Sample records for emulsion based composite

  1. Pickering emulsions stabilized by a metal-organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites.

    PubMed

    Zhang, Fanyu; Liu, Lifei; Tan, Xiuniang; Sang, Xinxin; Zhang, Jianling; Liu, Chengcheng; Zhang, Bingxing; Han, Buxing; Yang, Guanying

    2017-10-18

    Herein we demonstrate the formation of a novel kind of Pickering emulsion that is stabilized by a Zr-based metal-organic framework (Zr-MOF) and graphene oxide (GO). It was found that the Zr-BDC-NO 2 and GO solids assembling at the oil/water interface can effectively stabilize the oil droplets that are dispersed in the water phase. Such a Pickering emulsion offers a facile route for fabricating Zr-MOF/GO composite materials. After removing water and oil by freeze drying from Pickering emulsions, the Zr-MOF/GO composites were obtained and their morphologies, structures and interaction properties were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrometry, respectively. The influences of the concentration of GO and Zr-MOF on the emulsion microstructures and the properties of the MOF/GO composites were studied. Based on experimental results, the mechanisms for the emulsion formation by Zr-MOF and GO and the as-synthesized superstructures of the Zr-MOF/GO composite were proposed. It is expected that this facile and tunable route can be applied to the synthesis of different kinds of MOF-based or GO-based composite materials.

  2. Features of the incorporation of single and double based powders within emulsion explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. B.; Mendes, R.; Tavares, B.; Louro, C.

    2014-05-01

    In this work, features of the thermal and detonation behaviour of compositions resulting from the mixture of single and double based powders within ammonium nitrate based emulsion explosives are shown. Those features are portrayed through results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential thermal analysis [DTA] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the "gap-test". DTA/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical species and so of the compatibility of the components of the compositions. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with powder than for the one with sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have been shown to be higher for the powdered compositions than for the sole emulsion explosive. Shock sensitivity assessments have ended-up with a slightly bigger sensitivity for the compositions with double based powder when compared to the single based compositions or to the sole emulsion.

  3. Features of the Valorization of Single and Double Based Powders for Codetonation in Emulsion Explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jose; Mendes, Ricardo; Tavares, Bruno; Louro, Cristina

    2013-06-01

    In this work, features of the thermal and detonation behavior of compositions resulting from the mixture of single and double based gun powder within ammonium nitrate (AN) based emulsion explosives are shown. That includes results of thermodynamic-equilibrium calculations of the detonation velocity, the chemical compatibility assessment through differential scanning calorimetry [DSC] and thermo gravimetric analysis [TGA], the experimental determination of the detonation velocity and a comparative evaluation of the shock sensitivity using a modified version of the ``gap-test''. DSC/TGA results for the compositions and for the individual components overlap until the beginning of the thermal decomposition which is an indication of the absence of formation of any new chemical specimens and so of the capability of the composition components. After the beginning of the thermal decomposition it can be seen that the rate of mass loss is much higher for the compositions with gun powder than for the sole emulsion explosive. Both, theoretical and experimental, values of the detonation velocity have shown to be higher for the powdered compositions than for the pure emulsion explosive. Shock sensitivity assessment have ended-up with a slightly bigger sensitivity for the compositions with double based gun powder when compared to the single based compositions or to the pure emulsion.

  4. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    PubMed

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  5. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs.

    PubMed

    Badawi, Mariam A; El-Khordagui, Labiba K

    2014-07-16

    Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (p<0.05) on emulsion CQAs, the emulsifier blend composition exerting prominent main and interaction effects. Scanning electron microscopy (SEM) of emulsion-electrospun NFs and desirability functions allowed modeling of emulsion CQAs to predict electrospinnable formulations. A QbD approach successfully built quality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Gelatin-hydroxypropyl methylcellulose water-in-water emulsions as a new bio-based packaging material.

    PubMed

    Esteghlal, Sara; Niakosari, Mehrdad; Hosseini, Seyed Mohammad Hashem; Mesbahi, Gholam Reza; Yousefi, Gholam Hossein

    2016-05-01

    Gelatin and hydroxypropyl methylcellulose (HPMC) are two incompatible and immiscible biopolymers which cannot form homogeneous composite films using usual methods. In this study, to prevent phase separation, gelatin-HPMC water-in-water (W/W) emulsion was utilized to from transparent composite films by entrapment the HPMC dispersed droplets in gelatin continuous network. The physicochemical and mechanical properties of emulsion-based films containing different amounts (5-30%) of dispersed phase were determined and compared with those of individual polymer-based films. Incorporating HPMC into W/W emulsion-based films had no significant effect on the tensile strength. The flexibility of composite films decreased at HPMC concentrations below 20%. The depletion layer at the droplets interface reduced the diffusion of water vapor molecules because of its hydrophobic nature, so the water vapor permeability remained constant. Increasing the HPMC content in the emulsion films increased the swelling and decreased the transparency. The entrapment of HPMC in continuous gelatin phase decreased its solubility. Therefore, W/W emulsions are capable of holding two incompatible polymers alongside each other within a homogeneous film network without weakening the physical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants.

    PubMed

    Fox, Christopher B; Haensler, Jean

    2013-07-01

    With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.

  8. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  9. Application of mathematical planning in production of filled emulsion rubbers

    NASA Astrophysics Data System (ADS)

    Pugacheva, I. N.; Molokanova, L. V.; Popova, L. V.; Repin, P. S.

    2018-05-01

    The applicability of mathematical planning of experiment in the field of chemistry and chemical engineering, in particular in the industrial production of synthetic rubbers, is considered in the article. Possibility of using secondary material resources, which are waste products of light industry, in the production of elastomeric compositions is studied. The method of obtaining a powdered cellulose additive from wastes containing cellulose fiber is described. The best way of introducing the obtained additive into elastomeric compositions based on the emulsion rubber is established. Optimal conditions for obtaining filled emulsion rubber with the help of a powdered cellulose additive were established basing on the mathematical planning of experiment.

  10. Stability of cosmetic emulsion containing different amount of hemp oil.

    PubMed

    Kowalska, M; Ziomek, M; Żbikowska, A

    2015-08-01

    The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers.

    PubMed

    Ma, Kai; An, Zesheng

    2016-10-01

    A novel type of emulsion gel based on star-polymer-stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well-defined phenol-functionalized core-crosslinked star polymers are synthesized via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization and are used as stabilizers for oil-in-water emulsions. Horseradish-peroxidase-catalyzed polymerization of the phenol moieties in the presence of H 2 O 2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina E; Rojas, Orlando J

    2015-05-01

    Cellulose nanofibrils (CNF) were incorporated in water-in-oil (W/O) microemulsions and emulsions, as well as water-in-oil-in-water (W/O/W) multiple emulsions using soybean oil. The addition of CNF to the aqueous phase expanded the composition range to obtain W/O/W emulsions. CNF also increased the viscosity of the continuous phase and reduced the drop size both of which increased the stability and effective viscosity of the emulsions. The effects of oil type and polarity on the properties of the W/O/W emulsions were tested with limonene and octane, which compared to soybean oil produced a smaller emulsion drop size, and thus a higher emulsion viscosity. Overall, CNF are a feasible alternative to conventional polysaccharides as stability enhancers for normal and multiple emulsions that exhibit strong shear thinning behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    PubMed

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions

    PubMed Central

    Fox, Christopher B.; Baldwin, Susan L.; Duthie, Malcolm S.; Reed, Steven G.; Vedvick, Thomas S.

    2011-01-01

    Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60 °C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60 °C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants. PMID:21906648

  15. A general computation model based on inverse analysis principle used for rheological analysis of W/O rapeseed and soybean oil emulsions

    NASA Astrophysics Data System (ADS)

    Vintila, Iuliana; Gavrus, Adinel

    2017-10-01

    The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).

  16. Bioaccessibility and Cellular Uptake of β-Carotene Encapsulated in Model O/W Emulsions: Influence of Initial Droplet Size and Emulsifiers

    PubMed Central

    Kelly, Alan L.

    2017-01-01

    The effects of the initial emulsion structure (droplet size and emulsifier) on the properties of β-carotene-loaded emulsions and the bioavailability of β-carotene after passing through simulated gastrointestinal tract (GIT) digestion were investigated. Exposure to GIT significantly changed the droplet size, surface charge and composition of all emulsions, and these changes were dependent on their initial droplet size and the emulsifiers used. Whey protein isolate (WPI)-stabilized emulsion showed the highest β-carotene bioaccessibility, while sodium caseinate (SCN)-stabilized emulsion showed the highest cellular uptake of β-carotene. The bioavailability of emulsion-encapsulated β-carotene based on the results of bioaccessibility and cellular uptake showed the same order with the results of cellular uptake being SCN > TW80 > WPI. An inconsistency between the results of bioaccessibility and bioavailability was observed, indicating that the cellular uptake assay is necessary for a reliable evaluation of the bioavailability of emulsion-encapsulated compounds. The findings in this study contribute to a better understanding of the correlation between emulsion structure and the digestive fate of emulsion-encapsulated nutrients, which make it possible to achieve controlled or potential targeted delivery of nutrients by designing the structure of emulsion-based carriers. PMID:28930195

  17. Interfacial engineering using mixed protein systems: emulsion-based delivery systems for encapsulation and stabilization of β-carotene.

    PubMed

    Mao, Yingyi; Dubot, Marie; Xiao, Hang; McClements, David Julian

    2013-05-29

    Emulsion-based delivery systems are needed to encapsulate, protect, and deliver lipophilic bioactive components in the food, personal care, and pharmaceutical industries. The functional performance of these systems can be controlled by engineering the composition and structure of the interfacial layer coating the lipid droplets. In this study, interfacial properties were controlled using two globular proteins with widely differing isoelectric points: lactoferrin (LF: pI ≈ 8.5) and β-lactoglobulin (BLG: pI ≈ 5). Oil-in-water emulsions were prepared with different interfacial properties: [LF]-only; [BLG]-only; [LF]-[BLG]-(laminated); [BLG]-[LF]-(laminated); and [BLG/LF]-(mixed). The influence of pH, ionic strength, and temperature on the physical stability of β-carotene-enriched emulsions was investigated. [LF]-emulsions were stable to droplet aggregation from pH 2 to 9 (0 mM NaCl), but all other emulsions aggregated at intermediate pH values. [BLG]-emulsions aggregated at high salt levels (≥50 mM NaCl), but all other emulsions were stable (0 to 300 mM NaCl). [BLG/LF]-emulsions were unstable to heating (≥60 °C), but all other emulsions were stable (30 to 90 °C). Color fading due to β-carotene degradation occurred relatively quickly in [BLG]-emulsions (37 °C) but was considerably lower in all other emulsions, which was attributed to the ability of LF to bind iron or interact with β-carotene. This study provides useful information for designing emulsion-based delivery systems to encapsulate and protect bioactive lipids, such as carotenoids.

  18. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  19. Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives"

    PubMed Central

    Speidel, Matthias W; Kleemeier, Malte; Hartwig, Andreas; Rischka, Klaus; Ellermann, Angelika; Daniels, Rolf

    2017-01-01

    Background: Based on previous chemical analyses of insect tarsal adhesives, we prepared 12 heterogeneous synthetic emulsions mimicking the polar/non-polar principle, analysed their microscopical structure and tested their adhesive, frictional, and rheological properties. Results: The prepared emulsions varied in their consistency from solid rubber-like, over soft elastic, to fluid (watery or oily). With droplet sizes >100 nm, all the emulsions belonged to the common type of macroemulsions. The emulsions of the first generation generally showed broader droplet-size ranges compared with the second generation, especially when less defined components such as petrolatum or waxes were present in the lipophilic fraction of the first generation of emulsions. Some of the prepared emulsions showed a yield point and were Bingham fluids. Tribometric adhesion was tested via probe tack tests. Compared with the "second generation" (containing less viscous components), the "first generation" emulsions were much more adhesive (31–93 mN), a finding attributable to their highly viscous components, i.e., wax, petrolatum, gelatin and poly(vinyl alcohol). In the second generation emulsions, we attained much lower adhesivenesses, ranging between 1–18 mN. The adhesive performance was drastically reduced in the emulsions that contained albumin as the protein component or that lacked protein. Tribometric shear tests were performed at moderate normal loads. Our measured friction forces (4–93 mN in the first and 0.1–5.8 mN in the second generation emulsions) were comparatively low. Differences in shear performance were related to the chemical composition and emulsion structure. Conclusion: By varying their chemical composition, synthetic heterogeneous adhesive emulsions can be adjusted to have diverse consistencies and are able to mimic certain rheological and tribological properties of natural tarsal insect adhesives. PMID:28144564

  20. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance.

    PubMed

    Shah, Ruchi R; Dodd, Stephanie; Schaefer, Mary; Ugozzoli, Mildred; Singh, Manmohan; Otten, Gillis R; Amiji, Mansoor M; O'Hagan, Derek T; Brito, Luis A

    2015-04-01

    Microfluidization is an established technique for preparing emulsion adjuvant formulations for use in vaccines. Although this technique reproducibly yields high-quality stable emulsions, it is complex, expensive, and requires proprietary equipment. For this study, we developed a novel and simple low shear process to prepare stable reproducible emulsions without the use of any proprietary equipment. We found this process can produce a wide range of differently sized emulsions based on the modification of ratios of oil and surfactants. Using this process, we prepared a novel 20-nm-sized emulsion that was stable, reproducible, and showed adjuvant effects. During evaluation of this emulsion, we studied a range of emulsions with the same composition all sized below 200; 20, 90, and 160 nm in vivo and established a correlation between adjuvant size and immune responses. Our studies indicate that 160-nm-sized emulsions generate the strongest immune responses. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic.

    PubMed

    Niu, Fuge; Pan, Weichun; Su, Yujie; Yang, Yanjun

    2016-12-01

    Natural biopolymer stabilized oil-in-water emulsions were formulated using ovalbumin (OVA), gum arabic (GA) solutions and their complexes. The influence of interfacial structure of emulsion (OVA-GA bilayer and OVA/GA complexes emulsions) on the physical properties and antimicrobial activity of thyme oil (TO) emulsion against Escherichia coli (E. coli) was evaluated. The results revealed that the two types of emulsions with different oil phase compositions remained stable during a long storage period. The oil phase composition had an appreciable influence on the mean particle diameter and retention of the TO emulsions. The stable emulsion showed a higher minimum inhibitory concentration (MIC), and the TO emulsions showed an improved long-term antimicrobial activity compared to the pure thyme oil, especially complexes emulsion at pH 4.0. These results provided useful information for developing protection and delivery systems for essential oil using biopolymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The influence of the emulsion composition on the wettability of the emulsion

    NASA Astrophysics Data System (ADS)

    Liu, Yan Jun; Shao, Jian Nan; Lei Liu, Peng

    2018-03-01

    In order to explore the influence of the emulsion composition on the wettability of the emulsion, using lauric acid polyoxyethylene esters (LAE) and polyethylene oleic acid diester (DQA) as the emulsifier and oleic acid ester (QA) as the smoothing agent, the spinning oil emulsion system with the content of smoothing agent above 30% was prepared. The results show that: with the increase of emulsion concentration, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in emulsion all decreases. At the same time,the emulsion has critical micelle concentration, when the concentration is less than CMC, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in the emulsion decreases rapidly with the increase of the emulsion concentration, while it’s more than this concentration, the influence of emulsion concentration on the three kinds of nature is smaller. Besides, the increase of the mass fraction of the smoothing agent and the increase of the compound emulsifier HLB will result in worse wettability.

  3. Effect of cationic lipid composition on properties of oligonucleotide/emulsion complexes: Physico-chemical and release studies.

    PubMed

    Martini, Erico; Fattal, Elias; de Oliveira, Mônica Cristina; Teixeira, Helder

    2008-03-20

    This paper describes the influence of cationic lipid composition on physico-chemical properties of complexes formed between oligonucleotides (ON) and cationic emulsions. Formulations containing medium chain triglycerides, egg lecithin, increasing amounts of either oleylamine (OA) or 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and water were prepared by a spontaneous emulsification procedure. ON adsorption on emulsions was evidenced by the inversion of the zeta-potential, the increase in droplet size, and the morphology of the oil droplet examined through transmission electron microscopy. Adsorption isotherms showed a higher amount of ON adsorbed on emulsions containing DOTAP when compared to emulsions containing OA. In a final step, the role of the main parameters, which may in fact influence the ON release rate from emulsions, was investigated. ON were progressively released from emulsions with an increase in dilution ratio and remained quite similar for both OA and DOTAP emulsions over time. Conversely, the effect of the cationic lipid composition was observed upon increasing the charge ratio of complexes. ON release at a same charge ratio was lower from emulsions containing DOTAP (bearing dioleyl chains) than from those containing OA (bearing monoleyl chain).

  4. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina; Rojas, Orlando J

    2016-03-14

    A route for the compatibilization of aqueous dispersions of cellulose nanofibrils (CNFs) with a non-polar polymer matrix is proposed to overcome a major challenge in CNF-based material synthesis. Non-ionic surfactants were used in CNF aqueous dispersions equilibrated with an organic phase (for demonstration, a polystyrene solution, PS, was used). Stable water-in-oil-in-water (W/O/W) double emulsions were produced as a result of the compromise between composition and formulation variables. Most remarkably, the proposed route for CNF integration with hydrophobic polymers removed the need for drying or solvent-exchange of the CNF aqueous dispersion prior to processing. The rheological behavior of the double emulsions showed strong shear thinning behavior and facilitated CNF-PS co-mixing in solid nanofibers upon electrospinning. The morphology and thermal properties of the resultant nanofibers revealed that CNFs were efficiently integrated in the hydrophobic matrix which was consistent with the high interfacial area of the precursor double emulsion. In addition, the morphology and quality of the composite nanofibers can be controlled by the conductivity (ionic strength) of the CNF dispersion. Overall, double emulsion systems are proposed as a novel, efficient and scalable platform for CNF co-processing with non-polar systems and they open up the possibility for the redispersion of CNFs after removal of the organic phase.

  5. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-12-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  6. Synthesis and Characterization of Graphene Oxide-Polystyrene Composite Capsules with Aqueous Cargo via a Water-Oil-Water Multiple Emulsion Templating Route.

    PubMed

    Ali, Muthana; McCoy, Thomas M; McKinnon, Ian R; Majumder, Mainak; Tabor, Rico F

    2017-05-31

    Graphene oxide/polystyrene (GO/PS) nanocomposite capsules containing a two-compartment cargo have been successfully fabricated using a Pickering emulsion strategy. Highly purified GO sheets with typically micrometer-scale lateral dimensions and amphiphilic characteristics were prepared from the oxidation reaction of graphite with concomitant exfoliation of the graphite structure. These GO sheets were employed as a stabilizer for oil-in-water emulsions where the oil phase comprised toluene or olive oil. The stability and morphology of the emulsions were extensively studied as a function of different parameters including GO concentration, aqueous phase pH, ultrasonication time, effects of added electrolytes and stability to dilution. In selected conditions, the olive oil emulsions showed spontaneous formation of multiple w/o/w emulsions with high stability, whereas toluene formed simple o/w emulsions of lower overall stability. Olive oil emulsions were therefore used to prepare capsules templated from emulsion droplets by surrounding the oil phase with a GO/PS shell. The GO sheets, emulsions and composite capsules were characterized using a variety of physical and spectroscopic techniques in order to unravel the interactions responsible for capsule formation. The ability of the capsules to control the release of a model active agent in the form of a hydrophilic dye was explored, and release kinetics were monitored using UV-visible spectroscopy to obtain rate parameters. The composite capsules showed promising sustained release properties, with release rates 11× lower than the precursor GO-stabilized multiple emulsion droplets.

  7. Emulsion characteristics, chemical and textural properties of meat systems produced with double emulsions as beef fat replacers.

    PubMed

    Serdaroğlu, Meltem; Öztürk, Burcu; Urgu, Müge

    2016-07-01

    In recent years, double emulsions are stated to have a promising potential in low-fat food production, however, there are very few studies on their possible applications in meat matrices. We aimed to investigate the quality of beef emulsion systems in which beef fat was totally replaced by double emulsions (W1/O/W2) prepared with olive oil and sodium caseinate (SC) by two-step emulsification procedure. Incorporation of W1/O/W2 emulsion resulted in reduced lipid, increased protein content, and modified fatty acid composition. W1/O/W2 emulsion treatments had lower jelly and fat separation, higher water-holding capacity and higher emulsion stability than control samples with beef fat. Increased concentrations of W1/O/W2 emulsions resulted in significant changes in texture parameters. TBA values were lower in W1/O/W2 emulsion treatments than control treatment after 60days of storage. In conclusion, our study confirms that double emulsions had promising impacts on modifying fatty acid composition and developing both technologically and oxidatively stable beef emulsion systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  9. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    PubMed

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  10. ASSESSMENT OF A STABLE COSMETIC PREPARATION BASED ON ENZYMATIC INTERESTERIFIED FAT, PROPOSED IN THE PREVENTION OF ATOPIC DERMATITIS.

    PubMed

    Kowalska, Malgorzata; Mendrycka, Mariola; Zbikowska, Anna; Kowalska, Dorota

    2017-03-01

    Atopic dermatitis is one of the most common skin disorders seen in infants, children and adults. Proper prevention might slow the atopic symptoms. The purpose of the work was a sensory analysis, an evaluation of moistening properties and stability of emulsions based on an enzymatic interesterified fat blend (mutton tallow and walnut oil) and homogenized at different revolutions and different contents of thickener. The emulsions were evaluated with respect to sensory and skin moisturizing properties by 78 respondents. Stability tests, particle size, distribution, dispersity index, morphology structure of the emulsions were determinated too. Taking into consideration all properties of the emulsions, emulsion IV (containing 0.9 g carboxymethyl cellulose and homogenized at 18000 rpm) and emulsion V (1.5 g of carboxymethyl cellulose and homogenized at 24000 rpm) were found to be of optimum composition. The emulsions exhibited good stability, were highly rated in sensory terms and displayed optimum moistening properties. It has been proven that model emulsions based on interesterified fats containing partial acylglicerols, with optimum carboxymethyl cellulose content and specific revolutions at the time of homogenization are an opportunity for developing preparations targeted at skins requiring special care (e.g., with atopic dermatitis or psoriasis). The work proved the use of enzymatic process to create the emulsifier, which represents the innovative contribution of this work. Also it showed an additional application of enzymatic interesterified fats which since has been used only in food industries.

  11. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions.

    PubMed

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R

    2015-05-01

    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy

    PubMed Central

    Fox, Christopher B.; Barnes V, Lucien; Evers, Tara; Chesko, James D.; Vedvick, Thomas S.; Coler, Rhea N.; Reed, Steven G.; Baldwin, Susan L.

    2012-01-01

    Please cite this paper as: Fox et al. (2012) Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12031. Abstract Background  Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil‐in‐water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. Objectives  To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. Methods  Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS‐PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody‐secreting plasma cells, hemagglutination inhibition titers, and cytokine production. Results  We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two‐component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. Conclusions  Oil‐in‐water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza antigen. The dramatic differences in adjuvant activity between squalene‐based emulsion and medium chain triglyceride‐based emulsion are due principally to the biological activity of the oil composition rather than physical interactions of the antigen with the emulsion. PMID:23122325

  13. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.

  14. Computed tomography-guided screening of surfactant effect on blood circulation time of emulsions: application to the design of an emulsion formulation for paclitaxel.

    PubMed

    Lee, Eun-Hye; Hong, Soon-Seok; Kim, So Hee; Lee, Mi-Kyung; Lim, Joon Seok; Lim, Soo-Jeong

    2014-08-01

    In an effort to apply the imaging techniques currently used in disease diagnosis for monitoring the pharmacokinetics and biodisposition of particulate drug carriers, we sought to use computed tomography (CT) scanning methodology to investigate the impact of surfactant on the blood residence time of emulsions. We prepared the iodinated oil Lipiodol emulsions with different compositions of surfactants and investigated the impact of surfactant on the blood residence time of emulsions by CT scanning. The blood circulation time of emulsions was prolonged by including Tween 80 or DSPE-PEG (polyethylene glycol 2000) in emulsions. Tween 80 was less effective than DSPE-PEG in terms of prolongation effect, but the blood circulating time of emulsions was prolonged in a Tween 80 content-dependent manner. As a proof-of-concept demonstration of the usefulness of CT-guided screening in the process of formulating drugs that need to be loaded in emulsions, paclitaxel was loaded in emulsions prepared with 87 or 65% Tween 80-containing surfactant mixtures. A pharmacokinetics study showed that paclitaxel loaded in 87% Tween 80 emulsions circulated longer in the bloodstream compared to those in 65% Tween 80 emulsions, as predicted by CT imaging. CT-visible, Lipiodol emulsions enabled the simple evaluation of surfactant composition effects on the biodisposition of emulsions.

  15. High Internal Phase Pickering Emulsions Stabilized Solely by Peanut Protein Microgel Particles with Multiple Potential Applications.

    PubMed

    Jiao, Bo; Shi, Aimin; Qiang, Wang; Binks, Bernard

    2018-05-30

    High internal phase Pickering emulsions have various applications in materials science. However, the biocompatibility and biodegradability of inorganic or synthetic stabilizers limit their applications. Herein, we describe the high internal phase Pickering emulsions with 87% edible oil or 88% n-hexane in water stabilized by peanut protein isolate microgel particles. These dispersed phase volume fractions reach the highest in all known food-grade Pickering emulsions. The protein based microgel particles are in different aggregate states depends on pH. The emulsions can be utilized for multiple potential applications simply by changing the internal phase composition. A substitute for partially hydrogenated vegetable oils is obtained when the internal phase is an edible oil. If the internal phase is n-hexane, the emulsion can be used as a template to produce porous materials, which can be used in tissue engineering advantageously since the raw materials are natural and non-toxic. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Superparamagnetic polymer emulsion particles from a soap-free seeded emulsion polymerization and their application for lipase immobilization.

    PubMed

    Cui, Yanjun; Chen, Xia; Li, Yanfeng; Liu, Xiao; Lei, Lin; Zhang, Yakui; Qian, Jiayu

    2014-01-01

    Using emulsion copolymer of styrene (St), glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) as seed latexes, the superparamagnetic polymer emulsion particles were prepared by seeded emulsion copolymerization of butyl methacrylate (BMA), vinyl acetate (VAc) and ethylene glycol dimethacrylate in the presence of the seed latexes and superparamagnetic Fe3O4/SiOx nanoparticles (or Fe3O4-APTS nanoparticles) through a two-step process, without addition of any emulsifier. The magnetic emulsion particles named P(St-GMA-HEMA)/P(BMA-VAc) were characterized by transmission electron microscope and vibrating sample magnetometry. The results showed that the magnetic emulsion particles held a structure with a thinner shell (around 100 nm) and a bigger cavity (around 200 nm), and possessed a certain level of magnetic response. The resulting magnetic emulsion particles were employed in the immobilization of lipase by two strategies to immobilized lipase onto the resulting magnetic composites directly (S-1) or using glutaraldehyde as a coupling agent (S-2), thus, experimental data showed that the thermal stability and reusability of immobilized lipase based on S-2 were higher than that of S-1.

  17. [Comparison of essential oil enriched with ultrafiltration method and extraction method respectively from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by GC-MS].

    PubMed

    Yin, Ailing; Han, Zhifeng; Shen, Jie; Guo, Liwei; Cao, Guiping

    2011-10-01

    To study on the separation from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by ultrafiltration and acetoacetate extraction methods respectively, and the comparison of the oil yields and chemical compositions. Essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride was separated by ultrafiltration and acetoacetate extraction methods respectively, and the chemical compositions were analyzed and compared by GC-MS. Ultrafiltration method could enrich essential oil more and its chemical compositions were more similar to the essential oil prepared by steam distillation method. Ultrafiltration method is a good medium to separate essential oil from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride.

  18. Combinatorial microfluidic droplet engineering for biomimetic material synthesis

    PubMed Central

    Bawazer, Lukmaan A.; McNally, Ciara S.; Empson, Christopher J.; Marchant, William J.; Comyn, Tim P.; Niu, Xize; Cho, Soongwon; McPherson, Michael J.; Binks, Bernard P.; deMello, Andrew; Meldrum, Fiona C.

    2016-01-01

    Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach uses a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials, and medicine. PMID:27730209

  19. Development of fish-based model systems with various microstructures.

    PubMed

    Verheyen, Davy; Baka, Maria; Glorieux, Seline; Duquenne, Barbara; Fraeye, Ilse; Skåra, Torstein; Van Impe, Jan F

    2018-04-01

    The effectiveness of predictive microbiology is limited by the lack of knowledge concerning the influence of food microstructure on microbial dynamics. Therefore, future modelling attempts should be based on experiments in structured food model systems as well as liquid systems. In this study, fish-based model systems with various microstructures were developed, i.e., two liquid systems (with and without xanthan gum), an emulsion, an aqueous gel, and a gelled emulsion. The microstructural effect was isolated by minimising compositional and physico-chemical changes among the different model systems. The systems were suitable for common growth and mild thermal inactivation experiments involving both homogeneous and surface inoculation. Average pH of the model systems was 6.36±0.03 and average a w was 0.988±0.002. The liquid system without xanthan gum behaved like a Newtonian fluid, while the emulsion and the liquid containing xanthan gum exhibited (non-Newtonian) pseudo-plastic behaviour. Both the aqueous gel and gelled emulsion were classified as strong gels, with a hardness of 1.35±0.07N and 1.25±0.05N, respectively. Fat droplet size of the emulsion and gelled emulsion model systems was evenly distributed around 1μm. In general, the set of model systems was proven to be suitable to study the influence of important aspects of food microstructure on microbial dynamics. Copyright © 2017. Published by Elsevier Ltd.

  20. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    PubMed

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (<3%), whereas caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  1. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation.

    PubMed

    Tang, Siah Ying; Manickam, Sivakumar; Wei, Tan Khang; Nashiru, Billa

    2012-03-01

    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    PubMed

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  3. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    NASA Astrophysics Data System (ADS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  4. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    DOE PAGES

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; ...

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  5. Properties study of cotton stalk fiber/gypsum composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Guozhong; Yu Yanzhen; Zhao Zhongjian

    This manuscript addresses treating cotton stalk fiber surface with styrene acrylic emulsion, which improves the interfacial combined state of cotton stalk fiber/gypsum composite effectively and improves its mechanical properties notably. Mixes less slag, ordinary Portland cement, etc., to modify gypsum base. The electron microscope was utilized to analyze and research on the effect on composite properties of the abovementioned mixtures.

  6. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique. This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer. After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is achieved when co-deposited with polymers. Finally, the application of antimicrobial and fouling-release multifunctional films demonstrates the importance of blended film deposition with nanoscale phase separation, a key feature to achieving reusable bio-films that can kill bacteria when illuminated with ultraviolet light. Thus, this dissertation provides great insight to the fundamentals of emulsion-based RIR-MAPLE, serves as a valuable reference for future development, and paves the pathway for wider adoption of this unique thin film deposition technique, especially for organic solar cells.

  7. Nanocellulose-stabilized Pickering emulsions and their applications

    PubMed Central

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-01-01

    Abstract Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials. PMID:29383046

  8. Nanocellulose-stabilized Pickering emulsions and their applications

    NASA Astrophysics Data System (ADS)

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-12-01

    Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials.

  9. Development of Large Area Emulsion Chamber Methods with a Super Conducting Magnet for Observation of Cosmic Ray Nuclei from 1 GeV to 1,000 TeV (Emulsion Techniques)

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei

    1997-01-01

    The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.

  10. The effect of prime emulsion components as a function of equilibrium headspace concentration of soursop flavor compounds

    PubMed Central

    2014-01-01

    Background Perceptions of food products start when flavor compounds are released from foods, transported and appropriate senses in the oral and nose are triggered. However, the long-term stability of flavor compounds in food product has been a major concern in the food industry due to the complex interactions between key food ingredients (e.g., polysaccharides and proteins). Hence, this study was conducted to formulate emulsion-based beverage using natural food emulsifiers and to understand the interactions between emulsion compositions and flavor compounds. Results The influences of modified starch (x 1 ), whey protein isolate (x 2 ), soursop flavor oil (x 3 ) and deionized water (x 4 ) on the equilibrium headspace concentration of soursop volatile flavor compounds were evaluated using a four-component with constrained extreme vertices mixture design. The results indicated that the equilibrium headspace concentration of soursop flavor compounds were significantly (p < 0.05) influenced by the matrix and structural compositions of the beverage emulsions. Interface formed using modified starch and whey protein isolate (WPI) proved to be capable of inhibiting the release of volatile flavor compounds from the oil to the aqueous phase. Modified starch could retard the overall flavor release through its hydrophobic interactions with volatile flavor compounds and viscosity enhancement effect. Excessive amount of modified starch was also shown to be detrimental to the stability of emulsion system. However, both modified starch and WPI showed to be a much more effective barrier in inhibiting the flavor release of flavor compounds when used as individual emulsifier than as a mixture. Conclusions Overall, the mixture design can be practical in elucidating the complex interactions between key food components and volatile flavor compounds in an emulsion system. These studies will be useful for the manufacturers for the formulation of an optimum beverage emulsion with desirable emulsion properties and desirable flavor release profile. PMID:24708894

  11. Design and characterization of fibrin-based acoustically responsive scaffolds for tissue engineering applications

    PubMed Central

    Moncion, Alexander; Arlotta, Keith J.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Carson, Paul L.; Putnam, Andrew J.; Franceschi, Renny T.; Fabiilli, Mario L.

    2015-01-01

    Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors (GFs). Spatiotemporal patterns of GF signaling are critical for tissue regeneration, yet most scaffolds afford limited control of GF release, especially after implantation. We previously demonstrated that acoustic droplet vaporization (ADV) can control GF release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, ADV and inertial cavitation thresholds ranged from 1.5 – 3.0 MPa and 2.0 – 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying compositions. Viability of C3H10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporal control. PMID:26526782

  12. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions.

    PubMed

    Schmidts, T; Dobler, D; Nissing, C; Runkel, F

    2009-10-01

    Multiple W/O/W emulsions for topical application using Span 80 as a lipophilic emulsifier were prepared. Several hydrophilic emulsifiers were tested in respect of their suitability for the preparation of multiple emulsions. In addition, the effect of different oil-phase compositions on emulsion stability was investigated. The physicochemical parameters of the formulations were characterized and their long-term stability was evaluated by means of rheological measurements, droplet size observations and conductivity analysis. As discovered, the modification of an oil-phase composition results in a decrease in the diffusion coefficient of water and water-soluble substances and, consequently, in enhanced stability. The influence of the release of electrolytes from the inner to the outer water phase on the emulsion stability behaviour was investigated. It was found, that the effect of the hydrophilic emulsifiers on the formulation properties is related not only to its HLB value, but rather to its chemical composition. As a result, polyethoxylated ethers of fatty alcohols (C=16-18) with HLBs between 15.3 and 16.2 appear to be the most suitable ones for creating stable formulations.

  13. Effect of the application of 1-methylcyclopropene and wax emulsions on proximate analysis and some antioxidants of soursop (Annona muricata L.).

    PubMed

    Moreno-Hernández, Cristina L; Sáyago-Ayerdi, Sonia G; García-Galindo, Hugo S; Mata-Montes De Oca, Miguel; Montalvo-González, Efigenia

    2014-01-01

    The effect of the application of 1-methylcyclopropene (1-MCP) and wax emulsions, alone or combined, on composition analysis, vitamin C, polyphenols, and antioxidant capacity of soursop was evaluated. Fruits were stored as follows: at 25 °C (control), and at 16 °C: fruits sprayed with candelilla or flava emulsions, fruits treated with 1500 nL/L of 1-MCP (20 °C, 12 h), and fruits treated with 1-MCP and then sprayed with emulsions. Fruits were allowed to ripen and the edible part was used for analysis. Only fruits stored at 16 °C without 1-MCP showed visible symptoms of chilling injury. Fruits treated with 1-MCP combined with flava emulsion maintained in greater extent their vitamin C content, dietary fiber, total phenolics content, and antioxidant activity. The combination of 1-MCP and emulsions can be utilized in postharvest handling of soursop because this combination can preserve its nutritional composition and antioxidant activity.

  14. Effect of the Application of 1-Methylcyclopropene and Wax Emulsions on Proximate Analysis and Some Antioxidants of Soursop (Annona muricata L.)

    PubMed Central

    Moreno-Hernández, Cristina L.; Sáyago-Ayerdi, Sonia G.; García-Galindo, Hugo S.; Mata-Montes De Oca, Miguel; Montalvo-González, Efigenia

    2014-01-01

    The effect of the application of 1-methylcyclopropene (1-MCP) and wax emulsions, alone or combined, on composition analysis, vitamin C, polyphenols, and antioxidant capacity of soursop was evaluated. Fruits were stored as follows: at 25°C (control), and at 16°C: fruits sprayed with candelilla or flava emulsions, fruits treated with 1500 nL/L of 1-MCP (20°C, 12 h), and fruits treated with 1-MCP and then sprayed with emulsions. Fruits were allowed to ripen and the edible part was used for analysis. Only fruits stored at 16°C without 1-MCP showed visible symptoms of chilling injury. Fruits treated with 1-MCP combined with flava emulsion maintained in greater extent their vitamin C content, dietary fiber, total phenolics content, and antioxidant activity. The combination of 1-MCP and emulsions can be utilized in postharvest handling of soursop because this combination can preserve its nutritional composition and antioxidant activity. PMID:24892105

  15. Lamination of Hardwood Composite Framing With an Emulsion Polymer-lsocyanate Adhesive and Radio-Frequency Curing

    Treesearch

    Charles B. Vick

    1987-01-01

    Composite framing msde from yellow-poplar and sweetgum parallel-laminated veneer and oriented flakeboard was effectively laminated with an emulsion polymer/isocyanate adhesive and radio-frequency curing at an assumed but typical range of material surface characteristics and factory assembly conditions.

  16. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  17. Influence of food intrinsic complexity on Listeria monocytogenes growth in/on vacuum-packed model systems at suboptimal temperatures.

    PubMed

    Baka, Maria; Noriega, Estefanía; Van Langendonck, Kristof; Van Impe, Jan F

    2016-10-17

    Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems. Additionally, the firmer the solid system, the faster L. monocytogenes grew on it. Finally, it was found that L. monocytogenes grows faster on canned meat and real Frankfurters, as found in a previous study, followed by liquids, aqueous gels, emulsions and gelled emulsions. This observation indicates that all model systems, developed in this study, underestimated L. monocytogenes growth. Despite some limitations, model systems are overall advantageous and therefore, their validation is always recommended prior to further use. Copyright © 2016. Published by Elsevier B.V.

  18. Influence of phase inversion on the formation and stability of one-step multiple emulsions.

    PubMed

    Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J

    2009-07-21

    A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the first time, the significance of the ultralow surface tension point on multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory ,and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.

  19. Microfluidic control of droplet formation from stable emulsions formed by aqueous two-phase systems

    NASA Astrophysics Data System (ADS)

    Teixeira, Alyne G.; Tsai, Meng-Chiao; Frampton, John P.

    2018-02-01

    Aqueous two-phase systems (ATPSs) form from the thermodynamic separation of two dissolved incompatible solutes, such as two polymers, a polymer and a salt, and a polymer and a surfactant. At most supercritical concentrations, ATPS emulsions can be formed by vigorous mixing. These emulsions typically settle into distinct layers in minutes to hours. However, it is also possible to choose ATPS compositions with extremely long settling times that resemble stable emulsions. Here, we generated stable emulsions from a polyethylene glycol (PEG)-dextran ATPS by selecting ATPS compositions at the extreme ends of the tie lines connecting the binodal curve delineating phase-separating compositions. Droplets of PEG in a continuous dextran phase did not coalesce appreciably over the course of several days when stored in a conical tube or syringe. However, upon exposure to laminar flow conditions in a microfluidic channel, droplets were observed to coalesce. Through microscopic characterization of droplet volume, an increase in droplet size and decrease in overall droplet number was observed as a function of channel distance, suggesting a progressive droplet merging phenomenon. This novel approach to control droplet size by encouraging coalescence of stable emulsions under laminar flow in a microfluidic channel enables the production of droplets ranging from fL to several pL, which may enable various future biotechnology applications.

  20. Oil-based compositions as saliva substitutes: A pilot study to investigate in-mouth retention.

    PubMed

    Hanning, Sara M; Medlicott, Natalie J

    2016-03-30

    This pilot study aimed to compare the in-mouth retention of an oil-based saliva substitute (emulsion, consisting of rice bran oil, soy lecithin and water) with water and a 1% w/v methylcellulose suspension (polymer) in healthy volunteers. Each formulation was tagged with 1 mmol/L lithium and participants (n=30) rinsed their mouth with one randomly assigned formulation (emulsion, polymer or water) for 30s, before expectorating into a cup. Concentration of lithium expectorated was measured and amount of each formulation remaining in the mouth was estimated. Patient acceptability was investigated using questionnaires, and Fourier-Transform Infrared spectroscopy (FTIR) was used to determine the presence of oil in expectorated samples. Immediately after rinsing, taste was rated lower in the emulsion group compared to the polymer or water groups (p>0.05), although variability was high. Mean retention was highest in the emulsion group, with a difference of 8.34 ± 2.71% (p=0.003) and 4.57 ± 2.71% (p=0.06) compared with the water and polymer groups, respectively. FTIR confirmed the presence of oil in all expectorated emulsion samples. The emulsion was not inferior to the polymer in terms of retention immediately after rinsing. The next step is to conduct larger clinical studies over longer time periods in participants with salivary hypofunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Investigation of in vitro Hydrophilic and Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium alginate-MaterBi® Drying Emulsions.

    PubMed

    Setti, Chiara; Suarato, Giulia; Perotto, Giovanni; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-18

    Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi ® , and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi ® /alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells. Copyright © 2018. Published by Elsevier B.V.

  2. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  3. Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization.

    PubMed

    Sajjadi, Shahriar

    2015-05-01

    Conventional batch and semicontinuous emulsion copolymerizations often produce large particles whose size cannot be easily correlated with the comonomer feed compositions, and are to some degree susceptible to composition drift. In contrast, we found that copolymer nanolatexes made via semicontinuous monomer-starved emulsion copolymerizations are featured with an average nanoparticle size being controlled by the feed composition, a high conversion achieved, and a high degree of particle composition uniformity. This was achieved because the rate of particle growth, during nucleation, was controlled by the rate of comonomer addition, and the copolymer composition, surfactant parking area on the particles, and nucleation efficiency determined by the comonomer feed composition. Two model systems, methyl methacrylate/styrene and vinyl acetate/butyl acrylate, with significant differences in water solubility were studied. Monomers were added to the aqueous solution of sodium dodecylsulfate and potassium persulfate at a low rate to achieve high instantaneous conversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3.

    PubMed

    Kabri, Tin-Hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel

    2011-09-21

    Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.

  5. Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis.

    PubMed

    Zarai, Zied; Balti, Rafik; Sila, Assaâd; Ben Ali, Yassine; Gargouri, Youssef

    2016-01-01

    Emulsions are widely used in food and pharmaceutical applications for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to fulfill the increasing demand for clean label excipients, natural polymers could be used to replace the potentially irritative synthetic surfactants used in emulsion formulation. In the present study, we have studied the properties of oil-in-water emulsions prepared with land snail gelatin (LSG) as the sole emulsifying agent, extracted and described for the first time. LSG was evaluated in terms of proximate composition, oil and water holding capacity, emulsifying and foaming properties, color and amino acid composition. Emulsions of trioctanoylglycerol (TC8) and olive oil were made at different gelatin/oil ratios and changes in droplet-size distribution were determined. The superior emulsifying properties of LSG, the susceptibility of gelatin protein emulsions increasing flocculation on storage, and the coalescence of gelatin emulsions following centrifugation were demonstrated. Furthermore, the effect of LSG on the activity of turkey pancreatic lipase (TPL) was evaluated through the pH-stat methodology with TC8 and olive oil emulsions. The LSG affected the TPL activity in a concentration-dependent way. Our results showed that LSG, comparably to gum arabic, increases the pancreatic lipase activity and improves its stability at the oil-water interface.

  6. Research advances in polymer emulsion based on "core-shell" structure particle design.

    PubMed

    Ma, Jian-zhong; Liu, Yi-hong; Bao, Yan; Liu, Jun-li; Zhang, Jing

    2013-09-01

    In recent years, quite many studies on polymer emulsions with unique core-shell structure have emerged at the frontier between material chemistry and many other fields because of their singular morphology, properties and wide range of potential applications. Organic substance as a coating material onto either inorganic or organic internal core materials promises an unparalleled opportunity for enhancement of final functions through rational designs. This contribution provides a brief overview of recent progress in the synthesis, characterization, and applications of both inorganic-organic and organic-organic polymer emulsions with core-shell structure. In addition, future research trends in polymer composites with core-shell structure are also discussed in this review. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions.

    PubMed

    Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K

    2016-12-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of interfacial composition on uptake of curcumin-piperine mixtures in oil in water emulsions by Caco-2 cells.

    PubMed

    Gülseren, İbrahim; Guri, Anilda; Corredig, Milena

    2014-06-01

    Encapsulation in lipid particles is often proposed as a solution to improve curcumin bioavailability. This bioactive molecule has low water solubility and rapidly degrades during digestion. In the present study, the uptake of curcumin from oil in water emulsions, prepared with two different emulsifiers, Tween 20 and Poloxamer 407, was investigated to determine the effect of interfacial composition on absorption. Piperine was added to the curcumin to limit the degradation of curcumin because it is known to inhibit β-glucuronidase activity. The emulsions were administered to Caco-2 cell cultures, which is used as a model for intestinal uptake, and the recovery of curcumin was measured. The curcumin uptake was significantly affected by the type of interface, and the extent of curcumin uptake improved significantly by piperine addition only in the case of oil-in-water emulsions stabilized by Poloxamer 407. This work provides further evidence of the importance of interfacial composition on the delivery of bioactives.

  9. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    PubMed Central

    2011-01-01

    Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Results Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. Conclusions This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design. PMID:21936893

  10. Mycobacteria emulsified in olive oil-in-water trigger a robust immune response in bladder cancer treatment

    PubMed Central

    Noguera-Ortega, Estela; Blanco-Cabra, Núria; Rabanal, Rosa Maria; Sánchez-Chardi, Alejandro; Roldán, Mónica; Guallar-Garrido, Sandra; Torrents, Eduard; Luquin, Marina; Julián, Esther

    2016-01-01

    The hydrophobic composition of mycobacterial cell walls leads to the formation of clumps when attempting to resuspend mycobacteria in aqueous solutions. Such aggregation may interfere in the mycobacteria-host cells interaction and, consequently, influence their antitumor effect. To improve the immunotherapeutic activity of Mycobacterium brumae, we designed different emulsions and demonstrated their efficacy. The best formulation was initially selected based on homogeneity and stability. Both olive oil (OO)- and mineral oil-in-water emulsions better preserved the mycobacteria viability and provided higher disaggregation rates compared to the others. But, among both emulsions, the OO emulsion increased the mycobacteria capacity to induce cytokines’ production in bladder tumor cell cultures. The OO-mycobacteria emulsion properties: less hydrophobic, lower pH, more neutralized zeta potential, and increased affinity to fibronectin than non-emulsified mycobacteria, indicated favorable conditions for reaching the bladder epithelium in vivo. Finally, intravesical OO-M. brumae-treated mice showed a significantly higher systemic immune response, together with a trend toward increased tumor-bearing mouse survival rates compared to the rest of the treated mice. The physicochemical characteristics and the induction of a robust immune response in vitro and in vivo highlight the potential of the OO emulsion as a good delivery vehicle for the mycobacterial treatment of bladder cancer. PMID:27265565

  11. 3D printing of concentrated emulsions into multiphase biocompatible soft materials.

    PubMed

    Sommer, Marianne R; Alison, Lauriane; Minas, Clara; Tervoort, Elena; Rühs, Patrick A; Studart, André R

    2017-03-01

    3D printing via direct ink writing (DIW) is a versatile additive manufacturing approach applicable to a variety of materials ranging from ceramics over composites to hydrogels. Due to the mild processing conditions compared to other additive manufacturing methods, DIW enables the incorporation of sensitive compounds such as proteins or drugs into the printed structure. Although emulsified oil-in-water systems are commonly used vehicles for such compounds in biomedical, pharmaceutical, and cosmetic applications, printing of such emulsions into architectured soft materials has not been fully exploited and would open new possibilities for the controlled delivery of sensitive compounds. Here, we 3D print concentrated emulsions into soft materials, whose multiphase architecture allows for site-specific incorporation of both hydrophobic and hydrophilic compounds into the same structure. As a model ink, concentrated emulsions stabilized by chitosan-modified silica nanoparticles are studied, because they are sufficiently stable against coalescence during the centrifugation step needed to create a bridging network of droplets. The resulting ink is ideal for 3D printing as it displays high yield stress, storage modulus and elastic recovery, through the formation of networks of droplets as well as of gelled silica nanoparticles in the presence of chitosan. To demonstrate possible architectures, we print biocompatible soft materials with tunable hierarchical porosity containing an encapsulated hydrophobic compound positioned in specific locations of the structure. The proposed emulsion-based ink system offers great flexibility in terms of 3D shaping and local compositional control, and can potentially help address current challenges involving the delivery of incompatible compounds in biomedical applications.

  12. Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels.

    PubMed

    McIntyre, Irene; O Sullivan, Michael; O Riordan, Dolores

    2017-04-19

    Casein-based emulsion gels prepared with different types of lipid (i.e. milk fat or rapeseed oil) were formulated with high (774 mg Ca per 100 g) or low (357 mg Ca per 100 g) calcium levels by blending acid and rennet casein. Their physicochemical characteristics (i.e. composition, texture, microstructure & water mobility) and in vitro digestibility were compared to conventionally formulated high-calcium (723 mg Ca per 100 g) emulsion gels made from rennet casein with calcium chelating salts (CCS). CCS-free, high-calcium emulsion gels were significantly (p ≤ 0.05) softer than those with low calcium levels (possibly due to their shorter manufacture time and higher pH) and showed the highest rates of disintegration during simulated gastric digestion. Despite having a higher moisture to protein ratio, the high-calcium emulsion gels containing CCS had broadly similar hardness values to those of high-calcium concentration prepared without CCS, but had higher cohesiveness. The high-calcium matrices containing CCS had quite a different microstructure and increased water mobility compared to those made without CCS and showed the slowest rate (p ≤ 0.05) of disintegration in the gastric environment. Gastric resistance was not affected by the type of lipid phase. Conversely, fatty acid release was similar for all emulsion gels prepared from milk fat, however, high-calcium emulsion gels (CCS-free) prepared from rapeseed oil showed higher lipolysis. Results suggest that food matrix physical properties can be modified to alter resistance to gastric degradation which may have consequences for the kinetics of nutrient release and delivery of bioactives sensitive to the gastric environment.

  13. Spectra, composition, and interactions of nuclei with magnet interaction chambers

    NASA Astrophysics Data System (ADS)

    Parnell, T. A.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jurak, A.; Lord, J. J.; Miyamura, O.; Niwa, K.; Oda, H.; Ogata, T.; Roberts, F. E.; Shibata, T.; Strausz, S. C.; Tabuki, T.; Taira, T.; Takahashi, Y.; Tominaga, T.; Watts, J. W.; Wefel, J. P.; Wilczynska, B.; Wilczynski, H.; Wilkes, R. J.; Wolter, W.; Wosiek, T.; Yamamoto, A.; Yokomi, H.; Yuda, T.

    1990-03-01

    Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.

  14. Parenteral lipid administration to very-low-birth-weight infants--early introduction of lipids and use of new lipid emulsions: a systematic review and meta-analysis.

    PubMed

    Vlaardingerbroek, Hester; Veldhorst, Margriet A B; Spronk, Sandra; van den Akker, Chris H P; van Goudoever, Johannes B

    2012-08-01

    The use of intravenous lipid emulsions in preterm infants has been limited by concerns regarding impaired lipid tolerance. As a result, the time of initiation of parenteral lipid infusion to very-low-birth-weight (VLBW) infants varies widely among different neonatal intensive care units. However, lipids provide energy for protein synthesis and supply essential fatty acids that are necessary for central nervous system development. The objective was to summarize the effects of initiation of lipids within the first 2 d of life and the effects of different lipid compositions on growth and morbidities in VLBW infants. A systematic review and meta-analysis of publications identified in a search of PubMed, EMBASE, and Cochrane databases was undertaken. Randomized controlled studies were eligible if information on growth was available. The search yielded 14 studies. No differences were observed in growth or morbidity with early lipid initiation. We found a weak favorable association of non-purely soybean-based emulsions with the incidence of sepsis (RR: 0.75; 95% CI: 0.56, 1.00). The initiation of lipids within the first 2 d of life in VLBW infants appears to be safe and well tolerated; however, beneficial effects on growth could not be shown for this treatment nor for the type of lipid emulsion. Emulsions that are not purely soybean oil-based might be associated with a lower incidence of sepsis. Large-scale randomized controlled trials in preterm infants are warranted to determine whether early initiation of lipids and lipid emulsions that are not purely soybean oil-based results in improved long-term outcomes.

  15. Effect of medium/ω-6 long chain triglyceride-based emulsion on leucocyte death and inflammatory gene expression

    PubMed Central

    Cury-Boaventura, M F; Gorjão, R; Martins de Lima, T; Fiamoncini, J; Godoy, A B P; Deschamphs, F C; Soriano, F G; Curi, R

    2011-01-01

    Lipid emulsion (LE) containing medium/ω-6 long chain triglyceride-based emulsion (MCT/ω-6 LCT LE) has been recommended in the place of ω-6 LCT-based emulsion to prevent impairment of immune function. The impact of MCT/ω-6 LCT LE on lymphocyte and neutrophil death and expression of genes related to inflammation was investigated. Seven volunteers were recruited and infusion of MCT/ω-6 LCT LE was performed for 6 h. Four volunteers received saline and no change was found. Blood samples were collected before, immediately afterwards and 18 h after LE infusion. Lymphocytes and neutrophils were studied immediately after isolation and after 24 and 48 h in culture. The following determinations were carried out: plasma-free fatty acids, triacylglycerol and cholesterol concentrations, plasma fatty acid composition, neutral lipid accumulation in lymphocytes and neutrophils, signs of lymphocyte and neutrophil death and lymphocyte expression of genes related to inflammation. MCT/ω-6 LCT LE induced lymphocyte and neutrophil death. The mechanism for MCT/ω-6 LCT LE-dependent induction of leucocyte death may involve changes in neutral lipid content and modulation of expression of genes related to cell death, proteolysis, cell signalling, inflammatory response, oxidative stress and transcription. PMID:21682721

  16. Egg white powder-stabilised multiple (water-in-olive oil-in-water) emulsions as beef fat replacers in model system meat emulsions.

    PubMed

    Öztürk, Burcu; Urgu, Müge; Serdaroğlu, Meltem

    2017-05-01

    Today, multiple emulsions are believed to have a considerable application potential in food industry. We aimed to investigate physical, chemical and textural quality characteristics of model system meat emulsions (MSME) in which beef fat (C) was totally replaced by 10% (E-10), 20% (E-20) or 30% (E-30) multiple emulsions (W 1 /O/W 2 ) prepared with olive oil and egg white powder (EWP). Incorporation of W 1 /O/W 2 emulsion resulted in reduced fat (from 11.54% to 4.01%), increased protein content (from 13.66% to 14.74%), and modified fatty acid composition, significantly increasing mono- and polyunsaturated fatty acid content and decreasing saturated fatty acid content. E-20 and E-30 samples had lower jelly and fat separation (5.77% and 5.25%) compared to C and E-10 (9.67% and 8.55%). W 1 /O/W 2 emulsion treatments had higher water-holding capacity (93.96-94.35%) than C samples (91.84%), and also showed the desired storage stability over time. Emulsion stability results showed that E-20 and E-30 samples had lower total expressible fluid (14.05% and 14.53%) and lower total expressible fat (5.06% and 5.33%) compared to C samples (19.13% and 6.09%). Increased concentrations of W 1 /O/W 2 emulsions led to alterations in colour and texture parameters. TBA values of samples were lower in W 1 /O/W 2 emulsion treatments than control treatment during 60 days of storage. Our results indicated that multiple emulsions prepared with olive oil and EWP had promising impacts on reducing fat, modifying the lipid composition and developing both technologically and oxidatively stable meat systems. These are the first findings concerning beef matrix fat replacement with multiple emulsions stabilised by EWP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Size distribution, chemical composition, and hygroscopicity of fine particles emitted from an oil-fired heating plant.

    PubMed

    Happonen, Matti; Mylläri, Fanni; Karjalainen, Panu; Frey, Anna; Saarikoski, Sanna; Carbone, Samara; Hillamo, Risto; Pirjola, Liisa; Häyrinen, Anna; Kytömäki, Jorma; Niemi, Jarkko V; Keskinen, Jorma; Rönkkö, Topi

    2013-12-17

    Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality.

  18. Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating.

    PubMed

    Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita

    2017-05-01

    Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.

  19. Oxidative degradation and non-enzymatic browning due to the interaction between oxidised lipids and primary amine groups in different marine PL emulsions.

    PubMed

    Lu, F S H; Nielsen, N S; Baron, C P; Jacobsen, C

    2012-12-15

    Due to the beneficial health effects of marine phospholipids (PL) there is an increasing industrial interest in using them for nutritional applications including emulsified foods. This study was undertaken to investigate both oxidative and hydrolytic stability of marine PL emulsions in relation to the chemical composition of the marine PL used. Moreover, non-enzymatic browning reactions were also investigated. Emulsions were prepared by high pressure homogenizer using different concentrations and sources of marine PL. In some formulations, fish oil was added in order to study the effect of increasing levels of triglycerides in the emulsions. The oxidative and hydrolytic stability of emulsions was investigated through measurement of peroxide value, free fatty acids, and (31)P NMR during storage at 2°C for up to 32 days. The oxidative stability of marine PL emulsions during storage was further investigated through the measurement of secondary volatile compounds by solid-phase microextraction (SPME) and dynamic headspace (DHS) connected to gas chromatography (GC-MS). Non-enzymatic browning reactions were investigated through the measurement of Strecker derived volatiles, colour changes and pyrrole content. The results suggested that the oxidative stability of marine PL emulsions was significantly influenced by the chemical composition and the concentration of marine PL used to prepare them. Emulsions with good oxidative stability could be prepared from marine PL of high purity and high content of PL and antioxidant and low TAG content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions.

    PubMed

    Gramlich, Leah; Meddings, Liisa; Alberda, Cathy; Wichansawakun, Sanit; Robbins, Sarah; Driscoll, David; Bistrian, Bruce

    2015-09-01

    The fatty acids, linoleic acid (18:2ω-6) and α-linolenic acid (18:3ω-3), are essential to the human diet. When these essential fatty acids are not provided in sufficient quantities, essential fatty acid deficiency (EFAD) develops. This can be suggested clinically by abnormal liver function tests or biochemically by an elevated Mead acid and reduced linoleic acid and arachidonic acid level, which is manifested as an elevated triene/tetraene ratio of Mead acid/arachidonic acid. Clinical features of EFAD may present later. With the introduction of novel intravenous (IV) lipid emulsions in North America, the proportion of fatty acids provided, particularly the essential fatty acids, varies substantially. We describe a case series of 3 complicated obese patients who were administered parenteral nutrition (PN), primarily using ClinOleic 20%, an olive oil-based lipid emulsion with reduced amounts of the essential fatty acids, linoleic and α-linolenic, compared with more conventional soybean oil emulsions throughout their hospital admission. Essential fatty acid profiles were obtained for each of these patients to investigate EFAD as a potential cause of abnormal liver enzymes. Although the profiles revealed reduced linoleic acid and elevated Mead acid levels, this was not indicative of the development of essential fatty acid deficiency, as reflected in the more definitive measure of triene/tetraene ratio. Instead, although the serum fatty acid panel reflected the markedly lower but still adequate dietary linoleic acid content and greatly increased oleic acid content in the parenteral lipid emulsion, the triene/tetraene ratio remained well below the level, indicating EFAD in each of these patients. The availability and use of new IV lipid emulsions in PN should encourage the clinician to review lipid metabolism based on the quantity of fatty acids provided in specific parenteral lipid emulsions and the expected impact of these lipid emulsions (with quite different fatty acid composition) on measured fatty acid profiles. © 2015 American Society for Parenteral and Enteral Nutrition.

  1. Three-dimensional molecular mapping of a multiple emulsion by means of CARS microscopy.

    PubMed

    Meyer, Tobias; Akimov, Denis; Tarcea, Nicolae; Chatzipapadopoulos, Susana; Muschiolik, Gerald; Kobow, Jens; Schmitt, Michael; Popp, Jürgen

    2008-02-07

    Multiple emulsions consisting of water droplets dispersed in an oil phase containing emulsifier which is emulsified in an outer water phase (W/O/W) are of great interest in pharmacology for developing new drugs, in the nutrition sciences for designing functional food, and in biology as model systems for cell organelles such as liposomes. In the food industry multiple emulsions with high sugar content in the aqueous phase can be used for the production of sweets, because the high sugar content prevents deterioration. However, for these emulsions the refractive indexes of oil and aqueous phase are very similar. This seriously impedes the analysis of these emulsions, e.g., for process monitoring, because microscopic techniques based on transmission or reflection do not provide sufficient contrast. We have characterized the inner dispersed phase of concentrated W/O/W emulsions with the same refractive index of the three phases by micro Raman spectroscopy and investigated the composition and molecular distribution in water-oil-water emulsions by means of three-dimensional laser scanning CARS (coherent anti-Stokes Raman scattering) microscopy. CARS microscopy has been used to study water droplets dispersed in oil droplets at different Raman resonances to visualize different molecular species. Water droplets with a diameter of about 700 nm could clearly be visualized. The advantages of CARS microscopy for studying this particular system are emphasized by comparing this microscopic technique with conventional confocal reflection and transmission microscopies.

  2. Level Recession Of Emissions Release By Motor-And-Tractor Diesel Engines Through The Application Of Water-Fuel Emulsions

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Chikishev, E.

    2017-01-01

    The paper is dedicated to a problem of environmental pollution by emissions of hazardous substances with the exhaust gases of internal combustion engines. It is found that application of water-fuel emulsions yields the best results in diesels where production of a qualitative carburetion is the main problem for the organization of working process. During pilot studies the composition of a water-fuel emulsion with the patent held is developed. The developed composition of a water-fuel emulsion provides its stability within 14-18 months depending on mass content of components in it while stability of emulsions’ analogues makes 8-12 months. The mode of operation of pilot unit is described. Methodology and results of pilot study of operation of diesel engine on a water-fuel emulsion are presented. Cutting time of droplet combustion of a water-fuel emulsion improves combustion efficiency and reduces carbon deposition (varnish) on working surfaces. Partial dismantling of the engine after its operating time during 60 engine hours has shown that there is a removal of a carbon deposition in cylinder-piston group which can be observed visually. It is found that for steady operation of the diesel and ensuring decrease in level of emission of hazardous substances the water-fuel emulsion with water concentration of 18-20% is optimal.

  3. The development of a super-fine-grained nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Asada, Takashi; Naka, Tatsuhiro; Kuwabara, Ken-ichi; Yoshimoto, Masahiro

    2017-06-01

    A nuclear emulsion with micronized crystals is required for the tracking detection of submicron ionizing particles, which are one of the targets of dark-matter detection and other techniques. We found that a new production method, called the PVA—gelatin mixing method (PGMM), could effectively control crystal size from 20 nm to 50 nm. We called the two types of emulsion produced with the new method the nano imaging tracker and the ultra-nano imaging tracker. Their composition and spatial resolution were measured, and the results indicate that these emulsions detect extremely short tracks.

  4. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    PubMed

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  5. Descriptive sensory profiling of double emulsions with gelled and non-gelled inner water phase.

    PubMed

    Oppermann, A K L; Piqueras-Fiszman, B; de Graaf, C; Scholten, E; Stieger, M

    2016-07-01

    The use of double emulsions (w 1 /o/w 2 ) has been acknowledged as a promising strategy to reduce oil content in several food applications. Despite the potential of double emulsions for oil reduction, their sensory properties have not been investigated. In this study, we investigated sensory perception of double emulsions by descriptive sensory profiling using a trained panel (n=11). Two sets of emulsions with either 30 or 50% dispersed phase fraction were studied. Each set differed in composition (gelled and non-gelled inner w 1 phase, gelatin as gelling agent) and fat reduction level (30 to 50%), but was similar in oil droplet size and viscosity. Fat reduction level depended on the amount of water droplets entrapped inside the oil droplets. Emulsions were evaluated on nine attributes describing taste (T), mouth-feel (MF) and after-feel (AF) perception, including thickness (MF), creaminess (MF, AF), fattiness (MF, AF), and cohesiveness (MF). The replacement of oil by small water droplets w 1 did not decrease the intensity of fat-related attributes. When inner w 1 droplets were gelled, 47wt.% of oil could be replaced while increasing the intensity of fat-related attributes. This indicates that the sensory perception of single and double emulsions with gelled and non-gelled w 1 phase is mainly determined by the total oil droplet surface area. The composition of the inner water phase (gelled or not) also influences the sensory perception of double emulsions. We conclude that fat reduction up to 47wt.% can be achieved in double emulsions while maintaining or enhancing fat-related sensory perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF 4 :Yb 3+ /Tm 3+ UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF 4 :Yb 3+ /Tm 3+ composite beads (CS/NaYF 4 :Yb 3+ /Tm 3+ CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF 4 :Yb 3+ /Tm 3+ UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF 4 :Yb 3+ /Tm 3+ UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF 4 :Yb 3+ /Tm 3+ CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Studies on emulsion-type buffalo meat sausages incorporating skeletal and offal meat with different levels of pork fat.

    PubMed

    Krishnan, K R; Sharma, N

    1990-01-01

    Ready-to-eat emulsion-type buffalo meat sausages were developed by using a combination of 80% meat components with 20% pork back fat. The meat components were constituted of 70 parts buffalo skeletal meat and 30 parts offal meat (rumen meat and heart meat in equal proportions). The emulsion stability, cooking losses of emulsions and sausages, composition of cooked sausages, eating quality of sausages and the microscopic characteristics of the raw emulsion and cooked sausages were studied. The light microscope micrograph of the raw emulsion showed uniformly well distributed fat globules embedded in a dense protein gel. The cooked emulsion also showed uniformly sized fat globules well distributed in a fine, compact, coagulated protein gel, which retained their original spherical shape. Good quality emulsion-type sausages could be produced having a high emulsion stability (0·87 ± 0·07 ml fat release/100 g emulsion); a low emulsion cooking loss (9·60 ± 0·60%) and a low sausage cooking loss (8·83 ± 0·48%). The overall acceptability of sausages was also high. Copyright © 1990. Published by Elsevier Ltd.

  8. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion.

    PubMed

    Zhu, Li; Chen, Mingliang; Dong, Yingchao; Tang, Chuyang Y; Huang, Aisheng; Li, Lingling

    2016-03-01

    Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Preparation of epoxy-acrylate copolymer/nano-silica via Pickering emulsion polymerization and its application as printing binder

    NASA Astrophysics Data System (ADS)

    Gao, Dangge; Chang, Rui; Lyu, Bin; Ma, Jianzhong; Duan, Xiying

    2018-03-01

    This paper presents a facile and efficient synthesis method to fabricate epoxy-acrylate copolymer/nano-silica latex via Pickering emulsion polymerization stabilized by silica sol. The effects of solid contents, silica concentration and polymerization time on emulsion polymerization were studied. The core-shell epoxy-acrylate copolymer/nano-silica was obtained with average diameter 690 nm, was observed by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The formation mechanism of epoxy-acrylate copolymer/nano-silica emulsion polymerization was proposed through observing the morphology of latex particles at different polymerization time. Fourier Transformation Infrared (FT-IR) and Thermogravimetric Analysis (TGA) were used to study structure and thermostability of the composites. Morphology of the latex film was characterized by Scanning Electron Microscope (SEM). The results indicated that nano-silica particles existed in the composite emulsion and could improve the thermal stability of the film. The epoxy-acrylate copolymer/nano-silica latex was used as binder applied to cotton fabric for pigment printing. The application results demonstrated that Pickering emulsion stabilized by silica sol has good effects in the pigment printing binder without surfactant. Compared with commodity binder, the resistance to wet rubbing fastness and soaping fastness were improved half grade.

  10. In situ quantification of β-carotene partitioning in oil-in-water emulsions by confocal Raman microscopy.

    PubMed

    Wan Mohamad, W A Fahmi; Buckow, Roman; Augustin, MaryAnn; McNaughton, Don

    2017-10-15

    Confocal Raman microscopy (CRM) was able to quantify the β-carotene concentration in oil droplets and determine the partitioning characteristics of β-carotene within the emulsion system in situ. The results were validated by a conventional method involving solvent extraction of β-carotene separately from the total emulsion as well as the aqueous phase separated by centrifugation, and quantification by absorption spectrophotometry. CRM also enabled the localization of β-carotene in an emulsion. From the Raman image, the β-carotene partitioning between the aqueous and oil phases of palm olein-in-water emulsions stabilized by whey protein isolate (WPI) was observed. Increasing the concentration of β-carotene in an emulsion (from 0.1 to 0.3g/kg emulsion) with a fixed gross composition (10% palm olein:2% WPI) decreased the concentration of β-carotene in the oil droplet. CRM is a powerful tool for in situ analyses of components in heterogeneous systems such as emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anti-corrosion properties of coatings with manganese compounds pigmentation

    NASA Astrophysics Data System (ADS)

    Ziganshina, M.; Nurislamova, E.

    2018-02-01

    Work investigates properties of corrosion-resistant coatings based on organic-aqueous emulsion and pigmented compounds of manganese, obtained by ceramic method. It is found that the inclusion of synthesized pigments in the composition of the coating increases their ability to inhibit underfilm corrosion of steel.

  12. Agglutination of intravenously administered phosphatidylcholine-containing lipid emulsions with serum C-reactive protein.

    PubMed

    Tugirimana, Pierrot; Speeckaert, Marijn M; Fiers, Tom; De Buyzere, Marc L; Kint, Jos; Benoit, Dominique; Delanghe, Joris R

    2013-04-01

    C-reactive protein (CRP) is able to bind phospholipids in the presence of calcium. We wanted to investigate the reaction of CRP with various commercial fat emulsions and to explore the impact of CRP agglutination on serum CRP levels. Serum specimens were mixed with Intralipid 20% (soybean oil-based fat emulsion), Structolipid (structured oil-based fat emulsion), Omegaven (fish oil-based fat emulsion), or SMOFlipid (mixed soybean oil-, olive oil-, and fish oil-based emulsion) in Tris-calcium buffer (pH 7.5). After 30 minutes of incubation at 37°C, CRP-phospholipid complexes were turbidimetrically quantified and flow cytometric analysis was performed. Similarly, CRP complexes were monitored in vivo, following administration of fat emulsion. CRP was able to agglutinate phospholipid-containing lipid droplets present in the soybean oil-based fat emulsion and the structured oil-based fat emulsion. To a lesser extent, agglutination was observed for fish oil-containing fat emulsions, whereas no agglutination was noticed for the mixed soybean oil-, olive oil-, and fish oil-based emulsion. Results for propofol-containing emulsions were comparable. Agglutination correlated with phospholipid content of the emulsions. When in vivo agglutination occurred, plasma CRP values dropped due to consumption of CRP by phospholipid-induced agglutination. In this in vitro experiment, we demonstrated agglutination of CRP with phospholipids in various fat emulsions. Research studies are required in patients to determine which effects occur with various intravenous fat emulsions.

  13. Fabrication of Hybrid Capsules via CaCO3 Crystallization on Degradable Coacervate Droplets.

    PubMed

    Komatsu, Syuuhei; Ikedo, Yui; Asoh, Taka-Aki; Ishihara, Ryo; Kikuchi, Akihiko

    2018-04-03

    Organic-inorganic CaCO 3 capsules were prepared by crystallization of CaCO 3 on Pickering emulsion prepared using coacervate droplets made from thermoresponsive and degradable poly(2-methylene-1,3-dioxepane- co-2-hydroxyethyl acrylate) (poly(MDO- co-HEA)) in sole aqueous medium. The diameters of CaCO 3 -based Pickering emulsion could be controlled by varying several parameters: diameter of CaCO 3 powders, initial polymer concentration, and copolymer composition. The CaCO 3 Pickering emulsion was able to load low-molecular-weight hydrophobic substances at temperatures above the lower critical solution temperature (LCST) due to formation of polymer-concentrated phases, i.e., coacervate droplets. The diameter of CaCO 3 capsules prepared by crystallization also depended on the diameter of the CaCO 3 Pickering emulsion. The CaCO 3 shell was composed of calcite-type crystals, the most stable polymorph among known CaCO 3 crystals. The facially prepared CaCO 3 capsules are valuable for use in functional biomaterials, such as drug delivery carriers and cell culture scaffolds for noninvasive bone-regenerative medicine.

  14. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Olive Oil Based Emulsions in Frozen Puff Pastry Production

    NASA Astrophysics Data System (ADS)

    Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.

    2008-07-01

    Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.

  16. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering.

    PubMed

    Owen, Robert; Sherborne, Colin; Paterson, Thomas; Green, Nicola H; Reilly, Gwendolen C; Claeyssens, Frederik

    2016-02-01

    Polymerised High Internal Phase Emulsions (PolyHIPEs) are manufactured via emulsion templating and exhibit a highly interconnected microporosity. These materials are commonly used as thin membranes for 3D cell culture. This study uses emulsion templating in combination with microstereolithography to fabricate PolyHIPE scaffolds with a tightly controlled and reproducible architecture. This combination of methods produces hierarchical structures, where the microstructural properties can be independently controlled from the scaffold macrostructure. PolyHIPEs were fabricated with varying ratios of two acrylate monomers (2-ethylhexyl acrylate (EHA) and isobornyl acrylate (IBOA)) and varying nominal porosity to tune mechanical properties. Young's modulus, ultimate tensile stress (UTS) and elongation at failure were determined for twenty EHA/IBOA compositions. Moduli ranged from 63.01±9.13 to 0.36±0.04MPa, UTS from 2.03±0.33 to 0.11±0.01MPa and failure strain from 21.86±2.87% to 2.60±0.61%. Selected compositions were fabricated into macro-porous woodpile structures, plasma treated with air or acrylic acid and seeded with human embryonic stem-cell derived mesenchymal progenitor cells (hES-MPs). Confocal and two-photon microscopy confirmed cell proliferation and penetration into the micro- and macro-porous architecture. The scaffolds supported osteogenic differentiation of mesenchymal cells and interestingly, the stiffest IBOA-based scaffolds that were plasma treated with acrylic acid promoted osteogenesis more strongly than the other scaffolds. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria.

    PubMed

    Guo, Mingming; Jin, Tony Z; Yadav, Madhav P; Yang, Ruijin

    2015-09-02

    Edible antimicrobial composite films from micro-emulsions containing all natural compounds were developed and their antimicrobial properties and microstructures were investigated. Chitosan, allyl isothiocyanate (AIT), barley straw arabinoxylan (BSAX), and organic acids (acetic, lactic and levulinic acids) were used as film-forming agent, antimicrobial agent, emulsifier, and solvent, respectively. Micro-emulsions were obtained using high pressure homogenization (HPH) processing at 138MPa for 3cycles. The composite films made from the micro-emulsions significantly (p<0.05) inactivated Listeria innocua in tryptic soy broth (TSB) and on the surface of ready-to-eat (RTE) meat samples, achieving microbial reductions of over 4logCFU/ml in TSB after 2days at 22°C and on meat samples after 35days at 10°C. AIT was a major contributor to the antimicrobial property of the films and HPH processing further enhanced its antimicrobial efficacy, while the increase of chitosan from 1.5% to 3%, or addition of acetic acid to the formulations didn't result in additional antimicrobial effects. This study demonstrated an effective approach to developing new edible antimicrobial films and coatings used for food applications. Published by Elsevier B.V.

  18. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    PubMed Central

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  19. Application of micro- and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Sotnikova, Yu S.; Demina, T. S.; Istomin, A. V.; Goncharuk, G. P.; Grandfils, Ch; Akopova, T. A.; Zelenetskii, A. N.; Babayevsky, P. G.

    2018-04-01

    Micro- and nanocrystalline forms of cellulose were extracted from flax stalks and evaluated in terms of their applicability for various materials science tasks. It was revealed that both form of cellulose had anisometric morphology with length of 27.1 μm and 159 nm; diameter of 8.7 μm and 85 nm, respectively. They were used as reinforcing fillers for fabrication of composite films based on hydroxyethylcellulose. Film-forming and mechanical properties of the composite materials were significantly varied in dependence on filler content (0–10 wt.%) and size. As a second option of micro- and nanocrystalline cellulose application, a study of their effectiveness as stabilizing agents for oil/water Pickering emulsions was carried out. In contrast to micron-sized cellulose the nanocrystalline form appeared to be successful in the process of CH2Cl2/water interface stabilization and fabrication of polylactide microparticles via oil/water Pickering emulsion solvent evaporation technique.

  20. Viscoelastic Properties of Alkoxy Silane-Epoxy Interpenetrating Networks

    DTIC Science & Technology

    2003-11-01

    Owens Corning Fiberglass for supply of the epoxy film former emulsion used in the model silane formulation. The authors also wish to acknowledge the...inclusion filled composite µm- powderproperties 4 triblock copolymer surfactant. The Owens Corning Company generously provided the film former emulsion

  1. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.

    PubMed

    Zhu, Zhenbao; Zhao, Cui; Yi, Jianhua; Liu, Ning; Cao, Yuangang; Decker, Eric A; McClements, David Julian

    2018-05-02

    The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.4% w/v Tween 20 (pH 3 and pH 7). The protein surface load, magnitude of the ξ-potential, and mean particle diameter of the emulsions decreased as the Tween 20 concentration was increased, indicating the whey proteins were displaced by this nonionic surfactant. The whey proteins were displaced from the lipid droplet surfaces more readily at pH 3 than at pH 7, which may have been due to differences in the conformation or interactions of the proteins at the droplet surfaces at different pH values. Emulsions stabilized by whey proteins alone had relatively low lipid oxidation rates when incubated in the dark at 45 °C for up to 8 days, as determined by measuring lipid hydroperoxides and 2-thiobarbituric acid-reactive substances (TBARS). Conversely, the whey proteins themselves were rapidly oxidized, as shown by carbonyl formation, intrinsic fluorescence, sulfhydryl group loss, and electrophoresis measurements. Displacement of whey proteins from the interface by Tween 20 reduced protein oxidation but promoted lipid oxidation. These results indicated that the adsorbed proteins were more prone to oxidation than the nonadsorbed proteins, and therefore, they could act as better antioxidants. Protein oxidation was faster, while lipid oxidation was slower at pH 3 than at pH 7, which was attributed to a higher antioxidant activity of whey proteins under acidic conditions. These results highlight the importance of interfacial composition and solution pH on the oxidative stability of emulsions containing mixed emulsifiers.

  2. Microfluidic approach for encapsulation via double emulsions.

    PubMed

    Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin

    2014-10-01

    Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    PubMed Central

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-01-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials. PMID:25719669

  4. Dynamically reconfigurable complex emulsions via tunable interfacial tensions.

    PubMed

    Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M

    2015-02-26

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.

  5. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    NASA Astrophysics Data System (ADS)

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-02-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.

  6. Engineering of acidic O/W emulsions with pectin.

    PubMed

    Alba, K; Sagis, L M C; Kontogiorgos, V

    2016-09-01

    Pectins with distinct molecular design were isolated by aqueous extraction at pH 2.0 or 6.0 and were examined in terms of their formation and stabilisation capacity of model n-alkane-in-water emulsions at acidic pH (pH 2.0). The properties and stability of the resulting emulsions were examined by means of droplet size distribution analysis, Lifshitz-Slyozov-Wagner modelling, bulk rheology, interfacial composition analysis, large-amplitude oscillatory surface dilatational rheology, electrokinetic analysis and fluorescence microscopy. Both pectin preparations were able to emulsify alkanes in water but exhibited distinct ageing characteristics. Emulsions prepared using pectin isolated at pH 6.0 were remarkably stable with respect to droplet growth after thirty days of ageing, while those prepared with pectin isolated at pH 2.0 destabilised rapidly. Examination of chemical composition of interfacial layers indicated multi-layered adsorption of pectins at the oil-water interface. The higher long-term stability of emulsions prepared with pectin isolated at high pH is attributed to mechanically stronger interfaces, the highly branched nature and the low hydrodynamic volume of the chains that result in effective steric stabilisation whereas acetyl and methyl contents do not contribute to the long-term stability. The present work shows that it is possible by tailoring the fine structure of pectin to engineer emulsions that operate in acidic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Intriguing Morphology Evolution from Noncrosslinked Poly(tert-butyl acrylate) Seeds with Polar Functional Groups in Soap-Free Emulsion Polymerization of Styrene.

    PubMed

    Wang, Lu; Pan, Mingwang; Song, Shaofeng; Zhu, Lei; Yuan, Jinfeng; Liu, Gang

    2016-08-09

    Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.

  8. Effect of citronella essential oil fractions as oil phase on emulsion stability

    NASA Astrophysics Data System (ADS)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  9. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination

    NASA Astrophysics Data System (ADS)

    Xia, Yufei; Wu, Jie; Wei, Wei; Du, Yiqun; Wan, Tao; Ma, Xiaowei; An, Wenqi; Guo, Aiying; Miao, Chunyu; Yue, Hua; Li, Shuoguo; Cao, Xuetao; Su, Zhiguo; Ma, Guanghui

    2018-02-01

    A major challenge in vaccine formulations is the stimulation of both the humoral and cellular immune response for well-defined antigens with high efficacy and safety. Adjuvant research has focused on developing particulate carriers to model the sizes, shapes and compositions of microbes or diseased cells, but not antigen fluidity and pliability. Here, we develop Pickering emulsions--that is, particle-stabilized emulsions that retain the force-dependent deformability and lateral mobility of presented antigens while displaying high biosafety and antigen-loading capabilities. Compared with solid particles and conventional surfactant-stabilized emulsions, the optimized Pickering emulsions enhance the recruitment, antigen uptake and activation of antigen-presenting cells, potently stimulating both humoral and cellular adaptive responses, and thus increasing the survival of mice upon lethal challenge. The pliability and lateral mobility of antigen-loaded Pickering emulsions may provide a facile, effective, safe and broadly applicable strategy to enhance adaptive immunity against infections and diseases.

  10. FAT EMULSION COMPOSITION ALTERS INTAKE AND THE EFFECTS OF BACLOFEN

    PubMed Central

    Wang, Y; Wilt, DC; Wojnicki, FHE; Babbs, RK; Coupland, JN; Corwin, RLC

    2011-01-01

    Thickened oil-in-water emulsions are useful model foods in rat studies due to their high acceptance and similarity to foods consumed by humans. Previous work from this laboratory used oil-in-water emulsions thickened with a biopolymer blend containing starch. Intake and effects of baclofen, a GABA-B agonist that decreases fat intake and drug self-administration, were reported, but the contribution of starch was not assessed. In the present study, intake and effects of baclofen were assessed in rats using emulsions prepared with two fat types (32% vegetable shortening, 32% corn oil) and thickened with three biopolymer blends. One biopolymer blend contained starch and the other two did not. Daily 1-h intake of the vegetable shortening emulsion containing starch was significantly greater than the other emulsions. When starch was added to the emulsions originally containing no starch, intake significantly increased. Baclofen generally reduced intake of all emulsions regardless of starch content and stimulated intake of chow. However, effects were more often significant for vegetable shortening emulsions. This report: 1) demonstrates that products used to prepare thickened oil-in-water emulsions have significant effects on rat ingestive behavior, and 2) confirms the ability of baclofen to reduce consumption of fatty foods, while simultaneously stimulating intake of chow. PMID:21855586

  11. Effect of olive oil-based emulsion on human lymphocyte and neutrophil death.

    PubMed

    Cury-Boaventura, Maria Fernanda; Gorjão, Renata; de Lima, Thaís Martins; Fiamoncini, Jarlei; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Soriano, Francisco Garcia; Curi, Rui

    2008-01-01

    The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. The most frequently used IV lipid emulsions (LE) are composed with long-chain triacylglycerols rich in omega-6 polyunsaturated fatty acids (PUFA) from soybean oil, but these LE promote lymphocyte and neutrophil death. A new emulsion containing 20% soybean oil and 80% olive oil rich in omega-9 monounsaturated fatty acids (MUFA) has been hypothesized not to cause impairment of immune function. In this study, the toxicity of an olive oil-based emulsion (OOE) on lymphocytes and neutrophils from healthy volunteers was investigated. Twenty volunteers were recruited and blood was collected before a 6-hour infusion of an OOE, immediately after infusion, and again 18 hours postinfusion. Lymphocytes and neutrophils were isolated by gradient density. The cells were studied immediately after isolation and after 24 hours or 48 hours in culture. The following determinations were carried out: triacylglycerol levels and fatty acid composition and levels in plasma, lymphocyte proliferation, production of reactive oxygen species, and parameters of lymphocyte and neutrophil death (viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, and neutral lipid accumulation). OOE decreased lymphocyte proliferation, provoked lymphocyte necrosis, and had no effect on the proportion of viable neutrophils. The mechanism of cell death induced by OOE involved neutral lipid accumulation but had no effect on mitochondrial membrane depolarization. The OOE given as a single dose of 500 mL induced low toxicity to lymphocytes from healthy volunteers, probably by necrosis.

  12. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    NASA Astrophysics Data System (ADS)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it was shown that particles with thicker calcium phosphate coatings released smaller amounts of oxygen in a given timeframe. This study proved the hypothesis by showing a fundamental understanding of emulsion science, coating the flexible emulsion surface with a biocompatible material, and a strong particle performance with regard to stability and as an oxygen carrier.

  13. Flow curve analysis of a Pickering emulsion-polymerized PEDOT:PSS/PS-based electrorheological fluid

    NASA Astrophysics Data System (ADS)

    Kim, So Hee; Choi, Hyoung Jin; Leong, Yee-Kwong

    2017-11-01

    The steady shear electrorheological (ER) response of poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate)/polystyrene (PEDOT:PSS/PS) composite particles, which were initially fabricated from Pickering emulsion polymerization, was tested with a 10 vol% ER fluid dispersed in a silicone oil. The model independent shear rate and yield stress obtained from the raw torque-rotational speed data using a Couette type rotational rheometer under an applied electric field strength were then analyzed by Tikhonov regularization, which is the most suitable technique for solving an ill-posed inverse problem. The shear stress-shear rate data also fitted well with the data extracted from the Bingham fluid model.

  14. Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix

    PubMed Central

    Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda

    2014-01-01

    Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593

  15. Innovative applications of food-related emulsions.

    PubMed

    Kiokias, S; Varzakas, T

    2017-10-13

    Research on oxidative stability of multiple emulsions is very scarce. Given that this is a relevant topic that must be ascertained before the successful application of multiple emulsions in foods (especially when a combination of highly unsaturated oils is used as a lipid phase), this review mainly focuses on various aspects of the multiple emulsions. Fat replacement in meat products using emulsions is critically discussed along with innovative applications of natural antioxidants in food-based emulsions and multiple emulsions based on bioactive compounds/encapsulation as well as confectionery products.

  16. Preparation of an Adhesive in Emulsion for Maxillofacial Prosthetic

    PubMed Central

    Sánchez-García, Judith A.; Ortega, Alejandra; Barceló-Santana, Federico H.; Palacios-Alquisira, Joaquín

    2010-01-01

    Maxillofacial prostheses is a dental medicine specialty aimed at restoring anatomical facial defects caused by cancer, trauma or congenital malformations through an artificial device, which is commonly attached to the skin with the help of an adhesive. The purpose of our research was to develop a pressure-sensitive adhesive (PSA) based on acrylic monomers, characterizing and determining its drying kinetics, that is to say the time it takes to lose 50 to 90% of its moisture. The adhesive synthesis was realized by means of emulsion polymerization; the composition of formulations was: (AA-MMA-EA) and (AA-MMA-2EHA) with different molar ratios. The formulation based on (AA-MMA-2EHA) with 50 w% of solids, presented good adhesive properties such as tack, bond strength, and short drying time. We propose this formulation as a PSA, because it offers an alternative for systemically compromised patients, by less irritation compared to organic solvent-based adhesives. PMID:21152308

  17. W/O/W multiple emulsions with diclofenac sodium.

    PubMed

    Lindenstruth, Kai; Müller, Bernd W

    2004-11-01

    The disperse oil droplets of W/O/W multiple emulsions contain small water droplets, in which drugs could be incorporated, but the structure of these emulsions is also the reason for possible instability. Due to the middle oil phase which acts as a 'semipermeable' membrane the passage of water across the oil phase can take place. However, the emulsions have been produced in a two-step-production process so not only the leakage of encapsulated drug molecules out of the inner water phase during storage but also a production-induced reduction of the encapsulation rate should be considered. The aim of this study was to ascertain how far the production-induced reduction of the encapsulation rate relates to the size of inner water droplets and to evaluate the relevance of multiple emulsions as drug carrier for diclofenac sodium. Therefore multiple emulsions were produced according to a central composite design. During the second production step it was observed that the parameters pressure and temperature have an influence on the size of the oil droplets in the W/O/W multiple emulsions. Further experiments with different W/O emulsions resulted in W/O/W multiple emulsions with different encapsulation rates of diclofenac sodium, due to the different sizes of the inner water droplets, which were obtained in the first production step.

  18. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems.

    PubMed

    Cofrades, S; Antoniou, I; Solas, M T; Herrero, A M; Jiménez-Colmenero, F

    2013-11-01

    The aim of this paper was to prepare and characterise multiple emulsions and assess their utility as pork backfat replacers in meat gel/emulsion model systems. In order to improve the fat content (in quantitative and qualitative terms) pork backfat was replaced by a water-in-oil-in-water emulsion (W1/O/W2) prepared with olive oil (as lipid phase), polyglycerol ester of polyricinoleic acid (PGPR) as a lipophilic emulsifier, and sodium caseinate (SC) and whey protein concentrate (WP) as hydrophilic emulsifiers. The emulsion properties (particle size and distribution, stability, microstructure) and meat model system characteristics (composition, texture, fat and water binding properties, and colour) of the W1/O/W2, as affected by reformulation, were evaluated. Multiple emulsions showed a well-defined monomodal distribution. Freshly prepared multiple emulsions showed good thermal stability (better using SC) with no creaming. The meat systems had good water and fat binding properties irrespective of formulation. The effect on texture by replacement of pork backfat by W1/O/W2 emulsions generally depends on the type of double emulsion (associated with the hydrophilic emulsifier used in its formulation) and the fat level in the meat system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Correlation of Emulsion Structure with Cellular Uptake Behavior of Encapsulated Bioactive Nutrients: Influence of Droplet Size and Interfacial Structure.

    PubMed

    Lu, Wei; Kelly, Alan L; Maguire, Pierce; Zhang, Hongzhou; Stanton, Catherine; Miao, Song

    2016-11-16

    In this study, an in vitro Caco-2 cell culture assay was employed to evaluate the correlation between emulsion structure and cellular uptake of encapsulated β-carotene. After 4 h of incubation, an emulsion stabilized with whey protein isolate showed the highest intracellular accumulation of β-carotene (1.06 μg), followed by that stabilized with sodium caseinate (0.60 μg) and Tween 80 (0.20 μg), which are 13-, 7.5-, and 2.5-fold higher than that of free β-carotene (0.08 μg), respectively. Emulsions with small droplet size (239 ± 5 nm) showed a higher cellular uptake of β-carotene (1.56 μg) than emulsiond with large droplet size (489 ± 9 nm) (0.93 μg) (p < 0.01). The results suggested that delivery in an emulsion significantly improved the cellular uptake of β-carotene and thus potentially its bioavailability; uptake was closely correlated with the interfacial composition and droplet size of emulsions. The findings support the potential for achieving optimal controlled and targeted delivery of bioactive nutrients by structuring emulsions.

  20. Development and stability evaluation of water-in-edible oils emulsions formulated with the incorporation of hydrophilic Hibiscus sabdariffa extract.

    PubMed

    Pimentel-Moral, Sandra; Rodríguez-Pérez, Celia; Segura-Carretero, Antonio; Martínez-Férez, Antonio

    2018-09-15

    New functional oils (extra virgin olive oil, EVOO and sunflower oil, SO) containing antioxidants from Hibiscus sabdariffa extract were developed by W/O emulsion. Their physical and chemical stability was measured over time. The lowest coalescence rate was obtained with 8 and 12 wt% surfactant amount for EVOO and SO emulsions, respectively. Before the evaluation of the oxidative stability, an optimization of phenolic compounds extraction from emulsions by multi-response surface methodology was performed. EVOO emulsions were chemically more stable over time than SO emulsions in terms of total phenolic content (TPC), antioxidant activity and chemical composition measured by HPLC-ESI.TOF-MS. TPC significantly increased (from 2.02 ± 0.07 to 2.71 ± 0.06 mg Eq GAE/g extract) and the antioxidant activity measured by TEAC remained constant for 1 month of storage. Thus, W/O emulsion technology has proven to be a potential method to vehiculize and stabilize bioactive compounds from H. sabdariffa into edible oils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Preparation of Fe 3O 4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun

    2012-04-01

    Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.

  2. Emulsifying properties of legume proteins compared to β-lactoglobulin and Tween 20 and the volatile release from oil-in-water emulsions.

    PubMed

    Benjamin, O; Silcock, P; Beauchamp, J; Buettner, A; Everett, D W

    2014-10-01

    The emulsifying properties of plant legume protein isolates (soy, pea, and lupin) were compared to a milk whey protein, β-lactoglobulin (β-lg), and a nonionic surfactant (Tween 20). The protein fractional composition was characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The following emulsion properties were measured: particle diameter, shear surface ζ-potential, interfacial tension (IT), and creaming velocity. The effect of protein preheat treatment (90 °C for 10 min) on the emulsifying behavior and the release of selected volatile organic compounds (VOCs) from emulsions under oral conditions was also investigated in real time using proton transfer reaction-mass spectrometry. The legume proteins showed comparable results to β-lg and Tween 20, forming stable, negatively charged emulsions with particle diameter d3,2 < 0.4 μm, and maintained stability over 50 d. The relatively lower stability of lupin emulsions was significantly correlated with the low protein surface hydrophobicity and IT of the emulsion. After heating the proteins, the droplet size of pea and lupin emulsions decreased. The VOC release profile was similar between the protein-stabilized emulsions, and greater retention was observed for Tween 20-stabilized emulsions. This study demonstrates the potential application of legume proteins as alternative emulsifiers to milk proteins in emulsion products. © 2014 Institute of Food Technologists®

  3. Jussara berry (Euterpe edulis M.) oil-in-water emulsions are highly stable: the role of natural antioxidants in the fruit oil.

    PubMed

    Carvalho, Aline G A; Silva, Kelly A; Silva, Laís O; Costa, André M M; Akil, Emília; Coelho, Maria A Z; Torres, Alexandre G

    2018-05-23

    Antioxidants help prevent lipid oxidation, and therefore are critical to maintain sensory quality and chemical characteristics of edible oils. Jussara berry (Euterpe edulis M.) oil is a source of minor compounds with potential antioxidant activity. The aim of this work was to investigate the role of such compounds on the effectiveness to prevent or delay oxidation of oil present in oil-in-water emulsions, and how the emulsions physical stability would be affected. Jussara berry oil extracted by ethanol extraction, its stripped variations (partially stripped, highly stripped and highly stripped with added BHT), and expeller pressed oil were used to prepare oil-in-water emulsions. Jussara berry oils were analyzed before emulsions preparation to ensure its initial quality and composition, and oil-in-water emulsions were analyzed regarding their oxidative and physical stability. Ethanol extracted oil emulsion presented higher oxidative stability when compared to highly stripped oil emulsion with added synthetic antioxidant BHT (oxidative stability index 45% lower, after 60 days, and reached undetectable levels after 90 days). All emulsions maintained physically stable for up to 120 days of storage. Our results indicate that natural antioxidants in jussara berry oil protect emulsions from oxidation while keeping physical stability unchanged. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Influence of acetazolamide loading on the (in vitro) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions.

    PubMed

    Tamilvanan, Shunmugaperumal; Kumar, Balakrishnan Ajith

    2011-09-01

    Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation. The present study aims to determine the influence of ACZM loading on the performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Regardless of charges, all of these emulsions exhibited a nanometer range mean particle diameter (240-443 nm) following autoclave sterilization. While the anionic and cationic emulsions did show high negative (-36.9 mV) and positive zeta potential (+41.4 mV) values, the neutral-charged emulsion did not. Presence of cryoprotectants (5% w/w sucrose + 5% w/w sorbitol) improved the stability of cationic emulsion to droplet aggregation during freeze-thaw cycling. The in vitro release kinetic behavior of drug exchange with physiological anions present in the simulated tear solution appears to be complex and difficult to characterize using mathematical fitting model equations. Augmentation in drug permeation through goat cornea, in vitro, was noticed for cationic emulsion. ACZM-loaded cationic nanosized emulsion could be suitable for topical application into eye to elicit better therapeutic effect in comparison with its anionic and neutral-charged emulsions.

  5. Analytical mass spectrometry of poly(ethylene glycol) additives in artists' acrylic emulsion media, artists' paints, and microsamples from acrylic paintings using MALDI-MS and nanospray-ESI-MS

    NASA Astrophysics Data System (ADS)

    Hoogland, F. G.; Boon, J. J.

    2009-07-01

    Poly(ethylene glycol) (PEG) compounds in artists' acrylic emulsion paint products from different paint manufacturers, ranging from base emulsions (Rohm and Haas, Röhm and Scott Bader), to modified emulsions and complete paints (Rowney, Winsor and Newton, Golden, Liquitex, Lascaux), were characterised with a newly developed mass spectrometric method which combines data from Matrix assisted laser desorption/ionisation mass spectrometry (MALDI-MS) and nano-electrospray ionisation mass spectrometry (nano-ESI-MS(MS)). MALDI-MS was used for the determination of the molar mass distribution (MMD) and calculation of the molar mass averages (Mw and Mn), the polydispersity index (D) and the relative amount of a specific distribution if multiple PEGs were present. Electrospray ionisation mass spectrometry was used for the end-group analysis. Three different classes of polymers was found being PEG, polypropylene glycol (PPG) and a block copolymer of polyethylene glycol/polypropylene glycol (PEG/PPG) with molar mass averages ranging from 400 to 4200 Da. PEG compounds with a nonylphenyl or an octylphenyl hydrophobic end-group are most common. The hydrophilic end-groups observed are hydroxide and/or sulphate. Water extracts of microsamples from a palette by David Hockney dating from 1970 and samples paintings by Patrick Caulfield (1936-2005) and John Hoyland (born in 1934) were investigated with the same technique. Although some artist paint manufacturers use the same specific base emulsions to make their paints, the composition of the PEG compounds present in the water extracts of the palette and paintings samples made it possible, in some cases, to suggest a specific brand of paint used by the artist.

  6. Effects of lipid emulsion particle size on satiety and energy intake: a randomised cross-over trial.

    PubMed

    Poppitt, Sally D; Budgett, Stephanie C; MacGibbon, Alastair K; Quek, Siew-Young; Kindleysides, Sophie; Wiessing, Katy R

    2018-03-01

    Emulsified lipids, with central lipid core surrounded by polar lipid 'protective coat', have been proposed to stimulate the ileal brake, alter appetite, food intake and aid weight control. In addition to lipid composition, emulsion particle size may contribute to efficacy with small droplets providing a larger surface area for gastrointestinal (GI) lipase action and larger droplets prolonging and delaying digestion in the GI tract. Tube feeding studies delivering emulsions directly into the small intestine show clear effects of smaller particle size on appetite and food intake, but evidence from oral feeding studies is sparse. The objective of this study was to determine the effects of lipid emulsion particle size on appetite response and food intake. In a three-arm randomised cross-over, high-phospholipid (PL) dairy lipid emulsions or matched control were consumed at breakfast within a yoghurt smoothie: (i) large-particle size emulsion, LPE (diameter 0.759 µm, 10 g lipid emulsion, 190 g yoghurt), (ii) small-particle size emulsion, SPE (diameter 0.290 µm, 10 g lipid emulsion, 190 g yoghurt), (iii) control non-emulsion, NE (10 g non-emulsion lipid, 190 g yoghurt). Twenty male participants completed the study, where postprandial appetite response was rated using visual analogue scales (VAS) and ad libitum energy intake at a lunch meal measured 3 h later. There was a trend for LPE to suppress hunger (P = 0.08) and enhance fullness (P = 0.24) relative to both SPE and NE but not statistically significant, and no significant effect of either emulsion on food intake at the lunch meal (P > 0.05). Altering particle size of a high-PL emulsion did not enhance satiety or alter eating behaviour in a group of lean men.

  7. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.

    PubMed

    Li, Shuai; Ogunkoya, Dolanimi; Fang, Tiegang; Willoughby, Julie; Rojas, Orlando J

    2016-11-15

    Kraft and organosolv lignins were subjected to carboxymethylation to produce fractions that were soluble in water, displayed a minimum surface tension as low as 34mN/m (25°C) and a critical aggregation concentration of ∼1.5wt%. The carboxymethylated lignins (CML), which were characterized in terms of their degree of substitution ((31)P NMR), elemental composition, and molecular weight (GPC), were found suitable in the formulation of emulsions with bitumens of ultra-high viscosity, such as those from the Canadian oil sands. Remarkably, the interfacial features of the CML enabled fuel emulsions that were synthesized in a very broad range of internal phase content (30-70%). Cryo-replica transmission electron microscopy, which was used here the first time to assess the morphology of the lignin-based emulsions, revealed the droplets of the emulsion stabilized with the modified lignin. The observed drop size (diameters<2μm) was confirmed by light scattering, which revealed a normal size distribution. Such characteristics led to stable emulsified systems that are amenable for a wide range of applications. Emulsification with CML afforded bitumen emulsions with very high colloidal stability (no change was noted for over one month) and with a strong shear thinning behavior. Both features indicate excellent prospects for storage, transport and spraying, which are relevant in operations for power generation, which also take advantage of the high heating value of the emulsion components. The ability of CML to stabilize emulsions and to contribute in their combustion was tested with light fuels (kerosene, diesel, and jet fuel) after formulation of high internal phase systems (70% oil) that enabled operation of a fuel engine. A significant finding is that under certain conditions and compared to the respective pure fuel, combustion of the O/W emulsions stabilized by CML presented lower NOx and CO emissions and maintained a relatively high combustion efficiency. The results highlight the possibilities in high volume application for lignin biomacromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Highly porous drug-eluting structures

    PubMed Central

    Elsner, Jonathan J.; Kraitzer, Amir; Grinberg, Orly; Zilberman, Meital

    2012-01-01

    For many biomedical applications, there is need for porous implant materials. The current article focuses on a method for preparation of drug-eluting porous structures for various biomedical applications, based on freeze drying of inverted emulsions. This fabrication process enables the incorporation of any drug, to obtain an “active implant” that releases drugs to the surrounding tissue in a controlled desired manner. Examples for porous implants based on this technique are antibiotic-eluting mesh/matrix structures used for wound healing applications, antiproliferative drug-eluting composite fibers for stent applications and local cancer treatment, and protein-eluting films for tissue regeneration applications. In the current review we focus on these systems. We show that the release profiles of both types of drugs, water-soluble and water-insoluble, are affected by the emulsion's formulation parameters. The former's release profile is affected mainly through the emulsion stability and the resulting porous microstructure, whereas the latter's release mechanism occurs via water uptake and degradation of the host polymer. Hence, appropriate selection of the formulation parameters enables to obtain desired controllable release profile of any bioactive agent, water-soluble or water-insoluble, and also fit its physical properties to the application. PMID:23507890

  9. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    PubMed Central

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  10. Effect of feeding CLA on plasma and granules fatty acid composition of eggs and prepared mayonnaise quality.

    PubMed

    Shinn, Sara Elizabeth; Proctor, Andrew; Gilley, Alex D; Cho, Sungeun; Martin, Elizabeth; Anthony, Nicholas B

    2016-04-15

    Eggs rich in trans, trans conjugated linoleic acid (CLA) are significantly more viscous, have more phospholipids containing linoleic acid (LA), and more saturated triacylglycerol species than control eggs. However, the fatty acid (FA) composition of yolk plasma and granule fractions are unreported. Furthermore, there are no reports of mayonnaise rheological properties or emulsion stability by using CLA-rich eggs. Therefore, the objectives were (1) compare the FA composition of CLA-rich yolk granules and plasma, relative to standard control and LA-rich control yolks, (2) compare the rheological properties of mayonnaise prepared with CLA-rich eggs to control eggs and (3) compare the emulsion stability of CLA-yolk mayonnaise. CLA-rich eggs and soy control eggs were produced by adding 10% CLA-rich soy oil or 10% of control unmodified soy oil to the hen's diet. The eggs were used in subsequent mayonnaise preparation. CLA-yolk mayonnaise was more viscous, had greater storage modulus, resisted thinning, and was a more stable emulsion, relative to mayonnaise prepared with control yolks or soy control yolks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability.

    PubMed

    Boisramé-Helms, Julie; Delabranche, Xavier; Klymchenko, Andrey; Drai, Jocelyne; Blond, Emilie; Zobairi, Fatiha; Mely, Yves; Hasselmann, Michel; Toti, Florence; Meziani, Ferhat

    2014-11-01

    The aim of this study was to assess how lipid emulsions for parenteral nutrition affect lipopolysaccharide (LPS)-induced acute monocyte inflammation in vitro. An 18 h long LPS induced human monocyte leukemia cell stimulation was performed and the cell-growth medium was supplemented with three different industrial lipid emulsions: Intralipid(®), containing long-chain triglycerides (LCT--soybean oil); Medialipid(®), containing LCT (soybean oil) and medium-chain triglycerides (MCT--coconut oil); and SMOFlipid(®), containing LCT, MCT, omega-9 and -3 (soybean, coconut, olive and fish oils). Cell viability and apoptosis were assessed by Trypan blue exclusion and flow cytometry respectively. Monocyte composition and membrane remodeling were studied using gas chromatography and NR12S staining. Microparticles released in supernatant were measured by prothrombinase assay. After LPS challenge, both cellular necrosis and apoptosis were increased (threefold and twofold respectively) and microparticle release was enhanced (sevenfold) after supplementation with Medialipid(®) compared to Intralipid(®), SMOFlipid(®) and monocytes in the standard medium. The monocytes differentially incorporated fatty acids after lipid emulsion challenge. Finally, lipid-treated cells displayed microparticles characterized by disrupted membrane lipid order, reflecting lipid remodeling of the parental cell plasma membrane. Our data suggest that lipid emulsions differentially alter cell viability, monocyte composition and thereby microparticle release. While MCT have deleterious effects, we have shown that parenteral nutrition emulsion containing LCT or LCT and MCT associated to n-3 and n-9 fatty acids have no effect on endotoxin-induced cell death and inflammation.

  12. A study of the stabilities, microstructures and fuel characteristics of tri-fuel (diesel-biodiesel-ethanol) using various fuel preparation methods

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    In this study, the work was carried out to investigate the effects of ethanol proportions on the stabilities and physicochemical characteristics of tri-fuel (Diesel-Biodiesel-Ethanol). For the first time, tri-fuel emulsions and blended were compared side by side. The experiment was done with composition having 5%, 10%, 15%, 20% and 25 % of ethanol with fixed 10% of biodiesel from palm oil origin on a volume basis into diesel. The results indicated that the phase stabilities of the emulsified fuels were higher compared to the blended fuels. In addition, tri-fuel composition with higher proportion of ethanol were found unstable with high tendency to form layer separation. It was found that tri-fuel emulsion with 5% ethanol content (D85B10E5) was of the best in stability with little separation. Furthermore, tri-fuel with lowest ethanol proportion indicated convincing physicochemical characteristics compared to others. Physicochemical characteristics of tri-fuel blending yield almost similar results to tri-fuel emulsion but degrading as more proportion ethanol content added. Emulsion category had cloudy look but on temporarily basis. Under the microscope, tri-fuel emulsion and blending droplet were similar for its active moving about micro-bubble but distinct in term of detection of collision, average disperse micro-bubble size, the spread and organization of the microstructure.

  13. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    PubMed

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose.

  14. Preparation of solid lipid nanoparticles from W/O/W emulsions: preliminary studies on insulin encapsulation.

    PubMed

    Gallarate, Marina; Trotta, Michele; Battaglia, Luigi; Chirio, Daniela

    2009-08-01

    A method to produce solid lipid nanoparticles (SLN) from W/O/W multiple emulsions was developed applying the solvent-in-water emulsion-diffusion technique. Insulin was chosen as hydrophilic peptide drug to be dissolved in the acidic inner aqueous phase of multiple emulsions and to be consequently carried in SLN. Several partially water-miscible solvents with low toxicity were screened in order to optimize emulsions and SLN composition, after assessing that insulin did not undergo any chemical modification in the presence of the different solvents and under the production process conditions. SLN of spherical shape and with mean diameters in the 600-1200 nm range were obtained by simple water dilution of the W/O/W emulsion. Best results, in terms of SLN mean diameter and encapsulation efficiencies, were obtained using glyceryl monostearate as lipid matrix, butyl lactate as a solvent, and soy lecithin and Pluronic F68 as surfactants. Encapsulation efficiencies up to 40% of the loaded amount were obtained, owing to the actual multiplicity of the system; the use of multiple emulsion-derived SLN can be considered a useful strategy to encapsulate a hydrophilic drug in a lipid matrix.

  15. Reduction of the infectivity of baculovirus stocks frozen at ultra-low temperature in serum-free media: The role of lipid emulsions.

    PubMed

    Eberhardt, Ignacio; Gioria, Verónica Viviana; Micheloud, Gabriela Analía; Claus, Juan Daniel

    2016-11-01

    The infectivity of stocks of baculoviruses produced in serum-free media is sensitive to freezing at ultra-low temperatures. The objective of this work was to elucidate the causes of such sensitivity, using as a model the freezing of stocks of Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), a baculovirus widely employed as biological insecticide. Titers of supernatants of cell cultures infected with AgMNPV in four different serum-free media supplemented with lipid emulsions were reduced by 50 to 90% after six months freezing. By using a full factorial experiment, freezing and lipid emulsion, as well as the interaction between them, were identified as the main factors reducing the viral titer. The virucidal effect of the lipid emulsion was reproduced by one of their components, the surfactant Polysorbate 80. Damaged viral envelopes were observed by transmission electron microscopy in most particles frozen in a medium supplemented with lipid emulsion or Polysorbate 80. Additionally, Polysorbate 80 also affected the infectivity of AgMNPV stocks that were incubated at 27°C. The identification of the roles played by the lipid emulsion and Polysorbate 80 is not only a contribution to the understanding of the mechanisms underlying the inactivation of baculovirus stocks produced in serum-free media during storage at ultra-low temperature, but is also an input for the rational development of new procedures aimed at improving both the preservation of baculovirus stocks and the composition of culture media for the production of baculovirus-based bioproducts in insect cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1559-1569, 2016. © 2016 American Institute of Chemical Engineers.

  16. Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products

    PubMed Central

    Park, Sung Hee; Min, Sang-Gi; Jo, Yeon-Ji; Chun, Ji-Yeon

    2015-01-01

    In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products. PMID:26761891

  17. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application.

    PubMed

    Korać, R; Krajišnik, D; Milić, J

    2016-06-01

    The aim of this study was to perform short-term sensory testing and instrumental (conductivity and rheological) characterization of a fast inverted oil-in-water (o/w) emulsion base, also known as a SWOP (Switch-Oil-Phase) emulsion, and reference o/w and water-in-oil (w/o) emulsion bases under various testing conditions: in the presence of ions and at different temperatures. SWOP emulsions are known as metastable o/w emulsions, which invert into w/o emulsions on application of mechanical energy, while rubbing it onto the skin and due to their properties SWOP emulsion are especially suitable as a cosmetic vehicle in, for example, sun-protection products. Sensory testing, which included the evaluation of twenty attributes of the investigated emulsion bases, was performed by a panel of 20 healthy assessors experienced in the evaluation of cosmetic products. Rheological characterization of the investigated emulsion bases included continuous flow testing and oscillatory measurements under various testing conditions. Additionally, conductivity measurements were combined with rheological characterization to monitor stability changes of investigated emulsions. The instrumental and sensory results were analysed statistically and compared. The obtained results indicated that the investigated emulsions behaved differently in the presence of ions (originating from artificial sweat solution) and at different temperatures (under storage and application conditions). Namely, the SWOP emulsion showed similar behaviour to the reference o/w emulsion under storage conditions, but in the presence of ions and at skin temperature, the SWOP emulsion was followed by re-establishment of a stable w/o system, whereas reference o/w emulsion was irreversibly destroyed. The statistical analysis of chosen sensorial attributes indicated that the reference w/o emulsion was significantly different in comparison with the reference o/w and SWOP emulsions, mainly, standing in good agreement with the results of rheological characterization. The study showed that rheological measurements potentially could be related to certain sensory attributes and used for faster development of SWOP emulsions in the future. Finally, SWOP emulsions should be considered for further investigation as suitable vehicles in cosmetic products due to their favourable physicochemical and sensory characteristics which could be partially predicted with instrumental characterization. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Parenteral Nutrition and Lipids.

    PubMed

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-04-14

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them.

  19. Parenteral Nutrition and Lipids

    PubMed Central

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-01-01

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them. PMID:28420095

  20. Vitamin E in new-generation lipid emulsions protects against parenteral nutrition-associated liver disease in parenteral nutrition-fed preterm pigs

    USDA-ARS?s Scientific Manuscript database

    Parenteral nutrition (PN) in preterm infants leads to PN-associated liver disease (PNALD). PNALD has been linked to serum accumulation of phytosterols that are abundant in plant oil but absent in fish oil emulsions. Whether modifying the phytosterol and vitamin E composition of soy and fish oil lipi...

  1. Infrared imaging spectroscopy and chemometric tools for in situ analysis of an imiquimod pharmaceutical preparation presented as cream

    NASA Astrophysics Data System (ADS)

    Carneiro, Renato Lajarim; Poppi, Ronei Jesus

    2014-01-01

    In the present work the homogeneity of a pharmaceutical formulation presented as a cream was studied using infrared imaging spectroscopy and chemometric methodologies such as principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). A cream formulation, presented as an emulsion, was prepared using imiquimod as the active pharmaceutical ingredient (API) and the excipients: water, vaseline, an emulsifier and a carboxylic acid in order to dissolve the API. After exposure at 45 °C during 3 months to perform accelerated stability test, the presence of some crystals was observed, indicating homogeneity problems in the formulation. PCA exploratory analysis showed that the crystal composition was different from the composition of the emulsion, since the score maps presented crystal structures in the emulsion. MCR-ALS estimated the spectra of the crystals and the emulsion. The crystals presented amine and C-H bands, suggesting that the precipitate was a salt formed by carboxylic acid and imiquimod. These results indicate the potential of infrared imaging spectroscopy in conjunction with chemometric methodologies as an analytical tool to ensure the quality of cream formulations in the pharmaceutical industry.

  2. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-10-01

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g

  3. Effects of replacing beef fat with pre-emulsified pumpkin seed oil on some quality characteristics of model system chicken meat emulsions

    NASA Astrophysics Data System (ADS)

    Serdaroğlu, M.; Nacak, B.; Karabıyıkoğlu, M.; Tepe, M.; Baykara, I.; Kökmen, Y.

    2017-09-01

    In this study, the effects of adding pumpkin seed oil (PSO) in water emulsion to model system chicken meat emulsions (MSME) on product quality and oxidative stability were investigated. MSME were produced by replacing 25% (P25) and 50% (P50) of beef fat with PSO-in-water emulsion (PSO/W) while control treatment was prepared with only beef fat. Addition of PSO/W to the formulation resulted in significant differences in chemical composition and pH values of both raw and cooked MSME treatments. The use of PSO/W produced significant improvements to emulsion stability, oxidative stability and cooking yield of MSME. It was determined that the use of PSO/W formulation results in decreased total expressible fluid values and increased cooking yields of the emulsions. It was observed that the highest cooking yield and the lowest total expressible fluid were found in the sample containing 50% PSO/W. It should be a feasible strategy to produce fat-reduced meat products with healthier lipid profiles by using PSO/W.

  4. Emulsion Inks for 3D Printing of High Porosity Materials.

    PubMed

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles.

    PubMed

    Vilanova, Neus; Kolen'ko, Yury V; Solans, Conxita; Rodríguez-Abreu, Carlos

    2015-01-01

    Multiple emulsion templating is a versatile strategy for the synthesis of porous particles. The present work addresses the synthesis of multifunctional poly(dimethylsiloxane) porous particles using multiple water-in-oil-in-water emulsions as soft templates with an oil phase constituted by a crosslinkable poly(dimethylsiloxane) (PDMS) oil. Herewith, the impact of the viscosity of PDMS oil (i.e., molecular weight) on the properties of both the emulsion templates and the resulting particles was evaluated. The viscosity of PDMS oil has a strong effect on the size and polydispersity of the emulsion templates as well as on the mechanical properties of the derived particles. The elastic modulus can be tuned by mixing PDMS oils of different viscosities to form bimodal crosslinked networks. Iron oxide nanoparticles can be readily incorporated into the emulsion templates to provide additional functionalities to the silicone particles, such as magnetic separation or magnetic hyperthermia. The synthesized composite magnetic particles were found to be useful as recoverable absorbent materials (e.g., for oil spills) by taking advantage of their high buoyancy and high hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Impact of osmotic pressure and gelling in the generation of highly stable single core water-in-oil-in-water (W/O/W) nano multiple emulsions of aspirin assisted by two-stage ultrasonic cavitational emulsification.

    PubMed

    Tang, Siah Ying; Sivakumar, Manickam; Nashiru, Billa

    2013-02-01

    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Non-destructive monitoring of creaming of oil-in-water emulsion-based formulations using magnetic resonance imaging.

    PubMed

    Onuki, Yoshinori; Horita, Akihiro; Kuribayashi, Hideto; Okuno, Yoshihide; Obata, Yasuko; Takayama, Kozo

    2014-07-01

    A non-destructive method for monitoring creaming of emulsion-based formulations is in great demand because it allows us to understand fully their instability mechanisms. This study was aimed at demonstrating the usefulness of magnetic resonance (MR) techniques, including MR imaging (MRI) and MR spectroscopy (MRS), for evaluating the physicochemical stability of emulsion-based formulations. Emulsions that are applicable as the base of practical skin creams were used as test samples. Substantial creaming was developed by centrifugation, which was then monitored by MRI. The creaming oil droplet layer and aqueous phase were clearly distinguished by quantitative MRI by measuring T1 and the apparent diffusion coefficient. Components in a selected volume in the emulsions could be analyzed using MRS. Then, model emulsions having different hydrophilic-lipophilic balance (HLB) values were tested, and the optimal HLB value for a stable dispersion was determined. In addition, the MRI examination enables the detection of creaming occurring in a polyethylene tube, which is commonly used for commercial products, without losing any image quality. These findings strongly indicate that MR techniques are powerful tools to evaluate the physicochemical stability of emulsion-based formulations. This study will make a great contribution to the development and quality control of emulsion-based formulations.

  8. The Biophysics and Cell Biology of Lipid Droplets

    PubMed Central

    Thiam, A. Rachid; Farese, Robert V.; Walther, Tobias C.

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that are found in most cells, where they have fundamental and dynamic roles in metabolism. Recent investigations showed the importance of basic biophysical principles of emulsions for LD biology. At their essence, LDs are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Because of their unique architecture, with an interface between the dispersed oil phase and the aqueous cytosol, LDs require specialized mechanisms for their formation, growth, and shrinkage. Such mechanisms enable cells to use emulsified oil in a controlled manner (e.g., when demands for metabolic energy or membrane synthesis increase). Regulation of the composition of the phospholipid surfactants at the LD surface is crucial for LD growth and catabolism and also modifies protein targeting to LD surfaces. Here, we review new insights into the cell biology of LDs, with an emphasis on concepts of emulsion science and biophysics that apply to this organelle. PMID:24220094

  9. Effects of membrane-filtered soy hull pectin and pre-emulsified fiber/oil on chemical and technological properties of low fat and low salt meat emulsions.

    PubMed

    Kim, Hyun-Wook; Lee, Yong Jae; Kim, Yuan H Brad

    2016-06-01

    The objectives of this study were to determine efficacy of a membrane filtration in soy hull pectin purification and evaluate combined effects of soy hull pectin and pre-emulsified fiber/oil (PE) on chemical composition and technological properties of low fat and low salt meat emulsions. Soy hull pectin was purified through two different methods (alcohol-washed (ASP) and membrane-filtered (MSP)). Insoluble soy hull residues after pectin extraction were incorporated with sunflower oil and water for the PE preparation. Meat emulsion was formulated with 58 % pork, 20 % ice, 20 % pork backfat, and 2 % NaCl as control. A total of six low fat and low salt meat emulsions (1 % NaCl and 10 % backfat) was manufactured with 1 % pectin (with/without ASP or MSP) and 10 % PE (with/without). The pectin content of ASP and MSP was 0.84 and 0.64 g L-galacturonic acid/g dry sample, respectively. The inclusion of soy hull pectin caused similar results on chemical composition, color, cooking loss, and texture of the meat emulsions, regardless of the purification method. In addition, positive impacts of the combined treatments with soy hull pectin and PE compared to single treatments on cooking loss and texture of the meat emulsions were observed. Results suggest that membrane filtration could be an effective alternative method to purify pectin, instead of alcohol-washing, and both soluble pectin and insoluble fiber from soy hulls could be used as a functional non-meat ingredient to manufacture various low fat and low salt meat products.

  10. Transport and Retention of Emulsion Droplets in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Esahani, S. G.; Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Emulsions are commonly used as amendments during remediation; yet, the processes controlling the distribution of droplets within the subsurface are not well understood. Given that inadequate spatial and/or temporal delivery of amendments often leads to ineffective treatment, there is a need to better understand emulsion transport. Experiments were conducted to evaluate the transport and retention of emulsion droplets in columns containing Ottawa sands. Breakthrough curves and deposition profiles from these experiments were interrogated using a mathematical model capable of describing attachment, detachment, and straining to begin to elucidate the physical processes controlling delivery. Emulsions were constructed by stabilizing soybean oil droplets within a continuous aqueous phase. Physical properties of the resulting oil-in-water emulsions were favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet d50). Emulsions were introduced to the columns for approximately two pore volumes and followed by an extended flush of background solution. Effluent droplet size distributions did not vary significantly over the course of the experiment and remained similar to those measured for the influent emulsion. Emulsion breakthrough curves exhibited tailing, and deposition profiles were found to be hyper-exponential and unaffected by extended periods of background flow. Depending on emulsion composition and flow characteristics, 10-30% of the injected emulsion was retained on the sand suggesting a non-negligible influence on accessible porosity over the course of the experiment. Experimental results were further interpreted using a droplet transport model that accounts for temporal and spatial variation in porosity due to the retention of the emulsion droplets. At present the model assumes a uniform size distribution of inelastic emulsion droplets which are transported by advection and dispersion, and exchanged with the solid phase through attachment, detachment, and straining processes. Results examine the relative roles of attachment-detachment and straining in reducing the accessible porosity. Evaluation of how the porosity change influences the flow regime for moderately and slightly clogged media is currently under investigation.

  11. Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles.

    PubMed

    White, Kathryn A; Schofield, Andrew B; Wormald, Philip; Tavacoli, Joseph W; Binks, Bernard P; Clegg, Paul S

    2011-07-01

    Using a system of modified silica particles and mixtures of water and 2,6-lutidine to form particle-stabilized emulsions, we show that subtle alterations to the hydration of the particle surface can cause major shifts in emulsion structure. We use fluorescence confocal microscopy, solid state nuclear magnetic resonance (NMR) and thermo-gravimetric analysis (TGA) to explore this sensitivity, along with other shifts caused by modifications to the silica surface chemistry. The silica particles are prepared by a variant of the Stöber procedure and are modified by the inclusion of 3-(aminopropyl)triethoxysilane and the dye fluorescein isothiocyanate. Treatment prior to emulsification consists of gently drying the particles under carefully controlled conditions. In mixtures of water and 2,6-lutidine of critical composition, the particles stabilize droplet emulsions and bijels. Decreasing particle hydration yields an inversion of the emulsions from lutidine-in-water (L/W) to water-in-lutidine (W/L), with bijels forming around inversion. So dependent is the emulsion behavior on particle hydration that microscopic differences in drying within a particle sample can cause differences in the wetting behavior of that sample, which helps to stabilize multiple emulsions. The formation of bijels at emulsion inversion is also crucially dependent on the surface modification of the silica. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Preparation of stimulus responsive multiple emulsions by membrane emulsification using con a as biochemical sensor.

    PubMed

    Piacentini, Emma; Drioli, Enrico; Giorno, Lidietta

    2011-04-01

    In this work, a novel strategy for the controlled fabrication of biomolecular stimulus responsive water-in-oil-in-water (W/O/W) multiple emulsion using the membrane emulsification process was investigated. The emulsions interface was functionalized with a biomolecule able to function as a receptor for a target compound. The interaction between the biomolecular receptor and target stimulus activated the release of bioactive molecules contained within the structured emulsion. A glucose sensitive emulsion was investigated as a model study case. Concanavalin A (Con A) was used as the biomolecular glucose sensor. Various physicochemical strategies for stimulus responsive materials formulation are available in literature, but the preparation of biomolecule-responsive emulsions has been explored for the first time in this paper. The development of novel drug delivery systems requires advanced and highly precise techniques to obtain their particular properties and targeting requirements. The present study has proven the flexibility and suitability of membrane emulsification for the preparation of stable and functional multiple emulsions containing Con A as interfacial biomolecular receptor able to activate the release of a bioactive molecule as a consequence of interaction with the glucose target molecule. The influence of emulsion interfacial composition and membrane emulsification operating conditions on droplets stability and functional properties have been investigated. The release of the bioactive molecule as a function of glucose stimulus and its concentration has been demonstrated. Copyright © 2010 Wiley Periodicals, Inc.

  13. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.

    PubMed

    Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan

    2016-10-01

    In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels.

    PubMed

    Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H

    2018-04-01

    The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH 2 )) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content ( p =0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively ( p >0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%.

  15. Chemical and Physical Characterization of Comp A-3 Type II Prills

    DTIC Science & Technology

    2013-06-01

    the composition and properties of the explosive for implementation into modeling and simulation tools as part of the Multi-scale Response of...emulsion were identified using desorption-gas chromatography/mass spectroscopy (D-GC- MS) and Fourier transform infrared ( FTIR ) spectroscopy. Quantitative...understanding the microstructure of the pressed explosive and provides critical information for the development of a high fidelity particle-based course-grain

  16. Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less

  17. Synthetic control of the size, shape, and polydispersity of anisotropic silica colloids

    DOE PAGES

    Murphy, Ryan P.; Hong, Kunlun; Wagner, Norman J.

    2017-09-01

    The particle size and shape determine the microstructure and rheological properties of colloidal suspensions. This work aims to further control the size, shape, and polydispersity of anisotropic silica colloids, to reduce particle size, and to provide additional mechanistic insights on a prevalent, water-in-oil emulsion synthesis method. Key findings show that the dimensions of anisotropic silica particles can be systematically varied by approximately fivefold, with a limiting minimum particle size (D ≈ 60 nm, L ≈ 300 nm) obtained from emulsions with excess polyvinylpyrrolidone (PVP) and sodium citrate. The synthesis conditions are identified and discussed for which the emulsion composition, temperature,more » sonication, polymer entanglements, mixing, and other perturbations may induce or mitigate emulsion instabilities, citrate precipitation, a competing mechanism of templated growth, termination of anisotropic growth, irregular silica structures, and fiber formation. An improved mechanistic understanding will expand the roadmap for rational design and synthetic control of anisotropic colloids using sol-gel silica chemistry confined within water-in-oil emulsions.« less

  18. Transdermal delivery of forskolin from emulsions differing in droplet size.

    PubMed

    Sikora, Elżbieta; Llinas, Meritxell; Garcia-Celma, Maria Jose; Escribano, Elvira; Solans, Conxita

    2015-02-01

    The skin permeation of forskolin, a diterpene isolated from Coleus forsholii, was studied using oil in water (O/W) emulsions as delivery formulations and also an oil solution for comparative purposes. Two forskolin-loaded emulsions of water/Brij 72:Symperonic A7/Miglyol 812:Isohexadecane, at 0.075 wt% forskolin concentration were prepared with the same composition and only differing in droplet size (0.38 μm and 10 μm). The emulsions showed high kinetic stability at 25 °C. In vitro study of forskolin penetration through human skin was carried out using the MicroettePlus(®) system. The concentration of the active in the receptor solution (i.e. ethanol/phosphate buffer 40/60, v/v) was analyzed by high performance liquid chromatography with UV detection. The obtained results showed that forskolin permeation from the emulsions and the oil solution, through human skin, was very high (up to 72.10%), and no effect of droplet size was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Rheology of interfacial protein-polysaccharide composites

    NASA Astrophysics Data System (ADS)

    Fischer, P.

    2013-05-01

    The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.

  20. Compositions, methods, and systems comprising fluorous-soluble polymers

    DOEpatents

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  1. Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes

    PubMed Central

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products. PMID:21614186

  2. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes.

    PubMed

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products.

  3. Stabilization Improves Theranostic Properties of Lipiodol®-Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model.

    PubMed

    Deschamps, F; Farouil, G; Gonzalez, W; Robic, C; Paci, A; Mir, L M; Tselikas, L; de Baère, T

    2017-06-01

    To demonstrate that stability is a crucial parameter for theranostic properties of Lipiodol ® -based emulsions during liver trans-arterial chemo-embolization. We compared the theranostic properties of two emulsions made of Lipiodol ® and doxorubicin in two successive animal experiments (One VX2 tumour implanted in the left liver lobe of 30 rabbits). Emulsion-1 reproduced one of the most common way of preparation (ratio of oil/water: 1/1), and emulsion-2 was designed to obtain a water-in-oil emulsion with enhanced stability (ratio of oil/water: 3/1, plus an emulsifier). The first animal experiment compared the tumour selectivity of the two emulsions: seven rabbits received left hepatic arterial infusion (HAI) of emulsion-1 and eight received HAI of emulsion-2. 3D-CBCT acquisitions were acquired after HAI of every 0.1 mL to measure the densities' ratios between the tumours and the left liver lobes. The second animal experiment compared the plasmatic and tumour doxorubicin concentrations after HAI of 1.5 mg of doxorubicin administered either alone (n = 3) or in emulsion-1 (n = 6) or in emulsion-2 (n = 6). Emulsion-2 resulted in densities' ratios between the tumours and the left liver lobes that were significantly higher compared to emulsion-1 (up to 0.4 mL infused). Plasmatic doxorubicin concentrations (at 5 min) were significantly lower after HAI of emulsion-2 (19.0 μg/L) than emulsion-1 (275.3 μg/L, p < 0.01) and doxorubicin alone (412.0 μg/L, p < 0.001), and tumour doxorubicin concentration (day-1) was significantly higher after HAI of emulsion-2 (20,957 ng/g) than in emulsion-1 (8093 ng/g, p < 0.05) and doxorubicin alone (2221 ng/g, p < 0.01). Stabilization of doxorubicin in a water-in-oil Lipiodol ® -based emulsion results in better theranostic properties.

  4. Stabilization Improves Theranostic Properties of Lipiodol{sup ®}-Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschamps, F., E-mail: frederic.deschamps@gustaveroussy.fr; Farouil, G.; Gonzalez, W.

    PurposeTo demonstrate that stability is a crucial parameter for theranostic properties of Lipiodol{sup ®}-based emulsions during liver trans-arterial chemo-embolization.Materials and MethodsWe compared the theranostic properties of two emulsions made of Lipiodol{sup ®} and doxorubicin in two successive animal experiments (One VX2 tumour implanted in the left liver lobe of 30 rabbits). Emulsion-1 reproduced one of the most common way of preparation (ratio of oil/water: 1/1), and emulsion-2 was designed to obtain a water-in-oil emulsion with enhanced stability (ratio of oil/water: 3/1, plus an emulsifier). The first animal experiment compared the tumour selectivity of the two emulsions: seven rabbits received leftmore » hepatic arterial infusion (HAI) of emulsion-1 and eight received HAI of emulsion-2. 3D-CBCT acquisitions were acquired after HAI of every 0.1 mL to measure the densities’ ratios between the tumours and the left liver lobes. The second animal experiment compared the plasmatic and tumour doxorubicin concentrations after HAI of 1.5 mg of doxorubicin administered either alone (n = 3) or in emulsion-1 (n = 6) or in emulsion-2 (n = 6).ResultsEmulsion-2 resulted in densities’ ratios between the tumours and the left liver lobes that were significantly higher compared to emulsion-1 (up to 0.4 mL infused). Plasmatic doxorubicin concentrations (at 5 min) were significantly lower after HAI of emulsion-2 (19.0 μg/L) than emulsion-1 (275.3 μg/L, p < 0.01) and doxorubicin alone (412.0 μg/L, p < 0.001), and tumour doxorubicin concentration (day-1) was significantly higher after HAI of emulsion-2 (20,957 ng/g) than in emulsion-1 (8093 ng/g, p < 0.05) and doxorubicin alone (2221 ng/g, p < 0.01).ConclusionStabilization of doxorubicin in a water-in-oil Lipiodol{sup ®}-based emulsion results in better theranostic properties.« less

  5. Emulsion based cast booster - a priming system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiatedmore » with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.« less

  6. Photocurable high internal phase emulsions (HIPEs) containing hydroxyapatite for additive manufacture of tissue engineering scaffolds with multi-scale porosity.

    PubMed

    Wang, Ai-Juan; Paterson, Thomas; Owen, Robert; Sherborne, Colin; Dugan, James; Li, Jun-Ming; Claeyssens, Frederik

    2016-10-01

    Porous composites containing hydroxyapatite (HA) were templated from high internal phase emulsions (HIPEs) and were further structured using direct-write UV stereolithography to produce composite scaffolds with multi-scale porosity. FTIR, TGA and SEM analyses confirmed that HA was retained after photocuring and subsequent treatments and was incorporated within the polymerised HIPE (polyHIPE). The addition of HA particles to the polyHIPE caused changes in the mechanical properties of the material. An increase in both the Young's modulus and maximum stress at yield was observed compared with the pure polyHIPE from 1.544±0.231 to 4.614±0.775 and 0.177±0.009 to 0.267±0.034MPa, respectively. Except at very high concentrations, adding HA did not adversely cause the phase separation of the HIPE or the porous microstructure of the resulting polyHIPE. In combination with a photoinitiator, the HIPE emulsion containing HA was investigated as a photocurable resin for stereolithography-based additive manufacturing. The material was readily processable into "woodpile" structures via direct-write UV stereolithography, producing scaffolds with multi-scale porosity which may be useful for medical applications such as tissue engineering. In conclusion, HA was successfully added into polyHIPEs, producing a similar porous structure to that of the pure polyHIPE whilst improving the mechanical performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements. PMID:25685054

  8. Analytical Characterization of an Oil-in-Water Adjuvant Emulsion.

    PubMed

    Sun, Jenny; Remmele, Richard L; Sanyal, Gautam

    2017-07-01

    Adjuvants are typically used in subunit vaccine formulations to enhance immune responses elicited by individual antigens. Physical chemical characterization of novel adjuvants is an important step in ensuring their effective use in vaccine formulations. This paper reports application of a panel of quantitative assays developed to analyze and characterize an oil-in-water adjuvant emulsion, which contains glucopyranosyl lipid A (GLA) and is a squalene-based emulsion. GLA is a fully synthetic analogue of monophosphoryl lipid A, which is a Toll-like receptor type 4 agonist and an FDA-approved adjuvant. The GLA-stable emulsion (GLA-SE) is currently being used for a respiratory syncytial virus vaccine in a phase 2 clinical trial. GLA was quantitated using reverse-phased high-performance liquid chromatography (RP-HPLC) coupled to a mass spectrometric detector, achieving higher assay sensitivity than the charged aerosol detection routinely used. Quantitation of the excipients of GLA-SE, including squalene, egg phosphatidyl choline, and Poloxamer 188, was achieved using a simple and rapid RP-HPLC method with evaporative light scattering detection, eliminating chemical derivatization typically required for these chromophore-lacking compounds. DL-α-tocopherol, the antioxidant of the GLA-SE, was quantitated using a RP-HPLC method with conventional UV detection. The experimental results compared well with values expected for these compounds based on targeted composition of the adjuvant. The assays were applied to identify degradation of individual components in a GLA-SE sample that degraded into distinct aqueous and oil phases. The methods developed and reported here are effective tools in monitoring physicochemical integrity of the adjuvant, as well as in formulation studies.

  9. Simulation model based on non-newtonian fluid mechanics applied to the evaluation of the embolic effect of emulsions of iodized oil and anticancer drug.

    PubMed

    Demachi, H; Matsui, O; Abo, H; Tatsu, H

    2000-01-01

    To verify the difference in embolic effect between oil-in-water (O-W) and water-in-oil (W-O) emulsions composed of iodized oil and an anticancer drug, epirubicin, using a simulation model based on non-Newtonian fluid mechanics. Flow curves of pure iodized oil and two types of O-W and W-O emulsions immediately and 1 hr after preparation were examined with a viscometer. Using the yield stress data obtained, we simulated the stagnation of each fluid with steady flow in a rigid tube. The W-O emulsions were observed to stagnate in the thin tube at a low pressure gradient. However, the embolic effect of the W-O emulsions decreased 1 hr after preparation. The O-W emulsions were stable and did not stagnate under the conditions in which the W-O emulsions stagnated. The simulation model showed that the embolic effect of the W-O emulsions was superior to that of the O-W emulsions.

  10. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    PubMed

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  11. Synthesis of Calcium Phosphate Composite Organogels by Using Emulsion Method for Dentine Occlusion Materials

    NASA Astrophysics Data System (ADS)

    Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.

    2018-03-01

    Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.

  12. Confined Selective Withdrawal

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2014-11-01

    It is well known that the controlled production of monodisperse simple and composite emulsions possesses uncountable applications in medicine, pharmacy, materials science and industry. Here we present both experiments and slender-body theory regarding the generation of simple emulsions using a configuration that we have called Confined Selective Withdrawal, since it is an improved configuration of the classical Selective Withdrawal. We consider two different situations, namely, the cases when the outer flow Reynolds number is high and low, respectively. Several geometrical configurations and a wide range of viscosity ratios are analyzed so that the physics behind the phenomenon can be fully understood. In addition, we present both experiments and theory regarding the generation of composite emulsions. This phenomenon is only feasible when the outer flow Reynolds number is low enough. In this case, we propose a more complex theory which requires the simultaneous resolution of two interfaces in order to predict the shape of the jet and the sizes of the drops formed. The excellent agreement between our slender-body approximation and the experimental evidence fully validates our theories.

  13. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.

    PubMed

    McClements, David Julian

    2012-06-15

    Many bioactive components intended for oral ingestion (pharmaceuticals and nutraceuticals) are hydrophobic molecules with low water-solubilities and high melting points, which poses considerable challenges to the formulation of oral delivery systems. Oil-in-water emulsions are often suitable vehicles for the encapsulation and delivery of this type of bioactive component. The bioactive component is usually dissolved in a carrier lipid phase by either dilution and/or heating prior to homogenization, and then the carrier lipid and water phases are homogenized to form an emulsion consisting of small oil droplets dispersed in water. The successful development of this kind of emulsion-based delivery system depends on a good understanding of the influence of crystals on the formation, stability, and properties of emulsions. This review article addresses the physicochemical phenomena associated with the encapsulation, retention, crystallization, release, and absorption of hydrophobic bioactive components within emulsions. This knowledge will be useful for the rational formulation of effective emulsion-based delivery systems for oral delivery of crystalline hydrophobic bioactive components in the food, health care, and pharmaceutical industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Small particle size lipid emulsions, satiety and energy intake in lean men.

    PubMed

    Chan, Y K; Budgett, S C; MacGibbon, A K; Quek, S Y; Kindleysides, S; Poppitt, S D

    2017-02-01

    Lipid emulsions have been proposed to suppress hunger and food intake. Whilst there is no consensus on optimal structural properties or mechanism of action, small particle size (small-PS) stable emulsions may have greatest efficacy. Fabuless®, a commercial lipid emulsion reported in some studies to decrease energy intake (EI), is a small-PS, 'hard' fat emulsion comprising highly saturated palm oil base (PS, 82nm). To determine whether small-PS dairy lipid emulsions can enhance satiety, firstly, we investigated 2 'soft' fat dairy emulsions generated using dairy and soy emulsifying agents (PS, 114nm and 121nm) and a non-emulsified dairy control. Secondly, we investigated a small-PS palmolein based 'hard' fat emulsion (fractionated palm oil, PS, 104nm) and non-emulsified control. This was a 6 arm, randomized, cross-over study in 18 lean men, with test lipids delivered in a breakfast meal: (i) Fabuless® emulsion (F EM ); (ii) dairy emulsion with dairy emulsifier (DE DE ); (iii) dairy emulsion with soy lecithin emulsifier (DE SE ); (iv) dairy control (DC ON ); (v) palmolein emulsion with dairy emulsifier (PE DE ); (vi) palmolein control (PC ON ). Participants rated postprandial appetite sensations using visual analogue scales (VAS), and ad libitum energy intake (EI) was measured at a lunch meal 3.5h later. Dairy lipid emulsions did not significantly alter satiety ratings or change EI relative to dairy control (DE DE , 4035kJ; DE SE , 3904kJ; DC ON , 3985kJ; P>0.05) nor did palm oil based emulsion relative to non-emulsified control (PE DE, 3902 kJ; PC ON, 3973kJ; P>0.05). There was no evidence that small-PS dairy lipid emulsions or commercial Fabuless altered short-term appetite or food intake in lean adults. Copyright © 2016. Published by Elsevier Inc.

  15. Lipo-Protein Emulsion Structure in the Diet Affects Protein Digestion Kinetics, Intestinal Mucosa Parameters and Microbiota Composition.

    PubMed

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Le Feunteun, Steven; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion; Gaudichon, Claire; Blachier, François

    2018-01-01

    Food structure is a key factor controlling digestion and nutrient absorption. We test the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. Rats (n = 40) are fed for 3 weeks with two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and microstructure levels. After an overnight fasting, they ingest a 15 N-labeled LFE or GCE test meal and are euthanized 0, 15 min, 1 h, and 5 h later. 15 N enrichment in intestinal contents and blood are measured. Gastric emptying, protein digestion kinetics, 15 N absorption, and incorporation in blood protein and urea are faster with LFE than GCE. At 15 min time point, LFE group shows higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation leads to higher expression of cationic amino acid transporters in ileum of LFE compared to GCE. LFE diet raises cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increases fecal Parabacteroides relative abundance but decreases Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of stearic acid modified HAp nanoparticles in different solvents on the properties of Pickering emulsions and HAp/PLLA composites.

    PubMed

    Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na

    2017-10-01

    Stearic acid (Sa) was used to modify the surface properties of hydroxyapatite (HAp) in different solvents (water, ethanol or dichloromethane(CH 2 Cl 2 )). Effect of different solvents on the properties of HAp particles (activation ratio, grafting ratio, chemical properties), emulsion properties (emulsion stability, emulsion type, droplet morphology) as well as the cured materials (morphology, average pore size) were studied. FT-IR and XPS results confirmed the interaction occurred between stearic acid and HAp particles. Stable O/W and W/O type Pickering emulsions were prepared using unmodified and Sa modified HAp nanoparticles respectively, which indicated a catastrophic inversion of the Pickering emulsion happened possibly because of the enhanced hydrophobicity of HAp particles after surface modification. Porous materials with different structures and pore sizes were obtained using Pickering emulsion as the template via in situ evaporation solvent method. The results indicated the microstructures of cured samples are different form each other when HAp was surface modified in different solvents. HAp particles fabricated using ethanol as solvent has higher activation ratio and grafting ratio. Pickering emulsion with higher stability and cured porous materials with uniform morphology were obtained compared with samples prepared using water and CH 2 Cl 2 as solvents. In conclusion, surface modification of HAp in different solvents played a very important role for its stabilized Pickering emulsion as well as the microstructure of cured samples. It is better to use ethanol as the solvent for Sa modified HAp particles, which could increase the stability of Pickering emulsion and obtain cured samples with uniform pore size. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage.

    PubMed

    Tyburcy, Andrzej; Kozyra, Daniel

    2010-10-01

    Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (P

  18. Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions.

    PubMed

    Zou, Liqiang; Liu, Wei; Liu, Chengmei; Xiao, Hang; McClements, David Julian

    2015-02-25

    Excipient foods have compositions and structures specifically designed to improve the bioaccessibility of bioactive agents present in other foods coingested with them. In this study, an excipient emulsion was shown to improve the solubility and bioaccessibility of curcumin from powdered rhizome turmeric (Curcuma longa). Corn oil-in-water emulsions were mixed with curcumin powder, and the resulting mixtures were incubated at either 30 °C (to simulate a salad dressing) or 100 °C (to simulate a cooking sauce). There was an appreciable transfer of curcumin into the excipient emulsions at both incubation temperatures, but this effect was much more pronounced at 100 °C. The bioaccessibility of curcumin measured using a simulated gastrointestinal tract model was greatly improved in the presence of the excipient emulsion, particularly in the system held at 100 °C. This effect was attributed to the higher initial amount of curcumin solubilized within the oil droplets, as well as that solubilized in the mixed micelles formed by lipid digestion. This study highlights the potential of designing excipient food emulsions that increase the oral bioavailability of lipophilic nutraceuticals, such as curcumin.

  19. [Development of biphasic drug-loading lipid emulsion of Salvia miltiorrhiza and its quality evaluation].

    PubMed

    Wang, Yin-Yan; Li, Xi; Lai, Xiu-Jun; Li, Wei; Yang, Ya-Jing; Chu, Ting; Mao, Sheng-Jun

    2014-10-01

    The feasibility of simultaneously loading both liposoluble and water-soluble components of Salvia miltiorrhiza in emulsion was discussed, in order to provide new ideas in comprehensive application of effective components in S. miltiorrhiza in terms of technology of pharmaceutics. With tanshinone II (A) and salvianolic acid B as raw materials, soybean phospholipid and poloxamer 188 as emulsifiers, and glycerin as isoosmotic regulator, the central composite design-response surface method was employed to optimize the prescription. The coarse emulsion was prepared with the high-speed shearing method and then homogenized in the high pressure homogenizer. The biphasic drug-loading intravenous emulsion was prepared to investigate its pharmaceutical properties and stability. The prepared emulsion is orange-yellow, with the average diameter of 241 nm and Zeta potential of -35.3 mV. Specifically, the drug loading capacity of tanshinone II (A) and salvianolic acid B were 0.5 g x L(-1) and 1 g x L(-1), respectively, with a good stability among long-term retention samples. According to the results, the prepared emulsion could load liposoluble tanshinone II (A) and water-soluble salvianolic acid B simultaneously, which lays a pharmaceutical foundation for giving full play to the efficacy of S. miltiorrhiza.

  20. Preparation of conductive paper composites based on natural cellulosic fibers for packaging applications.

    PubMed

    Youssef, Ahmed M; El-Samahy, Magda Ali; Abdel Rehim, Mona H

    2012-08-01

    Conducting paper based on natural cellulosic fibers and conductive polymers was prepared using unbleached bagasse and/or rice straw fibers (as cellulosic raw materials) and polyaniline (PANi) as conducting polymer. These composites were synthesized by in situ emulsion polymerization using ammonium persulfate (APS) as oxidant in the presence of dodecylbenzene sulfonic acid (DBSA) as emulsifier. The prepared composites were characterized using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC), and their morphology was investigated using scanning electron microscope (SEM). Electrical conductivity measurements showed that the conductivity of the paper sheets increases by increasing the ratio of PANi in the composite. Mechanical properties of the paper sheets were also investigated, the results revealed that the values of breaking length, burst factor, and tear factor are decreased with increasing ratio of added PANi, and this effect is more pronounced in bagasse-based composites. The new conductive composites can have potential use as anti-static packaging material or anti-bacterial paper for packaging applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    PubMed

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  2. Topical delivery of acetyl hexapeptide-8 from different emulsions: influence of emulsion composition and internal structure.

    PubMed

    Hoppel, Magdalena; Reznicek, Gottfried; Kählig, Hanspeter; Kotisch, Harald; Resch, Günter P; Valenta, Claudia

    2015-02-20

    Acetyl hexapeptide-8 (AH-8) is a well-known component of anti-aging products and was recently explored as a promising topical treatment of blepharospasm. Although AH-8 appears in a variety of cosmetic products, its skin penetration is sparsely studied and controversially discussed. Therefore, the aim of the present study was to investigate the influence of the vehicle type on the AH-8 delivery to the skin. Besides skin permeation experiments with Franz type diffusion cells, the spatial distribution of AH-8 in the stratum corneum after a real in-use application was investigated by in vitro tape stripping on porcine ear skin. By applying LC-MS/MS for quantification of AH-8, we demonstrated that a multiple water-in-oil-in-water (W/O/W) emulsion can significantly increase penetration of AH-8 into porcine skin compared to simple O/W and W/O emulsions. The internal structure of the developed multiple emulsion was confirmed by electron microscopic investigations and NMR self diffusion studies. In general, a clear superiority of water-rich W/O/W and O/W emulsions over an oil-rich W/O emulsion in terms of dermal delivery of AH-8 was found. This enhanced delivery of AH-8 could be explained by an increased absorption of the water-rich emulsions into the skin, confirmed by combined ATR-FTIR and tape stripping experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Efficacy of Alkali-treated Sugarcane Fiber for Improving Physicochemical and Textural Properties of Meat Emulsions with Different Fat Levels

    PubMed Central

    Kim, Hyun-Wook; Setyabrata, Derico; Lee, Yong-Jae; Brad Kim, Yuan H.

    2018-01-01

    Abstract The objective of this study was to evaluate the efficacy of alkaline-treated sugarcane bagasse fiber on physicochemical and textural properties of meat emulsion with different fat levels. Crude sugarcane bagasse fiber (CSF) was treated with calcium hydroxide (Ca(OH2)) to obtain alkaline-treated sugarcane bagasse fiber (ASF). The two types of sugarcane bagasse fiber (CSF and ASF) were incorporated at 2% levels in pork meat emulsions prepared with 5%, 10% and 20% fat levels. Alkaline-treatment markedly increased acid detergent fiber content (p=0.002), but significantly decreased protein, fat, ash and other carbohydrate contents. ASF exhibited significantly higher water-binding capacity, but lower oil-binding and emulsifying capacities than CSF. Meat emulsions formulated with 10% fat and 2% sugarcane bagasse fiber had equivalent cooking loss and textural properties to control meat emulsion (20% fat without sugarcane bagasse fiber). The two types of sugarcane bagasse fiber had similar impacts on proximate composition, cooking yield and texture of meat emulsion at the same fat level, respectively (p>0.05). Our results confirm that sugarcane bagasse fiber could be a functional food ingredient for improving physicochemical and textural properties of meat emulsion, at 2% addition level. Further, the altered functional properties of alkaline-treated sugarcane bagasse fiber had no impacts on physicochemical and textural properties of meat emulsions, regardless of fat level at 5%, 10% and 20%. PMID:29805281

  4. Novel aqueous oil-in-water emulsions containing extracts of natural coniferous resins are strongly antimicrobial against enterobacteria, staphylococci and yeasts, as well as on bacterial biofilms.

    PubMed

    Haapakorva, E; Holmbom, T; von Wright, A

    2018-01-01

    The aim of this study was to examine the antimicrobial properties of novel aqueous natural rapeseed oil/saline emulsions containing different soluble components of spruce resin. The composition of aqueous resin emulsions was analysed by GC-MS and their antimicrobial properties were studied with challenge tests and with turbidometric assays. The emulsions were strongly antimicrobial against common Gram-positive and Gram-negative bacteria (including MRSA) as well as common yeasts. Furthermore, they inhibited the biofilm formation and eradicated the microbial biofilms on tested microbes. Characteristic for the emulsions was the presence of oxidized resin acids. Other main components present in emulsions, such as lignans and coumaric acids, were not antimicrobial, when tested separately. The results indicated that the oxidized resin acids were the antimicrobial components in the emulsions. Also, there appears to be a stoichiometric relationship between the number of resin acid molecules and the number microbe cells in the antimicrobial action. The fact that these solutions do not contain abietic acid, which is the main allergenic compound in resins, suggests that these solutions would be suitable, well-tolerated antimicrobials for various medical applications. The aqueous formulation will also allow the expansion of the use of these emulsions in from medical applications to the food preservatives and disinfectants. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of the Society for Applied Microbiology.

  5. Studies on ocular and parenteral application potentials of azithromycin- loaded anionic, cationic and neutral-charged emulsions.

    PubMed

    Tamilvanan, Shunmugaperumal; Khanum, Ramona; Senthilkumar, Sudalimuthu Ramachandran; Muthuraman, Marimuthu; Rajasekharan, Thenrajan

    2013-10-01

    Ocular and parenteral application potentials of azithromycin-containing, non-phospholipid-based cationic nanosized emulsion in comparison to the phospholipid-based anionic and neutral-charged nanosized emulsions were investigated. Various physical, chemical, nonclinical toxicity and antimicrobial activity studies (mean droplet diameter, surface charge, creaming index, entrapment efficiency, accelerated, long-term and freeze-thaw cycling stabilities, TLC study, modified hen's egg chorioallantoic membrane (HET-CAM) test, in vitro hemolysis test, in vitro and in vivo myotoxicity, and in vitro antimicrobial activity) were conducted for assessing the potentials of these three types of emulsions. Following autoclave sterilization, all of these emulsions exhibited a nanometer range mean particle diameter (200 ± 29 to 434 ± 13 nm). While the anionic and cationic emulsions did show high negative (-34.2 ± 1.23 mV) and positive zeta potential (42.6 ± 1.45 mV) values, the neutral-charged emulsion did not. Even with 5 freeze-thaw cycles, the cationic emulsion remained stable whereas other two emulsions underwent phase-separation. The hen's egg chorioallantoic membrane test revealed an irritation score value that was higher for the anionic emulsion than for cationic or neutral-charged emulsion. A significantly higher % hemolysis value was also noticed for the anionic emulsion when compared to the % hemolysis value of cationic emulsion (ANOVA, P ‹ 0.05). However, all of the emulsions showed a lesser intracellular creatine kinase (CK) release/plasma CK level in comparison to the positive control (phenytoin) indicating their lesser myotoxicity at the injection site . When compared to anionic and neutral-charged emulsions, the possible controlled drug release from cationic emulsion delayed the in vitro antimicrobial action against H.influenzae and S.pneumoniae.

  6. Synthesis and characterization of functional acrylic copolymers via RAFT mini-emulsion polymerization

    NASA Astrophysics Data System (ADS)

    Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata

    2017-12-01

    Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.

  7. Physical Properties of Polyester Fabrics Treated with Nano, Micro and Macro Emulsion Silicones

    NASA Astrophysics Data System (ADS)

    Parvinzadeh, M.; Hajiraissi, R.

    2007-08-01

    The processing of textile to achieve a particular handle is one of the most important aspects of finishing technology. Fabrics softeners are liquid composition added to washing machines during the rinse cycle to make clothes feel better to the touch. The first fabric softeners were developed by the textile industry during the early twentieth century. In this research polyester fabrics were treated with nano, micro and macro emulsion silicone softeners. Some of the physical properties of the treated fabric samples are discussed. The drapeability of treated samples was improved after treatment with nano silicone softeners. The colorimetric measurement of softener-treated fabrics is evaluated with a reflectance spectrophotometer. Moisture regain of treated samples is increased due to coating of silicone softeners. There is some increase in the weight of softener-treated samples. Samples treated with nano emulsion silicones gave better results compared to micro- and macro-emulsion treated ones.

  8. Parenteral nutrition-associated liver disease and lipid emulsions.

    PubMed

    Zugasti Murillo, Ana; Petrina Jáuregui, Estrella; Elizondo Armendáriz, Javier

    2015-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a particularly important problem in patients who need this type of nutritional support for a long time. Prevalence of the condition is highly variable depending on the series, and its clinical presentation is different in adults and children. The etiology of PNALD is not well defined, and participation of several factors at the same time has been suggested. When a bilirubin level >2 mg/dl is detected for a long time, other causes of liver disease should be ruled out and risk factors should be minimized. The composition of lipid emulsions used in parenteral nutrition is one of the factors related to PNALD. This article reviews the different types of lipid emulsions and the potential benefits of emulsions enriched with omega-3 fatty acids. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  9. Preparation of microemulsions with soybean oil-based surfactants

    USDA-ARS?s Scientific Manuscript database

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  10. Structure- and oil type-based efficacy of emulsion adjuvants.

    PubMed

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  11. Influence of surfactant on the thermal behavior of marigold oil emulsions with liquid crystal phases.

    PubMed

    dos Santos, Orlando David Henrique; da Rocha-Filho, Pedro Alves

    2007-05-01

    Vegetable oils have been largely consumed owing to the interest of pharmaceutical and cosmetic industries in using natural raw materials. The production of stable emulsions with vegetable oils challenges formulators due to its variability in composition and fatty acids constitution within batches produced. In the present work, it was studied that the influence of the size of carbon chain and the number of ethylene oxide moieties of the surfactant on the thermal behavior of eight emulsions prepared with marigold oil stabilized by liquid crystal phases. Differential scanning calorimetry (DSC) was used to determine the thermal behavior of the emulsions. The ratio of bound water was calculated, being between 29.0 and 42.0%, confirming the extension of the liquid-crystalline net in the external phase. Changing the lipophilic surfactant from Ceteth-2 to Steareth-2, there was an increase in the temperature of phase transition of the liquid crystal influencing the system stability. Calorimetric study is very useful in understanding the performance of liquid crystals with the increase of temperature and to estimate emulsions stability.

  12. Annurca peel extract: from the chemical composition, through the functional activity, to the formulation and characterisation of a topical oil-in-water emulsion.

    PubMed

    Sansone, Francesca; Esposito, Tiziana; Mencherini, Teresa; Piccinelli, Anna Lisa; Gazzerro, Patrizia; Picerno, Patrizia; Russo, Paola; Del Gaudio, Pasquale; Essolito, Massimilano; Campiglia, Pietro; Aquino, Rita P

    2016-06-01

    The aim of this study was to produce a hydro-alcoholic safe antioxidant Malus pumila Miller cv Annurca peel extract (APE) useful as functional ingredient in an oil-in-water emulsion. Results showed that APE contains a hydroxycinnamic acid (chlorogenic acid), flavonol glycosides (quercetin derivatives) and a dihydrochalcone, phloridzin (phloretin-2-O-glucoside). The isoquercitrin (quercetin-3-O-glucoside) content was quantified in 0.3% w/w of extract. APE showed a significant and concentration-dependent free-radical scavenging activity correlated to its polyphenols content. No cytotoxic effect was observed in primary human epidermal keratinocyte adults and dermal fibroblast cell lines. The formulative approach led to produce a stable emulsion able to load a high amount of APE, up to 6.0% w/w. The homogenous distribution of APE in the emulsion was clearly demonstrated by fluorescence microscopy analysis. The emulsion resulted able to enhance the in vitro release rate of APE through synthetic membranes with respect to the raw material.

  13. Ternary liquid mixtures control the multiplicity, shape and internal structure of emulsion droplets

    NASA Astrophysics Data System (ADS)

    Haase, Martin F.; Brujic, Jasna

    2014-03-01

    It is important to control the shape, internal structure and stability of emulsion droplets for drug delivery, biochemical assays, and the design of materials with novel physical properties. Successful methods involve the mechanical manipulation of the flow of oil in water using complex microfluidic devices to make multiple emulsions with a sequential introduction of specific reactants. Instead, here we show how the thermodynamics of immiscible liquid mixtures tailor emulsions using a single dripping instability. For example, the initial composition and choice of surfactant govern the multiplicity of concentric alternating oil and water layers inside the droplets. Stabilizing ternary droplets using nanoparticles gives rise to a plethora of shapes whose geometry is defined by the deformability of the shell and the flow rate. Another option is to incorporate lipids to the multiple emulsion droplet, which form vesicles upon expulsion of the inner water droplets. Depending on the number of initial water droplets, these vesicles eventually form complex hollow topologies, which can be used as junctions or scaffolds for the self-assembly of colloidal particles in the future.

  14. Development of method of optimized flavor production systems design based on nano-emulsification Kawista (Feronia limonia) Fruit extraction

    NASA Astrophysics Data System (ADS)

    Suyanto, A.; Noor, E.; Fahma, F.; Rusli, M. S.; Djatna, T.

    2018-01-01

    ‘Kawista’ (Feronia limonia) as a tropical fruit has unique flavor that can be applied as a flavor for food products. Flavor as volatile components are unstable by environment factors such as temperature and storage. Flavor nano emulsification form to improve the stability towards environment and increase its use in food products. Research carried out is system development of the nano emulsification Kawista extract flavor with sonication method. The best treatments are selected by Response Surface Methodology (RSM) for independent variable are amplitude (70-100%), time (90-150s) and temperature (5-45°C) controlled by the software of the device. The Flavor Extraction by maceration technique extended highest yield and flavor components. Nano-emulsions made with composition 1% (w/w) flavor extract, 2% (w/w) surfactant (tween 80), 0.25% Gum, and 96.75% (w/w) deionized water. The probe of sonication successfully for preparing stable O/W nano emulsions at amplitude, time and temperature 81.01%, 150s, 45°C, respectively. Characteristic of nano-emulsions i.e energy input (15.489J), viscosity (2.076 mPa.s), droplet size (13.446nm), and Polydispersity index (0.469).

  15. Manufacture and characterisation of EmDerm-novel hierarchically structured bio-active scaffolds for tissue regeneration.

    PubMed

    Lim, Xuxin; Potter, Matthew; Cui, Zhanfeng; Dye, Julian F

    2018-06-05

    There are significant challenges for using emulsion templating as a method of manufacturing macro-porous protein scaffolds. Issues include protein denaturation by adsorption at hydrophobic interfaces, emulsion instability, oil droplet and surfactant removal after protein gelation, and compatible cross-linking methods. We investigated an oil-in-water macro-emulsion stabilised with a surfactant blend, as a template for manufacturing protein-based nano-structured bio-intelligent scaffolds (EmDerm) with tuneable micro-scale porosity for tissue regeneration. Prototype EmDerm scaffolds were made using either collagen, through thermal gelation, fibrin, through enzymatic coagulation or collagen-fibrin composite. Pore size was controlled via surfactant-to-oil phase ratio. Scaffolds were crosslink-stabilised with EDC/NHS for varying durations. Scaffold micro-architecture and porosity were characterised with SEM, and mechanical properties by tensiometry. Hydrolytic and proteolytic degradation profiles were quantified by mass decrease over time. Human dermal fibroblasts, endothelial cells and bone marrow derived mesenchymal stem cells were used to investigate cytotoxicity and cell proliferation within each scaffold. EmDerm scaffolds showed nano-scale based hierarchical structures, with mean pore diameters ranging from 40-100 microns. The Young's modulus range was 1.1-2.9 MPa, and ultimate tensile strength was 4-16 MPa. Degradation rate was related to cross-linking duration. Each EmDerm scaffold supported excellent cell ingress and proliferation compared to the reference materials Integra™ and Matriderm™. Emulsion templating is a novel rapid method of fabricating nano-structured fibrous protein scaffolds with micro-scale pore dimensions. These scaffolds hold promising clinical potential for regeneration of the dermis and other soft tissues, e.g., for burns or chronic wound therapies.

  16. Programmed emulsions for sodium reduction in emulsion based foods.

    PubMed

    Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina

    2015-05-01

    In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.

  17. Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance.

    PubMed

    Ge, Wangyao; Li, Nan K; McCormick, Ryan D; Lichtenberg, Eli; Yingling, Yaroslava G; Stiff-Roberts, Adrienne D

    2016-08-03

    Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

  18. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles.

    PubMed

    Ye, Fan; Miao, Ming; Jiang, Bo; Campanella, Osvaldo H; Jin, Zhengyu; Zhang, Tao

    2017-08-15

    The aim of present study was to study the medium-chain triacylglycerol-in-water (O/W) Pickering emulsion stabilized using different modified starch-based nanoparticles (octenylsuccinylation treated soluble starch nanoparticle, OSA-SSNP, and insoluble starch nanoparticle, ISNP). The major factors for affecting the system stability, rheological behaviour and microstructure of the emulsions were also investigated. The parameters of the O/W emulsions stabilized by OSA-SSNP or ISNP were selected as follows: 3.0% of starch nanoparticles concentration, 50% of MCT fraction and 7.0 of system pH. The rheological properties indicated that both emulsions displayed shear-thinning behaviour as a non-Newtonian fluid. For OSA-SSNP, the viscosities of the emulsion were higher than those of ISNP throughout shear rate range for the same condition. The plot of droplet size distribution for emulsion stabilized OSA-SSNP appeared as a single narrow peak, whereas a broader droplet size distribution with bimodal pattern was observed for emulsion stabilized ISNP. The microscopy results showed that both OSA-SSNP and ISNP were adsorbed at oil-water interface to form a barrier film and retard the phase separation. When emulsion was stored for 30d, no phase separation was detected for O/W emulsion, revealing high stability of emulsion stabilized by both OSA-SSNP and ISNP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In vitro β-Carotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methyl-Esterification.

    PubMed

    Verrijssen, Tina A J; Christiaens, Stefanie; Verkempinck, Sarah H E; Boeve, Jeroen; Grauwet, Tara; Van Loey, Ann M; Salvia-Trujillo, Laura; Hendrickx, Marc E

    2016-10-01

    Citrus pectin (CP) and sugar beet pectin (SBP) were demethoxylated and fully characterized in terms of pectin properties in order to investigate the influence of the pectin degree of methyl-esterification (DM) and the pectin type on the in vitro β-carotene bioaccessibility and lipid digestion in emulsions. For the CP based emulsions containing β-carotene enriched oil, water and pectin, the β-carotene bioaccessibility, and lipid digestion were higher in the emulsions with pectin with a higher DM (57%; "CP57 emulsion") compared to the emulsions with pectin with a lower DM (30%; "CP30 emulsion") showing that the DM plays an important role. In contrast, in SBP-based emulsions, nor β-carotene bioaccessibility nor lipid digestion were dependent on pectin DM. Probably here, other pectin properties are more important factors. It was observed that β-carotene bioaccessibility and lipid digestion were lower in the CP30 emulsion in comparison with the CP57, SBP32, and SBP58 emulsions. However, the β-carotene bioaccessibility of CP57 emulsion was similar to that of the SBP emulsions, whereas the lipid digestion was not. It seems that pectin type and pectin DM (in case of CP) are determining which components can be incorporated into micelles. Because carotenoids and lipids have different structures and polarities, their incorporation may be different. This knowledge can be used to engineer targeted (digestive) functionalities in food products. If both high β-carotene bioaccessibility and high lipid digestion are targeted, SBP emulsions are the best options. The CP57 emulsion can be chosen if high β-carotene bioaccessibility but lower lipid digestion is desired. © 2016 Institute of Food Technologists®.

  20. Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Lee, Wei-der

    2015-01-15

    Pickering emulsions stabilized by graphene oxide (GO) have attracted much attention owing to the unique 2-D structure and amphiphilic surface properties of GO. On the other hand, investigations on reduced GO (RGO) to prepare Pickering emulsions are still limited, especially for water-in-oil (W/O) emulsions. Considering growing interests for directing Pickering emulsions to a specific location, it is necessary to embed Pickering emulsions with responsiveness upon external driving forces such as magnetic fields. To that end, we developed magnetically responsive RGO (denoted as "MRGO") and used MRGO to prepare W/O Pickering emulsions. MRGO was synthesized by decorating iron oxide nanoparticles on the surface of RGO and characterized by SEM, EDS, TEM, FT-IR, Raman, XRD and SQUID. MRGO Pickering emulsion (MRGO-PE) was prepared by suspending MRGO sheets in dodecane and mixing with water vigorously. The amount of MRGO added to prepare MRGO-PE is related to the size distribution of the droplets of MRGO-PE and the relationship can be well-described using a mass balance model. The motion of droplets of MRGO-PE under an external magnetic field is demonstrated. We also investigated the adsorptive property of MRGO-PE by evaluating the removal of Nile Red dye from dodecane. The results shows that the dye removal by MRGO-PE is not just achieved by MRGO layer of MRGO-PE but also by water encapsulated by MRGO. Owing to their magnetic property, MRGO-PE can be utilized as a magnetically-controlled carrier which can preserve and transport to specific locations certain compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.

    1985-01-01

    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.

  2. Bacteria interface pickering emulsions stabilized by self-assembled bacteria-chitosan network.

    PubMed

    Wongkongkatep, Pravit; Manopwisedjaroen, Khajohnpong; Tiposoth, Perapon; Archakunakorn, Somwit; Pongtharangkul, Thunyarat; Suphantharika, Manop; Honda, Kohsuke; Hamachi, Itaru; Wongkongkatep, Jirarut

    2012-04-03

    An oil-in-water Pickering emulsion stabilized by biobased material based on a bacteria-chitosan network (BCN) was developed for the first time in this study. The formation of self-assembled BCN was possible due to the electrostatic interaction between negatively charged bacterial cells and polycationic chitosan. The BCN was proven to stabilize the tetradecane/water interface, promoting formation of highly stable oil-in-water emulsion (o/w emulsion). We characterized and visualized the BCN stabilized o/w emulsions by scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM). Due to the sustainability and low environmental impact of chitosan, the BCN-based emulsions open up opportunities for the development of an environmental friendly new interface material as well as the novel type of microreactor utilizing bacterial cells network.

  3. Pickering Particles Prepared from Food Waste

    PubMed Central

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-01-01

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings. PMID:28773909

  4. Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion

    NASA Astrophysics Data System (ADS)

    Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C. T.; Sheng, Ping; Cheah, Kok Wai

    2005-10-01

    We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful “rainbow” pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.

  5. Breaking of the Bancroft rule for multiple emulsions stabilized by a single stimulable polymer.

    PubMed

    Besnard, L; Protat, M; Malloggi, F; Daillant, J; Cousin, F; Pantoustier, N; Guenoun, P; Perrin, P

    2014-09-28

    We investigated emulsions of water and toluene stabilized by (co)polymers consisting of styrene (S) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) monomer units with different compositions and structures such as a PDMAEMA homopolymer, a P(S-co-DMAEMA) random copolymer and various PS-b-PDMAEMA and PS-b-(S-co-DMAEMA) block copolymers. The model system is used to study the fundamental conditions under which the different kinds of polymer-stabilized emulsions (direct oil in water, inverse water in oil and multiple emulsions) are stabilized or destabilized by pH change (at constant temperature). Polymer properties like chain conformation at the toluene-water interface as probed by SANS and neutron reflectivity at the liquid-liquid interface, the oil-water partitioning of the polymer chains (Bancroft's rule of thumb) as determined by UV spectroscopy and interfacial tensions measured by the rising and spinning drop techniques are determined. Overall, results evidence that the curvature sign, as defined by positive and negative values as the chain segments occupy preferentially the water and toluene sides of the interface respectively, reliably predicts the emulsion kind. In contrast, the Bancroft rule failed at foreseeing the emulsion type. In the region of near zero curvature the crossover from direct to inverse emulsions occurs through the formation of either unstable coexisting direct and inverse emulsions (i) or multiple emulsions (ii). The high compact adsorption of the chains at the interface as shown by low interfacial tension values does not allow to discriminate between both cases. However, the toluene-water partitioning of the polymeric emulsifier is still a key factor driving the formation of (i) or (ii) emulsions. Interestingly, the stabilization of the multiple emulsions can be tuned to a large extent as the toluene-water polymer partitioning can be adjusted using quite a large number of physico-chemical parameters linked to polymer architecture like diblock length ratio or polymer total molar mass, for example. Moreover, we show that monitoring the oil-water partitioning aspect of the emulsion system can also be used to lower the interfacial tension at low pH to values slightly higher than 0.01 mN m(-1), irrespective of the curvature sign.

  6. Genesis of emulsion texture due to magma mixing: a case study from Chotanagpur Granite Gneiss Complex of Eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2016-04-01

    The emulsion texture is a rare magma mixing feature in which rounded bodies of one magmatic phase remain dispersed in the other coherent phase (Freundt and Schmincke, 1992). This type of special texture in hybrid rocks can significantly contribute toward understanding the mechanisms facilitating magma mixing and magma chamber dynamics involving two disparate magmas as the exact processes by which mixing occurs still remain unclear. Recent developments in microfluidics have greatly helped us to understand the complex processes governing magma mixing occurring at micro-level. Presented work uses some of the results obtained from microfluidic experiments with a view to understand the formation mechanism of emulsions preserved in the hybrid rocks of the Ghansura Rhyolite Dome (GRD) of Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), Eastern India. The GRD has preserved hybrid rocks displaying emulsion texture that formed due to the interaction of a phenocryst-rich basaltic magma and host rhyolite magma. The emulsions are more or less spherical in shape and dominantly composed of amphibole having biotite rinds set in a matrix of biotite, plagioclase, K-feldspar and quartz. Amphibole compositions were determined from the core of the emulsions to the rim with a view to check for cationic substitutions. The amphibole constituting the emulsions is actinolite in composition, and commonly shows tschermakite (Ts) and pargasite (Prg) substitutions. From petrographical and mineral-chemical analyses we infer that when mafic magma, containing phenocrysts of augite, came in contact with felsic magma, diffusion of cations like H+, Al3+and others occurred from the felsic to the mafic system. These cations reacted with the clinopyroxene phenocrysts in the mafic magma to form amphibole (actinolite) crystals. The formation of amphibole crystals in the mafic system greatly increased the viscosity of the system allowing the amphibole crystals to venture into the adjacent felsic magma as veins. As these veins traversed in the felsic medium they underwent sinuous perturbations as a result of the competition between the viscous torque, due to difference in drag on each side of the veins, and the dynamic viscous bending resistance (Cubaud and Mason, 2009). Further downstream, the undulations amplified and swirls started to develop on the sinuous veins by accumulating the high viscosity mafic phase into central bulbs and depleting the regions in between them forming tails. Gradually the tails thinned out and blended into the surrounding felsic melt forming discrete viscous emulsions/swirls. After separation, the amphibole constituting the emulsions started interacting with the surrounding felsic magma forming biotite at the periphery of the emulsions. Eventually, biotite is eroded away and new rinds simultaneously form on freshly eroded surfaces of emulsions facilitating the mixing process (Farner et al., 2014). Cubaud T and Mason TG (2009) New J. Phys. 11, 075029. Farner et al. (2014) Earth and Planetary Science Letters 393, 49-59. Freundt A and Schmincke HU (1992) Contrib Mineral Petrol 112, 1-19.

  7. Development of neutron measurement in high gamma field using new nuclear emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14more » MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)« less

  8. Creating nanoscale emulsions using condensation.

    PubMed

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  9. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  10. An instrument employing electronic counters and an emulsion chamber for studying heavy cosmic ray interactions (JACEE-3)

    NASA Technical Reports Server (NTRS)

    Austin, R. W.; Meegan, C. A.; Parnell, T. A.; Selig, W. J.; Watts, J. W.; Burnett, T. H.; Iwai, J.; Lord, J. J.; Strauscz, S.; Wilkes, R. J.; hide

    1983-01-01

    A JACEE-3 instrument was flown on a balloon in June 1982 for 6.1 sq m sr hr exposure at an average atmospheric depth of 5 gm/sq cm in order to study the cosmic ray spectra, composition, and interactions above 1 TeV. The nucleus-nucleus interactions were studied above 20 GeV/amu from z = 6 to z = 26. The electronic counters contained gas Cerenkov structures with a 1.0-cm thick lead glass and a 1.27-cm thick Teflon radiator. A comparison to the instrument prototype is made. Based on the electronic counter event data, the finding efficiency of the hodoscope is noted to be near 100 percent for z greater than or equal to 22. A comparison is made between the hodoscope-predicted position and track found at P3 in an emulsion chamber.

  11. Optimization of replacing pork back fat with grape seed oil and rice bran fiber for reduced-fat meat emulsion systems.

    PubMed

    Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Kim, Hyun-Wook; Lee, Ju-Woon; Chung, Hai-Jung; Kim, Cheon-Jei

    2010-01-01

    The effects of reducing pork fat levels from 30% to 20% and partially substituting the pork fat with a mix of grape seed oil (0%, 5%, 10% and 15%) and 2% rice bran fiber were investigated based on chemical composition, cooking characteristics, physicochemical and textural properties, and viscosity of reduced-fat meat batters. For reduced-fat meat batters containing grape seed oil and rice bran fiber the moisture and ash contents, uncooked and cooked pH values, yellowness, cohesiveness, gumminess, chewiness, and sarcoplasmic protein solubility were higher than in the control samples. The reduced-fat samples with increasing grape seed oil concentrations had lower cooking loss, emulsion stability, and apparent viscosity. The incorporation of grape seed oil and rice bran fiber successfully reduced the animal fat content in the final products while improving other characteristics.

  12. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces.

    PubMed

    Sarkar, Anwesha; Zhang, Shuning; Murray, Brent; Russell, Jessica A; Boxal, Sally

    2017-10-01

    In this study, we designed emulsions with an oil-water interface consisting of a composite layer of whey protein isolate (WPI, 1wt%) and cellulose nanocrystals (CNCs) (1-3wt%). The hypothesis was that a secondary layer of CNCs at the WPI-stabilized oil-water interface could protect the interfacial protein layer against in vitro gastric digestion by pepsin at 37°C. A combination of transmission electron microscopy, ζ-potential measurements, interfacial shear viscosity measurements and theoretical surface coverage considerations suggested the presence of CNCs and WPI together at the O/W interface, owing to the electrostatic attraction between complementarily charged WPI and CNCs at pH 3. Microstructural analysis and droplet sizing revealed that the presence of CNCs increased the resistance of the interfacial protein film to rupture by pepsin, thus inhibiting droplet coalescence in the gastric phase, which occurs rapidly in an emulsion stabilized by WPI alone. It appeared that there was an optimum concentration of CNCs at the interface for such barrier effects. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results further confirmed that the presence of 3wt% of CNCs reduced the rate and extent of proteolysis of protein at the interface. Besides, evidence of adsorption of CNCs to the protein-coated droplets to form more rigid layers, there is also the possibility that network formation by the CNCs in the bulk (continuous) phase reduced the kinetics of proteolysis. Nevertheless, structuring emulsions with mixed protein-particle layers could be an effective strategy to tune and control interfacial barrier properties during gastric passage of emulsions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-02-18

    Lipid oxidation is a serious problem for oil-containing food products because it negatively affects shelf life and nutritional composition. An antioxidant strategy commonly employed to prevent or delay oxidation in foods is to remove oxygen from the closed food-packaging system. An alternative technique is use of an edible oxygen scavenger to remove oxygen within the food. Ascorbic acid (AA) is a particularly promising antioxidant because of its natural label and multiple antioxidative functions. In this study, AA was tested as an oxygen scavenger in buffer and an oil-in-water (O/W) emulsion. The effects of transition metals on the ability of AA to scavenge oxygen were determined. Headspace oxygen decrease less than 1% in the medium-chain triacylglycerol (MCT) O/W emulsion system (pH 3 and 7). AA was able to almost completely remove dissolved oxygen (DO) in a buffered solution. Transition metals (Fe(2+) and Cu(+)) significantly accelerated the degradation of AA; however, iron and copper only increased DO depletion rates, by 10.6-16.4% from day 1 to 7, compared to the control. AA (2.5-20 mM) decreased DO in a 1% O/W emulsion system 32.0-64.0% and delayed the formation of headspace hexanal in the emulsion from 7 to over 20 days. This research shows that, when AA is used in an O/W emulsion system, oxidation of the emulsion system can be delay by multiple mechanisms.

  14. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH.

    PubMed

    Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca

    2018-02-05

    In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L

    2012-10-01

    Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Droplet-based microfluidics and the dynamics of emulsions

    NASA Astrophysics Data System (ADS)

    Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng

    2012-02-01

    Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)

  17. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.

    PubMed

    Liu, Fuguo; Zhu, Zhenbao; Ma, Cuicui; Luo, Xiang; Bai, Long; Decker, Eric Andrew; Gao, Yanxiang; McClements, David Julian

    2016-12-21

    Chemically unstable lipophilic bioactives, such as polyunsaturated lipids, often have to be encapsulated in emulsion-based delivery systems before they can be incorporated into foods, supplements, and pharmaceuticals. The objective of this study was to develop highly concentrated emulsion-based fish oil delivery systems using natural emulsifiers. Fish oil-in-water emulsions were fabricated using a highly efficient dual-channel high-pressure microfluidizer. The impact of oil concentration on the formation, physical properties, and oxidative stability of fish oil emulsions prepared using two natural emulsifiers (quillaja saponins and rhamnolipids) and one synthetic emulsifier (Tween-80) was examined. The mean droplet size, polydispersity, and apparent viscosity of the fish oil emulsions increased with increasing oil content. However, physically stable emulsions with high fish oil levels (30 or 40 wt %) could be produced using all three emulsifiers, with rhamnolipids giving the smallest droplet size (d < 160 nm). The stability of the emulsions to lipid oxidation increased as the oil content increased. The oxidative stability of the emulsions also depended on the nature of the emulsifier coating the lipid droplets, with the oxidative stability decreasing in the following order: rhamnolipids > saponins ≈ Tween-80. These results suggest that rhamnolipids may be particularly effective at producing emulsions containing high concentrations of ω-3 polyunsaturated fatty acids-rich fish oil.

  18. Friction and Wear Management Using Solvent Partitioning of Hydrophilic-Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2015-01-01

    Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.

  19. DIMENSION STABILIZED FIXED PHOTOGRAPHIC TYPE EMULSION AND A METHOD FOR PRODUCING SAME

    DOEpatents

    Gilbert, F.C.

    1962-03-13

    A process is given for stabilizing the dimensions of fixed gelatin-base photographic type emulsions containing silver halide, and particularly to such emulsions containing large amounts of silver chloride for use as nuclear track emulsions, so that the dimensions of the final product are the same as or in a predetermined fixed ratio to the dimensions of the emulsions prior to exposure. The process comprises contacting an exposed, fixed emulsion with a solution of wood rosin dissolved in ethyl alcohol for times corresponding to the dimensions desired, and thereafter permitting the alcohol to evaporate. (AEC)

  20. Psyllium husk gum: an attractive carbohydrate biopolymer for the production of stable canthaxanthin emulsions.

    PubMed

    Gharibzahedi, Seyed Mohammad Taghi; Razavi, Seyed Hadi; Mousavi, Seyed Mohammad

    2013-02-15

    The physical stability of the ultrasonically prepared emulsions containing canthaxanthin (CX) produced by Dietzia natronolimnaea HS-1 strain was maximized using a face central composite design (FCCD) of response surface methodology (RSM). The linear and interaction effects of main emulsion components (whey protein isolate (WPI, 0.4-1.2 wt%), psyllium husk gum (PHG, 1.5-4.5 wt%) and coconut oil (CO, 5-10 wt%)) on the stability were studied. The density, turbidity and droplet size of emulsions were also characterized to interpret the stability data. A significant second-order polynomial model was established (p<0.0001). Maximum stability of 98.8% was predicted at the optimum levels of formulation variables (WPI concentration 1.20 wt%, PHG content 3.30 wt%, CO concentration 5.43 wt%). The results also demonstrated that CO and WPI concentration had greater effect on the droplet size and density values, whereas the PHG:WPI ratio had a rather greater effect on the turbidity values. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Cheese powder as an ingredient in emulsion sausages: Effect on sensory properties and volatile compounds.

    PubMed

    Xiang, Chen; Ruiz-Carrascal, Jorge; Petersen, Mikael A; Karlsson, Anders H

    2017-08-01

    Different types of cheese powder were added to meat emulsion sausages in order to address its influence on chemical composition, volatile compounds profile and sensory properties, and its potential to reduce salt content through boosting saltiness. Addition of cheese powder to emulsion sausages modified their profile of volatile compounds. Blue cheese increased some ketones, alcohols, and esters, while brown cheese brought typical Maillard reaction compounds. Overall, addition of cheese powders to sausages enhanced the intensity of flavour traits. A mixture of hard and blue cheese powder showed the highest effect on boosting saltiness, while brown cheese powder showed the strongest umami and meat flavour boosting effect, and sausages with added blue cheese powder showed a more intense aftertaste. Hardness significantly increased due to the addition of blue cheese powder. Addition of cheese powder to emulsion sausages might be an interesting tool to boost flavour and reduce salt content in cooked sausages with no negative effect on saltiness or overall flavour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study.

    PubMed

    Zhang, Ruojie; Zhang, Zipei; Zhang, Hui; Decker, Eric Andrew; McClements, David Julian

    2015-09-01

    The potential gastrointestinal fate of oil-in-water emulsions containing lipid phases from different sources was examined: vegetable oils (corn, olive, sunflower, and canola oil); marine oils (fish and krill oil); flavor oils (orange and lemon oil); and, medium chain triglycerides (MCT). The lowest rates and extents of lipid digestion were observed for emulsified flavor oil, followed by emulsified krill oil. There was no appreciable difference between the final amounts of free fatty acids released for emulsified digestible oils. Differences in the digestibility of emulsions prepared using different oils were attributed to differences in their compositions, e.g., fatty acid chain length and unsaturation. The particle size distribution, particle charge, microstructure, and macroscopic appearance of the emulsions during passage through the simulated GIT depended on oil type. The results of this study may facilitate the design of functional foods that control the digestion and absorption of triglycerides, as well as the bioaccessibility of hydrophobic bioactives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: effect of preparation conditions on emulsion stability.

    PubMed

    Homayoonfal, Mina; Khodaiyan, Faramarz; Mousavi, Mohammad

    2015-05-01

    The major purpose of this study is to apply response surface methodology to model and optimise processing conditions for the preparation of beverage emulsions with maximum emulsion stability and viscosity, minimum particle size, turbidity loss rate, size index and peroxide value changes. A three-factor, five-level central composite design was conducted to estimate the effects of three independent variables: ultrasonic time (UT, 5-15 min), walnut-oil content (WO, 4-10% (w/w)) and Span 80 content (S80, 0.55-0.8). The results demonstrated the empirical models were satisfactorily (p < 0.0001) fitted to the experimental data. Evaluation of responses by analysis of variance indicated high coefficient determination values. The overall optimisation of preparation conditions was an UT of 14.630 min, WO content of 8.238% (w/w), and S80 content of 0.782% (w/w). Under this optimum region, responses were found to be 219.198, 99.184, 0.008, 0.008, 2.43 and 16.65 for particle size, emulsion stability, turbidity loss rate, size index, viscosity and peroxide value changes, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Emulsion Composition on Pulmonary Tobramycin Delivery During Antibacterial Perfluorocarbon Ventilation

    PubMed Central

    Orizondo, Ryan A.; Fabiilli, Mario L.; Morales, Marissa A.

    2016-01-01

    Abstract Background: The effectiveness of inhaled aerosolized antibiotics is limited by poor ventilation of infected airways. Pulmonary delivery of antibiotics emulsified within liquid perfluorocarbon [antibacterial perfluorocarbon ventilation (APV)] may solve this problem through better airway penetration and improved spatial uniformity. However, little work has been done to explore emulsion formulation and the corresponding effects on drug delivery during APV. This study investigated the effects of emulsion formulation on emulsion stability and the pharmacokinetics of antibiotic delivery via APV. Methods: Gravity-driven phase separation was examined in vitro by measuring emulsion tobramycin concentrations at varying heights within a column of emulsion over 4 hours for varying values of fluorosurfactant concentration (Cfs = 5–48 mg/mL H2O). Serum and pulmonary tobramycin concentrations in rats were then evaluated following pulmonary tobramycin delivery via aerosol or APV utilizing sufficiently stable emulsions of varying aqueous volume percentage (Vaq = 1%–5%), aqueous tobramycin concentration (Ct = 20–100 mg/mL), and Cfs (15 and 48 mg/mL H2O). Results: In vitro assessment showed sufficient spatial and temporal uniformity of tobramycin dispersion within emulsion for Cfs ≥15 mg/mL H2O, while lower Cfs values showed insufficient emulsification even immediately following preparation. APV with stable emulsion formulations resulted in 5–22 times greater pulmonary tobramycin concentrations at 4 hours post-delivery relative to aerosolized delivery. Concentrations increased with emulsion formulations utilizing increased Vaq (with decreased Ct) and, to a lesser extent, increased Cfs. Conclusions: The emulsion stability necessary for effective delivery is retained at Cfs values as low as 15 mg/mL H2O. Additionally, the pulmonary retention of antibiotic delivered via APV is significantly greater than that of aerosolized delivery and can be most effectively increased by increasing Vaq and decreasing Ct. APV has been further proven as an effective means of pulmonary drug delivery with the potential to significantly improve antibiotic therapy for lung disease patients. PMID:26741303

  5. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions.

    PubMed

    McClements, David Julian; Saliva-Trujillo, Laura; Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Yao, Mingfei; Xiao, Hang

    2016-10-01

    Many highly hydrophobic bioactives, such as non-polar nutrients, nutraceuticals, and vitamins, have a relatively low or variable oral bioavailability. The poor bioavailability profile of these bioactives may be due to limited bioaccessibility, poor absorption, and/or chemical transformation within the gastrointestinal tract (GIT). The bioavailability of hydrophobic bioactives can be improved using specially designed oil-in-water emulsions consisting of lipid droplets dispersed within an aqueous phase. The bioactives may be isolated from their natural environment and then incorporated into the lipid phase of emulsion-based delivery systems. Alternatively, the bioactives may be left in their natural environment (e.g., fruits or vegetables), and then ingested with emulsion-based excipient systems. An excipient emulsion may have no inherent health benefits itself, but it boosts the biological activity of bioactive ingredients co-ingested with it by altering their bioaccessibility, absorption, and/or chemical transformation. This review discusses the design and fabrication of excipient emulsions, and gives some examples of recent research that demonstrates their potential efficacy for improving the bioavailability of hydrophobic bioactives. The concept of excipient emulsions could be used to formulate emulsion-based food products (such as excipient sauces, dressings, dips, creams, or yogurts) specifically designed to increase the bioavailability of bioactive agents in natural foods, such as fruits and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Highway Binder Materials from Modified Sulfur-Water Emulsions

    DOT National Transportation Integrated Search

    1982-04-01

    This project had the objectives of developing and characterizing stable modified-sulfur water emulsions using sulfur-extended-asphalt and Sulphlex as base stocks. Anionic and cationic emulsions which had rapid and slow setting characteristics were st...

  7. Tunable volatile release from organogel-emulsions based on the self-assembly of β-sitosterol and γ-oryzanol.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2017-04-15

    A current challenge in the area of food emulsion is the design of microstructure that provides controlled release of volatile compounds during storage and consumption. Here, a new strategy addressed this problem at the fundamental level by describing the design of organogel-based emulsion from the self-assembly of β-sitosterol and γ-oryzanol that are capable of tuning volatile release. The results showed that the release rate (v 0 ), maximum headspace concentrations (C max ) and partition coefficients (k a / e ) above structured emulsions were significantly lower than unstructured emulsions and controlled release doing undergo tunable though the self-assembled interface and core fine microstructure from internal phase under dynamic and static condition. This result provides an understanding of how emulsions can behave as delivery system to better design novel food products with enhanced sensorial and nutritional attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours.

    PubMed

    Aluko, Rotimi E; Mofolasayo, Olawunmi A; Watts, Beverley M

    2009-10-28

    Commercial yellow pea seed flours prepared by a patented wet-milling process and pea protein isolate (PPI) were analyzed for emulsifying and foaming properties at pH 3.0, 5.0, and 7.0 and compared to soybean protein isolate (SPI). PPI and SPI formed emulsions with significantly smaller (p < 0.05) oil droplet sizes, 16-30 and 23-54 microm, respectively, than flours that primarily contained fiber such as Centara III and IV, or those that consisted mainly of starch: Centu-tex, Uptake 80 and Accu-gel. PPI was a better emulsifier than SPI at pH 7.0, and a better foaming agent at pH 3.0 and pH 7.0, although foaming capacity varied with sample concentration. Centu-tex and Uptake 80 have exactly the same chemical composition, but the latter has a much smaller flour particle size range, and had significantly smaller (p < 0.05) emulsion oil droplets. Incorporation of pea starch into SPI emulsions produced a synergistic effect that led to significant increases (p < 0.05) in emulsification capacity (reduced emulsion oil droplet size) when compared to SPI or starch alone. These results showed that PPI had generally significantly higher (p < 0.05) emulsion and foam forming properties than SPI, and that pea starch could be used to improve the quality of SPI-stabilized food emulsions.

  9. Stability of citral in oil-in-water emulsions prepared with medium-chain triacylglycerols and triacetin.

    PubMed

    Choi, Seung Jun; Decker, Eric Andrew; Henson, Lulu; Popplewell, L Michael; McClements, David Julian

    2009-12-09

    Citral is widely used in the beverage, food, and fragrance industries for its characteristic flavor profile. However, it chemically degrades over time in aqueous solutions due to an acid-catalyzed reaction, which leads to loss of desirable flavor notes and formation of off-flavor notes. The objective of this research was to examine the impact of organic phase composition [triacetin and medium-chain triacylglycerols (MCT)] on the oil-water partitioning and chemical degradation of citral in oil-in-water emulsions. MCT was present as emulsion droplets (d approximately 900 nm), whereas triacetin was present as microemulsion droplets (d approximately 10 nm). In the absence of organic phase, the rate of citral degradation increased as the aqueous phase pH was reduced from 7 to 3. The percentage of citral within the aqueous phase increased with increasing triacetin concentration at both pH 3 and 7, which was attributed to a reduction in MCT droplet concentration. There was no significant change in the particle size distribution of the emulsions during storage, independent of triacetin concentration and pH, which indicated that they were physically stable. Both 5 wt % MCT as emulsion droplets and 5 wt % triacetin as microemulsion droplets were able to appreciably slow citral degradation at pH 3. These results may have important implications for understanding and improving the chemical stability of citral in beverage emulsions.

  10. Application of guar-xanthan gum mixture as a partial fat replacer in meat emulsions.

    PubMed

    Rather, Sajad A; Masoodi, F A; Akhter, Rehana; Rather, Jahangir A; Gani, Adil; Wani, S M; Malik, A H

    2016-06-01

    The physicochemical, oxidative, texture and microstructure properties were evaluated for low fat meat emulsions containing varying levels of guar/xanthan gum mixture (1:1 ratio) as a fat substitute. Partial replacement of fat with guar/xanthan gum resulted in higher emulsion stability and cooking yield but lower penetration force. Proximate composition revealed that high fat control had significantly higher fat and lower moisture content due to the difference in basic formulation. Colour evaluation revealed that low fat formulations containing gum mixture had significantly lower lightness and higher yellowness values than high fat control formulation. However non-significant difference was observed in redness values between low fat formulations and the high fat control. The pH values of the low fat formulations containing gum mixture were lower than the control formulations (T0 and TC). The MetMb% of the high fat emulsion formulation was higher than low fat formulations. The significant increase of TBARS value, protein carbonyl groups and loss of protein sulphydryl groups in high fat formulation reflect the more oxidative degradation of lipids and muscle proteins during the preparation of meat emulsion than low fat formulations. The SEM showed a porous matrix in the treatments containing gum mixture. Thus, the guar/xanthan gum mixture improved the physicochemical and oxidative quality of low fat meat emulsions than the control formulations.

  11. Enzymatically interesterified fats based on mutton tallow and walnut oil suitable for cosmetic emulsions.

    PubMed

    Kowalska, M; Mendrycka, M; Zbikowska, A; Stawarz, S

    2015-02-01

    Formation of emulsion systems based on interesterified fats was the objective of the study. Enzymatic interesterification was carried out between enzymatic mutton tallow and walnut oil in the proportions 2 : 3 (w/w) to produce fats not available in nature. At the beginning of the interesterification process, the balance between the interesterification and fat hydrolysis was intentionally disturbed by adding more water to the catalyst (Lipozyme IR MR) of the reaction to produce more of the polar fraction monoacylglycerols [MAGs] and diacylglycerols [DAGs]. To obtain a greater quantity of MAGs and DAGs in the reaction environment via hydrolysis, water was added (11, 13, 14, 16 w-%) to the enzymatic preparation. The obtained fats were used to form emulsions. The emulsions were evaluated with respect to sensory and skin moisturizing properties by 83 respondents. Determination of emulsion stability using temperature and centrifugal tests was carried out. Morphology and the type of emulsions were determined. The respondents described the skin to which the emulsions in testing were applied as smooth, pleasant to touch and adequately moisturized. The work has demonstrated that interesterification of a mutton tallow and walnut oil blend resulted in new fats with very interesting characteristics of triacylglycerols that are not present in the environment. The results of the present work indicate the possibility of application of fats with the largest quantity of MAGs and DAGs as a fat base of emulsions in the cosmetic industries. The hypothesis assumed in this work of producing additional quantities of MAGs and DAGs (in the process of enzymatic interesterification) responsible for the stability of the system was confirmed. It should be pointed out that the emulsions based on interesterified fats exhibited a greater level of moisturization of the skin than the emulsions containing non-interesterified fat. Also, in the respondents' opinion, the emulsion containing fat, which was modified during enzymatic interesterification when 13% of water was added to the enzymatic preparation, exhibited the best sensory profile. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Formulation and evaluation of carrot seed oil-based cosmetic emulsions.

    PubMed

    Singh, Shalini; Lohani, Alka; Mishra, Arun Kumar; Verma, Anurag

    2018-05-08

    The present study deals with the evaluation of antiaging potential of carrot seed oil-based cosmetic emulsions. Briefly, cosmetic emulsions composed of carrot seed oil in varying proportions (2, 4, and 6% w/v) were prepared using the hydrophile-lipophile balance (HLB) technique. Coconut oil, nonionic surfactants (Tween 80 and Span 80), and xanthan gum were used as the oil phase, emulgent, and emulsion stabilizer, respectively. The formed emulsions were evaluated for various physical, chemical, and biochemical parameters such as the zeta potential, globule size measurement, antioxidant activity, sun protection factor (SPF), skin irritation, and biochemical studies. The zeta potential values ranged from -43.2 to -48.3, indicating good stability. The polydispersity index (PDI) of various emulsion formulations ranged from 0.353 to 0.816. 1,1-Diphenyl-2-picrylhydrazyl- (DPPH) and nitric oxide-free radical scavenging activity showed the antioxidant potential of the prepared carrot seed oil emulsions. The highest SPF value (6.92) was shown by F3 having 6%w/v carrot seed oil. Histopathological data and biochemical analysis (ascorbic acid (ASC) and total protein content) suggest that these cosmetic emulsions have sufficient potential to be used as potential skin rejuvenating preparations.

  13. Does lactobionic acid affect the colloidal structure and skin moisturizing potential of the alkyl polyglucoside-based emulsion systems?

    PubMed

    Tasic-Kostov, M Z; Reichl, S; Lukic, M Z; Jaksic, I N; Savic, S D

    2011-11-01

    Moisturizing creams are the most prescribed products in dermatology, essential in maintaining healthy skin as well as in the topical treatment of some diseases. The irritation potential of commonly used emulsifiers and moisturizing ingredients, but also their mutual interactions, could affect the functionality and safety of those dermopharmaceutics. The aim of this study was to promote moisturizing alkyl polyglucoside (APG)-based emulsion as vehicle for lactobionic acid (LA), advantageous representative of the alphahydroxyacids (AHAs)-multifunctional moisturizers, assessing the safety for use (in vitro acute skin irritation test using cytotoxicity assay compared with in vivo data obtained using skin bioengineering methods) and in vivo moisturizing capacity (bioengineering of the skin). In order to investigate possible interactions between APG mild natural emulsifier-based emulsion and LA, a deeper insight into the colloidal structure of the placebo and the emulsion with LA was given using polarization and transmission electron microscopy, rheology, thermal and texture analysis. This study showed that APG-based emulsions could be promoted as safe cosmetic/dermopharmaceutical vehicles and carriers for extremely acidic and hygroscopic AHA class of actives (specifically LA); prospective safety for human use of both APG and LA with the correlation between in vivo and in vitro findings was shown. However, it was revealed that LA strongly influenced the colloidal structure of the emulsion based on APGs and promoted the formation of lamellar structures which reflects onto the mode of water distribution within the cream. The advantageous skin hydrating potential of LA-containing emulsion vs. placebo was unlikely to be achieved, pointing that emulsions stabilized by lamellar liquid crystalline structures probably are not satisfying carriers for highly hygroscopic actives in order to reach the full moisturizing potential. Safe and effective use on dry skin is presumed.

  14. Different magnesium release profiles from W/O/W emulsions based on crystallized oils.

    PubMed

    Herzi, Sameh; Essafi, Wafa

    2018-01-01

    Water-in-oil-in-water (W/O/W) double emulsions based on crystallized oils were prepared and the release kinetics of magnesium ions from the internal to the external aqueous phase was investigated at T=4°C, for different crystallized lipophilic matrices. All the emulsions were formulated using the same surface-active species, namely polyglycerol polyricinoleate (oil-soluble) and sodium caseinate (water-soluble). The external aqueous phase was a lactose or glucose solution at approximately the same osmotic pressure as that of the inner droplets, in order to avoid osmotic water transfer phenomena. We investigated two types of crystallized lipophilic systems: one based on blends of cocoa butter and miglyol oil, exploring a solid fat content from 0 to 90% and the other system based on milk fat fractions for which the solid fat content varies between 54 and 86%. For double emulsions based on cocoa butter/miglyol oil, the rate of magnesium release was gradually lowered by increasing the % of fat crystals i.e. cocoa butter, in agreement with a diffusion/permeation mechanism. However for double emulsions based on milk fat fractions, the rate of magnesium release was independent of the % of fat crystals and remains the one at t=0. This difference in diffusion patterns, although the solid content is of the same order, suggests a different distribution of fat crystals within the double globules: a continuous fat network acting as a physical barrier for the diffusion of magnesium for double emulsions based on cocoa butter/miglyol oil and double globule/water interfacial distribution for milk fat fractions based double emulsions, through the formation of a crystalline shell allowing an effective protection of the double globules against diffusion of magnesium to the external aqueous phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development and characterization of an edible composite film based on chitosan and virgin coconut oil with improved moisture sorption properties.

    PubMed

    Binsi, P K; Ravishankar, C N; Srinivasa Gopal, T K

    2013-04-01

    An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties. © 2013 Institute of Food Technologists®

  16. A two-step approach for copper and nickel extracting and recovering by emulsion liquid membrane.

    PubMed

    Bi, Qiang; Xue, Juanqin; Guo, Yingjuan; Li, Guoping; Cui, Haibin

    2016-11-01

    The recycling of copper and nickel from metallurgical wastewater using emulsion liquid membrane (ELM) was studied. P507 (2-ethylhexyl phosphonic acid-2-ethylhexyl ester) and TBP (tributyl phosphate) were used as carriers for the extraction of copper and nickel by ELMs, respectively. The influence of four emulsion composition variables, namely, the internal phase volume fraction (ϕ), surfactant concentration (Wsurf), internal phase stripping acid concentration (Cio) and the carrier concentration (Cc), and the process variable treat ratio on the extraction efficiencies of copper or nickel were studied. Under the optimum conditions, 98% copper and nickel were recycled by using ELM. The results indicated that ELM extraction is a promising industrial application technology to retrieve valuable metals in low concentration metallurgical wastewater.

  17. Direct technique for monitoring lipid oxidation in water-in-oil emulsions based on micro-calorimetry.

    PubMed

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Leal-Calderon, Fernando; Cansell, Maud

    2017-09-01

    An experimental device based on the measurement of the heat flux dissipated during chemical reactions, previously validated for monitoring lipid oxidation in plant oils, was extended to follow lipid oxidation in water-in-oil emulsions. Firstly, validation of the approach was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions and measured directly in water-in-oil emulsions, in isothermal conditions at 60°C. Secondly, several emulsions based on plant oils differing in their n-3 fatty acid content were compared. The oxidability parameter derived from the enthalpy curves reflected the α-linolenic acid proportion in the oils. On the whole, the micro-calorimetry technique provides a sensitive method to assess lipid oxidation in water-in-oil emulsions without requiring any phase extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.

    PubMed

    Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F

    2017-07-19

    The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.

  19. Critical frequency for coalescence of emulsions in an AC electric field

    NASA Astrophysics Data System (ADS)

    Liu, Zhou; Ali, Faizi Hammad; Shum, Ho Cheung

    2017-11-01

    Applying an electric field to trigger the coalescence of emulsions has been applied in various applications which include crude oil recovery, emulsion stability characterization as well as pico-injection and droplet-based chemical reaction in microfluidics. In this work, we systematically investigated the responses of surfactant-stabilized emulsions to a controlled AC electric field using a customer-built chip. At a given amplitude of the AC voltage, we found a critical frequency beyond which the emulsions remain stable. When the frequency is decreased to below the critical value, emulsions coalesce immediately. Such critical frequency is found to be dependent of amplitude of the AC voltage, viscosity of the fluids, concentration and type of the surfactant as well as the electric conductivity of the droplet phase. Using a model based on the drainage of thin film, we have explored the mechanism behind and interpret this phenomenon systematically. Our work extends the understanding of the electro-coalescence of emulsions and can be beneficial for any applications involve the coalescence of droplets in an AC electric field.

  20. Fat emulsions based on structured lipids (1,3-specific triglycerides): an investigation of the in vivo fate.

    PubMed

    Hedeman, H; Brøndsted, H; Müllertz, A; Frokjaer, S

    1996-05-01

    Structured lipids (1,3-specific triglycerides) are new chemical entities made by enzymatic transesterification of the fatty acids in the 1,3 positions of the triglyceride. The purpose of this study is to characterize structured lipids with either short chain fatty acids or medium chain fatty acids in the 1,3 positions with regard to their hydrophobicity, and investigate the in vivo fate in order to evaluate the potential of structured lipids as core material in fat emulsions used as parenteral drug delivery system. The lipids were characterized by employing reversed phase high performance liquid chromatography. The biodistribution of radioactively labeled emulsions was studied in rats. By employing high performance liquid chromatography a rank order of the hydrophobicities of the lipids could be given, with the triglycerides containing long chain fatty acids being the most hydrophobic and the structured lipid with short chain fatty acids in the 1,3 positions the least. When formulated as fat emulsions, the emulsion based on structured lipids with short fatty acids in the 1,3 positions was removed slower from the general blood circulation compared to emulsions based on lipids with long chain fatty acids in the 1,3 positions. The type of core material influences the in vivo circulation time of fat emulsions.

  1. Complex Particulate Biomaterials as Immunostimulant-Delivery Platforms

    PubMed Central

    Mamat, Uwe; Wilke, Kathleen; Villaverde, Antonio; Roher, Nerea

    2016-01-01

    The control of infectious diseases is a major current challenge in intensive aquaculture. Most commercial vaccines are based on live attenuated or inactivated pathogens that are usually combined with adjuvants, oil emulsions being as the most widely used for vaccination in aquaculture. Although effective, the use of these oil emulsions is plagued with important side effects. Thus, the development of alternative safer and cost-effective immunostimulants and adjuvants is highly desirable. Here we have explored the capacity of inclusion bodies produced in bacteria to immunostimulate and protect fish against bacterial infections. Bacterial inclusion bodies are highly stable, non-toxic protein-based biomaterials produced through fully scalable and low-cost bio-production processes. The present study shows that the composition and structured organization of inclusion body components (protein, lipopolysaccharide, peptidoglycan, DNA and RNA) make these protein biomaterials excellent immunomodulators able to generically protect fish against otherwise lethal bacterial challenges. The results obtained in this work provide evidence that their inherent nature makes bacterial inclusion bodies exceptionally attractive as immunostimulants and this opens the door to the future exploration of this biomaterial as an alternative adjuvant for vaccination purposes in veterinary. PMID:27716780

  2. Estimation of the Reactive Flow Model Parameters for an Ammonium Nitrate-Based Emulsion Explosive Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. B.; Silva, C.; Mendes, R.

    2010-10-01

    A real coded genetic algorithm methodology that has been developed for the estimation of the parameters of the reaction rate equation of the Lee-Tarver reactive flow model is described in detail. This methodology allows, in a single optimization procedure, using only one experimental result and, without the need of any starting solution, to seek the 15 parameters of the reaction rate equation that fit the numerical to the experimental results. Mass averaging and the plate-gap model have been used for the determination of the shock data used in the unreacted explosive JWL equation of state (EOS) assessment and the thermochemical code THOR retrieved the data used in the detonation products' JWL EOS assessments. The developed methodology was applied for the estimation of the referred parameters for an ammonium nitrate-based emulsion explosive using poly(methyl methacrylate) (PMMA)-embedded manganin gauge pressure-time data. The obtained parameters allow a reasonably good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.

  3. Quantifying Asphalt Emulsion-Based Chip Seal Curing Times Using Electrical Resistance Measurements.

    DOT National Transportation Integrated Search

    2017-04-15

    Chip sealing typically consists of covering a pavement surface with asphalt emulsion into which aggregate chips are embedded. The asphalt emulsion cures through the evaporation of water, thus providing mechanical strength to adhere to the pavement wh...

  4. Nonflammable coating compositions. [for use in high oxygen environments

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.; Key, C. F.; Harwell, R. J. (Inventor)

    1974-01-01

    Nonflammable coating compositions are described for use in high-oxygen environments which include an aqueous suspension of synthetic mica, an alkali metal silicate gelant and a waterbase latex resin emulsion. Inorganic white and/or color pigments and additives such as glass microballoons are employed to provide a wide range of colors and optical properties.

  5. Silicone-containing aqueous polymer dispersions with hybrid particle structure.

    PubMed

    Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna

    2015-09-01

    In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.

  6. Application of Complex Fluids in Lignocellulose Processing

    NASA Astrophysics Data System (ADS)

    Carrillo Lugo, Carlos A.

    Complex fluids such as emulsions, microemulsions and foams, have been used for different applications due to the multiplicity of properties they possess. In the present work, such fluids are introduced as effective media for processing lignocellulosic biomass. A demonstration of the generic benefits of complex fluids is presented to enhance biomass impregnation, to facilitate pretreatment for fiber deconstruction and to make compatible cellulose fibrils with hydrophobic polymers during composite manufacture. An improved impregnation of woody biomass was accomplished by application of water-continuous microemulsions. Microemulsions with high water content, > 85%, were formulated and wood samples were impregnated by wicking and capillary flooding at atmospheric pressure and temperature. Formulations were designed to effectively impregnate different wood species during shorter times and to a larger extent compared to the single components of the microemulsions (water, oil or surfactant solutions). The viscosity of the microemulsions and their interactions with cell wall constituents in fibers were critical to define the extent of impregnation and solubilization. The relation between composition and formulation variables and the extent of microemulsion penetration in different woody substrates was studied. Formulation variables such as salinity content of the aqueous phase and type of surfactant were elucidated. Likewise, composition variables such as the water-to-oil ratio and surfactant concentration were investigated. These variables affected the characteristics of the microemulsion and determined their effectiveness in wood treatment. Also, the interactions between the surfactant and the substrate had an important contribution in defining microemulsion penetration in the capillary structure of wood. Microemulsions as an alternative pretreatment for the manufacture of cellulose nanofibrils (CNFs) was also studied. Microemulsions were applied to pretreat lignin-free and lignin-containing fibers obtained from various processes. Incorporation of active agents in the microemulsion facilitated fiber pretreatment before deconstruction via grinding and microfluidization. The energy consumed during the manufacture of cellulose nanofibrils was reduced by up to 55 and 32% in the case of lignin-containing and lignin-free fibers. Moreover, such pre-treatment did not affect negatively the mechanical properties of films prepared with the produced CNF. CNF was also used to enhance the stability of normal and multiple emulsions of the water-in-oil-in-water (W/O/W) type and to prevent their creaming. This was achieved by the marked increase in viscosity of the aqueous phase in the presence CNF. Finally, water-continuous emulsions were used to prepare nanocomposite fibers containing polystyrene and CNF. The morphology of composite fibers obtained after electrospinning of emulsions incorporating polystyrene and CNF was affected by parameters such the concentration of surfactant additives present in the microemulsion and the conductivity of the aqueous phase. Overall, emulsions and microemulsions are presented as a convenient platform to improve the compatibility between polymers of different hydrophilicity, to facilitate their processing and integration in composites.

  7. Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions

    NASA Astrophysics Data System (ADS)

    Cates, Michael E.; Tjhung, Elsen

    2018-02-01

    Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.

  8. Spreading of Emulsions on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Kavehpour, Pirouz

    2012-11-01

    The wettability of emulsions is an important factor with explicit influence in an extensive variety of industrial applications ranging from the petroleum to food industries. Surprisingly, there is no comprehensive study of emulsion spreading to date; this is due to the complexity of the structure of the emulsions and non-homogeneity of the dispersed phase bubbles in size as well as distribution through the emulsion. The spreading of water/silicone oil emulsions on glass substrates was investigated. The emulsions were prepared with varying volume fractions of water dispersed in silicone oil, with addition of small amounts of surfactant to stabilize the emulsion structure. The time dependent variation of dynamic contact angle, base diameter, and the spreading rate of the droplets of an emulsion are different from a pure substance. The effect of water/silicone oil weight percentage as well as the droplet size and dispersed phase bubble size were also investigated. The weight percentage of water/silicone oil emulsion and droplet size did not have significant influence on the spreading dynamics; however the dispersed phase drop size affected the spreading dynamics substantially.

  9. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Protection of active aroma compound against moisture and oxygen by encapsulation in biopolymeric emulsion-based edible films.

    PubMed

    Hambleton, Alicia; Debeaufort, Frédéric; Beney, Laurent; Karbowiak, Thomas; Voilley, Andrée

    2008-03-01

    Edible films made of iota-carrageenans display interesting advantages: good mechanical properties, stabilization of emulsions, and reduction of oxygen transfers. Moreover, the addition of lipids to iota-carrageenan-based films to form emulsified films decreases the transfer of water vapor and can be considered to encapsulate active molecules as flavors. The aim of this study was to better understand the influence of the composition and the structure of the carrageenan-based film matrices on its barrier properties and thus on its capacity to encapsulate and to protect active substances encapsulated. Granulometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy characterizations of films with or without flavor and/or fat showed that the flavor compound modifies the film structure because of interactions with the iota-carrageenan chains. The study of the water vapor permeability (WVP), realized at 25 and 35 degrees C and for three relative humidity differentials (30-100%, 30-84%, 30-75%), showed that the flavor compound increases significantly the WVP, especially for the weaker gradients, but has no effect on the oxygen permeability. This study brings new understanding of the role of carrageenan as a film matrix and on its capacity to protect encapsulated flavors.

  11. The Great Margarine Meltdown.

    ERIC Educational Resources Information Center

    DeMoura, John M.; Darrington, Richard W.

    1990-01-01

    Presented is an activity in which the composition of margarine is analyzed. Materials and procedures are discussed. An extension activity on emulsions is suggested. Background information on the history of margarine is provided. (CW)

  12. The role of lecithin degradation on the pH dependent stability of halofantrine encapsulated fat nano-emulsions.

    PubMed

    Haidar, Iman; Harding, Ian H; Bowater, Ian C; Eldridge, Daniel S; Charman, William N

    2017-08-07

    We report on the successful incorporation of the antimalarial drug, halofantrine, into laboratory based soybean oil emulsions which were designed to mimic the commercially available parenteral fat emulsion, Intralipid ® . A high pH (minimum of pH 9, preferable pH of 11) was required for the drug laden emulsion to remain stable on storage and also to resist breaking under various stresses. Ageing of lecithin samples on storage was noted to result in degradation and a decrease in pH. We argue that this is the main reason for a similar decrease in pH for lecithin based emulsions and subsequent instability in drug laden emulsions. As expected, incorporation of the drug (halofantrine) resulted in lower stability. The (intensity weighted) particle size increased from 281nm for the drug free emulsion to 550nm following a loading of 1gL -1 of halofantrine, indicative of a lowering in stability and this was reflected in a shorter shelf life. Interestingly, incorporation of even higher concentrations of drug then resulted in better stability albeit never as stable as the drug free emulsion. We also report on unusual and complex surface tension behaviour for fresh lecithin where multiple critical concentration points were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, David; Golomb, Dan; Shi, Guang

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequentlymore » changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term globule refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 μm range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 μm or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 μm (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety of conditions that are suitable for permanent sequestration of carbon dioxide. A variety of mixtures of water, CO{sub 2} and particles may also provide suitable emulsions capable of PS. In addition, it is necessary to test the robustness of PSE formation as composition changes to be certain that emulsions of appropriate size and stability form under conditions that might vary during actual large scale EOR and sequestration operations. The goal was to lay the groundwork for an apparatus and formulation that would produce homogenous microemulsions of CO{sub 2}-in-water capable of readily mixing with the waters of deep saline aquifers and allow a safer and more permanent sequestration of carbon dioxide. In addition, as a beneficial use, we hoped to produce homogenous microemulsions of water-in-CO{sub 2} capable of readily mixing with pure liquid or supercritical CO{sub 2} for use in Enhanced Oil Recovery (EOR). However, true homogeneous microemulsions have proven very difficult to produce and efforts have not yielded either a formulation or a mixing strategy that gives emulsions that do not settle out or that can be diluted with the continuous phase in varying proportions. Other mixtures of water, CO{sub 2} and particles, that are not technically homogeneous microemulsions, may also provide suitable emulsions capable of PS and EOR. For example, a homogeneous emulsion that is not a microemulsion might also provide all of the necessary characteristics desired. These characteristics would include easy formation, stability over time, appropriate size and the potential for mineralization under conditions that would be encountered under actual large scale sequestration operations. This report also describes work with surrogate systems in order to test conditions.« less

  14. Enhanced fish oil-in-water emulsions enabled by rapeseed lecithins obtained under different processing conditions.

    PubMed

    Li, Jingbo; Pedersen, Jacob Nedergaard; Anankanbil, Sampson; Guo, Zheng

    2018-10-30

    It is hypothesized that rapeseed lecithins may have different emulsifying and antioxidant properties in delivering fish oil compared to soy lecithin based on previous studies. The results showed that in vitro antioxidant activities of rapeseed lecithins were stronger than those of soy lecithin. Emulsions stabilized by rapeseed based lecithins and DATEM were stable over 3 months at 4 °C, whereas the creaming of emulsions containing soy lecithin started immediately after its preparation. Zeta-potential of rapeseed lecithins was higher than soy lecithin and DATEM, which partially contributed to the emulsion stability. Although the particle sizes of emulsions prepared by rapeseed lecithins increased after 14 days storage, no creaming was observed. Lipid oxidation as indicated by TBARS values suggested that DATEM was the most unfavorable, followed by soy lecithin. It is concluded that rapeseed lecithins are better than soy lecithin and DATEM in terms of emulsion stability and antioxidant capability, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.

    PubMed

    Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S

    2018-03-14

    Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this encapsulation technology is applicable to other hydrophilic payloads such as polyols, aromatic amines, and aromatic heterocyclic bases. Such payloads are important for the development of extended pot or shelf life systems and responsive coatings that report, protect, modify, and heal themselves without intervention.

  16. Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions.

    PubMed

    Pan, Yuanjie; Nitin, N

    2015-11-01

    Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.

    PubMed

    Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A

    2018-06-01

    Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.

  18. Substitution of Standard Soybean Oil with Olive Oil-Based Lipid Emulsion in Parenteral Nutrition: Comparison of Vascular, Metabolic, and Inflammatory Effects

    PubMed Central

    Siqueira, Joselita; Smiley, Dawn; Newton, Christopher; Le, Ngoc-Anh; Gosmanov, Aidar R.; Spiegelman, Ronnie; Peng, Limin; Osteen, Samantha J.; Jones, Dean P.; Quyyumi, Arshed A.; Ziegler, Thomas R.

    2011-01-01

    Context: Soybean oil-based lipid emulsions are the only Food and Drug Administration-approved lipid formulation for clinical use in parenteral nutrition (PN). Recently concerns with its use have been raised due to the proinflammatory effects that may lead to increased complications because they are rich in ω-6 polyunsaturated fatty acids. Methods: This was a prospective, randomized, controlled, crossover study comparing the vascular, metabolic, immune, and inflammatory effects of 24-h infusion of PN containing soybean oil-based lipid emulsion (Intralipid), olive oil-based (ClinOleic), lipid free, and normal saline in 12 healthy subjects. Results: Soybean oil-PN increased systolic blood pressure compared with olive oil-PN (P < 0.05). Soybean oil PN reduced brachial artery flow-mediated dilatation from baseline (−23% at 4 h and −25% at 24 h, both P < 0.01); in contrast, olive oil PN, lipid free PN, and saline did not change either systolic blood pressure or flow-mediated dilatation. Compared with saline, soybean oil PN, olive oil PN, and lipid free PN similarly increased glucose and insulin concentrations during infusion (P < 0.05). There were no significant changes in plasma free fatty acids, lipid profile, inflammatory and oxidative stress markers, immune function parameters, or sympathetic activity between soybean oil- and olive oil-based lipid emulsions. Conclusion: The 24-h infusion of PN containing soybean oil-based lipid emulsion increased blood pressure and impaired endothelial function compared with PN containing olive oil-based lipid emulsion and lipid-free PN in healthy subjects. These vascular changes may have significant implications in worsening outcome in subjects receiving nutrition support. Randomized controlled trials with relevant clinical outcome measures are needed in patients receiving PN with olive oil-based and soybean oil-based lipid emulsions. PMID:21832112

  19. Force Network of a 2D Frictionless Emulsion System

    NASA Astrophysics Data System (ADS)

    Desmond, Kenneth; Weeks, Eric R.

    2010-03-01

    We use a quasi-two-dimensional emulsion as a new experimental system to measure various jamming transition properties. Our system consist of confining oil-in-water emulsion droplets between two parallel plates, so that the droplets are squeezed into quasi-two dimensional disks, analogous to granular photoelastic disks. By varying the droplet area fraction, we investigate the force network of this system as we cross through the jamming transition. At a critical area fraction, the composition of the system is no longer characterized primarily by circular disks, but by disks deformed to varying degrees. Quantifying the deformation provides information about the forces acting upon each droplet, and ultimately the force network. The probability distribution of forces is similar to that found for photoelastic disks, with the width of the force distribution narrowing with increasing packing fraction.

  20. GEMINI-TITAN (GT)-XI - MISC. EXPERIMENTS - MSC

    NASA Image and Video Library

    1966-03-22

    S66-05515 (2 June 1966) --- Gemini-11 Experiment S-9 Nuclear Emulsion. This experiment will be used to study the cosmic radiation incident on Earth's atmosphere, to obtain detailed chemical composition of the heavy primary nuclei and to search for rare particles. Equipment is a rectangular package eight and a half by six by three inches weighing 15 pounds and including the nuclear emulsion film stack, motor to advance the emulsion and a timer to regulate the motor. The package is mounted atop the spacecraft retro adapter section prior to launch, is activated at insertion, and is retrieved by the EVA pilot. The experiment is conducted with the spacecraft in plus or minus 15 degrees of Earth's average magnetic field vector. Sponsors are NASA's Office of Space Science and Applications and the U.S. Naval Research Laboratories. Photo credit: NASA

  1. Preparation of hydroxyapatite/poly(lactic acid) hybrid microparticles for local drug delivery

    NASA Astrophysics Data System (ADS)

    Loca, D.; Locs, J.; Berzina-Cimdina, L.

    2013-12-01

    Calcium phosphate (CaP) bioceramic is well known as bioactive and biocompatible material in bone tissue regeneration applications. Apatitic CaP, especially nano sized hydroxyapatite (NHAp), is more similar to the natural apatite presented in the bone tissue than CaP bioceramics. In the current research NHAp was modified using biodegradable polymer - poly(lactic acid) (PLA) to develop composites providing bone regeneration and local drug delivery. NHAp/PLA microcapsules were prepared using solid-in-water-in-oil-in-water (s/w1/o/w2) encapsulation technology. The impact of primary and secondary emulsion stability on the emulsion droplet and microparticle properties was evaluated. The stability of final emulsion can be increased by varying the process parameters. Stable s/w1/o/w2 emulsion using 3ml of NHAp suspension, not less than 100ml of 4% PVA water solution and 10ml of 10% PLA solution in dichloromethane can be obtained. S/w1/o/w2 microencapuslation method can be effectively used for the preparation of multi-domain microcapsules achieving high NHAp encapsulation efficacy (93%).

  2. Environmentally safe oil-field reagents for development and operation of oil-gas deposits

    NASA Astrophysics Data System (ADS)

    Fakhreeva, A. V.; Manaure, D. A.; Dokichev, V. A.; Voloshin, A. I.; Telin, A. G.; Tomilov, Yu V.; Nifantiev, N. E.

    2018-04-01

    Sodium-carboxymethylcellulose and arabinogalactane inhibits the crystallization of calcium carbonate from a supersaturated aqueous solution at 80°C. The sizes of formed crystals CaCO3 in the presence of arabinogalactane, sodium-carboxymethylcellulose and neonol AF 9-10 decrease on an average 7-12 μm and a change of their structure. It is expected, that the mechanism of inhibitionis in specific adsorption polysaccharides and neonol on occurring crystalline surface of the calcium carbonate, both at the expense of electrostatic interaction of functional groups with Ca2+ ions, located on the surface of the crystal, and due to coordination and hydrogen bonds with oxygen atoms and HO-groups of additives. Oil-water emulsion rheology in the presence of neonol AF 9-10 has been studied. It is shown that neonol AF 9-10 decrease viscosity natural water-oil emulsion by 25 times. Addition of 5% neonol to water-oil emulsion leads to formation more than 20 stable emulsion forms of different density and composition. New highly effective “green” oilfield reagents have been developed on the basis of neonol and natural polysaccharides.

  3. Formulating orange oil-in-water beverage emulsions for effective delivery of bioactives: Improvements in chemical stability, antioxidant activity and gastrointestinal fate of lycopene using carrier oils.

    PubMed

    Meroni, Erika; Raikos, Vassilios

    2018-04-01

    The influence of carrier oil type on the chemical stability, antioxidant properties and bioaccessibility of lycopene in orange oil-in-water beverage emulsions was investigated. The emulsions were formulated with orange oil (A), which was partially (50%) replaced with tributyrin (B) or corn oil (C) because of their distinctively different fatty acid composition. The addition of corn oil enhanced the physical stability of the beverage during chilled storage by inhibiting Ostwald ripening. The formation of oxidation products was insignificant after storage for 28 days at 4 °C, regardless the type of added oil. Lycopene was more susceptible to chemical degradation in the presence of unsaturated, long chain triglycerides and the retention followed the order: A (87.94%), B (64.41%) and C (57.39%). Interestingly, bioaccessibility of lycopene was significantly lower for emulsions formulated with 50% corn oil as opposed to 100% orange oil as indicated by the simulated in vitro gastric digestion model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  5. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    PubMed Central

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810

  6. Steroidal compounds in commercial parenteral lipid emulsions.

    PubMed

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P; Siddiqui, Rafat A

    2012-08-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn(®) II, Liposyn(®) III, Lipofundin(®) MCT, Lipofundin(®) N, Structolipid(®), Intralipid(®), Ivelip(®) and ClinOleic(®). Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  7. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  8. A comparative study of the physicochemical properties of a virgin coconut oil emulsion and commercial food supplement emulsions.

    PubMed

    Khor, Yih Phing; Koh, Soo Peng; Long, Kamariah; Long, Shariah; Ahmad, Sharifah Zarah Syed; Tan, Chin Ping

    2014-07-01

    Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.

  9. Effects of parenteral structured lipid emulsion on modulating the inflammatory response in rats undergoing a total gastrectomy.

    PubMed

    Lin, Ming-Tsan; Yeh, Sung-Ling; Tsou, Shung-Sheng; Wang, Ming-Yang; Chen, Wei-Jao

    2009-01-01

    Structured lipid emulsion improves the nitrogen balance and is rapidly cleared from the blood of moderately catabolic patients. However, the effects of structured lipids on inflammatory reactions during major surgery are not clear. This study investigated the effect of a parenteral structured triacylglycerol emulsion on leukocyte adhesion molecule expression and inflammatory mediator production in rats undergoing a total gastrectomy. Normal rats with internal jugular catheters were assigned to three experimental groups and received total parenteral nutrition. At the same time, a total gastrectomy was performed on the experimental groups. The total parenteral nutrition solutions were isonitrogenous and identical in nutrient compositions except for differences in the composition of the fat emulsion. Group 1 received a conventional fat emulsion with long-chain triacylglycerols (LCTs), group 2 received a physical mixture of medium-chain triacylglycerols (MCTs) and LCTs (MCT/LCT), and group 3 received structured lipids composed of MCTs and LCTs (STG). Half of the rats in each respective group were sacrificed 1 d and the other half 3 d after surgery to examine the analytical parameters. Plasma cholesterol and free fatty acid levels in the STG group were lower than those in the other groups after surgery. The STG group had lower leukocyte CD11a/CD18 expressions than the MCT/LCT group 3 d after surgery, and CD11b/CD18 expressions in the STG group were lower than those in the LCT group on postoperative days. The STG group had higher monocyte chemotactic protein-1 and macrophage inflammatory protein-2 levels in peritoneal lavage fluid than did the other two groups. These results suggest that, compared with the LCT and MCT/LCT groups, rats administered STG had lower plasma lipid concentrations and leukocyte integrin expressions. In addition, STG administration may cause increased recruiting of neutrophils and monocytes at the site of injury and enhance antipathogenicity in rats undergoing a total gastrectomy.

  10. The FASES instrument development and experiment preparation for the ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Gollinger, Klaus; Greger, Ralf; Dettmann, Jan; Winter, Josef; Dewandre, Thierry; Castiglione, Luigi; Vincent-Bonnieu, Sebastien; Liggieri, Libero; Clausse, Daniele; Antoni, Mickael

    The FASES experiments target the investigation of the stability of emulsions. The main objec-tives are the study of the surfactant adsorption at the liquid / liquid interfaces, the interaction of the droplets as well as the behaviour of the liquid film between nearby drops. Particular focus is given to the dynamic droplet evolution during emulsion destabilisation. The results of the experiments shall support development of methods for the modelling of droplet size distri-butions, which are important to many industries using stable emulsions like food production, cosmetics and pharmaceutics or unstable emulsions as required for applications in waste water treatment or crude oil recovery. The development of the experimental instrumentation was initiated in 2002. The flight instru-ment hardware development was started in 2004 and finally the flight unit was completed in 2009. Currently the final flight preparation is proceeding targeting a launch to the International Space Station (ISS) with Progress 39P in September 2010. The experiment setup of the instrument is accommodated in a box type insert called Experiment Container (EC), which will be installed in the Fluid Science Laboratory part of the European Columbus module of the ISS. The EC is composed of two diagnostics instruments for the investigation of transparent and opaque liquid emulsion. The transparent emulsions will be subject to the experiment called "Investigations on drop/drop interactions in Transparent Emulsions" (ITEM). The opaque emulsion samples will be studied in the experiment called "Investigations on concentrated or opaque Emulsions and on Phase Inversions" (EMPI). The thermal conditioning unit (TCU) allows performing homogeneous thermalization, tem-perature sweeps, emulsion preparation by stirrer, and optical diagnostics with a scanning mi-croscope. The objective of the instrument is the 3D reconstruction of the emulsion droplet distribution in the liquid matrix in terms of the droplet sizes, location and their time depen-dent evolution. The TCU will be used for the stability experiment ITEM-S and the droplet freezing experiment ITEM-F. The Differential Scanning Calorimeter (DSC) will give an information about the evolution of the emulsion through the droplet size distribution and the dispersion state of the droplets within the emulsion during a controlled temperature sweep by measuring the latent heat of droplet freezing and melting during the EMPI experiments. For this purpose the calorimeter is equipped with a reference sample filled with a pure liquid matrix and a similar measurement sample filled with the specific emulsion under investigation. The differential heat flux between measurement sample and reference sample is measured with a sensitive heat flux sensor. Each instrument is serviced by a robotic sample stowage system, which accommodates in total 44 different ITEM and EMPI emulsion samples each filled with a specific composition of the emulsion. Currently the flight preparation is ongoing with particular focus on the preparation of the emulsion flight sample set and the instrument's operating parameters. The FASES flight instrument was developed by ASTRIUM Space Transportation Germany with support of RUAG Aerospace Wallisellen under ESA / ESTEC contract. The science team of FASES is supported by ESA/ESTEC (Microgravity Application Programme, AO99-052).

  11. Emerging clinical benefits of new generation fat emulsions in preterm neonates

    USDA-ARS?s Scientific Manuscript database

    Soybean oil-based intravenous fat emulsions (IVFEs) have been the predominant parenteral nutrition IVFE used in the United States for neonates over the past 45 years. Even though this emulsion has proven useful in supplying infants with energy for growth and essential fatty acids, there have been co...

  12. The effects of different lipid emulsions on the lipid profile, fatty acid composition, and antioxidant capacity of preterm infants: A double-blind, randomized clinical trial.

    PubMed

    Wang, Ying; Feng, Yi; Lu, Li-Na; Wang, Wei-Ping; He, Zhen-Juan; Xie, Li-Juan; Hong, Li; Tang, Qing-Ya; Cai, Wei

    2016-10-01

    Olive oil (OO), medium-chain triglycerides (MCT)/long-chain triglycerides (LCT) mixture and soybean oil (SO) lipid emulsions are currently used for preterm infants in China. The aim of our study was to compare the lipid profile, fatty acid composition, and antioxidant capacity of preterm infants administered OO, MCT/LCT, or SO lipid emulsions. In this study, 156 preterm infants (birth weight < 2000 g and gestational age < 37 weeks) received parenteral nutrition (PN) containing OO, MCT/LCT, or SO lipid emulsions for a minimum of 14 d. On days 0, 7, and 14, the lipid profile, fatty acid composition and antioxidant capacity were analyzed. On day 7, HDL levels in the MCT/LCT group were significantly lower than in the OO (1.06 ± 0.40 mmol/L) or SO groups. LDL levels were higher in the OO group than in the MCT/LCT or SO groups on day 7. A-I/B was higher in MCT/LCT than in OO or SO groups. Myristic acid (C14:0) levels on days 7 and 14 increased in MCT/LCT compared to the OO and SO groups. The OO group had higher oleic acid (C18:1n9) levels than the two other groups. Linoleic acid (C18:2n6), linolenic acid (C18:3n3), and eicosapentaenoic acid (20:5n3) were significantly lower in the OO group than in MCT/LCT or SO groups. Monounsaturated fatty acid levels decreased, and ω-6 polyunsaturated fatty acid and essential fatty acids levels increased in MCT/LCT and SO groups. No significant differences were obtained in SOD, MDA, GSH-Px, and T-AOC among the groups. The three lipid emulsions were safe and well tolerated in preterm infants. Oleic acid (C18:1n9) levels increased and LA (C18:2n6), ALA (C18:3n3), and EPA (C20:5n23) levels decreased in OO compared to MCT/LCT or SO. NCT01683162, https://register.clinicaltrials.gov/. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Application of D-optimal experimental design method to optimize the formulation of O/W cosmetic emulsions.

    PubMed

    Djuris, J; Vasiljevic, D; Jokic, S; Ibric, S

    2014-02-01

    This study investigates the application of D-optimal mixture experimental design in optimization of O/W cosmetic emulsions. Cetearyl glucoside was used as a natural, biodegradable non-ionic emulsifier in the relatively low concentration (1%), and the mixture of co-emulsifiers (stearic acid, cetyl alcohol, stearyl alcohol and glyceryl stearate) was used to stabilize the formulations. To determine the optimal composition of co-emulsifiers mixture, D-optimal mixture experimental design was used. Prepared emulsions were characterized with rheological measurements, centrifugation test, specific conductivity and pH value measurements. All prepared samples appeared as white and homogenous creams, except for one homogenous and viscous lotion co-stabilized by stearic acid alone. Centrifugation testing revealed some phase separation only in the case of sample co-stabilized using glyceryl stearate alone. The obtained pH values indicated that all samples expressed mild acid value acceptable for cosmetic preparations. Specific conductivity values are attributed to the multiple phases O/W emulsions with high percentages of fixed water. Results of the rheological measurements have shown that the investigated samples exhibited non-Newtonian thixotropic behaviour. To determine the influence of each of the co-emulsifiers on emulsions properties, the obtained results were evaluated by the means of statistical analysis (ANOVA test). On the basis of comparison of statistical parameters for each of the studied responses, mixture reduced quadratic model was selected over the linear model implying that interactions between co-emulsifiers play the significant role in overall influence of co-emulsifiers on emulsions properties. Glyceryl stearate was found to be the dominant co-emulsifier affecting emulsions properties. Interactions between the glyceryl stearate and other co-emulsifiers were also found to significantly influence emulsions properties. These findings are especially important as they can be used for development of the product that meets users' requirements, as represented in the study. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Chitosan-carboxymethylcellulose based microcapsules formulation for controlled release of active ingredients from cosmeto textile

    NASA Astrophysics Data System (ADS)

    Roy, J. C.; Ferri, A.; Salaün, F.; Giraud, S.; Chen, G.; Jinping, G.

    2017-10-01

    Chitosan-based emulsions were prepared at pH from 4.0 to 6.0. The zeta potential and droplet size were monitored at different pH. Double emulsions (wateroil- water) were observed due to the stiff conformation of chitosan at pH 4.0. At pH 5.0, the emulsion droplets were the smallest (2.9 μm) of the experimental pH range. The emulsion droplets were well dispersed due to high surface charge of chitosan (for example, +50 mV at pH 5.5) in entire pH range. The emulsion was treated with carboxymethyl cellulose (CMC) for neutralizing the charged chitosan on the surface of emulsion droplets. Above 10×10-2 mg/ml of CMC, no change in zeta potential was observed indicating no more free chitosan existed after neutralization with CMC. The emulsion was then crosslinked with different amount of glutaraldehyde. Upon increasing the amount of glutaraldehyde, the amount of core content inside the microcapsule and encapsulation efficiency of shell materials decreased gradually. The Dynamic Scanning Calorimetry data confirmed no interaction between core and shell material in the microencapsulation process. The thermal degradation of the microcapsules was examined by thermogravimetric analysis and a gradual decrease in the degradation temperature upon increasing glutaraldehyde concentration was found. The tuning of CMC concentration can provide valuable information regarding stable emulsion and efficient microcapsule formulation via coacervation.

  15. Salmonella Typhimurium and Staphylococcus aureus dynamics in/on variable (micro)structures of fish-based model systems at suboptimal temperatures.

    PubMed

    Baka, Maria; Verheyen, Davy; Cornette, Nicolas; Vercruyssen, Stijn; Van Impe, Jan F

    2017-01-02

    The limited knowledge concerning the influence of food (micro)structure on microbial dynamics decreases the accuracy of the developed predictive models, as most studies have mainly been based on experimental data obtained in liquid microbiological media or in/on real foods. The use of model systems has a great potential when studying this complex factor. Apart from the variability in (micro)structural properties, model systems vary in compositional aspects, as a consequence of their (micro)structural variation. In this study, different experimental food model systems, with compositional and physicochemical properties similar to fish patés, are developed to study the influence of food (micro)structure on microbial dynamics. The microbiological safety of fish products is of major importance given the numerous cases of salmonellosis and infections attributed to staphylococcus toxins. The model systems understudy represent food (micro)structures of liquids, aqueous gels, emulsions and gelled emulsions. The growth/inactivation dynamics and a modelling approach of combined growth and inactivation of Salmonella Typhimurium and Staphylococcus aureus, related to fish products, are investigated in/on these model systems at temperatures relevant to fish products' common storage (4°C) and to abuse storage temperatures (8 and 12°C). ComBase (http://www.combase.cc/) predictions compared with the maximum specific growth rate (μ max ) values estimated by the Baranyi and Roberts model in the current study indicated that the (micro)structure influences the microbial dynamics. Overall, ComBase overestimated microbial growth at the same pH, a w and storage temperature. Finally, the storage temperature had also an influence on how much each model system affected the microbial dynamics. Copyright © 2016. Published by Elsevier B.V.

  16. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs.

    PubMed

    Iwanaga, Kazunori; Kushibiki, Toshihiro; Miyazaki, Makoto; Kakemi, Masawo

    2006-03-01

    Solvent Green 3 (SG), a model poorly water-soluble compound, was orally administered to rats with soybean oil emulsion or the Self-microemulsifying drug delivery system (SMEDDS) composed of Gelucire44/14. The bioavailability of SG after oral administration with SMEDDS was 1.7-fold higher than that with soybean oil emulsion. The intestinal absorption of lipid-based formulations themselves was evaluated by the in situ closed loop method. The effect of lipase and bile salt on their absorption was also evaluated. SMEDDS itself was rapidly absorbed in the intestine even in the absence of lipase and bile salt, and the absorption was increased by the addition of lipase and bile salt. On the other hand, no soybean oil emulsion was absorbed in the absence of lipase and bile salt. However, mixed micelle prepared from emulsion by incubating soybean oil emulsion with lipase and bile salt was rapidly absorbed through the intestine. Without lipase and bile salt, SG was not absorbed after administration with soybean oil emulsion. Therefore, we concluded that the degradation of soybean oil emulsion was needed for SG to be absorbed through the intestine. Furthermore, we investigated the intestinal absorption of SG after oral administration to rats whose chylomicron synthesis were inhibited by pretreatment with colchicine. Colchicine completely inhibited the intestinal absorption of SG after administration with each lipid-based formulation, suggesting that SG was absorbed from the intestine via a lymphatic route. Absorption of the dosage formulation should be paid attention when poorly water-soluble drugs are orally administered with lipid-based formulation.

  17. Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology

    NASA Astrophysics Data System (ADS)

    Schüller, R. B.; Løkra, S.; Salas-Bringas, C.; Egelandsdal, B.; Engebretsen, B.

    2008-08-01

    This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system.

  18. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects.

    PubMed

    Chung, Cheryl; Smith, Gordon; Degner, Brian; McClements, David Julian

    2016-01-01

    Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.

  19. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated using a transport code containing the linear-driving-force expression evaluated in the batch experiments. In these simulations the lumped mass transfer coefficient was fit and compared with values predicted using existing correlations for liquid-liquid and solid-liquid interfaces in porous media.

  20. Nanoparticle modification by weak polyelectrolytes for pH-sensitive pickering emulsions.

    PubMed

    Haase, Martin F; Grigoriev, Dmitry; Moehwald, Helmuth; Tiersch, Brigitte; Shchukin, Dmitry G

    2011-01-04

    The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte.

  1. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    PubMed

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Molecular and functional assessment of multicellular cancer spheroids produced in double emulsions enabled by efficient airway resistance based selective surface treatment

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Leth Jepsen, Morten; Ivarsen, Anne Kathrine R.; Knudsen, Birgitta R.; Ho, Yi-Ping

    2017-09-01

    Multicellular spheroids have garnered significant attention as an in vitro three-dimensional cancer model which can mimick the in vivo microenvironmental features. While microfluidics generated double emulsions have become a potential method to generate spheroids, challenges remain on the tedious procedures. Enabled by a novel ‘airway resistance’ based selective surface treatment, this study presents an easy and facile generation of double emulsions for the initiation and cultivation of multicellular spheroids in a scaffold-free format. Combining with our previously developed DNA nanosensors, intestinal spheroids produced in the double emulsions have shown an elevated activities of an essential DNA modifying enzyme, the topoisomerase I. The observed molecular and functional characteristics of spheroids produced in double emulsions are similar to the counterparts produced by the commercially available ultra-low attachment plates. However, the double emulsions excel for their improved uniformity, and the consistency of the results obtained by subsequent analysis of the spheroids. The presented technique is expected to ease the burden of producing spheroids and to promote the spheroids model for cancer or stem cell study.

  3. Synthesis and Characterization of Novel Fluorine-Containing Water-Based Antirust Coating

    NASA Astrophysics Data System (ADS)

    Wang, Huiru; Wang, Xin; Zhao, Xiongyan

    2018-01-01

    A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which styrene(St) and butyl acrylate (BA) were used as main monomers and dodecafluoroheptyl methacrylate(DFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry (DSC). The FTIR results showed that DFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a narrow particle size distribution. From the results salt spray test presented, it seems when the content of DFMA was 5wt% anti-rust performance of emulsion is relatively better. DSC and TGA also showed that their film exhibited higher thermal stability than that of fluorine-free emulsion.

  4. Alginate-Based Composite Sponges as Gastroretentive Carriers for Curcumin-Loaded Self-Microemulsifying Drug Delivery Systems

    PubMed Central

    Petchsomrit, Arpa; Sermkaew, Namfa; Wiwattanapatapee, Ruedeekorn

    2017-01-01

    Alginate-based composite sponges were developed as carriers to prolong the gastric retention time and controlled release of curcumin-loaded self-microemulsifying drug delivery systems (Cur-SMEDDS). Liquid Cur-SMEDDS was incorporated into a solution made up of a mixture of polymers and converted into a solid form by freeze-drying. The ratio of alginate as the main polymer, adsorbent (colloidal silicon dioxide), and additional polymers—sodium carboxymethyl cellulose (SCMC), hydroxypropyl methylcellulose (HPMC)—was varied systematically to adjust the drug loading and entrapment efficiency, sponge buoyancy, and the release profile of Cur-SMEDDS. The optimum composite sponge was fabricated from a 4% alginate and 2% HPMC mixed solution. It immediately floated on simulated gastric fluid (SGF, pH 1.2) and remained buoyant over an 8 h period. The formulation exhibited an emulsion droplet size of approximately 30 nm and provided sustained release of Cur-SMEDDS in SGF, reaching 71% within 8 h compared with only 10% release from curcumin powder. This study demonstrates the potential of alginate-based composite sponges combined with self-microemulsifying formulations for gastroretention applications involving poorly soluble compounds. PMID:28294964

  5. Preparation of PVDF/SiO2 composite membrane for salty oil emulsion separation: Physicochemical properties changes and its impact on fouling propensity

    NASA Astrophysics Data System (ADS)

    Ngang, H. P.; Ahmad, A. L.; Low, S. C.; Ooi, B. S.

    2017-06-01

    In this study, polyvinylidene fluoride (PVDF)/silica (SiO2) composite membranes were prepared by diffusion induced phase separation through direct blending method. The roles of SiO2 particles concentration on membrane physicochemical properties were evaluated through oil emulsion separation under high ionic strength environment whereby hydrophobic interaction is prevalent. Membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), contact angle measurement, membrane porosity and pore size distribution. It was expected that by adding the monodispersed SiO2, it will render the membrane with hydrophilic characteristic. However, it is concomitantly changing the physical properties of the membrane. Addition of SiO2 caused the changes to the physicochemical properties of the composite membrane and its effects on the fouling propensity were evaluated. It was found that the mean pore size of the membranes increased with the increase of SiO2 concentration. The addition of hydrophilic SiO2 had accelerated the precipitation of the membrane dope solution resulting in changes of membrane cross section morphology. FESEM images showed the membrane cross-section morphology of PVDF/SiO2 composite membrane had gradually changed from finger-like to macrovoid-like structure with the increased of SiO2 concentration. The hydrophilicity of the PVDF/SiO2 composite membrane was enhanced which is a desired property for water purification. However, the changes in physical properties (pore size, porosity, and surface roughness) had played more dominant role in the oil emulsion fouling behaviour rather than hydrophilicity enhancement. Due to the salting out effect under high ionic strength environment, hydrophobic interaction played an important role in the oil adsorption. The increment in membrane pore size, porosity, and surface roughness after incorporation of SiO2 particles had encountered more serious relative flux reduction and lower flux recovery ratio.

  6. Hydroxyapatite-armored poly(ε-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route.

    PubMed

    Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu

    2012-05-15

    Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Various aspects of ultrasound assisted emulsion polymerization process.

    PubMed

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector

    NASA Technical Reports Server (NTRS)

    Munroe, Ray B., Jr.

    1998-01-01

    Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.

  9. Histidine-functionalized carbon-based dot-Zinc(II) nanoparticles as a novel stabilizer for Pickering emulsion synthesis of polystyrene microspheres.

    PubMed

    Ruiyi, Li; Zaijun, Li; Junkang, Liu

    2017-05-01

    Carbon-based dots (CDs) are nanoparticles with size-dependent optical and electronic properties that have been widely applied in energy-efficient displays and lighting, photovoltaic devices and biological markers. However, conventional CDs are difficult to be used as ideal stabilizer for Pickering emulsion due to its irrational amphiphilic structure. The study designed and synthesized a new histidine-functionalized carbon dot-Zinc(II) nanoparticles, which is termed as His-CD-Zn. The His-CD was made via one-step hydrothermal treatment of histidine and maleic acid. The His-CD reacted with Zn 2+ to form His-CD-Zn. The as-prepared His-CD-Zn was used as a solid particle surfactant for stabilizing styrene-in-water emulsion. The Pickering emulsion exhibits high stability and sensitive pH-switching behaviour. The introduction of S 2 O 8 2- triggers the emulsion polymerization of styrene. The resulted polystyrene microsphere was well coated with His-CDs on the surface. It was successfully used as an ideal adsorbent for removal of heavy metallic ions from water with high adsorption capacity. The study also provides a prominent approach for fabrication of amphiphilic carbon-based nanoparticles for stabilizing Pickering emulsion. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  11. Physical and material properties of an emulsion-based lipstick produced via a continuous process.

    PubMed

    Beri, A; Pichot, R; Norton, I T

    2014-04-01

    Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aim of this work was to investigate the effect of a continuous process (scraped surface heat exchanger (SSHE) and pin stirrer (PS)) on the physical and material properties of an emulsion-based lipstick by altering the processing conditions of both the SSHE and PS. Emulsion formation was achieved using a SSHE and PS. Emulsions were analysed using nuclear magnetic resonance restricted diffusion (droplet size), texture analysis and rheology (mechanical properties). Results showed that a higher impeller rotational velocity (IRV) (1500 r.p.m.) and a lower exit temperature (52°C) produce the smallest droplets (~ 4 μm), due to greater disruptive forces and a higher viscosity of the continuous phase. The addition of a PS reduces the droplet size (14-6 μm) if the SSHE has a low IRV (500 r.p.m.), due to greater droplet disruption as the emulsion passes through the PS unit. Results also show that if the jacket temperature of a SSHE is 65°C, so that crystallization occurs in both process and post-production, droplets can be integrated into the network resulting in a stiffer wax network (G' - 0.12, in comparison to 0.02 MPa). This is due to small crystals creating a shell around water droplets which can form connections with the continuous network forming a structured network. The addition of a pin stirrer can disrupt a formed network reducing the stiffness of the emulsion (0.3-0.05 MPa). This work suggests the potential use of a continuous process in producing an emulsion-based lipstick, particularly when wax crystals are produced in the process. Future work should consider the moisturizing or lubricating properties of wax continuous emulsions and the release of hydrophilic compounds from the aqueous phase.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  13. Comparative Study on Compositions and Functional Properties of Porcine, Chicken and Duck Blood

    PubMed Central

    2017-01-01

    Hematological, chemical and functional characteristics of porcine, chicken and duck blood were evaluated. A porcine blood sample showed the most abundant red blood cell, hemoglobin concentration, packed cell volume and plasma protein content as well as its freeze-dried blood possessed the highest contents of protein, fat, Cu and Cr with the highest percentage of heme iron (p<0.05). Unlike porcine blood, chicken blood showed a well balance in some essential amino acids, specifically for a higher isoleucine content (p<0.05). Furthermore, it possessed the highest contents of carbohydrate, Zn and non-heme iron (p<0.05). The most rapid response to form a strong gel, especially at 70°C and 80°C, was found in chicken blood, followed by duck and porcine blood, respectively. The result of emulsion activity index (EAI) and emulsion stability index (ESI) at the low protein concentration indicated that chicken blood had the most superior emulsion properties (p<0.05). Regarding duck blood, it exhibited the highest content of Mg and Mn (p<0.05). Moreover, duck blood had similar foaming properties to porcine blood in which they showed higher values than chicken blood (p<0.05). Specific characteristics of blood were therefore diminished by animal species in which this information could be used as food supplementation or product development based on their potential applications. PMID:28515647

  14. Showing Emulsion Properties with Common Dairy Foods

    NASA Astrophysics Data System (ADS)

    Bravo-Diaz, Carlos; Gonzalez-Romero, Elisa

    1996-09-01

    Foods are mixtures of different chemical compounds, and the quality we sense (taste, texture, color, etc.) are all manifestations of its chemical properties. Some of them can be visualized with the aid of simple, safe and inexpensive experiments using dairy products that can be found in any kitchen and using almost exclusively kitchen utensils. In this paper we propose some of them related with food emulsions. Food emulsions cover an extremely wide area of daily-life applications such as milk, sauces, dressings and beverages. Experimentation with some culinary recipes to prepare them and the analyisis of the observed results is close to ideal subject for the introduction of chemical principles, allowing to discuss about the nature and composition of foods, the effects of additives, etc. At the same time it allows to get insights into the scientific reasons that underlie on the recipes (something that it is not usually found in most cookbooks). For example, when making an emulsion like mayonnaise, why the egg yolks and water are the first materials in the bowl , and the oil is added to them rather than in the other way around? How you can "rescue" separate emulsions (mayonnaise)? Which parameters affect emulsion stability? Since safety, in its broad sense, is the first requisite for any food, concerns about food exist throughout the world and the more we are aware of our everyday life, the more likely we will be to deal productively with the consequences. On the other hand, understanding what foods are and how cooking works destroys no delightful mystery of the art of cuisine, instead the mystery expands.

  15. Composite foods: from structure to sensory perception.

    PubMed

    Scholten, Elke

    2017-02-22

    An understanding of the effect of structural features of foods in terms of specific sensory attributes is necessary to design foods with specific functionalities, such as reduced fat or increased protein content, and increased feeling of satiety or liking. Although the bulk rheological properties of both liquid and solid foods can be related to textural attributes such as thickness and firmness, they do not always correlate to more complex sensory attributes, such as creamy and smooth. These attributes are often a result of different contributions, including lubrication aspects and interactions between food and components present in the oral cavity. In this review, the different contributions for a variety of composite foods, such as dispersions, emulsions and emulsion-filled gels, are discussed. The rheological properties are discussed in relation to specific structural characteristics of the foods, which are then linked to lubrication aspects and sensory perception.

  16. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength.

    PubMed

    Li, Feihu; Tang, Bingtao; Xiu, Jinghai; Zhang, Shufen

    2016-04-28

    Low color visibility and poor mechanical strength of polystyrene (PS) photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes) composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  17. Cholesterol oxidation in intravenous lipid emulsions: safety of preparations before and after experimental hyperoxia.

    PubMed

    Scopesi, Fabio; Zunin, Paola; Bellini, Carlo; Sacchi, Renata; Boggia, Raffaella; Evangelisti, Filippo; Serra, Giovanni

    2004-01-01

    The aim of this preliminary study was to assess the possible presence of cholesterol oxidation products in 2 i.v. lipidic emulsions with different fatty acid compositions (long-chain triglyceride, medium-chain triglyceride-long-chain triglyceride). Because these emulsions are currently used in neonatal parenteral nutrition, their direct venous introduction might be potentially dangerous because of the possible atherogenic role of cholesterol oxidation products. The emulsions were analyzed when bottles were opened (ie, under normal condition of administration) and after a 12-hour direct experimental exposure to air and high (90%) oxygen concentrations. 7-Ketocholesterol and 5alpha-epoxycholesterol were chosen as markers of cholesterol oxidation and detected by gas chromatography-mass spectrometry of their trimethylsilyl ethers. The detected amounts were always very low and in some cases below the detection limit of the analytical method for the 2 cholesterol oxidation products (COPs; 0.1 and 0.3 microg/g of extracted lipids). Immediately after opening the bottles, their concentrations were lower in the emulsions containing the higher amounts of polyunsaturated fatty acids. Experimental hyperoxic exposure generally determined only a mild increase in the content of cholesterol oxidation biomarker, and after exposure to oxygen, the amounts of COPs were slightly higher than after exposure to air. The results of the present study are undoubtedly reassuring for the safety of neonates, although caution is always required when drawing conclusions from in vitro data.

  18. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.

    PubMed

    Nisisako, Takasi; Ando, Takuya; Hatsuzawa, Takeshi

    2012-09-21

    This study describes a microfluidic platform with coaxial annular world-to-chip interfaces for high-throughput production of single and compound emulsion droplets, having controlled sizes and internal compositions. The production module consists of two distinct elements: a planar square chip on which many copies of a microfluidic droplet generator (MFDG) are arranged circularly, and a cubic supporting module with coaxial annular channels for supplying fluids evenly to the inlets of the mounted chip, assembled from blocks with cylinders and holes. Three-dimensional flow was simulated to evaluate the distribution of flow velocity in the coaxial multiple annular channels. By coupling a 1.5 cm × 1.5 cm microfluidic chip with parallelized 144 MFDGs and a supporting module with two annular channels, for example, we could produce simple oil-in-water (O/W) emulsion droplets having a mean diameter of 90.7 μm and a coefficient of variation (CV) of 2.2% at a throughput of 180.0 mL h(-1). Furthermore, we successfully demonstrated high-throughput production of Janus droplets, double emulsions and triple emulsions, by coupling 1.5 cm × 1.5 cm - 4.5 cm × 4.5 cm microfluidic chips with parallelized 32-128 MFDGs of various geometries and supporting modules with 3-4 annular channels.

  19. Double emulsion electrospun nanofibers as a growth factor delivery vehicle for salivary gland regeneration

    NASA Astrophysics Data System (ADS)

    Foraida, Zahraa I.; Sharikova, Anna; Peerzada, Lubna N.; Khmaladze, Alexander; Larsen, Melinda; Castracane, James

    2017-08-01

    Sustained delivery of growth factors, proteins, drugs and other biologically active molecules is necessary for tissue engineering applications. Electrospun fibers are attractive tissue engineering scaffolds as they partially mimic the topography of the extracellular matrix (ECM). However, they do not provide continuous nourishment to the tissue. In search of a biomimetic scaffold for salivary gland tissue regeneration, we previously developed a blend nanofiber scaffold composed of the protein elastin and the synthetic polymer polylactic-co-glycolic acid (PLGA). The nanofiber scaffold promoted in vivo-like salivary epithelial cell tissue organization and apicobasal polarization. However, in order to enhance the salivary cell proliferation and biomimetic character of the scaffold, sustained growth factor delivery is needed. The composite nanofiber scaffold was optimized to act as a growth factor delivery system using epidermal growth factor (EGF) as a model protein. The nanofiber/EGF hybrid nanofibers were synthesized by double emulsion electrospinning where EGF is emulsified within a water/oil/water (w/o/w) double emulsion system. Successful incorporation of EGF was confirmed using Raman spectroscopy. EGF release profile was characterized using enzyme-linked immunosorbent assay (ELIZA) of the EGF content. Double emulsion electrospinning resulted in slower release of EGF. We demonstrated the potential of the proposed double emulsion electrospun nanofiber scaffold for the delivery of growth factors and/or drugs for tissue engineering and pharmaceutical applications.

  20. [Influence of wall polymer and preparation process on the particle size and encapsulation of hemoglobin microcapsules].

    PubMed

    Qiu, Wei; Ma, Guang-Hui; Meng, Fan-Tao; Su, Zhi-Guo

    2004-03-01

    Methoxypoly (ethylene glycol)- block-poly (DL-lactide) (PELA) microcapsules containing bovine hemoglobin (BHb) were prepared by a W/O/W double emulsion-solvent diffusion process. The P50 and Hill coeffcient were 3466 Pa and 2.4 respectively, which were near to the natural bioactivity of bovine hemoglobin. The results suggested that polymer composition had significant influence on encapsulation efficiency and particle size of microcapsules. The encapsulation efficiency could reach 90% and the particle size 3 - 5 microm when the PELA copolymer containing MPEG 2000 block was used. The encapsulation efficiency and particle size increased with the concentration of PELA. Increasing the concentrations of NaCl in outer aqueous solution resulted in the increase of encapsulation efficiency and the decrease of particle size. As the concentration of stabilizer in outer aqueous solution increased in the range of 10 g/L to 20 g/L, the particle size reduced while encapsulation efficiency was increased, further increase of the stabilizer concentration would decrease encapsulation efficiency. Increasing of primary emulsion stirring rate was advantageous to the improvement of encapsulation efficiency though it had little influence on the particle size. The influence of re-emulsion stirring rate was complicated, which was not apparent in the case of large volume of re-emulsion solution. When the wall polymer and primary emulsion stirring rate were fixed, the encapsulation efficiency decreased as the particle size reduced.

  1. Transitional phase inversion of emulsions monitored by in situ near-infrared spectroscopy.

    PubMed

    Charin, R M; Nele, M; Tavares, F W

    2013-05-21

    Water-heptane/toluene model emulsions were prepared to study emulsion transitional phase inversion by in situ near-infrared spectroscopy (NIR). The first emulsion contained a small amount of ionic surfactant (0.27 wt % of sodium dodecyl sulfate) and n-pentanol as a cosurfactant. In this emulsion, the study was guided by an inversion coordinate route based on a phase behavior study previously performed. The morphology changes were induced by rising aqueous phase salinity in a "steady-state" inversion protocol. The second emulsion contained a nonionic surfactant (ethoxylated nonylphenol) at a concentration of 3 wt %. A continuous temperature change induced two distinct transitional phase inversions: one occurred during the heating of the system and another during the cooling. NIR spectroscopy was able to detect phase inversion in these emulsions due to differences between light scattered/absorbed by water in oil (W/O) and oil in water (O/W) morphologies. It was observed that the two model emulsions exhibit different inversion mechanisms closely related to different quantities of the middle phases formed during the three-phase behavior of Winsor type III.

  2. Comparison of simple, double and gelled double emulsions as hydroxytyrosol and n-3 fatty acid delivery systems.

    PubMed

    Flaiz, Linda; Freire, María; Cofrades, Susana; Mateos, Raquel; Weiss, Jochen; Jiménez-Colmenero, Francisco; Bou, Ricard

    2016-12-15

    The purpose of this study was to compare three different emulsion-based systems, namely simple emulsion, double emulsion and gelled double emulsion, for delivery of n-3 fatty acids (perilla oil at 300g/kg) and hydroxytyrosol (300mg/kg). Considering that their structural differences may affect their physical and oxidative stability, this was studied by storing them at 4°C for 22days in the dark. The results showed that the oxidative status was maintained in all systems by the addition of hydroxytyrosol. However, there was some loss of hydroxytyrosol, mainly during sample storage and during preparation of the gelled double emulsion. Moreover, the antioxidant loss was more pronounced in more compartmentalized systems, which was attributed to their increased surface area. However, the double emulsion was found to be less stable than the gelled emulsion. Overall, the encapsulation of labile compounds in more complex systems needs to be carefully studied and adapted to specific technological and/or nutritional requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  4. Research on the Influence Factors of Emulsion Stability of Oil-in-water Drilling Fluid

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxu; Sun, Yuxue; Chen, Xiangming; Wang, Zengkui; Xu, Jianjun

    2018-01-01

    The evaluation standard of emulsion stability of oil-in-water drilling fluid is determined in this paper, based on which an evaluation analysis is conducted for the influence factors of emulsion stability, including the addition of emulsifier, addition of stabilizer, stirring speed, weighing agent, clay, etc. to gain the corresponding regularity understanding.

  5. Reduction of lipid oxidation by formation of caseinate-oil-oat gum emulsions

    USDA-ARS?s Scientific Manuscript database

    The concentration of oat gum, though important for formation of stable emulsion, has no effect on oxidation of Omega 3 oil; this is most prominent in fish-oil based Omega 3 oil. The optimal concentration of oat gum is about 0.2% wt for emulsion stability and visual appearance. We found that concentr...

  6. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials

    PubMed Central

    Visser, Claas Willem; Kamperman, Tom; Karbaat, Lisanne P.; Lohse, Detlef; Karperien, Marcel

    2018-01-01

    Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension–driven encapsulation, we fabricate monodisperse emulsions, particles, and fibers with diameters of 20 to 300 μm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio)materials in one step because droplets are partially solidified in-flight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care. PMID:29399628

  7. Emulsion-based encapsulation and delivery of nanoparticles for the controlled release of alkalinity within the subsurface environment

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Muller, K.; Gill, J.

    2012-12-01

    Many current approaches to managing groundwater contamination rely on further advances in amendment delivery in order to initiate and sustain contaminant degradation or immobilization. In fact, limited or ineffective delivery is often cited when treatment objectives are not attained. Emulsions, specifically oil-in-water emulsions, have demonstrated potential to aid delivery of remediation amendments. Emulsions also afford opportunities to control the release of active ingredients encapsulated within the droplets. Our research is currently focused on the controlled release of nanoparticle-based buffering agents using oil-in-water emulsions. This interest is motivated by the fact that chemical and biological processes employed for the remediation and stewardship of contaminated sites often necessitate control of pH during treatment and, in some cases, long thereafter. Alkalinity-release nanoparticles (e.g., CaCO3, MgO) were suspended within soybean oil and subsequently encapsulated by through the creation of oil-in-water emulsions. These oil-in-water emulsions are designed to have physical properties which are favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet diameter). Buffer capacity titrations suggest that MgO particles are moderately more accessible within the oil phase and nearly twice as effective (on a per mass basis) at releasing alkalinity (as compared to the CaCO3 particles). Results from experiments designed to assess the release kinetics suggest that a linear driving force model is capable of describing the release process and mass transfer coefficients are constant through the reactive life of the emulsion. The release kinetics in emulsions containing MgO particles were found to be three orders of magnitude faster than those quantified for emulsions containing CaCO3. The slower release kinetics of the emulsions containing CaCO3 particles may prove beneficial when considering pH control at sites where acid fluxes are lower. The ability of emulsions to sustain alkalinity release within porous media was preliminarily examined using a series of 1-D column experiments. Emulsions were introduced for 2 pore volumes in a medium sand at Darcy velocities of approximately 0.8 cm/hr. Following the emulsion pulse, a pH 4 solution (adjusted with HCl) was introduced into the column and the effluent was monitored for pH, oil content, and droplet size distributions. All un-retained emulsion (~20% wt. was retained) was flushed from the column within approximately 2 pore volumes of terminating the emulsion pulse. The effluent pH at quasi-steady state and the reactive life of the emulsion depended on the retention characteristics, as well as the type and loading of nanoparticles employed within the emulsion. For the scenarios considered here, quasi-steady effluent pHs were observed to be between 6.5 and 10, and reactive lifetimes (i.e., the number of pore volumes for which the retained emulsion resulted in the effluent pH exceeding that of the influent) were between 15 and 100 pore volumes. These results demonstrate the ability of the emulsion to offer longer-term release and highlight the ability to tune the alkalinity release rate to match site characteristics by adjusting the emulsion content. Current research is directed toward evaluation release properties in heterogeneous aquifer cell experiments.

  8. Optimization and physicochemical characterization of a cationic lipid-phosphatidylcholine mixed emulsion formulated as a highly efficient vehicle that facilitates adenoviral gene transfer.

    PubMed

    Kim, Soo-Yeon; Lee, Sang-Jin; Kim, Jin-Ki; Choi, Han-Gon; Lim, Soo-Jeong

    2017-01-01

    Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus-liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core. The emulsion formulation was performed by 1) reducing the content of DOTAP while increasing the content of zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2) optimizing the oil content. The complexation capability of formulated DOTAP:DMPC mixed emulsions was similar to those of emulsions containing DOTAP alone while displaying significantly lower cytotoxicity. The complexation capabilities of the DOTAP:DMPC mixed emulsion were serum-compatible and were monitored in a variety of cell types, whereas its liposomal counterpart was totally ineffective. Characterization by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering studies indicated that the optimized emulsions spontaneously surrounded the virus particles to generate emulsions that encapsulated the viral particles, whereas viral particles merely attached to the surfaces of the counterpart liposomes to form multiviral aggregates. Overall, these studies demonstrated that optimized DOTAP:DMPC mixed emulsions are potentially useful for adenoviral gene delivery due to less cytotoxicity and the unique ability to encapsulate the viral particle, highlighting the importance of nanoparticle formulation.

  9. Optimization and physicochemical characterization of a cationic lipid-phosphatidylcholine mixed emulsion formulated as a highly efficient vehicle that facilitates adenoviral gene transfer

    PubMed Central

    Kim, Soo-Yeon; Lee, Sang-Jin; Kim, Jin-Ki; Choi, Han-Gon; Lim, Soo-Jeong

    2017-01-01

    Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus–liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core. The emulsion formulation was performed by 1) reducing the content of DOTAP while increasing the content of zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2) optimizing the oil content. The complexation capability of formulated DOTAP:DMPC mixed emulsions was similar to those of emulsions containing DOTAP alone while displaying significantly lower cytotoxicity. The complexation capabilities of the DOTAP:DMPC mixed emulsion were serum-compatible and were monitored in a variety of cell types, whereas its liposomal counterpart was totally ineffective. Characterization by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering studies indicated that the optimized emulsions spontaneously surrounded the virus particles to generate emulsions that encapsulated the viral particles, whereas viral particles merely attached to the surfaces of the counterpart liposomes to form multiviral aggregates. Overall, these studies demonstrated that optimized DOTAP:DMPC mixed emulsions are potentially useful for adenoviral gene delivery due to less cytotoxicity and the unique ability to encapsulate the viral particle, highlighting the importance of nanoparticle formulation. PMID:29070949

  10. Characterization of Chemically and Thermally Treated Oil-in-Water Heteroaggregates and Comparison to Conventional Emulsions.

    PubMed

    Maier, Christiane; Reichert, Corina L; Weiss, Jochen

    2016-10-01

    Heteroaggregated oil-in-water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3-dimensional network at comparably low-fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d 43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ 0 ) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP-based emulsions (τ 0 , SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29-fold (glutaraldehyde) and 2-fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin-driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents. © 2016 Institute of Food Technologists®.

  11. Instant polysaccharide-based emulsions: impact of microstructure on lipolysis.

    PubMed

    Torcello-Gómez, Amelia; Foster, Timothy J

    2017-06-21

    The development of emulsion-based products through optimisation of ingredients, reduction in energy-input during manufacture, while fulfilling healthy attributes, are major objectives within the food industry. Instant emulsions can meet these features, but comprehensive studies are necessary to investigate the effect of the initial formulation on the final microstructure and, in turn, on the in vitro lipolysis, comprising the double aim of this work. The instant emulsion is formed within 1.5-3 min after pouring the aqueous phase into the oil phase which contains a mixture of emulsifier (Tween 20), swelling particles (Sephadex) and thickeners (hydroxypropylmethylcellulose, HPMC, and guar gum, GG) under mild shearing (180 rpm). The creation of oil-in-water emulsions is monitored in situ by viscosity analysis, the final microstructure visualised by microscopy and the release of free fatty acids under simulated intestinal conditions quantified by titration. Increasing the concentration and molecular weight (M w ) of GG leads to smaller emulsion droplets due to increased bulk viscosity upon shearing. This droplet size reduction is magnified when increasing the M w of HPMC or swelling capacity of viscosifying particles. In addition, in the absence of the emulsifier Tween 20, the sole use of high-Mw HPMC is effective in emulsification due to combined increased bulk viscosity and interfacial activity. Hence, optimisation of the ingredient choice and usage level is possible when designing microstructures. Finally, emulsions with larger droplet size (>20 μm) display a slower rate and lower extent of lipolysis, while finer emulsions (droplet size ≤20 μm) exhibit maximum rate and extent profiles. This correlates with the extent of emulsion destabilisation observed under intestinal conditions.

  12. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.

  13. Comparison of lipid emulsions on antioxidant capacity in preterm infants receiving parenteral nutrition.

    PubMed

    Köksal, Nilgün; Kavurt, Ahmet V; Cetinkaya, Merih; Ozarda, Yesim; Ozkan, Hilal

    2011-08-01

    Although a variety of different lipid emulsions with varying fatty acid contents have been developed, there are some concerns about the administration of these lipid emulsions because of potential adverse effects, including oxidative stress-related morbidity. The aim of the present study was to evaluate and compare the effects of the standard soybean oil-based and olive oil-based i.v. lipid emulsions (ILE) on oxidative stress, determined by total antioxidant capacity (TAC), and to investigate the safety of the use of these two emulsions in terms of biochemical indices. In this prospective study, premature infants were randomly assigned to two groups, each group consisting of 32 patients who received parenteral ILE of either 20% olive oil or 20% soybean oil. They were given ILE for 7 days and then were evaluated with regard to TAC. No statistically significant difference was observed between the groups in terms of routine biochemical parameters. TAC for both groups on day 7 was significantly lower compared with that on day 0. Although the decrease in TAC within 7 days of ILE administration was greater in the soybean group compared with that in the olive oil group, it was not statistically significant. Olive oil-based ILE exhibit similar antioxidant activity and can be used as an alternative to soybean oil-based ILE. TAC significantly decreased in infants following administration of either lipid emulsion, and premature infants tolerated either ILE well, both biochemically and clinically. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  14. Experimental and modeling studies showing the effect of lipid type and level on flavor release from milk-based liquid emulsions.

    PubMed

    Roberts, Deborah D; Pollien, Philippe; Watzke, Brigitte

    2003-01-01

    The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables.

  15. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers.

    PubMed

    Reiner, S J; Reineccius, G A; Peppard, T L

    2010-06-01

    The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.

  16. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  17. Fuzzy Clustering-Based Modeling of Surface Interactions and Emulsions of Selected Whey Protein Concentrate Combined to i-Carrageenan and Gum Arabic Solutions

    USDA-ARS?s Scientific Manuscript database

    Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties (surface tension, interfacial tension, emulsion activity index “EAI” and emulsion stability index “ESI”) of 4% whey protein concentrate (WPC) in a combination with '- carrageenan (0.05%, 0.1%, and 0.5...

  18. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin.

    PubMed

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-02-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%-628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%-338% than that through LDPE.

  19. Protective effect of conditioning agents on Afro-ethnic hair chemically treated with thioglycolate-based straightening emulsion.

    PubMed

    Dias, Tania Cristina de Sá; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2008-06-01

    Straightening is a chemical process by which excessively curly hair is straightened in an irreversible way. Generally, products are formulated as emulsions with high pH value (9.0-12.0), which, after applied on hair, cause considerable damage, making it dry and fragile. This research work evaluated the protective effect of lauryl PEG/PPG-18/18 methicone, cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer, jojoba oil, and aqua (and) cystine bis-PG propyl silanetriol, as conditioning agents, on Afro-ethnic hair locks treated with thioglycolate-based straightening emulsions by protein loss, combability, and traction to rupture. Standard Afro-ethnic hair locks were prepared following a protocol for straightening emulsion application. Considering the assays performed, the addition of conditioning agents to the straightening emulsion with ammonium thioglycolate benefited the hair fiber, thus diminishing protein loss, protecting the hair thread, and improving resistance to breakage. Jojoba oil and lauryl PEG/PPG-18/18 methicone were the conditioning agents that presented the best results. Straightening emulsions with ammonium thioglycolate containing aqua (and) cystine bis-PG propyl silanetriol and cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer were the ones that provided higher breakage resistance of the thread.

  20. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    PubMed

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  2. Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions.

    PubMed

    Zhu, Jun-You; Tang, Chuan-He; Yin, Shou-Wei; Yang, Xiao-Quan

    2018-02-01

    Biodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones. To address this issue, we designed bilayer films based on PLA and Pickering emulsions. The formed bilayer films were compact and uniform and double layers were combined firmly. This strategy enhanced mechanical resistance, ductility and moisture barrier of Pickering emulsion films, and concomitantly enhanced the oxygen barrier for PLA films. Thymol loadings in Pickering emulsion layer endowed them with antimicrobial and antioxidant activity. The release profile of thymol was well fitted with Fick's second law. The antimicrobial activity of the films depended on film types, and Pickering emulsion layer presented larger inhibition zone than PLA layer, hinting that the films possessed directional releasing role. This study opens a promising route to fabricate bilayer architecture creating synergism of each layer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Structural modification of swai-fish (Pangasius hypophthalmus)-based emulsions containing non-meat protein additives by ultra-high pressure and thermal treatments

    NASA Astrophysics Data System (ADS)

    Techarang, Jiranat; Apichartsrangkoon, Arunee; Phanchaisri, Boonrak; Pathomrungsiyoungkul, Pattavara; Sriwattana, Sujinda

    2017-07-01

    Swai-fish emulsions containing fermented soybeans (thua nao and rice-koji miso) were pressurized at 600 MPa for 20 min or heated at 72°C for 30 min. The fish batters were blended with soy protein isolate (SPI) or whey protein concentrate (WPC) to stabilize the emulsions. The processed fish emulsions were then subjected to physical, chemical and microbiological examinations. The results of gel strength and water-holding potential showed that SPI addition yielded higher impact on these properties than WPC addition, which was also confirmed by the interactions between SPI and native fish proteins depicted by electrophoregrams. The frequency profiles suggested that the heated gels had a greater storage and loss moduli than pressurized gels, while pressurized WPC set-gel displayed larger loss tangent (the predominance of viscous moiety) than those pressurized SPI set-gel. High bacteria and spore counts of B. subtilis (residual of the thua nao) were observed in both pressurized and heated fish-based emulsions.

  4. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer.

    PubMed

    Gong, Xiaoyu; Wang, Yixiang; Chen, Lingyun

    2017-08-01

    Cellulose nanocrystals are hydrophilic nanomaterials, which limits their applications as interfacial compounds. Herein, we propose using modified wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Wood cellulose was consecutively oxidized and modified with phenyltrimethylammonium chloride to create hydrophobic domains comprised of phenyl groups. These modified oxidized cellulose nanocrystals (m-O-CNCs) were homogeneous/electrostatically stable in water and they can stabilize O/W Pickering emulsions. The dispersed phase volume fraction (DPVF) of the Pickering emulsion was 0.7 at around 1.5g/L, whereas the tween-20 control needed a 13-fold greater concentration to have a similar DPVR. In addition, these m-O-CNC stabilized Pickering emulsions also showed good mechanical and thermal stability against centrifugation and heat, as well as size controllability. In terms of stability, size controllability, surfactant-free status, these m-O-CNCs possess superior and enhanced emulsifying properties. Future research for these new interfacial materials have potential in applications, for personal care, cosmetic and pharmaceutic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    NASA Astrophysics Data System (ADS)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  6. RIR-MAPLE deposition of conjugated polymers and hybrid nanocomposites for application to optoelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan

    2012-07-30

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this workmore » will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.« less

  7. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    PubMed

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  8. Development of preservative-free nanoparticles-based emulsions: Effects of NP surface properties and sterilization process.

    PubMed

    Rowenczyk, Laura; Picard, Céline; Duclairoir-Poc, Cécile; Hucher, Nicolas; Orange, Nicole; Feuilloley, Marc; Grisel, Michel

    2016-08-20

    Model emulsions were developed with or without commercial titanium dioxide nanoparticles (NP) carrying various surface treatments in order to get close physicochemical properties whatever the NP surface polarity (hydrophilic and hydrophobic). Rheology and texturometry highlighted that the macroscopic properties of the three formulated emulsions were similar. However, characterizations by optical microscopy, static light scattering and zetametry showed that their microstructures reflected the diversity of the incorporated NP surface properties. In order to use these model emulsions as tools for biological evaluations of the NP in use, they had to show the lowest initial microbiological charge and, specifically for the NP-free emulsion, the lowest bactericidal effect. Hence, formulae were developed preservative-free and a thermal sterilization step was conducted. Efficiency of the sterilization and its impact on the emulsion integrity were monitored. Results highlighted the effect of the NP surface properties: only the control emulsion and the emulsion containing hydrophilic NP fulfilled both requirements. To ensure the usability of these model emulsions as tools to evaluate the 'NP effect' on representative bacteria of the skin microflora (S. aureus and P. fluorescens), impact on the bacterial growth was measured on voluntary inoculated formulae. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Single-cell Genomics using Droplet-based Microfluidics

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Macosko, Evan; Shalek, Alex; McCarroll, Steven; Regev, Aviv; Weitz, Dave

    2014-03-01

    We develop a system to profile the transcriptome of mammalian cells in isolation using reverse emulsion droplet-based microfluidic techniques. This is accomplished by (a) encapsulating and lysing one cell per emulsion droplet, and (b) uniquely barcoding the RNA contents from each cell using unique DNA-barcoded microgel beads. This enables us to study the transcriptional behavior of a large number of cells at single-cell resolution. We then use these techniques to study transcriptional responses of isolated immune cells to precisely controlled chemical and pathological stimuli provided in the emulsion droplet.

  10. Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure-Property Relations.

    PubMed

    Alison, Lauriane; Demirörs, Ahmet F; Tervoort, Elena; Teleki, Alexandra; Vermant, Jan; Studart, Andre R

    2018-05-29

    In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil-water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products.

  11. Anti-Inflammatory and Anti-Fibrotic Profile of Fish Oil Emulsions Used in Parenteral Nutrition-Associated Liver Disease

    PubMed Central

    Pastor-Clerigues, Alfonso; Marti-Bonmati, Ezequiel; Milara, Javier; Almudever, Patricia; Cortijo, Julio

    2014-01-01

    Home parenteral nutrition (PN) is associated with many complications including severe hepatobiliary dysfunction. Commercial ω-6 fatty acid-soybean based-lipid emulsions in PN may mediate long term PN associate liver disease (PNALD) whereas ω-3-fish oil parenteral emulsions have shown to reverse PNALD in children. However, its clinical effectiveness in adults has been scarcely reported. In this work, we study the role of soybean and fish oil lipid commercial emulsions on inflammatory and profibrotic liver markers in adults with long term PNALD and in in vitro cellular models. Inflammatory and profibrotic markers were measured in serum of ten adults with long term PNALD and in culture supernatants of monocytes. Liver epithelial to mesenchymal transition (EMT) was induced by transforming growth factor beta 1 (TGFβ1) to evaluate in vitro liver fibrosis. Omegaven®, a 100% fish oil commercial emulsion, was infused during four months in two patients with severe long term PNALD reversing, at the first month, the inflammatory, profibrotic and clinical parameters of PNALD. The effect was maintained during the treatment course but impaired when conventional lipid emulsions were reintroduced. The other patients under chronic soybean oil-based PN showed elevated inflammatory and profibrotic parameters. In vitro human monocytes stimulated with lipopolysaccharide induced a strong inflammatory response that was suppressed by Omegaven®, but increased by soybean emulsions. In other experiments, TGFβ1 induced EMT that was suppressed by Omegaven® and enhanced by soybean oil lipid emulsions. Omegaven® improves clinical, anti-inflammatory and anti-fibrotic parameters in adults with long-term home PNALD. PMID:25502575

  12. Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products.

    PubMed

    Salminen, Hanna; Herrmann, Kurt; Weiss, Jochen

    2013-03-01

    The oxidative and physical stabilities of oil-in-water emulsions containing n-3 fatty acids (25 wt.% oil, 2.5 wt.% whey protein, pH 3.0 or pH 6.0), and their subsequent incorporation into meat products were investigated. The physical stability of fish oil emulsions was excellent and neither coalescence nor aggregation occurred during storage. Oxidative stability was better at pH 6.0 compared to pH 3.0 likely due to antioxidative continuous phase proteins. Incorporation of fish oil emulsions into pork sausages led to an increase in oxidation compared to sausages without the added fish oil emulsion. Confocal microscopy of pork sausages with fish oil emulsions revealed that droplets had coalesced in the meat matrix over time which may have contributed to the decreased oxidative stability. Results demonstrate that although interfacial engineering of n-3 fatty acids containing oil-in-water emulsions provides physical and oxidative stability of the base-emulsion, their incorporation into complex meat matrices is a non-trivial undertaking and products may incur changes in quality over time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    PubMed

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Traversing the Skin Barrier with Nano-emulsions.

    PubMed

    Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta

    2017-01-01

    In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Factors that affect Pickering emulsions stabilized by graphene oxide.

    PubMed

    He, Yongqiang; Wu, Fei; Sun, Xiying; Li, Ruqiang; Guo, Yongqin; Li, Chuanbao; Zhang, Lu; Xing, Fubao; Wang, Wei; Gao, Jianping

    2013-06-12

    Stable Pickering emulsions were prepared using only graphene oxide (GO) as a stabilizer, and the effects of the type of oil, the sonication time, the GO concentration, the oil/water ratio, and the pH value on the stability, type, and morphology of these emulsions were investigated. In addition, the effects of salt and the extent of GO reduction on emulsion formation and stability were studied and discussed. The average droplet size decreased with sonication time and with GO concentration, and the emulsions tended to achieve good stability at intermediate oil/water ratios and at low pH values. In all solvents, the emulsions were of the oil-in-water type, but interestingly, some water-in-oil-in-water (w/o/w) multiple emulsion droplets were also observed with low GO concentrations, low pH values, high oil/water ratios, high salt concentrations, or moderately reduced GO in the benzyl chloride-water system. A Pickering emulsion stabilized by Ag/GO was also prepared, and its catalytic performance for the reduction of 4-nitrophenol was investigated. This research paves the way for the fabrication of graphene-based functional materials with novel nanostructures and microstructures.

  16. Modeling selected emulsions and double emulsions as memristive systems.

    PubMed

    Spasic, Aleksandar M; Jovanovic, Jovan M; Jovanovic, Mica

    2012-06-15

    The recent development in basic and applied science and engineering of finely dispersed systems is presented in general, but more attention has been paid to the liquid-liquid finely dispersed systems or to the particular emulsions and double emulsions. The selected systems for theoretical and experimental research were emulsions and double emulsions that appeared in the pilot plant for extraction of uranium from wet phosphoric acid. The objective of this research was to try to provide a new or different approach to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. New concepts were introduced, the first is a concept of an entity, and the corresponding classification of finely dispersed systems and the second concept consider the introduction of an almost forgotten basic electrodynamics element memristor, and the corresponding memristive systems. Based on these concepts a theory of electroviscoelasticity was proposed and experimentally corroborated using the selected representative liquid-liquid system. Also, it is shown that the droplet, and/or droplet-film structure, that is, selected emulsion and/or double emulsion may be considered as the particular example of memristive systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Origin of Gamma-Ray Families Accompanied by Halos and Detected in Experiments with X-Ray Emulsion Chambers

    NASA Astrophysics Data System (ADS)

    Puchkov, V. S.; Pyatovsky, S. E.

    2018-03-01

    The phenomenon of gamma-ray families featuring halos that is observed in an experiment with x-ray emulsion chambers (XREC) in the Pamir experiment and in other XREC experiments is explained. The experimental properties of halos are analyzed via a comparison with the results of their simulation. It is shown that gamma-ray families featuring halos are predominantly produced (more than 96% of them) by protons and heliumnuclei. This makes it possible to employ the experimental properties of halos to estimate the fraction of protons and helium nuclei in the mass composition of primary cosmic radiation.

  18. Self-assembly of bimodal particles inside emulsion droplets

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Yi, Gi-Ra; Yang, Seung-Man; Kim, Young-Kuk; Choi, Chul-Jin

    2010-08-01

    Colloidal dispersion of bimodal particles were self-organized inside water-in-oil emulsion droplets by evaporationdriven self-assembly method. After droplet shrinkage by heating the complex fluid system, small numbers of microspheres were packed into minimal second moment clusters, which are partially coated with silica nanospheres, resulting in the generation of patchy particles. The patchy particles in this study possess potential applications for selfassembly of non-isotropic particles such as dimmers or tetramers for colloidal photonic crystals with diamond lattice structures. The composite micro-clusters of amidine polystyrene microspheres and titania nanoparticles were also generated by evaporation-driven self-assembly to fabricate nonspherical hollow micro-particles made of titania shell.

  19. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    NASA Astrophysics Data System (ADS)

    Liu, Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen, Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.

    2007-04-01

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly( D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.

  20. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  1. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    PubMed

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  3. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress.

    PubMed

    White, Joseph C; Stoppel, Whitney L; Roberts, Susan C; Bhatia, Surita R

    2013-02-01

    Perfluorocarbons (PFCs) are used in biomaterial formulations to increase oxygen (O(2) ) tension and create a homogeneous O(2) environment in three-dimensional tissue constructs. It is unclear how PFCs affect mechanical and transport properties of the scaffold, which are critical for robustness, intracellular signaling, protein transport, and overall device efficacy. In this study, we investigate composite alginate hydrogels containing a perfluorooctyl bromide (PFOB) emulsion stabilized with Pluronic(®) F68 (F68). We demonstrate that PFC addition significantly affects biomaterial properties and performance. Solution and hydrogel mechanical properties and transport of representative hydrophilic (riboflavin), hydrophobic (methyl and ethyl paraben), and protein (bovine serum albumin, BSA) solutes were compared in alginate/F68 composite hydrogels with or without PFOB. Our results indicate that mechanical properties of the alginate/F68/PFOB hydrogels are not significantly affected under small strains, but a significant decrease fracture stress is observed. The effective diffusivity D(eff) of hydrophobic small molecules decreases with PFOB emulsion addition, yet the D(eff) of hydrophilic small molecules remained unaffected. For BSA, the D(eff) increased and the loading capacity decreased with PFOB emulsion addition. Thus, a trade-off between the desired increased O(2) supply provided by PFCs and the mechanical weakening and change in transport of cellular signals must be carefully considered in the design of biomaterials containing PFCs. Copyright © 2012 Wiley Periodicals, Inc.

  4. Improved outcome in neonatal short bowel syndrome using parenteral fish oil in combination with ω-6/9 lipid emulsions.

    PubMed

    Angsten, Gertrud; Finkel, Yigael; Lucas, Steven; Kassa, Ann-Marie; Paulsson, Mattias; Lilja, Helene Engstrand

    2012-09-01

    Newborn infants with short bowel syndrome (SBS) represent a high-risk group of developing intestinal failure-associated liver disease (IFALD), which may be fatal. However, infants have a great capacity for intestinal growth and adaptation if IFALD can be prevented or reversed. A major contributing factor to IFALD may be the soybean oil-based intravenous lipid emulsions used since the introduction of parenteral nutrition (PN) 40 years ago. This retrospective study compares the outcome in 20 neonates with SBS treated with parenteral fish oil (Omegaven) in combination with ω-6/9 lipid emulsions (ClinOleic) with the outcome in a historical cohort of 18 patients with SBS who received a soybean oil-based intravenous lipid emulsion (Intralipid). Median gestational age was 26 weeks in the treatment group and 35.5 weeks in the historical group. All patients were started on PN containing Intralipid that was switched to ClinOleic/Omegaven in the treatment group at a median age of 39 gestational weeks. In the treatment group, direct bilirubin levels were reversed in all 14 survivors with cholestasis (direct bilirubin >50 umol/L). Median time to reversal was 2.9 months. Only 2 patients died of liver failure (10%). In the historical cohort, 6 patients (33%) died of liver failure, and only 2 patients showed normalization of bilirubin levels. Parenteral fish oil in combination with ω-6/9 lipid emulsions was associated with improved outcome in premature neonates with SBS. When used instead of traditional soybean-based emulsions, this mixed lipid emulsion may facilitate intestinal adaptation by increasing the IFALD-free period.

  5. Feasibility of Freeze-Drying Oil-in-Water Emulsion Adjuvants and Subunit Proteins to Enable Single-Vial Vaccine Drug Products.

    PubMed

    Iyer, Vidyashankara; Cayatte, Corinne; Marshall, Jason D; Sun, Jenny; Schneider-Ohrum, Kirsten; Maynard, Sean K; Rajani, Gaurav Manohar; Bennett, Angie Snell; Remmele, Richard L; Bishop, Steve M; McCarthy, Michael P; Muralidhara, Bilikallahalli K

    2017-06-01

    To generate potent vaccine responses, subunit protein antigens typically require coformulation with an adjuvant. Oil-in-water emulsions are among the most widely investigated adjuvants, based on their demonstrated ability to elicit robust antibody and cellular immune responses in the clinic. However, most emulsions cannot be readily frozen or lyophilized, on account of the risk of phase separation, and may have a deleterious effect on protein antigen stability when stored long term as a liquid coformulation. To circumvent this, current emulsion-formulated vaccines generally require a complex multivial presentation with obvious drawbacks, making a single-vial presentation for such products highly desirable. We describe the development of a stable, lyophilized squalene emulsion adjuvant through innovative formulation and process development approaches. On reconstitution, freeze-dried emulsion preparations were found to have a minimal increase in particle size of ∼20 nm and conferred immunogenicity in BALB/c mice similar in potency to freshly prepared emulsion coformulations in liquid form. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception.

    PubMed

    Zahn, Susann; Hoppert, Karin; Ullrich, Franziska; Rohm, Harald

    2013-11-27

    In complex emulsions, viscosity or viscosity-associated sensory attributes such as creaminess are important for quality assessment and product differentiation. Two sets of emulsions with fat or locust bean gum content being varied at seven levels were developed; the two emulsions at each level had similar apparent viscosity. Additionally, sugar concentration was kept constant either with respect to total emulsion, or with respect to the aqueous phase. Series of two-alternative forced choice tests were performed with one constant stimulus, and just noticeable differences were calculated using probability regression. The results show that, when viscosity was not compensated, it was easy for the subjects to (a) distinguish emulsions with different fat content when the fat content was addressed in the question, and to (b) distinguish emulsions with different fat or locust bean gum content when creaminess was addressed. For the latter descriptor, it is of minor importance whether viscosity is altered by fat content or a thickener. Weber fractions that were calculated for viscosity were approximately 0.20. The quantitative effects of viscosity on sweetness, however, depend on how product rheology was modified.

  7. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  8. Characterization of flaxseed oil emulsions.

    PubMed

    Lee, Pei-En; Choo, Wee-Sim

    2015-07-01

    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).

  9. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  10. A rapid method for creating qualitative images indicative of thick oil emulsion on the ocean's surface from imaging spectrometer data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Hoefen, Todd M.; Livo, K. Eric; Swayze, Gregg A.; Leifer, Ira; McCubbin, Ian B.; Eastwood, Michael L.; Green, Robert O.; Lundeen, Sarah R.; Sarture, Charles M.; Steele, Denis; Ryan, Thomas; Bradley, Eliza S.; Roberts, Dar A.; ,

    2010-01-01

    This report describes a method to create color-composite images indicative of thick oil:water emulsions on the surface of clear, deep ocean water by using normalized difference ratios derived from remotely sensed data collected by an imaging spectrometer. The spectral bands used in the normalized difference ratios are located in wavelength regions where the spectra of thick oil:water emulsions on the ocean's surface have a distinct shape compared to clear water and clouds. In contrast to quantitative analyses, which require rigorous conversion to reflectance, the method described is easily computed and can be applied rapidly to radiance data or data that have been atmospherically corrected or ground-calibrated to reflectance. Examples are shown of the method applied to Airborne Visible/Infrared Imaging Spectrometer data collected May 17 and May 19, 2010, over the oil spill from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico.

  11. High hydrostatic pressure inactivation of Lactobacillus plantarum cells in (O/W)-emulsions is independent from cell surface hydrophobicity and lipid phase parameters

    NASA Astrophysics Data System (ADS)

    Kafka, T. A.; Reitermayer, D.; Lenz, C. A.; Vogel, R. F.

    2017-07-01

    Inactivation efficiency of high hydrostatic pressure (HHP) processing of food is strongly affected by food matrix composition. We investigated effects of fat on HHP inactivation of spoilage-associated Lactobacillus (L.) plantarum strains using defined oil-in-water (O/W)-emulsion model systems. Since fat-mediated effects on HHP inactivation could be dependent on interactions between lipid phase and microbial cells, three major factors possibly influencing such interactions were considered, that is, cell surface hydrophobicity, presence and type of surfactants, and oil droplet size. Pressure tolerance varied noticeably among L. plantarum strains and was independent of cell surface hydrophobicity. We showed that HHP inactivation of all strains tended to be more effective in presence of fat. The observation in both, surfactant-stabilized and surfactant-free (O/W)-emulsion, indicates that cell surface hydrophobicity is no intrinsic pressure resistance factor. In contrast to the presence of fat per se, surfactant type and oil droplet size did not affect inactivation efficiency.

  12. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin

    PubMed Central

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-01-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%–628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%–338% than that through LDPE. PMID:26579363

  13. Optimization and evaluation of lipid emulsions for intravenous co-delivery of artemether and lumefantrine in severe malaria treatment.

    PubMed

    Yang, Yinxian; Gao, Hailing; Zhou, Shuang; Kuang, Xiao; Wang, Zhenjie; Liu, Hongzhuo; Sun, Jin

    2018-05-10

    Parenteral therapy for severe and complicated malaria is necessary, but currently available parenteral antimalarials have their own drawbacks. As for recommended artemisinin-based combination therapy, antimalarial artemether and lumefantrine are limited in parenteral delivery due to their poor water solubility. Herein, the aim of this study was to develop the lipid-based emulsions for intravenous co-delivery of artemether and lumefantrine. The lipid emulsion was prepared by high-speed shear and high-pressure homogenization, and the formulations were optimized mainly by monitoring particle size distribution under autoclaved conditions. The final optimal formulation was with uniform particle size distribution (~ 220 nm), high encapsulation efficiency (~ 99%), good physiochemical stability, and acceptable hemolysis potential. The pharmacokinetic study in rats showed that C max of artemether and lumefantrine for the optimized lipid emulsions were significantly increased than the injectable solution, which was critical for rapid antimalarial activity. Furthermore, the AUC 0-t of artemether and lumefantrine in the lipid emulsion group were 5.01- and 1.39-fold of those from the solution, respectively, suggesting enhanced bioavailability. With these findings, the developed lipid emulsion is a promising alternative parenteral therapy for the malaria treatment, especially for severe or complicated malaria.

  14. On the halo events observed by Mount Fuji and Mount Kanbala Emulsion Chamber Experiments

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    The intensity of big gamma-ray families associated by halo is obtained from Mt. Fuji experiment (650 g/sq.cm. atmospheric depth) and Mt. Kanbala experiment (515 g/sq.cm.). The results are compared with Monte Carlo calculation based on several assumptions on interaction mechanisms and the primary cosmic ray composition. The results suggest more than 3 times lower proton abundance among primaries than that of 10 to the 12th to 10 to the 13th eV region within the framework of quasi-scaling model of multiple production.

  15. Formation of water-in-oil emulsions and application to oil spill modelling.

    PubMed

    Fingas, Merv; Fieldhouse, Ben

    2004-02-27

    Water-in-oil mixtures were grouped into four states or classes: stable, mesostable, unstable, and entrained water. Of these, only stable and mesostable states can be characterized as emulsions. These states were established according to lifetime, visual appearance, complex modulus, and differences in viscosity. Water content at formation was not an important factor. Water-in-oil emulsions made from crude oils have different classes of stability as a result of the asphaltene and resin contents, as well as differences in the viscosity of the starting oil. The different types of water-in-oil classes are readily distinguished simply by appearance, as well as by rheological properties. A review of past modelling efforts to predict emulsion formation showed that these older schemes were based on first-order rate equations that were developed before extensive work on emulsion physics took place. These results do not correspond to either laboratory or field results. The present authors suggest that both the formation and characteristics of emulsions could be predicted using empirical data. If the same oil type as already studied is to be modelled, the laboratory data on the state and properties can be used directly. In this paper, a new numerical modelling scheme is proposed and is based on empirical data and the corresponding physical knowledge of emulsion formation. The density, viscosity, saturate, asphaltene and resin contents are used to compute a class index which yields either an unstable or entrained water-in-oil state or a mesostable or stable emulsion. A prediction scheme is given to estimate the water content and viscosity of the resulting water-in-oil state and the time to formation with input of wave height.

  16. Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene.

    PubMed

    Xuan, Wang; Ruiyi, Li; Zaijun, Li; Junkang, Liu

    2017-11-01

    Pickering emulsions have attracted considerable interest due to their potential applications in many fields, such as the food, pharmaceutical, petroleum and cosmetics industries. The study reports the synthesis of dodecylamine-functionalized graphene quantum dots (d-GQDs) and their implementation as stabilizers in an emulsion polymerization of styrene. First, d-GQDs are prepared by thermal pyrolysis of citric acid and dodecylamine in 0.1M ammonium hydroxide. The resulting d-GQDs consist of small graphene sheets with abundant amino, carboxyl, acylamino, hydroxyl and alkyl chains on the edge. The amphiphilic structure gives the d-GQDs high surface activity. The addition of d-GQDs can reduce the surface tension of water to 30.8mNm -1 and the interfacial tension of paraffin oil/water to 0.0182mNm -1 . The surface activity is much better than that of previously reported solid particle surfactants for Pickering emulsions and is close to that of sodium dodecylbenzenesulfonate, which is, a classical organic surfactants. Then, d-GQDs are employed as solid particle surfactants for stabilizing styrene-in-water emulsions. The emulsions exhibit excellent stability at pH 7. However, stability is lost when the pH is more than 9 or less than 4. The pH-switchable behaviour can be attributed to the protonation of amino groups in a weak acid medium and dissociation of carboxyl groups in a weak base medium. Finally, 2,2'-azobis(2-methylpropionitrile) is introduced into the Pickering emulsions to trigger emulsion polymerization of styrene. The as-prepared polystyrene spheres display a uniform morphology with a narrow diameter distribution. The fluorescent d-GQDs coated their surfaces. This study presents an approach for the fabrication of amphiphilic GQDs and GQDs-based functional materials, which have a wide range of potential applications in emulsion polymerization, as well as in sensors, catalysts, and energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Elucidation of the mechanisms of action of Bacteriophage K/nano-emulsion formulations against S. aureus via measurement of particle size and zeta potential.

    PubMed

    Esteban, Patricia Perez; Jenkins, A Toby A; Arnot, Tom C

    2016-03-01

    In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

    PubMed

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2016-07-01

    Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation. © 2014 American Society for Parenteral and Enteral Nutrition.

  19. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Asfaw, Habtom D.; Roberts, Matthew R.; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina

    2014-07-01

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01682c

  20. Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate).

    PubMed

    Deng, Zilong; Jung, Jooyeoun; Simonsen, John; Zhao, Yanyun

    2017-10-01

    Cellulose nanomaterials (CNs)-incorporated emulsion coatings with improved moisture barrier, wettability and surface adhesion onto fruit surfaces were developed for controlling postharvest physiological activity and enhancing storability of bananas during ambient storage. Cellulose nanofiber (CNF)-based emulsion coating (CNFC: 0.3% CNF/1% oleic acid/1% sucrose ester fatty acid (w/w wet base)) had low contact angle, high spread coefficient onto banana surfaces, and lower surface tension (ST, 25.4mN/m) than the critical ST (35.2mN/m) of banana peels, and exhibited good wettability onto banana surfaces. CNFC coating delayed the ethylene biosynthesis pathway and reduced ethylene and CO 2 production, thus delaying fruit ripening. As the result, CNFC coating minimized chlorophyll degradation, weight loss, and firmness of bananas while ensuring the properly fruit ripening during 10d of ambient storage. This study demonstrated the effectiveness of CNF based emulsion coatings for improving the storability of postharvest bananas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets.

    PubMed

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-05-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released.

  2. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets

    PubMed Central

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-01-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released. PMID:27279935

  3. BACLOFEN, RACLOPRIDE, AND NALTREXONE DIFFERENTIALLY REDUCE SOLID FAT EMULSION INTAKE UNDER LIMITED ACCESS CONDITIONS

    PubMed Central

    RE, Rao; FHE, Wojnicki; J, Coupland; S, Ghosh; RLW, Corwin

    2009-01-01

    Previous work in rats has demonstrated that an Intermittent (Monday, Wednesday, Friday) schedule of access promotes binge-type consumption of 100% vegetable shortening during a 1-hour period of availability. The present study used novel shortening-derived stable solid emulsions of various fat concentrations. These emulsions were the consistency of pudding and did not demonstrate oil and water phase separation previously reported with oil-based liquid emulsions. Male Sprague-Dawley rats were grouped according to schedule of access (Daily or Intermittent) to one of three concentrations (18%, 32%, 56%) of solid fat emulsion. There were no significant Intermittent vs. Daily differences in amount consumed, due to high intakes in all groups. This indicated the acceptability of the emulsions. Baclofen (GABA-B agonist) and raclopride (D2-like antagonist) both significantly reduced emulsion intake in all Daily groups, but only in the 56% fat Intermittent group. Naltrexone (opioid antagonist), in contrast, significantly reduced 32% and 56% fat emulsion intake in the Intermittent, as well as the Daily groups. These results indicate that the fat intake reducing effects of GABAB activation and D2 blockade depend upon fat concentration and schedule of fat access, while the fat intake reducing effects of opioid blockade depend upon fat concentration but not schedule of access. PMID:18353432

  4. Safety Assessment and Biological Effects of a New Cold Processed SilEmulsion for Dermatological Purpose

    PubMed Central

    Salgado, Ana; Gonçalves, Lídia; Pinto, Pedro C.; Urbano, Manuela; Ribeiro, Helena M.

    2013-01-01

    It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion). The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53). EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids. PMID:24294598

  5. Safety assessment and biological effects of a new cold processed SilEmulsion for dermatological purpose.

    PubMed

    Raposo, Sara; Salgado, Ana; Gonçalves, Lídia; Pinto, Pedro C; Urbano, Manuela; Ribeiro, Helena M

    2013-01-01

    It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion). The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53). EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.

  6. Characterization of starch Pickering emulsions for potential applications in topical formulations.

    PubMed

    Marku, Diana; Wahlgren, Marie; Rayner, Marilyn; Sjöö, Malin; Timgren, Anna

    2012-05-30

    The aim of this work has been to characterize starch based Pickering emulsions as a first step to evaluate their possible use as vehicles for topical drug delivery. A minor phase study of emulsions with high oil content has been performed. Emulsion stability against coalescence over eight weeks and after mild centrifugation treatment has been studied. The particle size, rheological properties and in vitro skin penetration of emulsions containing three different oils (Miglyol, paraffin and sheanut oil) was investigated. It was shown that it is possible to produce oil in water starched stabilised Pickering emulsions with oil content as high as 56%. Furthermore, this emulsions show good stability during storage over eight weeks and towards mild centrifugation. The particle size of the systems are only dependent on the ratio between oil and starch and for liquid oils the type of oil do not affect the particle size. The type of oil also affects the cosmetic and rheological properties of the creams but did not affect the transdermal diffusion in in vitro tests. However, it seems as if the Pickering emulsions affected the transport over the skin, as the flux was twice that of what has been previously reported for solutions. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Structured triglyceride emulsions in parenteral nutrition.

    PubMed

    Chambrier, C; Lauverjat, M; Bouletreau, P

    2006-08-01

    Over the past 3 decades, various concepts for IV fat emulsions (IVFE) have been developed. A randomized, structured-lipid emulsion based on an old technology has recently become available. This structured-lipid emulsion is produced by mixing medium-chain triglycerides and long-chain triglycerides, then allowing hydrolysis to form free fatty acids, followed by random transesterification of the fatty acids into mixed triglyceride molecules. Studies in animals have shown an improvement in nitrogen balance with the use of these lipid emulsions. Only 8 human clinical studies with these products have been performed. The results of these human clinical studies have been less promising than the animal studies; however, an improvement in nitrogen balance and lipid metabolism exceeds results associated with infusion of long-chain triglycerides (LCT) or a physical mixture of long-chain triglycerides and medium-chain triglycerides (LCT-MCT). Structured-lipid emulsion seems to induce less elevation in serum liver function values compared with standard IVFEs. In addition, structured-lipid emulsions have no detrimental effect on the reticuloendothelial system. Further studies are necessary in order to recommend the use of structured-lipid emulsions. The clinical community hopes that chemically defined structured triglycerides will make it possible to determine the distribution of specific fatty acids on a specific position on the glycerol core and therefore obtain specific activity for a specific clinical situation.

  8. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.

    PubMed

    Liang, Li; Chen, Fang; Wang, Xingguo; Jin, Qingzhe; Decker, Eric Andrew; McClements, David Julian

    2017-06-14

    There is great interest in the formulation of plant-based foods enriched with nutrients that promote health, such as polyunsaturated fatty acids. This study evaluated the impact of sunflower phospholipid type on the formation and stability of flaxseed oil-in-water emulsions. Two sunflower lecithins (Sunlipon 50 and 90) with different phosphatidylcholine (PC) levels (59 and 90%, respectively) were used in varying ratios to form emulsions. Emulsion droplet size, charge, appearance, microstructure, and oxidation were measured during storage at 55 °C in the dark. The physical and chemical stability increased as the PC content of the lecithin blends decreased. The oxidative stability of emulsions formulated using Sunlipon 50 was better than emulsions formulated using synthetic surfactants (SDS or Tween 20). The results are interpreted in terms of the impact of emulsifier type on the colloidal interactions between oil droplets and on the molecular interactions between pro-oxidants and oil droplet surfaces.

  9. Influence of processing parameters on morphology of polymethoxyflavone in emulsions.

    PubMed

    Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong

    2015-01-21

    Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.

  10. Rheological behavior, zeta potential, and accelerated stability tests of Buriti oil (Mauritia flexuosa) emulsions containing lyotropic liquid crystals.

    PubMed

    Zanatta, Cinthia Fernanda; de Faria Sato, Anne Miwa Callejón; de Camargo, Flavio Bueno; Campos, Patrícia Maria Berardo Gonçalves Maia; Rocha-Filho, Pedro Alves

    2010-01-01

    It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. The purpose of this work was to obtain emulsions produced with Buriti oil and non-ionic surfactants. Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75°C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Based on these results, the emulsions obtained could be considered as promising delivery systems.

  11. Oxidative Stability of Granola Bars Enriched with Multilayered Fish Oil Emulsion in the Presence of Novel Brown Seaweed Based Antioxidants.

    PubMed

    Hermund, Ditte B; Karadağ, Ayşe; Andersen, Ulf; Jónsdóttir, Rósa; Kristinsson, Hordur G; Alasalvar, Cesarettin; Jacobsen, Charlotte

    2016-11-09

    Fucus vesiculosus extracts that have both radical scavenging activity and metal chelating ability in vitro were used as natural antioxidant in granola bars enriched with fish oil emulsion by using primary and secondary emulsion systems stabilized by sodium caseinate alone and sodium caseinate-chitosan. The bars were stored at 20 °C and evaluated over a period of 10 weeks by measuring the development of primary and secondary oxidation products. The samples prepared with secondary emulsion system developed less oxidation products probably due to increased interfacial layer thickness that would act as a barrier to the penetration and diffusion of molecular species that promote oxidation. The positive charge of oil droplets in the secondary emulsion may also inhibit iron-lipid interaction through electrostatic repulsion. Additional protection against lipid oxidation was obtained when fish oil emulsions were added to the granola bars especially in combination with acetone and ethanol extracts of Fucus vesiculosus.

  12. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    PubMed

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  13. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.

    PubMed

    Yi, BoRa; Kim, Mi-Ja; Lee, JaeHwan

    2018-03-01

    The antioxidative or prooxidative properties of astaxanthin at the concentrations of 0, 10, and 100 μM were determined in oil-in-water (O/W) emulsions containing neutral, anionic, and cationic emulsifiers, which was Tween 20, sodium dodecyl sulfate, cetyltrimethylammonium bromide (CTAB), respectively, under chlorophyll photosensitization. The oxidative parameters and headspace volatiles were analyzed in O/W emulsions. In the 24 h period of visible light irradiation, 100 μM of astaxanthin acted as an antioxidant in O/W emulsions containing neutral and anionic emulsifiers. However, astaxanthin in O/W emulsions with a cationic emulsifier was neither an antioxidant nor a prooxidant. The profiles of volatile compounds showed that astaxanthin served as a singlet oxygen quencher in O/W emulsions containing neutral and anionic emulsifiers. However, in O/W emulsion with a cationic emulsifier, astaxanthin was neither a singlet oxygen quencher nor a free radical scavenger because prooxidant properties of CTAB overwhelmed the antioxidant effects of astaxanthin. Therefore, the antioxidant properties of astaxanthin were influenced by the emulsifier charges in O/W emulsions. Astaxanthin is a lipid-soluble pigment and has antioxidant, anticancer, and anti-inflammatory properties and beneficial effects on cardiovascular diseases. Many lipid-based foods are displayed on the shelves in the markets under fluorescent light. The addition of astaxanthin can extend the shelf life of O/W emulsion type foods such as beverage and dressing products under visible light irradiation. Also, oxidative stability in emulsion type foods containing astaxanthin rich natural ingredients can be predicted. © 2018 Institute of Food Technologists®.

  14. Treatment of local-anesthetic toxicity with lipid emulsion therapy.

    PubMed

    Burch, Melissa S; McAllister, Russell K; Meyer, Tricia A

    2011-01-15

    The use of lipid emulsion to treat local-anesthetic toxicity is discussed. Systemic toxicity from local anesthetics is a rare but potentially fatal complication of regional anesthesia. There is increasing evidence that lipid emulsion may be an effective treatment to reverse the cardiac and neurologic effects of local-anesthetic toxicity. A literature search identified seven case reports of local-anesthetic toxicity in which lipid emulsion was used. Lipid emulsion was found to be successful in the treatment of local-anesthetic toxicity associated with various regional anesthetic techniques and multiple local anesthetics. The majority of patients in the case reports reviewed were unresponsive to initial management of local-anesthetic toxicity with standard resuscitative measures, but all recovered completely after receiving lipid emulsion therapy. The initial dose of lipid emulsion administered varied among the case reports, as well as whether a lipid emulsion infusion was started and at what point during resuscitation. Based on the case reports reviewed, an initial bolus dose of 1.5 mL/kg followed by an infusion of 10 mL/min as soon as local-anesthetic toxicity is suspected seems most beneficial. The pharmacokinetics of lipid emulsion therapy in the treatment of local-anesthetic toxicity has not been fully elucidated but likely involves increasing metabolism, distribution, or partitioning of the local anesthetic away from receptors into lipid within tissues. Lipid emulsion has been reported useful in the treatment of systemic toxicity caused by local anesthetics. The mechanism of effect is unclear, and evidence for the benefit of lipid therapy in humans is from case reports only.

  15. Volume I: fluidized-bed code documentation, for the period February 28, 1983-March 18, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piperopoulou, H.; Finson, M.; Bloomfield, D.

    1983-03-01

    This documentation supersedes the previous documentation of the Fluidized-Bed Gasifier code. Volume I documents a simulation program of a Fluidized-Bed Gasifier (FBG), and Volume II documents a systems model of the FBG. The FBG simulation program is an updated version of the PSI/FLUBED code which is capable of modeling slugging beds and variable bed diameter. In its present form the code is set up to model a Westinghouse commercial scale gasifier. The fluidized bed gasifier model combines the classical bubbling bed description for the transport and mixing processes with PSI-generated models for coal chemistry. At the distributor plate, the bubblemore » composition is that of the inlet gas and the initial bubble size is set by the details of the distributor plate. Bubbles grow by coalescence as they rise. The bubble composition and temperature change with height due to transport to and from the cloud as well as homogeneous reactions within the bubble. The cloud composition also varies with height due to cloud/bubble exchange, cloud/emulsion, exchange, and heterogeneous coal char reactions. The emulsion phase is considered to be well mixed.« less

  16. Impact of Lipid and Protein Co-oxidation on Digestibility of Dairy Proteins in Oil-in-Water (O/W) Emulsions.

    PubMed

    Obando, Mónica; Papastergiadis, Antonios; Li, Shanshan; De Meulenaer, Bruno

    2015-11-11

    Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.

  17. Physical, mechanical, and barrier properties of sodium alginate/gelatin emulsion based-films incorporated with canola oil

    NASA Astrophysics Data System (ADS)

    Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.

    2017-12-01

    The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (p<0.05). In addition, it is apparent that varying ratio of sodium alginate to gelatin induced change the mechanical properties of films. The reduction of sodium alginate to gelatin decreased the tensile strength of both films. Improved values of WVTR, tensile strength and solubility at break were observed when the ratio of sodium alginate/gelatin emulsion film incorporated with canola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.

  18. Characterization methods for liquid interfacial layers

    NASA Astrophysics Data System (ADS)

    Javadi, A.; Mucic, N.; Karbaschi, M.; Won, J. Y.; Lotfi, M.; Dan, A.; Ulaganathan, V.; Gochev, G.; Makievski, A. V.; Kovalchuk, V. I.; Kovalchuk, N. M.; Krägel, J.; Miller, R.

    2013-05-01

    Liquid interfaces are met everywhere in our daily life. The corresponding interfacial properties and their modification play an important role in many modern technologies. Most prominent examples are all processes involved in the formation of foams and emulsions, as they are based on a fast creation of new surfaces, often of an immense extension. During the formation of an emulsion, for example, all freshly created and already existing interfaces are permanently subject to all types of deformation. This clearly entails the need of a quantitative knowledge on relevant dynamic interfacial properties and their changes under conditions pertinent to the technological processes. We report on the state of the art of interfacial layer characterization, including the determination of thermodynamic quantities as base line for a further quantitative analysis of the more important dynamic interfacial characteristics. Main focus of the presented work is on the experimental possibilities available at present to gain dynamic interfacial parameters, such as interfacial tensions, adsorbed amounts, interfacial composition, visco-elastic parameters, at shortest available surface ages and fastest possible interfacial perturbations. The experimental opportunities are presented along with examples for selected systems and theoretical models for a best data analysis. We also report on simulation results and concepts of necessary refinements and developments in this important field of interfacial dynamics.

  19. Emulsion chamber observations and interpretation (HE 3)

    NASA Technical Reports Server (NTRS)

    Shibata, M.

    1986-01-01

    Experimental results from Emulsion Chamber (EC) experiments at mountain altitudes or at higher levels using flying carriers are examined. The physical interest in this field is concentrated on the strong interaction at the very high energy region exceeding the accelerator energy, also on the primary cosmic ray intensity and its chemical composition. Those experiments which observed cosmic ray secondaries gave information on high energy interaction characteristics through the analyses of secondary spectra, gamma-hadron families and C-jets (direct observation of the particle production occuring at the carbon target). Problems of scaling violation in fragmentation region, interaction cross section, transverse momentum of produced secondaries, and some peculiar features of exotic events are discussed.

  20. On the characteristics of emulsion chamber family events produced in low heights

    NASA Technical Reports Server (NTRS)

    Jing, G.; Jing, C.; Zhu, Q.; Ding, L.

    1985-01-01

    The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height.

  1. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems.

    PubMed

    Vasconcelos, Teófilo; Marques, Sara; Sarmento, Bruno

    2018-02-01

    Self-emulsifying drug delivery systems (SEDDS) are one of the most promising technologies in the drug delivery field, particularly for addressing solubility and bioavailability issues of drugs. The development of these drug carriers excessively relies in visual observations and indirect determinations. The present manuscript intended to describe a method able to measure the emulsification of SEDDS, both micro and nano-emulsions, able to measure the droplet size and to evaluate the physical stability of these formulations. Additionally, a new process to evaluate the physical stability of SEDDS after emulsification was also proposed, based on a cycle of mechanical stress followed by a resting period. The use of a multiparameter continuous evaluation during the emulsification process and stability was of upmost value to understand SEDDS emulsification process. Based on this method, SEDDS were classified as fast and slow emulsifiers. Moreover, emulsification process and stabilization of emulsion was subject of several considerations regarding the composition of SEDDS as major factor that affects stability to physical stress and the use of multicomponent with different properties to develop a stable and robust SEDDS formulation. Drug loading level is herein suggested to impact droplets size of SEDDS after dispersion and SEDDS stability to stress conditions. The proposed protocol allows an online measurement of SEDDS droplet size during emulsification and a rationale selection of excipients based on its emulsification and stabilization performance. Copyright © 2017. Published by Elsevier B.V.

  2. Best practices for full-depth reclamation using asphalt emulsions.

    DOT National Transportation Integrated Search

    2015-07-01

    Full depth reclamation of asphalt pavements using asphalt emulsions (AEFDR) is a process that recycles and rejuvenates the existing : asphalt pavement surface, base, and, sometimes, the subgrade, providing an improved underlying structure for the new...

  3. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs.

    PubMed

    Paukkonen, Heli; Ukkonen, Anni; Szilvay, Geza; Yliperttula, Marjo; Laaksonen, Timo

    2017-03-30

    The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Kinetics of waterborne fluoropolymers prepared by one-step semi-continuous emulsion polymerization of chlorotrifluoroethylene, vinyl acetate, butyl acrylate and Veova 10

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Wang, M. H.; Wang, Z. F.; Bian, J. M.

    2018-01-01

    Due to using gaseous fluorine monomer with toxicity, waterborne fluoropolymers are synthesized by semi-continuous high-pressure emulsion polymerization method which differs from free-pressure emulsion polymerization. To dates, the research on preparing process and kinetics for high-pressure emulsion polymerization is reported relatively less, which hinders researchers from understanding of mechanisms for monomer-fluorinated emulsion polymerization. The paper also provides a new method by element auxiliary analysis to calculate kinetics parameters of high-pressure emulsion polymerization. Based on aforementioned consideration, waterborne fluoropolymers were prepared by copolymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), butyl acrylate (BA) and vinyl ester of versatic acid (Veova 10) using potassium persulfate as initiator and mixed surfactants. The kinetics of emulsion polymerization of waterborne fluoropolymers was then investigated. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on polymerization rate (Rp) were evaluated, and relationship was described as Rp∝[I]0.10 and Rp∝[E]0.12. The apparent activation energy was determined to be 33.61 kJ·mol-1. Moreover, the relative conversion rate of CTFE with the other monomers was observed, and results indicated that CTFE monomer more uniformly copolymerized with the other monomers. The resulting emulsion properties and pressure change in an autoclave were evaluated at different stirring rates. The initial reaction time, defined as the beginning time of dropwise addition, was determined by the change in solid content and particle size of emulsion.

  5. Concanavalin-A conjugated fine-multiple emulsion loaded with 6-mercaptopurine.

    PubMed

    Khopade, A J; Jain, N K

    2000-01-01

    Fine-multiple (water-in-oil-in-water) emulsions were prepared by two-step emulsification using sonication. They were coated with concanavalin-A (Con-A) by three methods. The one involving covalent coupling of Con-A to the multiple emulsion incorporated anchor was better compared with lipid derivatized Con-A anchoring or the glutaraldehyde-based cross-linking method, as shown by the faster rate of dextran-induced aggregation. The selected multiple emulsions were characterized by physical properties such as droplet size, encapsulation efficiency, and zeta potential. Stability parameters such as droplet size, creaming, leakage, and aggregation as a function of relative turbidity were monitored over a 1-month period, which revealed good stability of the formulations. The release profile of 6-mercaptopurine followed zero-order kinetics. Pharmacokinetic studies showed an increase in half-life and bioavailability from multiple emulsion formulations administered intravenously. There was prolonged retention of drug in various tissues of rats when treated with Con-A-coated multiple emulsion as compared with uncoated one. Our study demonstrates the suitability of fine-multiple emulsion for intravenous administration and the potential for prolonged retention of drugs and targeting in biological systems.

  6. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  7. Corrosion Protection of Steel by Thin Coatings of Starch-oil Emulsions

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. This research investigated the inhibition of corrosive behavior by jet-cooked starch-soybean oil composites on SAE 1010 steel. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate t...

  8. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    PubMed

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  9. Fish oil–based lipid emulsions in the treatment of parenteral nutrition-associated liver disease: An ongoing positive experience

    USDA-ARS?s Scientific Manuscript database

    We previously reported the beneficial effect of fish oil-based lipid emulsions (FOLEs) as monotherapy in the treatment of parenteral nutrition-associated liver disease (PNALD). In this report, we share our ongoing experience at Texas Children's Hospital, Houston, in the use of FOLE in treatment of P...

  10. High rates of resolution of cholestasis in parenteral nutrition-associated liver disease with fish oil-based lipid emulsion monotherapy

    USDA-ARS?s Scientific Manuscript database

    Our research was conducted to determine factors leading to resolution of cholestasis in patients with parenteral nutrition-associated liver disease treated with fish-oil-based lipid emulsion (FOLE). We used a prospective observational study of 57 infants <6 months of age with parenteral nutrition-as...

  11. Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion.

    PubMed

    Chuan, Yap Pang; Zeng, Bi Yun; O'Sullivan, Brendan; Thomas, Ranjeny; Middelberg, Anton P J

    2012-02-15

    Nanotechnology promises new drug carriers that can be tailored to specific applications. Here we report a new approach to drug delivery based on tailorable nanocarrier emulsions (TNEs), motivated by a need to co-deliver a protein antigen and a lipophilic drug for specific inhibition of nuclear factor kappa B (NF-κB) in antigen presenting cells (APCs). Co-delivery for NF-κB inhibition holds promise as a strategy for the treatment of rheumatoid arthritis. We used a highly surface-active peptide (SAP) to prepare a nanosized emulsion having defined surface properties predictable from the SAP sequence. Incorporating the lipophilic drug into the oil phase at the time of emulsion formation enabled its facile packaging. The SAP is depleted from bulk during emulsification, allowing simple subsequent addition of the drug-loaded oil-in-water emulsion to a solution of protein antigen. Decoration of emulsion surface with antigen was achieved via electrostatic deposition. In vitro data showed that the TNE prepared this way was internalized and well-tolerated by model APCs, and that good suppression of NF-κB expression was achieved. This work reports a new type of nanotechnology-based carrier, a TNE, which can potentially be tailored for co-delivery of multiple therapeutic components, and can be made using simple methods using only biocompatible materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Asymmetric flow field flow fractionation for the characterization of globule size distribution in complex formulations: A cyclosporine ophthalmic emulsion case.

    PubMed

    Qu, Haiou; Wang, Jiang; Wu, Yong; Zheng, Jiwen; Krishnaiah, Yellela S R; Absar, Mohammad; Choi, Stephanie; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming

    2018-03-01

    Commonly used characterization techniques such as cryogenic-transmission electron microscopy (cryo-TEM) and batch-mode dynamic light scattering (DLS) are either time consuming or unable to offer high resolution to discern the poly-dispersity of complex drug products like cyclosporine ophthalmic emulsions. Here, a size-based separation and characterization method for globule size distribution using an asymmetric flow field flow fractionation (AF4) is reported for comparative assessment of cyclosporine ophthalmic emulsion drug products (model formulation) with a wide size span and poly-dispersity. Cyclosporine emulsion formulations that are qualitatively (Q1) and quantitatively (Q2) the same as Restasis® were prepared in house with varying manufacturing processes and analyzed using the optimized AF4 method. Based on our results, the commercially available cyclosporine ophthalmic emulsion has a globule size span from 30 nm to a few hundred nanometers with majority smaller than 100 nm. The results with in-house formulations demonstrated the sensitivity of AF4 in determining the differences in the globule size distribution caused by the changes to the manufacturing process. It is concluded that the optimized AF4 is a potential analytical technique for comprehensive understanding of the microstructure and assessment of complex emulsion drug products with high poly-dispersity. Published by Elsevier B.V.

  13. Coarse and nano emulsions for effective delivery of the natural pest control agent pulegone for stored grain protection.

    PubMed

    Golden, Gilad; Quinn, Elazar; Shaaya, Eli; Kostyukovsky, Moshe; Poverenov, Elena

    2018-04-01

    One of the most significant contributors to the global food crisis is grain loss during storage, mainly caused by pest insects. Currently, there are two main methods used for insect pest control: fumigation and grain protection using contact insecticides. As some chemical insecticides can harm humans and the environment, there is a global tendency to reduce their use by finding alternative eco-friendly approaches. In this study, the natural pest-managing agent pulegone was encapsulated into coarse and nano emulsions. The emulsions were characterized using spectroscopic and microscopic methods and their stability and pulegone release ability were examined. The insecticidal activity of the prepared formulations against two stored product insects, rice weevil (Sitophilus oryzae L.) and red flour beetle (Tribolium castaneum Herbst), was demonstrated. The nano emulsion-based formulation offered significant advantages and provided powerful bioactivity, with high (> 90%) mortality rates for as long as 5 weeks for both insects, whereas coarse emulsions showed high efficacy for only 1 week. The developed pulegone-based nano emulsions could serve as a model for an effective alternative method for pest control. Although pulegone is from a natural source, toxicological studies should be performed before the widespread application of pulegone or pulegone-containing essential oils to dry food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Virginia method for the design of dense-graded emulsion mixes.

    DOT National Transportation Integrated Search

    1982-01-01

    An investigation into the Illinois method for the design of dense-graded emulsion base mixes had resulted in a report offering several modifications to that procedure. The Bituminous Research Advisory Committee then recommended that the Illinois meth...

  15. Performance-based analysis of polymer-modified emulsions in asphalt surface treatments.

    DOT National Transportation Integrated Search

    2009-10-01

    Chip seals provide a durable and functional pavement surface and serve as a highly economical highway : maintenance option when constructed properly. Data and literature suggest that chip seal sections constructed with : polymer-modified emulsions (P...

  16. Evaluation of dynamic shear rheometer tests for emulsions.

    DOT National Transportation Integrated Search

    2014-12-01

    DSR-based rheological tests of 20 different : asphalt emulsion residues were : performed and relationships : with elastic recovery (A : ASHTO : T301) and force ductility (AASHTO T : 300) were investigated. In stra : in sweep test from 2% to 52% : , i...

  17. Delivery of adapalene using a novel topical gel based on tea tree oil nano-emulsion: Permeation, antibacterial and safety assessments.

    PubMed

    Najafi-Taher, Roqya; Ghaemi, Behnaz; Amani, Amir

    2018-07-30

    The aim of present study was to design and optimize 0.1% adapalene loaded nano-emulsion to improve the drug efficacy and increase its user compliance. Effect of type and concentration of surfactants was studied on size of 0.1% adapalene loaded nano-emulsion. Optimized formulation was then evaluated for particle size, polydispersity index, morphology, viscosity, and pH. Subsequently, 1% carbopol® 934 was incorporated to the optimized formulation for preparation of its gel form. The efficacy and safety of 0.1% adapalene loaded nano-emulsion gel was assessed compared to marketed gel containing 0.1% adapalene. In-vitro studies showed that adapalene permeation through the skin was negligible in both adapalene loaded nano-emulsion gel and adapalene marketed gel. Furthermore, drug distribution studies in skin indicated higher retention of adapalene in the dermis in adapalene loaded nano-emulsion gel compared with adapalene marketed gel. Antibacterial activity against Propionibacterium acnes showed that adapalene loaded nano-emulsion is effective in reducing minimum inhibitory concentration of the formulation in comparison with tea tree oil nano-emulsion, and pure tea tree oil. In vivo skin irritation studies showed absence of irritancy for adapalene loaded nano-emulsion gel. Also, blood and liver absorption of the drug, histological analysis of liver and liver enzyme activity of rats after 90 days' treatment were investigated. No drug was detected in blood/liver which in addition to an absence of any adverse effect on liver and enzymes showed the potential of adapalene loaded nano-emulsion gel as a novel carrier for topical delivery of adapalene. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effect of salts on formation and stability of vitamin E-enriched mini-emulsions produced by spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2014-11-19

    Emulsion-based delivery systems are being utilized to incorporate lipophilic bioactive components into various food, personal care, and pharmaceutical products. This study examined the influence of inorganic salts (NaCl and CaCl2) on the formation, stability, and properties of vitamin E-enriched emulsions prepared by spontaneous emulsification. These emulsions were simply formed by titration of a mixture of vitamin E acetate (VE), carrier oil (MCT), and nonionic surfactant (Tween 80) into an aqueous salt solution with continuous stirring. Salt type and concentration (0-1 N NaCl or 0-0.5 N CaCl2) did not have a significant influence on the initial droplet size of the emulsions. On the other hand, the isothermal and thermal stabilities of the emulsions depended strongly on salt levels. The cloud point of the emulsions decreased with increasing salt concentration, which was attributed to accelerated droplet coalescence in the presence of salts. Dilution (2-6 times) of the emulsions with water appreciably improved their thermal stability by increasing their cloud point, which was mainly attributed to the decrease in aqueous phase salt levels. The isothermal storage stability of the emulsions also depended on salt concentration; however, increasing the salt concentration decreased the rate of droplet growth, which was the opposite of its effect on thermal stability. Potential physicochemical mechanisms for these effects are discussed in terms of the influence of salt ions on van der Waals and electrostatic interactions. This study provides important information about the effect of inorganic salts on the formation and stability of vitamin E emulsions suitable for use in food, personal care, and pharmaceutical products.

  19. Antimicrobial efficacy of an innovative emulsion of medium chain triglycerides against canine and feline periodontopathogens.

    PubMed

    Laverty, G; Gilmore, B F; Jones, D S; Coyle, L; Folan, M; Breathnach, R

    2015-04-01

    To test the in vitro antimicrobial efficacy of a non-toxic emulsion of free fatty acids against clinically relevant canine and feline periodontopathogens Antimicrobial kill kinetics were established utilising an alamarBlue(®) viability assay against 10 species of canine and feline periodontopathogens in the biofilm mode of growth at a concentration of 0·125% v/v medium chain triglyceride (ML:8) emulsion. The results were compared with 0·12% v/v chlorhexidine digluconate and a xylitol-containing dental formulation. Mammalian cellular cytotoxicity was also investigated for both the ML:8 emulsion and chlorhexidine digluconate (0·25 to 0·0625% v/v) using in vitro tissue culture techniques. No statistically significant difference was observed in the antimicrobial activity of the ML:8 emulsion and chlorhexidine digluconate; a high percentage kill rate (>70%) was achieved within 5 minutes of exposure and was maintained at subsequent time points. A statistically significant improvement in antibiofilm activity was observed with the ML:8 emulsion compared with the xylitol-containing formulation. The ML:8 emulsion possessed a significantly lower (P < 0·001) toxicity profile compared with the chlorhexidine digluconate in mammalian cellular cytotoxicity assays. The ML:8 emulsion exhibited significant potential as a putative effective antimicrobial alternative to chlorhexidine- and xylitol- based products for the reduction of canine and feline periodontopathogens. © 2015 British Small Animal Veterinary Association.

  20. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance.

    PubMed

    Asfaw, Habtom D; Roberts, Matthew R; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina

    2014-08-07

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm(-2) at 0.1 mA cm(-2) (lowest rate) and 1.1 mA h cm(-2) at 6 mA cm(-2) (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.

  1. Optimization for Reduced-Fat / Low-NaCl Meat Emulsion Systems with Sea Mustard (Undaria pinnatifida) and Phosphate

    PubMed Central

    Kim, Cheon-Jei; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jun; Kim, Hyun-Wook

    2015-01-01

    The effects of reducing fat levels from 30% to 20% and salt concentrations from 1.5% to 1.0% by partially substituting incorporated phosphate and sea mustard were investigated based on physicochemical properties of reduced-fat / low-NaCl meat emulsion systems. Cooking loss and emulsion stability, hardness, springiness, and cohesiveness for reduced-fat / low-NaCl meat emulsion systems with 20% pork back fat and 1.2% sodium chloride samples with incorporation of phosphate and sea mustard were similar to the control with 30% pork back fat and 1.5% sodium chloride. Results showed that reduced-fat / low-NaCl meat emulsion system samples containing phosphate and sea mustard had higher apparent viscosity. The results of this study show that the incorporation of phosphate and sea mustard in the formulation will successfully reduce fat and salt in the final meat products. PMID:26761874

  2. Hepatocellular integrity after parenteral nutrition: comparison of a fish-oil-containing lipid emulsion with an olive-soybean oil-based lipid emulsion.

    PubMed

    Piper, Swen N; Schade, Ingo; Beschmann, Ralf B; Maleck, Wolfgang H; Boldt, Joachim; Röhm, Kerstin D

    2009-12-01

    Parenteral nutrition including lipids might be associated with liver disease. The cause leading to parenteral nutrition-related liver dysfunction remains largely unknown but is likely to be multifactorial. The study was performed to assess the effects of a lipid emulsion based on soybean oil, medium-chain triglycerides, olive and fish oil (SMOFlipid20%) compared with a lipid emulsion based on olive and soybean oil on hepatic integrity. In a prospective, randomized, double-blinded trial, 44 postoperative patients with an indication for parenteral nutrition were allocated to one of two regimens: group A (n = 22) received SMOFlipid, group B (n = 22) a lipid emulsion based on olive and soybean oil for 5 days. Aspartate aminotransferase, alanin-aminotransferase, and serum alpha-glutathion S-transferase were measured before the start of parenteral nutrition (d0), at day 2 (d2), and day 5 (d5) after the start of parenteral nutrition. The significance level was defined at a P value of less than 0.05. There was no significant difference at d0, but at d2 and d5, significantly lower aspartate aminotransferase (d2: group A: 27 +/- 13 vs. group B: 47 +/- 36 U l(-1); d5: A: 31 +/- 14 vs. B: 56 +/- 45 U l(-1)), alanin-aminotransferase (d2: A: 20 +/- 12 vs. B: 42 +/- 39 U l(-1); d5: A: 26 +/- 15 vs. B: 49 +/- 44 U l(-1)), and alpha-glutathion S-transferase levels (d2: A: 5 +/- 6 vs. B: 17 +/- 21 U l(-1); d5: A: 6 +/- 7 vs. B: 24 +/- 27 microg l(-1)) were found in soybean oil, medium-chain triglycerides, olive and fish oil group compared with the control group. Hepatic integrity was well retained with the administration of SMOFlipid whereas in patients receiving a lipid emulsion based on olive and soybean oil liver enzymes were elevated indicating a lower liver tolerability.

  3. A commercial soy-based phospholipid emulsion accelerates clot formation in normal canine whole blood and induces hemolysis in whole blood from normal and dogs with inflammatory leukograms.

    PubMed

    Behling-Kelly, Erica L; Wakshlag, Joseph

    2018-05-01

    To compare lipid emulsion-induced hemolysis in blood from dogs with inflammatory leukograms to blood from healthy dogs, and determine the impact of a prototypical soy-based phospholipid emulsion on coagulation in whole blood from healthy dogs. Ex vivo study using EDTA and citrated whole blood from healthy dogs and EDTA anticoagulated whole blood from dogs with inflammatory leukograms. University research laboratory. Healthy dogs (total of 16, 9 for hemolysis assays and 6 for thromboelastography) included student- and staff-owned animals. Blood samples from dogs with inflammatory leukograms (8) were obtained from the clinical pathology laboratory after the complete blood count was performed as part of patient care. For the purposes of this study, an inflammatory leukogram was defined as a neutrophilia with a left-shift (minimum of 3% band neutrophils) and evidence of toxic change. None. Hemolysis was measured via spectrophotometric quantification of released hemoglobin and expressed as a percent of a water-lysed control. The soy emulsion caused hemolysis in blood from healthy dogs, ranging from 3.6% to 16.4% as the dose increased, and 4.1% to 25.0% in blood from dogs with inflammatory leukograms. Hemolysis between these patient groups was significantly different at the highest dose. Coagulation was assessed by native thromboelastography. Treatment of whole blood with the lipid emulsion caused a significant decrease in the time to clot formation (R) and a shorter time to reach a clot amplitude of 20 mm (K). Soy-based lipid emulsions cause hemolysis that is more severe in blood from dogs with inflammatory leukograms and accelerate clot formation in canine blood. The in vivo significance of these findings is not clear at this time, but warrants additional investigation given the use of these emulsions in clinical practice. © Veterinary Emergency and Critical Care Society 2018.

  4. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems.

    PubMed

    Kalariya, Mayurkumar; Amiji, Mansoor M

    2013-09-10

    The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Evaporation rate of emulsion and oil-base emulsion pheromones

    USDA-ARS?s Scientific Manuscript database

    Knowledge of pheromone evaporation rate is critical to distribute pheromone containers effectively in the forest, orchard and field. There are several factors influencing the pheromone evaporation rate that include wind speed, container size and porosity, release area, temperature, humidity, pherom...

  6. Laboratory comparison of solvent-loaded and solvent-free emulsions

    DOT National Transportation Integrated Search

    2000-09-01

    Asphalt emulsions have been widely used in highway construction and maintenance since the 1920s, initially as dust palliatives and spray applications. More recently, they have been used in more diverse paving applications such as base and surface cou...

  7. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates.

    PubMed

    Patel, Ashok R; Rajarethinem, Pravin S; Cludts, Nick; Lewille, Benny; De Vos, Winnok H; Lesaffer, Ans; Dewettinck, Koen

    2015-02-24

    Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion.

  8. Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects.

    PubMed

    Patil, Leena; Gogate, Parag R

    2018-01-01

    In the present work, application of ultrasound and stirring individually or in combination for improved emulsification of turmeric oil in skimmed milk has been investigated. The effect of different operating parameters/strategies such as addition of surfactant, sodium dodecyl sulfate (SDS), at different concentrations, quantity of oil phase, applied power, sonication time and duty cycle on the droplet size have been investigated. The stability of emulsion was analyzed in terms of the fraction of the emulsion that remains stable for a period of 28days. Optimized set of major emulsification process variables has been used at higher emulsion volumes. The effectiveness of treatment approach was analyzed based on oil droplet size, energy density and the time required for the formation of stable emulsion. It was observed that the stable emulsion at 50mL capacity with mean droplet diameter of about 235.4nm was obtained with the surfactant concentration of 5mg/mL, 11% of rated power (power density: 0.31W/mL) and irradiation time of 5min. The emulsion stability was higher in the case of ultrasound assisted approach as compared to the stirring. For the preparation of stable emulsion at 300mL capacity, it was observed that the sequential approach, i.e., stirring followed by ultrasound, gave lower mean droplet diameter (232.6nm) than the simultaneous approach, i.e., ultrasound and stirring together (257.9nm). However, the study also revealed that the simultaneous approach required very less time (15min) to synthesize stable emulsion as compared to the sequential approach (30min stirring and 60min ultrasound). It was successfully demonstrated that the ultrasound-assisted emulsification in the presence of SDS could be used for the preparation of stable turmeric oil-dairy emulsions, also providing insights into the role of SDS in increasing the stability of emulsions and of ultrasound in giving lower droplet sizes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biological and Clinical Aspects of an Olive Oil-Based Lipid Emulsion-A Review.

    PubMed

    Cai, Wei; Calder, Phillip C; Cury-Boaventura, Maria F; De Waele, Elisabeth; Jakubowski, Julie; Zaloga, Gary

    2018-06-15

    Intravenous lipid emulsions (ILEs) have been an integral component of parenteral nutrition for more than 50 years. Numerous formulations are available and are based on vegetable (soybean, olive, coconut) and animal (fish) oils. Therefore, each of these formulations has a unique fatty acid composition that offers both benefits and limitations. As clinical experience and our understanding of the effects of fatty acids on various physiological processes has grown, there is evidence to suggest that some ILEs may have benefits compared with others. Current evidence suggests that olive oil-based ILE may preserve immune, hepatobiliary, and endothelial cell function, and may reduce lipid peroxidation and plasma lipid levels. There is good evidence from a large randomized controlled study to support a benefit of olive oil-based ILE over soybean oil-based ILE on reducing infections in critically ill patients. At present there is limited evidence to demonstrate a benefit of olive oil-based ILE over other ILEs on glucose metabolism, and few data exist to demonstrate a benefit on clinical outcomes such as hospital or intensive care unit stay, duration of mechanical ventilation, or mortality. We review the current research and clinical evidence supporting the potential positive biological and clinical aspects of olive oil-based ILE and conclude that olive oil-based ILE is well tolerated and provides effective nutritional support to various PN-requiring patient populations. Olive oil-based ILE appears to support the innate immune system, is associated with fewer infections, induces less lipid peroxidation, and is not associated with increased hepatobiliary or lipid disturbances. These data would suggest that olive oil-based ILE is a valuable option in various PN-requiring patient populations.

  10. Tunable stability of monodisperse secondary O/W nano-emulsions

    NASA Astrophysics Data System (ADS)

    Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.

    2014-07-01

    Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S3, and Tables S1-S6. See DOI: 10.1039/c4nr02273d

  11. The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: a randomized controlled trial.

    PubMed

    Beken, Serdar; Dilli, Dilek; Fettah, Nurdan Dinlen; Kabataş, Emrah Utku; Zenciroğlu, Ayşegül; Okumuş, Nurullah

    2014-01-01

    To compare the effect of two lipid emulsions on the development of retinopathy of prematurity in very low birth weight infants. Randomized controlled study. Eighty very low birth weight infants receiving parenteral nutrition from the first day of life were evaluated. One of the two lipid emulsions were used in the study infants: Group 1 (n=40) received fish-oil based lipid emulsion (SmofLipid®) and Group 2 (n=40) soybean oil based lipid emulsion (Intralipid®). The development of retinopathy of prematurity and the need for laser photocoagulation were assessed. The maternal and perinatal characteristics were similar in both groups. The median (range) duration of parenteral nutrition [14days (10-28) vs 14 (10-21)] and hospitalization [34days (20-64) vs 34 (21-53)] did not differ between the groups. Laboratory data including complete blood count, triglyceride level, liver and kidney function tests recorded before and after parenteral nutrition also did not differ between the two groups. In Group 1, two patients (5.0%) and in Group 2, 13 patients (32.5%) were diagnosed with retinopathy of prematurity (OR: 9.1, 95% CI 1.9-43.8, p=0.004). One patient in each group needed laser photocoagulation, without significant difference. Multivariate analysis showed that only receiving fish-oil emulsion in parenteral nutrition decreased the risk of development of retinopathy of prematurity [OR: 0.76, 95% CI (0.06-0.911), p=0.04]. Premature infants with very low birth weight receiving an intravenous fat emulsion containing fish oil developed less retinopathy of prematurity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A multi-criteria decision making approach to identify a vaccine formulation.

    PubMed

    Dewé, Walthère; Durand, Christelle; Marion, Sandie; Oostvogels, Lidia; Devaster, Jeanne-Marie; Fourneau, Marc

    2016-01-01

    This article illustrates the use of a multi-criteria decision making approach, based on desirability functions, to identify an appropriate adjuvant composition for an influenza vaccine to be used in elderly. The proposed adjuvant system contained two main elements: monophosphoryl lipid and α-tocopherol with squalene in an oil/water emulsion. The objective was to elicit a stronger immune response while maintaining an acceptable reactogenicity and safety profile. The study design, the statistical models, the choice of the desirability functions, the computation of the overall desirability index, and the assessment of the robustness of the ranking are all detailed in this manuscript.

  13. Study of water-oil emulsion combustion in large pilot power plants for fine particle matter emission reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouis, C.; Beretta, F.; L'Insalata, A.

    2007-04-15

    The combustion of heavy fuel oil for power generation is a great source of carbonaceous and inorganic particle emissions, even though the combustion technologies and their efficiency are improving. The information about the size distribution function of the particles originated by trace metals present into the fuels is not adequate. In this paper, we focused our attention the influence of emulsion oil-water on the larger distribution mode of both the carbonaceous and metallic particles. Isokinetic sampling was performed at the exhausts of flames of a low-sulphur content heavy oil and its emulsion with water produced in two large pilot plants.more » The samples were size-segregated by mean of an 8-stages Andersen impactor. Further investigation performed on the samples using electronic microscopy (SEM) coupled with X-ray analysis (EDX) evidenced the presence of solid spherical particles, plerosphere, with typical dimensions ranging between 200 nm and 2-3 {mu}m, whose atomic composition contains a large amount of the trace metals present in the parent oils (Fe, V, Ni, etc.). EDX analyses revealed that the metal concentration increases as the plerosphere dimension decreases. We also observed that the use of emulsion slightly reduce the emission of fine particles (D{sub 50} < 8 {mu}m) in the large scale plant. (author)« less

  14. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs administered new generation lipid emulsions[S

    PubMed Central

    Guthrie, Gregory; Kulkarni, Madhulika; Vlaardingerbroek, Hester; Stoll, Barbara; Ng, Kenneth; Martin, Camilia; Belmont, John; Hadsell, Darryl; Heird, William; Newgard, Christopher B.; Olutoye, Oluyinka; van Goudoever, Johannes; Lauridsen, Charlotte; He, Xingxuan; Schuchman, Edward H.; Burrin, Douglas

    2016-01-01

    We aimed to characterize the lipidomic, metabolomic, and transcriptomic profiles in preterm piglets administered enteral (ENT) formula or three parenteral lipid emulsions [parenteral nutrition (PN)], Intralipid (IL), Omegaven (OV), or SMOFlipid (SL), for 14 days. Piglets in all parenteral lipid groups showed differential organ growth versus ENT piglets; whole body growth rate was lowest in IL piglets, yet there were no differences in either energy expenditure or 13C-palmitate oxidation. Plasma homeostatic model assessment of insulin resistance demonstrated insulin resistance in IL, but not OV or SL, compared with ENT. The fatty acid and acyl-CoA content of the liver, muscle, brain, and plasma fatty acids reflected the composition of the dietary lipids administered. Free carnitine and acylcarnitine (ACT) levels were markedly reduced in the PN groups compared with ENT piglets. Genes associated with oxidative stress and inflammation were increased, whereas those associated with alternative pathways of fatty acid oxidation were decreased in all PN groups. Our results show that new generation lipid emulsions directly enrich tissue fatty acids, especially in the brain, and lead to improved growth and insulin sensitivity compared with a soybean lipid emulsion. In all total PN groups, carnitine levels are limiting to the formation of ACTs and gene expression reflects the stress of excess lipid on liver function. PMID:27474222

  15. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2014-11-18

    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

  16. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    PubMed

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Measurements of 12C ions beam fragmentation at large angle with an Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; De Lellis, G.; Di Crescenzo, A.; Lauria, A.; Montesi, M. C.; Pastore, A.; Patera, V.; Sarti, A.; Tioukov, V.

    2017-08-01

    Hadron radiotherapy is a powerful technique for the treatment of deep-seated tumours. The physical dose distribution of hadron beams is characterized by a small dose delivered in the entrance channel and a large dose in the Bragg peak area. Fragmentation of the incident particles and struck nuclei occurs along the hadron path. Knowledge of the fragment energies and angular distributions is crucial for the validation of the models used in treatment planning systems. We report on large angle fragmentation measurements of a 400 MeV/n 12C beam impinging on a composite target at the GSI laboratory in Germany. The detector was made of 300 micron thick nuclear emulsion films, with sub-micrometric spatial resolution and large angle track detection capability, interleaved with passive material. Thanks to newly developed techniques in the automated scanning of emulsions it was possible to extend the angular range of detected particles. This resulted in the first measurement of the angular and momentum spectrum for fragments emitted in the range from 34o to 81o.

  18. Infrared study of structural characteristics of Frankfurters formulated with olive oil-in-water emulsions stabilized with casein as pork backfat replacer.

    PubMed

    Carmona, P; Ruiz-Capillas, C; Jiménez-Colmenero, F; Pintado, T; Herrero, A M

    2011-12-28

    This article reports an infrared spectroscopic (FT-IR) study on lipids and protein structural characteristics in frankfurters as affected by an emulsified olive oil stabilizing system used as a pork backfat replacer. The oil-in-water emulsions were stabilized with sodium caseinate, without (F/SC) and with microbial transglutaminase (F/SC+MTG). Proximate composition and textural characteristics were also evaluated. Frankfurters F/SC+MTG showed the highest (P < 0.05) hardness and lowest (P < 0.05) adhesiveness. These products also showed the lowest (P < 0.05) half-bandwidth of the 2922 cm(-1) band, which could be related to the fact that the lipid chain was more orderly than that in the frankfurters formulated with animal fat and F/SC. The spectral results revealed modifications in the amide I band profile when the olive oil-in-water emulsion replaced animal fat. This fact is indicative of a greater content of aggregated intermolecular β-sheets. Structural characteristics in both proteins and lipids could be associated with the specific textural properties of frankfurters.

  19. Soft Multifunctional Composites and Emulsions with Liquid Metals.

    PubMed

    Kazem, Navid; Hellebrekers, Tess; Majidi, Carmel

    2017-07-01

    Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stability of total nutrient admixtures with lipid injectable emulsions in glass versus plastic packaging.

    PubMed

    Driscoll, David F; Silvestri, Anthony P; Bistrian, Bruce R; Mikrut, Bernard A

    2007-02-15

    The physical stability of two emulsions compounded as part of a total nutrient admixture (TNA) was studied in lipids packaged in either glass or plastic containers. Five weight-based adult TNA formulations that were designed to meet the full nutritional needs of adults with body weights between 40 and 80 kg were studied. Triplicate preparations of each TNA were assessed over 30 hours at room temperature by applying currently proposed United States Pharmacopeia (USP) criteria for mean droplet diameter, large-diameter tail, and globule-size distribution (GSD) for lipid injectable emulsions. In accordance with conditions set forth in USP chapter 729, the higher levels of volume-weighted percent of fat exceeding 5 microm (PFAT(5)) should not exceed 0.05% of the total lipid concentration. Significant differences were noted among TNA admixtures based on whether the lipid emulsion product was manufactured in glass or plastic. The plastic-contained TNAs failed the proposed USP methods for large-diameter fat globules in all formulations from the outset, and 60% had significant growth in large-diameter fat globules over time. In contrast, glass-contained TNAs were stable throughout and in all cases would have passed proposed USP limits. Certain lipid injectable emulsions packaged in plastic containers have baseline abnormal GSD profiles compared with those packaged in glass containers. When used to compound TNAs, the abnormal profile worsens and produces less stable TNAs than those compounded with lipid injectable emulsions packaged in glass containers.

  1. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  2. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives.

    PubMed

    Gómez-Mascaraque, Laura G; López-Rubio, Amparo

    2016-03-01

    This work shows the potential of emulsion electrospraying of proteins using food-grade emulsions for the microencapsulation and enhanced protection of a model thermosensitive hydrophobic bioactive. Specifically, gelatin, a whey protein concentrate (WPC) and a soy protein isolate (SPI) were compared as emulsion stabilizers and wall matrices for encapsulation of α-linolenic acid. In a preliminary stage, soy bean oil was used as the hydrophobic component for the implementation of the emulsion electrospraying process, investigating the effect of protein type and emulsion protocol used (i.e. with or without ultrasound treatment) on colloidal stability. This oil was then substituted by the ω-3 fatty acid and the emulsions were processed by electrospraying and spray-drying, comparing both techniques. While the latter resulted in massive bioactive degradation, electrospraying proved to be a suitable alternative, achieving microencapsulation efficiencies (MEE) of up to ∼70%. Although gelatin yielded low MEEs due to the need of employing acetic acid for its processing by electrospraying, SPI and WPC achieved MEEs over 60% for the non-sonicated emulsions. Moreover, the degradation of α-linolenic acid at 80°C was significantly delayed when encapsulated within both matrices. Whilst less than an 8% of its alkene groups were detected after 27h of thermal treatment for free α-linolenic acid, up to 43% and 67% still remained intact within the electrosprayed SPI and WPC capsules, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch.

    PubMed

    Ye, Aiqian; Hemar, Yacine; Singh, Harjinder

    2004-10-10

    The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.

  4. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  5. Lecithin-based emulsions for potential use as saliva substitutes in patients with xerostomia--viscoelastic properties.

    PubMed

    Hanning, Sara M; Yu, Tao; Jones, David S; Andrews, Gavin P; Kieser, Jules A; Medlicott, Natalie J

    2013-11-18

    The purpose of the present study was to investigate lecithin-rice bran oil rheological properties with the view to consider these as potential saliva substitutes in patients with severe xerostomia and salivary hypofunction. Pseudo-ternary phase diagrams of rice bran oil, lecithin and water mixtures were constructed and characterised using polarising light microscopy. Viscoelastic properties, which we hypothesise are important determinants in product performance, were analysed using both flow and oscillatory rheology. Rheological properties were influenced by composition, frequency and shear stress. Frequency-dependent viscoelasticity was observed in some formulations where viscosity dominated (tanδ>1) at frequencies under 5 Hz and elasticity dominated (tanδ<1) at higher frequencies. Threshold frequencies were determined for each formulation, where a peak in loss tangent was observed, coinciding with a reduction in the storage modulus and increase in loss modulus. The frequency-dependent behaviour of emulsions are of interest because these combinations exhibit viscous behaviour at low frequencies, which may improve lubrication of the oral cavity at rest, whereas increased elasticity at higher frequencies may improve retention during higher-shear tasks such as swallowing and speaking. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Simulation of the detonation process of an ammonium nitrate based emulsion explosive using the Lee-Tarver reactive flow model

    NASA Astrophysics Data System (ADS)

    Ribeiro, Jose; Silva, Cristovao; Mendes, Ricardo; Plaksin, Igor; Campos, Jose

    2011-06-01

    The use of emulsion explosives [EEx] for processing materials (compaction, welding and forming) requires the ability to perform detailed simulations of its detonation process [DP]. Detailed numerical simulations of the DP of this kind of explosives, characterized by having a finite reaction zone thickness, are thought to be suitable performed using the Lee-Tarver reactive flow model. In this work a real coded genetic algorithm methodology was used to estimate the 15 parameters of the reaction rate equation [RRE] of that model for a particular EEx. This methodology allows, in a single optimization procedure, using only one experimental result and without the need of any starting solution, to seek for the 15 parameters of the RRE that fit the numerical to the experimental results. Mass averaging and the Plate-Gap Model have been used for the determination of the shock data used in the unreacted explosive JWL EoS assessment and the thermochemical code THOR retrieved the data used in the detonation products JWL EoS assessment. The obtained parameters allow a good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.

  7. Development of Performance-Related Specification for Fresh Emulsions Used for Surface Treatments and Performance Study of Chip Seals and Microsurfacing

    NASA Astrophysics Data System (ADS)

    Ilias, Mohammad

    Pavement preservation is a rapidly growing strategy for prolonging pavement service life. Pavement preservation consists of applying a thin layer of asphalt binder or emulsion with or without aggregate to the surface of an existing pavement. Preservation treatments do not provide any structural strength to the pavement but restores skid resistance, seals existing cracks, protects the underlying pavement from intrusion of water, and reduces further oxidative aging of the underlying pavement. In recent years, significant research has been dedicated to improving design of pavement preservation treatments. In pavement preservation treatments, asphalt emulsion is the predominant binding material used because of its low viscosity compared to asphalt cement which allows for production at greatly reduced temperatures, leading to energy efficiency, and potential cost savings. Currently, specifications for emulsions used in pavement preservation treatments are empirical and lack of direct relationship to performance. This study seeks to improve specifications for emulsions used in preservation treatments by developing performancerelated specifications (PRS) for (a) fresh emulsion properties, (b) microsurfacing emulsion residue, and (c) low-temperature raveling of chip seal emulsion residues. Fresh emulsion properties dictate constructability and stability, and consequently the resultant performance of a preservation treatment once placed. Specification test methods are proposed for chip seals, microsurfacings, and spray seals that reflect storage and construction conditions of the emulsions. Performance is quantified using viscosity measurements. Specification limits are determined based on a prior knowledge of emulsion performance coupled with statistical analyses. Microsurfacings are a preservation treatment consisting of application of a thin layer of asphalt emulsion -- fine aggregate mixture. Presently, mixture design and performances of microsurfacing mixtures are appraised using the procedure specified by the International Slurry Surfacing Association (ISSA) with no provision for quantifying microsurfacing residue performance. In this study, residue performance is quantified using the Multiple Stress Creep and Recovery (MSCR) test for rutting and bleeding, the Bitumen Bond Strength Test (BBS) for raveling, Low Temperature Frequency (LTF) test for low temperature Bending Beam Rheometer (BBR) properties prediction, and Single Edge Notched Bend (SENB) fracture test developed under this work. Microsurfacing mixture performance is quantified using the Wet Track Abrasion Test (WTAT) for raveling, Model Mobile Load Simulator (MMLS3) for rutting and bleeding, and SENB test developed for low-temperature cracking. Microsurfacing mixture performance is correlated to residue properties in order to identify critical emulsion residue properties in determining performance and to derive specification limits. Results indicate rutting and thermal cracking are the distresses most directly related to the emulsion residue performance. Correspondingly, specifications are proposed to address rutting at high temperature and thermal cracking at low temperature based on the relationship between residue and mixture results coupled. In addition, test methods and specification criteria are developed to address lowtemperature raveling resistance of emulsion residues used in chip seals. The SENB test is used to quantify residue resistance to thermal cracking under the assumption that lowtemperature raveling occurs primarily by cohesive fracture of the residue in the chip seal. The Vialit test is modified and employed for quantifying raveling resistance of chip seals mixture for determining if the SENB test captures binder contribution to mixture raveling. The correlation between residue and mixture properties have been used to assess applicability of the residue tests and to derive specification limits.

  8. Simultaneous sentinel lymph node computed tomography and locoregional chemotherapy for lymph node metastasis in rabbit using an iodine-docetaxel emulsion

    PubMed Central

    Kim, Honsoul; Jang, Eun-Ji; Kim, Sang Kyum; Hyung, Woo Jin; Choi, Dong Kyu; Lim, Soo-Jeong; Lim, Joon Seok

    2017-01-01

    Purpose A sentinel lymph node (SLN) tracer can gain multi-functionality by combining it with additional components. We developed a SLN tracer consisting of iodine and docetaxel and applied it as a theragnostic nanoparticle to simultaneously perform SLN computed tomography (CT) lymphography and locoregional chemotherapy of the draining lymphatic system. Results Docetaxel could be loaded in iodine emulsions at a drug-to-surfactant weight ratio as high as that in the drug formulation Taxotere®. The particle size and drug concentration were stable during storage for up to 3 months in optimized nanoemulsions. Popliteal LN enhancement on CT was observed in all healthy rabbits (n=3) and VX2 tumor-implanted rabbits (n=6) 12 hours after injection. The rate of SLN metastasis was significantly lower in the treatment group (29.4%, 5/17) than in the non-treatment group (70.6%, 12/17) (P=0.038). Material and Methods We prepared a nanoemulsion carrying both iodine and docetaxel in a single structure by optimizing the composition of surfactants surrounding the inner iodized oil core. CT was performed 12 hours after subcutaneous injection of the emulsion in healthy rabbits (n=3) and VX2 tumor-implanted rabbits (n=6) for SLN imaging. Next, we tested the effect of treatment by histopathologically assessing the popliteal LN metastasis rate in VX2 tumor-implanted rabbits 7 days after subcutaneous injection of the emulsion (treatment group, n=17) and comparing it with that of non-treatment group rabbits (n=17). Conclusions We developed an iodine-docetaxel emulsion and demonstrated that it can be applied to simultaneously achieve CT SLN imaging and local chemotherapy against nodal metastasis. PMID:28460444

  9. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.

    PubMed

    Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C

    2016-09-01

    Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. In vitro evaluation of lysophosphatidic acid delivery via reverse perfluorocarbon emulsions to enhance alveolar epithelial repair.

    PubMed

    Nelson, Diane L; Zhao, Yutong; Fabiilli, Mario L; Cook, Keith E

    2018-05-17

    Alveolar drug delivery is needed to enhance alveolar repair during acute respiratory distress syndrome. However, delivery of inhaled drugs is poor in this setting. Drug delivery via liquid perfluorocarbon emulsions could address this problem through better alveolar penetration and improved spatial distribution. Therefore, this study investigated the efficacy of the delivery of lysophosphatidic acid (LPA) growth factor to cultured alveolar epithelial cells via a perfluorocarbon emulsion. Murine alveolar epithelial cells were treated for 2 h with varying concentrations (0-10 μM) of LPA delivered via aqueous solution or PFC emulsion. Cell migration was evaluated 18 h post-treatment using a scratch assay. Barrier function was evaluated 1 h post-treatment using a permeability assay. Proliferation was evaluated 72 h post-treatment using a viability assay. Partially due to emulsion creaming and stability, the effects of LPA were either diminished or completely hindered when delivered via emulsion versus aqueous. Migration increased significantly following treatment with the 10 μM emulsion (p < 10 -3 ), but required twice the concentration to achieve an increase similar to aqueous LPA. Both barrier function and proliferation increased following aqueous treatment, but neither were significantly affected by the emulsion. The availability and thus the biological effect of LPA is significantly blunted during emulsified delivery in vitro, and this attenuation depends on the specific cellular function examined. Thus, the cellular level effects of drug delivery to the lungs via PFC emulsion are likely to vary based on the drug and the effect it is intended to create. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A novel emulsion-forming arabinogalactan gum from the stems of Frost grape (Vitis riparia Michx.)

    USDA-ARS?s Scientific Manuscript database

    A novel arabinogalactan polysaccharide (FGP) is described that is produced in large quantities from the cut stems of Frost grape (Vitis riparia Michx.). The sugar composition consists of L-arabinofuranose (L-Araf, 55.2 %) and D-galactopyranose (D-Galp 30.1%), with smaller components of D-xylose (11....

  12. Methods for treating hydrocarbon recovery operations and industrial waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, N.E.S.; Asperger, R.G.

    1989-05-02

    This patent describes a method for consisting adding to the emulsion an effective demulsifying amount of a composition comprising a compound containing: an alkane triyl group of 1 to 30 carbon atoms; an alkylene group of 1 to 30 carbon atoms; and an alkali or alkaline earth metal group or an ammonium group.

  13. Interfacial complexation in microfluidic droplets for single-step fabrication of microcapsule

    NASA Astrophysics Data System (ADS)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Williams, Danielle; Liu, Wei; Schloss, Ashley; Regan, Lynn; Yan, Elsa; Dufrense, Eric; Loewenberg, Michael; Osuji, Chinedum

    We present microfluidic interfacial complexation in emulsion droplets as a simple single-step approach for fabricating a large variety of stable monodisperse microcapsules with tailored mechanical properties, protein binding and controlled release behavior. We rely on electrostatic interactions and hydrogen bonding to direct the assembly of complementary species at oil-water droplet interfaces to form microcapsules with polyelectrolyte shells, composite polyelectrolyte-nanoparticle shells, and copolymer-nanofiber shells. Additionally, we demonstrate the formation of microcapsules by adsorption of an amphiphilic bacterial hydrophobin, BslA, at oil-in-water and water-in-oil droplets, and protein capture on these capsules using engineered variants of the hydrophobin. We discuss the composition dependence of mechanical properties, shell thickness and release behavior, and regimes of stability for microcapsule fabrication. Nanoparticle based microcapsules display an intriguing plastic deformation response which enables the formation of large aspect ratio asperities by pipette aspiration of the shell.

  14. Highly flexible transparent self-healing composite based on electrospun core-shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Liou, Minho; Song, Kyo Yong; Jo, Hong Seok; Lee, Min Wook; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2015-10-01

    Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.

  15. Pharmacokinetics and anti-hypertensive effect of metoprolol tartrate rectal delivery system.

    PubMed

    Abou el Ela, Amal El Sayeh F; Allam, Ayat A; Ibrahim, Ehsan H

    2016-01-01

    The main aim of this work was to develop rectal suppositories for better delivery of metoprolol tartrate (MT). The various bases used were fatty, water soluble and emulsion bases. The physical properties of the prepared suppositories were characterized such as weight variation, hardness, disintegration time, melting range and the drug content uniformity. The in vitro release of MT from the prepared suppositories was carried out. The evaluation of the pharmacological effects of MT on the blood pressure and heart rate of the healthy rabbits after the rectal administration compared to the oral tablets was studied. Moreover, the formulation with the highest in vitro release and the highest pharmacological effects would be selected for a further pharmacokinetics study compared to the oral tablets. The results revealed that the emulsion bases gave the highest rate of the drug release than the other bases used. The reduction effect of the emulsion MT suppository base on the blood pressure and heart rate was found to be faster and greater than that administered orally. The selected emulsion suppository base (F11) showed a significant increase in the AUC (1.88-fold) in rabbits as compared to the oral tablets. From the above results we can conclude that rectal route can serve as an efficient alternative route to the oral one for systemic delivery of MT which may be due to the avoidance of first-pass effect in the liver.

  16. USING ACID-RESISTANT PHOTOSENSITIVE EMULSIONS TO OBTAIN LOCAL INHOMOGENEITIES WITH A HIGH RESOLVING POWER ON MONOCRYSTALS AND FILMS OF GERMANIUM AND SILICON (PRIMENENIE KISLOTOSTOYKHIKH SVETOCHUVSTVITELNYKH EMULSII DLYA POLUCHENIYA LOKALNYKH NEODNORODNOSTEI S VYSOKIM RAZRESHENIEM NA MONOKRISTALLAKH I PLENKAKH GERMANIYA I KREMNIYA),

    DTIC Science & Technology

    It was found that the esters of polystyrene and cinnamic acid , polyvinyl alcohol, and cinnamic acid have high dielectric characteristics that change...Photosensitive acid -resisting emulsions for use in photoengraving of semiconductor parts and semiconductor surfaces were synthesized and tested...organosilicon compounds, cinnamic aldehyde, emulsions based on azo and diazo compounds and polymeric polyesters--were tested. The photoengraving method

  17. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.

    PubMed

    Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G

    2014-01-01

    The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.

  18. Examining the Roles of Emulsion Droplet Size and Surfactant in the Interfacial Instability-Based Fabrication Process of Micellar Nanocrystals

    NASA Astrophysics Data System (ADS)

    Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang

    2017-06-01

    The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.

  19. On the transport of emulsions in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortis, Andrea; Ghezzehei, Teamrat A.

    2007-06-27

    Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approachmore » explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.« less

  20. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  1. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    PubMed

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets

    PubMed Central

    Hadorn, Maik; Boenzli, Eva; Sørensen, Kristian T.; Fellermann, Harold; Eggenberger Hotz, Peter; Hanczyc, Martin M.

    2012-01-01

    Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine. PMID:23175791

  3. A Physicochemical Study of the Effects of Acidity on the Distribution and Antioxidant Efficiency of Trolox in Olive Oil-in-Water Emulsions.

    PubMed

    Galan, Anna; Losada-Barreiro, Sonia; Bravo-Díaz, Carlos

    2016-01-18

    The efficiency of antioxidants to inhibit the oxidation of lipid-based emulsions depends on several factors including their nature and their concentration at the reaction site. Here, we have analyzed the effects of acidity and of surfactant concentration on the distribution and efficiency of the vitamin E analog Trolox (TR) in stripped olive oil-in-water emulsions stabilized with Tween 20. The distribution was assessed in the intact emulsions by employing a kinetic method that exploits the reaction between the hydrophobic 4-hexadecylbenzenediazonium ions and TR. Kinetic results are interpreted on the grounds of the pseudophase model. The effects of TR on the oxidative stability of the emulsion were determined at different pH values by monitoring the formation of conjugated dienes over time. The results show that the efficiency of TR increases upon increasing pH even though its concentration in the interfacial region decreases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.

    PubMed

    Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada

    2008-01-01

    The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.

  5. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  6. Arabinoxylan-lipids-based edible films and coatings. 2. Influence of sucroester nature on the emulsion structure and film properties.

    PubMed

    Phan The, D; Péroval, C; Debeaufort, F; Despré, D; Courthaudon, J L; Voilley, A

    2002-01-16

    This work is a contribution to better knowledge of the influence of the structure of films on their functional properties obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil (HPKO), and emulsifiers. The sucroesters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. They improve the moisture barrier properties. Several sucroesters having different esterification degrees were tested. Both lipophilic (90% of di and tri-ester) and hydrophilic (70% of mono-ester) sucrose esters can ensure the stability of the emulsion used to form the film, especially during preparation and drying. These emulsifiers confer good moisture barrier properties to emulsified films.

  7. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    NASA Astrophysics Data System (ADS)

    Li, Er Qiang; Zhang, Jia Ming; Thoroddsen, Sigurdur T.

    2014-01-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions.

  8. Nano-emulsions as vehicles for topical delivery of forskolin.

    PubMed

    Miastkowska, Małgorzata; Sikora, Elżbieta; Lasoń, Elwira; Garcia-Celma, Maria Jose; Escribano-Ferrer, Elvira; Solans, Conxita; Llinas, Meritxell

    2017-01-01

    Two O/W forskolin-loaded nano-emulsions (0.075% wt.) based on medium chain triglycerides (MCT) and stabilized by a nonionic surfactant (Polysorbate 80 or Polysorbate 40) were studied as forskolin delivery systems. The nano-emulsions were prepared by the PIC method. The mean droplet size of the nano-emulsions with Polysorbate 80 and Polysorbate 40 with oil/surfactant (O/S) ratios of 20/80 and 80% water concentration, measured by Dynamic Light Scattering (DLS), was of 118 nm and 111 nm, respectively. Stability of the formulations, as assessed by light backscattering for 24 h, showed that both nano-emulsions were stable at 25°C. Studies of forskolin in vitro skin permeation from the nano-emulsions and from a triglyceride solution were carried out at 32°C, using Franz-type diffusion cells. A mixture of PBS/ethanol (60/40 v/v) was used as a receptor solution. The highest flux and permeability coefficient was obtained for the system stabilized with Polysorbate 80 (6.91±0.75 µg · cm -2 ·h -1 and 9.21 · 10 -3 ±1.00 · 10 -3 cm · h -1 , respectively) but no significant differences were observed with the flux and permeability coefficient value of forskolin dissolved in oil. The obtained results showed that the nano-emulsions developed in this study could be used as effective carriers for topical administration of forskolin.

  9. Interfacial behaviour of sodium stearoyllactylate (SSL) as an oil-in-water pickering emulsion stabiliser.

    PubMed

    Kurukji, D; Pichot, R; Spyropoulos, F; Norton, I T

    2013-11-01

    The ability of a food ingredient, sodium stearoyllactylate (SSL), to stabilise oil-in-water (O/W) emulsions against coalescence was investigated, and closely linked to its capacity to act as a Pickering stabiliser. Results showed that emulsion stability could be achieved with a relatively low SSL concentration (≥0.1 wt%), and cryogenic-scanning electron microscopy (cryo-SEM) visualisation of emulsion structure revealed the presence of colloidal SSL aggregates adsorbed at the oil-water interface. Surface properties of SSL could be modified by altering the size of these aggregates in water; a faster decrease in surface tension was observed when SSL dispersions were subjected to high pressure homogenisation (HPH). The rate of SSL adsorption at the sunflower oil-water interface also increased after HPH, and a higher interfacial tension (IFT) was observed with increasing SSL concentration. Differential scanning calorimetry (DSC) enabled a comparison of the thermal behaviour of SSL in aqueous dispersions with SSL-stabilised O/W emulsions. SSL melting enthalpy depended on emulsion interfacial area and the corresponding DSC data was used to determine the amount of SSL adsorbed at the oil-water interface. An idealised theoretical interfacial coverage calculation based on Pickering emulsion theory was in general agreement with the mass of SSL adsorbed as predicted by DSC. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.

    PubMed

    Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José

    2014-11-01

    Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Improving stability of low-volume forest roads using a lignin-based emulsion

    Treesearch

    Robert B. Rummer; John Klepac; Harry Archer; Gerry Hebner

    2001-01-01

    Unitol DKG, a lignin-based emulsion used to stabilize road surfaces was tested on a low-volume forest road near Chapman, Alabama. Two replicates of three treatments were applied during October 1999 that included a 3:l dilution of Unitol DKG, a 6: 1 dilution, and pack & grade with no chemical. Also, two control sections were located at each end of the test area....

  12. Grape seed and apple tannins: emulsifying and antioxidant properties.

    PubMed

    Figueroa-Espinoza, Maria Cruz; Zafimahova, Andrea; Alvarado, Pedro G Maldonado; Dubreucq, Eric; Poncet-Legrand, Céline

    2015-07-01

    Tannins are natural antioxidants found in plant-based foods and beverages, whose amphiphilic nature could be useful to both stabilize emulsions and protect unsaturated lipids from oxidation. In this paper, the use of tannins as antioxidant emulsifiers was studied. The main parameters influencing the stability of emulsions (i.e. tannins structure and concentration, aqueous phase pH, and ionic strength) were identified and optimized. Oil in water emulsions stabilized with tannins were compared with those stabilized with two commercial emulsifying agents, poly(vinyl alcohol) (PVA) and polyoxyethylene hydrogenated castor oil. In optimized conditions, the condensed tannins allowed to obtain a stability equivalent to that of PVA. Tannins presented good antioxidant activity in oil in water emulsion, as measured by the conjugated autoxidizable triene (CAT) assay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Emulsification Of Eutectic Salt Mixtures In Fluid Vehicles

    NASA Astrophysics Data System (ADS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Hawkins, T. W.

    1988-05-01

    High-internal-phase-volume emulsions of 75 volt 3/18/79 potassium iodide/sodium iodide/ urea model eutectic salt mixture in 83.5/16.5 Sartomer R-45HT hydroxy-terminated polybutadi-ene/Nujol mineral oil binder mixture were prepared at 60°C using water-in-oil emulsifiers and cured with isophorone diisocyanate or Desmodur N-100. The Nujol mineral oil enhanced the emulsification with a negligible reduction in the tensile properties of the cured elastomer. The average emulsion droplet sizes were ca. 200 nm initially, but increased slowly during curing to 500-1000 nm. The coalescence of the emulsion droplets followed the second-order dependence predicted by the von Smoluchowski diffusion-controlled flocculation; the rate constants were 1.05x10-18 and 9.58x10-18 cc/droplet-sec for dirnethyldioctadecylammonium bromide and Span 85 sorbitan trioleate, respectively. The isophorone diisocyanate reacted with emulsifiers containing primary hydroxyl or amine groups, to give unstable emulsions or no emulsions at all. Dimethyldioctadecylammonium bromide with no primary hydroxyl or amine groups, however, did not react with isocyanates and gave stable emulsions. The reaction of the R-45HT hydroxy-terminated polybutadiene with isophorone diisocyanate followed the expec-ted second-order kinetics with a rate constant of 3.42x10-4 liters/mole-sec at 60°C. The tensile properties of the cured elastomers and emulsions generally increased with increasing NCO/OH ratio up to 1.6/1.0. With increasing volume fraction of dispersed phase, the maximum stress (tensile strength) decreased, the maximum strain (percent elongation) increased, and the initial modulus (tensile modulus) decreased, in contrast to the behavior of conventional filled polymer systems; however, the maximum stresses were in accord with theoretical values for a filled polymer in which the filler particles bear no load, the initial moduli were in accord with the predictions of an isostrain model, and the maximum strain increased with in-creasing volume fraction of dispersed phase; these unusual variations, which were attributed to the liquid nature of the emulsion droplets, were used to estimate the elastomer proper-ties required to give the desired properties: 60-100 psi maximum stress, 80-150% maximum strain, and 500-2000 psi initial modulus for an 88/12 eutectic salt/crosslinked polybutadi-ene composite containing 20% aluminum particles. The addition of 20% aluminum particles gave a modest improvement in tensile properties, and the addition of 2.5% or 3.5% submicroscopic carbon black particles gave a greater improvement; however, the tensile properties were still slightly short of the desired properties.

  14. An Analysis of the “Effect of Olibra: A 12-Week Randomized Control Trial and a Review of Earlier Studies”

    PubMed Central

    Heer, Martina

    2012-01-01

    Nutrients affect hunger and satiety. However, food structure, in particular that of emulsions, may also affect the body's satiety mechanisms. Olibra™ is a fat emulsion, a mixture of fractionated palm oil and fractionated oat oil manufactured by Lipid Technologies Provider AB, Sweden, which affects hunger sensation. However, up to now, no data have shown convincingly that reduced appetite or hunger sensations induced by Olibra lead, in the long run, to a significant and clinically relevant reduction in body mass. To clearly demonstrate a cause-and-effect relationship of Olibra to weight loss, it seems that longer studies with strict control of energy intake and nutrient composition, as well as control of energy expenditure by exercise, are needed. PMID:22768903

  15. Hydroxytyrosol extracts, olive oil and walnuts as functional components in chicken sausages.

    PubMed

    Nieto, Gema; Martínez, Lorena; Castillo, Julian; Ros, Gaspar

    2017-08-01

    Olive oil, hydroxytyrosol and walnut can be considered ideal Mediterranean ingredients for their high polyphenolic content and healthy properties. Three extracts of hydroxytyrosol obtained using different extraction processes (HXT 1, 2, 3) (50 ppm) were evaluated for use as antioxidants in eight different chicken sausage formulas enriched in polyunsaturated fatty acids (2.5 g 100 g -1 walnut) or using extra virgin olive oil (20 g 100 g -1 ) as fat replacer. Lipid and protein oxidation, colour, emulsion stability, and the microstructure of the resulting chicken sausages were investigated and a sensory analysis was carried out. The sausages with HXT extracts were found to decrease lipid oxidation and to lead to the loss of thiol groups compared with control sausages. Emulsion stability (capacity to hold water and fat) was greater in the sausages containing olive oil and walnut than in control sausages. In contrast, the HXT extracts produced high emulsion instability (increasing cooking losses). Sensory analysis suggested that two of the HXT extracts studied (HXT 2 and HXT 3 ) were unacceptable, while the acceptability of the other was similar to that of the control products. Sausages incorporating HXT showed different structures than control samples or sausages with olive oil, related to the composition of the emulsion. These results suggest the possibility of replacing animal fat by olive oil and walnut in order to produce healthy meat products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Application of Advanced Nuclear Emulsion Technique to Fusion Neutron Diagnostics

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Tomita, H.; Morishima, K.; Yamashita, F.; Hayashi, S.; Cheon, MunSeong; Isobe, M.; Ogawa, K.; Naka, T.; Nakano, T.; Nakamura, M.; Kawarabayashi, J.; Iguchi, T.; Ochiai, K.

    In order to measure the 2.5 MeV neutrons produced by DD nuclear fusion reactions, we have developed a compact neutron detector based on nuclear emulsion. After optimization of development conditions, we evaluated the response of the detector to an accelerator-based DD neutron source. The absolute efficiency at an energy of 2.5 MeV was estimated to be (4.1±0.2)×10-6 tracks/neutron.

  17. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome.

    PubMed

    Hallikainen, Maarit; Huikko, Laura; Kontra, Kirsi; Nissinen, Markku; Piironen, Vieno; Miettinen, Tatu; Gylling, Helena

    2008-01-01

    Hepatobiliary complications are common during parenteral nutrition. Lipid moiety in commercially available solutions contains plant sterols. It is not known whether plant sterols in parenteral nutrition interfere with hepatic function in adults. We detected how different amounts of plant sterols in parenteral nutrition solution affected serum plant sterol concentrations and liver enzymes during a 1.5-year follow-up in a patient with short bowel syndrome. Serum lipid, plant sterol, and liver enzyme levels were measured regularly during the transition from Intralipid (100% soy-based intravenous fat emulsion) to ClinOleic (an olive oil-based intravenous fat emulsion with 80% olive oil, 20% soy oil and lower plant sterols); the lipid supply was also gradually increased from 20 to 35 g/d. Plant sterols in parenteral nutrition solution and serum were measured with gas-liquid chromatography. During infusion of soy-based intravenous fat emulsion (30 g/d, total plant sterols 87 mg/d), the concentrations of sitosterol, campesterol, and stigmasterol were 4361, 1387, and 378 microg/dL, respectively, and serum liver enzyme values were >or= 2.5 times above upper limit of normal. After changing to olive oil-based intravenous fat emulsion (20-35 g/d, plant sterols 37-65 mg/d), concentrations decreased to 2148 to 2251 microg/dL for sitosterol, 569-297 microg/dL for campesterol, and 95-55 microg/dL for stigmasterol. Concomitantly, liver enzyme values decreased to 1.4 to 1.8 times above upper limit of normal at the end of follow-up. The nutrition status of the patient improved. The amount of plant sterols in lipid emulsion affects serum liver enzyme levels more than the amount of lipid.

  18. Effect of a labile methyl donor on the transformation of 5-demethyltangeretin and the related implication on bioactivity.

    PubMed

    Ting, Yuwen; Li, Colin C; Pan, Min-Hsiung; Ho, Chi-Tang; Huang, Qingrong

    2013-08-28

    Polymethoxyflavones (PMFs) belong to a subgroup of flavonoids that particularly exist in the peels of citrus fruits. Despite their many health-beneficial biofunctionalities, the lipophilic nature of PMFs limits their water solubility and oral bioavailability. To investigate the effect of the delivery system on the improvement of PMF bioavailibility, a lecithin-based emulsion was formulated for the delivery of two PMF compounds, tangeretin and 5-demethyltangeretin. While the emulsion system improved the digestion kinetics and the total solubilized PMF concentrations in in vitro lipolysis studies, the concentration of 5-demethyltangeretin decreased due to chemical transformation to its permethoxylated counterpart, tangeretin. The emulsifier lecithin used in this emulsion formulation contained a choline headgroup as a labile methyl group donor. The presence of a methyl donor potentially caused the transformation of 5-demethyltangeretin and reduced its anti-cancer-cell-proliferation activities. Moreover, this is the first report in the literature of the transformation from 5-demethyltangeretin to tangeretin in a lecithin-based emulsion during lipolysis, and the mechanism underlying this phenomenon has also been proposed for the first time.

  19. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NASA Astrophysics Data System (ADS)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  20. Advances with holographic DESA emulsions

    NASA Astrophysics Data System (ADS)

    Dünkel, Lothar; Eichler, Jürgen; Schneeweiss, Claudia; Ackermann, Gerhard

    2006-02-01

    DESA emulsions represent layer systems based on ultra-fine grained silver halide (AgX) technology. The new layers have an excellent performance for holographic application. The technology has been presented repeatedly in recent years, including the emulsion characterization and topics of chemical and spectral sensitization. The paper gives a survey of actual results referring to panchromatic sensitization and other improvements like the application of silver halide sensitized gelatine (SHSG) procedure. These results are embedded into intensive collaborations with small and medium enterprises (SME's) to commercialize DESA layers. Predominant goals are innovative products with holographic components and layers providing as well as cost effectiveness and high quality.

  1. Hierarchically porous materials from layer-by-layer photopolymerization of high internal phase emulsions.

    PubMed

    Sušec, Maja; Ligon, Samuel Clark; Stampfl, Jürgen; Liska, Robert; Krajnc, Peter

    2013-06-13

    A combination of high internal phase emulsion (HIPE) templating and additive manufacturing technology (AMT) is applied for creating hierarchical porosity within an acrylate and acrylate/thiol-based polymer network. The photopolymerizable formulation is optimized to produce emulsions with a volume fraction of droplet phase greater than 80 vol%. Kinetic stability of the emulsions is sufficient enough to withstand in-mold curing or computer-controlled layer-by-layer stereolithography without phase separation. By including macroscale cellular cavities within the build file, a level of controlled porosity is created simultaneous to the formation of the porous microstructure of the polyHIPE. The hybrid HIPE-AMT technique thus provides hierarchically porous materials with mechanical properties tailored by the addition of thiol chain transfer agent. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High speed automated microtomography of nuclear emulsions and recent application

    NASA Astrophysics Data System (ADS)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-01

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  3. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  4. From water-in-oil to oil-in-water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems.

    PubMed

    Santos, Luísa D F; Coutinho, João A P; Ventura, Sónia P M

    2015-01-01

    Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water-in-oil or oil-in-water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil-in-water emulsions), the imidazolium-based IL acts as an enhancer of the lipase catalytic capacity, super-activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers.

  5. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.

    PubMed

    Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José

    2015-04-01

    d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Utilisation of water-in-oil-water (W1/O/W2) double emulsion in a set-type yogurt model for the delivery of probiotic Lactobacillus paracasei.

    PubMed

    El Kadri, Hani; Lalou, Sofia; Mantzouridou, FaniTh; Gkatzionis, Konstantinos

    2018-05-01

    W 1 /O/W 2 emulsion in set-type yogurt has the potential to segregate probiotics in order to avoid interference with the starter culture as well as protection against harsh processing and digestion conditions. Lactobacillus paracasei subsp. paracasei DC 412 probiotic cells in milk-based W 1 /O/W 2 emulsions were incorporated in yogurt, in addition to starter cultures Lactobacillus bulgaricus and Streptococcus thermophilus, and the effect on the fermentation, bacterial growth kinetics, physicochemical properties, and structural characteristics was investigated. Stability of W 1 /O/W 2 was monitored with optical microscopy and cryo-SEM and localisation of encapsulated L. paracasei in yogurt was monitored using fluorescent microscopy. During fermentation, starter culture was not affected by introduction of L. paracasei and/or W 1 /O/W 2 emulsion. The viability of L. paracasei encapsulated in W 1 /O/W 2 emulsion was enhanced during storage and after exposure to simulated gastrointestinal conditions. L. paracasei remained within the inner W 1 phase till the end of the storage period (28 days at 4 °C). Moreover, W 1 /O/W 2 emulsion altered physicochemical and textural properties; however, these were within acceptable range. These results demonstrate the capability of W 1 /O/W 2 emulsion to be utilised for probiotic fortification of yogurt to increase functionality without interfering with starter culture and fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery

    PubMed Central

    Giri, Tapan Kumar; Choudhary, Chhatrapal; Ajazuddin; Alexander, Amit; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-01-01

    Several methods and techniques are potentially useful for the preparation of microparticles in the field of controlled drug delivery. The type and the size of the microparticles, the entrapment, release characteristics and stability of drug in microparticles in the formulations are dependent on the method used. One of the most common methods of preparing microparticles is the single emulsion technique. Poorly soluble, lipophilic drugs are successfully retained within the microparticles prepared by this method. However, the encapsulation of highly water soluble compounds including protein and peptides presents formidable challenges to the researchers. The successful encapsulation of such compounds requires high drug loading in the microparticles, prevention of protein and peptide degradation by the encapsulation method involved and predictable release, both rate and extent, of the drug compound from the microparticles. The above mentioned problems can be overcome by using the double emulsion technique, alternatively called as multiple emulsion technique. Aiming to achieve this various techniques have been examined to prepare stable formulations utilizing w/o/w, s/o/w, w/o/o, and s/o/o type double emulsion methods. This article reviews the current state of the art in double emulsion based technologies for the preparation of microparticles including the investigation of various classes of substances that are pharmaceutically and biopharmaceutically active. PMID:23960828

  8. Lipid emulsion improves survival in animal models of local anesthetic toxicity: a meta-analysis.

    PubMed

    Fettiplace, Michael R; McCabe, Daniel J

    2017-08-01

    The Lipid Emulsion Therapy workgroup, organized by the American Academy of Clinical Toxicology, recently conducted a systematic review, which subjectively evaluated lipid emulsion as a treatment for local anesthetic toxicity. We re-extracted data and conducted a meta-analysis of survival in animal models. We extracted survival data from 26 publications and conducted a random-effect meta-analysis based on odds ratio weighted by inverse variance. We assessed the benefit of lipid emulsion as an independent variable in resuscitative models (16 studies). We measured Cochran's Q for heterogeneity and I 2 to determine variance contributed by heterogeneity. Finally, we conducted a funnel plot analysis and Egger's test to assess for publication bias in studies. Lipid emulsion reduced the odds of death in resuscitative models (OR =0.24; 95%CI: 0.1-0.56, p = .0012). Heterogeneity analysis indicated a homogenous distribution. Funnel plot analysis did not indicate publication bias in experimental models. Meta-analysis of animal data supports the use of lipid emulsion (in combination with other resuscitative measures) for the treatment of local anesthetic toxicity, specifically from bupivacaine. Our conclusion differed from the original review. Analysis of outliers reinforced the need for good life support measures (securement of airway and chest compressions) along with prompt treatment with lipid.

  9. Study on Thermal Decomposition Characteristics of Ammonium Nitrate Emulsion Explosive in Different Scales

    NASA Astrophysics Data System (ADS)

    Wu, Qiujie; Tan, Liu; Xu, Sen; Liu, Dabin; Min, Li

    2018-04-01

    Numerous accidents of emulsion explosive (EE) are attributed to uncontrolled thermal decomposition of ammonium nitrate emulsion (ANE, the intermediate of EE) and EE in large scale. In order to study the thermal decomposition characteristics of ANE and EE in different scales, a large-scale test of modified vented pipe test (MVPT), and two laboratory-scale tests of differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC) were applied in the present study. The scale effect and water effect both play an important role in the thermal stability of ANE and EE. The measured decomposition temperatures of ANE and EE in MVPT are 146°C and 144°C, respectively, much lower than those in DSC and ARC. As the size of the same sample in DSC, ARC, and MVPT successively increases, the onset temperatures decrease. In the same test, the measured onset temperature value of ANE is higher than that of EE. The water composition of the sample stabilizes the sample. The large-scale test of MVPT can provide information for the real-life operations. The large-scale operations have more risks, and continuous overheating should be avoided.

  10. The research about microscopic structure of emulsion membrane in O/W emulsion by NMR and its influence to emulsion stability.

    PubMed

    Xie, Yiqiao; Chen, Jisheng; Zhang, Shu; Fan, Kaiyan; Chen, Gang; Zhuang, Zerong; Zeng, Mingying; Chen, De; Lu, Longgui; Yang, Linlin; Yang, Fan

    2016-03-16

    This paper discussed the influence of microstructure of emulsion membrane on O/W emulsion stability. O/W emulsions were emulsified with equal dosage of egg yolk lecithin and increasing dosage of co-emulsifier (oleic acid or HS15). The average particle size and centrifugal stability constant of emulsion, as well as interfacial tension between oil and water phase were determined. The microstructure of emulsion membrane had been studied by (1)H/(13)C NMR, meanwhile the emulsion droplets were visually presented with TEM and IFM. With increasing dosage of co-emulsifier, emulsions showed two stable states, under which the signal intensity of characteristic group (orient to lipophilic core) of egg yolk lecithin disappeared in NMR of emulsions, but that (orient to aqueous phase) of co-emulsifiers only had some reduction at the second stable state. At the two stable states, the emulsion membranes were neater in TEM and emulsion droplets were rounder in IFM. Furthermore, the average particle size of emulsions at the second stable state was bigger than that at the first stable state. Egg yolk lecithin and co-emulsifier respectively arranged into monolayer and bilayer emulsion membrane at the two stable states. The microstructure of emulsion membrane was related to the stability of emulsion. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion.

    PubMed

    Wang, Wenhang; Du, Guanhua; Li, Cong; Zhang, Hongjie; Long, Yunduo; Ni, Yonghao

    2016-10-20

    Nano cellulosic materials as promising emulsion stabilizers have attracted great interest in food industry. In this paper, five different sized cellulose nanocrystals (CNC) samples were prepared from stem of Asparagus officinalis L. using the same sulfuric acid hydrolysis conditions but different times (1.5, 2, 2.5, 3.0, and 3.5h). The sizes of these CNC ranged from 178.2 to 261.8nm, with their crystallinity of 72.4-77.2%. The CNC aqueous dispersions showed a typical shear thinning behavior. In a palm oil/water (30/70, v/v) model solution, stable Pickering emulsions were formed with the addition of CNC, and their sizes are in the range of 1-10μm based on the optical and confocal laser scanning microscopy (CLSM) observation. The CNC sample prepared at 3h hydrolysis time, showed a relative efficient emulsion capacity for palm oil droplets, among these CNCs. Other parameters including the CNC, salt, and casein concentrations on the emulsion stability were studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. First demonstration of an emulsion multi-stage shifter for accelerator neutrino experiments in J-PARC T60

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Aoki, S.; Cao, S.; Chikuma, N.; Fukuda, T.; Fukuzawa, Y.; Gonin, M.; Hayashino, T.; Hayato, Y.; Hiramoto, A.; Hosomi, F.; Inoh, T.; Iori, S.; Ishiguro, K.; Kawahara, H.; Kim, H.; Kitagawa, N.; Koga, T.; Komatani, R.; Komatsu, M.; Matsushita, A.; Mikado, S.; Minamino, A.; Mizusawa, H.; Matsumoto, T.; Matsuo, T.; Morimoto, Y.; Morishima, K.; Morishita, M.; Naganawa, N.; Nakamura, K.; Nakamura, M.; Nakamura, Y.; Nakano, T.; Nakatsuka, Y.; Nakaya, T.; Nishio, A.; Ogawa, S.; Oshima, H.; Quilain, B.; Rokujo, H.; Sato, O.; Seiya, Y.; Shibuya, H.; Shiraishi, T.; Suzuki, Y.; Tada, S.; Takahashi, S.; Yokoyama, M.; Yoshimoto, M.

    2017-06-01

    We describe the first ever implementation of a clock-based, multi-stage emulsion shifter in an accelerator neutrino experiment. The system was installed in the neutrino monitoring building at the Japan Proton Accelerator Research Complex as part of a test experiment, T60, and stable operation was maintained for a total of 126.6 days. By applying time information to emulsion films, various results were obtained. Time resolutions of 5.3-14.7 s were evaluated in an operation spanning 46.9 days (yielding division numbers of 1.4-3.8×105). By using timing and spatial information, reconstruction of coincident events consisting of high-multiplicity and vertex-contained events, including neutrino events, was performed. Emulsion events were matched to events observed by INGRID, one of the on-axis near detectors of the T2K experiment, with high reliability (98.5%), and hybrid analysis of the emulsion and INGRID events was established by means of the multi-stage shifter. The results demonstrate that the multi-stage shifter can feasibly be used in neutrino experiments.

  13. Stability indicating HPLC-UV method for detection of curcumin in Curcuma longa extract and emulsion formulation.

    PubMed

    Syed, Haroon Khalid; Liew, Kai Bin; Loh, Gabriel Onn Kit; Peh, Kok Khiang

    2015-03-01

    A stability-indicating HPLC-UV method for the determination of curcumin in Curcuma longa extract and emulsion was developed. The system suitability parameters, theoretical plates (N), tailing factor (T), capacity factor (K'), height equivalent of a theoretical plate (H) and resolution (Rs) were calculated. Stress degradation studies (acid, base, oxidation, heat and UV light) of curcumin were performed in emulsion. It was found that N>6500, T<1.1, K' was 2.68-3.75, HETP about 37 and Rs was 1.8. The method was linear from 2 to 200 μg/mL with a correlation coefficient of 0.9998. The intra-day precision and accuracy for curcumin were ⩽0.87% and ⩽2.0%, while the inter-day precision and accuracy values were ⩽2.1% and ⩽-1.92. Curcumin degraded in emulsion under acid, alkali and UV light. In conclusion, the stability-indicating method could be employed to determine curcumin in bulk and emulsions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Physical stability assessment and sensory optimization of a dairy-free emulsion using response surface methodology.

    PubMed

    Granato, Daniel; de Castro, I Alves; Ellendersen, L Souza Neves; Masson, M Lucia

    2010-04-01

    Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.

  15. NEW DEVELOPMENTS AND APPLICATIONS OF SUPERHEATED EMULSIONS: WARHEAD VERIFICATION AND SPECIAL NUCLEAR MATERIAL INTERDICTION.

    PubMed

    d'Errico, F; Chierici, A; Gattas-Sethi, M; Philippe, S; Goldston, R; Glaser, A

    2018-04-25

    In recent years, neutron detection with superheated emulsions has received renewed attention thanks to improved detector manufacturing and read-out techniques, and thanks to successful applications in warhead verification and special nuclear material (SNM) interdiction. Detectors are currently manufactured with methods allowing high uniformity of the drop sizes, which in turn allows the use of optical read-out techniques based on dynamic light scattering. Small detector cartridges arranged in 2D matrices are developed for the verification of a declared warhead without revealing its design. For this application, the enabling features of the emulsions are that bubbles formed at different times cannot be distinguished from each other, while the passive nature of the detectors avoids the susceptibility to electronic snooping and tampering. Large modules of emulsions are developed to detect the presence of shielded special nuclear materials hidden in cargo containers 'interrogated' with high energy X-rays. In this case, the enabling features of the emulsions are photon discrimination, a neutron detection threshold close to 3 MeV and a rate-insensitive read-out.

  16. Estimation of the Thickness and Emulsion Rate of Oil Spilled at Sea Using Hyperspectral Remote Sensing Imagery in the SWIR Domain

    NASA Astrophysics Data System (ADS)

    Sicot, G.; Lennon, M.; Miegebielle, V.; Dubucq, D.

    2015-08-01

    The thickness and the emulsion rate of an oil spill are two key parameters allowing to design a tailored response to an oil discharge. If estimated on per pixel basis at a high spatial resolution, the estimation of the oil thickness allows the volume of pollutant to be estimated, and that volume is needed in order to evaluate the magnitude of the pollution, and to determine the most adapted recovering means to use. The estimation of the spatial distribution of the thicknesses also allows the guidance of the recovering means at sea. The emulsion rate can guide the strategy to adopt in order to deal with an offshore oil spill: efficiency of dispersants is for example not identical on a pure oil or on an emulsion. Moreover, the thickness and emulsion rate allow the amount of the oil that has been discharged to be estimated. It appears that the shape of the reflectance spectrum of oil in the SWIR range (1000-2500nm) varies according to the emulsion rate and to the layer thickness. That shape still varies when the oil layer reaches a few millimetres, which is not the case in the visible range (400-700nm), where the spectral variation saturates around 200 μm (the upper limit of the Bonn agreement oil appearance code). In that context, hyperspectral imagery in the SWIR range shows a high potential to describe and characterize oil spills. Previous methods which intend to estimate those two parameters are based on the use of a spectral library. In that paper, we will present a method based on the inversion of a simple radiative transfer model in the oil layer. We will show that the proposed method is robust against another parameter that affects the reflectance spectrum: the size of water droplets in the emulsion. The method shows relevant results using measurements made in laboratory, equivalent to the ones obtained using methods based on the use of a spectral library. The method has the advantage to release the need of a spectral library, and to provide maps of thickness and emulsion rate values per pixel. The maps obtained are not composed of regions of thickness ranges, such as the ones obtained using discretized levels of measurements in the spectral library, or maps made from visual observations following the Bonn agreement oil appearance code.

  17. α-Tocopherol/chitosan-based nanoparticles: characterization and preliminary investigations for emulsion systems application

    NASA Astrophysics Data System (ADS)

    Aresta, Antonella; Calvano, Cosima Damiana; Trapani, Adriana; Zambonin, Carlo Giorgio; De Giglio, Elvira

    2014-02-01

    The processes of lipids oxidation represent a great concern for the consumer health because they are one of the major causes of quality deterioration in fat-containing products. One of the most effective methods of delaying lipid oxidation consists in incorporating antioxidants. The present investigation describes the formulation of chitosan and novel glycol chitosan nanoparticles (NPs) loaded with α-Tocopherol (αToc-NPs). The obtained NPs were characterized by various techniques, such as particle size (showing mean diameters in the range 335-503 nm) and zeta potential measurements, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The NPs were, then, added in the preparation of oil-in-water simple emulsion both to make the lipophilic αToc available in an aqueous medium and to prevent emulsion oxidation. For this purpose, a new highly sensitive, simple and solvent-free method based on a solid phase microextraction (SPME) coupled to gas chromatography mass spectrometry was developed for the determination of αToc in aqueous medium. All the parameters influencing SPME, including fiber coating, time and temperature extraction, pH, ionic strength and desorption conditions, have been carefully screened. The method was successfully applied to the determination of vitamin in the αToc-NPs and its release from NPs-enriched simple emulsion formulations. SPME provided high recovery yields and the limits of detection and of quantification in emulsion were 0.1 and 0.5 μg/mg, respectively. The precision of the method has been also estimated. The delay of the lipid oxidation by the proposed formulations has been evaluated exploiting the Kreis test on αToc-NPs-enriched emulsions.

  18. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil or water is incorporated. © 2013.

  19. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multizone Reaction Kinetics: Modeling of Decarburization

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart

    2018-06-01

    In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.

  20. Physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption.

    PubMed

    Noda, Yasuhiro; Watanabe, Kazuya; Sanagawa, Akimasa; Sobajima, Yu; Fujii, Satoshi

    2011-10-31

    Pressure ulcers can form with excess pressure and shearing stress on skin tissue. Because pressure ulcer is often accompanies by exudates, selection of appropriate topical emulsion ointment is difficult. Blended ointments consisting of emulsion base and water-soluble base are clinically used for adjustment of wound moist environment. Because regulating the amount of wound exudates can enhance treatment efficacy, two new blended ointments were developed. LY-SL blended ointment consisted of lysozyme hydrochloride water-in-oil (w/o) emulsion (LY-cream) and sulfadiazine macrogol (polyethylene glycol) ointment (SL-pasta). TR-SL blended ointment consisted of tretinoin tocoferil oil-in-water (o/w) emulsion (TR-cream) and SL-pasta (TR-SL). LY-SL and TR-SL were applied to Franz diffusion cell with cellulose membranes for the evaluation of water absorption characteristics at 32 °C. Water absorption rate constants (mg/cm(2)/min(0.5)) were 12.5, 16.3 and 34.6 for LY-cream, TR-cream and SL-pasta, respectively. Water absorption rate constants for LY-SL and TR-SL (SL-pasta 70%) exhibited intermediate values of 21.2 and 27.2, as compared to each ointment alone, respectively. Because amount of water absorbed was linearly related to square root of time, it was suggested that water-absorbable macrogol was surrounded by oily ingredients forming matrix structure. This diffusion-limited structure may regulate water absorption capacity. This is the first report of physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption. The blended ointment can properly regulate amount of exudates in wounds and may be useful for treatment of pressure ulcers. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multizone Reaction Kinetics: Modeling of Decarburization

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart

    2018-03-01

    In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.

  2. Metabolism of defined structured triglyceride particles compared to mixtures of medium and long chain triglycerides intravenously infused in dogs.

    PubMed

    Simoens, Ch; Deckelbaum, R J; Carpentier, Y A

    2004-08-01

    The present study aimed to determine whether including medium-chain fatty acids (MCFA) in specifically designed structured triglycerides (STG) with a MCFA in sn-1 and sn-3 positions and a long-chain (LC) FA in sn-2 position (MLM) would lead to different effects on plasma lipids and FA distribution into plasma and tissue lipids by comparison to a mixture of separate MCT and LCT molecules (MMM/LLL). The fatty acid (FA) composition was comparable in both lipid emulsions. Lipids were infused over 9h daily, in 2 groups of dogs (n = 6 each), for 28 days as a major component (55% of the non-protein energy intake) of total parenteral nutrition (TPN). Blood samples were obtained on specific days, before starting and just before stopping TPN. The concentration of plasma lipids was measured before starting and before stopping TPN on days 1, 2, 3, 4, 5, 8, 10, 12, 16 and 28. Biopsies were obtained from liver, muscle and adipose tissue 15 days before starting, and again on the day following cessation of TPN. In addition, the spleen was removed after the TPN period. FA composition in plasma and tissue lipids was analysed by gas liquid chromatography in different lipid components of plasma and tissues. No differences in either safety or tolerance parameters were detected between both lipid preparations. A lower rise of plasma TG (P < 0.05) was observed during MLM infusion, indicating a faster elimination rate of MLM vs MMM/LLL emulsion. In spite of the differences of TG molecules which would be assumed to affect the site of FA delivery and metabolic fate, FA distribution in phospholipids (PL) of hepatic and extrahepatic tissues did not substantially differ between both emulsions. Copyright 2003 Elsevier Ltd.

  3. Amino acid composition and functional properties of giant red sea cucumber ( Parastichopus californicus) collagen hydrolysates

    NASA Astrophysics Data System (ADS)

    Liu, Zunying; Su, Yicheng; Zeng, Mingyong

    2011-03-01

    Giant red sea cucumber ( Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis. The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species. The degree of hydrolysis (DH), amino acid composition, SDS-PAGE, emulsion activity index (EAI), emulsion stability index (ESI), foam expansion (FE), and foam stability (FS) of hydrolysates were investigated. The effects of pH on the EAI, ESI FE and FS of hydrolysates were also investigated. The results indicated that the β and α 1 chains of the collagen were effectively hydrolyzed by trypsin at 50°c with an Enzyme/Substrate (E/S) ration of 1:20 (w:w). The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin. The hydrolysates had a molecular weight distribution of 1.1-17 kDa, and were abundant in glycine (Gly), proline (Pro), glutamic acid (Glu), alanine (Ala) and hydroxyproline (Hyp) residues. The hydrolysates were fractionated into three fractions (< 3 kDa, 3-10 kDa, and > 10 kDa), and the fraction of 3-10 kDa exhibited a higher EAI value than the fraction of > 10 kDa ( P<0.05). The fraction of > 10 kDa had higher FE and FS values than other fractions ( P<0.05). The pH had an important effect on the EAI, ESI, FE and FS. All the fractions showed undesirable emulsion and forming properties at pH 4.0. Under pH 7.0 and pH 10.0, the 3-10 kDa fraction showed higher EAI value and the fraction of > 10 kDa showed higher FE value, respectively. They are hoped to be utilized as functional ingredients in food and nutraceutical industries.

  4. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  5. High speed automated microtomography of nuclear emulsions and recent application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scalemore » and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.« less

  6. Quantitative imaging of aggregated emulsions.

    PubMed

    Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J

    2006-02-28

    Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.

  7. Hadron-rich cosmic-ray families detected by emulsion chamber.

    NASA Astrophysics Data System (ADS)

    Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.

    1995-11-01

    Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.

  8. Electrophoretic manipulation of multiple-emulsion droplets

    NASA Astrophysics Data System (ADS)

    Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick

    2014-02-01

    Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.

  9. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols.

    PubMed

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Chen, Qian; Kong, Baohua

    2016-05-01

    The objective of this study was to investigate the emulsifying properties and oxidative stability of emulsions prepared with porcine myofibrillar proteins (MPs) and different lipids, including lard, glycerolized lard (GL) and purified glycerolized lard (PGL). The GL and PGL emulsions had significantly higher emulsifying activity indices and emulsion stability indices than the lard emulsion (P<0.05). The PGL emulsion presented smaller droplet sizes, thus decreasing particle aggregation and improving emulsion stability. The static and dynamic rheological observations of the emulsions showed that the emulsions had pseudo-plastic behavior, and the PGL emulsion presented a larger viscosity and a higher storage modulus (G') and loss modulus (G'') compared with the other two emulsions (P<0.05). The formation of thiobarbituric acid-reactive substances, carbonyl contents and total sulfhydryl contents was not significantly different between the emulsions with PGL, GL and lard (P<0.05). In general, lard diacylglycerols enhanced emulsifying abilities and had no adverse effects on the oxidation stability of the emulsions prepared with MPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Frost Grape Polysaccharide (FGP), an emulsion-forming arabinogalactan gum from the stems of native North American grape species Vitis riparia Michx

    USDA-ARS?s Scientific Manuscript database

    A new arabinogalactan is described that is produced in large quantity from the cut stems of the North American grape species Vitis riparia (Frost grape). The sugar composition consists of L-arabinofuranose (L-Araf, 55.2 %) and D-galactopyranose (D-Galp 30.1%), with smaller components of D-xylose (11...

  11. Spectra, composition, and interactions of nuclei above 10 TeV using magnet-interferometric chambers

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Takahashi, Y.

    1991-01-01

    Although the SCIN-MAGIC experiment has, like all ASTROMAG and most other Attached Payload experiments, been 'deselected' from Space Station, it is expected that ultimately such emulsion chambers will be flown on the Station. Some brief studies are described which were made in support of the design efforts for such a program being conducted at NASA Marshall.

  12. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning.

    PubMed

    Xu, Weihong; Shen, Renzhe; Yan, Yurong; Gao, Jie

    2017-01-01

    Scaffolds made by biomaterials offer favorite environment for cell grow and show a wide potential application in tissue engineering. Novel biocompatibility materials polylatic acid (PLA) nanofiber membranes with favorable biocompatibility and good mechanical strength could serve as an innovative tissue engineering scaffold. Sodium alginate (SA) could be used in biomedical areas because of its anti-bacterial property, hydrophilicity and biocompatibility. In this article, we chose PLA as continuous phase and SA as dispersion phase to prepare a W/O emulsion and then electrospun it to get a SA/PLA composite nanofiber membranes. The CLSM images illustrated that the existence of SA was located on the surface of composite fibers and the FTIR results confirmed the result. A calcium ion replacement step was used as an after-treatment for SA/PLA nanofiber membranes in order to anchor the alginic ion in a form of gelated calcium alginate (CA). The single fiber tensile test shows a good mechanical property of CA/PLA nanofiber membranes, and the nanofiber membranes are beneficial for cell proliferation and differentiation owing to MTT array as well as Alizarin red S (ARS) staining test. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Selection of optimal conditions for preparation of emulsified fuel fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.; Berg, V. I.; Frolov, M. D.

    2018-05-01

    The aim of the article is to derive the optimal concept of physical and chemical effects, and its application to the production of water-fuel emulsions. The authors set a research task to attempt to estimate the influence of the surfactant concentration on such indicator as the time before the beginning of emulsion breaking. The analysis, based on experimental data, showed that an increase in the concentration of sodium lauryl sulfate is expedient to a certain point, corresponding to 0.05% of the total mass fraction. The main advantage of the model is a rational combination of methods of physical and chemical treatment used in the production of emulsions.

  14. Silver halide sensitized gelatin process effects in holographic lenses recorded on Slavich PFG-01 plates

    NASA Astrophysics Data System (ADS)

    Collados, Maria Victoria; Arias, Isabel; García, Ana; Atencia, Jesús; Quintanilla, Manuel

    2003-02-01

    In this work we study the feasibility of using silver halide sensitized gelatin based on PFG-01 (Slavich) emulsions to construct uniaxial compound lenses. This processing is able to introduce variations in the thickness and refractive index of the emulsion. We prove that these changes are not sufficient to provide the observed variations in Bragg conditions in the reconstruction and that a shear-type effect must exist to explain the performance of processed emulsions. We study the characteristics of a compound lens, obtaining acceptable image quality, good resolution, and the typical field limitation of volume holographic elements.

  15. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.

    PubMed

    Ito, Toshifumi; Tsuji, Yukitaka; Aramaki, Kenji; Tonooka, Noriaki

    2012-01-01

    Multiple emulsions, also called complex emulsions or multiphase emulsions, include water-in-oil-in-water (W/O/W)-type and oil-in-water-in-oil (O/W/O)-type emulsions. W/O/W-type multiple emulsions, obtained by utilizing lamellar liquid crystal with a layer structure showing optical anisotropy at the periphery of emulsion droplets, are superior in stability to O/W/O-type emulsions. In this study, we investigated a two-step emulsification process for a W/O/W-type multiple emulsion utilizing liquid crystal emulsification. We found that a W/O/W-type multiple emulsion containing lamellar liquid crystal can be prepared by mixing a W/O-type emulsion (prepared by primary emulsification) with a lamellar liquid crystal obtained from poly(oxyethylene) stearyl ether, cetyl alcohol, and water, and by dispersing and emulsifying the mixture in an outer aqueous phase. When poly(oxyethylene) stearyl ether and cetyl alcohol are each used in a given amount and the amount of water added is varied from 0 to 15 g (total amount of emulsion, 100 g), a W/O/W-type multiple emulsion is efficiently prepared. When the W/O/W-type multiple emulsion was held in a thermostatic bath at 25°C, the droplet size distribution showed no change 0, 30, or 60 days after preparation. Moreover, the W/O/W-type multiple emulsion strongly encapsulated Uranine in the inner aqueous phase as compared with emulsions prepared by one-step emulsification.

  16. Colloidosome like structures: self-assembly of silica microrods

    DOE PAGES

    Datskos, P.; Polizos, G.; Bhandari, M.; ...

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  17. Development of lamellar gel phase emulsion containing marigold oil (Calendula officinalis) as a potential modern wound dressing.

    PubMed

    Okuma, C H; Andrade, T A M; Caetano, G F; Finci, L I; Maciel, N R; Topan, J F; Cefali, L C; Polizello, A C M; Carlo, T; Rogerio, A P; Spadaro, A C C; Isaac, V L B; Frade, M A C; Rocha-Filho, P A

    2015-04-25

    Appropriate therapeutics for wound treatments can be achieved by studying the pathophysiology of tissue repair. Here we develop formulations of lamellar gel phase (LGP) emulsions containing marigold (Calendula officinalis) oil, evaluating their stability and activity on experimental wound healing in rats. LGP emulsions were developed and evaluated based on a phase ternary diagram to select the best LGP emulsion, having a good amount of anisotropic structure and stability. The selected LGP formulation was analyzed according to the intrinsic and accelerated physical stability at different temperatures. In addition, in vitro and in vivo studies were carried out on wound healing rats as a model. The LGP emulsion (15.0% marigold oil; 10.0% of blend surfactants and 75.0% of purified water [w/w/w]) demonstrated good stability and high viscosity, suggesting longer contact of the formulation with the wound. No cytotoxic activity (50-1000 μg/mL) was observed in marigold oil. In the wound healing rat model, the LGP (15 mg/mL) showed an increase in the leukocyte recruitment to the wound at least on days 2 and 7, but reduced leukocyte recruitment after 14 and 21 days, as compared to the control. Additionally, collagen production was reduced in the LGP emulsion on days 2 and 7 and further accelerated the process of re-epithelialization of the wound itself. The methodology utilized in the present study has produced a potentially useful formulation for a stable LGP emulsion-containing marigold, which was able to improve the wound healing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis and characterization of PEO-PCL-PEO triblock copolymers: effects of the PCL chain length on the physical property of W(1)/O/W(2) multiple emulsions.

    PubMed

    Cho, Heui Kyoung; Cho, Kwang Soo; Cho, Jin Hun; Choi, Sung Wook; Kim, Jung Hyun; Cheong, In Woo

    2008-08-01

    A series of poly(ethylene glycol)-block-poly(epsilon-caprolactone)-block-poly(ethylene glycol) (PEO-PCL-PEO) triblock copolymers were prepared and then used for the investigation of the effects of the ratio of epsilon-caprolactone to poly(ethylene glycol) (i.e., [CL]/[EO]) on the physical properties of water-in-oil-in-water (W(1)/O/W(2)) multiple emulsions containing a model reagent, ascorbic acid-2-glucoside (AA2G). In the synthesis, the [CL]/[EO] was varied from 0.11 to 0.31. The molecular weights and compositions of PEO-PCL-PEO were determined by GPC and (1)H NMR analyses. Thermal behavior and crystal formation were studied by DSC, XRD, FT-IR, and polarized optical microscopy (POM). Aggregate behavior of PEO-PCL-PEO was confirmed by DLS, UV, and (1)H NMR. Morphology and relative stiffness of the W(1)/O/W(2) multiple emulsions in the presence of PEO-PCL-PEO were studied by confocal laser scanning microscopy (CLSM) and rheometer. Variation in the [CL]/[EO] significantly affects the crystalline temperature and spherulite morphology of PEO-PCL-PEO. As the [CL]/[EO] increases, the CMCs of PEO-PCL-PEO decreases and the slope of aggregate size reduction against the copolymer concentration becomes steeper except for the lowest [CL]/[EO] value of PEO-PCL-PEO (i.e., P-222). P-222 significantly increases the viscosity of continuous (W(2)) phase, which implies the copolymer would exist in the W(2) phase. On the other hand, the triblock copolymers with relatively high [CL]/[EO] ratios mainly contribute to the size reduction of multiple emulsions and the formation of a firm wall structure. The particle size of the multiple emulsion decreases and the elastic modulus increased as [CL]/[EO] increases, confirmed by microscopic and rheometric analyses.

  19. [Effect of glucidic and fat total parenteral nutrition on macrophage phagocytosis in rats].

    PubMed

    Cukier, C; Waitzberg, D L; Soares, S R; Logullo, A F; Bacchi, C E; Travassos, V H; Saldiva, P H; Torrinhas, R S; de Oliveira, T S

    1997-01-01

    Fat lipid emulsions in Total Parenteral Nutrition (TPN) have been associated to Mononuclear Phagocytary System (MPS) changes. Intravenous lipid emulsions may alter macrophage membrane composition but there are controversies about their effects on MPS function. The aim of the present investigation was to assess the influence of fat free TPN and fat emulsions TPN on the macrophage phagocytosis. Wistar rats (70) with external jugular vein canulation were divided in seven groups. The rats received, intravenously (i.v.) different isocaloric (1.16 kcal/mL), isonitrogenous (1.5 g/mL), and isolipidic (30 to 32% of non-proteic caloric value) TPN regimens or oral diet: 1) Group OS: oral diet with i.v. infusion of saline; 2) Group GLU: fat-free TPN; 3) Group LCT: TPN with 10% long chain triglecide emulsion (TCL); 6) Group MCT: TPN with 10% lipid emulsion with medium chain triglycerides (TCM-50%) and TCL (50%). After 96 hours of TPN or saline infusion, colloidal carbon was i.v. injected at 1.0 mL/kg body weight. The rats were sacrificed after three hours. Liver, spleen and lung were weighted and studied by immunohistochemistry by the avidine-biotine method. Under light microscopy the total macrophage number (MT) and colloidal carbon phagocytic macrophages number (MF) were established. Phagocytic index was MT/MF x 100. The results were statistically analysed (p < 0.05). The group under oral diet (OS) was the only one to gain weight. There were no differences in organ weight in any group. There were changes in MT, MF and phagocytic index in all TPN groups. Fat free TPN inhibited liver, spleen and lung macrophage phagocytosis. Fat TPN with TCL inhibited liver and lung macrophage phagocytosis. At conclusion fat free TPN or with long chain tryglicerides may inhibit MPS phagocytosis. Further studies are necessary to estabilish the effect of TPN on other MPS function.

  20. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

Top