas, probably due to their protein content and high ratio of water-soluble carbohydrates to dry matter. Such activity resulted in softer texture of the gluten-free bread. A homogeneous structure of crumb pores was found for split yellow peas, opposing that of whole green lentils. A balance between the contents of yeast nutrients and antinutrients was the likely basis of the different appearances.

  4. Self-emulsifying drug delivery systems (SEDDS): Proof-of-concept how to make them mucoadhesive.

    PubMed

    Leonaviciute, Gintare; Adamovic, Nada Trivic; Lam, Hung Thanh; Rohrer, Julia; Partenhauser, Alexandra; Bernkop-Schnürch, Andreas

    2017-03-01

    The objective of this study was to provide a proof-of-concept that self-emulsifying drug delivery systems can be made mucoadhesive by the incorporation of hydrophobic mucoadhesive polymers. In order to obtain such a hydrophobic mucoadhesive polymer, Eudragit® S100 was thiolated by covalent attachment of cysteamine. After determination of the thiol group content, in vitro mucoadhesion studies (rotating cylinder and rheological measurements) were performed. Then, synthesized conjugate was incorporated into self-emulsifying drug delivery systems (SEDDS) and their toxic potential as well as that of unmodified and thiolated Eudragit® S100 was examined on Caco-2 cell line. Lastly, the mucoadhesiveness of developed SEDDS on porcine intestinal mucosa was determined. Generated thiolated Eudragit® S100 displaying 235±14μmol of free thiol groups and 878±101μmol of disulfide bonds per gram polymer showed a great improvement in both: dynamic viscosity with mucus and adhesion time on mucosal tissue compared to the unmodified polymer. Resazurin assay revealed that unmodified and thiolated polymers and also SEDDS dispersions were non-toxic over Caco-2 cells. Furthermore, the incorporation of 1.5% (w/w) of such thiomer into SEDDS led to remarkably improved mucoadhesiveness. Blank SEDDS were completely removed from the mucosa within 15min, whereas >60% of SEDDS containing thiolated Eudragit® S100 were still attached to it. These results provide evidence that SEDDS can be made mucoadhesive by the incorporation of hydrophobic mucoadhesive polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.

    PubMed

    Warren, Maya M; Hartel, Richard W

    2018-03-01

    Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.

  6. Preparation and optimization of tablets containing a self-nano-emulsifying drug delivery system loaded with rosuvastatin.

    PubMed

    Salem, Heba F; Kharshoum, Rasha M; Halawa, Abdel Khalek A; Naguib, Demiana M

    2018-06-01

    Rosuvastatin (ROS) calcium is the latest synthetic drug in the statin group that has an anti-hyperlipidemic activity. It is available as tablets, and its poor aqueous solubility, slow dissolution rate and low-absorption extent result in less than 20% bioavailability and about 80% being excreted unchanged in the feces without absorption. To utilize nanotechnology to reformulate ROS as a self-nano-emulsifying drug delivery system (SNEDDS), and utilizing design optimization to fabricate the SNEDDS as a tablet. The solubility of ROS in different oils, surfactants and co-surfactants was tested. Pseudo-ternary phase diagrams were developed and various SNEDDS formulations were prepared and evaluated regarding globule size, self-emulsification, viscosity and transmittance. The optimized system was examined using transmission electron microscopy. The self-nano-emulsifying tablets were prepared using two types of nano-silica and different percentages of Avicel as a binder and Ac-Di-Sol as a disintegrant. The prepared tablets were evaluated for their physicochemical properties. Bioavailability in human volunteers was assessed. A SNEDDS system was successfully developed with a droplet size range of 15 nm and a composition of 10% Labrafac, 80% Cremophore RH40 and 10% Propylene glycol. The optimized tablet formula contained: hydrophilic nano-silica, 3% Ac-Di-Sol and 30% Avicel. The pharmacokinetic study revealed that the bioavailability was enhanced by more than 2.4-fold compared with the commercially available tablet. Tablets containing SNEDDS loaded with ROS represent a promising novel formula that has higher gastrointestinal absorption and enhanced systemic bioavailability.

  7. Development of Self Emulsifying Formulations of Poorly Soluble Naproxen for Enhanced Drug Delivery.

    PubMed

    Penjuri, Subhash C B; Saritha, Damineni; Ravouru, Nagaraju; Poreddy, Srikanth R

    2016-01-01

    The objective of this investigation was to develop a self emulsifying drug delivery system (SEDDS) of naproxen, a poorly water soluble drug, which could improve its solubility and oral bioavailability. The recent patents on SEDDS of abiraterone acetate (WO2014/009434 A1) and tamoxifen (WO2013/0080083) helped in selecting the naproxen and excipients. Phase diagrams were constructed and the formulations were taken from the micro emulsion region. Formulations were subjected to thermodynamic stability, dispersibility and precipitation tests for optimization. Physico chemical characterization was carried out by FTIR and DSC studies. The selected SEDDS consisted of IPM+labrafac lipophile WL 1349, tween 80, PEG 400 and naproxen. The optimized formulation has globule size- 187.6 nm, zeta potential- -9.81 mv, viscosity- 1.772 cps and infinite dilution ability. In vitro drug release was 98.21% and was found to be significantly different from the marketed product and plain drug. After oral administration in rats the SEDDS of naproxen showed anti inflammatory activity (69.82%) which was much improved as compared to the marketed formulation. The Cmax, AUC0t of naproxen was boosted with SEDDS to 133.63 g/ml and 698.29 hr. g/ml respectively. The optimized formulation was found to be stable for 6 months during stability studies conducted according to the ICH Q1A (R2) guidelines. Thus this developed self emulsifying drug delivery system may be a useful tool to enhance the solubility of oral poorly water soluble drug naproxen. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide.

    PubMed

    Chen, Wei-Lin; Liu, Shih-Jen; Leng, Chih-Hsiang; Chen, Hsin-Wei; Chong, Pele; Huang, Ming-Hsi

    2014-02-01

    Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Asphalt cement chip seals in Oregon : construction report

    DOT National Transportation Integrated Search

    2000-06-01

    Most chip seals in Oregon have been constructed using an emulsified asphalt binder. However, chip seals using an asphalt cement (hot oil) binder have been tried in limited situations in Oregon. This report includes a literature review and summarizes ...

  10. Biosynthesis and skin health applications of antimicrobial glycolipids

    USDA-ARS?s Scientific Manuscript database

    Microbial-produced glycolipids (MGLs) such as sophorolipids (SLs), rhamnolipids (RLs), and mannosylerythritol lipids (MELs) are amphiphilic molecules, and thus have been widely explored for use as surfactants/detergents, emulsifiers, and lubricants. One major hindrance to their widespread commercia...

  11. Effect of House Cricket (Acheta domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations.

    PubMed

    Kim, Hyun-Wook; Setyabrata, Derico; Lee, YongJae; Jones, Owen G; Kim, Yuan H Brad

    2017-12-01

    The objective of this study was to determine the effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formulations. As an initial marker of functionality, protein solubility, water absorption, emulsifying capacity, and gel formation ability of house cricket flour were determined at pH (2 to 10) and NaCl concentrations (0 to 2.10 M). Control emulsion was formulated with 60% lean pork, 20% back fat, and 20% ice. Six treatment emulsions were prepared with replacement of lean pork and/or back fat portions with spray-dried house cricket flour at 5% and 10% levels, based on a total sample weight. The protein solubility of house cricket flour (67 g protein/100 g) was significantly altered depending upon pH (P < 0.0001) and NaCl concentration (P = 0.0421). Similar water absorption capacity, emulsifying capacity, and gel formation ability of house cricket flour were found between 0 and 2.10 M NaCl concentration (P > 0.05). The replacement of lean meat/fat portion with house cricket flour within 10% level could fortify protein and some micronutrients (phosphorus, potassium, and magnesium) in meat emulsion, without negative impacts on cooking yield and textural properties. Our results suggest that house cricket flour can be used as an effective nonmeat functional ingredient to manufacture emulsified meat products. To better utilize house cricket flour as a food ingredient in wide application, understanding its technological properties in various pH, and ionic strength conditions is a pivotal step. Protein solubility of house cricket flour would be considerably affected by the varying pH and NaCl concentrations of applied conventional foods. In the case of meat emulsion, within 10% lean meat and/or fat portions could be successfully substituted with house cricket flour without detectable adverse impacts on technological properties associated with cooking yield and instrumental analysis of texture. Thus, our findings suggest that house cricket flour possess the necessary physical properties to be used as an alternative nonmeat ingredient for incorporation within emulsified meat products, which could be further explored in subsequent sensory-based studies. © 2017 Institute of Food Technologists®.

  12. 40 CFR Appendix A to Part 419 - Processes Included in the Determination of BAT Effluent Limitations for Total Chromium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Hydrotreating Asphalt Processes 18. Asphalt Production 32. 200 °F Softening Point Unfluxed Asphalt 43. Asphalt Oxidizing 89. Asphalt Emulsifying Lube Processes 21. Hydrofining, Hydrofinishing, Lube Hydrofining 22. White...

  13. How to Control Graffiti.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    Recent developments in chemical technology can control graffiti by using chemicals that emulsify and soften the paint and are then rinsed with water under pressure. Protective coatings are applied that allow the easy removal of spray paint by a variety of methods. (Author/MLF)

  14. 76 FR 41248 - Fenamiphos; Notice of Receipt of Request to Amend Use Deletion and Product Cancellation Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ..., Maui Pineapple, to extend the deadline for sale and distribution of Nemacur 3 Emulsifiable Systemic... Agency received another request from Maui Pineapple to extend the deadline for sale and distribution of...

  15. 21 CFR 524.1742 - N-(Mercaptomethyl) phthalimide S-(O,O-dimethyl phosphorodithioate) emulsifiable liquid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a high-pressure spray, taking care to wet the skin, not just the hair. Apply to the point of “runoff... before or after treatment with or exposure to cholinesterase-inhibiting drugs, pesticides, or chemicals...

  16. 21 CFR 524.1742 - N-(Mercaptomethyl) phthalimide S-(O,O-dimethyl phosphorodithioate) emulsifiable liquid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a high-pressure spray, taking care to wet the skin, not just the hair. Apply to the point of “runoff... before or after treatment with or exposure to cholinesterase-inhibiting drugs, pesticides, or chemicals...

  17. 21 CFR 524.1742 - N-(Mercaptomethyl) phthalimide S-(O,O-dimethyl phosphorodithioate) emulsifiable liquid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a high-pressure spray, taking care to wet the skin, not just the hair. Apply to the point of “runoff... before or after treatment with or exposure to cholinesterase-inhibiting drugs, pesticides, or chemicals...

  18. 21 CFR 524.1742 - N-(Mercaptomethyl) phthalimide S-(O,O-dimethyl phosphorodithioate) emulsifiable liquid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a high-pressure spray, taking care to wet the skin, not just the hair. Apply to the point of “runoff... before or after treatment with or exposure to cholinesterase-inhibiting drugs, pesticides, or chemicals...

  19. Microbial biosurfactants with their high-value functional properties

    USDA-ARS?s Scientific Manuscript database

    Microbial world is a rich source for finding valuable industrial chemicals and ingredients. Specifically, many microbial metabolites are surface-active compounds that can be developed into bio-based surfactants, detergents, and emulsifiers. Techno-economic analyses for the production of bio-based ...

  20. 21 CFR 172.814 - Hydroxylated lecithin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.814 Hydroxylated lecithin. The food additive hydroxylated lecithin may be safely used as an emulsifier in foods in accordance with the following conditions: (a) The additive is...

  1. 21 CFR 524.1742 - N-(Mercaptomethyl) phthalimide S-(O,O-dimethyl phosphorodithioate) emulsifiable liquid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... too foul for satisfactory use as indicated by foul odor or excessive darkening (i.e., color changes... product while stirring. Apply 1 ounce of the diluted mixture per 100 pounds of body weight (to a maximum...

  2. 21 CFR 172.840 - Polysorbate 80.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... emulsifier in ice cream, frozen custard, ice milk, fruit sherbet, and nonstandardized frozen desserts, when... in: (i) Vitamin-mineral preparations containing calcium caseinate in the absence of fat-soluble... daily dose of the preparations. (ii) Fat-soluble vitamins in vitamin and vitamin-mineral preparations...

  3. 21 CFR 172.840 - Polysorbate 80.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... emulsifier in ice cream, frozen custard, ice milk, fruit sherbet, and nonstandardized frozen desserts, when... in: (i) Vitamin-mineral preparations containing calcium caseinate in the absence of fat-soluble... daily dose of the preparations. (ii) Fat-soluble vitamins in vitamin and vitamin-mineral preparations...

  4. Sugar Ester Compounds for Arthropod Control

    USDA-ARS?s Scientific Manuscript database

    Sugar esters, also known as acyl sugars or polyol esters, are a class of compounds that are internationally recognized as food additives. They are commonly used in bakery goods, drugs, cosmetics, food packaging plastics, and in other applications because of their surfactant and emulsifying properti...

  5. Effects of Carriers, Emulsifiers, and Biopesticides for Direct Silk Treatments on Caterpillar Feeding Damage and Ear Development in Sweet Corn.

    PubMed

    Westgate, P J; Schultz, B B; Hazzard, R V

    2017-04-01

    In the northeastern United States, control of Lepidopteran pests of sweet corn, particularly corn earworm [Helicoverpa zea (Boddie)], is difficult using organic methods. The direct application of corn oil and Bacillus thuringiensis (Bt) to corn silk has been shown to reduce ear damage from corn earworm in past studies; these studies sought to optimize this method by evaluating additional carrier and biopesticide mixtures that comply with the United States Federal Insecticide, Fungicide, and Rodenticide Act and National Organic Standards. Carriers, which are liquids used to dissolve the biopesticide and deliver it into the tip of the ear, may have phytotoxic or insecticidal properties. Experiments conducted from 2001 to 2005 evaluated caterpillar damage and ear development effects from carriers (vegetable and paraffinic oils and carrageenan), biopesticides (Bt, spinsosad, and neem), and three emulsifiers in various combinations when applied directly to the tips of the ears 5-7 d after silk initiation. There were no effects of emulsifiers on ear quality, except for slight reduction in caterpillar damage in one of the two years. There were no differences among corn, soy, canola, and safflower oils in corn earworm control or tip development. The carrageenan carrier had the least effect upon ear development as measured by the length of nonpollinated kernels at the tip, compared to corn oil or paraffinic oil (JMS Stylet Oil), which caused the greatest tip damage as well as an oily discoloration. The carrier-pesticide combinations with the best ear quality overall were spinosad in carrageenan or corn oil, and Bt in carrageenan. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Intestinal absorption of retinol and retinyl palmitate in the rat. Effects of tetrahydrolipstatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, E.; Borgstroem, B.

    1990-09-01

    The aim of the present study was to characterize the intestinal absorption of retinol and retinyl palmitate in thoracic duct and bile duct fistulated rats and to investigate the effect of a simultaneously administered lipase inhibitor, tetrahydrolipstatin (THL). Absorption was determined as lymphatic recovery over a 24-hr period, including an initial 12-hr continuous intraduodenal infusion of either (11,12-3H)retinol or (11,12-3H)retinyl palmitate given in emulsified glyceryl trioleate or in mixed micellar solution of monoolein and oleic acid. From micellar dispersion, labeled retinol and retinyl palmitate were recovered in the lymph to 50-60% and both to the same extent. Administered in emulsifiedmore » form, labeled retinol from fed retinyl palmitate was recovered to 47%, but retinol from fed retinol to only 18%. THL (10(-4) M) in the infusate had no significant effect on the recovery of 14C-labeled oleic acid. The recovery of label from emulsified glyceryl tri(1-14C)oleate was significantly decreased at this concentration of THL (76.5% vs 19.6% recovery). When administered in emulsified form, retinol absorption was not significantly affected by THL at 10(-4) M, while retinyl palmitate absorption was very significantly decreased (5.0% compared to 47.8%). In the presence of THL, retinol absorption from retinyl palmitate in micellar solution was decreased (from 58% to 17%). Most of the retinol in the lymph extracts (72.2 to 91.3) was present as retinyl ester, regardless of the chemical and physical form of administration. Furthermore, THL did not induce any change in this pattern.« less

  7. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  8. Self-emulsifying drug delivery systems: Design of a novel vaginal delivery system for curcumin.

    PubMed

    Köllner, S; Nardin, I; Markt, R; Griesser, J; Prüfert, F; Bernkop-Schnürch, A

    2017-06-01

    The aim of this study was to develop a vaginal self-emulsifying delivery system for curcumin being capable of spreading, of permeating the mucus gel layer and of protecting the drug being incorporated in oily nanodroplets towards mucus interactions and immobilization. The emulsifying properties of curcumin loaded SEDDS containing 30% Cremophor RH40, 20% Capmul PG-8, 30% Captex 300, 10% DMSO and 10% tetraglycol (SEDD formulation A) as well as 25% PEG 200, 35% Cremophor RH40, 20% Captex 355, 10% Caprylic acid and 10% Tween 80 (SEDD formulation B) after diluting 1+2 with artificial vaginal fluid were characterized regarding droplet size and zeta potential. Collagen swelling test was used to examine the irritation potential of SEDDS. Additionally to mucus binding studies, permeation studies in the mucus were performed. Furthermore, spreading potential of the novel developed formulations was compared with a commercial available o/w cream (non-ionic hydrophilic cream) on vaginal mucosa. SEDDS displayed a mean droplet size between 38 and 141nm and a zeta potential of -0.3 to -1.6mV. The collagen swelling test indicated no significant irritation potential of both formulations over 24h. An immediate interaction of unformulated curcumin with the mucus was determined, whereas both SEDDS facilitated drug permeation through the mucus layer. Formulation B showed a 2.2-fold improved transport ratio of curcumin compared to SEDD formulation A. In comparison to the vaginal cream, SEDD formulation A and B were able to spread over the vaginal mucosa and cover the tissue to a 17.8- and 14.8-fold higher extent, respectively. According to these results, SEDDS seems to be a promising tool for vaginal application. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Exploring the Potential of Mesquite Gum-Nopal Mucilage Mixtures: Physicochemical and Functional Properties.

    PubMed

    Cortés-Camargo, Stefani; Gallardo-Rivera, Raquel; Barragán-Huerta, Blanca E; Dublán-García, Octavio; Román-Guerrero, Angélica; Pérez-Alonso, César

    2018-01-01

    In this work the physicochemical and functional properties of mesquite gum (MG) and nopal mucilage (NM) mixtures (75-25, 50-50, 25-75) were evaluated and compared with those of the individual biopolymers. MG-NM mixtures exhibited more negative zeta potential (ZP) values than those displayed by MG and NM, with 75-25 MG-NM showing the most negative value (-14.92 mV at pH = 7.0), indicative that this biopolymer mixture had the highest electrostatic stability in aqueous dispersions. Viscosity curves and strain amplitude sweep of aqueous dispersions (30% w/w) of the individual gums and their mixtures revealed that all exhibited shear thinning behavior, with NM having higher viscosity than MG, and all displaying fluid-like viscoelastic behavior where the loss modulus predominated over the storage modulus (G″>G'). Differential Scanning Calorimetry revealed that MG, NM, and MG-NM mixtures were thermally stable with decomposition peaks in a range from 303.1 to 319.6 °C. From the functional properties viewpoint, MG (98.4 ± 0.7%) had better emulsifying capacity than NM (51.9 ± 2.0%), while NM (43.0 ± 1.4%) had better foaming capacity than MG. MG-NM mixtures acquired additional functional properties (emulsifying and foaming) regarding the individual biopolymers. Therefore, MG-NM mixtures represent interesting alternatives for their application as emulsifying and foaming agents in food formulations. Mesquite gum (MG) and nopal mucilage (NM) are promising raw materials with excellent functional properties whose use has been largely neglected by the food industry. This work demonstrates MG-NM mixtures acquired additional functional properties regarding the individual biopolymers, making these mixtures multifunctional ingredients for the food industry. © 2017 Institute of Food Technologists®.

  10. Effects of boiling and frying on the bioaccessibility of beta-carotene in yellow-fleshed cassava roots (Manihot esculenta Crantz cv. BRS Jari).

    PubMed

    Gomes, Suellen; Torres, Alexandre Guedes; Godoy, Ronoel; Pacheco, Sidney; Carvalho, José; Nutti, Marília

    2013-03-01

    The effects of boiling and frying on the bioaccessibility of all-trans-beta-carotene in biofortified BRS Jari cassava roots have not been investigated, although these are conventional methods of cassava preparation. The aims of the present study were to investigate beta-carotene micellarization efficiency of yellow-fleshed BRS Jari cassava roots after boiling and frying, as an indicator of the bioaccessibility of this carotenoid, and to apply fluorescence microscopy to investigate beta-carotene in the emulsified fraction. Uncooked, boiled, and fried cassava roots were digested in vitro for the evaluation, by reversed-phase high-performance liquid chromatography (HPLC), of the efficiency of micellarization of all-trans-beta-carotene in BRS Jari cassava roots. Fluorescence microscopy of the micellar fraction was used to confirm the presence of beta-carotene in the emulsified fraction and to observe the structure of the microemulsion from the boiled and fried cassava samples. Fried cassava roots showed the highest (p < .05) micellarization efficiency for total carotenoids and all-trans-beta-carotene (14.1 +/- 2.25% and 14.37 +/- 2.44%, respectively), compared with boiled and raw samples. Fluorescence microscopy showed that after in vitro digestion there were no carotenoid crystals in the micellar fraction, but rather that this fraction presented a biphasic system compatible with emulsified carotenoids, which was consistent with the expected high bioavailability of beta-carotene in this fraction. Increased emulsification and bioaccessibility of beta-carotene from fried biofortified BRS Jari cassava roots compensates for chemical losses during preparation, indicating that this preparation is suitable for home use of BRS Jari cassava roots and might represent a relatively good food source of bioavailable provitamin A.

  11. Microfluidic step-emulsification in axisymmetric geometry.

    PubMed

    Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M

    2017-10-25

    Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric step-emulsifier.

  12. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations.

    PubMed

    Tsai, Ming-Jun; Huang, Yaw-Bin; Wu, Pao-Chu; Fu, Yaw-Syan; Kao, Yao-Ren; Fang, Jia-You; Tsai, Yi-Hung

    2011-02-01

    Apomorphine, a dopamine receptor agonist for treating Parkinson's disease, has very poor oral bioavailability (<2%) due to the first-pass effect. The aim of this work was to investigate whether the oral bioavailability and brain regional distribution of apomorphine could be improved by utilizing solid lipid nanoparticles (SLNs). Glyceryl monostearate (GMS) and polyethylene glycol monostearate (PMS) were individually incorporated into SLNs as emulsifiers. It was found that variations in the emulsifiers had profound effects on the physicochemical characteristics. Mean diameters of the GMS and PMS systems were 155 and 63 nm, respectively. More than 90% of the apomorphine was entrapped in the SLNs. The interfacial film was the likely location for most of apomorphine molecules. The PMS system, when incubated in simulated intestinal medium, was found to be more stable in terms of particle size and encapsulation efficiency than the GMS system. Using the GMS and PMS systems to orally administer apomorphine (26 mg/kg) equally enhanced the bioavailability in rats. SLNs showed 12- to 13-fold higher bioavailability than the reference solution. The drug distribution in the striatum, the predominant site of therapeutic action, also increased when using the SLNs. The anti-Parkinsonian activity of apomorphine was evaluated in rats with 6-hydroxydopamine-induced lesions, a model of Parkinson's disease. The contralateral rotation behavior was examined after oral apomorphine delivery. The total number of rotations increased from 20 to 94 and from 20 to 115 when the drug was administered from SLNs containing GMS and PMS, respectively. The experimental results suggest that SLNs may offer a promising strategy for apomorphine delivery via oral ingestion. Copyright © 2010 Wiley-Liss, Inc.

  13. Pharmacodynamic evaluation of self micro-emulsifying formulation of standardized extract of Lagerstroemia speciosa for antidiabetic activity.

    PubMed

    Agarwal, Vipin Kumar; Amresh, Gupta; Chandra, Phool

    Lagerstroemia speciosa (SEL) leaves are a popular folk medicine for diabetes treatment due to presence of corosolic acid. It has low water solubility resulting poor absorption after oral administration. Self micro-emulsified drug delivery system is the way by which we can improve the oral absorption of drug. The objective of this study was to develop the self micro-emulsifying formulation of standardized extract of SEL leaves and evaluate its pharmacodynamic performance for antidiabetic activity. The SME formulation was prepared by using sefsol-218 as oil, cremophor-EL as surfactant and transcutol-P as co-surfactant. The ratio of surfactant and co-surfactant was determined by pseudoternary phase diagram. SME formulations were characterized for dilution at different pH, self emulsification, optical clarity, globule size and thermodynamic stability. Pharmacodynamic evaluation of formulations was assessed in Wistar rats by using parameters viz. blood glucose level and serum lipid profile. SEL loaded SME formulation was successfully developed by using sefsol-218, cremophor-EL and transcutol-P with a droplet size 23.53 nm. Pharmacodynamic results showed a higher reduction in blood glucose by SME formulation than SEL without SMES respectively at 50 mg/kg dose while reduction produced at dose of 100 mg/kg was found significant and better on 15th day of study. The percentage reduction produced by SME formulation on serum lipid profile was also significant and was more prominent than SEL. This study confirms that the formulation elevates the pharmacodynamic performance of SEL approximately two fold. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  14. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution.

    PubMed

    Matsaridou, Irini; Barmpalexis, Panagiotis; Salis, Andrea; Nikolakakis, Ioannis

    2012-12-01

    Self-emulsifying oil/surfactant mixtures can be incorporated into pellets that have the advantages of the oral administration of both microemulsions and a multiple-unit dosage form. The purpose of this work was to study the effects of surfactant hydrophilic-lipophilic balance (HLB) and oil/surfactant ratio on the formation and properties of self-emulsifying microcrystalline cellulose (MCC) pellets and microemulsion reconstitution. Triglycerides (C(8)-C(10)) was the oil and Cremophor ELP and RH grades and Solutol the surfactants. Pellets were prepared by extrusion/spheronization using microemulsions with fixed oil/surfactant content but with different water proportions to optimize size and shape parameters. Microemulsion reconstitution from pellets suspended in water was evaluated by turbidimetry and light scattering size analysis, and H-bonding interactions of surfactant with MCC from FT-IR spectra. It was found that water requirements for pelletization increased linearly with increasing HLB. Crushing load decreased and deformability increased with increasing oil/surfactant ratio. Incorporation of higher HLB surfactants enhanced H-bonding and resulted in faster and more extensive disintegration of MCC as fibrils. Reconstitution was greater at high oil/surfactant ratios and the droplet size of the reconstituted microemulsions was similar to that in the wetting microemulsions. The less hydrophilic ELP with a double bond in the fatty acid showed weaker H-bonding and greater microemulsion reconstitution. Purified ELP gave greater reconstitution than the unpurified grade. Thus, the work demonstrates that the choice of type and quantity of the surfactant used in the formulation of microemulsions containing pellets has an important influence on their production and performance.

  15. An effective dispersant for oil spills based on food-grade amphiphiles.

    PubMed

    Athas, Jasmin C; Jun, Kelly; McCafferty, Caitlyn; Owoseni, Olasehinde; John, Vijay T; Raghavan, Srinivasa R

    2014-08-12

    Synthetic dispersants such as Corexit 9500A were used in large quantities (∼2 million gallons) to disperse the oil spilled in the ocean during the recent Deepwater Horizon event. These dispersant formulations contain a blend of surfactants in a base of organic solvent. Some concerns have been raised regarding the aquatic toxicity and environmental impact of these formulations. In an effort to create a safer dispersant, we have examined the ability of food-grade amphiphiles to disperse (emulsify) crude oil in seawater. Our studies show that an effective emulsifier is obtained by combining two such amphiphiles: lecithin (L), a phospholipid extracted from soybeans, and Tween 80 (T), a surfactant used in many food products including ice cream. Interestingly, we find that L/T blends show a synergistic effect, i.e., their combination is an effective emulsifier, but neither L or T is effective on its own. This synergy is maximized at a 60/40 weight ratio of L/T and is attributed to the following reasons: (i) L and T pack closely at the oil-water interface; (ii) L has a low tendency to desorb, which fortifies the interfacial film; and (iii) the large headgroup of T provides steric repulsions between the oil droplets and prevents their coalescence. A comparison of L/T with Corexit 9500A shows that the former leads to smaller oil droplets that remain stable to coalescence for a much longer time. The smaller size and stability of crude oil droplets are believed to be important to their dispersion and eventual microbial degradation in the ocean. Our findings suggest that L/T blends could potentially be a viable alternative for the dispersion of oil spills.

  16. GENERATION AND CONTROL OF AIR POLLUTANTS FROM ORIMULSION (R) COMBUSTION

    EPA Science Inventory

    The paper discusses a study requested in 1997 by the U.S. Congress to provide technical information regarding Orimulsion (R) and its environmental impacts. (NOTE: Orimulsion is an emulsified fuel, composed of approximately 70% Venezuelan bitumen, 30% water, and trace amounts of ...

  17. 40 CFR 110.4 - Dispersants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Dispersants. 110.4 Section 110.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS DISCHARGE OF OIL § 110.4 Dispersants. Addition of dispersants or emulsifiers to oil to be discharged that would circumvent the...

  18. 40 CFR 110.4 - Dispersants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Dispersants. 110.4 Section 110.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS DISCHARGE OF OIL § 110.4 Dispersants. Addition of dispersants or emulsifiers to oil to be discharged that would circumvent the...

  19. 40 CFR 110.4 - Dispersants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Dispersants. 110.4 Section 110.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS DISCHARGE OF OIL § 110.4 Dispersants. Addition of dispersants or emulsifiers to oil to be discharged that would circumvent the...

  20. 40 CFR 110.4 - Dispersants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Dispersants. 110.4 Section 110.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS DISCHARGE OF OIL § 110.4 Dispersants. Addition of dispersants or emulsifiers to oil to be discharged that would circumvent the...

  1. 40 CFR 110.4 - Dispersants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Dispersants. 110.4 Section 110.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS DISCHARGE OF OIL § 110.4 Dispersants. Addition of dispersants or emulsifiers to oil to be discharged that would circumvent the...

  2. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    PubMed

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Physical, Rheological, Functional, and Film Properties of a Novel Emulsifier: Frost Grape Polysaccharide from Vitis riparia Michx.

    PubMed

    Hay, William T; Vaughn, Steven F; Byars, Jeffrey A; Selling, Gordon W; Holthaus, Derek M; Price, Neil P J

    2017-10-04

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essential details for the commercial adoption of this novel plant polysaccharide. FGP is capable of producing exceptionally stable emulsions when compared with the industrially ubiquitous gum arabic (GA). The FGP isolate contained a negligible amount of nitrogen (0.03%), indicating that it does not contain an associated glycoprotein, unlike GA. Solutions of FGP have a high degree of thermostability, displaying no loss in viscosity with temperature cycling and no thermal degradation when held at 90 °C. FGP is an excellent film former, producing high tensile strength films which remain intact at temperatures up to 200 °C. This work identified a number of potential food and pharmaceutical applications where FGP is significantly superior to GA.

  4. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    PubMed

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface

    PubMed Central

    Kiefer, Johannes; Frank, Kerstin; Zehentbauer, Florian M.; Schuchmann, Heike P.

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT) oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR) has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion. PMID:27089376

  6. Effects of pre-cooked cheeses of different emulsifying conditions on mechanical properties and microstructure of processed cheese.

    PubMed

    Fu, Wei; Watanabe, Yurika; Inoue, Keita; Moriguchi, Natsumi; Fusa, Kazunao; Yanagisawa, Yuya; Mutoh, Takaaki; Nakamura, Takashi

    2018-04-15

    The effect of pre-cooked cheeses of different emulsifying conditions on the viscosities, mechanical properties, fat globules, and microstructure of processed cheese was investigated, and changes in protein network relating to the creaming effect and the occurrence of yielding point were discussed. The addition of pre-cooked cheeses with a short stirring time had no obvious impact on the fat globules and protein network. The random network brought low viscosities and a gradual increase in the fracture stress/strain curve. The addition of pre-cooked cheeses with the long stirring time caused protein network to become fine-stranded. The fine-stranded network caused creaming effect, and brought yielding points in the mechanical properties. The pre-cooked cheese with the small fat globules also caused fat globules to become smaller, and give the processed cheese more firmness. This study provides a potential solution to control the functional properties of processed cheese by using a variety of pre-cooked cheeses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-09-01

    Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis, Surface Parameters, and Biodegradability of Water-soluble Surfactants for Various Applications.

    PubMed

    El-Sayed, Refat; Alotaibi, Hawazin H; Elhady, Heba A

    2018-01-01

    The synthesis of water-soluble heterocyclic compounds was verified on the basis of nonionic surfactants for use as surface-active agents. Surface characteristics such as surface and interfacial tensions, cloud point, wetting time, emulsion stability, foaming height and foaming stability were measured for these surface factors in aqueous solutions. In addition, the critical micelle concentration (CMC), the surface pressure at CMC (π cmc ), the effectiveness of surface tension reduction (pC 20 ), the maximum surface concentration (Γ ma. ) and the minimum area/molecule at the aqueous solution/air interface (A min ) were calculated. Moreover, the biodegradability for these nonionic surfactants has been investigated. Furthermore, the antimicrobial evaluation has been evaluated with some surfactants that have demonstrated a potent cytotoxicity as antibacterial, antifungal and anticancer. These surfactants have a good water solubility, low toxicity, environmentally friendly environment, high foam, good emulsifier and easy production that will be used them in various fields such as medical drugs, insecticides, detergents, emulsifiers, cosmetics, inks clothing, leather industry and oil recovery.

  9. Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians.

    PubMed

    Lin, Muyang; Tay, Siang Hong; Yang, Hongshun; Yang, Bao; Li, Hongliang

    2017-08-15

    To evaluate the feasibility of substituting eggs in yellow cake by a mixture of soybean proteins, plant polysaccharides, and emulsifiers, the batter properties, including specific gravity and viscosity; cake properties, including specific volume, texture, colour, moisture, microstructures, and structural properties of starch and glutens of the replaced cake and traditional cake containing egg, were evaluated. Replacing eggs with a soy protein isolate and 1% mono-, di-glycerides yielded a similar specific volume, specific gravity, firmness and moisture content (1.92 vs. 2.08cm 3 /g, 0.95 vs. 1.03, 319.8 vs. 376.1g, and 28.03% vs. 29.01%, respectively) compared with the traditional cakes baked with eggs. Structurally, this formulation comprised dominant gliadin aggregates in the size range of 100-200nm and glutenin networking structures containing fewer but larger porosities. The results suggest that a mixture of soybean proteins and emulsifier is a promising substitute for eggs in cakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Modulating fat digestion through food structure design.

    PubMed

    Guo, Qing; Ye, Aiqian; Bellissimo, Nick; Singh, Harjinder; Rousseau, Dérick

    2017-10-01

    Dietary fats and oils are an important component of our diet and a significant contributor to total energy and intake of lipophilic nutrients and bioactives. We discuss their fate in a wide variety of engineered, processed and naturally-occurring foods as they pass through the gastrointestinal tract and the implicit role of the food matrix within which they reside. Important factors that control fat and oil digestion include: 1) Their physical state (liquid or solid); 2) Dispersion of oil as emulsion droplets and control of the interfacial structure of emulsified oils; 3) The structure and rheology of the food matrix surrounding dispersed oil droplets; and 4) Alteration of emulsified oil droplet size and concentration. Using examples based on model foods such as emulsion gels and everyday foods such as almonds and cheese, we demonstrate that food structure design may be used as a tool to modulate fat and oil digestion potentially resulting in a number of targeted physiological outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions.

    PubMed

    Torcello-Gómez, Amelia; Foster, Timothy J

    2016-06-25

    Cellulose ethers are usually used as secondary emulsifiers. Different types of commercial hydroxypropylmethylcellulose (HPMC) have been used here as the main emulsifier of oil-in-water emulsions to probe their impact on the lipid digestibility under simulated intestinal conditions. The droplet size distribution and ζ-potential of the emulsions subjected to in-vitro lipolysis have been compared with that of control samples (non-digested). The lipolysis has been quantified over time by means of the pH-stat method. The displacement of HPMC from the oil-water interface by bile salts has been assessed by interfacial tension technique. Results show that HPMC delays the lipid digestion of emulsions regardless of the Mw and methoxyl content. The destabilisation of emulsions under intestinal conditions as well as the resistance of HPMC to be displaced from the emulsion interface by bile salts may contribute to this feature. This provides new insights into the mechanisms whereby dietary fibre reduces fat absorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-07-13

    Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.

  13. Migration of fluorochemical paper additives from food-contact paper into foods and food simulants.

    PubMed

    Begley, T H; Hsu, W; Noonan, G; Diachenko, G

    2008-03-01

    Fluorochemical-treated paper was tested to determine the amount of migration that occurs into foods and food-simulating liquids and the characteristics of the migration. Migration characteristics of fluorochemicals from paper were examined in Miglyol, butter, water, vinegar, water-ethanol solutions, emulsions and pure oil containing small amounts of emulsifiers. Additionally, microwave popcorn and chocolate spread were used to investigate migration. Results indicate that fluorochemicals paper additives do migrate to food during actual package use. For example, we found that microwave popcorn contained 3.2 fluorochemical mg kg(-1) popcorn after popping and butter contained 0.1 mg kg(-1) after 40 days at 4 degrees C. Tests also indicate that common food-simulating liquids for migration testing and package material evaluation might not provide an accurate indication of the amount of fluorochemical that actually migrates to food. Tests show that oil containing small amounts of an emulsifier can significantly enhance migration of a fluorochemical from paper.

  14. Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes.

    PubMed

    Costa, Ana Letícia Rodrigues; Gomes, Andresa; Tibolla, Heloisa; Menegalli, Florencia Cecilia; Cunha, Rosiane Lopes

    2018-08-15

    Cellulose nanofibers (CNFs) from banana peels was evaluated as promising stabilizer for oil-in-water emulsions. CNFs were treated using ultrasound and high-pressure homogenizer. Changes on the size, crystallinity index and zeta potential of CNFs were associated with the intense effects of cavitation phenomenon and shear forces promoted by mechanical treatments. CNFs-stabilized emulsions were produced under the same process conditions as the particles. Coalescence phenomenon was observed in the emulsions produced using high-pressure homogenizer, whereas droplets flocculation occurred in emulsions processed by ultrasound. In the latter, coalescence stability was associated with effects of cavitation forces acting on the CNFs breakup. Thus, smaller droplets created during the ultrasonication process could be recovered by particles that acted as an effective barrier against droplets coalescence. Our results improved understanding about the relationship between the choice of emulsification process and their effects on the CNFs properties influencing the potential application of CNFs as a food emulsifier. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Emulsion properties of pork myofibrillar protein in combination with microbial transglutaminase and calcium alginate under various pH conditions.

    PubMed

    Hong, Geun Pyo; Min, Sang-Gi; Chin, Koo Bok

    2012-01-01

    In this study, the effects of microbial transglutaminase (MTG) and calcium alginate (CA) systems in combination with soybean oil on the emulsion properties of porcine myofibrillar protein (MP) were evaluated under various pH conditions. MTG was shown to improve emulsifying capacity and creaming stability, which increased with increasing pH values up to 6.5. The CA did not influence emulsifying capacity, but it improved the creaming stability of the MP-stabilized emulsions. Both MTG and CA enhanced the rheological properties, but their effects on the physical characteristics of the protein evidenced an opposite trend in relation to pH, i.e., the MTG system improved both the emulsion and gelling properties with increasing pH, whereas the CA system was effective when the pH was lowered. By combining the two MP gelling systems, a stable and pH-insensible emulsion could be produced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Preparation of rich handles soft cellulosic fabric using amino silicone based softener. Part-I: Surface smoothness and softness properties.

    PubMed

    Zia, Khalid Mahmood; Tabassum, Shazia; Barkaat-ul-Hasin, Syed; Zuber, Mohammad; Jamil, Tahir; Jamal, Muhammad Asghar

    2011-04-01

    A series of amino silicone based softeners with different emulsifiers were prepared and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. Factors affecting the performance properties of the finished substrate such as post-treatment with amino functional silicone based softener varying different emulsifiers in their formulations and its concentration on different processed fabrics were studied. Fixation of the amino-functional silicone softener onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. The results of the experiments indicate that the amino silicone can form a hydrophobic film on both cotton and blends of cotton/polyester fabrics and its coating reduces the surface roughness significantly. Furthermore, the roughness becomes lesser with an increase in the applied strength of amino silicone based softener. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde.

    PubMed

    Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia

    2015-01-01

    Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.

  19. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    PubMed Central

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-01-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry. PMID:24651079

  20. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate.

    PubMed

    Benelhadj, Sonda; Gharsallaoui, Adem; Degraeve, Pascal; Attia, Hamadi; Ghorbel, Dorra

    2016-03-01

    In the present study, a protein isolate extracted from Arthrospira platensis by isoelectric precipitation was evaluated for its functional properties. The maximum nitrogen solubility was 59.6±0.7% (w/w) at pH 10. The A. platensis protein isolate (API) showed relatively high oil (252.7±0.3g oil/100g API) and water (428.8±15.4g of water/100g of API at pH 10) absorption capacities. The protein zeta potential, the emulsifying capacity, the emulsion ageing stability, the emulsion microstructure and the emulsion opacity as well as the foaming capacity and the foam stability were shown to be greatly affected by pH. Especially, emulsifying and foaming capacities were positively correlated to the protein solubility. Moreover, the API was able to form films when sorbitol (30% (w/w)) was used as plasticizer and to form gels when the API concentration exceeded 12% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of olive oil and olive oil-pomegranate juice sauces on chemical, oxidative and sensorial quality of marinated anchovy.

    PubMed

    Topuz, Osman Kadir; Yerlikaya, Pinar; Ucak, Ilknur; Gumus, Bahar; Büyükbenli, Hanife Aydan

    2014-07-01

    This study describes the potential use of olive oil and olive oil-pomegranate juice sauces as antioxidant, preservative and flavoring agent in fish marinades. The olive oil and sauces, produced from emulsifying of olive oil and pomegranate juice with gums, were blended with marinated anchovy (Engraulis encrasicholus) fillets. The aim of the present study was to produce a new polyphenol-rich marinade sauces by emulsifying pomegranate juice with olive oil in different proportions (25%, 35% and 50%v:v). In order to evaluate the effects of olive oil and olive oil-pomegranate juice sauces on quality of anchovy marinades, the chemical (TVB-N and TMA), oxidative (peroxides value, K230, thiobarbituric acid and K270) and sensory analyses were carried out during storage at 4°C. The present study showed that saucing of anchovy marinades with olive oil-pomegranate sauce can retard the undesirable quality changes, prolong the lipid oxidation and improve the sensory properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effects of Limited Hydrolysis and High-Pressure Homogenization on Functional Properties of Oyster Protein Isolates.

    PubMed

    Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Du, Ming

    2018-03-22

    In this study, the effects of limited hydrolysis and/or high-pressure homogenization (HPH) treatment in acid conditions on the functional properties of oyster protein isolates (OPI) were studied. Protein solubility, surface hydrophobicity, particle size distribution, zeta potential, foaming, and emulsifying properties were evaluated. The results showed that acid treatment led to the dissociation and unfolding of OPI. Subsequent treatment such as limited proteolysis, HPH, and their combination remarkably improved the functional properties of OPI. Acid treatment produced flexible aggregates, as well as reduced particle size and solubility. On the contrary, limited hydrolysis increased the solubility of OPI. Furthermore, HPH enhanced the effectiveness of the above treatments. The emulsifying and foaming properties of acid- or hydrolysis-treated OPI significantly improved. In conclusion, a combination of acid treatment, limited proteolysis, and HPH improved the functional properties of OPI. The improvements in the functional properties of OPI could potentiate the use of oyster protein and its hydrolysates in the food industry.

  3. Changes in the functional properties and antinutritional factors of extruded hard-to-cook common beans (Phaseolus vulgaris, L.).

    PubMed

    Batista, Karla A; Prudêncio, Sandra H; Fernandes, Kátia F

    2010-04-01

    The biochemical and functional properties of 2 hard-to-cook common bean cultivars (Phaseolus vulgaris, L.) were investigated after the extrusion process. Beans of BRS pontal and BRS grafite cultivars were milled and extruded at 150 degrees C, with a compression ratio screw of 3 : 1, 5-mm die, and screw speed of 150 rpm. Extrudate flours were evaluated for water solubility (WS), water absorption index (WAI), oil absorption capacity (OAC), foaming capacity (FC), emulsifying activity (EA), antinutritional factors, and in vitro protein and starch digestibility. Results indicated that the extrusion significantly decreased antinutrients such as phytic acid, lectin, alpha-amylase, and trypsin inhibitors, reduced the emulsifying capacity and eliminated the FC in both BRS pontal and BRS grafite cultivars. In addition, the WS, WAI, and in vitro protein and starch digestibility were improved by the extrusion process. These results indicate that it is possible to produce new extruded products with good functional and biochemical properties from these common bean cultivars.

  4. Application of α-amylase as a novel biodemulsifier for destabilizing amphiphilic polymer-flooding produced liquid treatment.

    PubMed

    Jiang, Jiatong; Wu, Hairong; Lu, Yao; Ma, Tao; Li, Zhe; Xu, Derong; Kang, Wanli; Bai, Baojun

    2018-07-01

    The performance and de-emulsification mechanism of α-amylase, a novel environmental friendly biodemulsifier in petroleum industry, was investigated at room temperature. The effects of α-amylase on the viscosity of amphiphilic polymer solution and de-emulsification rate were studied by changing the concentration of α-amylase, temperature and salinity. Polymer molecular weight, Zeta potential, interfacial film strength and interfacial tension were measured to investigate the de-emulsification mechanism of α-amylase. The results show that α-amylase is an efficient biodemulsifier to increase the de-emulsification rate of amphiphilic polymer emulsions. Hydrolysis of α-amylase to amphiphilic polymers destroys the structure of the amphiphilic polymer, thereby reduces the viscosity and the interfacial film strength of the system. Once de-emulsification is completed, the lower layer, i.e. the emulsified layer, will be clear. Thus, α-amylase can be applied as an effective de-emulsifier for amphiphilic polymer-stabilized O/W emulsion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Solubilized wheat protein isolate: functional properties and potential food applications.

    PubMed

    Ahmedna, M; Prinyawiwatkul, W; Rao, R M

    1999-04-01

    Solubility, foaming capacity/stability, water holding and fat absorption capacities, and emulsifying capacity/stability of a solubilized wheat protein isolate (SWPI) were compared with those of commercial protein, that is, sodium caseinate (NaCAS), dried egg white (DEW), nonfat dry milk (NFDM), and soy protein isolate (SPI). SWPI was highly soluble at pH 6.5-8.5. Foaming capacity of SWPI was superior to those of SPI, NFDM, and DEW, and its foaming stability was similar to those of the commercial proteins. Foaming properties of SWPI were greatly improved in the presence of 0.5% (w/v) CaCl(2). Water holding capacity of SWPI was greater than that of NaCAS, NFDM, and DEW, whereas its fat absorption capacity was comparable to that of SPI, NaCAS, and DEW. SWPI exhibited emulsifying properties similar to those of SPI. SWPI was incorporated at 5, 10, 15, or 20% into ice cream, chocolate chip cookies, banana nut muffins, and hamburger patties. Products containing <5% SWPI were acceptable to consumers.

  6. Network structure and functional properties of transparent hydrogel sanxan produced by Sphingomonas sanxanigenens NX02.

    PubMed

    Wu, Mengmeng; Shi, Zhong; Huang, Haidong; Qu, Jianmei; Dai, Xiaohui; Tian, Xuefeng; Wei, Weiying; Li, Guoqiang; Ma, Ting

    2017-11-15

    The micro-network structure and functional properties of sanxan, a novel polysaccharide produced by Sphingomonas sanxanigenens NX02, were investigated. Transparent hydrogel sanxan was a high acyl polymer containing 8.96% acetyl and 4.75% glyceroyl. The micro-network structure of sanxan was mainly cyclic configurations composed of side-by-side intermolecular associations, with many rounded nodes found. Sanxan exhibited predominant gelation behavior at concentrations above 0.1%, which was enhanced by adding cations, especially Ca 2+ . The gel strength of sanxan was much higher than that of low acyl gellan, but slightly lower than that of high acyl gellan. Furthermore, the conformation transition temperature was increased in the presence of added cations. Moreover, sanxan showed excellent emulsifying and emulsion stabilizing properties. Consequently, such excellent functional properties make sanxan a good candidate as a gelling, stabilizing, emulsifying, or suspending agent in food and cosmetics industries, and in medical and pharmaceutical usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  8. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1.

    PubMed

    Kumara, Manoj; Leon, Vladimir; De Sisto Materano, Angela; Ilzins, Olaf A; Galindo-Castro, Ivan; Fuenmayor, Sergio L

    2006-01-01

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.

  9. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer.

    PubMed

    Gong, Xiaoyu; Wang, Yixiang; Chen, Lingyun

    2017-08-01

    Cellulose nanocrystals are hydrophilic nanomaterials, which limits their applications as interfacial compounds. Herein, we propose using modified wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Wood cellulose was consecutively oxidized and modified with phenyltrimethylammonium chloride to create hydrophobic domains comprised of phenyl groups. These modified oxidized cellulose nanocrystals (m-O-CNCs) were homogeneous/electrostatically stable in water and they can stabilize O/W Pickering emulsions. The dispersed phase volume fraction (DPVF) of the Pickering emulsion was 0.7 at around 1.5g/L, whereas the tween-20 control needed a 13-fold greater concentration to have a similar DPVR. In addition, these m-O-CNC stabilized Pickering emulsions also showed good mechanical and thermal stability against centrifugation and heat, as well as size controllability. In terms of stability, size controllability, surfactant-free status, these m-O-CNCs possess superior and enhanced emulsifying properties. Future research for these new interfacial materials have potential in applications, for personal care, cosmetic and pharmaceutic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhancement of Rhamnolipid Production in Residual Soybean Oil by an Isolated Strain of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    de Lima, C. J. B.; França, F. P.; Sérvulo, E. F. C.; Resende, M. M.; Cardoso, V. L.

    In the present work, the production of rhamnolipid from residual soybean oil (RSO) from food frying facilities was studied using a strain of Pseudomonas aeruginosa of contaminated lagoon, isolated from a hydrocarbon contaminated soil. The optimization of RSO, amonium nitrate, and brewery residual yeast concentrations was accomplished by a central composite experimental design and surface response analysis. The experiments were performed in 500-mL Erlenmeyer flasks containing 50mL of mineral medium, at 170 rpm and 30±1°C, for a 48-h fermentation period. Rhamnolipid production has been monitored by measurements of surface tension, rhamnose concentration, and emulsifying activity. The best-planned results, located on the central point, have corresponded to 22g/L of RSO, 5.625 g/ L of NH4NO3' and 11.5 g/L of brewery yeast. At the maximum point the values for rhamnose and emulsifying index were 2.2g/L and 100%, respectively.

  11. Application of high-pressure homogenization on gums.

    PubMed

    Belmiro, Ricardo Henrique; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2018-04-01

    High-pressure homogenization (HPH) is an emerging process during which a fluid product is pumped by pressure intensifiers, forcing it to flow through a narrow gap, usually measured in the order of micrometers. Gums are polysaccharides from vegetal, animal or microbial origin and are widely employed in food and chemical industries as thickeners, stabilizers, gelling agents and emulsifiers. The choice of a specific gum depends on its application and purpose because each form of gum has particular values with respect to viscosity, intrinsic viscosity, stability, and emulsifying and gelling properties, with these parameters being determined by its structure. HPH is able to alter those properties positively by inducing changes in the original polymer, allowing for new applications and improvements with respect to the technical properties of gums. This review highlights the most important advances when this process is applied to change polysaccharides from distinct sources and molecular structures, as well as the future challenges that remain. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. The effects of specified chemical meals on food intake.

    PubMed

    Koopmans, H S; Maggio, C A

    1978-10-01

    Rats received intragastric infusions of various specified chemical meals and were subsequently tested for a reduction in food intake. A second experiment, using a novel technique, tested for conditioned aversion to the meal infusions. The nonnutritive substances, kaolin clay and emulsified fluorocarbon, had no significant effect on food intake. Infusions of 1 M glucose and 1 M sorbitol reduced feeding behavior, but the 1 M sorbitol infusion also produced a conditioned aversion to flavored pellets paired with the sorbitol infusion, showing that the reduced feeding could have been caused by discomfort. Infusion of a high-fat meal consisting of emulsified triolein mixed with small amounts of sugar and protein or the rat's normal liquid diet, Nutrament, also reduced food intake, and both infusions failed to produce a conditioned aversion. The use of specified meals to understand the chemical basis of satiety requires a sensitive behavioral test to establish that the meal does not cause discomfort or other nonspecific effects.

  13. Soybean-based surfactants and their applications

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important source of two natural emulsifiers, i.e., soy lecithin and soy proteins. Crude soybean oil (SBO) contains 1 to 3% phospholipids. These phospholipids are extracted during the processing of crude SBO and are used as lecithin. Soy proteins are obtained after extraction of SBO. Ex...

  14. THE COMBUSTION OF ORIMULSION AND ITS GENERATION OF AIR POLLUTANTS

    EPA Science Inventory


    Orimulsion, a bitumen-in-water emulsified fuel produced in Venezuela, has shown increased use throughout the world as a replacement for heavy fuel oil and, more frequently during the past several years, coal. Orimulsion has relatively high levels of sulfur, nickel, and vanad...

  15. 21 CFR 201.117 - Inactive ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Inactive ingredients. 201.117 Section 201.117 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... drug that is ordinarily used as an inactive ingredient, such as a coloring, emulsifier, excipient...

  16. Laboratory performance evaluation of CIR-emulsion and its comparison against CIR-foam test results from phase III.

    DOT National Transportation Integrated Search

    2009-12-01

    Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix : design process developed during the previous phase is applied for CIR-emulsion mixtures with varying : emulsified asphalt contents. Dynamic modulus ...

  17. EZVI Injection Field Test Leads to Pilot-Scale Application

    EPA Science Inventory

    Testing and monitoring of emulsified zero-valent ironTM (EZVI) injections was conducted at Cape Canaveral Air Force Station’s Launch Complex 34, FL, in 2002 to 2005 to evaluate the technology’s efficacy in enhancing in situ dehalogenation of dense nonaqueous-phase liquid (DNAPL) ...

  18. Oil composition and method of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, S.M.

    1931-10-24

    A method is described for production of a mineral oil having a Saybolt viscosity of approximately 200 to 350 sec at 100/sup 0/F. The oil contains partially or wholly saponified oxidized rape oil in an amount sufficient to render the mineral oil emulsifiable in water.

  19. 21 CFR 131.149 - Dry cream.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dry cream. 131.149 Section 131.149 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...: (1) Emulsifiers. (2) Stabilizers. (3) Anticaking agents. (4) Antioxidants. (5) Nutritive carbohydrate...

  20. Barley hulls and straw constituents and emulsifying properties of their hemicelluloses

    USDA-ARS?s Scientific Manuscript database

    Barley hulls (husks) are potential by-products of barley ethanol production. Barley straw is an abundant biomass in the regions producing barley for malting, feeds, and fuel ethanol. Both barley hulls and straw contain valuable hemicelluloses (arabinoxylans) and other useful carbohydrate and non-car...

  1. Biobased products research at the National Center for Agricultural Utilization Research

    USDA-ARS?s Scientific Manuscript database

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  2. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.

    2005-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the contaminant's potential bioaccumulation in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water run-off. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. However, the application to marine environments is only just being explored. This paper discusses the potential use of EZVI in brackish and saltwater environments, with supporting laboratory data detailed. Laboratory studies were performed in 2005 to establish the effectiveness of EZVI to degrade trichloroethylene (TCE) in saltwater. Headspace vials were setup to determine the kinetic rate of TCE degradation using EZVI in seawater. The reaction vials were analyzed by Gas Chromatographic/Flame Ionization Detection (GC/FID) for ethene production after a 48 day period using a GC/FID Purge and Trap system. Analytical results showed that EZVI was very effective at degrading TCE. The reaction by-products (ethene, acetylene and ethane) were produced at 71% of the rate in seawater as in the fresh water controls. Additionally, iron within the EZVI particles was protected from oxidation of the corrosive seawater, allowing EZVI to perform in an environment where zero-valent iron alone could not compete. Laboratory studies were also performed to establish the effectiveness of emulsified zero-valent metal (EZVM) to remove dissolved-phase cadmium and lead found in seawater. EZVM is comprised of a combination of magnesium and iron metal surrounded by the same oil/surfactant membrane used in EZVI. The removal of cadmium and lead from a seawater matrix is a unique challenge. It requires a system that is resistant to the corrosive nature of seawater while removing specific ions that are in a relatively low concentration compared to naturally occurring seawater salts. Laboratory studies conducted show greater than 99% removal of lead and 96% removal of cadmium from a seawater solution spiked at 5 mg/L that was treated with an Emulsified Zero-Valent Metal (EZVM). The cadmium and lead are removed from the solution as they transport across the emulsion membrane and plate out onto the zero-valent metal surface.

  3. 21 CFR 172.830 - Succinylated monoglycerides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172... neutral succinic acid esters of mono- and diglycerides produced by the succinylation of a product obtained... use in the following foods: (1) As an emulsifier in liquid and plastic shortenings at a level not to...

  4. SITE TECHNOLOGY CAPSULE: INPLANT SYSTEMS, INC. SFC 0.5 OLEOFILTRATION SYSTEM

    EPA Science Inventory

    Oleofiltration is used to separate suspended, emulsified and a portion of dissolved hydrocarbons from water. The InPlant Systems, Inc., SFC 0.5 Oleofiltration System was demonstrated under the SITE Program in June 1994 at a Superfund site in Florida that was contaminated with 29,...

  5. 27 CFR 17.11 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with postage prepaid, then the United States postmark date is treated as the date of filing. Food products. Includes food adjuncts, such as preservatives, emulsifying agents, and food colorings, which are manufactured and used, or sold for use, in food. Intermediate products. Products to which all three of the...

  6. 21 CFR 172.836 - Polysorbate 60.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the weight of the cake icing or cake filling. (6) To impart greater opacity to sugar-type confection... finished sugar coating. (7) As an emulsifier in nonstandardized dressings whereby the maximum amount of the... cream in beverage coffee, with or without one or a combination of the following: (i) Polysorbate 65. (ii...

  7. Environmental Impact Assessment. Overall Training Mission, Fort Chaffee, Arkansas,

    DTIC Science & Technology

    1975-04-01

    Dichlorvos strips for flies, Chlordane for termites , Phostoxin for grain insects, Diazinon for roaches, Naled mixed with Ortho emulsifier for mosquitoes...where there are 23 steel igloos with concrete floors, ranging in size from 200 to 800 square feet. All igloos are mounded with an earth blanket and

  8. Antimicrobial edible coatings and films from micro-emulsions and their food applications

    USDA-ARS?s Scientific Manuscript database

    This study focused on the use of antimicrobial edible coatings and films from micro-emulsions to reduce populations of foodborne pathogens in foods. Corn-Bio-fiber gum (C-BFG) was used as an emulsifier with chitosan. Allyl isothiocyanate (AIT) and lauric arginate ester (LAE) served as antimicrobials...

  9. Starch inclusion complex to emulsify cedarwood oil and pressure treat wood

    USDA-ARS?s Scientific Manuscript database

    Previously, we have demonstrated that CO2-derived cedarwood oil has a range of bioactivities, including insect repellency and toxicity as well as conferring resistance to both termites and wood-rot fungi. In the earlier pressure treatment work, ethanol was used as the diluent/carrier. However, it is...

  10. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  11. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  12. Process optimization for maximizing the rheology modifying properties of pectic hydrocolloids recovered from steam exploded biomass

    USDA-ARS?s Scientific Manuscript database

    Pectic hydrocolloids from citrus peel waste are highly functional molecules whose utility and application have expanded well beyond their traditional use in jams and jellies. They are now finding applications in health, pharmaceutical and personal care products as well as functioning as emulsifiers,...

  13. U.S. EPA, Pesticide Product Label, BEST BBC 12-E EMULSIFIABLE LIQUID, 01/12/1968

    EPA Pesticide Factsheets

    2011-04-14

    ... plar,7"":) 1 q'J ;-,I'r Ol.I',' (OTTON, p~EPl/\\~~~ T ~!"~'i!I~~\\.. i)()SrPLANT. PiNEAPPLES: [11'(0(1"\\1' ~'~Lr'~ I.~ .. T ,~,l ~-'lt~~~1:~~'~j ?OSTPLP.,Nf. ...

  14. Emissions and Fuel Economy of a Detroit Diesel 6-71 Engine Burning a 10-Percent Water-In-Fuel Emission

    DOT National Transportation Integrated Search

    1978-07-01

    Initial efforts with water/fuel emulsions in diesel engines were directed toward the control of NOx. More recent studies emphasized the use of emulsions to improve fuel economy. It is believed that in a diesel engine combustion process, emulsified fu...

  15. Pesticide Spill Prevention and Management

    DTIC Science & Technology

    2009-08-01

    Gentrol IGR) Strong oxidizers. Imidacloprid Oxidizing agents. Lambda-cyhalothrin Oxidizing agents, alkalis, calcium hypochlorite. Malathion... Imidacloprid Sodium salt of diphacinone Methyl Azoxystrobin Use Hard Water Detergent for: Diquat Aluminum phosphide – NOTE: See special...Hydroprene, 9.0%, emulsifiable concentrate (Gentrol IGR) Imidacloprid (Maxforce Granular Fly Bait) Imidacloprid (Maxforce Fly Spot Bait

  16. 40 CFR 180.920 - Inert ingredients used pre-harvest; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... di- and monohydrogen phosphate esters and the corresponding ammonium, calcium, magnesium, monoethanolamine, potassium, sodium, and zinc salts of the phosphate esters; minimum oxyethylene content is 2 moles.... 14433-76-2) Emulsifier, solvent, cosolvent Diammonium phosphate (CAS Reg. No. 7783-28-0) Buffer...

  17. EFFECT OF AMOUNT OF CRUDE OIL ON EXTENT OF ITS BIODEGRADATION IN OPEN WATER- AND SANDY BEACH-LABORATORY SIMULATIONS

    EPA Science Inventory

    Bioremediation of marine oil spills, a technology using hydrocarbon-degrading and emulsifying capabilities of microorganisms, has many unexplored limitations, and among them is degree of environmental oil contamination. We examined the biodegradation of varying amounts of artifi...

  18. 21 CFR 172.846 - Sodium stearoyl lactylate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... food. (7) As an emulsifier, stabilizer, or texturizer in sauces or gravies, and the products containing... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium stearoyl lactylate. 172.846 Section 172.846 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  19. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  20. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  1. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  2. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  3. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an emulsifier...

  4. 21 CFR 172.846 - Sodium stearoyl lactylate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food. (7) As an emulsifier, stabilizer, or texturizer in sauces or gravies, and the products containing... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium stearoyl lactylate. 172.846 Section 172.846 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  5. Topical nanoparticulate formulation of drugs for ocular keratitis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyan

    The primary objective of this project is to develop drug-loaded polymeric nanoparticles suspended in a biocompatible gel for topical delivery of therapeutic agents commonly employed in the treatment of ocular viral/bacterial keratitis. PART 1: Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) of dipeptide monoester prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV), D-Val-L-Val-GCV (DLGCV) were formulated and dispersed in thermosensitive PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1) induced viral corneal keratitis. NP containing prodrugs of GCV were prepared by a double-emulsion solvent evaporation technique using various PLGA polymers with different drug/polymer ratios. Cytotoxicity studies suggested that all NP formulations are non-toxic. In vitro release of prodrugs from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels with near zero-order release kinetics. Prodrugs-loaded PLGA NP dispersed in thermosensitive gels can thus serve as a promising drug delivery system for the treatment of anterior eye diseases. Maximum uptake (around 60%) was noted at 3 h for NP. Cellular uptake and intracellular accumulation of prodrugs are significantly different among three stereoisomeric dipeptide prodrugs. The microscopic images show that NP are avidly internalized by HCEC cells and distributed throughout the cytoplasm instead of being localized on the cell surface. Following cellular uptake, prodrugs released from NP gradually bioreversed into parent drug GCV. LLGCV showed the highest degradation rate, followed by LDGCV and DLGCV. LLGCV, LDGCV and DLGCV released from NP exhibited superior uptake and bioreversion in corneal cells. PART 2: PLGA NP of hydrocortisone butyrate (HB) suspended in thermosensitive PLGA-PEG-PLGA gel were developed for the treatment of bacterial corneal keratitis. Experimental designs were employed in order to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. NP containing HB were prepared by an oil-in-water (O/W) emulsion evaporation technique with different surfactants including polyvinyl alcohol (PVA), pluronic F-108 and chitosan. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels and zero-order release kinetics was observed. Percentage of uptake in HCEC after 4 h was 59.09+/-6.21% for PVA-emulsified NP relative to 55.74+/-6.26% for pluronic-emulsified NP, and 62.54+/-3.30% for chitosan-emulsified NP, respectively. In HCEC cell line, chitosan-emulsified NP with chitosan showed highest cellular uptake efficiency over PVA- and pluronic-emulsified NP. However, NP with chitosan indicated significant cytotoxicity under 200 and 500 ?g/mL after 48 h, while NP with PVA and pluronic showed no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.

  6. 9 CFR 72.13 - Permitted dips and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proprietary brands of permitted dips—as well the use of compressed air, vat management techniques, and other... proprietary brands of a Dioxathion (Delnav ®) emulsifiable concentrate used at a concentration of 0.125 to 0.150 percent. 4 (2) Approved proprietary brands of coumaphos (Co-Ral ®), 25 percent wettable powder or...

  7. 40 CFR 63.8698 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... water with an emulsifying agent) are not subject to this subpart. Blowing still means the equipment in..., called “blowing,” is the oxidation of asphalt flux, achieved by bubbling air through the heated asphalt... facility includes one or more asphalt flux blowing stills, asphalt flux storage tanks storing asphalt flux...

  8. 40 CFR 63.8698 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water with an emulsifying agent) are not subject to this subpart. Blowing still means the equipment in..., called “blowing,” is the oxidation of asphalt flux, achieved by bubbling air through the heated asphalt... facility includes one or more asphalt flux blowing stills, asphalt flux storage tanks storing asphalt flux...

  9. 40 CFR 63.8698 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... water with an emulsifying agent) are not subject to this subpart. Blowing still means the equipment in..., called “blowing,” is the oxidation of asphalt flux, achieved by bubbling air through the heated asphalt... facility includes one or more asphalt flux blowing stills, asphalt flux storage tanks storing asphalt flux...

  10. Importance of protein rich components in the emulsifying properties of corn fiber gum

    USDA-ARS?s Scientific Manuscript database

    Purified corn fiber gum (CFG-F) isolated from "fine" (kernel endosperm-derived) corn fiber that contained about 2% residual protein was extracted with 70% aqueous ethanol. The aqueous ethanol extract (AEE), which contained 19.5% of the total CFG, contained a high percentage of the proteinaceous ma...

  11. U.S. EPA, Pesticide Product Label, EN SURE EMULSIFIABLE CONCENTRATE INSECTICIDE, 04/18/1975

    EPA Pesticide Factsheets

    2011-04-14

    ... tr('atH! t'(':'j , :"nllr1 ;,.>4 hOllr') of <1J)pl, C;.Jtl'J[' "h"'JlcJ :.I:,jI ,.roll·' I .f: (ict'l:ng Thl') I,rvkr:' ", tOt,,- to ft.', dnd '1.rldllit: B,rch if:('ei;ng

  12. Improvement of rheological, thermal and functional properties of tapioca starch using gum arabic

    USDA-ARS?s Scientific Manuscript database

    The addition of gum arabic (GA) to native tapioca starch (TS) to modify the functionality of TS was investigated. GA is well known for its stabilizing, emulsifying, and thickening properties. The effects of adding GA (0.1-1.0%) on pasting, rheological and solubility properties of TS (5%) were analy...

  13. Novel Approaches in Formulation of Entomopathogenic Fungi for Control of Insects in Soil, Foliar, and Structural Habitats: Thinking Outside the Box and Expecting the Unexpected

    USDA-ARS?s Scientific Manuscript database

    By and large, mycoinsecticide formulations have involved sprayable products, typically oil flowables, emulsifiable suspensions, wettable powders, and water dispersable granules. Various nutritive or inert carriers have been used to create granular formulations for use against soil pests. Sometime...

  14. Evaluation of novel adjuvant Eimeria profilin complex on intestinal host immune responses against live E. acervulina challenge infection

    USDA-ARS?s Scientific Manuscript database

    The effects of two novel adjuvants, QCDC (Quil A/cholesterol/DDA/Carbopol) and QCDCRT (QCDC/Bay R1005/cytosine-phosphate-guanosine oligodeoxynucleotides, CpG) emulsified with profilin, a conserved Eimeria recombinant protein, against avian coccidiosis were determined in broiler chickens. Chickens we...

  15. 21 CFR 131.147 - Dry whole milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... less than 2,000 International Units thereof. (2) Addition of vitamin D is optional. If added, vitamin D... optional ingredients may be used: (1) Carriers for vitamins A and D. (2) Emulsifiers. (3) Stabilizers. (4...-16.200. (2) Moisture content—“Moisture—Official Final Action,” section 16.192. (3) Vitamin D content...

  16. Field Evaluation of a Kudzu/Cottonseed Oil Formulation on the Persistence of the Beet Armyworm Nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    A plant extract (kudzu) was tested as a UV protectant for SeMNPV, with and without the addition of an oil/emulsifier (cottonseed oil/lecithin) formulation. Aqueous and oil emulsion formulations of the beet armyworm, Spodoptera exigua (Hübner), nucleopolyhedrovirus SeMNPV were applied to collards an...

  17. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    USDA-ARS?s Scientific Manuscript database

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (<100 nm) (DNR) stabilized using combinations of whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  18. USE OF HAZARD MODELS IN EVALUATING THE EFFECT OF EXPOSURE DURATION ON THE ACUTE TOXICITY OF THREE PESTICIDES

    EPA Science Inventory

    Renewal toxicity tests (96 h) were conducted with the emulsifiable concentrates of three pesticides: azinphosmethyl, endosulfan, and fenvalerate. econd test design, which incorporated a 6-h period of exposure followed by 90 h of observation, was also conducted on these three pest...

  19. 21 CFR 172.660 - Salts of furcelleran.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... intended for use in the amount necessary for an emulsifier, stabilizer, or thickener in foods, except for... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of furcelleran. 172.660 Section 172.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  20. 21 CFR 172.660 - Salts of furcelleran.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... intended for use in the amount necessary for an emulsifier, stabilizer, or thickener in foods, except for... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of furcelleran. 172.660 Section 172.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  1. Use of the yeast-like cells of Tremella fuciformis as a cell factory to produce a Pleurotus ostreatus hydrophobin.

    PubMed

    Zhu, Hanyu; Liu, Dongmei; Wang, Yuanyuan; Ren, Danfeng; Zheng, Liesheng; Chen, Liguo; Ma, Aimin

    2017-08-01

    To obtain hydrophobin, a Class I hydrophobin gene, Po.hyd from Pleurotus ostreatus, was transformed into the yeast-like cells of Tremella fuciformis using Agrobacterium tumefaciens. The hydrophobin Po.HYD from P. ostreatus was heterogeneously expressed by the yeast-like cells of T. fuciformis. Plasmids harboring the Po.hyd gene driven by endogenous glyceraldehyde-3-phosphate dehydrogenase promoter were transformed by A. tumefaciens. The integration and expression of the rPo.HYD in the T. fuciformis cells were confirmed by PCR, Southern blot, fluorescence microscopy and quantitative real-time PCR. SDS-PAGE demonstrated that the rPo.HYD was extracted with the expected MW of 14 kDa. The yield of purified rPo.HYD was 0.58 mg/g dry wt. The protein, with its ability to stabilize oil droplets, exhibited a better emulsifying activity than the typical food emulsifiers Tween 20 and sodium caseinate. Tremella fuciformis can be used as a cell factory to produce hydrophobin on a large scale for the food industry.

  2. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    PubMed

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Changes in secondary structure of gluten proteins due to emulsifiers

    NASA Astrophysics Data System (ADS)

    Gómez, Analía V.; Ferrer, Evelina G.; Añón, María C.; Puppo, María C.

    2013-02-01

    Changes in the secondary structure of gluten proteins due to emulsifiers were analyzed by Raman Spectroscopy. The protein folding induced by 0.25% SSL (Sodium Stearoyl Lactylate) (GS0.25, Gluten + 0.25% SSL) included an increase in α-helix conformation and a decrease in β-sheet, turns and random coil. The same behavior, although in a less degree, was observed for 0.5% gluten-DATEM (Diacetyl Tartaric Acid Esters of Monoglycerides) system. The low burial of Tryptophan residues to a more hydrophobic environment and the low percentage area of the C-H stretching band for GS0.25 (Gluten + 0.25% SSL), could be related to the increased in α-helix conformation. This behavior was also confirmed by changes in stretching vibrational modes of disulfide bridges (S-S) and the low exposure of Tyrosine residues. High levels of SSL (0.5% and 1.0%) and DATEM (1.0%) led to more disordered protein structures, with different gluten networks. SSL (1.0%) formed a more disordered and opened gluten matrix than DATEM, the last one being laminar and homogeneous.

  4. Techno-functional properties and in vitro bile acid-binding capacities of tamarillo (Solanum betaceum Cav.) hydrocolloids.

    PubMed

    Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah

    2016-04-01

    Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes.

    PubMed

    Liu, Fei; Jiang, Yanfeng; Du, Bingjian; Chai, Zhi; Jiao, Tong; Zhang, Chunyue; Ren, Fazheng; Leng, Xiaojing

    2013-06-19

    This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did.

  6. Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid-lactoferrin-glucose/polydextrose conjugates.

    PubMed

    Liu, Fuguo; Wang, Di; Xu, Honggao; Sun, Cuixia; Gao, Yanxiang

    2016-04-01

    In this study, the influence of chlorogenic acid (CA)-lactoferrin (LF)-glucose (Glc) conjugate and CA-LF-polydextrose (PD) conjugate on the physicochemical characteristics of β-carotene emulsions was investigated. Novel emulsifiers were formed during Maillard reaction between CA-LF conjugate and Glc/PD. The physicochemical properties of β-carotene emulsions were characterized by droplet size, ζ-potential, rheological behavior, transmission changes during centrifugal sedimentation and β-carotene degradation. Results showed that the covalent attachment of Glc or PD to CA-LF conjugate effectively increased the hydrophilicity of the oil droplets surfaces and strengthened the steric repulsion between the oil droplets. Glucose was better than polydextrose for the conjugation with CA-LF conjugate to stabilize β-carotene emulsions. In comparison with LF and CA-LF-Glc/PD mixtures, CA-LF-Glc/PD ternary conjugates exhibited better emulsifying properties and improved physical stability of β-carotene emulsions during the freeze-thaw treatment. In addition, CA-LF-Glc/PD conjugates significantly enhanced chemical stability of β-carotene in the emulsions against ultraviolet light exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro.

    PubMed

    Xu, Jiao; Fan, Qiao-Jia; Yin, Zhong-Qiong; Li, Xu-Ting; Du, Yong-Hua; Jia, Ren-Yong; Wang, Kai-Yu; Lv, Cheng; Ye, Gang; Geng, Yi; Su, Gang; Zhao, Ling; Hu, Ting-Xiu; Shi, Fei; Zhang, Li; Wu, Chang-Long; Tao, Cui; Zhang, Ya-Xue; Shi, Dong-Xia

    2010-05-11

    The preparation of neem oil microemulsion and its acaricidal activity in vitro was developed in this study. In these systems, the mixture of Tween-80 and the sodium dodecyl benzene sulfonate (SDBS) (4:1, by weight) was used as compound surfactant; the mixture of compound surfactant and hexyl alcohol (4:1, by weight) was used as emulsifier system; the mixture of neem oil, emulsifier system and water (1:3.5:5.5, by weight) was used as neem oil microemulsion. All the mixtures were stired in 800 rpm for 15 min at 40 degrees C. The acaricidal activity was measured by the speed of kill. The whole lethal time value of 10% neem oil microemulsion was 192.50 min against Sarcoptes scabiei var. cuniculi larvae in vitro. The median lethal time value was 81.7463 min with the toxicity regression equations of Y=-6.0269+3.1514X. These results demonstrated that neem oil microemulsion was effective against Sarcoptes scabie var. cuniculi larvae in vitro. (c) 2010. Published by Elsevier B.V. All rights reserved.

  8. Low-fat meat sausages with fish oil: optimization of milk proteins and carrageenan contents using response surface methodology.

    PubMed

    Marchetti, L; Andrés, S C; Califano, A N

    2014-03-01

    Response surface methodology was used to analyze the effect of milk proteins and 2:1 κ:ι-carrageenans on cooking loss (CL), weight lost by centrifugation (WLC) and texture attributes of low-fat meat sausages with pre-emulsified fish oil. A central-composite design was used to develop models for the objective responses. Changes in carrageenans affected more the responses than milk proteins levels. Convenience functions were calculated for CL, WLC, hardness, and springiness of the product. Responses were optimized simultaneously minimizing CL and WLC; ranges for hardness and springiness corresponded to commercial products (20 g of pork fat/100 g). The optimum corresponded to 0.593 g of carrageenans/100 g and 0.320 g of milk proteins and its total lipid content was 6.3 g/100 g. This formulation was prepared and evaluated showing a good agreement between predicted and experimental responses. These additives could produce low-fat meat sausages with pre-emulsified fish oil with good nutritional quality and similar characteristics than traditional ones. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Stabilization of kerosene/water emulsions using bioemulsifiers obtained by fermentation of hemicellulosic sugars with Lactobacillus pentosus.

    PubMed

    Portilla-Rivera, Oscar Manuel; Torrado, Ana María; Domínguez, José Manuel; Moldes, Ana Belén

    2010-09-22

    The results of the present study show that Lactobacillus pentosus can produce extracellular bioemulsifiers by utilizing hemicellulosic sugars from grape marc as a source of carbon. The effectiveness of these bioemulsifiers (LPEM) was studied by preparing kerosene/water (K/W) emulsions in the presence and absence of these emulsifiers. Various parameters such as relative emulsion volume (EV), stabilizing capacity (ES), viscosity, and droplet size of K/W emulsions were measured. The EV values for K/W emulsions stabilized by concentrated LPEM were approximately 74.5% after 72 h of emulsion formation, with ES values of 97%. These values were higher than those obtained with dodecyl sodium sulfate as emulsifier (EV=62.3% and ES=87.7%). Additionally, K/W emulsions stabilized by LPEM produced polydisperse emulsions containing droplets of radius between 10 and 40 μm, which were smaller than those obtained for K/W emulsions without LPEM (droplet radius=60-100 μm). Moreover, the viscosity values of the K/W emulsions without and with LPEM were approximately 236 and 495 cP, respectively.

  10. Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid.

    PubMed

    Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul; Yarmand, Mohammad Saeid

    2011-10-01

    New edible composite films based on kefiran and oleic acid (OA) at the ratio of 15, 25, and 35% (w/w) were prepared using emulsification with the aim of improving their water vapour barrier and mechanical properties. Film-forming solutions were characterized in terms of rheological properties and particle-size distribution. The impact of the incorporation of OA into the film matrix was studied by investigating the physical, mechanical, and thermal properties of the films. The water vapour permeability (WVP) of the emulsified films was reduced by approximately 33% by adding OA. The mechanical properties of kefiran films were also affected by adding OA: tensile strength was diminished, and elongation increased considerably. Differential scanning calorimetry showed that the glass transition temperature (T(g)) of the kefiran film was -16°C and was not considerably affected by adding OA. Therefore, OA could be incorporated into these films for some food-technology applications that need a low affinity toward water. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Preparation of Fe 3O 4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun

    2012-04-01

    Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.

  12. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A First Attempt into the Production of Acylglycerol Mixtures from Echium Oil

    PubMed Central

    Vázquez, Luis; Jordán, Alejandro; Reglero, Guillermo; Torres, Carlos F.

    2016-01-01

    Enzymatic glycerolysis of Echium oil (Echium plantagineum) has been carried out in the presence of four commercial lipases. Different pretreatments of the reaction mixture, such as high pressure homogenization and addition of food grade monoolein as an emulsifier, were evaluated to test their influence on the glycerolysis reaction. In addition, the impact of reducing temperature and the utilization of a solvent generally recognized as safe as a flavoring agent, such as limonene, were also investigated. Conversion of ca. 60–70% of triacylglycerols and production of ca. 25–30% of monoacylglycerols (MAGs) were attained. Finally, at the best reaction conditions, the glycerolysis reaction was scaled up at pilot plant and the product mixture obtained was fractionated via molecular distillation. From this stage, two products were attained: a distillate containing 80% of MAGs and a residue containing approximately 50% of diacylglycerols and 50% of triacylglycerols. All these mixtures can be utilized as self-emulsifying vehicles for the formulation of bioactive substances and also as precursors for the production of structured bioactive lipids. PMID:26904538

  14. Poly(lactic-co-glycolic) Acid/Solutol HS15-Based Nanoparticles for Docetaxel Delivery.

    PubMed

    Cho, Hyun-Jong; Park, Ju-Hwan; Kim, Dae-Duk; Yoon, In-Soo

    2016-02-01

    Docetaxel (DCT) is one of anti-mitotic chemotherapeutic agents and has been used for the treatment of gastric cancer as well as head and neck cancer, breast cancer and prostate cancer. Poly(lactic- co-glycolic) acid (PLGA) is one of representative biocompatible and biodegradable polymers, and polyoxyl 15 hydroxystearate (Solutol HS15) is a nonionic solubilizer and emulsifying agent. In this investigation, PLGA/Solutol HS15-based nanoparticles (NPs) for DCT delivery were fabricated by a modified emulsification-solvent evaporation method. PLGA/Solutol HS15/DCT NPs with about 169 nm of mean diameter, narrow size distribution, negative zeta potential, and spherical morphology were prepared. The results of solid-state studies revealed the successful dispersion of DCT in PLGA matrix and its amorphization during the preparation process of NPs. According to the result of in vitro release test, emulsifying property of Solutol HS15 seemed to contribute to the enhanced drug release from NPs at physiological pH. All these findings imply that developed PLGA/Solutol HS15-based NP can be a promising local anticancer drug delivery system for cancer therapy.

  15. Methods to obtain protein concentrates from jumbo squid (Dosidicus gigas) and evaluation of their functionality.

    PubMed

    Galvez-Rongel, A; Ezquerra-Brauer, J M; Ocano-Higuera, V M; Ramirez-Wong, B; Torres-Arreola, W; Rouzaud-Sandez, O; Marquez-Rios, E

    2014-03-01

    Jumbo squid is an important fishery resource in Mexico, and its muscle is lean and white and it has a very low price in the market. It is abundant, but with little or nothing added value, therefore is necessary to search alternatives of processing. Due to muscle characteristics, the aim of this study was to obtain protein concentrates using different methods. They were obtained by means of acidic (acid protein concentrates) and alkaline (alkaline protein concentrates) dissolution. Moreover, a protein concentrate was obtained by direct isoelectric precipitation and by the traditional method (neutral protein concentrates). The yield with better results was alkaline protein concentrates (63.58 ± 1.8%). The gel hardness was significantly different (p < 0.05), especially for the alkaline protein concentrates. The acid protein concentrates, isoelectric precipitation and alkaline protein concentrates were better with regard to the neutral protein concentrates, concerning the emulsifying and foaming properties. The protein concentrates by means of alkaline dissolution gave a better gelling property, but all the processes had the potential to obtain protein with emulsifying and foaming properties.

  16. Effects of neem seed derivatives on behavioral and physiological responses of the Cosmopolites sordidus (Coleoptera: Curculionidae).

    PubMed

    Musabyimana, T; Saxena, R C; Kairu, E W; Ogol, C P; Khan, Z R

    2001-04-01

    Both in a choice and multi-choice laboratory tests, fewer adults of the banana root borer, Cosmopolites sordidus (Germar), settled under the corms of the susceptible banana "Nakyetengu" treated with 5% aqueous extract of neem seed powder or cake or 2.5 and 5% emulsified neem oil than on water-treated corms. Feeding damage by larvae on banana pseudostem discs treated with 5% extract of powdered neem seed, kernel, or cake, or 5% emulsified neem oil was significantly less than on untreated discs. The larvae took much longer to locate feeding sites, initiate feeding and bore into pseudostem discs treated with extract of powdered neem seed or kernel. Few larvae survived when confined for 14 d on neem-treated banana pseudostems; the survivors weighed two to four times less than the larvae developing on untreated pseudostems. Females deposited up to 75% fewer eggs on neem-treated corms. In addition, egg hatching was reduced on neem-treated corms. The higher the concentration of neem materials the more severe the effect.

  17. Kinetics of successive seeding of monodisperse polystyrene latexes. I - Initiation via potassium persulfate. II - Azo initiators with and without inhibitors

    NASA Technical Reports Server (NTRS)

    Sudol, E. D.; El-Aasser, M. S.; Vanderhoff, J. W.

    1986-01-01

    The polymerization kinetics of monodisperse polystyrene latexes with diameters of 1 micron are studied. The monodisperse latexes were prepared by the successive seeding method using 1 mM K2S2O8 with an 8 percent emulsifier surface coverage and 0.5 mM K2S2O8 with a 4 percent emulsifier surface coverage, and the kinetics were measured in a piston/cylinder dialometer. The data reveal that the polymerization rate decreases with increasing particle size; and the surface charge decreases with increasing particle size. The effects of initiators (AIBN and AMBN) and inhibitors (NH24SCN, NaNO2, and hydroquinone) on the product monodispersity and polymerization kinetics of latexes with diameters greater than 1 micron are investigated in a second experiment. It is observed that hydroquinone combined with AMBN are most effective in reducing nucleation without causing flocculation. It is noted that the kinetic transition from emulsion to bulk is complete for a particle size exceeding 1 micron in which the polymerization rate is independent of the particle size.

  18. Preparation of Deep Sea Fish Oil-Based Nanostructured Lipid Carriers with Enhanced Cellular Uptake.

    PubMed

    Zhu, Qiu-Yun; Guissi, Fida; Yang, Ru-Ya; Wang, Qian; Wang, Ke; Chen, Dan; Han, Zhi-Hao; Ma, Yi; Zhang, Min; Gu, Yue-Qing

    2015-12-01

    Nanostructured lipid carriers (NLC) are a promising pharmaceutical delivery system with mean diameter less than 200 nm which are dispersed in an aqueous phase containing emulsifier(s), to increase the water solubility, stability and bioavailability of oil compounds. Herein we prepared a promising NLC with glyceryl monostearate (GMS) as the solid lipid template and deep sea fish oil as the liquid lipid template using melted-ultrasonic method. Fish oil-NLC had a mean size of 84.7 ± 2.6 nm and a zeta potential that ranged from -17.87 mV to -32.91 mV. The nanoparticles exhibited good stability for four weeks with a high encapsulation efficiency of 87.5 ± 5.2%. Afterwards, confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) were used to investigate the contribution of Fish oil-NLC in enhancing fluorescein isothiocyanate (FITC) cellular uptake in comparison with free FITC. The results of this study indicated the possibility of this carrier to overcome the shortcomings of deep sea fish oil and to provide a novel bifunctional carrier with nutritional potential and drug delivery ability.

  19. Thymol nanoemulsified by whey protein-maltodextrin conjugates: the enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol.

    PubMed

    Xue, Jia; Davidson, P Michael; Zhong, Qixin

    2013-12-26

    The objective of this research was to enhance the capability of whey protein isolate-maltodextrin conjugates in nanoemulsifying thymol using propylene glycol to improve antilisterial properties in milk. Thymol was predissolved in PG and emulsified in 7% conjugate solution. Transparent dispersions with mean diameters of <30 nm were observed up to 1.5%w/v thymol. In skim and 2% reduced fat milk, Listeria monocytogenes Scott A was reduced from ∼5 log CFU/mL to below the detection limit in 6 h by 0.1% w/v and 0.45% w/v nanoemulsified thymol, respectively, contrasting with gradual reductions to 1.15 and 2.26 log CFU/mL after 48 h by same levels of free thymol. In full fat milk, L. monocytogenes was gradually reduced to be undetectable after 48 h by 0.6% w/v nanoemulsified thymol, contrasting with the insignificant reduction by free thymol. The improved antilisterial activities of nanoemulsified thymol resulted from the increased solubility in milk and synergistic activity with propylene glycol.

  20. Effectiveness of methoprene, an insect growth regulator, against malaria vectors in Fars, Iran: a field study.

    PubMed

    Darabi, H; Vatandoost, H; Abaei, M R; Gharibi, O; Pakbaz, F

    2011-01-01

    Methoprene, an insect growth regulator, was evaluated under field conditions against the main malaria vectors in the Islamic Republic of Iran. The effect of 5, 10 and 20 kg ha(-1) concentration ofmethoprene granule formulation and 100 and 200 mL ha(-1) concentration of EC formulation was measured to determine any changes in Anophelini larval abundance and IE ratio in both rice fields and artificial ponds. In artificial ponds, granular methoprene at a dose of 20 kg ha(-1) inhibited adult emergence by 77.1% after 1 day and 65.9% after 3 days. The emulsifiable concentrate formulation of methoprene at 200 mL ha(-1) inhibited adult emergence by 83.7% after 1 day and 32.2% after 3 days. In rice fields, inhibition of emergence was 44.3% at 20 kg ha(-1) granule and 35.8% for emulsifiable concentrate at 200 mL ha(-1) after 3 days. The results vary depending on the mosquito species, treatment methods, breeding places and type of formulation.

  1. Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization.

    PubMed

    Goh, Pik Seah; Ng, Mei Han; Choo, Yuen May; Amru, Nasrulhaq Boyce; Chuah, Cheng Hock

    2015-11-05

    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.

  2. Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91-96°C.

    PubMed

    Arora, Preeti; Ranade, Dilip R; Dhakephalkar, Prashant K

    2014-08-01

    A consortium of bacteria growing at 91°C and above (optimally at 96°C) was developed for the recovery of crude oil from declining/depleted oil reservoirs having temperature of more than 91°C. PCR-DGGE-Sequencing analysis of 16S rRNA gene fragments of NJS-4 consortium revealed the presence of four strains identified as members of the genus Clostridium. The metabolites produced by NJS-4 consortium included volatile fatty acids, organic acids, surfactants, exopolysaccarides and CO2, which reduced viscosity, emulsified crude oil and increased the pressure that facilitated displacement of emulsified oil towards the surface. NJS-4 enhanced oil recovery by 26.7% and 10.1% in sand pack trials and core flood studies respectively in optimized nutrient medium comprised of sucrose and sodium acetate as carbon/energy source and urea as nitrogen source (pH 7-9, 96°C, and 4% salinity). Nutrient medium for MEOR was constituted using commercial grade cheap nutrients to improve the economic viability of MEOR process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Design and evaluation of self-emulsifying drug delivery systems of Rhizoma corydalis decumbentis extracts.

    PubMed

    Ma, Hongda; Zhao, Qingchun; Wang, Yongjun; Guo, Tao; An, Ye; Shi, Guobing

    2012-10-01

    To improve the dissolution and oral absorption of Rhizoma corydalis decumbentis extracts (RCDE), a famous traditional Chinese herbal medicine which contains poorly water-soluble active components, self-emulsifying drug-delivery systems (SEDDS) were designed and evaluated in vitro and in vivo for the first time. Six formulations were prepared, and pseudoternary phase diagrams were constructed to identify the efficient self-emulsication region through the modified visual test. The optimized formulation consisted of 45% Solutol, 40% ethyl oleate, and 15% Transcutol P. The mean droplet size distribution of the optimized SEDDS was less than 100 nm. The release of the active components (protopine and tetrahydropalmatine) in RCDE from SEDDS hard gelatin capsules showed a faster rate in comparison with the commercial tablets. After oral administration of RCDE SEDDS capsules or the commercial tablets to fasted rats, the relative bioavailability of SEDDS capsules for protopine and tetrahydropalmatine was 209.7% and 133.2% compared with commercial tablets, respectively. Our study indicated that SEDDS has the potential to improve the bioavailability of traditional Chinese medicines, in which many active components are hydrophobic, such as RCDE.

  4. Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle.

    PubMed

    Pazos, Manuel; Iglesias, Jacobo; Maestre, Rodrigo; Medina, Isabel

    2010-10-27

    The influence of polymerization (number of monomers) and galloylation (content of esterified gallates) of oligomeric catechins (proanthocyanidins) on their effectiveness to prevent lipid oxidation in pelagic fish muscle was evaluated. Non-galloylated oligomers of catechin with diverse mean polymerization (1.9-3.4 monomeric units) were extracted from pine (Pinus pinaster) bark. Homologous fractions with galloylation ranging from 0.25 to <1 gallate group per molecule were obtained from grape (Vitis vinifera) and witch hazel (Hamamelis virginiana). The results showed the convenience of proanthocyanidins with medium size (2-3 monomeric units) and low galloylation degree (0.15-0.25 gallate group/molecule) to inhibit lipid oxidation in pelagic fish muscle. These optimal structural characteristics of proanthocyanidins were similar to those lately reported in fish oil-in-water emulsions using phosphatidylcholine as emulsifier. This finding suggests that the antioxidant behavior of polyphenols in muscle-based foods can be mimicked in emulsions prepared with phospholipids as emulsifier agents. The present data give relevant information to achieve an optimum use of polyphenols in pelagic fish muscle.

  5. Alp Rose stem cells, olive oil squalene and a natural alkyl polyglucoside emulsifier: Are they appropriate ingredients of skin moisturizers - in vivo efficacy on normal and sodium lauryl sulfate - irritated skin?.

    PubMed

    Filipović, Mila; Gledović, Ana; Lukić, Milica; Tasić-Kostov, Marija; Isailović, Tanja; Pantelić, Ivana; Vuleta, Gordana; Savić, Snežana

    2016-11-01

    Since skin moisturization may be achieved by both actives and chosen carrier, plant stem cells, squalene and natural alkyl polyglucoside emulsifier may be potential components of contemporary cosmetic products. The aim of the study was in vivo evaluation of the skin irritation potential and the efficacy of Alpine Rose stem cells incorporated into li-posomes and olive oil squalene as ingredients of moisturizing creams, with respect to the novel emulsifier used for creams’ stabilization. With the employment of noninvasive skin biophysical measurements, skin hydration (EC), transepi-dermal water loss (TEWL), erythema index (EI) and viscoelas-ticity were measured on 76 healthy volunteers. In the first phase, skin irritation after a 24-hour occlusion and the long-term efficacy of creams (a 21-day study) on healthy skin were evaluated. Phase II of the study focused on the cream efficacy assessment after a 6-day treatment of sodium lauryl sulfate-irritated skin. After a 24-hour occlusion, there were no significant changes in the EI for any tested sample. In the second phase of the study, the EI was not significantly altered for the cream containing squalene, while the application of all active samples resulted in a significant reduction of TEWL. In both phases of the study an EC increase was recorded, espe-cially for the squalene-containing cream. Due to the lack of skin irritation and skin barrier impairment along with the marked hydration effect, it could be said that the in-vestigated actives incorporated into alkyl polyglucoside emulsi-fier-stabilized creams may be safely applied as ingredients for "tailor-made" cosmetic moisturizers intended for normal and dry skin care, whereas olive oil squalene could be used for the treatment of irritated or sensitive skin as well. [Projekat Ministarstva nauke Republike Srbije, br. TR34031

  6. Poly(lactic acid-glycolic acid) nanoparticles markedly improve immunological protection provided by peptide P10 against murine paracoccidioidomycosis

    PubMed Central

    Amaral, André C; Marques, Alexandre F; Muñoz, Julián E; Bocca, Anamélia L; Simioni, Andreza R; Tedesco, Antonio C; Morais, Paulo C; Travassos, Luiz R; Taborda, Carlos P; Felipe, Maria Sueli S

    2010-01-01

    Background and purpose: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. Experimental approach: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund's adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 µg, 5 µg, 10 µg, 20 µg or 40 µg·50 µL−1). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. Key results: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 µg·50 µL−1) was more effective than ‘free’ P10 emulsified in Freund's adjuvant (20 µg·50 µL−1), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 µg·50 µL−1) were most effective. Treatment with P10 emulsified in Freund's adjuvant (20 µg·50 µL−1) or P10 entrapped within PLGA (1 µg·50 µL−1) were accompanied by high levels of interferon-gamma in lung. Conclusions and implications: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect. PMID:20136827

  7. Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems.

    PubMed

    Stillhart, Cordula; Kuentz, Martin

    2012-02-05

    Self-emulsifying drug delivery systems (SEDDS) are complex mixtures in which drug quantification can become a challenging task. Thus, a general need exists for novel analytical methods and a particular interest lies in techniques with the potential for process monitoring. This article compares Raman spectroscopy with high-resolution ultrasonic resonator technology (URT) for drug quantification in SEDDS. The model drugs fenofibrate, indomethacin, and probucol were quantitatively assayed in different self-emulsifying formulations. We measured ultrasound velocity and attenuation in the bulk formulation containing drug at different concentrations. The formulations were also studied by Raman spectroscopy. We used both, an in-line immersion probe for the bulk formulation and a multi-fiber sensor for measuring through hard-gelatin capsules that were filled with SEDDS. Each method was assessed by calculating the relative standard error of prediction (RSEP) as well as the limit of quantification (LOQ) and the mean recovery. Raman spectroscopy led to excellent calibration models for the bulk formulation as well as the capsules. The RSEP depended on the SEDDS type with values of 1.5-3.8%, while LOQ was between 0.04 and 0.35% (w/w) for drug quantification in the bulk. Similarly, the analysis of the capsules led to RSEP of 1.9-6.5% and LOQ of 0.01-0.41% (w/w). On the other hand, ultrasound attenuation resulted in RSEP of 2.3-4.4% and LOQ of 0.1-0.6% (w/w). Moreover, ultrasound velocity provided an interesting analytical response in cases where the drug strongly affected the density or compressibility of the SEDDS. We conclude that ultrasonic resonator technology and Raman spectroscopy constitute suitable methods for drug quantification in SEDDS, which is promising for their use as process analytical technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Bioavailability, rheology and sensory evaluation of fat-free yogurt enriched with VD3 encapsulated in re-assembled casein micelles.

    PubMed

    Levinson, Yonatan; Ish-Shalom, Sophia; Segal, Elena; Livney, Yoav D

    2016-03-01

    Vitamin D3 (VD3) deficiency is a global problem. Better ways are needed to enrich foods with this important nutraceutical. VD3 is fat-soluble, hence requiring a suitable vehicle for enriching nonfat foods. Our objectives were to assess the bioavailability of VD3, from fat-free yogurt, in re-assembled casein micelles (rCMs) compared to that in polysorbate-80 (PS80/Tween-80) a commonly used synthetic emulsifier, and to assess and compare their rheology and palatability. We enriched fat-free yogurt with VD3 loaded into either rCM (VD3-rCMs) or PS80 (VD3-PS80). In vivo VD3 bioavailability was evaluated by a large randomized, double blind, placebo-controlled clinical trial, measuring serum 25(OH)D increase in subjects who consumed fat-free yogurt with 50,000 IU of either VD3-rCM, VD3-PS80, or VD3-free placebo yogurt. Both VD3-rCM and VD3-PS80 increased the serum 25(OH)D levels by ∼8 ng ml(-1) and no significant differences in mean 25(OH)D levels were observed, evidencing the fact that VD3 bioavailability in rCM was as high as that in the synthetic emulsifier. VD3-rCM yogurt had a higher viscosity than VD3-PS80 yogurt. In sensory evaluations, panelists were able to discern between VD3-rCM and VD3-PS80 yogurt, and showed a dislike for PS80 yogurt, compared to rCM or the unenriched control. These results complement our past results showing higher protection against thermal treatment, UV irradiation, and deterioration during shelf life, conferred to hydrophobic nutraceuticals by rCM compared to that by the synthetic surfactant or to the unprotected bioactive, in showing the advantageous use of rCM over the synthetic emulsifier as a delivery system for the enrichment of food with VD3 and other hydrophobic nutraceuticals.

  9. Effect of crumb cellular structure characterized by image analysis on cake softness.

    PubMed

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2018-06-01

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image analysis is a very efficient tool for quality control. © 2017 Wiley Periodicals, Inc.

  10. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol

    PubMed Central

    Balata, Gehan F; Essa, Ebtessam A; Shamardl, Hanan A; Zaidan, Samira H; Abourehab, Mohammed AS

    2016-01-01

    Resveratrol is a nonflavonoid polyphenolic compound which has a broad range of desirable biological actions which include antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and antitumor activities. However, there is concern that the bioavailability of resveratrol may limit some of its clinical utility. So, the aim of this study was to enhance the dissolution rate and oral hypoglycemic and hypolipidemic effect of resveratrol. This was achieved using self-emulsifying drug delivery system. The solubility of resveratrol was determined in various oils, surfactants, and cosurfactants. Phase diagram was plotted to identify the efficient self-emulsification regions using olive oil, Tween 80, and propylene glycol. The prepared self-emulsifying drug delivery system formulations were tested for thermodynamic stability, emulsification efficiency, droplet size, zeta potential, and in vitro drug release. Self-emulsification time averaged 17–99 seconds without precipitation and the mean droplet sizes ranged from 285 to 823 nm with overall zeta potential of −2.24 to −15.4 mv. All formulations improved drug dissolution in relation to unprocessed drug with a trend of decreased dissolution parameters with increasing oil content. The optimized formula, F19, with dissolution efficiency of 94% compared to only 42% of pure drug was used to study the in vivo hypoglycemic and hypolipidemic effects of resveratrol in diabetic-induced albino rats and comparing these effects with that of pure resveratrol in different doses. Treatment with the optimized formula, F19, at 10 mg/kg had significant hypoglycemic and hypolipidemic effects in diabetic-induced albino rats which were nearly similar to the high dose (20 mg/kg) of unprocessed resveratrol. From the study, it was concluded that formulation F19 has good emulsification property with uniform globule size, satisfactory in vitro drug release profile, and significant in vivo hypoglycemic effects which identify future opportunities for resveratrol delivery. PMID:26792979

  11. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol.

    PubMed

    Balata, Gehan F; Essa, Ebtessam A; Shamardl, Hanan A; Zaidan, Samira H; Abourehab, Mohammed As

    2016-01-01

    Resveratrol is a nonflavonoid polyphenolic compound which has a broad range of desirable biological actions which include antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and antitumor activities. However, there is concern that the bioavailability of resveratrol may limit some of its clinical utility. So, the aim of this study was to enhance the dissolution rate and oral hypoglycemic and hypolipidemic effect of resveratrol. This was achieved using self-emulsifying drug delivery system. The solubility of resveratrol was determined in various oils, surfactants, and cosurfactants. Phase diagram was plotted to identify the efficient self-emulsification regions using olive oil, Tween 80, and propylene glycol. The prepared self-emulsifying drug delivery system formulations were tested for thermodynamic stability, emulsification efficiency, droplet size, zeta potential, and in vitro drug release. Self-emulsification time averaged 17-99 seconds without precipitation and the mean droplet sizes ranged from 285 to 823 nm with overall zeta potential of -2.24 to -15.4 mv. All formulations improved drug dissolution in relation to unprocessed drug with a trend of decreased dissolution parameters with increasing oil content. The optimized formula, F19, with dissolution efficiency of 94% compared to only 42% of pure drug was used to study the in vivo hypoglycemic and hypolipidemic effects of resveratrol in diabetic-induced albino rats and comparing these effects with that of pure resveratrol in different doses. Treatment with the optimized formula, F19, at 10 mg/kg had significant hypoglycemic and hypolipidemic effects in diabetic-induced albino rats which were nearly similar to the high dose (20 mg/kg) of unprocessed resveratrol. From the study, it was concluded that formulation F19 has good emulsification property with uniform globule size, satisfactory in vitro drug release profile, and significant in vivo hypoglycemic effects which identify future opportunities for resveratrol delivery.

  12. Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.

    1993-01-01

    The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.

  13. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    PubMed Central

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other polymeric NPs of smaller size. PMID:22844443

  14. Novel PLGA-based nanoparticles for the oral delivery of insulin.

    PubMed

    Malathi, Sampath; Nandhakumar, Perumal; Pandiyan, Velayudham; Webster, Thomas J; Balasubramanian, Sengottuvelan

    2015-01-01

    Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of D-α-tocopherol poly(ethylene glycol) 1000 succinate (TPGS)-emulsified poly(ethylene glycol) (PEG)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was investigated for sustained delivery of insulin (IS). To investigate the efficacy of TPGS-emulsified PEG-capped PLGA NPs (TPPLG NPs) as a potential drug carrier for the oral delivery of insulin. A series of biodegradable low-molecular-weight PLGA (80/20 [PLG4] and 70/30 [PLG6]) copolymers were synthesized by melt polycondensation. The commercial insulin-loaded TPGS-emulsified PEG-capped PLGA NPs (ISTPPLG NPs) were synthesized by water-oil-water emulsion solvent evaporation method. The physical and chemical properties of PLGA copolymers, particle size, zeta potential, and morphology of the NPs were examined. The in vivo studies of ISTPPLG NPs were carried out in diabetic rats by oral administration. The maximum encapsulation efficiency of ISTPPLG6 NPs was 78.6% ± 1.2%, and the mean diameter of the NPs was 180 ± 20 nm. The serum glucose level was significantly (twofold) decreased on treatment with ISTPPLG NPs, and there was a threefold decrease with insulin-loaded PLGA (70/30) NPs when compared to that of free insulin-treated diabetic rats. The results show that the oral administration of ISTPPLG6 NPs is an effective method of reducing serum glucose level for a period of 24 hours. Histopathological studies reveal that ISTPPLG NPs could restore the damage caused by streptozotocin in the liver, kidneys, and pancreas, indicating its biocompatibility and regenerative effects. ISTPPLG6 NPs can act as potential drug carriers for the oral delivery of insulin.

  15. Novel PLGA-based nanoparticles for the oral delivery of insulin

    PubMed Central

    Malathi, Sampath; Nandhakumar, Perumal; Pandiyan, Velayudham; Webster, Thomas J; Balasubramanian, Sengottuvelan

    2015-01-01

    Background Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of D-α-tocopherol poly(ethylene glycol) 1000 succinate (TPGS)-emulsified poly(ethylene glycol) (PEG)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was investigated for sustained delivery of insulin (IS). Objective To investigate the efficacy of TPGS-emulsified PEG-capped PLGA NPs (TPPLG NPs) as a potential drug carrier for the oral delivery of insulin. Methods A series of biodegradable low-molecular-weight PLGA (80/20 [PLG4] and 70/30 [PLG6]) copolymers were synthesized by melt polycondensation. The commercial insulin-loaded TPGS-emulsified PEG-capped PLGA NPs (ISTPPLG NPs) were synthesized by water–oil–water emulsion solvent evaporation method. The physical and chemical properties of PLGA copolymers, particle size, zeta potential, and morphology of the NPs were examined. The in vivo studies of ISTPPLG NPs were carried out in diabetic rats by oral administration. Results The maximum encapsulation efficiency of ISTPPLG6 NPs was 78.6%±1.2%, and the mean diameter of the NPs was 180±20 nm. The serum glucose level was significantly (twofold) decreased on treatment with ISTPPLG NPs, and there was a threefold decrease with insulin-loaded PLGA (70/30) NPs when compared to that of free insulin-treated diabetic rats. The results show that the oral administration of ISTPPLG6 NPs is an effective method of reducing serum glucose level for a period of 24 hours. Histopathological studies reveal that ISTPPLG NPs could restore the damage caused by streptozotocin in the liver, kidneys, and pancreas, indicating its biocompatibility and regenerative effects. Conclusion ISTPPLG6 NPs can act as potential drug carriers for the oral delivery of insulin. PMID:25848248

  16. A cohabitation challenge to compare the efficacies of vaccines for bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Alcorn, S.; Murray, A.L.; Pascho, R.J.; Varney, J.

    2005-01-01

    The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37??C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81 % (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57-and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection. ?? Inter-Research 2005.

  17. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage.

    PubMed

    Wang, Yanan; Wang, Wenhang; Jia, Hongjiao; Gao, Guixian; Wang, Xiao; Zhang, Xiaowei; Wang, Yabin

    2018-06-01

    Nano cellulose is attracting great interest in food and nutraceutical fields and also provides a potential additive to develop functional meat products such as low fat sausage. Here, we compared 1 wt% aqueous dispersion of cellulose nanofiber (CNF) and its palm oil Pickering emulsion (CPOE) at the ratio of 1:1 (water: oil, v:v) for being fat alternatives replacing 30% and 50% of the original fat of the emulsified sausage. Replacing fat by CPOE and CNF resulted in lower fat content, lower cooking loss and higher moisture content and higher lightness values (P ≤ 0.05) at both fat levels. Textural analysis indicated that the products formulated with CPOE showed higher hardness, springiness, chewiness and the texture was enhanced by the addition of CNF, especially when 30% fat was substituted. Compared with the full-fat control, the sausages formulated with CPOE became more elastic and compact, especially by the incorporation of CNF according to the rheology and scanning electron microscope results. The reformulated products with CPOE and CNF at the 30% level showed higher sensory scores (P ≤ 0.05) while at the 50% level produced comparable quality to the control, but no significant differences were found in the overall acceptability. In summary, CNF and its Pickering emulsion provide the potential as potential fat alternatives for developing low fat meat products. Cellulose nanofibers present a variety of distinguishing properties, such as large surface area, great stability and high strength. The ability to stabilize emulsions and good biocompatibility enlarge its application in food. In this study, we attempted to use cellulose nanofibers and its palm oil Pickering emulsion as fat substitutes to partly replace the original fat of pork emulsified sausages, hoping to provide some basic information for using cellulose nanofibers and its Pickering emulsion as fat substitute to high fiber, low fat meat products. © 2018 Institute of Food Technologists®.

  18. Waste oxide recycling during oxygen steelmaking

    NASA Astrophysics Data System (ADS)

    Molloseau, Catherine Lynn

    The US steel industry generates over three million tons of waste oxides which contain significant amounts of metallic iron and iron oxide. Stringent restrictions imposed on all by-products as well as limited landfill space make disposal of these materials expensive. Currently, companies such as Ispat Inland Steel and National Steel recover the iron units from these waste oxides by recycling them in the form of briquettes into the blast furnace and the Basic Oxygen Furnace (BOF). However, when using the waste oxide briquettes (WOBs) in the BOF, high degrees of slopping have been experienced. Slopping is also a general problem even when WOBs are not used. The goal of this research was to determine the mechanisms influencing the slopping behavior of the slag during oxygen steelmaking with and without WOB additions. In particular, the rate of reduction of FeO in the slag by carbon from iron droplets was studied using the slag and metal compositions representative of the first 50% of the blow (slopping was reported at as early as 30% into the blow). The effect of temperature on the rate of reduction of FeO by carbon in the metal was also studied. From this study, it was found that the behavior of the metal droplets while they reacted with FeO in the slag changed significantly with FeO content. Below 10wt%FeO, the droplet remained intact while reacting with the slag, however, above this FeO concentration, the droplet was observed by x-ray fluoroscopy to become emulsified within the slag. The large increase in surface area of the metal droplet due to emulsification caused the rate of reaction to be one to two orders of magnitude faster than for droplets that did not become emulsified. It was suggested that when the droplet is emulsified, the surface area and reaction kinetics are greatly increased, and the rate becomes controlled by mass transfer of FeO as Fe2+ and O2- ions in the slag to the emulsified droplet. It was also found that a critical temperature exists for a given FeO content at which point the rate of decarburization or CO evolution increases dramatically. Finally, additions of Fe2O 3 to the slag and sulfur to the metal caused relatively significant changes to the rate of reaction possibly by affecting the emulsification behavior of the droplet. The results from this study as well as those from a study which characterized the foaming properties of BOF slags were applied to the oxygen steelmaking process and slopping behavior during the early stages of the blow. From this, new strategies which reduce the possibility of slopping were developed. These included altering the timing of the WOB additions, using fluxed WOBs, and/or altering the blowing practice.

  19. Assessing the fate of an aromatic hydrocarbon fluid in agricultural spray applications using the three-stage ADVOCATE model framework

    USDA-ARS?s Scientific Manuscript database

    Components of emulsifiable concentrates (ECs) used in pesticide formulations may be emitted to air following application in agricultural use and contribute to ozone formation. A key consideration is the fraction of the ECs that is volatilized. This study is designed to provide a mechanistic model fr...

  20. Methods of Measurement the Quality Metrics in a Printing System

    NASA Astrophysics Data System (ADS)

    Varepo, L. G.; Brazhnikov, A. Yu; Nagornova, I. V.; Novoselskaya, O. A.

    2018-04-01

    One of the main criteria for choosing ink as a component of printing system is scumming ability of the ink. The realization of algorithm for estimating the quality metrics in a printing system is shown. The histograms of ink rate of various printing systems are presented. A quantitative estimation of stability of offset inks emulsifiability is given.

  1. Research on the Influence Factors of Emulsion Stability of Oil-in-water Drilling Fluid

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxu; Sun, Yuxue; Chen, Xiangming; Wang, Zengkui; Xu, Jianjun

    2018-01-01

    The evaluation standard of emulsion stability of oil-in-water drilling fluid is determined in this paper, based on which an evaluation analysis is conducted for the influence factors of emulsion stability, including the addition of emulsifier, addition of stabilizer, stirring speed, weighing agent, clay, etc. to gain the corresponding regularity understanding.

  2. Hexadecyl ammonium chloride amylose inclusion complex to emulsify cedarwood oil and treat wood against termites and wood-decay fungi

    USDA-ARS?s Scientific Manuscript database

    Cedarwood oil (CWO) has a wide range of bioactivities, including insect repellency and toxicity as well as conferring resistance against termites and wood-rot fungi. In previous pressure treatment work, ethanol was used as the diluent/carrier for CWO. However, it is preferable to use a water-based ...

  3. Trace Organic Analysis of Microencapsulated Materials

    DTIC Science & Technology

    1989-11-01

    chromatography Box-Behnken experimental design Microencapsulated pesticides Sur factants Emulsifiers Polymer shell/walls Microcapsule cores Fiber optic... microencapsulation field is given in Bibliography 10.1, (page 38), including references in microemulsions, microcapsules , polymeric/liposome delivery...CHEMICAL RESEARCH, r-i DEVELOPMENT . ENGINEERING CRDEC-CR-0S8-O CENTER (GC-TR-89-172-001 00 CD TRACE ORGANIC ANALYSIS OF MICROENCAPSULATED MATERIALS

  4. Demonstration of Diesel Engine Air Emissions Reduction Technologies

    DTIC Science & Technology

    2008-12-01

    16 Figure 5. Plots of Cheyenne Mountain Operating Cycle and Reference CBD Driving...Air Act CARB California Air Resources Board CBD Central Business District CCR California Code of Regulations CES Cummins Emissions Solutions CFR...matter ppb parts per billion ppm parts per million PuriNOx Proprietary Water / Diesel Emulsified Fuel RPF robust particulate filter THC total

  5. U.S. EPA, Pesticide Product Label, DIAZINON AG 500 EMULSIFIABLE CONCENTRATE, 01/29/1975

    EPA Pesticide Factsheets

    2011-04-21

    ... II aflp "t!:'\\: o! DIH/lllll/! A(i:lUO ,I'Op~ ;1 .... a ~pra~· III ,I 1I .. 1Il!!lurn 01 .! ~8b 01 water Pt:1 serf' o! 10 ~.Il .... ,I! \\\\,I't'r pt'r h,lt· It'l ).':oul!d appl1('stIOll:-'. ...

  6. Travel Distance and Transformation of Injected Emulsified Zerovalent Iron Nanoparticles in the Subsurface During Two and Half Years

    EPA Science Inventory

    Nanoscale zerovalent iron (NZVI) such as Toda Kogyo RNIP-10DS has been used for site remediation, yet information is lacking regarding how far injected NZVI can travel, how long it lasts, and how it transforms to other minerals in a groundwater system. Previously we reported effe...

  7. U.S. EPA, Pesticide Product Label, SELCO MALATHION 55 EMULSIFIABLE, 12/11/1973

    EPA Pesticide Factsheets

    2011-04-14

    ... 1 .'1 (''''11' t ",:11 'K.". e)es aud c1Vt!liu&. 1\\t'l.·P out of ftach "f ,·i.ildrl'1I nl.d tic nI'S',,' a:.:III .• I, \\\\ H.,I. :1,or"UII',,) .11: •. '(J •• 1111'< lIat.'f ~rtl'r Ubillg. ...

  8. Treatability of U.S. wood species with pigment emulsified creosote

    Treesearch

    Douglas M. Crawford; Rodney C. De Groot; John B. Watkins; Harry Greaves; Karl J. Schmalzl; T. L. Syers

    2000-01-01

    Since the 1920s creosote has been used extensively in the United States for treatment of construction timbers, poles, and posts. However, creosote has the tendency to exude or bbleedc from some treated commodities, producing a tar-like covered surface. In the United States, creosote-treated products exhibiting cleaner dried surfaces and a reduced tendency to bleed have...

  9. Contribution of lipids, phenolic acids, and protein rich components to emulsifying properties of corn fiber gum and acacia gum

    USDA-ARS?s Scientific Manuscript database

    Corn fiber gum (CFG) is an arabinoxylan enriched fraction obtained by the extraction of corn bran/fiber using a proprietary alkaline hydrogen peroxide process. When purified CFG prepared by this process was hydrolyzed with concentrated base (1.5 N methanolic KOH at 70 °C for one hour) considerable ...

  10. U.S. EPA, Pesticide Product Label, HELENA AG CHEM TOXAPHENE 6-E AN EMULSIFIABLE LIQUID, 06/14/1983

    EPA Pesticide Factsheets

    2011-04-14

    ... '::1. 0 • .:;. U~i'.l:·':.l': v:: ~!.d":.~' Cl.!:;'J:'L.cn J::.i .;\\!l':·.lr·~, P~!l:: flc.1l:!: .,U!·':.C'0, ':c.-.":n:'::.JJll.! Oi';:;0~lSl1 C~::tcr, ,\\tl.lnt.l, Cito.:-1J..l. II I iI ...

  11. Use of Nanoscale Emulsified Zero-valent Iron to Treat a Chlorinated Solvent Source Zone at Site 45, Marine Corp Recruit Depot, Parris Island, South Carolina

    EPA Science Inventory

    This document summarizes the research activities currently underway at the Solid Waste Management Unit 45 (Site 45), Marine Corps Recruit Depot, Parris Island, South Carolina. A pilot field test was initiated in 2005 at this site to evaluate the effectiveness of nanoscale emulsif...

  12. Herbicide treatments of Japanese honeysuckle for releasing desirable reproduction or for site preparation

    Treesearch

    Silas Little; Horace A. Somes

    1968-01-01

    Various herbicides were used to release pine or hardwood seedlings from competition of Japanese honeysuckle, or to eliminate honeysuckle in areas being prepared for regeneration. Considering both the degree of honeysuckle control and the amount of damage to desired trees, we recommend 2,4-D emulsifiable acid with application in late fall for release of hardwoods and in...

  13. Physical parameters of chlorphenamine maleate suppositories and its release as a function of particle size, concentration and nature of the base.

    PubMed

    el-Din, E N; Mursi, N M; Elbary, A A; Foda, N

    1977-01-01

    Suppositories of chlorphenamine maleate were formulated. The influence of particle size and percentage concentration of chlorphenamine maleate on the physical standards of its suppositories as well as the release of the drug from oily base (cacao butter), water-soluble base (carbowax) and emulsifying base (Witepsol) has been investigated.

  14. Water-Base Coatings

    DTIC Science & Technology

    1974-11-01

    reacted with hydroxypropyl methacrylate and 1-butanol modifier in butyl acrylate -isobutyl methacrylate reactive diluent mixture using dibutyltin dilaurate...disadvantages are: 1. only a few commercial systems (e. g., acrylic resins ) are available; 2. after application, the polymer must somehow be insolubilized...a bisphenol in the presence of an emulsifier and a water-miscible solvent (9); 2. emulsification of an epoxy resin -amine curing agent mixture , e.g

  15. A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems.

    PubMed

    Liu, Shuliang; Yao, Kai; Jia, Dongying; Zhao, Nan; Lai, Wen; Yuan, Huaiyu

    2012-07-01

    In this paper, a pretreatment method for high-performance liquid chromatography (HPLC) determination of cypermethrin (CY) in microbial degradation systems was systemically studied, primarily to solve the problem of inaccurate determination of CY concentration caused by its uneven distribution in the systems. A suitable pretreatment method was established, including sampling, extraction and dehydration of CY. Partial sampling could be taken for bacterial and yeast systems in which CY was uniformly dispersed by an emulsifying agent, while total sampling was only suitable for mold systems with or without an emulsifying agent. CY could be fully extracted from the samples in which microbial cells were disrupted by ultrasonic treatment with acetonitrile under ultrasonic condition. The extract could be effectively dehydrated and purified by passing it through an anhydrous Na(2)SO(4) column followed by an elution with acetonitrile. The determination of CY in the pretreated sample by HPLC showed a high precision [relative standard deviation (RSD) = 1.14%, n = 5] and a good stability over a period of five days (RSD = 1.57%, n = 5). The recoveries of CY in microbial degradation systems at three different spiked levels ranged from 95.68 to 108.09% (RSD = 0.50-5.87%, n = 5).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, S.C.

    The combustion of single coal-water slurry droplet with oil as combustion additive (CWOM) has been studied. In this study, the droplet is suspended on a fine quartz fiber and is exposed to the hot combustion product of propane (C/sub 3/H/sub 8/) and air. The results are documented in a movie series. The combustion of CWOM with various combinations of concentrations are compared with that of coal-water slurry and water-oil mixture droplets. The combustion of coal-water slurry is enhanced significantly due to the presence of emulsified kerosene. The enhancement is also dependent upon the mixing procedure during preparation of CWOM. Themore » presence of emulsified kerosene induces local boil-off and combustion that coal particles are splashed as fire works during the early evaporation stage of droplet heat-up. After particle splashing, blow-holes appear on the droplet surface. The popcorn and swelling phenomena usually occurred in coal-water-slurry combustion is greatly reduced. Significant combustion enhancement occurs with the use of kerosene in an amount of about 15 percent of the overall CWOM. This process of using kerosene as combustion additive may provide obvious advantage for the combustion of bituminous coal-water slurry. 4 references, 6 figures.« less

  17. The effect of vitrectomy with silicone oil tamponade on intraocular pressure and anterior chamber morphology.

    PubMed

    Suic, S P; Sikić, J

    2001-01-01

    We measured the tamponading effect of silicone oil, saline and air after vitrectomy, on intraocular pressure and aqueous humor outflow in 85 patients with highly proliferative retina and vitreous changes. Silicone oil as retinal tamponading agent after vitrectomy was used in 45 patients, and saline or air in 39 patients. The mean intraocular pressure measured at one month after treatment was greatly elevated in patients with silicone oil tamponade as compared to those with saline or air tamponade. At 6 and 12 months examinations, mean intraocular pressures were compared in these two groups of patients. Gonioscopy revealed silicone oil emulsification and presence of emulsified bubbles in the anterior chamber in 22.22% of patients, and narrowing of the chamber angle in several patients with silicone oil tamponade. Intraocular pressure elevation following vitrectomy with silicone oil tamponade was found to be of transient rather than permanent nature, since it regressed after silicone oil removal. This transient elevation was due to silicone oil tendency to emulsify. Silicone oil bubbles changed the morphology of the anterior chamber angle and fine trabecular structures by creating a barrier to aqueous humor outflow.

  18. Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein.

    PubMed

    Hojilla-Evangelista, Mila P; Selling, Gordon W; Hatfield, Ronald; Digman, Matthew

    2017-02-01

    Alfalfa is considered a potential feedstock for biofuels; co-products with value-added uses would enhance process viability. This work evaluated dried alfalfa leaves for protein production and describes the functional properties of the protein. Dried alfalfa leaves contained 260 g kg -1 dry basis (DB) crude protein, with albumins being the major fraction (260 g kg -1 of total protein). Alkali solubilization for 2 h at 50 °C, acid precipitation, dialysis, and freeze-drying produced a protein concentrate (600 g kg -1 DB crude protein). Alfalfa leaf protein concentrate showed moderate solubility (maximum 500 g kg -1 soluble protein from pH 5.5 to 10), excellent emulsifying properties (activity 158-219 m 2  g -1 protein, stability 17-49 min) and minimal loss of solubility during heating at pH ≥ 7.0. It is technically feasible to extract protein with desirable emulsifying and heat stability properties from dried alfalfa leaves; however, the dried form may not be a practical starting material for protein production, given the difficulty of achieving high yields and high-purity protein product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties.

    PubMed

    Eftaxias, Alexandros; Diamantis, Vasileios; Aivasidis, Alexandros

    2018-06-01

    Slaughterhouse solid wastes, characterized by a high lipid content, are considered a valuable resource for energy production by means of anaerobic digestion technologies. Aim of this study was to examine the effect of trace element limitation on the mesophilic anaerobic digestion of thermally pre-treated emulsified slaughterhouse wastes (TESW). Under two distinct experimental periods (Period I - low and Period II - high trace element dosage respectively) a CSTR with sludge recirculation was operated at increasing organic loading rate (OLR) from 1.5 to 10 g L -1  d -1 . Under optimum conditions, COD removal was higher than 96%, biogas yield equal to 0.53 L g -1  COD feed and the biogas methane content 77%. Trace element limitation however, resulted in a dramatic decline in process efficiency, with VFA accumulation and events of extreme sludge flotation, despite that the soluble concentration of Ni, Co and Mo were between 12 and 28 μg L -1 . This is indicative of mass transfer limitations caused by lipids adsorption onto the anaerobic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The influence of the emulsion composition on the wettability of the emulsion

    NASA Astrophysics Data System (ADS)

    Liu, Yan Jun; Shao, Jian Nan; Lei Liu, Peng

    2018-03-01

    In order to explore the influence of the emulsion composition on the wettability of the emulsion, using lauric acid polyoxyethylene esters (LAE) and polyethylene oleic acid diester (DQA) as the emulsifier and oleic acid ester (QA) as the smoothing agent, the spinning oil emulsion system with the content of smoothing agent above 30% was prepared. The results show that: with the increase of emulsion concentration, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in emulsion all decreases. At the same time,the emulsion has critical micelle concentration, when the concentration is less than CMC, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in the emulsion decreases rapidly with the increase of the emulsion concentration, while it’s more than this concentration, the influence of emulsion concentration on the three kinds of nature is smaller. Besides, the increase of the mass fraction of the smoothing agent and the increase of the compound emulsifier HLB will result in worse wettability.

Top