Science.gov

Sample records for emulsion behavior surfactant

  1. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    SciTech Connect

    LEBONE MOETI; RAMANATHAN SAMPATH

    1998-11-01

    This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period April 01, 1998 to October 01, 1998 which covers the second six months of the project. Presently work is in progress at the EOR Laboratory, Clark Atlanta University (CAU), to characterize phase and emulsion behavior for a novel, hybrid (ionic/non-ionic), alcohol ethoxycarboxylate surfactant (NEODOX 23-4 from Shell Chemical Company). During this reporting period, salinity scans were completed for 0, 5, 10, 20, 50, 100, 250, 500, 1000, 2000, 3000, 4000, 5000, and 6000 mM salt concentrations at 20, 25, and 30 °C to identify optimal salinity intervals in which all three phases coexist for this surfactant. Temperature scans were also performed at 20 mM salt concentration for various surfactant concentrations ranging from 0 to 60 weight percent at temperatures ranging from 5 to 50 °C to identify optimal surfactant concentration and temperature intervals in which all three phases coexist. This resulted in an "alpha" curve with an interval of temperature in which all three phases coexisted. Presently, temperature scans are being repeated at 100, 250, 500, 1000, and 5000 mM salt concentrations to see whether increase in salt concentration has any effect on the temperature interval. This will provide us better understanding and experimental control of the many variables involved in this research in the future. Following completion of the temperature scans, phase studies will be conducted at CAU, and coreflooding experiments at the facility of our industrial partner, Surtek, Golden, CO.

  2. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    SciTech Connect

    Lebone T. Moeti; Ramanathan Sampath

    2001-09-28

    This final technical report describes work performed under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to August 31, 2001 which covers the total performance period of the project. During this period, detailed information on optimal salinity, temperature, emulsion morphologies, effectiveness for surfactant retention and oil recovery was obtained for an Alcohol Ethoxycarboxylate (AEC) surfactant to evaluate its performance in flooding processes. Tests were conducted on several AEC surfactants and NEODOX (23-4) was identified as the most suitable hybrid surfactant that yielded the best proportion in volume for top, middle, and bottom phases when mixed with oil and water. Following the selection of this surfactant, temperature and salinity scans were performed to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexisted. NEODOX 23-4 formed three phases between 4 and 52.5 C. It formed an aqueous rich microemulsion phase at high temperatures and an oleic rich microemulsion phase at low temperatures--a characteristic of the ionic part of the surfactant. The morphology measurement system was set-up successfully at CAU. The best oil/water/surfactant system defined by the above phase work was then studied for emulsion morphologies. Electrical conductivities were measured for middle and bottom phases of the NEODOX 23-4/dodecane/10mM water system and by mixing measured volumes of the middle phase into a fixed volume of the bottom phase and vice versa at room temperature. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. These experiments were then repeated for bottom/middle (B/M) and middle/bottom (M/B) conjugate pair phases at 10, 15, 25, 30, 35, 40, and 45 C. Electrical conductivity measurements were then compared with the predictions of the conductivity model developed in

  3. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactant

    SciTech Connect

    Moeti, Lebone T.; Sampath, Ramanathan

    2002-03-13

    Electrical conductivity measurements for middle, bottom, and top phases, as well as bottom/middle, and middle/bottom conjugate pair phases of the NEODOX 23-4/dodecane/10mM water system were continued from the previous reporting period. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. Following this, more emulsion studies at various temperatures were progresses. A theoretical model to predict the conductivity measurements using Maxwell equations was developed and sensitivity analyses to test the performance of the model was completed. Surtek, Golden, CO, our industrial partner in this project, investigated the suitability of the surfactant for enhanced oil recovery employing coreflooding techniques and observed lower surfactant and hydrocarbon recovery for NEODOX 23-4.

  4. Influence of surfactant on the thermal behavior of marigold oil emulsions with liquid crystal phases.

    PubMed

    dos Santos, Orlando David Henrique; da Rocha-Filho, Pedro Alves

    2007-05-01

    Vegetable oils have been largely consumed owing to the interest of pharmaceutical and cosmetic industries in using natural raw materials. The production of stable emulsions with vegetable oils challenges formulators due to its variability in composition and fatty acids constitution within batches produced. In the present work, it was studied that the influence of the size of carbon chain and the number of ethylene oxide moieties of the surfactant on the thermal behavior of eight emulsions prepared with marigold oil stabilized by liquid crystal phases. Differential scanning calorimetry (DSC) was used to determine the thermal behavior of the emulsions. The ratio of bound water was calculated, being between 29.0 and 42.0%, confirming the extension of the liquid-crystalline net in the external phase. Changing the lipophilic surfactant from Ceteth-2 to Steareth-2, there was an increase in the temperature of phase transition of the liquid crystal influencing the system stability. Calorimetric study is very useful in understanding the performance of liquid crystals with the increase of temperature and to estimate emulsions stability.

  5. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactants

    SciTech Connect

    Lebone T. Moeti; Ramanathan Sampath

    1998-05-01

    This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to April 01, 1998 which covers the first six months of the project. During this reporting period, laboratory space to set up the surfactant characterization measurement system in the Research Science Center was made available. A Ph.D. student in Chemistry was identified and is supported as a Graduate Research Assistant in this project. Her contribution towards this project will form her Ph.D. thesis. The test matrix to perform salinity and temperature scans was established. Supply requests to obtain refined hydrocarbon, surfactant, and crude were processed and supplies obtained. A temperature bath with a control unit to perform temperature scans was obtained on loan from Federal Energy Technology Center, Morgantown, WV. The setting up of the temperature control unit, and associated chiller with water circulation lines is in progress. Tests were conducted on several hybrid surfactants to identify the best surfactants for future experimental work that yield almost equal volumes of top, middle, and bottom phases when mixed with oil and water. The student reviewed the current literature in the subject area, and modeling efforts that were established in previous studies to predict electrical conductivities and inversion phenomena. These activities resulted in one published conference paper, and one student poster paper during this reporting period.

  6. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    PubMed

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  7. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2004-09-30

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2004 to September 30, 2004 which covers the fourth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, work was under way and the electrical conductivity experimental system was set up at the Atlanta University Center. Following the set-up of the emulsion measurement system, the electronic instruments and data acquisition modules involved were tested for proper operation of the system. Then, the conductivity output was normalized with that obtained for 10mM NaCl water. Radial coreflooding experiments with ethanol injection prior to and after water injection were completed to assess the effectiveness of the surfactant flooding in the recovery of condensate by our industrial partner, Surtek, CO, in this reporting period. In Run 1, 10 mM NaCl without ethanol injection recovered 31.5% of the initial ethyl benzene saturation. Injection of ethanol following 10 mM NaCl produced a tertiary ethyl benzene bank with maximum ethyl benzene cuts of 32%. In Run 2, 50 vol% of pure (100%) ethanol was injected and flowed through the Berea sandstone after Ethyl Benzene Saturation. 69% of the initial ethyl benzene was recovered. Results of the radial corefloods are very encouraging. Emulsion conductivity measurements for conjugate pair phases are in progress at Morehouse.

  8. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2004-03-31

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2003 to March 31, 2004 which covers the third six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, temperature scans were performed mixing equal volumes of ethylbenzene and 10mM NaCl water with various concentrations of ethanol ranging from 2 to 70 vol%. For the range of temperatures tested (2 to 70 C), results indicate that temperature is invariant and produced a single phase for ethanol concentrations greater than 60 vol%. For ethanol concentrations less than 60 vol%, only two phases were obtained with aqueous rich bottom phase more in volume than that of the ethylbenzene rich top phase. Linear coreflooding experiments were completed by our industrial partner in this project, Surtek, CO, to measure the condensate recovery in flooding processes. It was found about 30% ethylbenzene recovery was obtained by the waterflooding, however, 2wt% ethanol flooding did not produce incremental recovery of the ethylbenzene. Radial coreflooding with ethanol injection prior to water injection is in progress to assess the effectiveness of the surfactant flooding in the recovery of condensate.

  9. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2003-03-31

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2002 to April 01, 2003 which covers the first six months of the project. Presently work is in progress to characterize phase and emulsion behavior for condensate/water/ethanol system. Temperature and salinity scans are planned to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexist for this system. Test matrix to perform salinity and temperature scans has been established. Supply requests to obtain hydrocarbons, surfactant, etc., were processed and supplies obtained. Current literature in the subject area, and modeling efforts that were established in our previous studies to predict electrical conductivities and inversion phenomena were reviewed. Based on the review a computer model to predict electrical conductivities of the ethylbenzene (that has the equivalent carbon number of the condensate)/water/ethanol system is being developed. These activities resulted in one published conference abstract during this reporting period.

  10. INVESTIGATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND CONDENSATE RECOVERY FOR CONDENSATE/WATER/ETHANOL MIXTURES

    SciTech Connect

    Ramanathan Sampath

    2003-10-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2003 to September 30, 2003 which covers the second six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. During this reporting period, salinity scans were completed for 0, 5, 10, 20, 50, 100, 250, 500, and 1000 mM salt concentrations at room temperature to identify optimal salinity intervals in which all three phases coexist for this system. Temperature scans are in progress at Morehouse College to identify the optimal temperature, and the temperature intervals in which all three phases coexist for this system. Coreflooding experiments are being conducted by our industrial partner in this project, Surtek, CO, to measure the effectiveness for surfactant retention and condensate recovery in flooding processes. Review of the current literature in the subject area, and modeling efforts that were established in our previous studies to predict electrical conductivities and inversion phenomena was continued from the previous reporting period. Based on the review a computer model to predict electrical conductivities of the ethylbenzene (that has the equivalent carbon number of the condensate)/water/ethanol system is being developed.

  11. INVESTIGATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND CONDENSATE RECOVERY FOR CONDENSATE/WATER/ETHANOL MIXTURES

    SciTech Connect

    Ramanathan Sampath

    2005-12-01

    This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2002 to September 30, 2005, which covers the total performance period of the project. During this period, work was conducted to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number was used as the model condensate. Salinity scans were performed for 0, 5, 10, 20, 50, 100, 250, 500, and 1000 mM salt concentrations at room temperature to identify the optimal salinity and salinity intervals in which all phases coexisted. It was found that only two phases formed, and salinity has no significant effect in the volumes of the phases formed. Experiments were repeated at 30 C and observed salinity has no effect at higher temperatures as well. Following the salinity experiments, measurements were made with 10mM NaCl water for surfactant concentrations from 2 to 70 volume percent at room temperature. It was found that only two phases were formed upto 60 vol% concentration of the surfactant. Above 60 vol% surfactant, the mixture produced only a single phase. Experiments were repeated from 2 to 70 C and observed that temperature has no significant effect on the number of phases formed. At the temperatures and surfactant concentration tested, volume fraction of the aqueous bottom phase was found to be larger than that of the top phase. Electrical conductivity measurements were then conducted for bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system formed by mixing ethanol at various volume percentages including 2,10,33,and 56% while keeping the volumes of ethylbenzene and water the same in the mixture. Electrical conductivity of the bottom phase decreased as ethanol volume fraction in the mixture increased. Conductivity of the top phase was found small and remained almost the same for variations in ethanol volume fraction in

  12. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  13. Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction

    NASA Technical Reports Server (NTRS)

    Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

    2001-01-01

    Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

  14. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2005-03-31

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2004 to March 31, 2005 which covers the fifth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, electrical conductivity measurements for bottom, and top phases, as well as bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system were performed for various ethanol volume percentage of the mixtures starting from 2% to 60%. Preliminary findings are that electrical conductivity of the bottom phase decreased as ethanol volume fraction of the mixture increased. Conductivity of the top phase was small and remained almost the same for variations in ethanol volume fraction of the mixture. Conductivity of the emulsion of the conjugate pair phases decreased as the fraction of volume of the top phase was increased and vice versa. Also inversion phenomena was observed. Detailed analyses are in progress including the prediction of conductivity data using the theoretical model already developed in this project.

  15. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2005-09-30

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2005 to September 30, 2005 which covers the sixth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. In the last reporting period, electrical conductivity measurements for bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system were performed for various ethanol volume percentage in the mixture: 2,10,20,33,43,50, and 56. During this reporting period, prediction of electrical conductivity data obtained in the past was conducted employing a theoretical model already developed in this project. Results of the comparisons for 2, and 10% ethanol volume in the mixture are presented here. A good agreement was obtained between the predicted emulsion conductivities and the measured values. To date about 99% of the proposed work has been completed. Conductivity prediction for 56% ethanol volume in the mixture is in progress. Following this prediction, a final report will be developed describing the research activities conducted through the entire project period including results and conclusions.

  16. Optimum phase-behavior formulation of surfactant/oil/water systems for the determination of chromium in heavy crude oil and in bitumen-in-water emulsion.

    PubMed

    Burguera, José L; Avila-Gómez, Rita M; Burguera, Marcela; Antón de Salager, Raquel; Salager, Jean-Louis; Bracho, Carlos L; Burguera-Pascu, Margarita; Burguera-Pascu, Constantin; Brunetto, Rosario; Gallignani, Máximo; Petit de Peña, Yaneita

    2003-11-04

    An "oil in water" formulation was optimized to determine chromium in heavy crude oil (HCO) and bitumen-in-water emulsion (Orimulsion-400(R)) samples by transversally heated electrothermal atomic absorption spectrometry (TH-ET AAS) using Zeeman effect background correction. The optimum proportion of the oil-water mixture ratio was 7:3 v/v (70 ml of oil as the internal phase) with a non-ionic surfactant concentration (Intan-100) in the emulsion of 0.2% w/w. Chromium was determined in different crude oil samples after dilution of the emulsions 1:9 v/v with a 0.2% w/w solution of surfactant in order to further reduce the viscosity from 100 to 1.6 cP and at the same time to bring the concentration of chromium within the working range of the ET AAS technique. The calibration graph was linear from 1.7 to 100 mug Cr l(-1). The sensitivity was of 0.0069 s l mug(-1), the characteristic mass (m(o)) was of 5.7 pg per 0.0044 s and the detection limit (3sigma) was of 0.52 mug l(-1). The relative standard deviation of the method, evaluated by replicate analyses of three crude oil samples varied in all cases between 1.5 and 2.6%. Recovery studies were performed on four Venezuelan crude oils, and the average chromium recovery values varied between 95.9-104.8, 90.6-107.6, 95.6-104.0 and 98.8-103.9% for the Cerro Negro, Crudo Hamaca and Boscán crude oils and for the Orimulsión(R)-400, respectively. The results obtained in this work for the Cerro Negro, Crudo Hamaca and Boscán crude oils and for the Orimulsión(R)-400 following the proposed procedure were of 0.448+/-0.008, 0.338+/-0.004 0.524+/-0.021 and 0.174+/-0.008 mg Cr l(-1), respectively, which were in good agreement with the values obtained by a tedious recommended standard procedure (respectively: 0.470+/-0.05, 0.335+/-0.080, 0.570+/-0.021 and 0.173+/-0.009 mg Cr l(-1)).

  17. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    NASA Astrophysics Data System (ADS)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  18. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth

    2010-12-07

    We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.

  19. Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties.

    PubMed

    Hu, Jue; Prabhakaran, Molamma P; Ding, Xin; Ramakrishna, Seeram

    2015-01-01

    Producing uniform nanofibers in high quality by electrospinning remains a huge challenge, especially using low concentrated polymer solutions. However, emulsion electrospinning assists to produce nanofibers from less concentrated polymer solutions compared to the traditional electrospinning process. The influence of individual surfactants towards the morphology of the emulsion electrospun poly (ɛ-caprolactone)/bovine serum albumin (PCL/BSA) nanofibers were investigated by using (i) non-ionic surfactant sorbitane monooleate (Span80); (ii) anionic sodium dodecyl sulfate (SDS); and (iii) cationic benzyltriethylammonium chloride, and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer Pluronic F108 of different concentrations. The morphology, along with the chemical and mechanical properties of the fibers, was evaluated by field emission scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, water contact angle, and tensile tester. With the addition of surfactants, the electrospinnability of dilute PCL solution was enhanced, with either branched or uniform fibers were obtained. Electrospinning of an emulsion containing 0.4% (w/v) SDS produced the smallest and the most uniform nanofibers (167 ± 39 nm), which was attributed to the high conductivity of the solution. Analysis revealed that the emulsion electrospun nanofibers containing different surfactants and surfactant concentrations differ in fiber morphology and mechanical properties. Results suggest that surfactants have the ability to modulate the fiber morphology via electrostatic and hydrogen bonding, depending on their chemical structure.

  20. Rheological characterization of polysaccharide-surfactant matrices for cosmetic O/W emulsions.

    PubMed

    Bais, D; Trevisan, A; Lapasin, R; Partal, P; Gallegos, C

    2005-10-15

    Rheometrical techniques can be profitably used for polysaccharide matrices in order to evaluate their suitability for the preparation of stable cosmetic O/W emulsions. In particular, the rheological properties of aqueous scleroglucan systems were investigated under continuous and oscillatory shear conditions in a polymer concentration range (0.2-1.2% w/w) embracing the sol/gel transition. The effects due to the addition of two different surfactants (up to 10% w/w) were examined at constant polymer concentration (0.4% w/w). The selected additives are a nonionic polymeric siliconic surfactant (dimethicone copolyol) and a cationic surfactant (tetradecyltrimethylammonium bromide), respectively. Polysaccharide-surfactant interactions leading to complex formation were detected also through rheology. The combined action of both nonionic and cationic surfactants in the polymer solution was examined at two different surfactant concentration levels (5 and 10% w/w), demonstrating the beneficial effects produced on the mechanical properties of the polymer matrix by the coexistence of both surfactants. Such beneficial effects are confirmed by the stability and rheology shown by the emulsions prepared. In this way, the results point out the good agreement between the rheology of the continuous phase and the final characteristics of the emulsion obtained.

  1. Physical Properties and Biological Activity of Poly(butyl acrylate–styrene) Nanoparticle Emulsions Prepared with Conventional and Polymerizable Surfactants

    PubMed Central

    Garay-Jimenez, Julio C.; Gergeres, Danielle; Young, Ashley; Dickey, Sonja; Lim, Daniel V.; Turos, Edward

    2009-01-01

    Recent efforts in our laboratory have explored the use of polyacrylate nanoparticles in aqueous media as stable emulsions for potential applications in treating drug-resistant bacterial infections. These emulsions are made by emulsion polymerization of acrylated antibiotic compounds in a mixture of butyl acrylate and styrene (7:3 w:w) using sodium dodecyl sulfate (SDS) as a surfactant. Prior work in our group established that the emulsions required purification to remove toxicity associated with extraneous surfactant present in the media. This paper summarizes our investigations of poly(butyl acrylate-styrene) emulsions made using anionic, cationic, zwitterionic, and non-charged (amphiphilic) surfactants, as well as attachable surfactant monomers (surfmers), comparing the cytotoxicity and microbiological activity levels of the emulsion both before and after purification. Our results show that the attachment of a polymerizable surfmer onto the matrix of the nanoparticle neither improves nor diminishes cytotoxic or antibacterial effects of the emulsion, regardless of whether the emulsions are purified or not, and that the optimal properties are associated with the use of the non-ionic surfactants versus those carrying anionic, cationic, or zwitterionic charge. Incorporation of an N-thiolated β-lactam antibacterial agent onto the nanoparticle matrix via covalent attachment endows the emulsion with antibiotic properties against pathogenic bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), without changing the physical properties of the nanoparticles or their emulsions. PMID:19523413

  2. Effect of inorganic additives on solutions of nonionic surfactants V: Emulsion stability.

    PubMed

    Schott, H; Royce, A E

    1983-12-01

    Electrolytes often break emulsions to which they were added as active ingredients, adjuvants, or impurities. The stability of oil-in-water emulsions containing octoxynol 9 NF as the emulsifier and various added electrolytes was investigated by measuring droplet size, turbidity, and oil separation on storage at various temperatures and in a centrifugal field at 25 degrees. Electrolytes were added to hexadecane emulsions after emulsification (direct addition); alternatively, hexadecane was emulsified in octoxynol 9-electrolyte mixtures (reverse addition). Xylene emulsions were prepared by direct addition only. Hexadecane emulsions containing 0.10% octoxynol 9 were considerably more stable than xylene emulsions containing 0.60% because the surfactant is practically insoluble in hexadecane, but miscible in all proportions with xylene. An emulsifier soluble in the disperse phase as well as the continuous phase evidently forms less stable interfacial films. The electrolytes investigated were sulfuric and hydrochloric acids, magnesium nitrate, and aluminum nitrate, which salt octoxynol 9 in by complexation between its ether groups and their cations; sodium thiocyanate, which salts the surfactant in by destructuring water; and sodium chloride and sodium sulfate, which salt octoxynol 9 out. The addition of these electrolytes at concentrations up to 2 or 3 m to hexadecane emulsions produced fast and extensive creaming, little or no flocculation, no coalescence, and only minor changes in droplet size or turbidity on storage at room temperature. The extent of coalescence during centrifugation was actually reduced by the additives. Such stability is unusual. Droplet size and turbidity depended mainly on octoxynol 9 concentration. The greatest decrease in the former and increase in the latter occurred when the concentration was increased from 0.10 to approximately 0.4%. All emulsions became slightly coarser on storage at 25 degrees. Stability at 50 degrees was impaired by

  3. Quantification of unadsorbed protein and surfactant emulsifiers in oil-in-water emulsions.

    PubMed

    Berton, Claire; Genot, Claude; Ropers, Marie-Hélène

    2011-02-15

    Unadsorbed emulsifiers affect the physical and chemical behaviour of oil-in-water (O/W) emulsions. A simple methodology to quantify unadsorbed emulsifiers in the aqueous phase of O/W emulsions has been developed. Emulsions were centrifuged and filtered to separate the aqueous phase from the oil droplets and the concentration of unadsorbed emulsifiers in the aqueous phase determined. The quantification of unadsorbed surfactants based on the direct transesterification of their fatty acids was validated for Tween 20, Tween 80, citric acid ester (Citrem), Span 20 and monolauroyl glycerol. To determine unadsorbed proteins, results obtained with Folin-Ciocalteu reagent or UV-spectrophotometry were compared on emulsions stabilized by β-lactoglobulin (BLG), β-casein (BCN) or bovine serum albumin (BSA). The first method gave more accurate results especially during aging of emulsions in oxidative conditions. The whole methodology was applied to emulsions stabilized with single or mixed emulsifiers. This approach enables optimization of emulsion formulations and could be useful to follow changes in the levels of unadsorbed emulsifiers during physical or chemical aging processes.

  4. Solution behavior of surfactants. Vol. 1

    SciTech Connect

    Mittal, K.L.; Fendler, E.J.

    1983-01-01

    This three-volume set constitutes the proceedings of the 4th International Symposium on Surfactants in Solution held in Sweden in 1982. Volume 1 considers phase behavior and phase equilibria in surfactant solutions (e.g., thermodynamics of partially miscible micelles and liquid crystals; multi-method characterization of micelles; the surfactant-block model of micelle structure). Volume 2 considers thermodynamic and kinetic aspects of micellization (computation of the micelle-size distribution; salt-induced sphere-rod transition of ionic micelles; micellar effects on kinetics and equilibria of electron transfer reactions). Volume 3 considers reverse micelles, microemulsions and reactions in microemulsions. Topics covered include solubilization, surfactants in analytical chemistry, the adsorption and binding of surfactants, the polymerization of organized surfactant assemblies, light scattering by liquid surfaces, and vesicles.

  5. Physical stability of N,N-dimethyldecanamide/α-pinene-in-water emulsions as influenced by surfactant concentration.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; García, M C; Muñoz, J

    2017-01-01

    In recent years, interest in submicron emulsions has increased due to their high stability and potential applications in the encapsulation and release of active ingredients in many industrial fields, such as the food industry, pharmaceuticals or agrochemicals. Furthermore, the social demand for eco-friendly solutions to replace hazardous solvents in many dispersion formulations has steadily risen. In this study, the influence of surfactant concentration on the formation and physical stability of submicron oil-in-water emulsions using a high-pressure dual-channel homogenizer (microfluidizer) has been investigated. The formulation involved the use of a blend of two green solvents (N,N-dimethyldecanamide and α-pinene) as dispersed phase and a nonionic polyoxyethylene glycerol ester derived from coconut oil as emulsifier (Levenol(®) C-201), which enjoys a European eco-label. Therefore, these emulsions may find applications as matrices for agrochemicals. Physical stability and rheological properties of the emulsions studied showed an important dependence on the eco-friendly surfactant concentration. The lowest surfactant concentration (1wt%) yielded the onset of a creaming process after a short aging time and was not enough to avoid recoalescence during emulsification. On the other hand, the higher surfactant concentrations (4-5wt%) resulted in depletion flocculation, which in turn triggered emulsion destabilization by coalescence. The optimum physical stability was exhibited by emulsions containing intermediate surfactant concentrations (2-3wt%) since coalescence was hardly significant and the onset of a weak creaming destabilization process was substantially delayed.

  6. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    PubMed

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  7. Phase Behavior of Dilute Carbon Black Suspensions and Carbon Black Stabilized Emulsions

    NASA Astrophysics Data System (ADS)

    Godfrin, Michael; Tiwari, Ayush; Bose, Arijit; Tripathi, Anubhav

    2014-11-01

    We use para-amino benzoic acid terminated carbon black (CB) as a tunable model particulate material to study the effect of inter-particle interactions on phase behavior and steady shear stresses in suspensions and particle-stabilized emulsions. We modulate inter-particle interactions by adding NaCl to the suspension, thus salting surface carboxylate groups. Surprisingly, yield stress behavior emerged at a volume fraction of CB as low as ϕCB = 0.008, and gel behavior was observed at ϕCB >0.05, well below the percolation threshold for non-interacting particles. The yield stress was found to grow rapidly with carbon black concentration suggesting that salt-induced hydrophobicity leads to strong inter-particle interactions and the formation of a network at low particle concentrations. The yield stresses of CB-stabilized emulsions also grows rapidly with carbon black concentrations, implying that inter-droplet interactions can be induced through the tuning of carbon black concentration in emulsion systems. Emulsions stabilized by ionic surfactants show no inter-droplet interactions. In contrast, oil droplets in the CB-stabilized emulsion move collectively or are immobilized because of an interconnected CB network in the aqueous phase.

  8. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization.

    PubMed

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2016-12-14

    The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored.

  9. Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation.

    PubMed

    Kulik, N; Trapido, M; Veressinina, Y; Munter, R

    2007-12-01

    The model wastewater samples investigated in the current study represented oil-in-water (O/W) emulsions with small oil (diesel/black oil) and high surfactant (Anrol/Decon90) concentrations generated during washing of oil tankers or tank-wagons. Coagulation with aluminium sulphate, ferric chloride and lime milk, and chemical oxidation by hydrogen peroxide catalyzed ferrous ions were applied as traditional and advanced treatment processes, respectively. Coagulation proved more feasible for oil content removal than for COD reduction. Both COD and oil content removal, were higher if Anrol was used as a surface active agent. The comparison of wastewater samples with different oil products but the same detergent showed more effective black oil removal. Coagulation was found ineffective as a pre-treatment technology for biodegradability improvement and toxicity reduction in surfactant stabilized O/W emulsion wastewater samples. The application of Fenton chemistry showed significant COD, UV absorbance and BOD removal, but no improvement in wastewater samples biodegradability. The maximum COD reduction and oil content removal from wastewater samples was above 90%. The oxidation of wastewater containing Decon90 required higher dosages of the Fenton reagent than wastewater with Anrol. Both Anrol and Decon90 contaminated wastewater samples were found to be detoxified even after moderate hydrogen peroxide dosages had been applied in the oxidation step.

  10. Coalescence kinetics in surfactant stabilized emulsions: Evolution equations from direct numerical simulations

    SciTech Connect

    R. Skartlien; E. Sollum; A. Akselsen; P. Meakin; B. Grimes; J. Sjoblom

    2012-12-01

    Lattice Boltzmann simulations were used to study the coalescence kinetics in emulsions with amphiphilic surfactant, under neutrally buoyant conditions, and with a significant kinematic viscosity contrast between the phases (emulating water in oil emulsions). The 3D simulation domain was large enough (256 3rd power -- 10 7th power grid points) to obtain good statistics with droplet numbers ranging from a few thousand at early times to a few hundred near equilibrium. Increased surfactant contents slowed down the coalescence rate between droplets due to the Gibbs-Marangoni effect, and the coalescence was driven by a quasi-turbulent velocity field. The kinetic energy decayed at a relatively slow rate at early times, due to conversion of interfacial energy to kinetic energy in the flow during coalescence. Phenomenological, coupled differential equations for the mean droplet diameter D(t) and the number density nd(t) were obtained from the simulation data and from film draining theories. Local (in time) power law exponents for the growth of the mean diameter (and for the concomitant decrease of nd) were established in terms of the instantaneous values of the kinetic energy, coalescence probability, Gibbs elasticity, and interfacial area. The model studies indicated that true power laws for the growth of the droplet size and decrease of the number of droplets with time may not be justified, since the exponents derived using the phenomenological model were time dependent. In contrast to earlier simulation results for symmetric blends with surfactant, we found no evidence for stretched logarithmic scaling of the formD -- [ln (ct)]a for the morphology length, or exponential scalings associated with arrested growth, on the basis of the phenomenological model.

  11. Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide

    SciTech Connect

    Rocha, S.R.P. da; Harrison, K.L.; Johnston, K.P.

    1999-01-19

    The lowering of the interfacial tension ({gamma}) between water and carbon dioxide by various classes of surfactants is reported and used to interpret complementary measurements of the capacity, stability, and average drop size of water-in-CO{sub 2} emulsions. {gamma} is lowered from {approximately}20 to {approximately}2 mN/m for the best poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) (PPO-b-PEO-b-PPO) and PeO-b-PPO-b-PEO Pluronic triblock copolymers, 1.4 mN/m for a poly(butylene oxide)-b-PEO copolymer, 0.8 mN/m for a perfluoropolyether (PEPE) ammonium carboxylate and 0.2 mN/m for PDMS{sub 24}-g-EO{sub 22}. The hydrophilic-CO{sub 2}-philic balance (HCB) of the triblock Pluronic and PDMS-g-PEO-PPO surfactants is characterized by the CO{sub 2}-to-water distribution coefficient and V-shaped plots of log {gamma} vs wt % EO. A minimum in {gamma} is observed for the optimum HCB. As the CO{sub 2}-philicity of the surfactant tail is increased, the molecular weight of the hydrophilic segment increases for an optimum HCB. The stronger interactions on both sides of the interface lead to a lower {gamma}. Consequently, more water was emulsified for the PDMS-based copolymers than either the PPO- or PBO-based copolymers.

  12. Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Jin Woo; Durand, Grégory; Majumder, Sagardip

    2017-01-01

    Development of artificial cell models requires encapsulation of biomolecules within membrane-bound compartments. There have been limited studies of using mammalian cell-free expression (CFE) system as the ‘cytosol’ of artificial cells. We exploit glass capillary droplet microfluidics for the encapsulation of mammalian CFE within double emulsion templated vesicles. The complexity of the physicochemical properties of HeLa cell-free lysate poses a challenge compared with encapsulating simple buffer solutions. In particular, we discovered the formation of aggregates in double emulsion templated vesicles encapsulating mammalian HeLa CFE, but not with bacterial CFE. The aggregates did not arise from insolubility of the proteins made from CFE nor due to the interaction of mammalian CFE with the organic solvents in the middle phase of the double emulsions. We found that aggregation is dependent on the concentration of poly(vinyl) alcohol (PVA) surfactant, a critical double emulsion-stabilizing surfactant, and the lysate concentration in mammalian CFE. Despite vesicle instability and reduced protein expression, we demonstrate protein expression by encapsulating mammalian CFE system. Using mass spectrometry and Western blot, we identified and verified that actin is one of the proteins inside the mammalian CFE that aggregated with PVA surfactant. Our work establishes a baseline description of mammalian CFE system encapsulated in double emulsion templated vesicles as a platform for building artificial cells. PMID:28358875

  13. Novel antifouling oligo(ethylene glycol) methacrylate particles via surfactant-free emulsion polymerization.

    PubMed

    Buyukserin, Fatih; Camli, Sevket Tolga; Yavuz, Mustafa Selman; Budak, Gurer Guven

    2011-03-01

    The use of particle formulations with antifouling surface properties attracts increasing interest in several biotechnological applications. Majority of these studies utilize a poly(ethylene glycol) coating to render the corresponding surface nonrecognizable to biological macromolecules. Herein, we report a simple way to prepare novel antifouling colloids composed of oligo(ethylene glycol) backbones via surfactant-free emulsion polymerization. Monodisperse cross-linked poly(ethylene glycol) ethyl ether methacrylate particles were characterized by dynamic light scattering and transmission electron microscopy. The effects of monomer, cross-linker and initiator on particle characteristics were investigated. More importantly, a prominent blockage of bovine serum albumin adsorption was obtained for the poly(ethylene glycol)-based sub-micron (~200 nm) particles when compared with similar-sized poly(methyl methacrylate) counterparts.

  14. Evaluation of HLB values of mixed non-ionic surfactants on the stability of oil-in-water emulsion system

    NASA Astrophysics Data System (ADS)

    Nursakinah, I.; Ismail, A. R.; Rahimi, M. Y.; Idris, A. B.

    2013-11-01

    Emulsion oil-in-water was prepared with combination of emulsifiers (non-ionic surfactants) following the HLB (hydrophylic-lipophylic balance) method developed by Griffin. The emulsions were prepared at HLB 10, 11, 12, 13 and 13.6 consisting blend of non-ionic emulsifiers fatty acid ethoxylate with 20 moles bound ethylene oxide and Dehydol LS 1 with 1 mole bound ethylene oxide. A mixture of palm-based methyl ester consisting of C6-10 and C12-18 fatty acid composition was used as palm-based solvent. The physicochemical parameters of the emulsion were characterized by accelerate stability tested at 45°C for two months, measurement of particle size and viscosity test. The result of accelerate test showed that all the emulsion at different HLB were found to be stable in the 2 months observation which assumed to be stable in 1 year of storage. Meanwhile, the particle size measurement data showed that the optimum stable particle size of the emulsion was HLB 12±1. The viscosity test of the emulsion tends to support the data from the particle size and have maximum viscosity 189.89 cP at HLB 12. The obtained results indicate that the optimum stable emulsions can be formulated by a combination of emulsifiers with HLB 12±1 which is compatible with that of required HLB of the oil phase.

  15. An algorithm for emulsion stability simulations: account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening.

    PubMed

    Urbina-Villalba, German

    2009-03-01

    The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1(st) Ed., Tojo J., Arce, A., Eds.; Solucion's: Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.

  16. Use of a surfactant-stabilized emulsion to deliver 1-butanol for density-modified displacement of trichloroethene.

    PubMed

    Ramsburg, C Andrew; Pennell, Kurt D; Kibbey, Tohren C G; Hayes, Kim F

    2003-09-15

    A novel surfactant-enhanced aquifer remediation technology, density-modified displacement (DMD), has been developed to minimize risk of dense non-aqueous-phase liquid (DNAPL) downward migration during displacement floods. The DMD method is designed to be implemented using horizontal flushing schemes, with in situ DNAPL density conversion accomplished by the introduction of a partitioning alcohol (e.g., 1-butanol) in a predisplacement flood (preflood). Subsequent NAPL displacement and recovery is achieved by flushing with a low-interfacial-tension (low-IFT) surfactant solution. The efficiency of the DMD method may be enhanced for heavier DNAPLs, such as trichloroethene (TCE), by increasing alcohol delivery and the extent of partitioning during the preflood. The objective of this study was to evaluate the use of a macroemulsion, consisting of 4.7% (vol) Tween 80 + 1.3% (vol) Span 80 + 15% (vol) 1-butanol to achieve efficient in situ density conversion of TCE (relative to that obtained with use of an aqueous preflood solution) prior to low-IFT displacement and recovery from a two-dimensional aquifer cell. The cell was configured to represent a heterogeneous unconfined aquifer system with an overall NAPL saturation between 2% and 3%. After flooding with approximately 1.2 pore volumes of the macroemulsion, a low-IFT solution consisting of 10% (vol) Aerosol MA + 6% (vol) 1-butanol + 15 g/L NaCl + 1 g/L CaCl2 was introduced to displace and recover NAPL. Visual observations and quantitative measurements of effluent fluids demonstrated that in situ density conversion and displacement of TCE-NAPL was successful, with effluent NAPL densities ranging from 0.97 to 0.99 g/mL. For the experimental system employed herein, 93% recovery of the introduced TCE mass was realized after flushing with a combined 2.4 pore volumes of the density conversion and low-IFT solutions. These results demonstrate the increased efficiency of the DMD method when surfactant-based emulsions are used to

  17. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  18. Water-in-silicone oil emulsion stabilizing surfactants formed from native albumin and alpha,omega-triethoxysilylpropyl-polydimethylsiloxane.

    PubMed

    Zelisko, Paul M; Flora, Kulwinder K; Brennan, John D; Brook, Michael A

    2008-08-01

    Contact with hydrophobic silicones frequently leads to protein denaturation. However, it is demonstrated that albumin in water-in-silicone oil emulsions retains its native structure in the presence of a functional, triethoxysilyl-terminated silicone polymer, TES-PDMS. Both HSA and TES-PDMS were essential for the formation of stable water-in-silicone oil emulsions: attempts to generate stable emulsions using independently either the protein or the functionalized silicone as a surfactant failed. Confocal microscopy indicated that the human serum albumin (HSA) preferentially adsorbed at the oil/water interface, even in the presence of another protein (glucose oxidase). A variety of experiments demonstrated that the hydrolysis of the Si-OEt groups on the functional silicone occurred only to a limited extent, consistent with the absence of a covalent linkage between the silicone and protein, or of cross-linked silicones at the interface. The fluorescence spectra of HSA extracted from the emulsions, front-faced fluorescence experiments on the HSA/silicone emulsion itself, and HSA/salicylate binding studies all demonstrated that the stability of the water/oil interface decreased as the protein began to unfold: unfolding of the protein in the emulsion was slower than in aqueous solution. The experimental evidence indicated that the interaction between HSA and TES-PDMS is not associated with either homomolecular (HSA/HSA; TES-PDMS/TES-PDMS) interactions or with covalent linkage between two the polymers. Rather, the data is consistent with the direct binding of unhydrolyzed Si(OEt) 3 groups to native HSA. The nature of these interactions is discussed.

  19. An Algorithm for Emulsion Stability Simulations: Account of Flocculation, Coalescence, Surfactant Adsorption and the Process of Ostwald Ripening

    PubMed Central

    Urbina-Villalba, German

    2009-01-01

    The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1st Ed., Tojo J., Arce, A., Eds.; Solucion’s: Vigo, Spain, 1999; Volume 2, pp. 364–369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening. PMID:19399220

  20. Preparation of CO₂/N₂-triggered reversibly coagulatable and redispersible polyacrylate latexes by emulsion polymerization using a polymeric surfactant.

    PubMed

    Zhang, Qi; Yu, Guoqiang; Wang, Wen-Jun; Li, Bo-Geng; Zhu, Shiping

    2012-05-29

    We report here a novel approach for making reversibly coagulatable and redispersible polyacrylate latexes by emulsion (co)polymerization of methyl methacrylate (MMA) using a polymeric surfactant, poly(2-(dimethylamino)ethyl methacrylate)(10) -block-poly(methyl methacrylate)(14) . The surfactant was protonated with HCl prior to use. The resulted PMMA latexes were readily coagulated with trace amount of caustic soda. The coagulated latex particles, after washing with deionized water, could be redispersed into fresh water to form stable latexes again by CO(2) bubbling with ultrasonication. The recovered latexes could then be coagulated by N(2) bubbling with gentle heating. These coagulation and redispersion processes were repeatable by the CO(2) /N(2) bubbling.

  1. Surfactant effects on bio-based emulsions used as lubrication fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The successful formulation of a lubricating emulsion requires carefully balancing the mixture of base oil, water and a plethora of additives. The factors that affect the performance of lubrication emulsions range from the macroscopic stability to the microscopic surface properties of the base oil. ...

  2. Kinetics of Narrowly dispersed Latex Formation in a Surfactant-free Emulsion Polymerization of Styrene in Acetone-Water Mixture

    NASA Astrophysics Data System (ADS)

    Cheng, He; Li, Zhiyong; Han, Charles

    2012-02-01

    The kinetics of narrowly dispersed latex formation in a surfactant-free emulsion polymerization of styrene in acetone-water was studied by a combination of transmission electron microscopy and light scattering. The critical nuclei were experimentally observed and the formation of narrowly dispersed PS latex is proved to be originated from competitive growth kinetics. Spherical nuclei were regenerated via a microphase inversion of PS oligomer in 50% volume fraction acetone-water mixture at 70^oC. They follow a polydispersed log-normal distribution and the smallest nucleus with Rs 1.1nm is similar to critical nuclei. Note the spherical nuclei are not necessarily narrowly dispersed. Competitive growth kinetics makes smaller nuclei grow much faster than large nuclei in the subsequent polymerization process, resulting in narrowly dispersed PS latex. Two kinds of PS seed particles were added, separately, into two parallel surfactant-free emulsion polymerization batches of styrene in acetone-water mixture at 70^oC. It was found that the size of seed particles almost does not change, but the small size PS latex grows rapidly. Our fitting results proves competitive growth kinetics proposed by Vanderhoff and coworkers.

  3. Evaluation of a novel soybean oil-based surfactant for fine emulsion preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is currently the world’s second largest source of vegetable oil. The growth in soybean oil production and the concerns over petrochemical surfactants have promoted the development of soybean oil-based surfactants. In this paper, we briefly describe the synthesis and properties of soybean...

  4. Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants.

    PubMed

    Lif, Anna; Stenstad, Per; Syverud, Kristin; Nydén, Magnus; Holmberg, Krister

    2010-12-15

    Water-in-diesel emulsion fuels have been prepared with a combination of sorbitan monolaurate and glycerol monooleate as emulsifier and with microfibrillated cellulose (MFC) of different hydrophilic/hydrophobic character as stabilizer. The MFC was treated with either octadecylamine or poly(styrene-co-maleic anhydride), resulting in very hydrophobic fibrils. The most stable emulsion was achieved with a combination of hydrophilic (untreated) and hydrophobic MFC and only minute amounts of the stabilizer gave a pronounced effect. Even with the optimized formulation the lifetime of the emulsion was shorter than previously reported when a conventional polymeric stabilizer was used, however. The water drop sizes in the emulsions were determined by three methods: optical images, light scattering, and NMR diffusometry. All three methods gave water drops sizes of ca 2 μm. The NMR diffusometry indicated that besides the micrometer-sized emulsion drops a significant fraction of the water is present in small droplets of micelle size. The chemical exchange of water between these two populations of pools is believed to be the reason for the relatively low stability of the system.

  5. Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization.

    PubMed

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Pham, Binh T T; Gody, Guillaume; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2016-03-14

    We present the preparation of 11 nm polyacrylamide-stabilized polystyrene latex particles for conjugation to a microRNA model by surfactant-free RAFT emulsion polymerization. Our synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene copolymers, which were able to self-assemble into polymeric micelles and "grow" into polystyrene latex particles. The surface of these sterically stabilized particles was postmodified with a disulfide-bearing linker for the attachment of the microRNA model, which can be released from the latex particles under reducing conditions. These nanoparticles offer the advantage of ease of preparation via a scaleable process, and the versatility of their synthesis makes them adaptable to a range of applications.

  6. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.

    PubMed

    Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi

    2014-01-01

    It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.

  7. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions.

    PubMed

    Schmidts, T; Dobler, D; Nissing, C; Runkel, F

    2009-10-01

    Multiple W/O/W emulsions for topical application using Span 80 as a lipophilic emulsifier were prepared. Several hydrophilic emulsifiers were tested in respect of their suitability for the preparation of multiple emulsions. In addition, the effect of different oil-phase compositions on emulsion stability was investigated. The physicochemical parameters of the formulations were characterized and their long-term stability was evaluated by means of rheological measurements, droplet size observations and conductivity analysis. As discovered, the modification of an oil-phase composition results in a decrease in the diffusion coefficient of water and water-soluble substances and, consequently, in enhanced stability. The influence of the release of electrolytes from the inner to the outer water phase on the emulsion stability behaviour was investigated. It was found, that the effect of the hydrophilic emulsifiers on the formulation properties is related not only to its HLB value, but rather to its chemical composition. As a result, polyethoxylated ethers of fatty alcohols (C=16-18) with HLBs between 15.3 and 16.2 appear to be the most suitable ones for creating stable formulations.

  8. Use of Biobased Surfactants to Stabilize Emulsions Relevant for Industrial Lubrication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsion based lubricants are used widely in metalworking, mining, fire-resistant hydraulic applications, and more, due to their low cost high performance. Key emulsification factors, such as appearance, particle size distribution and stability, are very important to lubricant applications. Water ...

  9. Surfactant effects on environmental behavior of pesticides.

    PubMed

    Katagi, Toshiyuki

    2008-01-01

    The potential effects of adjuvants, including surfactants used in pesticide formulation, have been extensively studied for many small organic chemicals, but similar investigation on pesticides is limited in most cases. Solubilizing effects leading to the apparently increased water solubility of a pesticide are commonly known through the preparation of formulations, but fundamental profiles, especially for a specific monodisperse surfactant, are not fully studied. Reduced volatilization of a pesticide from the formulation can be explained by analogy of a very simple organic chemical, but the actual mechanism for the pesticide is still obscure. In contrast, from the point of view of avoiding groundwater contamination with a pesticide, adsorption/desorption profiles in the presence of surfactants and adjuvants have been examined extensively as well as pesticide mobility in the soil column. The basic mechanism in micelle-catalyzed hydrolysis is well known, and theoretical approaches including the PPIE model have succeeded in explaining the observed effects of surfactants, but its application to pesticides is also limited. Photolysis, especially in an aqueous phase, is in the same situation. The dilution effect in the real environment would show these effects on hydrolysis and photolysis to be much less than expected from the laboratory basic studies, but more information is necessary to examine the practical extent of the effects in an early stage of applying a pesticide formulation to crops and soil. Many adjuvants, including surfactants, are biodegradable in the soil environment, and thus their effects on the biodegradation of a pesticide in soil and sediment may be limited, as demonstrated by field trials. Not only from the theoretical but also the practical aspect, the foliar uptake of pesticide in the presence of adjuvants has been investigated extensively and some prediction on the ease of foliar uptake can be realized in relation to the formulation technology

  10. Controlling block copolymer phase behavior using ionic surfactant

    NASA Astrophysics Data System (ADS)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  11. Characterization of surfactants in an oil-in-water emulsion-based vaccine adjuvant using MS and HPLC-MS: structural analysis and quantification.

    PubMed

    Cotte, Jean-François; Sonnery, Sylvain; Martial, Fabien; Dubayle, Jean; Dalençon, François; Haensler, Jean; Adam, Olivier

    2012-10-15

    Mass spectrometry (MS) and high performance liquid chromatography coupled to mass spectrometry (HPLC-MS) techniques were developed to characterize two surfactants, cetheareth-12 and sorbitan oleate, used to manufacture AF03, an emulsified oil-in-water (O/W) adjuvant. MS was first used to characterize the chemical structure and determine the composition of the two surfactants. The two surfactants appeared as complex products, in particular with respect to the nature of the fatty alcohols and the distribution of the number of ethylene oxides in cetheareth-12, and with respect to the different sorbitan-bound fatty acids (oleic, linoleic and palmitic acids) in sorbitan oleate. Subsequently, once the ions of interest were determined and selected, HPLC-MS was developed and optimized to quantify and to "quality control" the two surfactants as raw materials and as ingredients in the final O/W emulsion bulk and filled products.

  12. Coalescence behavior of oil droplets coated in irreversibly-adsorbed surfactant layers.

    PubMed

    Reichert, Matthew D; Walker, Lynn M

    2015-07-01

    Coalescence between oil caps with irreversibly adsorbed layers of nonionic surfactant is characterized in deionized water and electrolyte solution. The coalescence is characterized using a modified capillary tensiometer allowing for accurate measurement of the coalescence time. Results suggest two types of coalescence behavior, fast coalescence at low surface coverages that are independent of ionic strength and slow coalescence at high coverage. These slow coalescence events (orders of magnitude slower) are argued to be due to electric double layer forces or more complicated stabilization mechanisms arising from interfacial deformation and surface forces. A simple film drainage model is used in combination with measured values for interfacial properties to quantify the interaction potential between the two interfaces. Since this approach allows the two caps to have the same history, interfacial coverage and curvature, the results offer a tool to better understand a mechanism that is important to emulsion stability.

  13. Micellization behavior of aromatic moiety bearing hybrid fluorocarbon sulfonate surfactants.

    PubMed

    Wadekar, Mohan N; Boekhoven, Job; Jager, Wolter F; Koper, Ger J M; Picken, Stephen J

    2012-02-21

    Aggregation behavior and thermodynamic properties of two novel homologous aromatic moiety bearing hybrid fluorocarbon surfactants, sodium 2-(2-(4-ethylphenyl)-1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate (1) and sodium 2-(1,1,2,2-tetrafluoro-2-(4-vinylphenyl)ethoxy)-1,1,2,2-tetrafluoroethanesulfonate (2) were studied using surface tension measurements and isothermal titration calorimetry (ITC) in dilute aqueous solutions at room temperature. Because of the aromatic group in the hydrophobic tail, both surfactants are soluble at room temperature unlike their starting precursor, 5-iodooctafluoro-3-oxapentanesulfonate as well as several other fluorocarbon sulfonic acid salts. Moreover, the surfactant 2 has the ability that it can be polymerized once microemulsions are formed with it. The ionic conductivity measurements of 1 at five different temperatures from 288 to 313 K were carried out to study the effect of temperature on the micellization and its thermodynamics. The pseudophase separation model was applied to estimate thermodynamic quantities from conductivity data. The Gibbs energy of micellization versus temperature exhibited the characteristic U-shaped behavior with a minimum at 306 K. The micellization process was found to be largely entropy driven. Because of its hybrid structure, the entropy change of micellization for 1 was larger than what is common for hydrocarbon surfactants like SDS but less than for fully fluorinated surfactants like NaPFO. The micellization process was found to be following the entropy-enthalpy compensation phenomena.

  14. Effect of surfactant sucrose ester on physical properties of dairy whipped emulsions in relation to those of O/W interfacial layers.

    PubMed

    Tual, A; Bourles, E; Barey, P; Houdoux, A; Desprairies, M; Courthaudon, J-L

    2006-03-15

    Dairy foams were manufactured on a pilot plant with various sucrose ester contents. Oil-in-water emulsions were produced by high-pressure homogenisation of anhydrous milk fat (20 wt%) with an aqueous phase containing skim milk powder (6.5 wt%), sucrose (15 wt%), hydrocolloids (2 wt%), and sucrose esters. Sucrose ester content was varied from 0 to 0.35 wt%. Firmness and stability of dairy foams were determined. The fraction of protein associated with emulsion fat droplets and the compression isotherms of those droplets were determined as a function of sucrose ester content. With less than 0.1 wt% sucrose ester, no foam could be produced. The most firm and stable foams were obtained with ca. 0.1 wt% sucrose ester. The fraction of protein associated with emulsion droplets suddenly falls from 60% at a sucrose ester content lower than 0.1125% down to ca. 10-20% for higher surfactant content. Compression isotherms of emulsion droplets at the air-water interface show that, in the presence of surfactant, emulsion droplets disrupt and spread at the interface whilst without surfactant they become dispersed. This means that the presence of sucrose ester causes some destabilisation of fat droplet interfacial layers. There is hence an optimal sucrose ester content that allows some destabilisation of the oil-water interface without concomitant protein displacement from that interface. Consequently, with the recipe and manufacturing process used to produce dairy foams, there exists a compromise in sucrose ester content with regards to manufacture and shelf-life of dairy foams.

  15. Two-way effects of surfactants on Pickering emulsions stabilized by the self-assembled microcrystals of α-cyclodextrin and oil.

    PubMed

    Li, Xue; Li, Haiyan; Xiao, Qun; Wang, Liuyi; Wang, Manli; Lu, Xiaolong; York, Peter; Shi, Senlin; Zhang, Jiwen

    2014-07-21

    The influence of surfactants on the stability of cyclodextrin (CD) Pickering emulsions is not well understood. In this study, we report two-way effects of Tween 80 and soybean lecithin (PL) on the long term stability of Pickering emulsions stabilized by the self-assembled microcrystals of α-CD and medium chain triglycerides (MCT). The CD emulsions in the absence and presence of Tween 80 or PL at different concentrations were prepared and characterized by the droplet size, viscosity, contact angle, interfacial tension and residual emulsion values. After adding Tween 80 and PL, similar effects on the size distribution and contact angle were observed. However, changes of viscosity and interfacial tension were significantly different and two-way effects on the stability were found: (i) synergistic enhancement by Tween 80; (ii) inhibition at low and enhancement at high concentrations by PL. The stability enhancement of Tween 80 was due to the interfacial tension decrease caused by the interaction of Tween 80 with CD at the o/w interface at lower concentrations, and significant viscosity increase caused by the Tween 80-CD assembly in the continuous phase. For PL at low concentrations, the replacement of α-CD/MCT by α-CD/PL particles at the o/w interface was observed, leading to inhibitory effects. High concentrations of PL resulted in an extremely low interfacial tension and stable emulsion. In conclusion, the extensive inclusion of surfactants by CD leads to their unique effects on the stability of CD emulsions, for which the changes of viscosity and interfacial tension caused by host-guest interactions play important roles.

  16. Effect of spacer length on the interfacial behavior of N,N'-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide gemini surfactants in the absence and presence of ZnO nanoparticles.

    PubMed

    Fereidooni Moghadam, Tahereh; Azizian, Saeid; Wettig, Shawn

    2017-01-15

    In this paper the interfacial behavior of aqueous solutions of cationic gemini surfactants of the, N,N'-bis(dimethylalkyl)-α,ω-alkanediammoniumdibromide type (known as the 12-s-12 series), in the absence and presence of ZnO nanoparticles was studied. Equilibrium and dynamic interfacial tension between n-decane and aqueous surfactant solutions were investigated. It was concluded that the synergistic effect between surfactants and nanoparticles increases the surfactant efficiency with respect to reducing the interfacial tension. Moreover, the magnitude of the effect of ZnO nanoparticles on the interfacial tension decreases with increasing length of the spacer group in the gemini surfactant structure. Dynamic studies illustrate that the migration mechanism of gemini surfactants (regardless of the presence of ZnO) from the bulk to the interface was controlled by both diffusion and adsorption. The effect of spacer length on the contact angle and emulsion stability both with and without nanoparticles was also studied.

  17. Emulsion of an in-situ surfactant in petroleum. Final report

    SciTech Connect

    Not Available

    1983-12-01

    Three emulsifiers were tested for their ability to reduce the viscosity of heavy oils. A reduction of 25% viscosity is achieved using polybutene. A reduction of 50% viscosity is achieved using a concentrated ionic detergent obtained from SANDOZ. The most promising emulsifiers is a lipopeptide. Preliminary studies show this emulsifier reduces the viscosity of heavy oils by as much as 80%. It is also able to reduce the surface tension of water by 35%. This emulsifier is also biodegradable and less toxic than synthetic surfactants. (DMC)

  18. Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles.

    PubMed

    Zhang, Yue; Zhao, Hanying

    2016-04-19

    In recent years, an emerging research area has been the surfactant behavior of polymer-tethered nanoparticles. In this feature article, we have provided a general introduction to the synthesis, self-assembly, and interfacial activity of polymer-tethered inorganic nanoparticles, polymer-tethered organic nanoparticles, and polymer-tethered natural nanoparticles. In addition, applications of the polymer-tethered nanoparticles in colloidal and materials science are briefly reviewed. All research demonstrates that amphiphilic polymer-tethered nanoparticles exhibit surfactant behavior and can be used as elemental building blocks for the fabrication of advanced structures by the self-assembly approach. The polymer-tethered nanoparticles provide new opportunities to engineer materials and biomaterials possessing specific functionality and physical properties.

  19. Phase behavior and shear alignment in SWNT-surfactant dispersions.

    PubMed

    Nativ-Roth, Einat; Yerushalmi-Rozen, Rachel; Regev, Oren

    2008-09-01

    The effect of single-walled carbon nanotubes (SWNT) on the phase behavior of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions is investigated at room temperature. Small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) are used for characterization of bulk dispersions and nanometrically thin films. Additional carbonaceous additives (fullerenes, multi-walled carbon nanotubes, and carbon black) serve as reference systems. It is found that dispersions of carbonaceous additive (excluding fullerenes) at intermediate surfactant concentrations (below the liquid-crystalline region of the native surfactant) induce demixing and macroscopic phase separation in otherwise homogeneous solutions of CTAB. Two coexisting liquid phases of similar CTAB concentrations are observed, with the carbonaceous species residing within the lower phase. At high CTAB concentrations (liquid-crystal region) the SWNTs are found to incorporate into the ordered lyotropic liquid-crystalline phase while preserving the native d-spacing. Investigation of nanometrically thin films at intermediate surfactant concentrations under external shear reveals shear-induced structure (SIS) in the presence of minute amounts of SWNTs. The effect is found to be exclusive to SWNT and does not occur in dispersions of other carbonaceous additives.

  20. Pickering Interfacial Catalysts for solvent-free biomass transformation: physicochemical behavior of non-aqueous emulsions.

    PubMed

    Fan, Zhaoyu; Tay, Astrid; Pera-Titus, Marc; Zhou, Wen-Juan; Benhabbari, Samy; Feng, Xiaoshuang; Malcouronne, Guillaume; Bonneviot, Laurent; De Campo, Floryan; Wang, Limin; Clacens, Jean-Marc

    2014-08-01

    A key challenge in biomass conversion is how to achieve valuable molecules with optimal reactivity in the presence of immiscible reactants. This issue is usually tackled using either organic solvents or surfactants to promote emulsification, making industrial processes expensive and not environmentally friendly. As an alternative, Pickering emulsions using solid particles with tailored designed surface properties can promote phase contact within intrinsically biphasic systems. Here we show that amphiphilic silica nanoparticles bearing a proper combination of alkyl and strong acidic surface groups can generate stable Pickering emulsions of the glycerol/dodecanol system in the temperature range of 35-130°C. We also show that such particles can perform as Pickering Interfacial Catalysts for the acid-catalyzed etherification of glycerol with dodecanol at 150°C. Our findings shed light on some key parameters governing emulsion stability and catalytic activity of Pickering interfacial catalytic systems. This understanding is critical to pave the way toward technological solutions for biomass upgrading able to promote eco-efficient reactions between immiscible organic reagents with neither use of solvents nor surfactants.

  1. Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Raymundo, A; Sousa, I; Muñoz, J

    2016-09-01

    Small amplitude oscillatory shear and steady shear flow properties of rhamsan gum and welan gum dispersions containing an eco-friendly surfactant (a polyoxyethylene glycerol ester) formulated to mimic the continuous phase of O/W emulsions were studied using the surface response methodology. A second order polynomial equation fitted the influence of surfactant concentration, rhamsan/welan mass ratio and total concentration of polysaccharides. Systems containing blends of rhamsan and welan did not show synergism but thermodynamic incompatibility and made it possible to adjust the linear viscoelastic and low shear rate flow properties to achieve values in between those of systems containing either rhamsan or welan as the only polysaccharide. All the systems studied exhibited weak gel rheological properties as the mechanical spectra displayed the plateau or rubber-like relaxation zone, the linear viscoelastic range was rather narrow and flow curves presented shear thinning behavior, which fitted the power-law equation. While mechanical spectra of the systems studied demonstrated that they did not control the linear viscoelastic properties of the corresponding emulsions, the blend of rhamsan and welan gums was able to control the steady shear flow properties.

  2. Computer simulation-molecular-thermodynamic framework to predict the micellization behavior of mixtures of surfactants: application to binary surfactant mixtures.

    PubMed

    Iyer, Jaisree; Mendenhall, Jonathan D; Blankschtein, Daniel

    2013-05-30

    We present a computer simulation-molecular-thermodynamic (CSMT) framework to model the micellization behavior of mixtures of surfactants in which hydration information from all-atomistic simulations of surfactant mixed micelles and monomers in aqueous solution is incorporated into a well-established molecular-thermodynamic framework for mixed surfactant micellization. In addition, we address the challenges associated with the practical implementation of the CSMT framework by formulating a simpler mixture CSMT model based on a composition-weighted average approach involving single-component micelle simulations of the mixture constituents. We show that the simpler mixture CSMT model works well for all of the binary surfactant mixtures considered, except for those containing alkyl ethoxylate surfactants, and rationalize this finding molecularly. The mixture CSMT model is then utilized to predict mixture CMCs, and we find that the predicted CMCs compare very well with the experimental CMCs for various binary mixtures of linear surfactants. This paper lays the foundation for the mixture CSMT framework, which can be used to predict the micellization properties of mixtures of surfactants that possess a complex chemical architecture, and are therefore not amenable to traditional molecular-thermodynamic modeling.

  3. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  4. Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution.

    PubMed

    Han, Yuchun; Wang, Yilin

    2011-02-14

    Gemini surfactants are constructed by two hydrophobic chains and two polar/ionic head groups covalently connected by a spacer group at the level of the head groups. Gemini surfactants possess unique structural variations and display special aggregate transitions. Their aggregation ability and aggregate structures can be more effectively adjusted through changing their molecular structures compared with the corresponding monomeric surfactants. Moreover, gemini surfactants exhibit special and useful properties while interacting with polymers and biomacromolecules. Their strong self-aggregation ability can be applied to effectively influence the aggregation behavior of both polymers and biomacromolecules. This short review is focused on the performances of gemini surfactants in aqueous solutions investigated in the last few years, and summarizes the effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solution as well as the interaction of gemini surfactants with polymers and biomacromolecules respectively.

  5. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.

  6. Tuneable Rheological Properties of Fluorinated Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Chacon Orellana, Laura Andreina; Riechers, Birte; Caen, Ouriel; Baret, Jean-Christophe

    Pickering emulsions are an appealing approach to stabilize liquid-liquid dispersions without surfactants. Recently, amphiphilic silica nanoparticles have been proposed as an alternative to surfactants for droplet microfluidics applications, where aqueous drops are stabilized in fluorinated oils. This system, proved to be effective in preventing the leakage of resorufin, a model dye that was known to leak in surfactant-stabilized drops. The overall capabilities of droplet-based microfluidics technology is highly dependent on the dynamic properties of droplets, interfaces and emulsions. Therefore, fluorinated pickering emulsions dynamic properties need to be characterized, understood and controlled to be used as a substitute of already broadly studied emulsions for droplet microfluidics applications. In this study, fluorinated pickering emulsions have been found to behave as a Herschel Bulkley fluid, representing a challenge for common microfluidic operations as re-injection and sorting of droplets. We found that this behavior is controlled by the interaction between the interfacial properties of the particle-laden interface and the bulk properties of the two phases

  7. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram.

    PubMed

    Syed, Haroon K; Peh, Kok K

    2014-01-01

    The objective of this study was to select appropriate surfactants or blends of surfactants and oil to study the ternary phase diagram behavior and identify various phases obtained from the oil and surfactant/surfactant mixture combinations of different HLB. The phases include conventional emulsion, gel/viscous and transparent/translucent microemulsion. Pseudoternary phase diagrams of water, oil and S/Smix of various HLB values range of 9.65-15 were constructed by using water titration method at room temperature. Visual analysis, conductivity and dye dilution test (methylene blue) were performed after each addition and mixing of water, to identify phases as microemulsion, o/w or w/o emulsion (turbid/milky) and transparent gel/turbid viscous. High gel or viscous area was obtained with Tween 80 and surfactant mixture of Tween 80 and Span 80 with all oils. The results indicated that non-ionic surfactants and PG of different HLB values exhibited different pseudoternary phase diagram characteristics but no microemulsions originated from mineral and olive oils. The w/o emulsion occupied a large area in the ternary phase triangle when HLB value of the surfactant/Smix decreased. The o/w emulsion area was large with increasing HLB value of surfactant/Smix.

  8. Alkyl-imidazolium glycosides: non-ionic-cationic hybrid surfactants from renewable resources.

    PubMed

    Salman, Abbas Abdulameer; Tabandeh, Mojtaba; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali; Ali, Hapipah Mohd

    2015-08-14

    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.

  9. Emulsion of aqueous-based nonspherical droplets in aqueous solutions by single-chain surfactants: templated assembly by nonamphiphilic lyotropic liquid crystals in water.

    PubMed

    Varghese, Nisha; Shetye, Gauri S; Bandyopadhyay, Debjyoti; Gobalasingham, Nemal; Seo, JinAm; Wang, Jo-Han; Theiler, Barbara; Luk, Yan-Yeung

    2012-07-24

    Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ∼9 μm and a short axis of ∼3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.

  10. The effect of surfactants on the dissolution behavior of amorphous formulations.

    PubMed

    Mah, Pei T; Peltonen, Leena; Novakovic, Dunja; Rades, Thomas; Strachan, Clare J; Laaksonen, Timo

    2016-06-01

    The optimal design of oral amorphous formulations benefits from the use of excipients to maintain drug supersaturation and thus ensures adequate absorption during intestinal transit. The use of surfactants for the maintenance of supersaturation in amorphous formulations has not been investigated in detail. The main aim of this study was to investigate the effect of surfactant on the dissolution behavior of neat amorphous drug and binary polymer based solid dispersion. Indomethacin was used as the model drug and the surfactants studied were polysorbate 80 and poloxamer 407. The presence of surfactants (alone or in combination with polymers) in the buffer was detrimental to the dissolution of neat amorphous indomethacin, suggesting that the surfactants promoted the crystallization of neat amorphous indomethacin. In contrast, the presence of surfactants (0.01% w/v) in the buffer resulted in a significant improvement on the dissolution behavior of binary polymer based solid dispersion. Incorporating the surfactant to the formulation to form ternary solid dispersion adversely affected the dissolution behavior. In conclusion, the use of surfactants (as wetting or solubilization agents) in dissolution studies of neat amorphous drugs requires prudent consideration. The design of amorphous formulations with optimal dissolution performance requires the appropriate selection of a combination of excipients and consideration of the method of introducing the excipients.

  11. Effects of foliar surfactants on host plant selection behavior of Liriomyza huidobrensis (Diptera: Agromyzidae).

    PubMed

    McKee, Fraser R; Levac, Joshua; Hallett, Rebecca H

    2009-10-01

    The pea leafminer, Liriomyza huidobrensis (Diptera: Agromyzidae), is a highly polyphagous insect pest of global distribution. L. huidobrensis feeds and lays its eggs on leaf tissue and reduces crop marketability because of stippling and mining damage. In field insecticide trials, it was observed that stippling was reduced on plants treated with surfactant alone. The objectives of this study were to determine the effect of surfactants on host selection behaviors of female L. huidobrensis and to assess the phytotoxicity of two common surfactants to test plants. The application of the surfactant Sylgard 309 to celery (Apium graveolens) caused a significant reduction in stippling rates. The application of Agral 90 to cucumber leaves (Cucumis sativus) resulted in changes to the amount of effort invested by females in specific host plant selection behaviors, as well as causing a significant reduction in the amount of stippling damage. The recommended dose of Sylgard 309 does not induce phytotoxicity on celery over a range of age classes nor does Agral 90 cause a phytotoxic effect in 35-d-old cucumber. Thus, reductions in observed stippling and changes to host selection behaviors were caused by an antixenotic effect of the surfactant on L. huidobrensis rather than a toxic effect of the surfactant on the plant. The presence of surfactant on an otherwise acceptable host plant seems to have masked host plant cues and prevented host plant recognition. Results indicate that surfactants may be used to reduce leafminer damage to vegetable crops, potentially reducing the use of insecticides.

  12. PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS

    EPA Science Inventory

    Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

  13. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters

    PubMed Central

    Mahdi, Elrashid Saleh; Sakeena, Mohamed HF; Abdulkarim, Muthanna F; Abdullah, Ghassan Z; Sattar, Munavvar Abdul; Noor, Azmin Mohd

    2011-01-01

    Background: The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters. Methods: Nonionic surfactant blends of Tween® and Tween®/Span® series were screened based on their solubilization capacity with water for palm kernel oil esters. Tween® 80 and five blends of Tween® 80/Span® 80 and Tween® 80/Span® 85 in the hydrophilic-lipophilic balance (HLB) value range of 10.7–14.0 were selected to study the phase diagram behavior of palm kernel oil esters using the water titration method at room temperature. Results: High solubilization capacity was obtained by Tween® 80 compared with other surfactants of Tween® series. High HLB blends of Tween® 80/Span® 85 and Tween® 80/Span® 80 at HLB 13.7 and 13.9, respectively, have better solubilization capacity compared with the lower HLB values of Tween® 80/Span® 80. All the selected blends of surfactants were formed as water-in-oil microemulsions, and other dispersion systems varied in size and geometrical layout in the triangles. The high solubilization capacity and larger areas of the water-in-oil microemulsion systems were due to the structural similarity between the lipophilic tail of Tween® 80 and the oleyl group of the palm kernel oil esters. Conclusion: This study suggests that the phase diagram behavior of palm kernel oil esters, water, and nonionic surfactants is not only affected by the HLB value, but also by the structural similarity between palm kernel oil esters and the surfactant used. The information gathered in this study is useful for researchers and manufacturers interested in using palm kernel oil esters in pharmaceutical and cosmetic preparation. The use of palm kernel oil esters can improve drug delivery and reduce the cost of cosmetics. PMID:21792294

  14. Phase behavior, morphology, and polymorphism of surfactant systems

    NASA Astrophysics Data System (ADS)

    Liang, Jingmei

    Surfactants are amphiphilic molecules. They spontaneously form various microstructures in water to accommodate the hydrophilic-hydrophobic interactions. Soaps are the oldest kind of man-made surfactants that are commonly used as washing and cleaning agents. In spite of the long history of soap research, many aspects of soaps in nonaqueous solvents remain unclear. Unlike the aqueous soap systems, which have been studied extensively, investigations of nonaqueous, polar soap systems are rather limited. Motivated by the applications of nonaqueous, polar solvents in soap products, we investigated sodium stearate (NaSt)/water/propylene glycol (PG) systems. The effects of gradual substitution of PG for H 2O on the phase behavior, morphology and crystalline structure of NaSt systems were studied by a combination of characterization techniques. The techniques include direct visual observation, differential scanning calorimetry, wide-angle and small angle x-ray scattering, light and cryo-electron microscopy, and solid-state nuclear magnetic resonance. Anhydrous NaSt forms layered crystalline structures at 25°C. With increasing temperature, a distorted hexagonal phase and a hexagonal liquid crystalline phase form. Compared with aqueous soap systems, the regions of liquid crystalline phases in the phase diagrams are reduced as PG replaces or gradually substitutes for H2O. Fibrous and plate-like NaSt crystallites were investigated in the NaSt/PG/H 2O system containing 1-5 wt% NaSt. Despite of the morphological difference, NaSt fibers and platelets share the same layered crystalline structure at the molecular level. NaSt fibers consist of stacked thin ribbons of NaSt bilayers. NaSt platelets exhibit large basal planes {001} surrounded by other faster-growing lateral planes. Two lamellar crystalline structures, alpha-NaSt and beta-NaSt, which formed in the NaSt/PG/H2O system with 10 wt% NaSt, were characterized on the atomic, molecular and microscopic levels. In a PG

  15. Topical delivery of lipophilic drugs from o/w Pickering emulsions.

    PubMed

    Frelichowska, Justyna; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Chevalier, Yves

    2009-04-17

    Surfactant-free emulsions stabilized by solid particles (Pickering emulsions) have been evaluated in the terms of skin absorption of lipophilic drugs. The behavior of three formulations: a surfactant-based emulsion, a Pickering emulsion stabilized by silica particles and a solution in triglyceride oil, were compared in order to assess the effect of the surface coating of Pickering emulsions as new dosage forms for topical application. Such comparative investigation was performed in vitro on excised pig skin in Franz diffusion cells with all-trans retinol as model lipophilic drug. Surfactant-based (classical, CE) and Pickering (PE) oil-in-water emulsions containing retinol were prepared with the same chemical composition (except the stabilizing agent: surfactant or silica particles), the same droplet size and the same viscosity. No permeation through the skin sample was observed after 24h exposure because of the high lipophilic character of retinol. Penetration of retinol was 5-fold larger for both CE and PE than for the solution in triglyceride. The distribution of retinol inside the skin layers depended significantly on the emulsions type: the classical emulsion allowed easy diffusion through the stratum corneum, so that large amounts reached the viable epidermis and dermis. Conversely, high storage of retinol inside the stratum corneum was favored by the Pickering emulsion. The retinol content in stratum corneum evaluated by skin stripping, demonstrated the increased retinol accumulation from PE. Therefore Pickering emulsions are new drug penetration vehicles with specific behavior; they are well-suited either for targeting the stratum corneum or aimed at slow release of drug from stratum corneum used as a reservoir to the deeper layers of skin.

  16. Synthesis and Crystallization Behavior of Surfactants with Hexamolybdate as the Polar Headgroup

    DOE PAGES

    Zhu, Li; Chen, Kun; Hao, Jian; ...

    2015-06-12

    For this paper, alkyl chains with different lengths were covalently grafted onto the surface of hexamolybdate through the postfunctionalization protocol of polyoxometalates. The obtained compounds represent typical structures of the so-called giant surfactants. Unexpectedly, those surfactants with hexamolybdates as polar headgroups are able to crystallize, while single-crystal X-ray diffraction reveals that the crystallization behavior of the surfactants is highly dependent on the length of the alkyl chains. For surfactants with comparatively short alkyl chains (C6 and C10), the alkyl chains prefer to interact with tetrabutylammonium, the countercation of hexamolybdate. However, the alkyl chains tend to pack with each other tomore » form a domain of alkyl chains in the surfactant with a longer alkyl chain (C18). Finally, the possible mechanism is that a long alkyl chain cannot be fully compatible with the short chain (C4) of tetrabutylammonium.« less

  17. Synthesis and Crystallization Behavior of Surfactants with Hexamolybdate as the Polar Headgroup

    SciTech Connect

    Zhu, Li; Chen, Kun; Hao, Jian; Wei, Zheyu; Zhang, Haocheng; Yin, Panchao; Wei, Yongge

    2015-06-12

    For this paper, alkyl chains with different lengths were covalently grafted onto the surface of hexamolybdate through the postfunctionalization protocol of polyoxometalates. The obtained compounds represent typical structures of the so-called giant surfactants. Unexpectedly, those surfactants with hexamolybdates as polar headgroups are able to crystallize, while single-crystal X-ray diffraction reveals that the crystallization behavior of the surfactants is highly dependent on the length of the alkyl chains. For surfactants with comparatively short alkyl chains (C6 and C10), the alkyl chains prefer to interact with tetrabutylammonium, the countercation of hexamolybdate. However, the alkyl chains tend to pack with each other to form a domain of alkyl chains in the surfactant with a longer alkyl chain (C18). Finally, the possible mechanism is that a long alkyl chain cannot be fully compatible with the short chain (C4) of tetrabutylammonium.

  18. The effects of oil, dispersant, and emulsions on the survival and behavior of an estuarine teleost and an intertidal amphipod

    SciTech Connect

    Butler, R.G.; Trivelpiece, W.; Miller, D.S.

    1982-04-01

    Killfish (Fundulus heteroclitus) and amphipods (Gammarus oceanicus) were exposed seperately to either a No. 2 fuel oil, AP dispersant, or emulsions of the two in a static system. Both species exhibited a concentration-dependent response to all three treatments. However, emulsification of oil with dispersant clearly increased its lethal effect on killfish survival, but did not cause a differential change in behavioral parameters such as schooling, chafing, substrate nipping, activity, or depth preference. Killfish exposed to conditions of thermal or osmotic stress were more sensitive to the lethal effects of emulsions. In contrast, emulsions caused quantitative changes in amphipod activity and precopulatory behavior, but did not increase mortality beyond that caused by exposure to oil alone. Changes in salinity had little effect on amphipod sensitivity to emulsions, but decreasing temperature did result in increased survival.

  19. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes.

    PubMed

    Jardak, K; Drogui, P; Daghrir, R

    2016-02-01

    Surfactants belong to a group of chemicals that are well known for their cleaning properties. Their excessive use as ingredients in care products (e.g., shampoos, body wash) and in household cleaning products (e.g., dishwashing detergents, laundry detergents, hard-surface cleaners) has led to the discharge of highly contaminated wastewaters in aquatic and terrestrial environment. Once reached in the different environmental compartments (rivers, lakes, soils, and sediments), surfactants can undergo aerobic or anaerobic degradation. The most studied surfactants so far are linear alkylbenzene sulfonate (LAS), quaternary ammonium compounds (QACs), alkylphenol ethoxylate (APEOs), and alcohol ethoxylate (AEOs). Concentrations of surfactants in wastewaters can range between few micrograms to hundreds of milligrams in some cases, while it reaches several grams in sludge used for soil amendments in agricultural areas. Above the legislation standards, surfactants can be toxic to aquatic and terrestrial organisms which make treatment processes necessary before their discharge into the environment. Given this fact, biological and chemical processes should be considered for better surfactants removal. In this review, we investigate several issues with regard to: (1) the toxicity of surfactants in the environment, (2) their behavior in different ecological systems, (3) and the different treatment processes used in wastewater treatment plants in order to reduce the effects of surfactants on living organisms.

  20. [On bitumen emulsions in water].

    PubMed

    Rivas, Hercilio; Gutierrez, Xiomara; Silva, Felix; Chirinos, Manuel

    2003-01-01

    The most important factors, controlling the process of emulsification of highly viscous hydrocarbons in water, which are responsible for keeping the stability and other properties of these systems, are discused in this article. The effect of non-ionic surfactants, such as nonil phenol ethoxilated compounds on the interfacial behavior of bitumen/water systems is analyzed. The effect of the natural surfactants in presence or in absence of electrolytes is also analyzed. The procedures followed in order to obtain the optimal conditions of formulation and formation of bitumen in water emulsions, are discussed and the effect of some parameters on the mean droplet diameter and distribution are also considered. It was found that keeping constant mixing speed and time of mixing, the mean droplet diameter decreases as the bitumen concentration increases. Emulsion stability, which can be monitored by following the changes in mean droplet diameters and viscosity as a function of the storage time, is deeply affected by the type and concentration of surfactant.

  1. Effects of surfactant on bubble hydrodynamic behavior under flotation-related conditions in wastewater.

    PubMed

    Li, Yanpeng; Zhu, Tingting; Liu, Yanyan; Tian, Ye; Wang, Huanran

    2012-01-01

    Bubble behavior is fundamental to the performance of froth flotation operations used in wastewater treatment processes. To fully understand and characterize bubble behavior under flotation-related conditions in wastewater, the high-speed photographic method has been employed to examine the motion of single bubbles and size distribution of bubble swarms with intermediate sizes ranging from 1 to 4 mm in the presence of surfactants in a laboratory scale flotation column. Both distilled water and synthetic municipal wastewater have been used to make solutions as well as two types of common surfactants. The instantaneous bubble motion has been recorded by a high speed camera. Subsequently, bubble trajectory, dimensions, velocity and distribution have been determined from the recorded frames using the image analysis software. The experimental results show that the addition of surfactant into wastewater has similar effects on bubble hydrodynamic behavior as in pure water (e.g., improving trajectory stabilization, dampening bubble deformation, slowing down terminal velocity, reducing bubble size and increasing the specific surface area of bubble swarm) due to the Marangoni effect. However, it is interesting to note that surfactant effects on single bubble hydrodynamics in wastewater are slightly stronger than those in pure water while surfactant effects on size parameters of bubble swarms in wastewater are significantly stronger than those in pure water. This finding suggests that besides surfactant, inorganic salts present in synthetic wastewater have an important influence on bubble dispersion.

  2. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.

    PubMed

    Li, Dongcui; Kelkar, Manish S; Wagner, Norman J

    2012-07-17

    Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures.

  3. Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment.

    PubMed

    Sefiane, Khellil

    2004-04-15

    The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.

  4. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    concentration and micellization of the surfactant. At the same time, the silica solidifies around the surfactant structures, forming equally sized mesoporous particles. The procedure can be tuned to produce well-separated particles or alternatively particles that are linked together. The latter allows us to create 2D or 3D structures with hierarchical porosity. Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. In this work, we show that hierarchically bimodal nanoporous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes (single nanometers and tens of nanometers). We also demonstrate the fabrication of carbon and carbon/platinum replicas of the silica microspheres using a "lost-wax" approach. Such particles have great potential for the design of electrocatalysts for fuel cells, chromatography separations, and other applications. It was determined that slight variations in microemulsion mixture components (electrolyte concentration, wt% of surfactants, oil to sol ratio, etc.) produces strikingly different pore morphologies and particle surface areas. Control over the size and structure of the smaller micelle-templated pores was made possible by varying the length of the hydrocarbon block within the trimethyl ammonium bromide surfactant and characterized using X-ray diffraction. The effect of emulsion aging was studied by synthesizing particles at progressive time levels from a sample

  5. Phase Behavior and Phase Structure of Protein-Surfactant-Water Systems.

    PubMed

    Morén; Khan

    1999-10-15

    Phase behavior of oppositely charged ovalbumin-DOTAC and BSA-DOTAC, and similarly charged ovalbumin-SDS, BSA-SDS, lysozyme-DOTAC, and BLG-SDS systems within the concentration range of 20 wt% of both protein and surfactant are examined in water. Aqueous solutions of ovalbumin yield, in succession, precipitation, gel, and solution with increased addition of the surfactant dodecyltrimethylammonium chloride (DOTAC). The stability range of each region is determined. Both isotropic and anisotropic gels are detected. Solutions of bovine serum albumin (BSA) form only a solution phase with oppositely charged DOTAC. One solution phase is also obtained with all similarly charged protein-surfactant systems except the BLG-SDS-water system, which produces a gel phase in addition to a large solution phase. (2)H NMR longitudinal (R(1)) and transverse (R(2)) relaxation rates are determined in solution and gel by following the behavior of selectively deuterated surfactant at the alpha-methylene group next to the surfactant head group for the oppositely charged systems ovalbumin-DOTAC and BSA-DOTAC. Large R(2)-values proved the existence of large protein-surfactant aggregates in both systems. Copyright 1999 Academic Press.

  6. Arsenic retention and transport behavior in the presence of typical anionic and nonionic surfactants.

    PubMed

    Liang, Chuan; Wang, Xianliang; Peng, Xianjia

    2016-01-01

    The massive production and wide use of surfactants have resulted in a large amount of surfactant residuals being discharged into the environment, which could have an impact on arsenic behavior. In the present study, the influence of the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and nonionic surfactant polyethylene glycol octylphenyl ether (Triton X-100) on arsenic behavior was investigated in batch and column tests. The presence of SDBS and Triton X-100 reduced arsenic retention onto ferrihydrite (FH), enhanced arsenic transport through FH coated sand (FH-sand) columns and promoted arsenic release from the FH surface. With coexisting surfactants in solution, the equilibrium adsorbed amount of arsenic on FH decreased by up to 29.7% and the adsorption rate decreased by up to 52.3%. Pre-coating with surfactants caused a decrease in the adsorbed amount and adsorption rate of arsenic by up to 15.1% and 58.3%, respectively. Because of the adsorption attenuation caused by surfactants, breakthrough of As(V) and As(III) with SDBS in columns packed with FH-sand was 23.8% and 14.3% faster than that in those without SDBS, respectively. In columns packed with SDBS-coated FH-sand, transport of arsenic was enhanced to a greater extent. Breakthrough of As(V) and As(III) was 52.4% and 43.8% faster and the cumulative retention amount was 44.5% and 57.3% less than that in pure FH-sand column systems, respectively. Mobilization of arsenic by surfactants increased with the increase of the initial adsorbed amount of arsenic. The cumulative release amount of As(V) and As(III) from the packed column reached 10.8% and 36.0%, respectively.

  7. Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Mandal, Ajay

    2016-05-01

    Surfactant flooding is one of the most promising method of enhanced oil recovery (EOR) used after the conventional water flooding. The addition of alkali improves the performance of surfactant flooding due to synergistic effect between alkali and surfactant on reduction of interfacial tension (IFT), wettability alteration and emulsification. In the present study the interfacial tension, contact angle, emulsification and emulsion properties of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polysorbate 80 (Tween 80) surfactants against crude oil have been investigated in presence of sodium chloride (NaCl) and alkalis viz. sodium hydroxide (NaOH), sodium carbonate (Na2CO3), ammonium hydroxide (NH4OH), sodium metaborate (SMB) and diethanolamine (DEA). All three surfactants significantly reduce the IFT values, which are further reduced to ultra-low value (∼10-4 mN/m) by addition of alkalis and salt. It has been found experimentally that alkali-surfactant systems change the wettability of an intermediate-wet quartz rock to water-wet. Emulsification of crude oil by surfactant and alkali has also been investigated in terms of the phase volume and stability of emulsion. A comparative FTIR analysis of crude oil and different emulsions were performed to investigate the interactions between crude oil and displacing water in presence of surfactant and alkali.

  8. Delamination behavior of silicate layers by adsorption of cationic surfactants.

    PubMed

    Lee, Seung Yeop; Kim, Soo Jin

    2002-04-15

    Smectite that has reacted for 48 h with hexadecyltrimethylammonium (HDTMA) cations equivalent to 0.01-3.0 times the cation exchange capacity (CEC) converts to HDTMA-smectite. The microstructure of this organoclay is observed using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). When Na cations in the interlayer of clay are exchanged with HDTMA ions, the changes in internal and external surface configuration are augmented by the intercalation of organic surfactants, showing a heterogeneous increase of interlayer spacings. As HDTMA loading increases, the chance of delaminated layers being developed increases locally in the low-charge interlayer regions by the sufficient adsorption of organic surfactants beyond the CEC due to the tendency of alkyl chain interaction.

  9. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    PubMed Central

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-01-01

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309

  10. UHPH-processed O/W submicron emulsions stabilised with a lipid-based surfactant: physicochemical characteristics and behaviour on in vitro TC7-cell monolayers and ex vivo pig's ear skin.

    PubMed

    Benzaria, Amal; Gràcia-Julià, Alvar; Picart-Palmade, Laëtitia; Hue, Pauline; Chevalier-Lucia, Dominique; Marti-Mestres, Gilberte; Hodor, Nadège; Dumay, Eliane

    2014-04-01

    Submicron O/W emulsions formulated with sesame oil plus a lipid-base surfactant, and with or without retinyl acetate (RAC) as a model hydrophobic biomolecule, were prepared by single-pass homogenisation at ≥ 200 MPa (UHPH) and an initial fluid temperature (Tin) of 24°C. These emulsions were characterised by a monomodal distribution (peak maximum at 260 nm) and a 2-year potential physical stability at ambient temperature. Submicron droplets were investigated in term of (i) physicochemical characteristics (size distribution curves; ζ-potential value), and (ii) impact on TC7-cell monolayers (MTT-assay and cell LDH-leakage). Submicron droplets ± RAC did not affect or increased significantly (p=0.05) TC7-cell metabolic activity after 4-24h of exposure indicating absence of cellular impairment, except when high amounts of droplets were deposed on TC7-cells. Indeed, the lipid-based surfactant deposed alone on TC7-cells at high concentration, induced some significant (p=0.05) cell LDH-leakage, and therefore cell-membrane damage. Cellular uptake experiments revealed a significant (p=0.05) time-dependent internalisation of RAC from submicron droplets, and cellular transformation of RAC into retinol. The turnover of RAC into retinol and therefore RAC bioaccessibility appeared faster for RAC-micelles of similar size-range and prepared at atmospheric pressure with polysorbate 80, than for submicron O/W emulsions. Permeation experiments using pig's ear skin mounted on Franz-type diffusion cells, revealed RAC in dermis-epidermis, in significantly (p=0.05) higher amounts for submicron than coarse pre-emulsions. However, RAC amounts remained low for both emulsion-types and RAC was not detected in the receptor medium of Franz-type diffusion cells.

  11. Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation.

    PubMed

    Poorgholami-Bejarpasi, Niaz; Hashemianzadeh, Majid; Mousavi-Khoshdel, S Morteza; Sohrabi, Beheshteh

    2010-09-07

    We have investigated micellization in systems containing two surfactant molecules with the same structure using a lattice Monte Carlo simulation method. For the binary systems containing two surfactants, we have varied the head-head interactions or tail-tail repulsions in order to mimic the nonideal behavior of mixed surfactant systems and to manipulate the net interactions between surfactant molecules. The simulation results indicate that interactions between headgroups or tailgroups have an effect on thermodynamic properties such as the mixed critical micelle concentration (cmc), distribution of aggregates, shape of the aggregates, and composition of the micelles formed. Moreover, we have compared the simulation results with estimates based on regular solution theory, a mean-field theory, to determine the applicability of this theory to the nonideal mixed surfactant systems. We have found that the simulation results agree reasonable well with regular solution theory for the systems with attractions between headgroups and repulsions between tailgroups. However, the large discrepancies observed for the systems with head-head repulsions could be attributed to the disregarding of the correlation effect on the interaction among surfactant molecules and the nonrandom mixing effect in the theory.

  12. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior.

    PubMed

    Colomer, Aurora; Pinazo, Aurora; García, Maria Teresa; Mitjans, Montserrat; Vinardell, M Pilar; Infante, Maria Rosa; Martínez, Verónica; Pérez, Lourdes

    2012-04-10

    The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna . All surfactants yielded EC(50) values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO(2) headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as "readily biodegradable compounds".

  13. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems.

    PubMed

    Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji

    2009-01-01

    We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system.

  14. Electrodynamic behavior and interface instability of double emulsion droplets under high electric field

    NASA Astrophysics Data System (ADS)

    Abbasi, Muhammad Salman; Song, Ryungeun; Kim, Jaehoon; Lee, Jinkee

    2016-11-01

    In this paper, numerical solution of electro-dynamic behavior and interface instability of double emulsion droplet is presented. Level set method and leaky dielectric model coupled with Navier-Stokes equation are used to solve the electrodynamic problem. The method is validated against the theoretical analysis and the simulation results of the other researchers. Double emulsion droplet with inner droplet (core) and outer droplet (shell) phases immersed in continuous phase is subjected to high electric field. Shell/continuous and core/shell interfaces of the droplet undergo prolate-oblate or oblate-prolate deformation depending on the extent of the penetration of electric potential and sense of charge distribution at the interfaces. The deformation of the shell deviates from theory at larger volume fraction of core for oblate-prolate case whereas it follows theory for prolate-oblate case. The interfaces showing oblate-prolate deformation split away at the poles whereas, for prolate-oblate, they split at the equator. The re-union of the two split parts under high electric field results with production of daughter droplet at the core. The large decrease in critical electric field for oblate-prolate case shows their less interface stability at larger volume fraction of core. When the core is eccentric, the electric field drives it towards the shell center or to the shell/continuous interface depending on electrical parameters.

  15. Role of poly(ethylene glycol) in surfactant-free emulsion polymerization of styrene and methyl methacrylate.

    PubMed

    Shi, Yiming; Shan, Guorong; Shang, Yue

    2013-03-05

    Through zeta potential and surface tension measurements and a series of polymerization experiments, the role of poly(ethylene glycol) (PEG) in the process of surfactant-free polymerization of styrene (St)/methyl methacrylate (MMA) has been investigated experimentally. Nanoscale and stable copolymer particles were formed after an abnormal process, in which the nucleation and growth of particles was different from that in previously proposed mechanisms. It has been observed that PEG can exist in both the monomer and the aqueous phases at high temperature. PEG in the aqueous phase could form copolymer particles with a loose structure, making them prone to enter the monomer phase. Entry of these copolymer particles into the monomer phase would introduce excess PEG. From the ternary phase diagram, a solubility curve could be delineated in the ternary system of PEG/monomer/copolymer. The system used the ternary solubility property to regenerate copolymer particles in the monomer phase, which maintained their morphology until the end of the polymerization. At the end, consumption of the monomer resulted in the volume contraction of the particles, and the surface potential increased. This increasing potential is a driving force to prevent particles from stacking, leading to the formation of nanoscale and stable particles.

  16. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.

    PubMed

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

    2009-08-04

    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.

  17. The physicochemical characterization and in vitro/in vivo evaluation of natural surfactants-based emulsions as vehicles for diclofenac diethylamine.

    PubMed

    Vucinić-Milanković, Nada; Savić, Snezana; Vuleta, Gordana; Vucinić, Slavica

    2007-03-01

    Two sugar-based emulsifiers, cetearyl alcohol & cetearyl glycoside and sorbitan stearate & sucrose cocoate, known as potential promoters of lamellar liquid crystals/gel phases, were investigated in order to formulate an optimal vehicle for amphiphilic drug - diclofenac diethylamine (DDA). Physico-chemical characterization and study of vehicle's physical stability were performed. Then, the in vitro DDA liberation profile, dependent on the mode of drug incorporation to the system, and the in vivo, short-term effects of chosen samples on skin parameters were examined. Droplets size distribution and rheological behavior indicated satisfying physical stability of both types of vehicles. Unexpectedly, the manner of DDA incorporation to the system had no significant influence on DDA release. In vivo study pointed to emulsion's favorable potential for skin hydration and barrier improvement, particularly in cetearyl glycoside-based vehicle.

  18. Water-in-oil emulsions stabilized by water-dispersible poly(N-isopropylacrylamide) microgels: understanding anti-Finkle behavior.

    PubMed

    Destribats, Mathieu; Lapeyre, Véronique; Sellier, Elisabeth; Leal-Calderon, Fernando; Schmitt, Véronique; Ravaine, Valérie

    2011-12-06

    Emulsions were prepared using poly(N-isopropylacrylamide) microgels as thermoresponsive stabilizers. The latter are well-known for their sensitivity to temperature: they are swollen by water below the so-called volume phase transition temperature (VPTT = 33 °C) and shrink when heated above it. Most of the studies reported in the literature reveal that the corresponding emulsions are of the oil-in-water type (O/W) and undergo fast destabilization upon warming above the VPTT. In the present study, whereas O/W emulsions were obtained with a wide panel of oils of variable polarity and were all thermoresponsive, water-in-oil (W/O) emulsions were found only in the presence of fatty alcohols and did not exhibit any thermal sensitivity. To understand the peculiar behavior of emulsions based on fatty alcohols, we investigated the organization of microgels at the oil-water interface and we studied the interactions of pNIPAM microgels with octanol. By combining several microscopy methods and by exploiting the limited coalescence process, we provided evidence that W/O emulsions are stabilized by multilayers of nondeformed microgels located inside the aqueous drops. Such behavior is in contradiction with the empirical Finkle rule stating that the continuous phase of the preferred emulsion is the one in which the stabilizer is preferentially dispersed. The study of microgels in nonemulsified binary water/octanol systems revealed that octanol diffused through the aqueous phase and was incorporated in the microgels. Thus, W/O emulsions were stabilized by microgels whose properties were substantially different from the native ones. In particular, after octanol uptake, they were no longer thermoresponsive, which explained the loss of responsiveness of the corresponding W/O emulsions. Finally, we showed that the incorporation of octanol modified the interfacial properties of the microgels: the higher the octanol uptake before emulsification, the lower the amount of particles in

  19. Pivotal role of anionic phospholipids in determining dynamic behavior of lung surfactant.

    PubMed

    Ingenito, E P; Mora, R; Mark, L

    2000-03-01

    Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are anionic phospholipids (APLs) present in lung surfactant of virtually all species studied, although their specific contribution to function is unknown. This study examines how APLs influence surfactant monolayer stability and adsorption under static and dynamic conditions. Interfacial properties of surfactants reconstituted with native phospholipids (PL), and phospholipids devoid of anionic species (DAPL), were characterized by pulsating bubble surfactometry. Measurements were made for PL and DAPL alone; with 3% surfactant proteins B and C (SP-B/C); with SP-B/C and 5% surfactant protein A (SP-A); and with SP-B/C, SP-A, and 8% neutral lipids (NL). Equilibrium and dynamic properties of PL and DAPL were similar. However, whereas (DAPL + SP-B/C) and (DAPL + SP-B/C + SP-A) mixtures were similar to corresponding PL mixtures with respect to gamma(equil), they displayed markedly different dynamic behavior. In particular, the degree of film compression required to reach gamma(min) was significantly increased in DAPL mixtures (80 to 90% area reduction) compared with PL, although both samples reached gamma(min) < 3.0 dynes/cm. The addition of NL to (DAPL + SP-B/C + SP-A) produced an increase in gamma(min) to 15 to 20 dynes/cm during dynamic compression, whereas NL had no significant impact on the behavior of (PL + SP-B/C + SP-A). Purified PG (5% wt/wt) restored nearly normal dynamic properties to (DAPL + SP-B/C + SP-A + NL), whereas phosphatidylcholine (PC) (5% wt/wt) had no beneficial effect. These results suggest that APLs play a critical role in promoting surface film stability during dynamic compression through interactions with nonlipid surfactant components, and prevent destabilization of the surface film by cholesterol and other NL.

  20. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system.

    PubMed

    Wakisaka, Satoshi; Nishimura, Takahisa; Gohtani, Shoichi

    2015-01-01

    We investigated how phase behavior changes by replacing water with glycerol in water/mixture of polyglycerol polyricinoleate (PGPR) and hexaglycerol monolaurate (HGML) /vegetable oil system, and studied the effect of glycerol on o/w nano-emulsion formation using an isothermal low-energy method. In the phase behavior study, the liquid crystalline phase (Lc) + the sponge phase (L3) expanded toward lower surfactant concentration when water was replaced with glycerol in a system containing surfactant HLP (a mixture of PGPR and HGML). O/W nano-emulsions were formed by emulsification of samples in a region of Lc + L3. In the glycerol/surfactant HLP/vegetable oil system, replacing water with glycerol was responsible for the expansion of a region containing Lc + L3 toward lower surfactant concentration, and as a result, in the glycerol/surfactant HLP/vegetable oil system, the region where o/w nano-emulsions or o/w emulsions could be prepared using an isothermal low-energy emulsification method was wide, and the droplet diameter of the prepared o/w emulsions was also smaller than that in the water/surfactant HLP/vegetable oil system. Therefore, glycerol was confirmed to facilitate the preparation of nano-emulsions from a system of surfactant HLP. Moreover, in this study, we could prepare o/w nano-emulsions with a simple one-step addition of water at room temperature without using a stirrer. Thus, the present technique is highly valuable for applications in several industries.

  1. Effect of Water Content on the Behavior of Surfactants and Hydrophobic Organic Compounds in the Immobilization Zone for Contaminants Retardation

    SciTech Connect

    Park, In-Sun; Park, Jae-Woo; Cho, Jong Soo; Hwang, Inseong

    2003-03-26

    An immobilization zone can be constructed by modifying soils in the vadose zone with surfactants and, thus, can be used to promote retardation of organic contaminants in the subsurface. Column experiments were conducted to investigate the behavior of surfactants and organic contaminants in unsaturated and saturated conditions with different water contents (25%, 50%, 75%, 100%). The transport and sorption behavior of two surfactants tested (monoalkylated disulfonated diphenyl oxide, dialkylated disulfonated diphenyl oxide) in the columns containing an aluminum oxide were similar under the conditions with different water contents. However, transport of a model organic compound (naphthalene) was retarded as the water content decreased by enhanced partitioning of the compound into the surfactants that were sorbed on the aluminum oxide. This suggests that the immobilization method could well be applied to vadose zone. A transport model, CXTFIT 2.1, was also used to evaluate the behavior of the surfactants and naphthalene.

  2. Surfactant behavior of "ellipsoidal" dicarbollide anions: a molecular dynamics study.

    PubMed

    Chevrot, G; Schurhammer, R; Wipff, G

    2006-05-18

    We report a molecular dynamics study of cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)X(3))(2)Co](-) (XCD(-)) commonly used in liquid-liquid extraction (X = H, Me, Cl, or Br), showing that these anions, although lacking the amphiphilic topology, behave as anionic surfactants. In pure water, they display "hydrophobic attractions", leading to the formation of aggregates of different sizes and shapes depending on the counterions. When simulated at a water/"oil" interface, the different anions (HCD(-), MeCD(-), CCD(-), and BrCD(-)) are found to be surface active. As a result, the simulated M(n+) counterions (M(n+) = Na(+), K(+), Cs(+), H(3)O(+), UO(2)(2+), Eu(3+)) concentrate on the aqueous side of the interface, forming a "double layer" whose characteristics are modulated by the hydrophobic character of the anion and by M(n+). The highly hydrophilic Eu(3+) or UO(2)(2+) cations that are generally "repelled" by aqueous interfaces are attracted by dicarbollides near the interface, which is crucial as far as the mechanism of assisted cation extraction to the oil phase is concerned. These cations interact with interfacial XCD(-) in their fully hydrated Eu(H(2)O)(9)(3+) and UO(2)(H(2)O)(5)(2+) forms, whereas the less hydrophilic monocharged cations display intimate contacts via their X substituents. The results obtained with the TIP3P and OPLS models for the solvents are confirmed with other water models (TIP5P or a polarizable 4P-Pol water) and with more polar "oil" models. The importance of interfacial phenomena is further demonstrated by simulations with a high oil-water ratio, leading to the formation of a micelle covered with CCD's. We suggest that the interfacial activity of dicarbollides and related hydrophobic anions is an important feature of synergism in liquid-liquid extraction of hard cations (e.g., for nuclear waste partitioning).

  3. Water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction for the determination of organochlorine pesticides in aqueous samples.

    PubMed

    Li, Yee; Chen, Pai-Shan; Huang, Shang-Da

    2013-07-26

    A novel sample preparation method, "water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction (WLSEME)", coupled with gas chromatography using an electron capture detector (GC-ECD) was developed for the analysis of the organochlorine pesticides (OCPs), heptachlor, α-endosulfan, 4,4-DDE, 2,4-DDD and endrin, in aqueous samples. A microsyringe is used to withdrew and discharge 10-12μL of the extraction solvent and 60-120μL of water as the dispersed solvent (containing 1mgL(-1), Tween 80) 4 times within 10s to form a cloudy emulsified solution in the syringe. This is then injected into an 8mL aqueous sample spiked with all above OCPs. Dodecyl acetate and 2-dodecanol were both selected as extraction solvents to optimize their conditions separately. The total extraction time was about 0.5min. Under optimum conditions, using dodecyl acetate (12μL) as extraction solvent, the linear range of the method was 10-1000ngL(-1) for all OCPs, and the the limits of detection (LODs) ranged from 1 to 5ngL(-1). The absolute recoveries and relative recoveries were from 20.8 to 43.5% and 83.2 to 109.8% for lake water, and 19.9-49.2% and 85.4-115.9% for seawater respectively. In the second method, 2-dodecanol as extraction solvent, the linear range was from 5 to 5000ngL(-1) for the target compounds, and the LODs were between 0.5 and 2ngL(-1). The absolute recoveries and relative recoveries ranged from 25.7 to 42.2% and 96.3-111.2% for sea water, and 22.4-41.9% and 90.7-107.9% for stream water. This could solve several problems, which commonly occur in ultrasound-assisted emulsification micro-extraction (USAEME), dispersive liquid-liquid micro-extraction (DLLME) and other assisted emulsification methods. These problems include analyte degradation, increased solubility of the extraction solvent and analyte, and high toxicity and large volume of the organic solvent used.

  4. Non-linear van't Hoff behavior in pulmonary surfactant model membranes.

    PubMed

    Vieira, Ernanni D; Basso, Luis G M; Costa-Filho, Antonio J

    2017-03-21

    Pulmonary surfactant exhibits phase coexistence over a wide range of surface pressure and temperature. Less is known about the effect of temperature on pulmonary surfactant models. Given the lack of studies on this issue, we used electron paramagnetic resonance (EPR) and nonlinear least-squares (NLLS) simulations to investigate the thermotropic phase behavior of the matrix that mimics the pulmonary surfactant lipid complex, i.e., the lipid mixture composed of dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-oleoyl phosphatidylcholine (POPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG). Irrespective of pH, the EPR spectra recorded from 5°C to 25°C in the DPPC/POPC/POPG (4:3:1) model membrane contain two spectral components corresponding to lipids in gel-like and fluid-like phases, indicating a coexistence of two domains in that range. The temperature dependence of the distribution of spin labels between the domains yielded nonlinear van't Hoff plots. The thermodynamic parameters evaluated were markedly different for DPPC and for the ternary DPPC/POPC/POPG (4:3:1) membranes and exhibited a dependence on chemical environment. While enthalpy and entropy changes for DPPC were always positive and presented a quadratic behavior with temperature, those of the ternary mixture were linearly dependent on temperature and changed from negative to positive values. Despite that, enthalpy-entropy compensation takes place in the two systems. The thermotropic process associated with the coexistence of the two domains is entropically-driven in DPPC and either entropically- or enthalpically-driven in the pulmonary surfactant membrane depending on the pH, ionic strength and temperature. The significance of these results to the structure and function of the pulmonary surfactant lipid matrix is discussed.

  5. Role of the surfactant structure in the behavior of hydrophobic ionic liquids within aqueous micellar solutions.

    PubMed

    Behera, Kamalakanta; Kumar, Vinod; Pandey, Siddharth

    2010-04-06

    The behavior of an ionic liquid (IL) within aqueous micellar solutions is governed by its unique property to act as both an electrolyte and a cosolvent. The influence of the surfactant structure on the properties of aqueous micellar solutions of zwitterionic SB-12, nonionic Brij-35 and TX-100, and anionic sodium dodecyl sulfate (SDS) in the presence of the "hydrophobic" IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) is assessed along with the possibility of forming oil-in-water microemulsions in which the IL acts as the "oil" phase. The solubility of [bmim][PF(6)] within aqueous micellar solutions increases with increasing surfactant concentration. In contrast to anionic SDS, the zwitterionic and nonionic surfactant solutions solubilize more [bmim][PF(6)] at higher concentrations and the average aggregate size remains almost unchanged. The formation of IL-in-water microemulsions when the concentration of [bmim][PF(6)] is above its aqueous solubility is suggested for nonionic Brij-35 and TX-100 aqueous surfactant solutions.

  6. Optimizing organoclay stabilized Pickering emulsions.

    PubMed

    Cui, Yannan; Threlfall, Mhairi; van Duijneveldt, Jeroen S

    2011-04-15

    Oil-in-water emulsions were prepared using montmorillonite clay platelets, pre-treated with quaternary amine surfactants. In previous work, cetyl trimethylammonium bromide (CTAB) has been used. In this study, two more hydrophilic quaternary amine surfactants, Berol R648 and Ethoquad C/12, were used and formed Pickering emulsions, which were more stable than the emulsions prepared using CTAB coated clay. The droplets were also more mono-disperse. The most hydrophilic surfactant Berol R648 stabilizes the emulsions best. Salt also plays an important role in forming a stable emulsion. The droplet size decreases with surfactant concentration and relatively mono-disperse droplets can be obtained at moderate surfactant concentrations. The time evolution of the droplet size indicates a good stability to coalescence in the presence of Berol R648. Using polarizing microscopy, the clay platelets were found to be lying flat at the water oil interface. However, a significant fraction (about 90%) of clay stayed in the water phase and the clay particles at the water-oil interface formed stacks, each consisting of four clay platelets on average.

  7. Recent Studies of Pickering Emulsions: Particles Make the Difference.

    PubMed

    Wu, Jie; Ma, Guang-Hui

    2016-09-01

    In recent years, emulsions stabilized by micro- or nanoparticles (known as Pickering emulsions) have attracted much attention. Micro- or nanoparticles, as the main components of the emulsion, play a key role in the preparation and application of Pickering emulsions. The existence of particles at the interface between the oil and aqueous phases affects not only the preparation, but also the properties of Pickering emulsions, affording superior stability, low toxicity, and stimuli-responsiveness compared to classical emulsions stabilized by surfactants. These advantages of Pickering emulsions make them attractive, especially in biomedicine. In this review, the effects of the characteristics of micro- and nanoparticles on the preparation and properties of Pickering emulsions are introduced. In particular, the preparation methods of Pickering emulsions, especially uniform-sized emulsions, are listed. Uniform Pickering emulsions are convenient for both mechanistic research and applications. Furthermore, some biomedical applications of Pickering emulsions are discussed and the problems hindering their clinical application are identified.

  8. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density modifying agents.

    PubMed

    Talawat, Jaruwan; Sabatini, David A; Tongcumpou, Chantra

    2013-01-01

    This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4 wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6 wt% and 0.4 wt%, respectively) with salt (NaCl) of 3 wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs.

  9. Synthesis and Monolayer Behaviors of Succinic Acid-Type Gemini Surfactants Containing Semifluoroalkyl Groups.

    PubMed

    Kawase, Tokuzo; Nagase, Youhei; Oida, Tatsuo

    2016-01-01

    In this work, novel succinic acid-type gemini surfactants containing semifluoroalkyl groups, dl- and meso-2,3-bis[Rf-(CH2)n]-succinic acids (Rf = C4F9, C6F13, C8F17; n = 2, 9), were successfully synthesized, and the effects of Rf, methylene chain length (n), and stereochemistry on their monolayer behaviors were studied. Critical micelle concentrations (CMC) of dl- and meso-2,3-bis[C4F9(CH2)9]-succinic acids were one order of magnitude smaller than that of the corresponding 1+1 type surfactant, C4F9(CH2)9COOH. From surface pressure-area (π-A) measurements, the lift-off areas of the geminis were found to decrease in the order C4F9 ≥ C6F13 > C8F17, regardless of methylene chain length and stereochemistry. The zero-pressure molecular areas of the geminis were twice those of the corresponding 1+1 type surfactants. Based on Gibbs compression modulus analysis, it was clarified that 2,3-bis[C8F17(CH2)n]-succinic gemini with short methylene chains (n = 2) would form more rigid monolayers than those having long methylene chains (n = 9). Unlike for 2,3-bis(alkyl)-succinic acids, the effects of stereochemistry on the monolayer behavior of semifluoroalkylated geminis were small.

  10. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.

  11. Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide

    SciTech Connect

    Li, X.; Lin, E.; Zhao, G.; Xiao, T.

    1996-12-01

    The phase behavior and solubilization of multiphase microemulsions in mixed anionic-cationic surfactant systems were studied for fixed ratio of water-to-oil and surfactant-to-alcohol. In the mixed surfactants (sodium dodecyl sulfate + cetyltrimethylammonium bromide)/heptane/alcohol/water systems, microemulsions and birefringement phases are formed by adjusting the surfactant ratio {epsilon} and the cationic weight fraction {delta}. The bicontinuous (or w/o microemulsion) {yields} birefringement o/w microemulsion transition takes place and microemulsion domain enlarges with increasing {epsilon}. The optimum surfactant concentration {gamma} increases and the corresponding optimum {delta} decreases with increasing {epsilon} and both of them decrease with increasing the alcohol chain length butanol to hexanol. The birefringent region shrinks rapidly with increasing alcohol and/or CTAB weight fractions in total surfactant concentration. Conductivity measurements have been performed in the single-phase region of the system containing mixed surfactants and alcohols at 25 C. The conductivity results indicate where a transition takes place and which of these different types of phase structures may be in the single-phase of the system containing anionic-cationic mixed surfactants.

  12. Effects of additives on surfactant phase behavior relevant to bacteriorhodopsin crystallization

    PubMed Central

    Berger, Bryan W.; Gendron, Colleen M.; Lenhoff, Abraham M.; Kaler, Eric W.

    2006-01-01

    The interactions leading to crystallization of the integral membrane protein bacteriorhodopsin solubilized in n-octyl-β-D-glucoside were investigated. Osmotic second virial coefficients (B22) were measured by self-interaction chromatography using a wide range of additives and precipitants, including polyethylene glycol (PEG) and heptane-1,2,3-triol (HT). In all cases, attractive protein–detergent complex (PDC) interactions were observed near the surfactant cloud point temperature, and there is a correlation between the surfactant cloud point temperatures and PDC B22 values. Light scattering, isothermal titration calorimetry, and tensiometry reveal that although the underlying reasons for the patterns of interaction may be different for various combinations of precipitants and additives, surfactant phase behavior plays an important role in promoting crystallization. In most cases, solution conditions that led to crystallization fell within a similar range of slightly negative B22 values, suggesting that weakly attractive interactions are important as they are for soluble proteins. However, the sensitivity of the cloud point temperatures and resultant coexistence curves varied significantly as a function of precipitant type, which suggests that different types of forces are involved in driving phase separation depending on the precipitant used. PMID:17088325

  13. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    P. Somasundaran

    2004-11-20

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity

  14. Preparation of poly(N-isopropylacrylamide) emulsion gels and their drug release behaviors.

    PubMed

    Tokuyama, Hideaki; Kato, Yuya

    2008-11-15

    Stimuli-sensitive drug delivery systems (DDSs) have attracted considerable attention in medical and pharmaceutical fields; thermosensitive DDS dealing with poly(N-isopropylacrylamide) (poly(NIPA)) have been widely studied. Novel NIPA emulsion gels, i.e., NIPA hydrogels containing distributed oil (oleyl alcohol) microdroplets, were synthesized by means of an emulsion-gelation method in which the polymerization of hydrogels in an aqueous phase in an oil-in-water (O/W) emulsion and the loading of a lipophilic drug (indomethacin) dissolved in an oil phase were accomplished simultaneously. The pulsatile (on-off) drug release from the NIPA emulsion gel loading indomethacin to a phosphate buffered saline (PBS) solution was successfully controlled by a temperature swing between 25 degrees C (release off) and 40 degrees C (release on). The mechanism of the pulsatile drug release was discussed in relation to the diffusion rate, distribution ratio, solvent exchange of NIPA hydrogels, and drug release from an NIPA organogel. The mechanism was as follows: the solvent exchange occurred within the NIPA emulsion gel (the NIPA gel-network absorbed oleyl alcohol with indomethacin) at temperatures above the LCST, and the diffusion rate of indomethacin through the solvent-exchanged gel was higher at 40 degrees C than at 25 degrees C.

  15. Aggregation behavior of tetracarboxylic surfactants derived from cholic and deoxycholic acids and ethylenediaminetetraacetic acid.

    PubMed

    Alvarez Alcalde, Mercedes; Jover, Aida; Meijide, Francisco; Galantini, Luciano; Viorel Pavel, Nicolae; Antelo, Alvaro; Vázquez Tato, José

    2009-08-18

    The reaction of 3beta-aminoderivatives of cholic and deoxycholic acids (steroid residues) with dimethyl ester of ethylenediaminetetraacetic acid (bridge) leads to the formation of dimers carrying four carboxylic organic functions, two of them located on the side chain of each steroid residue and the other two on the bridge. As tetrasodium salts, these new compounds behave as surfactants and have been characterized by surface tension, fluorescence intensity of pyrene (as a probe), and static and dynamic light scattering measurements. Thermodynamic parameters for micellization were obtained from the dependence of the critical micelle concentration (cmc) with temperature. For both surfactants, the fraction of bound counterions is close to 0.5. The aggregation behavior is similar to one of their bile salt residues [i.e., sodium cholate (NaC) and sodium deoxycholate (NaDC)] and can be summarized as follows: (i) molecular areas at the interface for the new surfactants are fairly close to twice the value for a single molecule in a monolayer of natural bile salts; (ii) the environment where pyrene is solubilized is very apolar, as in natural bile salt aggregates; (iii) Gibbs free energies (per steroid residue) for micellization are not far from published values for NaC and NaDC, and the differences can be understood on the basis of less hydrophobicity of the new surfactants due to the charges in the bridge; and (iv) as for NaC and NaDC, aggregates have rather low aggregation numbers (which depend on the amount of added inert salt, NaCl). A structure based on the disklike model accepted for small bile salt aggregates is proposed.

  16. Deformation and stability of surfactant - or particle - laden drop

    NASA Astrophysics Data System (ADS)

    Brosseau, Quentin; Pradillo, Gerardo; Oberlander, Andrew; Vlahovska, Petia; SoftMech@Brown Team

    2015-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant or colloidal particles in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for leaky dielectric fluids: Polybutadiene (PB), Silicon oil (PDMS), and Castor oil (CO). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with existing theoretical models for the steady shape of surfactant covered droplet, and adjusted models taking into account the presence of colloidal spheres with range of electrical properties. We will discuss the complex interplay of shape deformation, surfactant elasticity, particle redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. We acknowledge grant NSF CBET 1437545 for funding.

  17. Influence of surfactant amphiphilicity on the phase behavior of IL-based microemulsions.

    PubMed

    Harrar, Agnes; Zech, Oliver; Klaus, Angelika; Bauduin, Pierre; Kunz, Werner

    2011-10-15

    In this work, we report on the phase behavior of 1-ethyl-3-methyl-imidazolium-ethylsulfate ([emim][etSO(4)])/limonene/polyethylene glycol tert-octylphenyl ether (Triton X-114 or TX-114) microemulsions as a function of ionic liquid (IL) content and temperature. Phase diagrams, conductivity measurements, and small angle X-ray scattering (SAXS) experiments will be presented. A hydrophilic IL, instead of water is used with the goal to enlarge the temperature range on which stable microemulsions can be formed. Indeed, the system shows remarkably large temperature stability, in particular down to -35 °C. We will emphasize on a comparison with a recently published work about microemulsions composed of [emim][etSO(4)], limonene, and Triton X-100 that to some extent are stable at temperatures well below the freezing point of water. The key parameter responsible for the difference in phase behavior, microstructure, and temperature stability is the average repeating number of ethylene oxide units in the surfactant head group, which is smaller for Triton X-114 compared to Triton X-100. Among the fundamental interest, how the amphiphilicity of the surfactant influences the phase diagram and phase behavior of IL-based microemulsions, the exchange of Triton X-100 by Triton X-114 results in one main advantage: along the experimental path the temperature where phase segregation occurs is significantly lowered leading to single phase microemulsions that exist at temperatures beneath 0 °C.

  18. Interfacial Concentrations of Hydroxytyrosol and Its Lipophilic Esters in Intact Olive Oil-in-Water Emulsions: Effects of Antioxidant Hydrophobicity, Surfactant Concentration, and the Oil-to-Water Ratio on the Oxidative Stability of the Emulsions.

    PubMed

    Almeida, João; Losada-Barreiro, Sonia; Costa, Marlene; Paiva-Martins, Fátima; Bravo-Díaz, Carlos; Romsted, Laurence S

    2016-06-29

    We determined the interfacial molarities of the antioxidants, AOs, hydroxytyrosol (HT), and HT fatty acid esters with chain lengths of 1 to 16 carbons in intact olive oil/water/Tween 20 emulsions. The results were compared with chain length effects on the oxidative stability of the same emulsions, and a direct correlation was established. Both (AOI) molarities (varying 50-250 times greater than the stoichiometric 3.5 × 10(-3) M AO concentration) and antioxidant efficiencies show similar parabola-like dependences on AO chain length with a maximum at C8, consistent with the "cut-off" effect often observed at longer chain lengths. Results should aid in understanding the complex structure-reactivity relationships between AO efficiencies in emulsified systems and their hydrophobilic-hydrophobic balance.

  19. Adsorption behavior of a surfactant and a monoclonal antibody to sterilizing-grade filters.

    PubMed

    Mahler, Hanns-Christian; Huber, Franziska; Kishore, Ravuri S K; Reindl, Jürgen; Rückert, Peter; Müller, Robert

    2010-06-01

    Formulations of therapeutic proteins usually contain a surfactant such as polysorbate 80 to protect them against interfacial stresses. Since surfactants may interact with surfaces, the aim of the present work was to study the adsorption behavior of low concentrations of polysorbate 80 and of a monoclonal antibody during sterile filtration. Lab-scale tests were performed to study the adsorption behavior of a monoclonal antibody to different filter materials (PVDF, PES, CA, and Nylon) from different suppliers. Subsequently, protein and polysorbate 80 adsorption were tested in manufacturing scale experiments. It was found that the extent of protein adsorption differed with filter materials, but also with different suppliers. Prominently, Nylon filters showed the highest degree of protein adsorption. In manufacturing-scale filtration experiments, significant adsorption of polysorbate 80 to sterilizing-grade filters was found. Thus, the adsorption of both protein and polysorbate to filters should be taken into consideration in the formulation and manufacturing process and assessed on a case-by-case basis depending on the manufacturing process set-up.

  20. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-08

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.

  1. Emulsion Inks for 3D Printing of High Porosity Materials.

    PubMed

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques.

  2. Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants

    NASA Astrophysics Data System (ADS)

    Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding

    2016-11-01

    This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.

  3. Comparison of binding behavior for molecularly imprinted polymers prepared by hierarchical imprinting or Pickering emulsion polymerization.

    PubMed

    Giovannoli, Cristina; Passini, Cinzia; Anfossi, Laura; Nardo, Fabio Di; Spano, Giulia; Maurino, Valter; Baggiani, Claudio

    2015-10-01

    The aim of this study was the evaluation of the binding performances and selectivity of molecularly imprinted beads prepared toward several penicillins (i) by hierarchical bulk polymerization in the pores of template-grafted silica microbeads (hMIPs) and (ii) by Pickering emulsion polymerization in the presence of template-decorated silica nanobeads (pMIPs). 6-Aminopenicillanic acid was chosen as the common fragmental mimic template. Both approaches produced micron-sized polymeric beads with good recognition properties toward the target ligands whereas the selectivity pattern appeared quite different. The polymer prepared by the Pickering emulsion approach showed binding properties similar to imprinted beads prepared by hierarchical approach. Equilibrium binding constants changed their values from 0.1-0.2 × 10(6) (hMIPs) to 0.2-0.6 × 10(6) M(-1) (pMIPs), while the binding site densities changed from 3.7-4.8 (hMIPs) to 0.3-0.55 μmol/g (pMIPs). Compared to the hierarchical polymerization, Pickering emulsion polymerization represents a more practical approach when a template mimic needs to be used.

  4. Cyclodextrin stabilised emulsions and cyclodextrinosomes.

    PubMed

    Mathapa, Baghali G; Paunov, Vesselin N

    2013-11-07

    We report the preparation of o/w emulsions stabilised by microcrystals of cyclodextrin-oil inclusion complexes. The inclusion complexes are formed by threading cyclodextrins from the aqueous phase on n-tetradecane or silicone oil molecules from the emulsion drop surface which grow further into microrods and microplatelets depending on the type of cyclodextrin (CD) used. These microcrystals remain attached on the surface of the emulsion drops and form densely packed layers which resemble Pickering emulsions. The novelty of this emulsion stabilisation mechanism is that molecularly dissolved cyclodextrin from the continuous aqueous phase is assembled into colloid particles directly onto the emulsion drop surface, i.e. molecular adsorption leads to effective Pickering stabilisation. The β-CD stabilised tetradecane-in-water emulsions were so stable that we used this system as a template for preparation of cyclodextrinosomes. These structures were produced solely through formation of cyclodextrin-oil inclusion complexes and their assembly into a crystalline phase on the drop surface retained its stability after the removal of the core oil. The structures of CD-stabilised tetradecane-in-water emulsions were characterised using optical microscopy, fluorescence microscopy, cross-polarised light microscopy and WETSEM while the cyclodextrinosomes were characterised by SEM. We also report the preparation of CD-stabilised emulsions with a range of other oils, including tricaprylin, silicone oil, isopropyl myristate and sunflower oil. We studied the effect of the salt concentration in the aqueous phase, the type of CD and the oil volume fraction on the type of emulsion formed. The CD-stabilised emulsions can be applied in a range of surfactant-free formulations with possible applications in cosmetics, home and personal care. Cyclodextrinosomes could find applications in pharmaceutical formulations as microencapsulation and drug delivery vehicles.

  5. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  6. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  7. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  8. Emulsifying properties of legume proteins compared to β-lactoglobulin and Tween 20 and the volatile release from oil-in-water emulsions.

    PubMed

    Benjamin, O; Silcock, P; Beauchamp, J; Buettner, A; Everett, D W

    2014-10-01

    The emulsifying properties of plant legume protein isolates (soy, pea, and lupin) were compared to a milk whey protein, β-lactoglobulin (β-lg), and a nonionic surfactant (Tween 20). The protein fractional composition was characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The following emulsion properties were measured: particle diameter, shear surface ζ-potential, interfacial tension (IT), and creaming velocity. The effect of protein preheat treatment (90 °C for 10 min) on the emulsifying behavior and the release of selected volatile organic compounds (VOCs) from emulsions under oral conditions was also investigated in real time using proton transfer reaction-mass spectrometry. The legume proteins showed comparable results to β-lg and Tween 20, forming stable, negatively charged emulsions with particle diameter d3,2 < 0.4 μm, and maintained stability over 50 d. The relatively lower stability of lupin emulsions was significantly correlated with the low protein surface hydrophobicity and IT of the emulsion. After heating the proteins, the droplet size of pea and lupin emulsions decreased. The VOC release profile was similar between the protein-stabilized emulsions, and greater retention was observed for Tween 20-stabilized emulsions. This study demonstrates the potential application of legume proteins as alternative emulsifiers to milk proteins in emulsion products.

  9. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions.

    PubMed

    James-Smith, Monica A; Alford, Kile; Shah, Dinesh O

    2007-06-15

    We present a methodology to quantitatively determine the fraction of sodium dodecyl sulfate (SDS) that partitions to the oil/water interface in oil-in-water macroemulsions and calculate the total interfacial area (TIA) through the novel use of filtration through nanoporous membranes. Ultrafiltration was carried out in centrifuge tubes having nanoporous filters with a 30,000 molecular weight cutoff (MWCO), so that emulsion droplets would not pass through, and only SDS (as monomers and micelles) that is in the bulk water phase (i.e., not at the interface) could pass through. The concentration of SDS in the filtrate was determined and used to calculate the TIA for each system. The mean droplet diameter of the emulsions was measured by light scattering. We analyzed the effects of total SDS concentration and oil chain length on the amount of SDS that partitions to the interface, the TIA, and the droplet diameter. The results showed that partitioning of SDS to the oil/water interface increases with increasing total SDS concentration in emulsion systems (i.e., the more SDS we add to the bulk solution, the more SDS partitions to the oil/water interface). However, the surface-to-bulk partition coefficient (i.e., the SDS concentration at the interface divided by the SDS concentration in the aqueous phase) remains the same over the entire concentration range (8-200 mM). The results showed a chain-length compatibility effect in that the minimum amount of SDS partitioned to the interface for C(12) oil. The droplet size measurements revealed a maximum size of droplets for C(12) oil. Penetration of oil molecules into SDS film at the interface has been proposed to account for the maximum droplet size and minimum partitioning of SDS at the oil/water interface for C(12) oil+SDS emulsion system. The TIA, as determined from our ultrafiltration method, was consistently two orders of magnitude greater than that calculated from the droplet size measured by light scattering. Possible

  10. Effect of ionic surfactants on the phase behavior and structure of sucrose ester/water/oil systems.

    PubMed

    Rodríguez, Carlos; Acharya, Durga P; Hinata, Shigeki; Ishitobi, Masahiko; Kunieda, Hironobu

    2003-06-15

    The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.

  11. Surface properties, aggregation behavior and micellization thermodynamics of a class of gemini surfactants with ethyl ammonium headgroups.

    PubMed

    Lu, Ting; Lan, Yuru; Liu, Chenjiang; Huang, Jianbin; Wang, Yilin

    2012-07-01

    Cationic gemini surfactant homologues alkanediyl-α,ω-bis(dodecyldiethylammonium bromide), [C(12)H(25)(CH(3)CH(2))(2)N(CH(2))(S)N(CH(2)CH(3))(2)C(12)H(25)]Br(2) (where S=2, 4, 6, 8, 10, 12, 16, 20), referred to as C(12)C(S)C(12)(Et) were synthesized systematically. This paper focused on various properties of the above gemini surfactants in order to give a full understanding of this series of surfactants. The following points are covered: (1) surface properties, which include (i) effect of the spacer carbon number on the general properties and (ii) the effect of added NaBr on the general surface properties; (2) aggregation behavior in bulk solution, including (i) morphologies of above gemini surfactants classed as having short spacers, middle-length spacers and long spacers and (ii) superior vesicle stability against high NaBr concentration for the long spacer gemini surfactants; (3) thermodynamic properties during micellization and the effect of spacer carbon number on them; and (4) perspectives for the further use and application of these compounds.

  12. On the transport of emulsions in porous media

    SciTech Connect

    Cortis, Andrea; Ghezzehei, Teamrat A.

    2007-06-27

    Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approach explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.

  13. Preparation of microemulsions with soybean oil-based surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  14. Microwave-assisted modification on montmorillonite with ester-containing Gemini surfactant and its adsorption behavior for triclosan.

    PubMed

    Liu, Bo; Lu, Junxiang; Xie, Yu; Yang, Bin; Wang, Xiaoying; Sun, Runcang

    2014-03-15

    To obtain effective adsorbent that can remove emerging organic pollutant of triclosan (TCS) in aquatic environment, different ester-containing Gemini surfactant-modified MMT (EMMT) were prepared under microwave irradiation. The whole process was rapid, uniform, easy and energy-efficient. The structures and morphology of EMMT were characterized by XRD, TEM, FT-IR, SEM and TGA. The results revealed that the saturated intercalation amount of this surfactant was 0.8 times to cation exchange capacity (CEC) of MMT, and there was electrostatic interaction between ester-containing Gemini surfactant and MMT. In addition, they bound in the ways of intercalation, intercalation-adsorption or adsorption, which relied on the dosage of the surfactant. The surface of EMMT was hydrophobic, rough and fluffy, which contributed to its strong adsorption capacity. The adsorption equilibrium data of EMMT for TCS were fitted to Langmuir and Freundlich isothermal adsorption model. The result showed that Langmuir isothermal adsorption model could describe the adsorption behavior better, the adsorption behavior of TCS on EMMT was confirmed to a surface monolayer adsorption, and notably the theoretical maximum adsorption capacity was up to 133 mg/g. Therefore, this work lays important foundation on developing effective and safe absorbent materials for the treatment of emerging organic pollutants.

  15. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants

    NASA Astrophysics Data System (ADS)

    Burgos-Mármol, J. Javier; Solans, Conxita; Patti, Alessandro

    2016-06-01

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2+ CH3SO4-, which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  16. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants.

    PubMed

    Burgos-Mármol, J Javier; Solans, Conxita; Patti, Alessandro

    2016-06-21

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2 (+) CH3SO4 (-), which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  17. Molecular interactions at the hexadecane/water interface in the presence of surfactants studied with second harmonic generation

    NASA Astrophysics Data System (ADS)

    Sang, Yajun; Yang, Fangyuan; Chen, Shunli; Xu, Hongbo; Zhang, Si; Yuan, Qunhui; Gan, Wei

    2015-06-01

    It is important to investigate the influence of surfactants on structures and physical/chemical properties of oil/water interfaces. This work reports a second harmonic generation study of the adsorption of malachite green (MG) on the surfaces of oil droplets in a hexadecane/water emulsion in the presence of surfactants including sodium dodecyl sulfate, polyoxyethylene-sorbitan monooleate (Tween80), and cetyltrimethyl ammonium bromide. It is revealed that surfactants with micromolar concentrations notably influence the adsorption of MG at the oil/water interface. Both competition adsorption and charge-charge interactions played very important roles in affecting the adsorption free energy and the surface density of MG at the oil/water interface. The sensitive detection of the changing oil/water interface with the adsorption of surfactants at such low concentrations provides more information for understanding the behavior of these surfactants at the oil/water interface.

  18. Micro-emultocrit technique: a valuable tool for determination of critical HLB value of emulsions.

    PubMed

    Macedo, Janus P F; Fernandes, Leonardo L; Formiga, Fábio R; Reis, Michael F; Júnior, Toshiyuiky Nagashima; Soares, Luiz A L; Egito, E Socrates T

    2006-03-10

    The aim of this work was to develop a methodology for rapid determination of the critical hydrophilic-lipophilic balance (HLB) value of lipophilic fractions of emulsions. The emulsions were prepared by the spontaneous emulsification process with HLB value from 4.3 to 16.7. The preparations were stored at 2 different temperatures (25 degrees C and 4 degrees C) and their physicochemical behavior was evaluated by the micro-emultocrit technique and the long-term stability study. The experimental data show a reverse relationship between HLB values of the surfactant mixtures and emulsion stability. A close correlation between the results for both stability procedures was observed, suggesting the use of micro-emultocrit to predict stabilities of such systems. In addition, it was found that the critical HLB of the Mygliol 812 was 15.367.

  19. A Study of the Effect of Surfactants on the Aggregation Behavior of Crude Oil Aqueous Dispersions through Steady-State Fluorescence Spectrometry.

    PubMed

    Vallejo-Cardona, Alba A; Cerón-Camacho, Ricardo; Karamath, James R; Martínez-Palou, Rafael; Aburto, Jorge

    2017-01-01

    Unconventional crude oil as heavy, extra heavy, bitumen, tight, and shale oils will meet 10% of worldwide needs for 2035, perhaps earlier. Petroleum companies will face problems concerning crude oil extraction, production, transport, and refining, and some of these are addressed by the use of surfactants and other chemicals. For example, water-in-crude oil emulsions are frequently found during the production of mature wells where enhanced recovery techniques have been deployed. Nevertheless, the selection of adequate surfactant, dosage, type of water (sea, tap or oilfield), kind of crude oil (light, heavy, extra heavy, tight, shale, bitumen) affect the effectivity of treatment and usual bottle tests give limited information. We developed a fluorescence technique to study the effect of surfactants on medium, heavy, and extra heavy crude oil employing the natural fluorophore molecules from petroleum. We first carried out the characterization of commercial and synthetic surfactants, then dispersions of petroleum in water were studied by steady-state fluorometry and the size of petroleum aggregates were measured. The aggregation of petroleum incremented from medium to extra heavy crude oil and we discussed the effect of different surfactants on such aggregation.

  20. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  1. Structure-behavior-property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches.

    PubMed

    Hu, Xiaoying; Li, Ying; He, Xiujuan; Li, Chunxiu; Li, Zhengquan; Cao, Xulong; Xin, Xia; Somasundaran, P

    2012-01-12

    A multiscale stability study of foams stabilized by sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), and sodium polyoxyethylene alkylether sulfate (AES) was conducted, to investigate the relationship of surfactant molecular behavior and interfacial monolayer configuration of foam film to the foam film properties. Molecular dynamic (MD) simulations using a full-atom model was utilized to explore the microscopic features of the air/liquid interface layer. Several parameters such as the distribution of surfactant head groups and the order degree of surfactant hydrophobic tails were used to describe the molecular adsorption behavior. The effect of molecular structure on the nature of the foam film and the impact on the dynamic stability of wet foam is discussed. In the experimental evaluation, the SDBS foam films manifest strong stiffness and low viscoelasticity as shown by the interfacial shear rheology determination as well as texture analyzer (TA) measurement results, which agree very well with the array behavior of SDBS molecules at the air/water interface as described by the simulation results and is identified to be the reason for the poor dynamic stability. Comparing the molecular structure of SDS, SDBS, and AES, the special contributions of the linking groups such as the O atom, the phenyl group, and the EO (oxyethyl) chain to the interfacial array behavior of surfactants were characterized. It is concluded that microhardness of the foam film enhanced by rigid linking groups favors static foam stability but decreases the dynamic foam stability, while viscoelasticity of the foam film enhanced by soft linking groups increases the dynamic foam stability.

  2. Effect of salts on the phase behavior and the stability of nanoemulsions with rapeseed oil and an extended surfactant.

    PubMed

    Klaus, Angelika; Tiddy, Gordon J T; Solans, Conxita; Harrar, Agnes; Touraud, Didier; Kunz, Werner

    2012-06-05

    For many decades, the solubilization of long-chain triglycerides in water has been a challenge. A new class of amphiphiles has been created to overcome this solubilization problem. The so-called "extended" surfactants contain a hydrophilic-lipophilic linker to reduce the contrast between the surfactant-water and surfactant-oil interfaces. In the present contribution, the effects of different anions and cations on the phase behavior of a mixture containing an extended surfactant (X-AES), a hydrotrope (sodium xylene sulfonate, SXS), water, and rapeseed oil were determined as a function of temperature. Nanoemulsions were obtained and characterized by conductivity measurements, light scattering, and optical microscopy. All salting-out salts show a transition from a clear region (O/W nanoemulsion), to a lamellar liquid crystalline phase region, a clear phase (bicontinuous L(3)), and again to a lamellar liquid crystalline phase region with increasing temperature. For the phase diagrams with NaSCN and Na(2)SO(4), only one clear region (O/W nanoemulsion) was observed, which turns into a lamellar phase region at elevated temperatures. Furthermore, the stability of the nanoemulsions was investigated by time-dependent measurements: the visual observation of phase separation, droplet size by dynamic light scattering (DLS), and optical microscopy. The mechanism of the different phase transitions is also discussed.

  3. Surface phase stability and surfactant behavior of InAsSb alloy surfaces.

    NASA Astrophysics Data System (ADS)

    Anderson, Evan M.; Lundquist, Adam M.; Pearson, Chris; Millunchick, Joanna M.

    InAsSb has the narrowest bandgap of any of the conventional III-V semiconductors: low enough for long wavelength infrared applications. Such devices are sensitive to point defects, which can be detrimental to performance. To control these defects, all aspects of synthesis must be considered, especially the atomic bonding at the surface. We use an ab initio statistical mechanics approach that combines density functional theory with a cluster expansion formalism to determine the stable surface reconstructions of Sb (As) on InAs (InSb) substrates. The surface phase diagram of Sb on InAs is dominated by Sb-dimer termination α2(2x4) and β2(2x4) and c(4x4). Smaller regions of mixed Sb-As dimers appear for high Sb chemical potentials and intermediate As chemical potential. We propose that InAsSb films could be grown on (2x4), which maintain bulk-like stoichiometry, to eliminate the formation of typically observed n-type defects. Scanning tunneling microscopy and reflection high energy electron diffraction confirm the calculated phase diagram. Based on these calculations, we propose a new mechanism for the surfactant behavior of Sb in these materials. We gratefully acknowledge Chakrapani Varanasi and the support of the Department of Defense, Army Research Office via the Grant Number W911NF-12-1-0338.

  4. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-07

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.

  5. Stimuli-responsive Pickering emulsions: recent advances and potential applications.

    PubMed

    Tang, Juntao; Quinlan, Patrick James; Tam, Kam Chiu

    2015-05-14

    Pickering emulsions possess many advantages over traditional surfactant stabilized emulsions. For example, Pickering emulsions impart better stability against coalescence and, in many cases, are biologically compatible and environmentally friendly. These characteristics open the door for their use in a variety of industries spanning petroleum, food, biomedicine, pharmaceuticals, and cosmetics. Depending on the application, rapid, but controlled stabilization and destabilization of an emulsion may be necessary. As a result, Pickering emulsions with stimuli-responsive properties have, in recent years, received a considerable amounts of attention. This paper provides a concise and comprehensive review of Pickering emulsion systems that possess the ability to respond to an array of external triggers, including pH, temperature, CO2 concentration, light intensity, ionic strength, and magnetic field. Potential applications for which stimuli-responsive Pickering emulsion systems would be of particular value, such as emulsion polymerization, enhanced oil recovery, catalyst recovery, and cosmetics, are discussed.

  6. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  7. Surfactant adsorption kinetics in microfluidics

    NASA Astrophysics Data System (ADS)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  8. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  9. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  10. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  11. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  12. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the solid-solution interface.

    PubMed

    Zhang, Xiaoli L; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Bent, Julian; Cox, Andrew

    2011-09-06

    The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.

  13. Ethylcellulose: a new type of emulsion stabilizer.

    PubMed

    Melzer, Eva; Kreuter, Jörg; Daniels, Rolf

    2003-07-01

    Cellulose ethers, in particular hypromellose, represent an interesting alternative when emulsions have to be stabilized avoiding conventional low molecular weight surfactants. So far this option has been only described for the formulation of oil-in-water (o/w) emulsions. Since surfactant-free water-in-oil (w/o) emulsions seem to be also attractive as drug carriers, ethyl cellulose, an oil-soluble cellulose derivative, was studied for its ability to stabilize w/o emulsions. Measurements of the interfacial tension confirmed that ethylcellulose was positively adsorbed at the water/oil interface with diverse lipids. Appearance of model emulsions was dependent on the processing temperature. At low temperatures (15 degrees C) cream-like o/w emulsions were obtained. Processing at 30 degrees C yielded fluid w/o-lotions. Investigation of the microstructure showed that the surface of the emulsion droplets was covered with particles which formed a mechanical barrier. These colloidal particles were shown to be a precipitate of ethylcellulose which forms when the polymer which was dissolved in the lipid phase comes into contact with water. Thus, ethylcellulose was demonstrated to represent a new type of particulate polymeric emulsifier.

  14. Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability.

    PubMed

    Leong, Thomas; Yasui, Kyuichi; Kato, Kazumi; Harvie, Dalton; Ashokkumar, Muthupandian; Kentish, Sandra

    2014-04-01

    The effect of surfactants on the radial dynamics of a single sonoluminescing bubble has been investigated. Experimentally, it is observed that an increase in the surfactant concentration leads to a decline in the oscillation amplitude and hence light emission intensity. Numerical simulations support this result, showing that under the driving pressures required to achieve single bubble sonoluminescence (SBSL), the surface properties, namely, the surface elasticity and dilatational viscosity, contribute to the damping of the radial amplitude in the bubble oscillation. In most cases this stabilizes the bubble surface, and contributes to a decreased light intensity. A stronger driving pressure is necessary to achieve equivalent light emission to a surfactant-free bubble. However, as the driving pressure is increased, the surface stability also decreases, making it practically very difficult for a bubble to achieve high SBSL intensities in concentrated surfactant solutions. Although more stable owing to more mild pulsations, the instability mechanism for a surfactant-coated bubble at higher ambient radii is more likely to be of the Rayleigh-Taylor type than that of a clean bubble at the same given acoustic parameters, which can lead to bubble disintegration before correcting mechanisms can bring the bubble back into the stable sonoluminescence regime.

  15. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  16. Preparation of emulsions by rotor-stator homogenizer and ultrasonic cavitation for the cosmeceutical industry.

    PubMed

    Han, Ng Sook; Basri, Mahiran; Abd Rahman, Mohd Basyaruddin; Abd Rahman, Raja Noor Zaliha Raja; Salleh, Abu Bakar; Ismail, Zahariah

    2012-01-01

    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.

  17. Unusual pH-regulated surface adsorption and aggregation behavior of a series of asymmetric gemini amino-acid surfactants.

    PubMed

    Lv, Jing; Qiao, Weihong

    2015-04-07

    A new series of pH-regulated asymmetric amino-acid gemini surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine (Ace(m)-2-Ace(n)), differing by the asymmetric degree and length of the carbon tails (m = 8 and 10, n = 10, 12, 14, and 16), were synthesized in three steps. On the basis of pKa values obtained by pH titration, surface tension, fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurements were performed to study the surface adsorption and aggregation properties in aqueous Ace(m)-2-Ace(n) solution. The new compounds have higher surface activity and better pH adaptability in comparison with that of symmetric gemini surfactants Ace(n)-2-Ace(n). The molecule behavior of Ace(m)-2-Ace(n) can be adjusted by either the hydrophobic group or the pH. With increasing alkyl chain length, the surface adsorption declines but its ability to form aggregates increases. We find that pH can promote the self-assembly transition of Ace(m)-2-Ace(n) from surfactant monomers to aggregates through protonation between H(+) and the tertiary nitrogen group. TEM data further confirm the pH-regulated molecular self-assembly process and the existence of vesicles at neutral or weak acidic pH. pH-recyclability is found to be reversible by pH-light transmittance recycle tests.

  18. Evaluation the thermodynamic behavior of nonionic polyoxyethylene surfactants against temperature changes.

    PubMed

    Moghaddam, Hadi Mahmoudi; Dehghannoudeh, Gholamreza; Basir, Mohammad Zaman

    2016-03-01

    Micellization is the most important property of surface agents. It plays an important role in the manufacture of pharmaceutical products. The surfactants have many applications in industry, agriculture, mining and oil recovery with functional properties as wetting, foaming and emulsifier in pharmaceutical and cosmetic products. The micellization parameters of surfactants help the manufacture of pharmaceutical products to be appropriate and stable. Therefore, in this study, Polyoxyethylene lauryl ether (C12E23), Polyoxyethylene (10) cetyl ether (C16E10) and Polyoxyethylene (20) cetyl ether (C16E20) were chosen as the nonionic surfactants to examine the effect of temperature variation (10-80(°)C) on the Critical Micelle Concentration (CMC). The measurement of surface tension was done by a Du Nöuys ring method. The value of CMC was obtained from the surface tension vs. surfactant concentration curve. Since the temperature was increased, the CMC initially decreased and then increased for each surfactant because the formation of the hydrogen bond is harder in the high temperatures. The surface tension γCMC for all three surfactant solutions decreased monotonically as the temperature increased. δG(°)m, ΔH(°)m and ΔS°m as the thermodynamic parameters of micellization, were also estimated and analyzed. The ΔG(°)m was decreased (10-80(°)C) if the temperature was increased. The entropy and enthalpy correlation of micellization showed a significant linearity. For C12E23, C16E20 and C16 E10, the compensation temperature (Tc) was obtained 309.5, 313.2 and 314.4 K, respectively. The calculated thermodynamic parameters showed that the entropy influenced on the micellization process at lower temperature, but it affected by enthalpy when temperature was increased.

  19. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  20. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    SciTech Connect

    Somasundaran, Prof. P.

    2002-03-04

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  1. Structure-Property Relationships in CO2-philic (Co)polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions.

    PubMed

    Girard, Etienne; Tassaing, Thierry; Marty, Jean-Daniel; Destarac, Mathias

    2016-04-13

    This Review provides comprehensive guidelines for the design of CO2-philic copolymers through an exhaustive and precise coverage of factors governing the solubility of different classes of polymers. Starting from computational calculations describing the interactions of CO2 with various functionalities, we describe the phase behavior in sc-CO2 of the main families of polymers reported in literature. The self-assembly of amphiphilic copolymers of controlled architecture in supercritical carbon dioxide and their use as stabilizers for water/carbon dioxide emulsions then are covered. The relationships between the structure of such materials and their behavior in solutions and at interfaces are systematically underlined throughout these sections.

  2. Evaluation of the Transwell System for Characterization of Dissolution Behavior of Inhalation Drugs: Effects of Membrane and Surfactant.

    PubMed

    Rohrschneider, Marc; Bhagwat, Sharvari; Krampe, Raphael; Michler, Victoria; Breitkreutz, Jörg; Hochhaus, Günther

    2015-08-03

    Assessing the dissolution behavior of orally inhaled drug products (OIDs) has been proposed as an additional in vitro test for the characterization of innovator and generic drug development. A number of suggested dissolution methods (e.g., commercially available Transwell or Franz cell systems) have in common a membrane which provides the separation between the donor compartment, containing nondissolved drug particles, and an acceptor (sampling) compartment into which dissolved drug will diffuse. The goal of this study was to identify and overcome potential pitfalls associated with such dissolution systems using the inhaled corticosteroids (ICS), viz., budesonide, ciclesonide, and fluticasone propionate, as model compounds. A respirable fraction (generally stage 4 of a humidity, flow, and temperature controlled Andersen Cascade Impactor (ACI) or a Next Generation Impactor (NGI)) was collected for the tested MDIs. The dissolution behavior of these fractions was assessed employing the original and an adapted Transwell system using dissolution media which did or did not contain surfactant (0.5% sodium dodecyl sulfate). The rate with which the ICS transferred from the donor to the acceptor compartment was assessed by HPLC. Only a modified system that incorporated faster equilibrating membranes instead of the original 0.4 μm Transwell membrane resulted in dissolution and not diffusion being the rate-limiting step for the transfer of drug from the donor to the acceptor compartment. Experiments evaluating the nature of the dissolution media suggested that the presence of a surfactant (e.g., 0.5% SDS) is essential to obtain rank order of dissolution rates (e.g., for budesonide, fluticasone propionate, and ciclesonide) that is in agreement with absorption rates of these ICS obtained in studies of human pharmacokinetics. Using the optimized procedure, the in vitro dissolution behavior of budesonide, ciclesonide, and fluticasone propionate agreed approximately with

  3. Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions.

    PubMed

    Choi, Seung Jun; Decker, Eric Andrew; Henson, Lulu; Popplewell, L Michael; McClements, David Julian

    2010-08-01

    The chemical stability of citral, a flavor component widely used in beverage, food, and fragrance products, in oil-in-water emulsions stabilized by surfactants with different charge characteristics was investigated. Emulsions were prepared using cationic (lauryl alginate, LAE), non-ionic (polyoxyethylene (23) lauryl ether, Brij 35), and anionic (sodium dodecyl sulfate, SDS) surfactants at pH 3.5. The citral concentration decreased over time in all the emulsions, but the rate of decrease depended on surfactant type. After 7 d storage, the citral concentrations remaining in the emulsions were around 60% for LAE- or Brij 35-stabilized emulsions and 10% for SDS-stabilized emulsions. An increase in the local proton (H(+)) concentration around negatively charged droplet surfaces may account for the more rapid citral degradation observed in SDS-stabilized emulsions. A strong metal ion chelator (EDTA), which has previously been shown to be effective at increasing the oxidative stability of labile components, had no effect on citral stability in LAE- or Brij 35-stabilized emulsions, but it slightly decreased the initial rate of citral degradation in SDS-stabilized emulsions. These results suggest the surfactant type used to prepare emulsions should be controlled to improve the chemical stability of citral in emulsion systems.

  4. Phase behavior of systems of the type H/sub 2/O-oil-nonionic surfactant-electrolyte

    SciTech Connect

    Kahlweit, M.

    1982-11-01

    This work shows that the study of simple systems can lead to an understanding of the phase behavior of the pseudoquaternary systems relevant in tertiary oil recovery. A rather simple method has been presented for predicting whether or not a system will show a 3-phase triangle, and how this triangle emerges from the change of the phase diagram with temperature. it was found that the application of such simple surfactants as C4E1 and C4E2 leads to essentially the same phase behavior as that of typical detergents used by other authors. The application of typical commercial detergents leads to more complicated phase diagrams, since the anisotropic phases of such detergents appear to extend deep into the ternary system and may thus lead to an anisotropic structure of the middle phase. This is an additional complication and, in studying the phase behavior of ternary and quaternary systems and the properties of their phases, these complications can be avoided by the application of rather simple surfactants.

  5. One-dimensional porphyrin nanoassemblies assisted via graphene oxide: sheetlike functional surfactant and enhanced photocatalytic behaviors.

    PubMed

    Guo, Peipei; Chen, Penglei; Liu, Minghua

    2013-06-12

    Surfactant-assisted self-assembly (SAS) has received much attention for supramolecular nanoassemblies, due to its simplicity and easiness in realizing a controllable assembly. However, in most of the existing SAS protocols, the employed surfactants work only as a regulator for a controllable assembly but not as active species for function improvement. In this paper, we report that a porphyrin, zinc 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (ZnTPyP), could be assembled to form one-dimensional (1D) supramolecular nanostructures via a SAS method, wherein graphene oxide (GO) plays a fascinating role of sheetlike surfactant. We show that, when a chloroform or tetrahydrofuran solution of ZnTPyP is injected into an aqueous dispersion of GO, 1D supramolecular nanoassemblies of ZnTPyP with well-defined internal structures could be easily formulated in a controllable manner. Our experimental facts disclose that the complexation of ZnTPyP with the two-dimensional GO nanosheets plays an important role in this new type of SAS. More interestingly, compared with the 1D ZnTPyP nanoassemblies formulated via a conventional SAS, wherein cetyltrimethylammonium bromide is used as surfactant, those constructed via our GO-assisted SAS display distinctly enhanced photocatalytic activity for the photodegradation of rhodamine B under visible-light irradiation. Our new findings suggest that GO could work not only as an emergent sheetlike surfactant for SAS in terms of supramolecular nanoassembly but also as functional components during the performance of the assembled nanostructures.

  6. Superamphiphilic nanocontainers based on the resorcinarene - Cationic surfactant system: Synergetic self-assembling behavior

    NASA Astrophysics Data System (ADS)

    Gaynanova, Gulnara A.; Bekmukhametova, Alina M.; Kashapov, Ruslan R.; Ziganshina, Albina Yu.; Zakharova, Lucia Ya.

    2016-05-01

    Self-organization in the mixed system based on water-soluble aminomethylated calix[4]arene with sulfonatoethyl groups at the lower rim and classical cationic surfactant cetyltrimethylammonium bromide has been studied by the methods of tensiometry, conductometry, spectrophotometry, dynamic and electrophoretic light scattering. The values of the critical association concentration, the size and zeta potential values, and the solubilization capacity of mixed aggregates toward the hydrophobic probe (Sudan I) were determined.

  7. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN).

    PubMed

    Helgason, T; Awad, T S; Kristbergsson, K; McClements, D J; Weiss, J

    2009-06-01

    The effect of surfactant surface coverage on formation and stability of Tween 20 stabilized tripalmitin solid lipid nanoparticles (SLN) was investigated. A lipid phase (10% w/w tripalmitin) and an aqueous phase (2% w/w Tween 20, 10 mM phosphate buffer, pH 7) were heated to 75 degrees C and then homogenized using a microfluidizer. The resulting oil-in-water emulsion was kept at a temperature (37 degrees C) above the crystallization temperature of the tripalmitin to prevent solidification of emulsion droplets, and additional surfactant at various concentrations (0-5% w/w Tween 20) was added. Droplets were then cooled to 5 degrees C to initiate crystallization and stored at 20 degrees C for 24 h. Particle size and/or aggregation were examined visually and by light scattering, and crystallization behavior was examined by differential scanning calorimetry (DSC). Excess Tween 20 concentration remaining in the aqueous phase was measured by surface tensiometry. Emulsion droplets after homogenization had a mean particle diameter of 134.1+/-2.0 nm and a polydispersity index of 0.08+/-0.01. After cooling to 5 degrees C at low Tween 20 concentrations, SLN dispersions rapidly gelled due to aggregation of particles driven by hydrophobic attraction between insufficiently covered lipid crystal surfaces. Upon addition of 1-5% w/w Tween 20, SLN dispersions became increasingly stable. At low added Tween 20 concentration (<1% w/w) the SLN formed gels but only increased slightly at higher surfactant concentrations (>1% w/w). The Tween 20 concentration in the aqueous phase decreased after tripalmitin crystallization suggesting additional surfactant adsorption onto solid surfaces. At higher Tween 20 concentrations, SLN had increasingly complex crystal structures as evidenced by the appearance of additional thermal transition peaks in the DSC. The results suggest that surfactant coverage at the interface may influence crystal structure and stability of solid lipid nanoparticles via

  8. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil--water system.

    PubMed

    Cheng, K Y; Wong, J W C

    2006-03-01

    Batch experiments were performed to examine the desorption behavior of phenanthrene and pyrene in soil-water system in the presence of nonionic surfactant Tween 80 and dissolved organic matter (DOM) derived from pig manure or pig manure compost. Addition of 150 mgl(-1) Tween 80 desorbed 5.8% and 2.1% of phenanthrene and pyrene from soil into aqueous phase, respectively, while the addition of both Tween 80 and DOM derived from pig manure compost and pig manure could further enhance the desorption of phenanthrene to 15.8% and 16.2%, respectively, and 6.4% and 10.9%, respectively, for pyrene. In addition, our finding also suggested that subsequent addition of Tween 80 into the soil-water system could further enhance PAHs desorption. The enhancement effect of the co-existence of Tween 80 and DOM was more than the additive effect of the Tween 80 and DOM individually. It is likely that the formation of DOM-surfactant complex in the soil-water system may be a possible reason to explain such desorption enhancement phenomenon. Therefore, it is anticipated that the coexistence of both Tween 80 and DOM derived from pig manure or pig manure compost in soil environment will enhance the bioavailability of PAHs as well as other hydrophobic organic contaminants (HOCs) by enhancing the desorption during remediation process.

  9. Stability of water/crude oil emulsions based on interfacial dilatational rheology.

    PubMed

    Dicharry, Christophe; Arla, David; Sinquin, Anne; Graciaa, Alain; Bouriat, Patrick

    2006-05-15

    The dilatational viscoelasticity behaviors of water/oil interfaces formed with a crude oil and its distilled fractions diluted in cyclohexane were investigated by means of an oscillating drop tensiometer. The rheological study of the w/o interfaces at different frequencies has shown that the stable w/o emulsions systematically correspond to interfaces which present the rheological characteristics of a 2D gel near its gelation point. The stability of emulsions was found to increase with both the gel strength and the glass transition temperature of the gel. As expected, the indigenous natural surfactants responsible for the formation of the interfacial critical gel have been identified as the heaviest amphiphilic components present in the crude oil; i.e., asphaltenes and resins. Nevertheless, we have shown that such a gel can also form in the absence of asphaltene in the oil phase.

  10. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    SciTech Connect

    Somasundaran, Prof. P.

    2001-02-27

    The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

  11. Transient behavior of simultaneous flow of gas and surfactant solution in consolidated porous media

    SciTech Connect

    Baghdikian, S.Y.; Handy, L.L.

    1991-07-01

    The main objective of this experimental research was to investigate the mechanisms of foam generation and propagation in porous media. Results obtained give an insight into the conditions of foam generation and propagation in porous media. The rate of propagation of foam is determined by the rates of lamellae generation, destruction, and trapping. Several of the factors that contribute to foam generation have studied with Chevron Chaser SD1000 surfactant. Interfacial tension (IFT) measurements were performed using a spinning drop apparatus. The IFT of two surfactant samples of different concentrations were measured with dodecane and crude oil from the Huntington Beach Field as a function of temperature and time. Foam was used as an oil-displacing fluid. However, when displacing oil, foam was not any more effective than simultaneous brine and gas injection. A series of experiments was performed to study the conditions of foam generation in Berea sandstone cores. Results show that foam may be generated in sandstone at low flow velocities after extended incubation periods. The effect of pregenerating foam before injection into the sandstone was also studied. The pressure profiles in the core were monitored using three pressure taps along the length of the core. A systematic study of foaming with different fluid velocities and foam qualities provides extensive data for foam flow conditions. 134 refs., 57 figs., 2 tabs.

  12. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    PubMed

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  13. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    PubMed

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16 h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100 nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid.

  14. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams

    NASA Astrophysics Data System (ADS)

    Kim, Ijung; Worthen, Andrew J.; Johnston, Keith P.; DiCarlo, David A.; Huh, Chun

    2016-04-01

    Nanoparticles are a promising alternative to surfactants to stabilize emulsions or foams in enhanced oil recovery (EOR) processes due to their effectiveness in very harsh environments found in many of the oilfields around the world. While the size-dependent properties of nanoparticles have been extensively studied in the area of optics or cellular uptake, little is known on the effects of nanoparticle size on emulsion/foam generation, especially for EOR applications. In this study, silica nanoparticles with four different sizes (5, 12, 25, and 80 nm nominal diameter) but with the same surface treatment were employed to test their emulsion or foam generation behavior in high-salinity conditions. The decane-in-brine emulsion generated by sonication or flowing through sandpack showed smaller droplet size and higher apparent viscosity as the nanoparticle size decreased. Similarly, the CO2-in-brine foam generation in sandstone or sandpacks was also significantly affected by the nanoparticle size, exhibiting higher apparent foam viscosity as the nanoparticle size decreased. In case of foam generation in sandstone cores with 5 nm nanoparticles, a noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying a strong foam generation initially; and then the trapping of the generated foam in the rock pores, as the flow velocity decreased. On the other hand, weak foams stabilized with larger nanoparticles indicated a rapid coalescence of bubbles which prevented foam generation. Overall, stable emulsions/foams were achievable by the smaller particles as a result of greater diffusivity and/or higher number concentration, thus allowing more nanoparticles with higher surface area to volume ratio to be adsorbed at the fluid/fluid interfaces of the emulsion/foam dispersion.

  15. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  16. Influence of surfactants on diesel water shedding properties

    SciTech Connect

    McCarthy, K.J.; O`Brien, T.J.; Weers, J.J.

    1994-10-01

    The properties of emulsions formed when water contacts low sulfur diesel fuel supplemented with indigenous surfactants or chemical additives were studied. Small amounts of the additives were found to have dramatic effects on the stabilization or breaking of the emulsions formed during ASTM D-1094 testing. Dynamic interfacial tension measurements were also recorded to determine the influence of the surfactants on the interfacial film surrounding the water droplets in the emulsions. The results of both the ASTM test and the interfacial tension measurements were compared. 18 refs., 19 figs.

  17. Synthesis of Fluorosurfactants for Emulsion-Based Biological Applications

    PubMed Central

    2015-01-01

    Microemulsion represents an attractive platform for fundamental and applied biomedical research because the emulsified droplets can serve as millions of compartmentalized micrometer-sized reactors amenable to high-throughput screening or online monitoring. However, establishing stable emulsions with surfactants that are compatible with biological applications remains a significant challenge. Motivated by the lack of commercially available surfactants suitable for microemulsion-based biological assays, this study describes the facile synthesis of a biocompatible fluorosurfactant with nonionic tris(hydroxymethyl)methyl (Tris) polar head groups. We have further demonstrated compatibility of the developed surfactant with diverse emulsion-based applications, including DNA polymeric nanoparticle synthesis, enzymatic activity assay, and bacterial or mammalian cell culture, in the setup of both double- and multiphases of emulsions. PMID:24646088

  18. Influence of nonionic surfactants on the surface and interfacial film properties of asphaltenes investigated by Langmuir balance and Brewster angle microscopy.

    PubMed

    Fan, Yanru; Simon, Sébastien; Sjöblom, Johan

    2010-07-06

    The interfacial film properties of asphaltenes and their mixtures with nonionic surfactants (polyoxyethylene nonylphenols) have been investigated using a Langmuir trough and a Brewster angle microscope (BAM). The effects of asphaltene concentration, surfactant/asphaltene ratio, and surfactant HLB (hydrophilic-lipophilic balance) have been studied at the air-water interface. The BAM image for asphaltenes show irregular domains with various structures even before compression, indicating preaggregation of asphaltenes in the spreading solution. The film morphology depends on both concentration and total amount of asphaltenes in the spreading solution. Lower proportions of surfactant (5 wt %) compared to asphaltenes increases the film compressibility and disperses the asphaltene domains; however, the behavior of the surface film is still dominated by asphaltenes. When the proportion of surfactant is increased to 50 wt %, surfactant molecules can occupy the interface top layer with multilayer formation by asphaltenes beneath this layer, and a relatively homogeneous film is observed by BAM. At the oil-water interface, surfactant was examined as both an inhibitor and a demulsifier for water-in-oil emulsions. Surfactants with intermediate HLB = 14.2 are most efficient in both cases preventing asphaltene adsorption at the interface by competitive adsorption and breaking the existing asphaltene film by displacement of asphaltenes from the interface.

  19. Insecticidal activity of caffeine aqueous solutions and caffeine oleate emulsions against Drosophila melanogaster and Hypothenemus hampei.

    PubMed

    Araque, Pedronel; Casanova, Herley; Ortiz, Carlos; Henao, Beatriz; Pelaez, Carlos

    2007-08-22

    The bioactivity of caffeine aqueous solutions (0.20-2.00 wt %) and caffeine oleate emulsions (20 vol % oil, 2.00 wt % surfactant, 0.04 wt % caffeine, 0.05 wt % oleic acid) was assessed against two biological models: Drosophila melanogaster and Hypothenemus hampei. The caffeine aqueous solutions showed no insecticidal activity, whereas caffeine oleate emulsions had high bioactivity against both D. melanogaster and H. hampei. By preparing the caffeine oleate emulsions with anionic surfactants (i.e., sodium lauryl sulfate, sodium laureate, and sodium oleate), we obtained a lethal time 50 (LT50) of 23 min. In the case of caffeine oleate emulsions prepared with nonionic surfactants (i.e., Tween 20 and Tween 80), a LT50 of approximately 17 min was observed. The high bioactivity of the caffeine oleate emulsion against H. hampei opens the possibility of using this insecticide formulation as an effective way to control this pest that greatly affects coffee plantations around the world.

  20. Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions.

    PubMed

    Pera-Titus, Marc; Leclercq, Loïc; Clacens, Jean-Marc; De Campo, Floryan; Nardello-Rataj, Véronique

    2015-02-09

    Pickering emulsions are surfactant-free dispersions of two immiscible fluids that are kinetically stabilized by colloidal particles. For ecological reasons, these systems have undergone a resurgence of interest to mitigate the use of synthetic surfactants and solvents. Moreover, the use of colloidal particles as stabilizers provides emulsions with original properties compared to surfactant-stabilized emulsions, microemulsions, and micellar systems. Despite these specific advantages, the application of Pickering emulsions to catalysis has been rarely explored. This Minireview describes very recent examples of hybrid and composite amphiphilic materials for the design of interfacial catalysts in Pickering emulsions with special emphasis on their assets and challenges for industrially relevant biphasic reactions in fine chemistry, biofuel upgrading, and depollution.

  1. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-09-30

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass distribution

  2. Microencapsulation using an oil-in-water-in-air 'dry water emulsion'.

    PubMed

    Carter, Benjamin O; Weaver, Jonathan V M; Wang, Weixing; Spiller, David G; Adams, Dave J; Cooper, Andrew I

    2011-08-07

    We describe the first example of a tri-phasic oil-in-water-in-air 'dry water emulsion'. The method combines highly stable oil-in-water emulsions prepared using branched copolymer surfactants, with aqueous droplet encapsulation using 'dry water' technology.

  3. Dynamics of Polydisperse Coarsening Emulsion

    NASA Astrophysics Data System (ADS)

    Mirenda, Nic; Hicock, Harry; Feitosa, Klebert; Crocker, John

    2014-03-01

    Soft glassy materials display complex fluid behavior characterized by a yield stress and distinctive elastic and viscous moduli. The complexity emerges from the disordered structure and interactions between the athermal particles. Here we study the dynamics of an optically clear and neutrally buoyantly emulsion whose droplets coarsen driven by Laplace pressure induced diffusion. The emulsion displays an anomalous loss modulus typical of coarsening foam systems. We use confocal microscopy to image the droplets, measure their size and centroid location, and track their evolution in time. The relaxation process of the coarsening emulsion is found to be marked by a continuous, slow structural evolution interspersed by sudden droplet swaps. We characterize the time scales of each process and the statistics of droplet rearrangements. We acknowledge support from Research Corporation and NSF-DMR-1229383.

  4. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2003-03-31

    The aim of the project is to develop a knowledge base to help with the design of enhanced process for mobilizing and extracting untrapped oil. We emphasize on evaluating novel surfactant mixtures and on obtaining optimum combinations of the surfactants in chemical flooding EOR process. An understanding of the micellar shape and size is crucial since these physical properties directly determine the crude oil removal efficiency. Analytical ultracentrifugation experiments were used to test the multi-micelle model proposed earlier and formulate the relationships between mixed micelle formation and the surfactant structure. Information on partial specific volume of surfactants and their mixtures is required to treat analytical ultracentrifuge data. In the last report, it was noted that the partial specific volumes of the sugar-based surfactants obtained experimentally did not agree with those from theoretical calculations. A scrutiny of partial specific volumes of the four sugar-based surfactants revealed that conformational changes upon micelle formation are responsible for the large deviation. From sedimentation equilibrium experiments, two types of micelles were identified for the nonionic polyethylene surfactant and its mixtures with the sugar-based surfactant, dodecyl maltoside. The average aggregation numbers of n-dodecyl-{beta}-D-maltoside and nonyl phenol ethoxylated decyl ether agreed with those reported in literature using other techniques. Our study displayed, for the first time, that small micelles might coexist with large micelles at high concentrations due to unique structures of the surfactant although classical thermodynamic theory supports only one type of micelle. Initial dynamic light scattering results support the results for the same mixed surfactant system from analytical ultracentrifuge equilibrium technique. The implication of this finding lies in the fact that efficiency of oil recovery will be improved due to the large micellar size, its

  5. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  6. Unexpected differences in dissolution behavior of tablets prepared from solid dispersions with a surfactant physically mixed or incorporated.

    PubMed

    de Waard, H; Hinrichs, W L J; Visser, M R; Bologna, C; Frijlink, H W

    2008-02-12

    In a previous study, it was shown that the incorporation of poorly soluble drugs (BCS class II) in sugar glasses could largely increase the drug's dissolution rate [van Drooge, D.J., Hinrichs, W.L.J., Frijlink, H.W., 2004 b. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions. J. Control. Release 97, 441-452]. However, the application of this technology had little effect when high drug loads or fast dissolving sugars were applied due to uncontrolled crystallization of the drug in the near vicinity of the dissolving tablet. To solve this problem a surfactant, sodium lauryl sulphate (SLS), was incorporated in the sugar glass or physically mixed with it. Diazepam and fenofibrate were used as model drugs in this study. The dissolution behavior of tablets prepared from solid dispersions in which SLS was incorporated was strongly improved. Surprisingly, the dissolution rate of tablets prepared from physical mixtures of SLS and the solid dispersion was initially fast, but slowed down after about 10 min. The solid dispersions were characterized by DSC to explain this unexpected difference. These measurements revealed the existence of interaction of SLS with both the drug and the sugar in the solid dispersion when SLS was incorporated. It is hypothesized that due to this interaction, the dissolution of SLS was slowed down by which a high solubility of the drug in the near vicinity of the dissolving tablet is maintained during the whole dissolution process. Therefore, uncontrolled crystallization is effectively prevented.

  7. Phase and sedimentation behavior of oil (octane) dispersions in the presence of model mineral aggregates.

    PubMed

    Gupta, Anju; Sender, Maximilian; Fields, Sarah; Bothun, Geoffrey D

    2014-10-15

    Adsorption of suspended particles to the interface of surfactant-dispersed oil droplets can alter emulsion phase and sedimentation behavior. This work examines the effects of model mineral aggregates (silica nanoparticle aggregates or SNAs) on the behavior of oil (octane)-water emulsions prepared using sodium bis(2-ethylhexyl) sulfosuccinate (DOSS). Experiments were conducted at different SNA hydrophobicities in deionized and synthetic seawater (SSW), and at 0.5mM and 2.5mM DOSS. SNAs were characterized by thermogravimetric analysis (TGA) and dynamic light scattering (DLS), and the emulsions were examined by optical and cryogenic scanning electron microscopy. In deionized water, oil-in-water emulsions were formed with DOSS and the SNAs did not adhere to the droplets or alter emulsion behavior. In SSW, water-in-oil emulsions were formed with DOSS and SNA-DOSS binding through cation bridging led to phase inversion to oil-in-water emulsions. Droplet oil-mineral aggregates (OMAs) were observed for hydrophilic SNAs, while hydrophobic SNAs yielded quickly sedimenting agglomerated OMAs.

  8. Behavior of asphaltene model compounds at w/o interfaces.

    PubMed

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces.

  9. Effect of surfactant on porosity and swelling behaviors of guar gum-g-poly(sodium acrylate-co-styrene)/attapulgite superabsorbent hydrogels.

    PubMed

    Shi, Xiao-Ning; Wang, Wen-Bo; Wang, Ai-Qin

    2011-11-01

    Novel fast-swelling porous guar gum-g-poly(sodium acrylate-co-styrene)/attapulgite (GG-g-P(NaA-co-St)/APT) superabsorbent hydrogels were prepared by simultaneous free-radical graft copolymerization reaction of guar gum (GG), partially neutralized AA (NaA), styrene (St) and attapulgite (APT) using N,N'-methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution and the surfactant self-assembling templating pore-forming technique. Fourier transform infrared (FTIR) spectroscopy confirmed that the surfactant could be removed from the final hydrogel product by methanol/water (8:1, v/v) washing process and the surfactant only act as micelle template to form pores. The effect of surfactant type on the porous microstructure of the hydrogel was assessed by field emission scanning electron microscope (FESEM). It was shown that incorporation of proper amount of anionic surfactant sodium n-dodecyl sulfate (SDS) in the gelling process of the hydrogel can obviously enhance the swelling capacity and initial swelling rate. The salt-sensitivity of the SDS-added hydrogel in distilled water and 15 mmol/L NaCl, CaCl(2) solution or 15 mmol/L NaCl and CaCl(2) solution was investigated, and it was found that the swelling-deswelling capability is quite reversible. A similar reproducible on-off switching behavior was observed in the 1 mmol/L solution of phosphate buffer at pH 2.1 and 7.4.

  10. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    PubMed

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-04

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature.

  11. High acyl gellan as an emulsion stabilizer.

    PubMed

    Vilela, Joice Aline Pires; da Cunha, Rosiane Lopes

    2016-03-30

    High acyl gellan (0.01-0.2% w/w) was used as stabilizer in oil in water emulsions containing 30% (w/w) of sunflower oil and prepared under different process conditions. Stable emulsions to phase separation could be obtained using high acyl gellan (HA) content above 0.05% (w/w), while low acyl gellan (LA) prepared at the same conditions could not stabilize emulsions. Emulsions properties depended on the process used to mix the oil and gellan dispersion since high pressure homogenization favored stabilization while very high energy density applied by ultrasound led to systems destabilization. Emulsions prepared using high pressure homogenization showed zeta potential values ranging from -50 up to -59 mV, suggesting that electrostatic repulsion could be contributing to the systems stability. Rheological properties of continuous phase were also responsible for emulsions stabilization, since HA gellan dispersions showed high viscosity and gel-like behavior. The high viscosity of the continuous phase could be associated to the presence of high acyl gellan microgels/aggregates. Disentanglement of these aggregates performed by ultrasound strongly decreased the viscosity and consequently affected the emulsions behavior, reducing the stability to phase separation.

  12. Emulsion design to improve the delivery of functional lipophilic components.

    PubMed

    McClements, David Julian

    2010-01-01

    The food industry has used emulsion science and technology for many years to create a diverse range of food products, such as milk, cream, soft drinks, nutritional beverages, dressings, mayonnaise, sauces, dips, deserts, ice cream, margarine, and butter. The majority of these food products are conventional oil-in-water (O/W) or water-in-oil (W/O) type emulsions. Recently, there has been increasing interest within the food industry in either improving or extending the functional performance of foods using novel structured emulsions. This article reviews recent developments in the creation of structured emulsions that could be used by the food and other industries, including nanoemulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. These structured emulsions can be produced from food-grade [generally recognized as safe (GRAS)] ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals), using simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, production, performance, and potential applications of each type of structured emulsion system are discussed.

  13. Decompressing Emulsion Droplets Favors Coalescence

    NASA Astrophysics Data System (ADS)

    Bremond, Nicolas; Thiam, Abdou R.; Bibette, Jérôme

    2008-01-01

    The destabilization process of an emulsion under flow is investigated in a microfluidic device. The experimental approach enables us to generate a periodic train of droplet pairs, and thus to isolate and analyze the basic step of the destabilization, namely, the coalescence of two droplets which collide. We demonstrate a counterintuitive phenomenon: coalescence occurs during the separation phase and not during the impact. Separation induces the formation of two facing nipples in the contact area that hastens the connection of the interfaces prior to fusion. Moreover, droplet pairs initially stabilized by surfactants can be destabilized by forcing the separation. Finally, we note that the fusion mechanism is responsible for a cascade of coalescence events in a compact system of droplets where the separation is driven by surface tension.

  14. Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics.

    PubMed

    Buyukozturk, Fulden; Benneyan, James C; Carrier, Rebecca L

    2010-02-25

    Lipid based drug delivery systems, and in particular self-emulsifying drug delivery systems (SEDDS), show great potential for enhancing oral bioavailability but have not been broadly applied, largely due to lack of general formulation guidance. To help understand how formulation design influences physicochemical emulsion properties and associated function in the gastrointestinal environment, a range of twenty-seven representative self-emulsifying formulations were investigated. Two key functions of emulsion-based drug delivery systems, permeability enhancement and drug release, were studied and statistically related to three formulation properties - oil structure, surfactant hydrophilic liphophilic balance (HLB) values, and surfactant-to-oil ratio. Three surfactants with HLB values ranging from 10 to 15 and three structurally different oils (long chain triglyceride, medium chain triglyceride, and propylene glycol dicaprylate/dicaprate) were combined at three different weight ratios (1:1, 5:1, 9:1). Unstable formulations of low HLB surfactant (HLB=10) had a toxic effect on cells at high (1:1) surfactant concentrations, indicating the importance of formulation stability for minimizing toxicity. Results also indicate that high HLB surfactant (Tween 80) loosens tight junction at high (1:1) surfactant concentrations. Release coefficients for each emulsion system were calculated. Incorporation of a long chain triglyceride (Soybean oil) as the oil phase increased the drug release rate constant. These results help establish an initial foundation for relating emulsion function to formulation design and enabling bioavailability optimization across a broad, representative range of SEDDS formulations.

  15. Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: a potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions.

    PubMed

    Lucas, Ricardo; Comelles, Francisco; Alcántara, David; Maldonado, Olivia S; Curcuroze, Melanie; Parra, Jose L; Morales, Juan C

    2010-07-14

    Our group has recently observed a nonlinear tendency in antioxidant capacity of different hydroxytyrosol fatty acid esters in fish oil-in-water emulsions, where a maximum of antioxidant efficiency appeared for hydroxytyrosol octanoate. These results appear to disagree with the antioxidant polar paradox. Because the physical location of the antioxidants in an oil-water interface has been postulated as an important factor in explaining this behavior, we have prepared a series of tyrosol and hydroxytyrosol fatty acid esters with different chain length and studied their surface-active properties in water, because these physicochemical parameters could be directly related to the preferential placement at the interface. We have found that tyrosol and hydroxytyrosol fatty acid esters are relevant surfactants when the right hydrophilic-lipophilic balance (HLB) is attained and, in some cases, as efficient as emulsifiers commonly used in industry, such as Brij 30 or Tween 20. Moreover, a nonlinear dependency of surfactant effectiveness is observed with the increase in chain length of the lipophilic antioxidants. This tendency seems to fit quite well with the reported antioxidant activity in emulsions, and the best antioxidant of the series (hydroxytyrosol octanoate) is also a very effective surfactant. This potential explanation of the nonlinear hypothesis will help in the rational design of antioxidants used in oil-in-water emulsions.

  16. Factors affecting protein transfer into surfactant-isooctane solution: a case study of extraction behavior of chemically modified cytochrome c.

    PubMed

    Ono, T; Goto, M

    1998-01-01

    The extraction mechanism of proteins by surfactant molecules in an organic solvent has been investigated using a chemically modified protein. We conducted guanidylation on lysine residues of cytochrome c by replacing their amino groups with homoarginine to enhance the protein-surfactant interaction. Results have shown that guanidylated cytochrome c readily forms a hydrophobic complex with dioleyl phosphoric acid (DOLPA) through hydrogen bonding between the phosphate moiety and the guanidinium groups. Although improved protein-surfactant interaction activated the formation of a hydrophobic complex at the interface, it could not improve the protein transfer in isooctane. It has been established that the protein extraction mechanism using surfactant molecules is mainly governed by two processes: formation of an interfacial complex at the oil-water interface and the subsequent solubilization of the complex into the organic phase. In addition, a kinetic study demonstrated that guanidylation of lysine accelerated the initial extraction rate of cytochrome c. This fact implies that the protein transferability from aqueous phase into organic phase depends on the protein-surfactant interaction which can be modified by protein surface engineering.

  17. Synthesis of amphipathic block copolymers based on polyisobutylene and polyoxyethylene and their application in emulsion polymerization

    SciTech Connect

    Sar, B.

    1992-12-31

    Polymer colloids stabilized by polymeric surfactants are of great interest both commercially and academically. It has been found that these materials enhance latex stabilization in a number of applications. The polymeric surfactants are amphipathic block and graft copolymers containing both hydrophilic and hydrophobic moieties. The current study involved the synthesis of a series of amphipathic triblock copolymers, polyisobutylene-block-polyoxyethylene-block-polyisobutylene (PIB-b-POE-b-PIB), for use in the emulsion polymerization of styrene (STY), methyl methacrylate (MMA), and vinyl acetate (VAc). The stabilizing effectiveness of these triblock copolymers was studied as a function of their blocklength. When the molecular weight of the POE center block was changed from M{sub n} = 2,000 to 20,000 g/mole, stable lattices were obtained in emulsion polymerization with MMA, STY, and VAc as the monomers. In all cases, the polymerization rates remained constant, while the number of particles/volume decreased with increasing POE chain length. When the molecular weight of the PIB end blocks was changed from M{sub n} = 400 to 2,600 g/mole keeping the molecular weight of the POE center block constant at M{sub n} = 20,000 g/mole, the poly(methyl methacrylate) and poly(vinyl acetate) lattices exhibited similar behavior, i.e., the number of particles and particle sizes remained the same, but the rate of polymerization reached a maximum at 87 wt% POE content. In the case of poly(styrene) both the rate of polymerization and the number of particles remained constant. The emulsion polymerization of other monomers such as butadiene, acrylonitrile, methyl acrylate, ethyl acrylate, and butyl acrylate was carried out by using one triblock copolymer, i.e., PIB(400)-b-POE (8,000)-b-PIB-(400). Stable lattices were also formed in all cases.

  18. Dehydration of oil waste emulsions by means of flocculants

    SciTech Connect

    Gandurina, L.V.; Butseva, L.N.; Shtondina, V.S.

    1995-05-01

    Oil waste emulsions are formed in the course of pumping petroleum crudes and products and are collected from the surfaces of equipment in recirculating water systems and wastewater disposal facilities (oil separators, sand traps, oil traps, holding pits for accidental spills, settlers, ponds, sludge accumulators, and so on). Emulsions are also obtained in the course of cleaning equipment in crude oil desalting and dehydration units. Such emulsions are stable, structurized systems that are very resistant to dewatering by heating and settling in separator tanks. In order to break stabilized emulsions, i.e., in order to ensure complete coalescence of drops when they collide, it is not sufficient to increase the forces of mutual attraction of drops at the moment of collision; in addition, the protective shell must be either destroyed or weakened. Demulsifying agents, or surfactants, will displace the stabilizers. This report is concerned with demulsifier efficiency.

  19. Ionic liquids as surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, N. A.; Safonova, E. A.

    2010-10-01

    Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

  20. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism.

    PubMed

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-05

    Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R(2) 0.9928-0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG(0)<0, ΔH(0)>0, ΔS(0)>0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  1. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures.

    PubMed

    Trotta, Michele; Pattarino, Franco; Ignoni, Terenzio

    2002-03-01

    Lipid emulsion particles containing 10% of medium chain triglycerides were prepared using 2% w/w of a mixture 1:1 w/w of purified soya phosphatidylcholine and 2-hexanoyl phosphatidylcholine as emulsifier mixture, for use as drug carriers. The mean droplet sizes of emulsions, prepared using an Ultra Turrax or a high-pressure homogenizer, were about 288 and 158 nm, respectively, compared with 380 and 268 nm for emulsions containing lecithin, or 325 and 240 nm for those containing 6-phosphatidylcholine. The stability of the emulsions, determined by monitoring the decrease of a lipophilic marker at a specified level within the emulsion, and observing coalescence over time, was also greatly increased using the emulsifier mixture. The emulsion stability did not notably change in the presence of a model destabilizing drug, indomethacin. The use of a second hydrophilic surfactant to adjust the packing properties of the lecithin at the oil-water interface provided an increase in the stability of lipid emulsions, and this may be of importance in the formulation of drug delivery systems.

  2. Effect of cationic surfactants on characteristics and colorimetric behavior of polydiacetylene/silica nanocomposite as time-temperature indicator

    NASA Astrophysics Data System (ADS)

    Nopwinyuwong, Atchareeya; Kitaoka, Takuya; Boonsupthip, Waraporn; Pechyen, Chiravoot; Suppakul, Panuwat

    2014-09-01

    Polydiacetylene (PDA)/silica nanocomposites were synthesized by self-assembly method using polymerizable amphiphilic diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA). Addition of cationic surfactants (PDADMAC and CTAB) to PDA/SiO2 nanocomposites induced higher intermolecular force which affected their size, shape and color transition. Pure PDA, PDA/SiO2, PDA/SiO2/PDADMAC and PDA/SiO2/CTAB were investigated by particle size analysis, TEM, SEM, UV-vis spectroscopy and FT-IR. It was found that the PDA/SiO2 nanocomposites exhibited slightly larger particle sizes than those of other samples. The PDA/SiO2 nanocomposites with a core-shell structure were almost regarded as spherical-shaped particles. Cationic surfactants, especially CTAB, presumably affected the particle size and shape of PDA/SiO2 nanocomposites due to the disruption of hydrogen bonding between PDA head group and ammonium group. The colorimetric response of both PDA/SiO2/surfactant and surfactant-free PDA/SiO2 aqueous solutions directly changed in relation to time and temperature; thus they were expected to be applied as a new polymer-based time-temperature indicator (TTI).

  3. Oil emulsions of fluorosilicone fluids

    SciTech Connect

    Keil, J. W.

    1985-08-27

    Emulsions of fluorosilicone fluids in mineral oil are disclosed. These emulsions are stabilized by a polydimethylsiloxane-polybutadiene copolymer or a polydimethylsiloxane-hydrogenated polybutadiene copplymer. The emulsions are an effective foam suppressant for organic liquids, especially crude petroleum.

  4. Solution Behavior and Interaction of Pepsin with Carnitine Based Cationic Surfactant: Fluorescence, Circular Dichroism, and Calorimetric Studies.

    PubMed

    Ghosh, Subhajit; Dolai, Subhrajyoti; Patra, Trilochan; Dey, Joykrishna

    2015-10-01

    The present work reports the pH-induced conformational changes of pepsin in solution at room temperature. The conformational change makes the protein surface active. The protein was found to be present in the partially denatured state at pH 8 as well as at pH 2. The fluorescence probe and circular dichroism (CD) spectra suggested that the most stable state of pepsin exists at pH 5. The binding affinities of pepsin in its native and denatured states for a D,L-carnitine-based cationic surfactant (3-hexadecylcarbamoyl-2-hydroxypropyl)trimethylammonium chloride (C16-CAR) were examined at very low concentrations of the surfactant. The thermodynamics of the binding processes were investigated by use of isothermal titration calorimetry. The results were compared with those of (3-hexadecylcarbamoylpropyl)trimethylammonium chloride (C16-PTAC), which is structurally similar to C16-CAR, but without the secondary -OH functionality near the headgroup. None of the surfactants were observed to undergo binding with pepsin at pH 2, in which it exists in the acid-denatured state. However, both of the surfactants were found to spontaneously bind to the most stable state at pH 5, the partially denatured state at pH 8, and the alkaline denatured state at pH 11. Despite the difference in the headgroup structure, both of the surfactants bind to the same warfarin binding site. Interestingly, the driving force for binding of C16-CAR was found to be different from that of C16-PTC at pH ≥ 5. The steric interaction of the headgroup in C16-CAR was observed to have a significant effect on the binding process.

  5. Thermodynamically Stable Pickering Emulsions Stabilized by Janus Dumbbells

    NASA Astrophysics Data System (ADS)

    Tu, Fuquan; Park, Bum Jun; Lee, Daeyeon

    2013-03-01

    Janus particles have two sides with different, often opposite, surface properties. Janus dumbbell is one type of Janus particles that consists of two partially fused spherical lobes. It is possible to independently control the geometry and surface wettability of Janus dumbbells. Janus dumbbells can also be produced in a large quantity, making them useful for practical applications such as emulsion stabilization. In this work, we calculate the free energy of emulsion formation using amphiphilic Janus dumbbells as solid surfactants. In contrast to kinetically stable emulsions stabilized by homogeneous particles, emulsion stabilized by Janus dumbbells can be thermodynamically stable. There also exists an optimal radius of droplets that can be stabilized by infinite or limited number of amphiphilic dumbbells in the continuous phase. We demonstrate that the optimal radius of dumbbell-stabilized droplets can be predicted based on the volume of the dispersed phase and the volume fraction of dumbbells in the continuous phase. We believe our calculation will provide guidelines for using Janus dumbbells as colloid surfactants to generate stable emulsions.

  6. Structural studies of commercial fat emulsions used in parenteral nutrition.

    PubMed

    Li, J; Caldwell, K D

    1994-11-01

    In this paper, we demonstrate that by employing a combination of sedimentation field-flow fractionation (sedFFF) and other characterization techniques, such as photon correlation spectroscopy (PCS) and freeze-fracture electron microscopy (EM), it is possible to show that commercial fat emulsions of similar overall chemical compositions not only may exhibit different size distributions but may have different densities as well. A closer look at the density difference between droplet and suspension medium, on the one hand, and the droplet size, on the other, demonstrates that fat emulsions may have structures other than the traditional oil droplet surrounded by a monolayer of surfactant. From our determined and simulated density differences, we propose that these emulsion droplets may have a multilayered surfactant arrangement as well as an inclusion of water vesicles in the oil phase of the emulsion. Freeze-fracture EM observations provide evidence to confirm the existence of such complex structures. These findings are supported by recent EM work from other laboratories, as well as through chemical verification of elevated water contents in the oil droplets of these emulsions.

  7. Detoxifying emulsion for overdosed aspirin intoxication.

    PubMed

    Zhang, Wenjun; Stambouli, Moncef; Pareau, Dominique

    2013-01-30

    Aspirin overdose could lead to intoxication, with the clinical manifestations of vomit, pulmonary edema and severe dyspnea. Stomach washing, emetics and activated charcoal are the common treatments with a limited efficiency for the intoxication. In this study, an active emulsion for aspirin intoxication was prepared with the detoxifying efficiency of 100% in less than 15 min, with the conditions of dodecane used as the oil phase, 8% Abil EM90 as the surfactant and 0.1 mol/L sodium hydroxide as the inner aqueous phase in a volume ratio of 2 between internal aqueous phase and the oil phase.

  8. Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization.

    PubMed

    Gupta, Chetali; Washburn, Newell R

    2014-08-12

    Kraft lignin grafted with hydrophilic polymers has been prepared using reversible addition-fragmentation chain-transfer (RAFT) polymerization and investigated for use as a surfactant. In this preliminary study, polyacrylamide and poly(acrylic acid) were grafted from a lignin RAFT macroinitiator at average initiator site densities estimated to be 2 per particle and 17 per particle. The target degrees of polymerization were 50 and 100, but analysis of cleaved polyacrylamide was consistent with a higher average molecular weight, suggesting not all sites were able to participate in the polymerization. All materials were readily soluble in water, and dynamic light scattering data indicate polymer-grafted lignin coexisted in isolated and aggregated forms in aqueous media. The characteristic size was 15-20 nm at low concentrations, and aggregation appeared to be a stronger function of degree of polymerization than graft density. These species were surface active, reducing the surface tension to as low as 60 dyn/cm at 1 mg/mL, and a greater decrease was observed than for polymer-grafted silica nanoparticles, suggesting that the lignin core was also surface active. While these lignin surfactants were soluble in water, they were not soluble in hexanes. Thus, it was unexpected that water-in-oil emulsions formed in all surfactant compositions and solvent ratios tested, with average droplet sizes of 10-20 μm. However, although polymer-grafted lignin has structural features similar to nanoparticles used in Pickering emulsions, its interfacial behavior was qualitatively different. While at air-water interfaces, the hydrophilic grafts promote effective reductions in surface tension, we hypothesize that the low grafting density in these lignin surfactants favors partitioning into the hexanes side of the oil-water interface because collapsed conformations of the polymer grafts improve interfacial coverage and reduce water-hexanes interactions. We propose that polymer-grafted lignin

  9. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.

  10. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  11. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    PubMed

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  12. Cationic gemini surfactant as a dual linker for a cholic acid-modified polysaccharide in aqueous solution: thermodynamics of interaction and phase behavior.

    PubMed

    Bai, Guangyue; Wu, Hui; Lou, Pengxiao; Wang, Yujie; Nichifor, Marieta; Zhuo, Kelei; Wang, Jianji; Bastos, Margarida

    2017-01-04

    Understanding the thermodynamics of formation of biocompatible aggregates is a key factor in the bottom up approach to the development of novel types of drug carriers and their structural tuning using small amphiphilic molecules. We chose an anionic amphiphilic and biocompatible polymer that consists of a dextran and grafted cholic acid pendants, randomly distributed along the dextran backbone, with a degree of substitution (DS) of 15 mol% (designated Dex-15CACOONa). The thermodynamics of interaction and phase behavior of mixtures of this polyelectrolyte and a cationic gemini surfactant hexanediyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C6C12Br2) or its monomer surfactant dodecyltrimethylammonium bromide (DTAB) in aqueous solution were characterized by isothermal titration calorimetry (ITC) and turbidity, together with cryogenic transmission electron microscopy (Cryo-TEM). The various critical concentrations and the enthalpy changes of the corresponding phase transitions for the oppositely charged system were obtained from the plots of the observed enthalpy change (ΔHobs) and turbidity measurements as a function of gemini concentration. The morphologies of the aggregates in various phases were observed by Cryo-TEM. Altogether these results suggest the critical role of gemini as a dual linker. At the concentrations where the crosslink between the pendant aggregates happens, the free gemini concentration is proximately zero and the aggregate retains its negative charge. The analysis of various factors involved in the interaction allowed a rationalization of the driving forces for mixed aggregate formation, which will contribute to a subsequent rational design of drug delivery systems based on this polymer/surfactant system.

  13. Surfactant damping of water waves

    NASA Astrophysics Data System (ADS)

    Lapham, Gary S.; Dowling, David R.; Schultz, William W.

    1997-11-01

    The most well known and perhaps most important distinguishing characteristic of a water surface laden with surfactant is the profound increase in small-wave damping with the addition of even small amounts of surfactant material. It would seem to follow that damping increases with increasing surfactant concentration. This is undoubtedly true for some surfactants, however our experiments with a soluble surfactant show that it is possible to increase surfactant concentration and measure a decrease in damping. While the increased concentration is accompanied by a dramatic decrease in measured static surface tension, some of the capillary-wave frequency regime is less damped. Experimental measurements of the real and imaginary parts of the wave speed are compared with existing theory where at least one other physical quantity besides surface tension is needed to properly model the interface. Our on-going work with insoluble surfactants may also provide an example of this type of behavior for materials that do not readily transfer to and from the bulk water. [Supported by the Office of Naval Research

  14. Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear.

    PubMed

    Dinkgreve, M; Velikov, K P; Bonn, D

    2016-08-17

    Colloidal particles are often used to make Pickering emulsions that are reported to be very stable. Commonly the stabilization is a combined effect of particle adsorbing at the fluid interface and a particle network in the continuous phase; the contribution of each to the overall stability is difficult to assess. We investigate the role of LAPONITE® particles on high internal phase emulsion stability by considering three different situations: emulsion stabilization by surfactant only, by surfactant plus clay particles, and finally clay particles only. To clarify the structure of the emulsion and the role of the clay particles, we have succeeded in fluorescently labelling the clay particles by adsorbing the dye onto the particle surfaces. This allows us to show directly using confocal microscopy, that the clay particles are not only located at the interface but also aggregate and form a gel in the continuous aqueous phase. We show that the emulsions in the presence of surfactant (with or without clay) are stable to coalescence and shear. Without surfactant (with only LAPONITE® as stabilizer) the emulsions are stable to coalescence for several weeks, however they destabilize rapidly under shear. Our results suggest that the formation of the emulsions is mostly due to gel formation of the clay particles in the continuous phase, rather than that the clay is an emulsifier. This gel formation also accounts for the instability of the emulsions to shear that we observe caused by shear thinning of the continuous gel and inability of the adsorbed particles to rearrange effectively around the droplets due to their attractive nature.

  15. Synthesis of nanocrystalline CeO{sub 2} particles by different emulsion methods

    SciTech Connect

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk

    2012-05-15

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 Degree-Sign C to obtain CeO{sub 2}. The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders from the three methods were in the range of 4-10 nm and 5.32-145.73 m{sup 2}/g, respectively. The CeO{sub 2} powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO{sub 2} prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO{sub 2}. - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO{sub 2} prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: Black-Right-Pointing-Pointer Nano-sized CeO{sub 2} was successfully prepared by three different emulsion methods. Black-Right-Pointing-Pointer The colloidal emulsion aphrons method producing CeO{sub 2} with the highest surface area. Black-Right-Pointing-Pointer The surface tensions of a cerium solution have slightly effect on the particle size. Black-Right-Pointing-Pointer The size control could be interpreted in terms of the adsorption of the surfactant.

  16. Droplet-based microfluidics and the dynamics of emulsions

    NASA Astrophysics Data System (ADS)

    Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng

    2012-02-01

    Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)

  17. Preparation of novel silicone multicompartment particles by multiple emulsion templating and their use as encapsulating systems.

    PubMed

    Vilanova, Neus; Solans, Conxita; Rodríguez-Abreu, Carlos

    2013-12-10

    Multicompartment poly(dimethylsiloxane) particles were produced for the first time using water-in-oil-in-water (W1/O/W2) emulsions as templates. Multiple silicone W1/O/W2 emulsions were successfully prepared by using silicone precursors with a low viscosity. Several formulation parameters were studied to determine their effect on the properties of emulsions and derived particles. It was observed that the mass fraction of the inner aqueous phase (φ(W1)) and the concentration of both the hydrophobic and hydrophilic surfactants played a crucial role in the morphology and stability of the emulsions. Thus, the derived silicone porous particles also showed different characteristics depending on the emulsion formulation because of the templating effect. At low φ(W1) or high concentrations of the hydrophobic surfactant, particles showed smaller pore sizes as a result of more stable inner droplets. On the other hand, high concentrations of the hydrophobic surfactant resulted in an increase in the size of the derived particles, whereas high concentrations of the hydrophilic surfactant caused the opposite effect. In addition, fluorescein was encapsulated into the hydrophobic particles during the synthesis process and released in a controlled manner. The possibility to encapsulate simultaneously but independently two different hydrophilic components inside the same globule was also tested. On the basis of these results, the obtained silicone porous particles are envisioned to have applications in several advanced fields, for instance, as hydrophobic delivery systems.

  18. The effect of surfactants on drop deformation, collisions and breakup

    NASA Astrophysics Data System (ADS)

    Cristini, Vittorio; Zhou, Hua; Lowengrub, John; Macosko, Chris

    2001-11-01

    The dynamics of deformable drops in viscous flows are investigated via numerical simulations. A novel finite-element/sharp-interface algorithm based on adaptive tetrahedra (Hooper et al. 2001) for simulations is used. Three-dimensional drop deformation is studied in the presence of a surfactant coating of the drop interface. Under these conditions, flow-driven surfactant redistribution induces Marangoni stresses at the interface that modify the hydrodynamics and thus affect the rheology of emulsions and polymer blends. The effects of the equation of state that relates the concentration of surfactant on the interface to the surface tension, and of diffusion and solubility of surfactant molecules are included in our model. Results of simulations under strong-flow conditions are presented that describe the effect of surfactants on the development of lamellar microstructures in emulsions (Wetzel and Tucker 2001; Cristini et al. 2001). More stable drop lamellae with larger interfacial area are predicted in the presence of surfactants, in agreement with recent experimental observations (Jeon and Macosko 2000). In addition, the feasibility of accurate simulations of drop collisions and breakup is demonstrated using our model, and preliminary results on the effects of surfactants on these phenomena are presented.

  19. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery, Annual Report, September 30, 1999-September 30, 2000

    SciTech Connect

    Somasundaran, Prof. P.

    2001-04-04

    The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

  20. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions

    NASA Astrophysics Data System (ADS)

    Golemanov, K.; Tcholakova, S.; Denkov, N. D.; Ananthapadmanabhan, K. P.; Lips, A.

    2008-11-01

    This experimental study is focused on the process of bubble breakup in steadily sheared foams, at constant shear rate or constant shear stress. Two different types of surfactants were used and glycerol was added to the aqueous phase, to check how the bubble breakup depends on the surface modulus and on bulk viscosity of the foaming solutions. The experiments show that bubble breakup in foams occurs above a well defined critical dimensionless stress, τ˜CR≡(τCRR/σ)≈0.40 , which is independent of surfactant used, solution viscosity, and bubble volume fraction (varied between 92 and 98 %). Here τCR is the dimensional shear stress, above which a bubble with radius R and surface tension σ would break in sheared foam. The value of the critical stress experimentally found by us τ˜CR≈0.40 , is about two orders of magnitude lower than the critical stress for breakup of single bubbles in sheared Newtonian liquids, τ˜CR≈25 . This large difference in the critical stress is explained by the strong interaction between neighboring bubbles in densely populated foams, which facilitates bubble subdivision into smaller bubbles. A strong effect of bubble polydispersity on the kinetics of bubble breakup (at similar mean bubble size) was observed and explained. Experiments were also performed with hexadecane-in-water emulsions of drop volume fraction 83% ⩽Φ⩽95% to study drop breakup in concentrated emulsions. Qualitatively similar behavior was observed to that of foams, with the critical dimensionless stress for drop breakup being lower, τ˜CR≈0.15 , and practically independent of the drop volume fraction and viscosity ratio (varied between 0.01 and 1). This critical stress is by several times lower than the critical stress for breakage of single drops in sheared Newtonian fluids at comparable viscosity ratio, which evidences for facilitated drop subdivision in concentrated emulsions. To explain the measured low values of the critical stress, a different type of

  1. Design and development of multiple emulsion for enhancement of oral bioavailability of acyclovir.

    PubMed

    Paul, Sumita; Kumar, Abhinesh; Yedurkar, Pramod; Sawant, Krutika

    2013-11-01

    The objective of this investigation was to design and develop water-in-oil-in-water type multiple emulsions (w/o/w emulsions) entrapping acyclovir for improving its oral bioavailability. Multiple emulsions (MEs) were prepared and optimized using Span-80 and Span-83 as lipophilic surfactant and Brij-35 as hydrophilic surfactant. The physio-chemical properties of the w/o/w emulsions - particle size, viscosity, phase separation (centrifugation test) and entrapment efficiency were measured and evaluated along with macroscopic and microscopic observations to confirm multiple nature, homogeneity and globule size. Stability study, in vitro and ex vivo release studies were performed followed by in vivo studies in rats. Stable w/o/w emulsions with a particle size of 33.098 ± 2.985 µm and 85.25 ± 4.865% entrapment efficiency were obtained. Stability studies showed that the concentration of lipophilic surfactant was very important for stability of MEs. Drug release from the prepared formulations showed initial rapid release followed by a much slower release. In vivo studies in rats indicated prolonged release and better oral bioavailability as compared to drug solution. The overall results of this study show the potential of the w/o/w emulsions as promising drug delivery systems for acyclovir.

  2. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  3. Interactions between polymers and surfactants

    SciTech Connect

    de Gennes, P.G. )

    1990-11-01

    A surfactant film (at the water/air interface, or in a bilayer) is exposed to a solution of a neutral, flexible, polymer. Depending on the interactions, and on the Langmuir pressure II of the pure surfactant film, the authors expected to find three types of behavior: (I) the polymer does not absorb; (II) the polymer absorbs and mixes with the surfactant; (III) the polymer absorbs but segregates from the surfactant. Their interest here is in case II. They predict that (a) bilayers become rigid; (b) bilayers, exposed to polymer on one side only, tend to bend strongly; (c) the surface viscosity of monolayers or bilayers is considerably increased; soap films or foams, which usually drain by turbulent (two-dimensional) flows, may be stabilized in case II.

  4. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Sun, Guanqing

    from surfactant-free emulsion polymerization were proved to be effective liquid marble stabilizers. The influence of drying conditions on the properties of liquid marbles was investigated through a macroscopic way. The pH value of the particle dispersion, which influences the protonation states of the particles before freeze-drying, has a profound influence on the property of the stabilized liquid marbles. A brief comment to the future of work of these investigated systems is delivered in the last part.

  5. Preparation of finely dispersed O/W emulsion from fatty acid solubilized in subcritical water.

    PubMed

    Khuwijitjaru, Pramote; Kimura, Yukitaka; Matsuno, Ryuichi; Adachi, Shuji

    2004-10-01

    A novel method for preparing a finely dispersed oil-in-water emulsion is proposed. Octanoic acid dissolved in water at a high temperature of 220 or 230 degrees C at 15 MPa was combined with an aqueous solution of a surfactant and then the mixture was cooled. When a nonionic surfactant, decaglycerol monolaurate (ML-750) or polyoxyethylene sorbitan monolaurate (Tween 20), was used, fine emulsions with a median oil droplet diameter of 100 nm or less were successfully prepared at ML-750 and Tween 20 concentrations of 0.083% (w/v) and 0.042%, respectively, or higher. The diameters were much smaller than those of oil droplets prepared by the conventional homogenization method using a rotor/stator homogenizer. However, an anionic surfactant, sodium dodecyl sulfate, was not adequate for the preparation of such fine emulsions by the proposed method. Although the interfacial tensions between octanoic acid and the surfactant solutions were measured at different temperatures, they were not an indication for selecting a surfactant for the successful preparation of the fine emulsion by the proposed method.

  6. Adsorption and corrosion inhibition behavior of hydroxyethyl cellulose and synergistic surfactants additives for carbon steel in 1M HCl.

    PubMed

    Mobin, Mohammad; Rizvi, Marziya

    2017-01-20

    The inhibitory effect of hydroxyethylcellulose (HEC) on A1020 carbon steel corrosion in 1M HCl solution was evaluated at different concentrations and temperatures using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), UV-vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), atomic force microscopy (AFM) and quantum chemical analysis. Inhibition efficiency was found to increase with increase in concentration of HEC but decreased with increasing temperature. Inhibitory effect of HEC mixed with minimal concentration of surfactants, triton X 100 (TX), cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) was also evaluated. HEC gets adsorbed onto the mild steel surface via mixed type adsorption. Ea, ΔH, ΔS and ΔG⁰ads, the thermodynamic and activation parameters, were calculated and discussed. Adsorption of inhibitor on the steel/solution interface follows Langmuir adsorption isotherm. EIS suggests formation of protective layer over the carbon steel surface. Results of different experimental techniques pertaining to the inhibitory effect of HEC and HEC mixed with surfactants are in good agreement with theoretical quantum chemical investigation.

  7. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium.

    PubMed

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-25

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs=34.10 μM, T=50°C, pH=3.5, and CCR=160 mg/L for the congo red system, and Cs=34.10 μM, T=50°C, pH=6.1, and CDR80=110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  8. Emulsion liquid membrane for textile dye removal: Stability study

    NASA Astrophysics Data System (ADS)

    Kusumastuti, Adhi; Syamwil, Rodia; Anis, Samsudin

    2017-03-01

    Although textile dyes is basically available in very low concentration; it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. The drop size was measured by the aid of microscope and image J software. Initially, methylene blue in simulated wastewater was extracted using a stirrer. Methylene blue concentration was determined using spectrophotometer. The research obtained optimal emulsion at surfactant concentration of 4 wt. %, kerosene as diluent, emulsification time of 30 min, emulsification speed of 2000 rpm. The lowest membrane breakage and the longest stability time were about 0.11% and 150 min, respectively.

  9. Edge-modified amphiphilic Laponite nano-discs for stabilizing Pickering emulsions.

    PubMed

    Yang, Ying; Liu, Zhi; Wu, Dayong; Wu, Man; Tian, Ye; Niu, Zhongwei; Huang, Yong

    2013-11-15

    We investigated the effect of amphiphilic Laponite nano-discs, which were edge-modified by hydrophobic chains, on the properties of Pickering emulsions and Pickering emulsions polymerization. Comparing to unmodified Laponites, these amphiphilic nano-discs can greatly reduce the surface tension, resulting in very stable Pickering emulsions. These particles uniquely combine the Pickering effect with amphiphilic properties similar to the surfactant. Taking advantage of these amphiphilic Pickering emulsifiers, miniemulsion polymerization of styrene was performed. Homogeneous polystyrene nanoparticles with size around 150 nm could thus be prepared.

  10. Fluoropolymer-Based Emulsions for the Intravenous Delivery of Sevoflurane

    PubMed Central

    Fast, Jonathan P.; Perkins, Mark G.; Pearce, Robert A.; Waters, Ralph M.; Mecozzi, Sandro

    2009-01-01

    Background The intravenous delivery of halogenated volatile anesthetics has been previously achieved using phospholipid-stabilized emulsions, e.g. Intralipid. However, fluorinated volatile anesthetics, such as sevoflurane, are partially fluorophilic and do not mix well with classic non-fluorinated lipids. This effect limits the maximum amount of sevoflurane that can be stably emulsified in Intralipid to 3.5% v/v. This is a significant limitation to the potential clinical use of Intralipid-based emulsions. Methods The authors prepared a 20% v/v sevoflurane emulsion using a novel fluorinated surfactant and tested its effectiveness and therapeutic index by administering it to male Sprague-Dawley rats via intravenous injection into the jugular vein. The median effective dose to induce anesthesia (ED50), median lethal dose (LD50), and therapeutic index (LD50 / ED50) were determined. Anesthesia was measured by loss of the forepaw righting reflex. Results The ED50 and LD50 values were found to be 0.41 and 1.05 mL emulsion / kg body weight, respectively. These lead to a therapeutic index of 2.6, which compares favorably to previously determined values of emulsified isoflurane, as well as values for propofol and thiopental. Conclusions A novel semi-fluorinated surfactant was able to considerably increase the maximum amount of stably emulsified sevoflurane compared to Intralipid. These formulations can be used to rapidly induce anesthesia with bolus dosing from which recovery is smooth and rapid. PMID:18813044

  11. Emulsion forming drug delivery system for lipophilic drugs.

    PubMed

    Wadhwa, Jyoti; Nair, Anroop; Kumria, Rachna

    2012-01-01

    In the recent years, there is a growing interest in the lipid-based formulations for delivery of lipophilic drugs. Due to their potential as therapeutic agents, preferably these lipid soluble drugs are incorporated into inert lipid carriers such as oils, surfactant dispersions, emulsions, liposomes etc. Among them, emulsion forming drug delivery systems appear to be a unique and industrially feasible approach to overcome the problem of low oral bioavailability associated with the BCS class II drugs. Self-emulsifying formulations are ideally isotropic mixtures of oils, surfactants and co-solvents that emulsify to form fine oil in water emulsions when introduced in aqueous media. Fine oil droplets would pass rapidly from stomach and promote wide distribution of drug throughout the GI tract, thereby overcome the slow dissolution step typically observed with solid dosage forms. Recent advances in drug carrier technologies have promulgated the development of novel drug carriers such as control release self-emulsifying pellets, microspheres, tablets, capsules etc. that have boosted the use of "self-emulsification" in drug delivery. This article reviews the different types of formulations and excipients used in emulsion forming drug delivery system to enhance the bioavailability of lipophilic drugs.

  12. Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution.

    PubMed

    Li, Yuan; Song, Jiaqi; Tian, Ning; Cai, Jie; Huang, Meihong; Xing, Qiao; Wang, Yalong; Wu, Chuanbin; Hu, Haiyan

    2014-10-01

    Microemulsions show significant promise for enhancing the oral bioavailability of biopharmaceutics classification system (BCS) class II drugs, but how about class III drugs remains unclear. Here we employed metformin hydrochloride (MET) as the model drug and prepared drug-loaded water-in-oil (W/O) microemulsions selecting different hydrophile-lipophile balance (HLB) surfactant systems, using HLB 8 as a cut-off. We examined the phase behaviors of microemulsions after dilution and attempted to correlate these behaviors to drug oral bioavailability. ME-A, including a lower content of surfactants (35%), underwent a transition of W/O emulsion and then became a stable O/W emulsion in a light milky appearance; ME-B, in contrast, introducing a higher content of surfactants (45%), still remained transparent or semitransparent upon dilution. Unexpectedly, ME-A showed significantly higher oral bioavailability, which can be reduced by blocking the lymphatic absorption pathway. Comparatively, the AUC of ME-B is lower, close to MET solution. Both microemulsions behaved similarly in intestinal perfusion test because of the dilution before perfusion, lacking of the important phase transition of W/O emulsion. These findings suggest that W/O microemulsions improve oral bioavailability of BCS class III drug by promoting lymphatic absorption. Analyzing the phase behavior of microemulsions after dilution may help predict the drug oral bioavailability and optimize formulations.

  13. [Studies on the ultraviolet spectra of PU/PA composite emulsions].

    PubMed

    Chai, Shu-Ling; Yang, Li-Yan; Li, Xiao-Meng; Tan, Hui-Min

    2005-05-01

    PUA composite particles were prepared by seeded surfactant-free emulsion polymerization, the polyurethane (PU) aqueous dispersions were used as seed particles. The studies on the UV spectra of PUA composite emulsions were carried out, the results showed that the maximum absorbance of n-pi* transition evidently shifted to red wavelength with increasing the concentration of the aqueous PU seed dispersions; the UV absorbance of PU dispersions decreased with increasing the amounts of the hydrophilic chain-extender and increased with increasing the NCO/OH molar ratios; when the hydrophilic chain-extender was 7.5%, the UV absorbance of PUA composite emulsion reached the lowest, the type of initiators showed less influence on the absorbance of UV spectra of PUA composite emulsions. Moreover, the UV spectra of PU dispersions and the diameters of PUA composite emulsion particles were nearly correlative.

  14. Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Muñoz, J; Raymundo, A; Sousa, I

    2016-05-01

    The influence of gum concentration and rhamsan/welan gum ratio on rheological properties, droplet size distribution and physical stability of eco-friendly O/W emulsions stabilized by an ecological surfactant were studied in the present work. The emulsions were prepared with 30wt% α-pinene, a terpenic solvent and an ecological alternative for current volatile organic compounds. Rheological properties of emulsions showed an important dependence on the two studied variables. Flow curves were fitted to the Cross model and no synergistic effect between rhamsan and welan gums was demonstrated. Emulsions with submicron mean diameters were obtained regardless of the gum concentration or the rhamsan/welan ratio used. Multiple light scattering illustrated that creaming was practically eliminated by the incorporation of polysaccharides. The use of rhamsan and welan gums as stabilizers lead to apparent enhancements in emulsion rheology and physical stability.

  15. Influence of formulation on the oxidative stability of water-in-oil emulsions.

    PubMed

    Dridi, Wafa; Essafi, Wafa; Gargouri, Mohamed; Leal-Calderon, Fernando; Cansell, Maud

    2016-07-01

    The oxidation of water-in-oil (W/O) emulsions was investigated, emphasizing the impact of compositional parameters. The emulsions had approximately the same average droplet size and did not show any physical destabilization throughout the study. In the absence of pro-oxidant ions in the aqueous phase, lipid oxidation of the W/O emulsions was moderate at 60°C and was in the same range as that measured for the neat oils. Oxidation was significantly promoted by iron encapsulation in the aqueous phase, even at 25°C. However, iron chelation reduced the oxidation rate. Emulsions based on triglycerides rich in polyunsaturated fatty acids were more prone to oxidation, whether the aqueous phase encapsulated iron or not. The emulsions were stabilized by high- and low-molecular weight surfactants. Increased relative fractions of high molecular weight components reduced the oxidation rate when iron was present.

  16. Sensory evaluation of sodium chloride-containing water-in-oil emulsions.

    PubMed

    Rietberg, Matthew R; Rousseau, Dérick; Duizer, Lisa

    2012-04-25

    The sensory perception of water-in-oil emulsions containing a saline-dispersed aqueous phase was investigated. Manipulating saltiness perception was achieved by varying the mass fraction aqueous phase (MFAP), initial salt load, and surfactant concentration [(polyglycerol polyricinoleate (PgPr)] of the emulsions, with formulations based on a central composite design. Saltiness and emulsion thickness were evaluated using a trained sensory panel, and collected data were analyzed using response surface analysis. Emulsion MFAP was the most important factor correlated with increased salt taste intensity. Emulsifier concentration and interactions between NaCl and PgPr had only minor effects. Emulsions more prone to destabilization were perceived as saltier irrespective of their initial salt load. The knowledge gained from this study provides a powerful tool for the development of novel sodium-reduced liquid-processed foods.

  17. Starch-based Pickering emulsions for topical drug delivery: A QbD approach.

    PubMed

    Marto, J; Gouveia, L; Jorge, I M; Duarte, A; Gonçalves, L M; Silva, S M C; Antunes, F; Pais, A A C C; Oliveira, E; Almeida, A J; Ribeiro, H M

    2015-11-01

    Pickering emulsions are stabilized by solid particles instead of surfactants and have been widely investigated in pharmaceutical and cosmetic fields since they present less adverse effects than the classical emulsions. A quality by design (QbD) approach was applied to the production of w/o emulsions stabilized by starch. A screening design was conducted to identify the critical variables of the formula and the process affecting the critical quality properties of the emulsion (droplet size distribution). The optimization was made by establishing the Design Space, adjusting the concentration of starch and the quantity of the internal aqueous phase. The emulsion production process was, in turn, adjusted by varying the time and speed of stirring, to ensure quality and minimum variability. The stability was also investigated, demonstrating that an increase in starch concentration improves the stability of the emulsion. Rheological and mechanical studies indicated that the viscosity of the emulsions was enhanced by the addition of starch and, to a higher extent, by the presence of different lipids. The developed formulations was considered non-irritant, by an in vitro assay using human cells from skin (Df and HaCat) with the cell viability higher than 90% and, with self-preserving properties. Finally, the QbD approach successfully built quality in Pickering emulsions, allowing the development of hydrophilic drug-loaded emulsions stabilized by starch with desired organoleptic and structural characteristics. The results obtained suggest that these systems are a promising vehicle to be used in products for topical administration.

  18. Synthesis, micellization behavior, antimicrobial and intercalative DNA binding of some novel surfactant copper(II) complexes containing modified phenanthroline ligands.

    PubMed

    Nagaraj, Karuppiah; Ambika, Subramanian; Rajasri, Shanmugasundaram; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-10-01

    The novel surfactant copper(II) complexes, [Cu(ip)2DA](ClO4)21, [Cu(dpqc)2DA](ClO4)22, [Cu(dppn)2DA](ClO4)23, where ip=imidazo[4,5-f][1,10]phenanthroline, dpqc=dipyrido[3,2-a:2',4'-c](6,7,8,9-tetrahydro)phenazine, dppn=benzo[1]dipyrido[3,2-a':2',3'-c]phenazine and DA-dodecylamine, were synthesized and characterized by physico-chemical and spectroscopic methods. In these complexes 1-3, the geometry of copper metal ions was described as square pyramidal. The critical micelle concentration (CMC) value of these surfactant copper(II) complexes in aqueous solution was found out from conductance measurements. Specific conductivity data at different temperatures served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔGm°, ΔHm° and ΔSm°). The binding interaction of these complexes with DNA (calf thymus DNA) in Tris buffer was studied by physico-chemical techniques. In the presence of the DNA UV-vis spectrum of complexes showed red shift of the absorption band along with significant hypochromicity indicating intercalation of our complexes with nucleic acids. Competitive binding study with ethidium bromide (EB) shows that the complexes exhibit the ability to displace the nucleic acid-bound EB indicating that the complexes bind to nucleic acids in strong competition with EB for the intercalative binding site. Observed changes in the circular dichoric spectra of DNA in the presence of surfactant complexes support the strong binding of complexes with DNA. CV results also confirm this mode of binding. Some significant thermodynamic parameters of the binding of the titled complexes to DNA have also been determined. The results reveal that the extent of DNA binding of 3 was greater than that of 1 and 2. The antibacterial and antifungal screening tests of these complexes have shown good results compared to its precursor chloride complexes.

  19. Highly magnetizable superparamagnetic colloidal aggregates with narrowed size distribution from ferrofluid emulsion.

    PubMed

    Lobaz, Volodymyr; Klupp Taylor, Robin N; Peukert, Wolfgang

    2012-05-15

    The formation of spherical superparamagnetic colloidal aggregates of magnetite nanoparticles by emulsification of a ferrofluid and subsequent solvent evaporation has been systematically studied. The colloidal aggregates occur as a dense sphere with magnetite nanoparticles randomly packed and preserved particle-particle separation due to chemisorbed oleic acid. The voids between nanoparticles are filled with solvent and free oleic acid. The latter was found to influence the formation of colloidal aggregates and their surface properties. The choice of surfactant, whether low molecular weight or polymeric, was shown to lead to the colloidal aggregates having tailored interfacial behavior. Magnetization measurements at ambient temperature revealed that the magnetite colloidal aggregates preserve the superparamagnetic properties of the starting nanoparticle units and show high saturation magnetization values up to 57 emu/g. The size distribution of magnetite nanoparticle colloidal aggregates produced by such an approach was found to be a function of emulsion droplet breakup-coalescence and stabilization kinetics and therefore is influenced by the emulsification process conditions and concentrations of the emulsion compounds.

  20. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    NASA Astrophysics Data System (ADS)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  1. Semi-solid Sucrose Stearate-Based Emulsions as Dermal Drug Delivery Systems

    PubMed Central

    Klang, Victoria; Schwarz, Julia C.; Matsko, Nadejda; Rezvani, Elham; El-Hagin, Nivine; Wirth, Michael; Valenta, Claudia

    2011-01-01

    Mild non-ionic sucrose ester surfactants can be employed to produce lipid-based drug delivery systems for dermal application. Moreover, sucrose esters of intermediate lipophilicity such as sucrose stearate S-970 possess a peculiar rheological behavior which can be employed to create highly viscous semi-solid formulations without any further additives. Interestingly, it was possible to develop both viscous macroemulsions and fluid nanoemulsions with the same chemical composition merely by slight alteration of the production process. Optical light microscopy and cryo transmission electron microscopy (TEM) revealed that the sucrose ester led to the formation of an astonishing hydrophilic network at a concentration of only 5% w/w in the macroemulsion system. A small number of more finely structured aggregates composed of surplus surfactant were likewise detected in the nanoemulsions. These discoveries offer interesting possibilities to adapt the low viscosity of fluid O/W nanoemulsions for a more convenient application. Moreover, a simple and rapid production method for skin-friendly creamy O/W emulsions with excellent visual long-term stability is presented. It could be shown by franz-cell diffusion studies and in vitro tape stripping that the microviscosity within the semi-solid formulations was apparently not influenced by their increased macroviscosity: the release of three model drugs was not impaired by the complex network-like internal structure of the macroemulsions. These results indicate that the developed semi-solid emulsions with advantageous application properties are highly suitable for the unhindered delivery of lipophilic drugs despite their comparatively large particle size and high viscosity. PMID:24310496

  2. Study of the binding between lysozyme and C10-TAB: determination and interpretation of the partial properties of protein and surfactant at infinite dilution.

    PubMed

    Morgado, Jorge; Aquino-Olivos, Marco Antonio; Martínez-Hernández, Ranulfo; Corea, Mónica; Grolier, Jean Pierre E; del Río, José Manuel

    2008-06-01

    This work examines the binding in aqueous solution, through the experimental determination of specific volumes and specific adiabatic compressibility coefficients, of decyltrimethylammonium bromide to lysozyme and to non-charged polymeric particles (which have been specially synthesized by emulsion polymerization). A method was developed to calculate the specific partial properties at infinite dilution and it was shown that a Gibbs-Duhem type equation holds at this limit for two solutes. With this equation, it is possible to relate the behavior of the partial properties along different binding types at a constant temperature. It was found that the first binding type, specific with high affinity, is related to a significant reduction of surfactant compressibility. The second binding type is accompanied by the unfolding of the protein and the third one is qualitatively identical to the binding of the surfactant to non-charged polymeric particles.

  3. Dynamic film and interfacial tensions in emulsion and foam systems

    SciTech Connect

    Kim, Y.H.; Koczo, K.; Wasan, D.T.

    1997-03-01

    In concentrated fluid dispersions the liquid films are under dynamic conditions during film rupture or drainage. Aqueous foam films stabilized with sodium decylsulfonate and aqueous emulsion films stabilized with the nonionic Brij 58 surfactant were formed at the tip of a capillary and the film tension was measured under static and dynamic conditions. In the stress relaxation experiments the response of the film tension to a sudden film area expansion was studied. These experiments also allowed the direct measurement of the Gibbs film elasticity. In the dynamic film tension experiments, the film area was continuously increased by a constant rate and the dynamic film tension was monitored. The measured film tensions were compared with the interfacial tensions of the respective single air/water and oil/water interfaces, which were measured using the same radius of curvature, relative expansion, and expansion rate as in the film studies. It was found that under dynamic conditions the film tension is higher than twice the single interfacial tension (IFT) and a mechanism was suggested to explain the difference. When the film, initially at equilibrium, is expanded and the interfacial area increases, a substantial surfactant depletion occurs inside the film. As a result, the surfactant can be supplied only from the adjoining meniscus (Plateau border) by surface diffusion, and the film tension is controlled by the diffusion and adsorption of surfactant in the meniscus. The results have important implications for the stability and rheology of foams and emulsions with high dispersed phase ratios (polyhedral structure).

  4. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  5. Adsorption behavior of light green anionic dye using cationic surfactant-modified wheat straw in batch and column mode.

    PubMed

    Su, Yinyin; Zhao, Binglu; Xiao, Wei; Han, Runping

    2013-08-01

    An agricultural by-product, natural wheat straw (NWS), was soaked in 1 % cationic surfactant (hexadecylpyridinium bromide, CPB) solution for 24 h (at 293 K), and modified wheat straw (MWS) was obtained. Analysis of FTIR, XFR, and nitrogen element showed that CPB was adsorbed onto surface of NWS. Then, MWS was used as adsorbent for the removal of light green dye (LG, anionic dye) from aqueous solution. The experiment was performed in batch and column mode at room temperature (293 K). Sodium chloride (up to 0.1 mol/L) existed in solution was not favor of LG dye adsorption. The equilibrium data were better described by Langmuir isotherm, and adsorption capacity of q m from Langmuir model was 70.01 ± 3.39 mg/g. In fixed-bed column adsorption mode, the effects of initial LG concentration (30, 50, 70 mg/L) and flow rate (6.5, 9.0, 14.5 mL/min) on adsorption were presented. Thomas and modified dose-response models were used to predict the breakthrough curves using nonlinear analysis method, and both models can fit the breakthrough curves. Theoretical and experimental breakthrough curves were drawn and compared. The results implied that MWS can be used as adsorbent material to remove LG from aqueous solution.

  6. pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides

    NASA Astrophysics Data System (ADS)

    Gurevich, Leonid; Fojan, Peter

    2012-02-01

    Self-assembly of amphiphilic peptides designed during the last years by several research groups leads to a large variety of 3D-structures that already found applications in stabilization of large protein complexes, cell culturing systems etc. In this report, we present synthesis and characterization of two novel families of amphiphilic peptides KAn and KAnW (n=6,5,4) that exhibits clear charge separation controllable by pH of the environment. As the pH changes from acidic to basic, the charge on the ends of the peptide molecule varies eventually leading to reorganization of KAn micelles and even micellar inversion. On contrary, the bulky geometry of the tryptophan residue in KAnW limits the variation of the surfactant parameter and hence largely prevents assembly into spherical or cylindrical micelles while favouring flatter geometries. The studied short peptide families demonstrate formation of ordered aggregates with well-defined secondary structure from short unstructured peptides and provide a simple system where factors responsible for self-assembly can be singled out and studied one by one. The ability to control the shape and structure of peptide aggregates can provide basis for novel designer pH sensitive materials including drug delivery and controlled release systems.

  7. Role of naphthenic acids in stabilizing water-in-diluted model oil emulsions.

    PubMed

    Gao, Song; Moran, Kevin; Xu, Zhenghe; Masliyah, Jacob

    2010-06-17

    The need for alkaline conditions in oil sands processing is, in part, to produce natural surfactants from bitumen. Previous studies have shown that the produced surfactants are primarily carboxylic salts of naphthenic acids with the possibility of sulfonic salts as well. The role of these natural surfactants, particularly those in the naphthenate class, is to provide a physicochemical basis for several subprocesses in bitumen extraction. In this study, it was found that the content of indigenous naphthenic acids in bitumen can destabilize, to some extent, the water-in-oil emulsion by lowering the interfacial tension, reducing the rigidity and promoting the coalescence of water droplets.

  8. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  9. Can Pickering emulsion formation aid the removal of creosote DNAPL from porous media?

    PubMed

    Torres, Luis; Iturbe, Rosario; Snowden, M J; Chowdhry, Babur; Leharne, Stephen

    2008-03-01

    The purpose of this investigation was to examine the proposition that creosote, emplaced in an initially water saturated porous system, can be removed from the system through Pickering emulsion formation. Pickering emulsions are dispersions of two immiscible fluids in which coalescence of the dispersed phase droplets is hindered by the presence of colloidal particles adsorbed at the interface between the two immiscible fluid phases. Particle trapping is strongly favoured when the wetting properties of the particles are intermediate between strong water wetting and strong oil wetting. In this investigation the necessary chemical conditions for the formation of physically stable creosote-in-water emulsions protected against coalescence by bentonite particles were examined. It was established that physically stable emulsions could be formed through the judicious addition of small amounts of sodium chloride and the surfactant cetyl-trimethylammonium bromide. The stability of the emulsions was initially established by visual inspection. However, experimental determinations of emulsion stability were also undertaken by use of oscillatory rheology. Measurements of the elastic and viscous responses to shear indicated that physically stable emulsions were obtained when the viscoelastic systems showed a predominantly elastic response to shearing. Once the conditions were established for the formation of physically stable emulsions a "proof-of-concept" chromatographic experiment was carried out which showed that creosote could be successfully removed from a saturated model porous system.

  10. Influence of PEG-12 Dimethicone addition on stability and formation of emulsions containing liquid crystal.

    PubMed

    Andrade, F F; Santos, O D H; Oliveira, W P; Rocha-Filho, P A

    2007-06-01

    Oil/water emulsions, containing liquid crystals, were developed employing Andiroba oil, PEG-12 Dimethicone and Crodafos CES. It was evaluated the influence of silicone surfactants on the emulsions stability and on the formation of liquid crystalline phases and therefore, physicochemical characteristics, such as rheology and zeta potential, were evaluated. Emulsions were prepared by the emulsions phase inversion method. All the formulations presented lamellar liquid crystalline phases. The PEG-12 Dimethicone addition did not change microscopically the liquid crystalline phases. The emulsions containing silicone demonstrated lower viscosity than those without the additive. This is an important feature, as the silicone did not change the rheological profile; however, the addition of silicone still can be used as a viscosity controller. The formulations had their viscosity increased 15 and 150 days after their preparation. This characteristic shows that the emulsions have their organization increased along the storing time. In the analysis of zeta potential, we could verify that all formulations presented negative values between -39.7 and -70.0 mV. Within this range of values, the emulsion physical stability is high (Fig. 10). It was concluded that the addition of PEG-12 Dimethicone kept the liquid crystalline phase of the emulsion obtained with Crodafos CES, influencing in a positive way in the system stability.

  11. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil-wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate-wet for many surfactants and water-wet for one surfactant. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting core adsorption, phase behavior, wettability and mobilization studies.

  12. Highly concentrated emulsions: 1. Average drop size determination by analysis of incoherent polarized steady light transport.

    PubMed

    Paruta-Tuarez, Emilio; Fersadou, Hala; Sadtler, Véronique; Marchal, Philippe; Choplin, Lionel; Baravian, Christophe; Castel, Christophe

    2010-06-01

    The analysis of incoherent polarized steady light transport is reported as a convenient technique for the drop size determination in highly concentrated oil-in-water emulsions. The studied system consists in heptane-in-water emulsions stabilized with a copolymeric surfactant (Synperonic PE®/L64). Hundred grams of parent emulsions, at two volume fractions of dispersed phase (φ=0.958 and 0.937) were prepared using a semi-batch process. Then, they were diluted with the aqueous phase to obtain volume fractions ranging from 0.886 to 0.958. The use of a copolymeric surfactant allows the dilution of the highly concentrated emulsions without any change in the particle size distribution as confirmed by laser diffraction measurements. We found that the polarization technique allows the determination of the film thickness between water drops rather than their sizes. Consequently, we propose a geometrical relationship to determine an average drop size from the film thickness. The sensitivity of this alternative technique to detect changes in average drop size was studied by changing some process and formulation parameters. Drop size determination in highly concentrated emulsions via this method is useful since the measurement protocol neither involves dilution nor induces structural changes in the emulsion.

  13. Partitioning behavior of an acid-cleavable, 1,3-dioxolane alkyl ethoxylate, surfactant in single and binary surfactant mixtures for 2- and 3-phase microemulsion systems according to ethoxylate head group size.

    PubMed

    Gomez del Rio, Javier; Hayes, Douglas G; Urban, Volker S

    2010-12-15

    Partition coefficients for a pH-degradable 1,3-dioxolane alkyl ethoxylate surfactant, 4-CH(3)O (CH(2)CH(2)O)(5.6)-CH(2), 2,2-(CH(2))(12)CH(3), 2-(CH(2)) CH(3), 1,3-dioxolane or "cyclic ketal" surfactant, CK-2,13-E(5.6,ave), between isooctane- and water-rich phases of 2- and 3-phase microemulsion systems (K(n)) were determined as functions of the ethoxylate size, n, and temperature for the neat surfactant and its binary surfactant mixtures, to understand the partitioning of alkyl ethoxylates possessing a broad distribution of ethoxylate size and to determine conditions required for formation of 3-phase microemulsion systems at an optimal temperature where phase separation occurs rapidly, important for protein purification via proteins' selective partitioning to the middle phase, driven by affinity to the second surfactant of the binary mixture. A semi-empirical thermodynamic mathematical model described the partitioning data well, provided optimal temperature values consistent with phase diagrams and theory, and demonstrated that the tail region of CK-2,13-E(5.6,ave) is more polar than the hydrophobes of fatty alcohol ethoxylates. The addition of Aerosol-OT (AOT) removed the temperature sensitivity of CK-2,13-E(5.6,ave)s partitioning, producing 3-phase microemulsion systems between 20 °C and 40 °C. Analysis of the bottom phases of the 2- and 3-phase microemulsion systems formed by CK-2,13-E(5.6,ave) via small-angle neutron scattering demonstrated the presence of spherical, monodisperse oil-in-water microemulsions.

  14. Partitioning behavior of an acid-cleavable, 1,3-dioxolane alkyl ethoxylate, surfactant in single and binary surfactant mixtures for 2- and 3-phase microemulsion systems according to ethoxylate head group size

    SciTech Connect

    Gomez Del Rio, Javier A; Hayes, Douglas G; Urban, Volker S

    2010-01-01

    Partition coefficients for a pH-degradable 1,3-dioxolane alkyl ethoxylate surfactant, 4-CH{sub 3}O (CH{sub 2}CH{sub 2}O){sub 5.6}-CH{sub 2}, 2,2-(CH{sub 2}){sub 12}CH{sub 3}, 2-(CH{sub 2}) CH{sub 3}, 1,3-dioxolane or ''cyclic ketal'' surfactant, CK-2,13-E{sub 5.6,ave}, between isooctane- and water-rich phases of 2- and 3-phase microemulsion systems (K{sub n}) were determined as functions of the ethoxylate size, n, and temperature for the neat surfactant and its binary surfactant mixtures, to understand the partitioning of alkyl ethoxylates possessing a broad distribution of ethoxylate size and to determine conditions required for formation of 3-phase microemulsion systems at an optimal temperature where phase separation occurs rapidly, important for protein purification via proteins selective partitioning to the middle phase, driven by affinity to the second surfactant of the binary mixture. A semi-empirical thermodynamic mathematical model described the partitioning data well, provided optimal temperature values consistent with phase diagrams and theory, and demonstrated that the tail region of CK-2,13-E{sub 5.6,ave} is more polar than the hydrophobes of fatty alcohol ethoxylates. The addition of Aerosol-OT (AOT) removed the temperature sensitivity of CK-2,13-E{sub 5.6,ave}s partitioning, producing 3-phase microemulsion systems between 20 C and 40 C. Analysis of the bottom phases of the 2- and 3-phase microemulsion systems formed by CK-2,13-E{sub 5.6,ave} via small-angle neutron scattering demonstrated the presence of spherical, monodisperse oil-in-water microemulsions.

  15. DEP actuation of emulsion jets and dispensing of sub-nanoliter emulsion droplets.

    PubMed

    Prakash, Ravi; Kaler, Karan V I S

    2009-10-07

    Liquid Dielectrophoresis (L-DEP) has been successfully leveraged at microscopic scales and shown to provide a controllable means of on-chip precision dispensing and manipulation of sub-nanoliter single emulsion droplets. In this paper, we report on the dynamics of a DEP actuated emulsion jet prior to break-up and compare its characteristic behavior based on the lumped parameter model of Jones et al. (R. Ahmed and T. B. Jones, J. Micromech. Microeng., 2007, 17, 1052). Furthermore, features and aspects of these emulsion jets, their break-up and formation of sub-nanoliter emulsion droplets is studied in further detail. Applications of the proposed scheme in dispensing encapsulated sub-nanoliter droplets is envisioned in various fields including microTAS, on-chip handling and storage of cells and other biological samples for longer duration in controlled environments as well as solving the more general encapsulation issues in surface microfluidic devices. Scalability of the proposed scheme is shown by producing controlled sample-oil single emulsion droplets (aqueous samples in oil) in the range of 50-400 picoliters.

  16. Novel anhydrous emulsions: formulation as controlled release vehicles.

    PubMed

    Suitthimeathegorn, Orawan; Jaitely, Vikas; Florence, Alexander T

    2005-07-25

    Novel anhydrous emulsions, which may offer some advantages as depot or reservoir vehicles for lipophilic drugs in controlled delivery systems, were formulated using castor oil as the disperse phase and dimethicone or cyclopentasiloxane as the continuous phase. Among the emulsifiers studied only silicone surfactants (cyclomethicone/dimethicone copolyols) which were miscible in silicone oil stabilized the emulsions. Cyclomethicone/PEG/PPG-18/18 Dimethicone and Cyclopentasiloxane/PEG/PPG-18/18 Dimethicone were more effective in lowering the interfacial tension between castor oil and both dimethicone and cyclopentasiloxane. Emulsions formulated using either of these two surfactants were found to be stable against phase separation and exhibited least globule growth over 168 h. The average particle size was found to be 2-6 microm in these systems formed by probe sonication. Slow release patterns of 3H-dehydroepiandrosterone (DHEA) and 3H-dexamethasone solubilized in the disperse castor oil phase into an aqueous dialyzing medium were observed over 48 h.

  17. Scaling vs simulations in the head-on collision of viscous drops with insoluble surfactants

    NASA Astrophysics Data System (ADS)

    Vannozzi, Carolina

    2015-11-01

    Scaling arguments are presented to show the effect of the surface diffusivity Ds on the head-on collision of two equal-sized viscous drops in a viscous matrix with insoluble surfactants. The scaling arguments are compared to simulations of the experimental system studied by Yoon et al. where the drops are Polybutadiene(PBD) in PDMS, stabilized by block copolymers surfactants. Overall, the scaling could predict the effect of the different parameters on the drainage time (the surface Peclet number, the Marangoni number and the pushing force due to the external flow), but could not predict the experimental or simulated values. We tested our simulations against the scaling argument of, that claimed that emulsions stabilized by small molecule surfactants can be described with the assumption of non-diffusing surfactants. Here, however, following the same arguments, but without using the Stokes-Einstein expression for the surfactant surface mobility employed in Ref. and by simply substituting the parameters for different emulsion systems, we show that Ds can be neglected only for oil in water emulsions, not for water in oil emulsion.

  18. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.

    PubMed

    Goldsipe, Arthur; Blankschtein, Daniel

    2007-05-22

    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  19. Stability and Demulsification of Water-in-Crude Oil (w/o) Emulsions Via Microwave Heating

    NASA Astrophysics Data System (ADS)

    Nour, Abdurahman. H.; Rosli; Yunus, Mohd.

    Formation of emulsions during oil production and processing is a costly problem, both in terms of chemicals used and production losses. Experimental data are presented to show the influences of Triton X-100, Low sulphur Wax Residue (LSWR), Sorbitan monooleate (Span 83) and Sodium Dedocyl Sulphate (SDDS) on the stability and microwave demulsification of emulsions. It was found that emulsion stability was related to some parameters such as, the surfactant concentrations, water-oil phase ratio (10-90%), temperature and agitation speed. For economic and operational reasons, it is necessary to separate the water completely from the crude oils before transporting or refining them. In this regard, the present study found that microwave radiation method can enhance the demulsification of water-in-oil (w/o) emulsions in a very short time compared to the conventional heating methods.

  20. Anomalous pH dependent stability behavior of surfactant-free nonpolar oil drops in aqueous electrolyte solutions.

    PubMed

    Clasohm, Lucy Y; Vakarelski, Ivan U; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2007-08-28

    Recent advances in atomic force microscopy (AFM) force measurement techniques have allowed the direct measurement and theoretical interpretation of the interaction between a liquid droplet and a solid surface or between two liquid droplets. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon (perfluoropentane) droplets, hydrocarbon (tetradecane) droplets, and a droplet and a flat mica surface in the absence of stabilizers. It was found that even at a relatively elevated electrolyte concentration of 0.1 M NaNO3, depending on the solution pH, interactions between two identical droplets or a droplet and a mica surface could be repulsive. A simple theoretical analysis of the magnitude and range of these interactive forces suggests that the DLVO theory cannot explain the observed behavior. The measured force behavior is discussed in the context of ion adsorption, and the arising charging effects, at the bare oil-water interface.

  1. Characterization of Y2BaCuO5 nanoparticles synthesized by nano-emulsion method

    NASA Astrophysics Data System (ADS)

    Li, Fang; Vipulanandan, Cumaraswamy

    2007-10-01

    Nanoscale yttrium-barium-copper oxide (Y2BaCuO5, Y211) particles were synthesized using the emulsion method and the solution method. The basic water-in-oil (w/o) emulsion system consisted of n-octane (continuous oil phase), cetyltrimethylammonium bromide (cationic surfactant), butanol (cosurfactant) and water. The composition of the emulsion system was varied and characterized by measuring the conductivity of the solutions and droplet size. The droplet size of emulsion was determined by using the dynamic light scattering method. The water content, cosurfactant content, and surfactant/ n-octane ratio affected the droplet size which was in the range of 3-8 nm, and hence the w/o emulsion system was referred to as a nano-emulsion system. A model was used to verify the droplet size. The influence of salt (Y2(NO3)3) content on the droplet size was investigated and the addition of salt reduced the droplet size. The effects of reaction time and temperature on the Y211 particle sizes were also investigated. The particles were characterized using the TEM, SEM, and XRD. Nanoparticles produced by the nano-emulsion method were calcined at 850°C to form the Y211 phase as compared to solid state processing temperature of 1050°C. Based on the TEM analysis, the average diameter of the Y211 particles produced using the nano-emulsion method was in the range of 30-100 nm. The effect of adding 15% Y211 nanoparticles to the superconductor YBCO-123 as flux pinning centers, was investigated, and the transition temperature was reduced by 3 K.

  2. Holographic DESA emulsions

    NASA Astrophysics Data System (ADS)

    Duenkel, Lothar; Eichler, Juergen; Schneeweiss, Claudia; Ackermann, Gerhard

    2005-04-01

    The DESA material is an ultra-fine grained silver bromide emulsion referring to the name of its four inventors (D)uenkel, (E)ichler, (S)chneeweiss, (A)ckermann of the University of Applied Sciences in Berlin, Germany. The thickness of the dried layer is between 5 and 7.5 μm, and the mean grain size is by about 15 nm, as determined by TEM. During manufacturing, emulsion precipitation and coating are separated strictly from spectral and chemical sensitization. Thus, a high performance could be obtained. Resolution is estimated higher than 8000 lp/mm. Sensitivity amounts to 80 up to 120 μJoules/cm2 for maximum diffraction efficiency by recording Denisyuk white-light reflection holograms at 632,8 nm (HeNe laser). The paper provides an insight into fundamentals of the ultra-fine grained silver halide technology together with new challenges for further developments under theoretical and practical aspects.

  3. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  4. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III.

    1991-01-01

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  5. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III

    1991-12-31

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  6. Adsorption of Gemini surfactants onto clathrate hydrates.

    PubMed

    Salako, O; Lo, C; Couzis, A; Somasundaran, P; Lee, J W

    2013-12-15

    This work addresses the adsorption of two Gemini surfactants at the cyclopentane (CP) hydrate-water interface. The Gemini surfactants investigated here are Dowfax C6L and Dowfax 2A1 that have two anionic head groups and one hydrophobic tail group. The adsorption of these surfactants was quantified using adsorption isotherms and the adsorption isotherms were determined using liquid-liquid titrations. Even if the Gemini surfactant adsorption isotherms show multi-layer adsorption, they possess the first Langmuir layer with the second adsorption layer only evident in the 2A1 adsorption isotherm. Zeta potentials of CP hydrate particles in the surfactant solution of various concentrations of Dowfax C6L and Dowfax 2A1 were measured to further explain their adsorption behavior at the CP hydrate-water interface. Zeta potentials of alumina particles as a model particle system in different concentrations of sodium dodecyl sulfate (SDS), Dowfax C6L and Dowfax 2A1 were also measured to confirm the configuration of all the surfactants at the interface. The determination of the isotherms and zeta-potentials provides an understanding framework for the adsorption behavior of the two Gemini surfactants at the hydrate-water interface.

  7. Iron-accelerated cumene hydroperoxide decomposition in hexadecane and trilaurin emulsions.

    PubMed

    Mancuso, J R; McClements, D J; Decker, E A

    2000-02-01

    Free radicals arising from lipid peroxides accelerate the oxidative deterioration of foods. To elucidate how lipid peroxides impact oxidative reactions in food emulsions, the stability of cumene hydroperoxide was studied in hexadecane or trilaurin emulsions stabilized by anionic (sodium dodecyl sulfate; SDS), nonionic (Tween 20), and cationic (dodecyltrimethylammonium bromide; DTAB) surfactants. Fe(2+) rapidly (within 10 min) decomposed between 10 and 31% of the cumene hydroperoxide in Tween 20- and DTAB-stabilized emulsions at pH 3.0 and 7.0 and in the SDS-stabilized emulsion at pH 7.0 with no further decomposition of peroxides occurring for up to 3 h. In SDS-stabilized emulsions at pH 3.0, Fe(2+) decreased peroxides by 90% after 3 h. Decomposition of peroxides in the absence of added iron and by Fe(3+) was observed only in SDS-stabilized emulsions at pH 3.0. These results suggest that peroxide decomposition by iron redox cycling occurs when iron emulsion droplet interactions are high.

  8. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    PubMed

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins.

  9. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.

    PubMed

    Ma, Shaohua; Huck, Wilhelm T S; Balabani, Stavroula

    2015-11-21

    Water-in-oil-in-water (w/o/w) microfluidics double emulsions offer a new route to compartmentalise reagents into isolated aqueous microenvironments while maintaining an aqueous carrier fluid phase; this enables compatibility with commercial flow cytometry systems such as fluorescence-activated cell sorting (FACS). Double emulsion (inner core) deformation under hydrodynamic focusing conditions that mimic the environment double emulsions experience in flow cytometry applications is of particular importance for droplet stability and cell viability. This paper reports on an experimental study of the dynamic deformation of aqueous cores of w/o/w double emulsions under hydrodynamic focusing, with the sheath flow directed at 45° to the sample flow. A number of factors affecting the inner core deformation and recovery were examined. Deformation was found to depend significantly on the core or shell viscosity, the droplet-to-sheath flow velocity ratio, and core and shell sizes. Core deformation was found to depend more on the type of surfactant rather concentration with high molecular weight surfactant exhibiting a negligible effect on deformation whereas low molecular weight surfactant enhancing deformation at low concentrations due to their lateral mobility at the interface.

  10. Effect of the salt-induced micellar microstructure on the nonlinear shear flow behavior of ionic cetylpyridinium chloride surfactant solutions

    NASA Astrophysics Data System (ADS)

    Gaudino, D.; Pasquino, R.; Kriegs, H.; Szekely, N.; Pyckhout-Hintzen, W.; Lettinga, M. P.; Grizzuti, N.

    2017-03-01

    The shear flow dynamics of linear and branched wormlike micellar systems based on cetylpyridinium chloride and sodium salicylate in brine solution is investigated through rheometric and scattering techniques. In particular, the flow and the structural flow response are explored via velocimetry measurements and rheological and rheometric small-angle neutron scattering (SANS) experiments, respectively. Although all micellar solutions display a similar shear thinning behavior in the nonlinear regime, the experimental results show that shear banding sets in only when the micelle contour length L ¯ is sufficiently long, independent of the nature of the micellar connections (either linear or branched micelles). Using rheometric SANS, we observe that the shear banding systems both show very similar orientational ordering as a function of Weissenberg number, while the short branched micelles manifest an unexpected increase of ordering at very low Weissenberg numbers. This suggests the presence of an additional flow-induced relaxation process that is peculiar for branched systems.

  11. Preparation and Thermal Properties of Fatty Alcohol/Surfactant/Oil/Water Nanoemulsions and Their Cosmetic Applications.

    PubMed

    Okamoto, Toru; Tomomasa, Satoshi; Nakajima, Hideo

    2016-01-01

    Physicochemical properties of oil-in-water (O/W) emulsions containing fatty alcohols and surfactants have been investigated with the aim of developing new formulations that are less viscous and more transparent than conventional milky lotions, as well as for providing greater skin-improving effects. O/W-based creams can be converted to low viscosity milky lotions following their emulsification with a homogenizer at temperatures greater than the transition temperatures of their molecular assemblies (α-gel). The stability of the O/W emulsions evaluated in the current study increased as the transition temperatures of the molecular assemblies formed from their fatty alcohol and surfactant constituents increased. A decrease in the emulsion droplet size led to the formation of a new formulation, which was transparent in appearance and showed a very low viscosity. The absence of a molecular assembly (α-gel) formed by the fatty alcohol and surfactant molecules in the aqueous phase allowed for the formation of a stable transparent and low viscosity nanoemulsion. Furthermore, this decrease in droplet size led to an increase in the interfacial area of the emulsion droplets, with almost all of the fatty alcohol and surfactant molecules being adsorbed on the surfaces of the emulsion droplets. This was found to be important for preparing a stable transparent formulation. Notably, this new formulation exhibited high occlusivity, which was equivalent to that of an ordinary cosmetic milky lotion, and consequently provided high skin hydration. The nanoemulsion was destroyed following its application to the skin, which led to the release of the fatty alcohol and surfactant molecules from the surface of the nanoemulsion into the aqueous phase. These results therefore suggest that the fatty alcohol and surfactant molecules organized the molecular assembly (α-gel) and allowed for the reconstruction of the network structure.

  12. Fiber coating with surfactant solutions

    NASA Astrophysics Data System (ADS)

    Shen, Amy Q.; Gleason, Blake; McKinley, Gareth H.; Stone, Howard A.

    2002-11-01

    When a fiber is withdrawn at low speeds from a pure fluid, the variation in the thickness of the entrained film with imposed fiber velocity is well-predicted by the Landau-Levich-Derjaguin (LLD) equation. However, surfactant additives are known to alter this response. We study the film thickening properties of the protein BSA (bovine serum albumin), the nonionic surfactant Triton X-100, and the anionic surfactant SDS (sodium dodecyl sulfate). For each of these additives, the film thickening factor alpha (the ratio of the measured thickness to the LLD prediction) for a fixed fiber radius varies as a function of the ratio of the surfactant concentration c to the critical micelle concentration (CMC). In the case of BSA, which does not form micelles, the reference value is the concentration at which multilayers form. As a result of Marangoni effects, alpha reaches a maximum as c approaches the CMC from below. However, when the surfactant concentration c exceeds the CMC, the behavior of alpha varies as a consequence of the dynamic surface properties, owing for example to different sorption kinetics of these additives, or possibly surface or bulk rheological effects. For SDS, alpha begins to decrease when c exceeds the CMC and causes the surface to become partially or completely remobilized, which is consistent with the experimental and theoretical results published for studies of slug flows of bubbles and surfactant solutions in a capillary tube and the rise of bubbles in surfactant solutions. However, when the SDS or Triton X-100 surfactant concentration is well above the CMC, we observe that the film thickening parameter alpha increases once again. In the case of SDS we observe a second maximum in the film thickening factor. For all the experiments, transport of monomers to the interface is limited by diffusion and the second maximum in the film thickening factor may be explained as a result of a nonmonotonic change in the stability characteristics of suspended SDS

  13. Antimicrobial effect of emulsion-encapsulated isoeugenol against biofilms of food pathogens and spoilage bacteria.

    PubMed

    Krogsgård Nielsen, Christina; Kjems, Jørgen; Mygind, Tina; Snabe, Torben; Schwarz, Karin; Serfert, Yvonne; Meyer, Rikke Louise

    2017-02-02

    Food-related biofilms can cause food-borne illnesses and spoilage, both of which are problems on a global level. Essential oils are compounds derived from plant material that have a potential to be used in natural food preservation in the future since they are natural antimicrobials. Bacterial biofilms are particularly resilient towards biocides, and preservatives that effectively eradicate biofilms are therefore needed. In this study, we test the antibacterial properties of emulsion-encapsulated and unencapsulated isoeugenol against biofilms of Lis. monocytogenes, S. aureus, P. fluorescens and Leu. mesenteroides in tryptic soy broth and carrot juice. We show that emulsion encapsulation enhances the antimicrobial properties of isoeugenol against biofilms in media but not in carrot juice. Some of the isoeugenol emulsions were coated with chitosan, and treatment of biofilms with these emulsions disrupted the biofilm structure. Furthermore, we show that addition of the surfactant Tween 80, which is commonly used to disperse oils in food, hampers the antibacterial properties of isoeugenol. This finding highlights that common food additives, such as surfactants, may have an adverse effect on the antibacterial activity of preservatives. Isoeugenol is a promising candidate as a future food preservative because it works almost equally well against planktonic bacteria and biofilms. Emulsion encapsulation has potential benefits for the efficacy of isoeugenol, but the effect of encapsulation depends on the properties of food matrix in which isoeugenol is to be applied.

  14. Aggregate and emulsion properties of enzymatically-modified octenylsuccinylated waxy starches.

    PubMed

    Sweedman, Michael C; Schäfer, Christian; Gilbert, Robert G

    2014-10-13

    Sorghum and maize waxy starches were hydrophobically modified with octenylsuccinic anhydride (OSA) and treated with enzymes before being used to emulsify β-carotene (beta,beta-carotene) and oil in water. Enzyme treatment with β-amylase resulted in emulsions that were broken (separated) earlier and suffered increased degradation of β-carotene, whereas treatment with pullulanase had little effect on emulsions. Combinations of surfactants with high and low hydrodynamic volume (V(h)) indicated that there is a relationship between V(h) and emulsion stability. Degree of branching (DB) had little direct influence on emulsions, though surfactants with the highest DB were poor emulsifiers due to their reduced molecular size. Results indicate that V(h) and branch length (including linear components) are the primary influences on octenylsuccinylated starches forming stable emulsions, due to the increased steric hindrance from short amphiphilic branches, consistent with current understanding of electrosteric stabilization. The success of OSA-modified sorghum starch points to possible new products of interest in arid climates.

  15. Experiments and network model of flow of oil-water emulsion in porous media

    NASA Astrophysics Data System (ADS)

    Romero, Mao Illich; Carvalho, Marcio S.; Alvarado, Vladimir

    2011-10-01

    Transport of emulsions in porous media is relevant to several subsurface applications. Many enhanced oil recovery (EOR) processes lead to emulsion formation and as a result conformance originating in the flow of a dispersed phase may arise. In some EOR processes, emulsion is injected directly as a mobility control agent. Modeling the flow of emulsion in porous media is extremely challenging due to the complex nature of the associated flows and numerous interfaces. The descriptions based on effective viscosity are not valid when the drop size is of the same order of magnitude as the pore-throat characteristic length scale. An accurate model of emulsion flow through porous media should describe this local change in mobility. The available filtration models do not take into account the variation of the straining and capturing rates with the local capillary number. In this work, we present experiments of emulsion flow through sandstone cores of different permeability and a first step on a capillary network model that uses experimentally determined pore-level constitutive relationships between flow rate and pressure drop in constricted capillaries to obtain representative macroscopic flow behavior emerging from microscopic emulsion flow at the pore level. A parametric analysis is conducted to study the effect of the permeability and dispersed phase droplet size on the flow response to emulsion flooding in porous media. The network model predictions qualitatively describe the oil-water emulsion flow behavior observed in the experiments.

  16. Preparation and properties of novel double-chain nonionic surfactants with acid decomposition function.

    PubMed

    Ono, Daisuke; Sato, Hirofumi; Shizuma, Motohiro; Nakamura, Masaki

    2010-01-01

    Novel double-chain nonionic surfactants with an acid decomposition function were prepared by acid-catalyzed condensation of chloroacetone with fatty alcohols (octyl, decyl, and dodecyl), followed by a Williamson reaction with polyethylene glycol without any expensive reagents and special equipment. These surfactants showed easy micelle formation compared to those of polyoxyethylene (n=9) dodecyl ether (C(12)EO9), and good foaming properties. The emulsion stability of these surfactants was almost the same as that of C(12)EO9. They decomposed completely after 30 min at pH 1. After 28 days they were more than 60% biodegradable and were almost the same as sodium dodecanoate.

  17. Analyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes.

    PubMed

    Li, Yan; Deng, Haiqiang; Dick, Jeffrey E; Bard, Allen J

    2015-11-03

    We report the collisions of single emulsion oil droplets with extremely low dielectric constants (e.g., benzene, ε of 2.27, or cyclohexane, ε of 2.02) as studied via emulsion droplet reactor (EDR) on an ultramicroelectrode (UME). By applying appropriate potentials to the UME, we observed the electrochemical effects of single-collision signals from the bulk electrolysis of single emulsion droplets. Different hydrophobic redox species (ferrocene, decamethyl-ferrocene, or metalloporphyrin) were trapped in a mixed benzene (or cyclohexane) oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier. The emulsions were prepared using ultrasonic processing. Spike-like responses were observed in each i-t response due to the complete electrolysis of all of the above-mentioned redox species within the droplet. On the basis of these single-particle collision results, the collision frequency, size distribution, i-t decay behavior of the emulsion droplets, and possible mechanisms are analyzed and discussed. This work demonstrated that bulk electrolysis can be achieved in a few seconds in these attoliter reactors, suggesting many applications, such as analysis and electrosynthesis in low dielectric constant solvents, which have a much broader potential window.

  18. Stability of Emulsions Containing Both Sodium Caseinate and Tween 20.

    PubMed

    Dickinson; Ritzoulis; Povey

    1999-04-15

    The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.

  19. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant

    SciTech Connect

    Sun, S.; Inskeep, W.P.; Boyd, S.A. |

    1994-12-31

    The solubility enhancement of nonionic organic compounds (NOCs) by surfactants may represent an important tool in chemical and biological remediation of contaminated soils. In aqueous systems, the presence of dissolved surfactant emulsions or micelles may enhance the solubility of NOCs by acting as a hydrophobic partitioning phase for the NOCs. However, most environmental remediation efforts involve soil-water or sediment-water systems, where surfactant molecules may also interact with the solid phase. An understanding of the effect of surfactants on the sorption and distribution of NOCs in soil or sediment environments will provide an essential basis for utilizing surfactants in environmental remediation. In this study, the authors examined the effect of a micelle-forming surfactant (Triton X-100) on the sorption of 2,2{prime},4,4{prime},5,5{prime}-PCB, 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (p,p{prime}-DDT) and 1,2,4-trichlorobenzene (1,2,4-TCB). A conceptual model, which accurately describes the functional dependence of K* on Triton X-100 concentration, was developed based on the partition coefficients of these NOCs by soil, soil-surfactant, surfactant monomer and surfactant micelle phases. This model can be further modified to provide quantitative prediction of K* of a given NOC at different surfactant concentrations.

  20. Development of stable flaxseed oil emulsions as a potential delivery system of ω-3 fatty acids.

    PubMed

    Goyal, Ankit; Sharma, Vivek; Upadhyay, Neelam; Singh, A K; Arora, Sumit; Lal, Darshan; Sabikhi, Latha

    2015-07-01

    The objective of the present study was to develop a stable flaxseed oil emulsion for the delivery of omega-3 (ω-3) fatty acids through food fortification. Oil-in-water emulsions containing 12.5 % flaxseed oil, 10 % lactose and whey protein concentrate (WPC)-80 ranging from 5 to 12.5 % were prepared at 1,500, 3,000 and 4,500 psi homogenization pressure. Flaxseed oil emulsions were studied for its physical stability, oxidative stability (peroxide value), particle size distribution, zeta (ζ)-potential and rheological properties. Emulsions homogenized at 1,500 and 4,500 psi pressure showed oil separation and curdling of WPC, respectively, during preparation or storage. All the combinations of emulsions (homogenized at 3,000 psi) were physically stable for 28 days at 4-7 ºC temperature and did not show separation of phases. Emulsion with 7.5 % WPC showed the narrowest particle size distribution (190 to 615 nm) and maximum zeta (ζ)-potential (-33.5 mV). There was a slight increase in peroxide value (~20.98 %) of all the emulsions (except 5 % WPC emulsion), as compared to that of free flaxseed oil (~44.26 %) after 4 weeks of storage. Emulsions showed flow behavior index (n) in the range of 0.206 to 0.591, indicating higher shear thinning behavior, which is a characteristic of food emulsions. Results indicated that the most stable emulsion of flaxseed oil (12.5 %) can be formulated with 7.5 % WPC-80 and 10 % lactose (filler), homogenized at 3,000 psi pressure. The formulated emulsion can be used as potential omega-3 (ω-3) fatty acids delivery system in developing functional foods such as pastry, ice-creams, curd, milk, yogurt, cakes, etc.

  1. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs).

    PubMed

    Silmore, Kevin S; Gupta, Chetali; Washburn, Newell R

    2016-03-15

    Lignin is an abundant biopolymer that has native interfacial functions but aggregates strongly in aqueous media. Polyacrylamide was grafted onto kraft lignin nanoparticles using reversible addition-fragmentation chain transfer (RAFT) chemistry to form polymer-grafted lignin nanoparticles (PGLNs) that tune aggregation strength while retaining interfacial activities in forming Pickering emulsions. Polymer graft density on the particle surface, ionic strength, and initial water and cyclohexane volume fractions were varied and found to have profound effects on emulsion characteristics, including emulsion volume fraction, droplet size, and particle interfacial concentration that were attributed to changes in lignin aggregation and hydrophobic interactions. In particular, salt concentration was found to have a significant effect on aggregation, zeta potential, and interfacial tension, which was attributed to changes in solubility of both the kraft lignin and the polyacrylamide grafts. Dynamic light scattering, UV-vis spectroscopy, optical microscopy, and tensiometry were used to quantify emulsion properties and nanoparticle behavior. Under all conditions, the emulsions exhibited relatively fast creaming but were stable against coalescence and Ostwald ripening for a period of months. All emulsions were also oil-in-water (o/w) emulsions, as predicted by the Bancroft rule, and no catastrophic phase inversions were observed for any nanoparticle compositions. We conclude that lower grafting density of polyacrylamide on a lignin core resulted in high levels of interfacial activity, as characterized by higher concentration at the water-cyclohexane interface with a corresponding decrease in interfacial tension. These results indicate that the interfacial properties of polymer-grafted lignin nanoparticles are primarily due to the native hydrophobic interactions of the lignin core. These results suggest that the forces that drive aggregation are also correlated with interfacial

  2. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  3. Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method

    PubMed Central

    Choi, Se Bin; Yoon, Hong Min; Lee, Joon Sang

    2014-01-01

    An emulsion system was simulated under simple shear rates to analyze its rheological characteristics using a hierarchical multi-scale approach. The molecular dynamics (MD) simulation was used to describe the interface of droplets in an emulsion. The equations derived from the MD simulation relative to interfacial tension, temperature, and surfactant concentration were applied as input parameters within lattice Boltzmann method (LBM) calculations. In the LBM simulation, we calculated the relative viscosity of an emulsion under a simple shear rate along with changes in temperature, shear rate, and surfactant concentration. The equations from the MD simulation showed that the interfacial tension of the droplets tended to decrease with an increase in temperature and surfactant concentration. The relative viscosity from the LBM simulation decreased with an increase in temperature. The shear thinning phenomena explaining the inverse proportion between shear rate and viscosity were observed. An increase in the surfactant concentration caused an increase in the relative viscosity for a decane-in-water emulsion, because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress. PMID:25332732

  4. Di-Peptide-Modified Gemini Surfactants as Gene Delivery Vectors: Exploring the Role of the Alkyl Tail in Their Physicochemical Behavior and Biological Activity.

    PubMed

    Al-Dulaymi, Mays A; Chitanda, Jackson M; Mohammed-Saeid, Waleed; Araghi, Hessamaddin Younesi; Verrall, Ronald E; Grochulski, Pawel; Badea, Ildiko

    2016-09-01

    The aim of this work was to elucidate the structure-activity relationship of new peptide-modified gemini surfactant-based carriers. Glycyl-lysine modified gemini surfactants that differ in the length and degree of unsaturation of their alkyl tail were used to engineer DNA nano-assemblies. To probe the optimal nitrogen to phosphate (N/P) ratio in the presence of helper lipid, in vitro gene expression and cell toxicity measurements were carried out. Characterization of the nano-assemblies was accomplished by measuring the particle size and surface charge. Morphological characteristics and lipid organization were studied by small angle X-ray scattering technique. Lipid monolayers were studied using a Langmuir-Blodgett trough. The highest activity of glycyl-lysine modified gemini surfactants was observed with the 16-carbon tail compound at 2.5 N/P ratio, showing a 5- to 10-fold increase in the level of reporter protein compared to the 12 and 18:1 carbon tail compounds. This ratio is significantly lower compared to the previously studied gemini surfactants with alkyl or amino- spacers. In addition, the 16-carbon tail compound exhibited the highest cell viability (85%). This high efficiency is attributed to the lowest critical micelle concentration of the 16-tail gemini surfactant and a balanced packing of the nanoparticles by mixing a saturated and unsaturated lipid together. At the optimal N/P ratio, all nanoparticles exhibited an inverted hexagonal lipid assembly. The results show that the length and nature of the tail of the gemini surfactants play an important role in determining the transgene efficiency of the delivery system. We demonstrated here that the interplay between the headgroup and the nature of tail is specific to each series, thus in the process of rational design, the contribution of the latter should be assessed in the appropriate context.

  5. Programmed emulsions for sodium reduction in emulsion based foods.

    PubMed

    Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina

    2015-05-01

    In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.

  6. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  7. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate wettability. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  8. Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs).

    PubMed

    Wang, Li-Juan; Yin, Shou-Wei; Wu, Lei-Yan; Qi, Jun-Ru; Guo, Jian; Yang, Xiao-Quan

    2016-12-15

    Herein, we reported a facile method to fabricate ultra-stable, surfactant- and antimicrobial-free Pickering emulsions by designing and modulating emulsions' interfaces via zein/chitosan colloid particles (ZCCPs). Highly charged ZCCPs with neutral wettability were produced by a facile anti-solvent procedure. The ZCCPs were shown to be effective Pickering emulsifiers because the emulsions formed were highly resistant to coalescence over a 9-month storage period. The ZCCPs were adsorbed irreversibly at the interface during emulsification, forming a hybrid network framework in which zein particles were embedded within the chitosan network, yielding ultra-stable food-grade zein/chitosan colloid particles stabilized Pickering emulsions (ZCCPEs). Moreover, stable surfactant-free oil gels were obtained by a one-step freeze-drying process of the precursor ZCCPEs. This distinctive interfacial architecture accounted for the favourable physical performance, and potentially oxidative and microbial stability of the emulsions and/or oil gels. This work opens up a promising route via a food-grade Pickering emulsion-template approach to transform liquid oil into solid-like fats with zero trans-fat formation.

  9. Surfactant-enhanced bicarbonate flooding. Final report

    SciTech Connect

    Peru, D.A.

    1986-10-01

    Coalescence rate constants were calculated for systems containing alcohol ethoxysulfate both with and without TRONACRAB (sodium bicarbonate). All systems containing TRONACRAB above 3.8% total salinity had higher coalescence rate constants than systems not containing TRONACARB. The results indicate that TRONACARB promotes faster coalescence of crude oil-surfactant brine emulsions. Additions of TRONACARB to preflush brine was found to be more economical than chloride brine in reducing divalent ion concentration. Silicon (Si) concentrations did not exceed 24 ppm after TRONACARB was in contact with Berea sandstone for 1 week at 42/sup 0/C. The occurrence of silica scales is expected to be minimal when using TRONACARB in chemical flooding or in a preflush. A chemical slug containing TRONACARB, petroleum sulfate, and polymer recovered from 6 to 20% more residual oil than did systems containing either: TRONACARB plus polymer or surfactant plus polymer. The results from the oil-displacement tests indicate that a synergistic relationship exists between TRONACARB and low concentrations of surfactant and polymer whereby the oil-recovery efficiency was improved, and the chemical cost per barrel of oil recovered was decreased when the three chemicals were used together. 8 refs., 9 figs., 5 tabs.

  10. Effects of residual surfactants on the chemistry of nanostructured barium hexaaluminate type catalysts

    SciTech Connect

    Khan, N.A.; Natesakhawat, S.; Matranga, C.S.; Sanders, T.; Veser, G.

    2007-03-01

    While there is a growing body of literature on nanostructured materials made by reverse microemulsion methods, there is little information on how the surfactants used to create these emulsions affect the final chemical properties of these nanoparticles. For catalytic applications, this residue can block active sites, which can have detrimental effects on reactivity. We have used thermogravimetric analysis, XPS, XRD, and infrared spectroscopy to study the chemistry of residual surfactants in nanostructured barium hexaaluminate-supported platinum catalysts synthesized by reverse microemulsion techniques. These nanocatalysts have excellent CH4 oxidation activity and resist sintering up to 1200 ºC. We find that up to ~50 wt. % of the catalyst is composed of residual surfactant at temperatures below 500 ºC. In-situ infrared studies show that the surfactant significantly alters CO adsorption and oxidation. Several calcination and rinsing procedures were evaluated to determine their efficacy on surfactant removal and to evaluate their effect on reactivity.

  11. Effects of surfactant and polymerization method on the synthesis of magnetic colloidal polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Puentes-Vara, Luis A.; Gregorio-Jauregui, Karla M.; Bolarín, Ana M.; Navarro-Clemente, Ma. E.; Dorantes, Héctor J.; Corea, Mónica

    2016-07-01

    The addition of superparamagnetic iron nanoparticles into polystyrene matrix allows for the modification of the physical properties as well as the implementation of new features in the hybrid nanomaterials. These materials have excellent potential for biomedical and bioengineering applications. Nevertheless, it is necessary to achieve a good dispersion of magnetic nanoparticles for its successful incorporation into polymer particles. This can be obtained through the use of a stabilizer, which provides stability against aggregation. In this work, magnetic nanoparticles were dispersed using different stabilizers. Subsequently, ferrofluids stabilized using the mixture of ABEX/IGEPAL and acrylic acid (AA) were used to synthesize PS-Fe3O4 nanocomposites, through miniemulsion and emulsion polymerization conventional techniques. Semicontinuous and batch processes were compared, by varying surfactants and their concentrations. The PS-Fe3O4 nanoparticles were characterized by dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and vibrating sample magnetometer. Magnetic nanoparticle dispersions show better results when the anionic and nonionic surfactants are used as a mixture rather than when used alone. Results of DLS showed that the semicontinuous process allowed obtaining monodisperse materials, whereas polidisperse systems are generated in batch process. Raman spectroscopy confirmed the presence of magnetite and polystyrene in the nanocomposites. PS-Fe3O4 nanoparticles showed superparamagnetic behavior with final magnetization of around 0.01 emu/g and low coercivity, properties that make them suitable for applications in wide fields of technology. Particle size (Dz), was lower than 300 nm in all cases. Moreover, the use of AA as stabilizer allows enhancing the PS-Fe3O4 composite properties. These findings showed that particle size, morphology, and agglomeration are directly influenced by the concentration and the type of surfactant employed.

  12. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  13. Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.

    PubMed

    Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José

    2014-11-01

    Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process.

  14. Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor

    SciTech Connect

    Hu, S.Y.B.; Wiencek, J.M.

    1998-03-01

    A novel extraction technique using an emulsion liquid membrane within a hollow-fiber contactor was developed and utilized to extract copper using LIX 84 extractant. Emulsion liquid membranes are capable of extracting metals from dilute waste streams to levels much below those possible by equilibrium-limited solvent extraction. Utilizing an emulsion liquid membrane within a hollow-fiber contactor retains the advantages of emulsion-liquid-membrane extraction, namely, simultaneous extraction and stripping, while eliminating problems encountered in dispersive contacting methods, such as swelling and leakage of the liquid membrane. Mathematical models for extraction in hollow-fiber contactors were developed. The models satisfactorily predict the outcome of both simple solvent extraction and emulsion-liquid-membrane extraction of copper by LIX 84 in a hollow-fiber contactor over a wide range of conditions. Emulsion-liquid-membrane extraction performs exceptionally well when the extraction is close to equilibrium limit. It is also capable of extracting a solute f/rom very dilute solutions. Stability of the liquid membrane is not crucial when used in hollow-fiber contactors; the surfactant in liquid membrane can be reduced or even eliminated without severely impairing the performance.

  15. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  16. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  17. Emulsion/Surface Interactions from Quiescent Quartz Crystal Microbalance Measurements with an Inverted Sensor.

    PubMed

    Mafi, Roozbeh; Pelton, Robert H

    2015-07-07

    Interactions of three oil-in-water emulsion types with polystyrene-coated quartz crystal microbalance (QCM) sensor surfaces were probed with the QCM cell in both the conventional orientation (i.e., polystyrene surface on the bottom, "looking up") and the inverted orientation (polystyrene on top interior surface of sensor chamber, "looking down"). With the conventionally oriented QCM sensors, the adsorption of soluble and/or dispersed species quickly gave steady-state frequency and dissipation outputs. By contrast, the inverted sensors gave changing responses at long times because of the gravity driven buildup of a viscous consolidation layer next to but not necessarily bound to the sensor surface. Three emulsion types (a simple hexadecane/phosphatidylcholine emulsion, 2% homogenized milk, and a diluted commercial ophthalmic emulsion) displayed a wide range of behaviors. We propose that quiescent QCM measurement made with an inverted sample chamber is a new approach to probing emulsion behaviors near solid surfaces.

  18. Surfactant Enhanced DNAPL Removal

    DTIC Science & Technology

    2001-08-01

    or the permeability contrast (i.e., degree of heterogeneity) that is present in the DNAPL zone. To solubilize DNAPL with surfactants, a sufficient...with respect to the effects of permeability and heterogeneity upon the costs of SEAR: as permeability decreases and/or the degree of heterogeneity...not be an issue for surfactant recovery at all sites. The degree to which MEUF will concentrate the calcium is a function of the surfactant itself

  19. Towards unravelling surfactant transport

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Panda, Satyananda

    2015-11-01

    Surfactant transport arises in many natural or industrial settings. Examples include lipid tear layers in the eye, pulmonary surfactant replacement therapy, or industrial coating flows. Flows driven by the surface tension gradient which arises as a consequence of surfactant concentration inhomogeneity, also known as Marangoni-driven flows, have attracted the attention of fluid dynamists for several decades and has led to the development of sophisticated models and the undeniable advancement of the understanding of such flows. Yet, experimental confirmation of these models has been hampered by the difficulty in reliably and accurately measuring the surfactant concentration and its temporal evolution. In this contribution, we propose a methodology which may help shed some light on surfactant transport at the surface of thin liquid films. The surface stress induced by surfactant concentration induces a flow at the free surface which is visible and measurable. In the context of thin film flows for which the lubrication approximation hold, we demonstrate how the knowledge of this free surface flow field provides sufficient information to reconstruct the surfactant tension field. From the surface tension and an assumed equation of state, the local surfactant concentration can also be calculated and other transport parameters such as the surfactant surface diffusivity indirectly inferred. In this contribution, the proposed methodology is tested with synthetic data generated by the forward solution of the governing partial differential equations in order to illustrate the feasibility of the algorithm and highlight numerical challenges.

  20. Surfactant phospholipid metabolism

    PubMed Central

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. PMID:23026158

  1. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen.

    PubMed

    Sabouni, R; Gomaa, H G

    2015-06-14

    Uniform Pickering emulsions stabilized by metal organic frameworks (MOFs) MIL-101 and ZIF-8 nanoparticles (NPs) were successfully prepared using an oscillatory woven metal microscreen (WMMS) emulsification system in the presence and the absence of surfactants. The effects of operating and system parameters including the frequency and amplitude of oscillation, the type of nano-particle and/or surfactant on the droplet size and coefficient of variance of the prepared emulsions are investigated. The results showed that both the hydrodynamics of the system and the hydrophobic/hydrophilic nature of the NP influenced the interfacial properties of the oil-water interface during droplet formation and after detachment, which in turn affected the final droplet size and distribution. Comparison between the measured and predicted droplet size using a simple torque balance (TB) model is discussed.

  2. New Y-shaped surfactants from renewable resources.

    PubMed

    Ali, Tammar Hussein; Hussen, Rusnah Syahila Duali; Heidelberg, Thorsten

    2014-11-01

    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.

  3. LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration

    SciTech Connect

    Zhong, Lirong; Oostrom, Martinus

    2012-11-19

    A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the first surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.

  4. Estimation hydrophilic-lipophilic balance number of surfactants

    SciTech Connect

    Pawignya, Harsa; Prasetyaningrum, Aji Kusworo, Tutuk D.; Pramudono, Bambang; Dyartanti, Endah R.

    2016-02-08

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  5. Solution properties and electrospinning of phosphonium gemini surfactants.

    PubMed

    Hemp, Sean T; Hudson, Amanda G; Allen, Michael H; Pole, Sandeep S; Moore, Robert B; Long, Timothy E

    2014-06-14

    Bis(diphenylphosphino)alkanes quantitatively react with excess 1-bromododecane to prepare novel phosphonium gemini surfactants with spacer lengths ranging from 2 to 4 methylenes (12-2/3/4-12P). Dodecyltriphenylphosphonium bromide (DTPP), a monomeric surfactant analog, was readily water soluble, however, in sharp contrast, phosphonium gemini surfactants were poorly soluble in water due to two hydrophobic tails and relatively hydrophobic cationic head groups containing phenyl substituents. Isothermal titration calorimetry did not reveal a measurable critical micelle concentration for the 12-2-12P phosphonium gemini surfactant in water at 25 °C. Subsequent studies in 50/50 v/v water-methanol at 25 °C showed a CMC of 1.0 mM for 12-2-12P. All phosphonium gemini surfactants effectively complexed nucleic acids, but failed to deliver nucleic acids in vitro to HeLa cells. The solution behavior of phosphonium gemini surfactants was investigated in chloroform, which is an organic solvent where reverse micellar structures are favored. Solution rheology in chloroform explored the solution behavior of the phosphonium gemini surfactants compared to DTPP. The 12-2-12P and 12-3-12P gemini surfactants were successfully electrospun from chloroform to generate uniform fibers while 12-4-12P gemini surfactant and DTPP only electrosprayed to form droplets.

  6. Comparative effects of different cosurfactants on sterile prednisolone acetate ocular submicron emulsions stability and release.

    PubMed

    Ibrahim, Shaimaa S; Awad, Gehanne A S; Geneidi, Ahmed; Mortada, Nahed D

    2009-03-01

    Pluronic F68 is a nonionic, thermogelling block copolymer showing a high dehydration resistance during autoclaving due to its high cloud point (>100 degrees C). Tween 80 (with cloud point of 72.5 degrees C), is a polyoxyethylene-based cosurfactant, susceptible to temperature because of a decrease in its solubility by temperature increase. This study was done to explore whether or not, when compared with Tween 80, Pluronic F68 could be used blindly as a suitable cosurfactant for the preparation of terminally sterilized ocular submicron emulsions containing a lipid soluble drug, prednisolone acetate (PA). Various oils of variable viscosities were also tried. The results proved that no prediction can be made based on previously known physico-chemical properties alone and that emulsion stability depends on the contribution of the various emulsion components including: oil, surfactant and cosurfactant, in addition to the drug properties.

  7. Friction and Surface Temperature of Wet Hair Containing Water, Oil, or Oil-in-Water Emulsion.

    PubMed

    Aita, Yuuki; Nonomura, Yoshimune

    2016-06-01

    The surface properties and the tactile texture of human hair are important in designing hair-care products. In this study, we evaluated the temporal changes of friction and temperature during the drying process of wet human hair containing water, silicone oil, or oil-in-water (O/W) emulsion. The wet human hair including water or O/W emulsion have a moist feel, which was caused by the temperature reduction of approximately 3-4°C. When human hair is treated with silicone oil, more than 60% of the subjects felt their hair to be slippery and smooth like untreated hair. Treating hair with O/W emulsion after drying made the subject perceive a slippery feeling because the surfactant reduced friction on the hair surface. These results indicated that both friction and thermal properties of the hair surface are important to control the tactile texture of the human hair.

  8. Breaking oil-in-water emulsions stabilized by yeast.

    PubMed

    Furtado, Guilherme F; Picone, Carolina S F; Cuellar, Maria C; Cunha, Rosiane L

    2015-04-01

    Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2 h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.

  9. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  10. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  11. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

  12. Coverage area and fading time of surfactant-amended herbicidal droplets on cucurbitaceous leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper use of appropriate surfactants to control droplet behaviors on leaf surfaces is critical to improve herbicide application efficacy for controlling paddy melons. An esterified seed oil surfactant and a petroleum oil surfactant were investigated to modify spread areas and fading times of water ...

  13. SURFACTANTS IN LUBRICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  14. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  15. Electromagnetic Scale Models Using Emulsions

    DTIC Science & Technology

    1989-04-01

    microwave range; the solutions have a nearly constant permittivity and a conductivity that is adjustable by varying the salt concentration. Mixtures of...emulsion. At this point, complete demulsification has occurred. The emulsion can then be reformed only by subjecting it to the process (homogenization...130-137, June 1986. [17] A. Stogryn, "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microwave Theory and Tech

  16. Molecular simulation of surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

    2005-04-01

    Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

  17. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 ± 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  18. Effect of some petroleum sulfonate surfactants on the apparent water solubility of organic compounds

    SciTech Connect

    Kile, D.E.; Chiou, C.T. ); Helburn, R.S. )

    1990-02-01

    Water solubility enhancements of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT) and 1,2,3-trichlorobenzene (TCB) by some commercial petroleum sulfonates (Petronate L, Petronate HL, and Pyronate 40) were studied at room temperature. Unlike conventional surfactants, the petroleum sulfonate surfactants are mixtures of sulfonated hydrocarbons and free mineral oils, which form stable emulsions in water and thus behave much like a bulk organic phase in concentrating organic solutes. The extent of solubility enhancement is linearly proportional to the concentration of the petroleum sulfonate-oil (PSO) emulsion, in contrast with the effect of a conventional surfactant in which a sharp inflection occurs in the vicinity of the critical micelle concentration (CMC). The enhancement effect of the PSO surfactant is 1.5-3 orders of magnitude greater than that of ordinary surfactant monomers below the CMC. The partition coefficient of the solute between the emulsified PSO phase and water (K{sub em}) is closely related to the nonpolar content of the PSO surfactant; the normalized K{sub em} values are about the same order of magnitude as the solvent (octanol)-water partition coefficients of the solutes.

  19. Water Vapor Sorption and Diffusion in Secondary Dispersion Barrier Coatings: A Critical Comparison with Emulsion Polymers.

    PubMed

    Liu, Yang; Soer, Willem-Jan; Scheerder, Jürgen; Satgurunathan, Guru; Keddie, Joseph L

    2015-06-10

    The conventional method for synthesizing waterborne polymer colloids is emulsion polymerization using surfactants. An emerging method is the use of secondary dispersions (SD) of polymers in water, which avoids the addition of any surfactant. Although there are numerous studies of the water barrier properties (sorption, diffusion, and permeability) of waterborne emulsion (Em) polymer coatings, the properties of SD coatings, in comparison, have not been thoroughly investigated. Here, dynamic water vapor sorption analysis is used to compare the equilibrium sorption isotherms of the two forms of styrene-acrylate copolymers (Em and SD) with the same monomer composition. From an analysis of the kinetics of vapor sorption, the diffusion coefficient of water in the polymer coatings is determined. The combined effects of particle boundaries and surfactant addition were investigated through a comparison of the properties of SD and Em coatings to those of (1) solvent-cast polymer coatings (of the same monomer composition), (2) Em polymers that underwent dialysis to partially remove the water-soluble species, and (3) SD polymers with added surfactants. The results reveal that both the particle boundaries and the surfactants increase vapor sorption. The diffusion coefficients of water are comparable in magnitude in all of the polymer systems but are inversely related to water activity because of molecular clustering. Compared to all of the other waterborne polymer systems, the SD barrier coatings show the lowest equilibrium vapor sorption and permeability coefficients at high relative humidities as well as the lowest water diffusion coefficient at low humidities. These barrier properties make SD coatings an attractive alternative to conventional emulsion polymer coatings.

  20. Using the pseudophase kinetic model to interpret chemical reactivity in ionic emulsions: determining antioxidant partition constants and interfacial rate constants.

    PubMed

    Gu, Qing; Bravo-Díaz, Carlos; Romsted, Laurence S

    2013-06-15

    Kinetic results obtained in cationic and anionic emulsions show for the first time that pseudophase kinetic models give reasonable estimates of the partition constants of reactants, here t-butylhydroquinone (TBHQ) between the oil and interfacial region, P(O)(I), and the water and interfacial region, P(W)(I), and of the interfacial rate constant, k(I), for the reaction with an arenediazonium ion in emulsions containing a 1:1 volume ratio of a medium chain length triglyceride, MCT, and aqueous acid or buffer. The results provide: (a) an explanation for the large difference in pH, >4 pH units, required to run the reaction in CTAB (pH 1.54, added HBr) and SDS (pH 5.71, acetate buffer) emulsions; (b) reasonable estimates of PO(I) and k(I) in the CTAB emulsions; (c) a sensible interpretation of added counterion effects based on ion exchange in SDS emulsions (Na(+)/H3O(+) ion exchange in the interfacial region) and Donnan equilibrium in CTAB emulsions (Br(-) increasing the interfacial H3O(+)); and (d) the significance of the effect of the much greater solubility of TBHQ in MCT versus octane, 1000/1, as the oil. These results should aid in interpreting the effects of ionic surfactants on chemical reactivity in emulsions in general and in selecting the most efficient antioxidant for particular food applications.

  1. Use of surfactants for the remediation of contaminated soils: a review.

    PubMed

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  2. Incorporation of iodine in polymeric microparticles and emulsions

    NASA Astrophysics Data System (ADS)

    Kolontaeva, Olga A.; Khokhlova, Anastasia R.; Markina, Natalia E.; Markin, Alexey V.; Burmistrova, Natalia A.

    2016-04-01

    Application of different methods for formation of microcontainers containing iodine is proposed in this paper. Two types of microcontainers: microemulsions and microparticles have been investigated, conditions and methods for obtaining microcontainers were optimized. Microparticles were formed by layer-by-layer method with cores of calcium carbonate (CaCO3) as templates. Incorporation of complexes of iodine with polymers (chitosan, starch, polyvinyl alcohol) into core, shell and hollow capsules was investigated and loadings of microparticles with iodine were estimated. It was found that the complex of iodine with chitosan adsorbed at CaCO3 core is the most stable under physiological conditions and its value of loading can be 450 μg of I2 per 1 g of CaCO3. Moreover, chitosan was chosen as a ligand because of its biocompatibility and biodegradability as well as very low toxicity while its complex with iodine is very stable. A small amount of microparticles containing a iodine-chitosan complex can be used for prolonged release of iodine in the human body since iodine daily intake for adults is around 100 μg. "Oil-in-water" emulsions were prepared by ultrasonication of iodinated oils (sunflower and linseed) with sodium laurilsulfate (SLS) as surfactant solution. At optimal conditions, the homogenous emulsions remained stable for weeks, with total content of iodine in such emulsion being up to 1% (w/w). The oil:SLS ratio was equal to 1:10 (w/w), optimal duration and power of ultrasound exposure were 1.5 min and 7 W, correspondingly. Favorable application of iodized linseed oil for emulsion preparation with suitable oil microdroplets size was proved.

  3. Coacervation with surfactants: From single-chain surfactants to gemini surfactants.

    PubMed

    Zhao, Weiwei; Wang, Yilin

    2017-01-01

    Coacervation is a spontaneous process during which a colloidal dispersion separates into two immiscible liquid phases: a colloid-rich liquid phase in equilibrium with a diluted phase. Coacervation is usually divided into simple coacervation and complex coacervation according to the number of components. Surfactant-based coacervation normally contains traditional single-chain surfactants. With the development of surfactants, gemini surfactants with two amphiphilic moieties have been applied to form coacervation. This review summarizes the development of simple coacervation and complex coacervation in the systems of single-chain surfactants and gemini surfactants. Simple coacervation in surfactant solutions with additives or at elevated temperature and complex coacervation in surfactant/polymer mixtures by changing charge densities, molecular weight, ionic strength, pH, or temperature are reviewed. The comparison between gemini surfactants and corresponding monomeric single-chain surfactants reveals that the unique structures of gemini surfactants endow them with higher propensity to generate coacervation.

  4. Innovative Applications Of Food Related Emulsions.

    PubMed

    S, Kiokias; T, Varzakas

    2016-02-06

    Research on oxidative stability of multiple emulsions is very scarce. Given that this is a relevant topic that must be ascertained before the successful application of multiple emulsions in foods (especially when a combination of highly unsaturated oils is used as a lipid phase), this review mainly focus on various aspects of the multiple emulsions. Fat replacement in meat products using emulsions is critically discussed along with innovative applications of natural antioxidants in food based emulsions and multiple emulsions based on bioactive compounds/encapsulation as well as confectionery products.

  5. Kenaf as a deep-bed filter medium to remove oil from oil-in-water emulsions

    SciTech Connect

    Varghese, B.K.; Cleveland, T.G.

    1998-10-01

    This study investigated the feasibility of deep-bed filtration using kenaf (agricultural fiber) media for the removal of oil from oil-in-waste emulsions. Continuous flow, constant pressure filtrations were conducted using surfactant stabilized emulsions. Removal of oil and grease varied from 70 to 95% for 500 mg/L oil-in-water emulsion stabilized by surfactants. Oil removal was better for larger oil drops, finer media particles, higher filtration pressure, lower pH, cationic surfactant, and deeper media. Moisture contents and heating values of the spent media were determined. Moisture content decreased with increasing filtration pressure and decreasing particle size of the media. Heating values of the spent media increased with the volume of emulsion filtered. Heating values were high enough to produce surplus energy after accounting for the energy required for driving out the moisture. The results indicated that it may be possible to dispose of the spent medium by combustion without further drying and extract net energy in the process.

  6. Surfactants in the environment.

    PubMed

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  7. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, October 1--December 30, 1994

    SciTech Connect

    Wasan, D.T.

    1994-12-31

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. The problem of characterizing emulsions in porous media is very important in enhanced oil recovery applications. This is usually accomplished by externally added or insitu generated surfactants that sweep the oil out of the reservoir. Emulsification of the trapped oil is one of the mechanisms of recovery. The ability to detect emulsions in the porous medium is therefore crucial to designing profitable flood systems. The capability of microwave dielectric techniques to detect emulsions in porous medium is demonstrated by mathematical modelling and by experiments. This quarter the dielectric properties of porous media are shown to be predicted adequately by treating it an an O/W type dispersion of sand grains in water. Dielectric measurements of emulsion flow in porous media show that dielectric techniques may be applied to determine emulsion characteristics in porous media. The experimental observations were confirmed by theoretical analysis.

  8. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes.

    PubMed

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-06-21

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  9. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  10. Impact of electrolytes on double emulsion systems (W/O/W) stabilized by an amphiphilic block copolymer.

    PubMed

    Zhang, Yu; Gou, Jingxin; Sun, Feng; Geng, SiCong; Hu, Xi; Zhang, Keru; Lin, Xia; Xiao, Wei; Tang, Xing

    2014-10-01

    In this work, the block copolypeptide surfactant, poly(l-lysine·HBr)40-b-poly(racemic-leucine)20, was synthesized and characterized, then used to build water-in-oil-in-water (W/O/W) double emulsions. Double emulsions are usually prepared by a two-step emulsification process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) double emulsions stabilized by a synthetic diblock copolymer and electrolyte. It was found that the O/W ratio and the type of electrolyte had a marked effect on the formation and type of the double emulsions. Moreover, double emulsions containing an NaCl isotonic solution were stable for at least two months, whereas those using glucose as a substitute for NaCl showed a clear compartmental change. The mechanism behind this was related to the electrostatic interaction between the anion of the electrolyte and the cation of the polylysine residues, which affected the HLB value and curvature. This novel finding is very interesting in terms of both scientific research and practical applications.

  11. Surfactant-enhanced sodium bicarbonate flooding. Project OE6

    SciTech Connect

    Peru, D.A.

    1986-08-01

    Three anionic and four nonionic surfactants were tested for their emulsification behavior with TRONACRAB (sodium bicarbonate) and Wilmington crude oil. Three of the surfactants were found to enhance the solubilization of oil in the brine phase in the presence of TRONACARB according to the screening guide established in this study. Interfacial tension measurements were made on the most promising systems. The results support the hypothesis that a synergistic relationship can exist between low concentrations of synthetic surfactant and TRONACRAB. In batch experiments using kaolinite and in a linear coreflood using consolidated Berea sandstone, TRONACRAB reduced adsorption of surfactant by up to 93%. TRONACARB was less effective in preventing adsorption onto crushed Berea sandstone probably due to an unusually high amount of ferrodolomite (calcium magnesium carbonate with iron impurities). The following conclusion have been made from the results of this work. (1) Addition of water-soluble synthetic surfactants to brines containing TRONACARB enhances the aqueous solubility of surfactants formed in situ. (2) The greatest solubilization of oil into the brine phase occurs when TRONACARB is used with synthetic surfactant. (3) The use of TRONACARB in combination with synthetic surfactants results in ultralow interfacial tension upon contact with the oil phase. (4) TRONACARB decreases the temperature at which ninionics can solubilize oil effectively (lower IFT). The use of nonionics at lower temperatures will reduce adsorption significantly. (5) TRONACARB is as useful as higher pH alkaline agents in preventing adsoprtion of anionic surfactants. 12 refs., 10 figs., 4 tabs.

  12. Light-Triggered Release from Pickering Emulsions Stabilized by TiO2 Nanoparticles with Tailored Wettability.

    PubMed

    Bai, Rui-Xue; Xue, Long-Hui; Dou, Rong-Kun; Meng, Shi-Xin; Xie, Chun-Yan; Zhang, Qing; Guo, Ting; Meng, Tao

    2016-09-13

    In this work, a new strategy for developing light-triggered Pickering emulsions as smart soft vehicles for on-demand release is proposed. Initially, UV-induced tailored wettability allows anchoring of TiO2 nanoparticles at the interface to prepare stable water in oil emulsions. Such emulsions show the efficacy of microencapsulation and controlled release by demulsification due to the hydrophilic conversion of the TiO2 nanoparticles using a noninvasive light irradiation trigger. A molecule of interest is selected as a model cargo to quantitatively evaluate the as-prepared Pickering emulsions for their encapsulation and release behaviors. Moreover, light-responsive emulsion destabilization mechanism is studied as a function of particle concentration, light wavelength, and light intensity, respectively, determined by drop diameter evolution and droplet coalescence kinetics plots. For consideration of application in life sciences, Pickering emulsions sensitive to visible light are also established based on nitrogen doping of TiO2 nanoparticle emulsifiers.

  13. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan.

    PubMed

    Lemarchand, Caroline; Couvreur, Patrick; Vauthier, Christine; Costantini, Dominique; Gref, Ruxandra

    2003-03-18

    Oil-in-water nanoemulsions were prepared using a series of synthetic graft copolymers with a backbone of dextran (DEX) and a number of side chains of poly-epsilon-caprolactone (PCL). In this paper, we focus on the o/w emulsion stabilizing abilities of these novel PCL-DEX copolymers, using a recently developed optical analyzer (Turbiscan). The main advantage of Turbiscan is to detect the destabilization phenomena in non-diluted emulsion, much earlier than the naked eye's operator, especially in the case of an opaque and concentrated system. This study shows that PCL-DEX copolymers successfully stabilized ethyl acetate-in-water emulsions, even in the absence of additional surfactants, whereas they were not efficient in stabilizing methylene chloride-in-water emulsions which coalesced fast and irreversibly. The ethyl acetate-in-water emulsion stabilizing ability of PCL-DEX seemed to be related to the localization of their blocks with regard to the oil-water interface.

  14. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.

    PubMed

    Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R

    2017-03-01

    The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface.

  15. Measurement of emulsion flow in porous media: Improvements in heavy oil recovery

    NASA Astrophysics Data System (ADS)

    Bryan, J.; Wang, J.; Kantzas, A.

    2009-02-01

    Many heavy oil and bitumen reservoirs in the world are too small or thin for thermal enhanced oil recovery methods to be economic. In these fields, novel methods of less energy intensive, non-thermal technologies are required. Previous experience has shown that the injection of low concentrations of aqueous alkali-surfactant solutions into the reservoir can significantly improve the oil recovery, beyond that of waterflooding. This is due to the in-situ formation of emulsions, which plug off the water channels and lead to improved sweep efficiency in the reservoir. The proper control of these floods requires methods for monitoring the formation and effect of these emulsions. In this paper, the results of laboratory core floods are interpreted to demonstrate how the pressure and flow response can be related to the formation of these emulsions. A new technique (low field NMR) is also used to directly measure W/O emulsions in porous media. Finally, a numerical study is performed in order to demonstrate how the in-situ formation of emulsions can be simply represented in simulation software.

  16. Starch nanocrystal stabilized Pickering emulsion polymerization for nanocomposites with improved performance.

    PubMed

    Haaj, Sihem Bel; Thielemans, Wim; Magnin, Albert; Boufi, Sami

    2014-06-11

    Latex/starch nanocrystal (SNC) nanocomposite dispersions were successfully synthesized via a one-step surfactant-free Pickering emulsion polymerization route using SNC as the sole stabilizer. The effect of the SNC content, initiator type and comonomer on the particle size, colloidal stability, and film properties were investigated. Both HCl and H2SO4-hydrolysed starch nanocrystals, each bearing different surface charges, were used as Pickering emulsion stabilizing nanoparticles. SNCs from HCl hydrolysis were found to provide a better stabilization effect, giving rise to a polymer dispersion with a lower average particle size. The mechanistic aspects of the Pickering emulsion polymerization were also discussed. Nanocomposites formed by film-casting the polymer Pickering emulsions showed better mechanical properties and optical transparency than those obtained by blending the polymer emulsion with a nanocrystal dispersion, showing the one-pot route to nanocomposite precursors to be doubly advantageous. Therefore, this in situ polymerization technique not only facilitates the use of SNC nanoparticles, it also provides a valuable nanocomposite with enhanced mechanical properties and high transparency level.

  17. Recent advances in gemini surfactants: oleic Acid-based gemini surfactants and polymerizable gemini surfactants.

    PubMed

    Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Gemini surfactants recently developed by our research group are introduced from the standpoints of their syntheses, aqueous solution properties, and potential applications. Two series of gemini surfactants are introduced in this short review, the first of which is the oleic acid-based gemini surfactants, and the second is the polymerizable gemini surfactants. These gemini surfactants have been developed not only as environmentally friendly materials (the use of gemini surfactants enables the reduction of the total consumption of surfactants in chemical products owing to their excellent adsorption and micellization capabilities at low concentrations) but also as functional organic materials.

  18. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  19. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  20. Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose.

    PubMed

    Zhou, Yan; Chen, Hongmei; Qi, Feng; Zhao, Xuebing; Liu, Dehua

    2015-04-01

    Non-ionic surfactants have been frequently reported to improve the enzymatic hydrolysis of pretreated lignocellulosic biomass and pure cellulose. However, how the hydrolysis condition, substrate structure and cellulase formulation affect the beneficial action of surfactants has not been well elucidated. In this work, it was found that the enzymatic hydrolysis of pure cellulose was not consistently improved by surfactants. Contrarily, high surfactant concentration, e.g. 5 g/L, which greatly improved the hydrolysis of dilute acid pretreated substrates, actually showed notable inhibition to pure cellulose conversion in the late phase of hydrolysis. Under an optimal hydrolysis condition, the improvement by surfactant was limited, but under harsh conditions surfactant indeed could enhance cellulose conversion. It was proposed that non-ionic surfactants could interact with substrates and cellulases to impact the adsorption behaviors of cellulases. Therefore, the beneficial action of surfactants on pure cellulose hydrolysis is influenced by hydrolysis condition, cellulose structural features and cellulase formulation.

  1. Preparation of polymeric nanoparticles using a new polymerizable surfactant

    NASA Astrophysics Data System (ADS)

    Bunio, Paulina; Zielińska, Katarzyna; Chlebicki, Jan; Wilk, Kazimiera

    2011-04-01

    A novel polymerizable surfactant (so-called surfmer) was synthesized and characterized according to its structure, surface activity and polymerization ability. Polymeric micelles (size of 6 and 130 nm) appeared in the polyreaction initiated by free radicals from VA-044. In the presence of the monomer (i.e., methyl methacrylate) microemulsion systems were formed that in turn were transformed into latex entities (size — 40 nm). Additionally, an emulsion polymerization was performed with the use of n-hexadecane as an oil phase resulting in the production of nanocapsules (size in the range — 165-220 nm). The shape and morphologies of the nanoobjects were confirmed using Atomic Force Microscopy (AFM).

  2. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants

    PubMed Central

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5°C or 25°C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40°C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563

  3. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions.

    PubMed

    Rymaruk, Matthew J; Thompson, Kate L; Derry, Matthew J; Warren, Nicholas J; Ratcliffe, Liam P D; Williams, Clive N; Brown, Steven L; Armes, Steven P

    2016-08-14

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  4. Rheology of Natural Lung Surfactant Films

    NASA Astrophysics Data System (ADS)

    Alonso, Coralie; Waring, Alan; Zsadzinski, Joseph

    2004-03-01

    The lung surfactant (LS) is a lipoprotein mixture lining the inside of the pulmonary alveoli which has the ability to lower the surface tension of the air-liquid hypophase interface to value near zero thus reducing the work of breathing and which also prevents the alveolar collapse. A lack or malfunction of lung surfactant, as it is often the case for premature infants, leads to respiratory distress syndrome. RDS can be treated by supplying replacement LS to the infants and several medications derived from natural sources, are now widely used. The lung surfactant is adsorbed at the air-liquid interface and is subjected to incessant compression expansion cycles therefore Langmuir monolayers provide a suitable model to investigate the physical properties of lung surfactant films. Using a magnetic needle rheometer, we measured the shear viscosity of natural lung surfactant spread at the air-liquid interface upon compression and expansion cycles for three different formulations. The shear viscosity of Survanta changes by orders of magnitude along one cycle while for Curosurf samples it changes only slightly and for Infasurf films it remains constant. These different behaviors can be explained by differences in composition between the three formulations leading to different organizations on the molecular scale.

  5. Surfactant effects on SF6 hydrate formation.

    PubMed

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity.

  6. Titanium Dioxide Nanoparticles Produced in Water-in-oil Emulsion

    NASA Astrophysics Data System (ADS)

    Mori, Yasushige; Okastu, Yasuhiro; Tsujimoto, Yuki

    2001-06-01

    Titanium dioxide (titania) particles were prepared by a water-in-oil emulsion system, and studied for the photodecomposition property of methylene blue. Microemulsion (ME) consisted of water, cyclohexane or octane, and surfactant, such as polyoxyethylene (10) octylphenyl ether (TX-100), polyoxyethylene lauryl ether, or bis (2-ethylhexyl) sodium sulfosuccinate. Titanium tetraisopropoxide (TTIP) was dropped into the ME solution and then titania particles were formed by the hydrolysis reaction between TTIP in the organic solvent and the water in the core of ME. It was found that ME could be classified to the reversed micelle (RM) region and the swelling reversed micelle (SM) region according to the water content. The water droplets in RM were almost monodispersed, where the water content was small. On the other hand, the water droplets in SM had a size distribution, although most of the water molecules associated with surfactant molecules. The size of the particles prepared in the RM region was smaller than the ME size. In contrast, the size of the particles formed in the SM region was larger than the ME size, and coagulation of the particles was observed within a few hours. The smallest diameter of the particles was 2 nm in the system of cyclohexane with TX-100 surfactant when the molar ratio of water to surfactant was 2. Titania particles prepared in this condition were collected as amorphous powder, and converted to anatase phase at less than 500 K, which is lower than the ordinal phase transition temperature. These anatase phase titania particles only showed a significant photodecomposition of methylene blue by illumination with a Xenon lamp.

  7. Prevention of topical and ocular oxidative stress by positively charged submicron emulsion.

    PubMed

    Benita, S

    1999-05-01

    a breakdown in day 14. Complete re-epithelialization was observed in day 28. The same behavior (albeit less pronounced), was noted in piroxicam emulsion, although piroxicam is known to inhibit the epithelial healing process. It can therefore be deduced that the positively charged emulsion vehicle prevented piroxicam from interfering with the epithelial healing process due to the intrinsic free radical scavenger ability of the positively charged submicron emulsion previously demonstrated. Finally, the efficacy of this promising emulsion vehicle containing effective cosmetic ingredients in preventing skin damage and aging following oxidative stress is evaluated.

  8. Evidence for Marginal Stability in Emulsions

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Jorjadze, Ivane; Pontani, Lea-Laetitia; Wyart, Matthieu; Brujic, Jasna

    2016-11-01

    We report the first measurements of the effect of pressure on vibrational modes in emulsions, which serve as a model for soft frictionless spheres at zero temperature. As a function of the applied pressure, we find that the density of states D (ω ) exhibits a low-frequency cutoff ω*, which scales linearly with the number of extra contacts per particle δ z . Moreover, for ω <ω*, our results are consistent with D (ω )˜ω2/ω*2, a quadratic behavior whose prefactor is larger than what is expected from Debye theory. This surprising result agrees with recent theoretical findings [E. DeGiuli, A. Laversanne-Finot, G. A. Düring, E. Lerner, and M. Wyart, Soft Matter 10, 5628 (2014); S. Franz, G. Parisi, P. Urbani, and F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 112, 14539 (2015)]. Finally, the degree of localization of the softest low frequency modes increases with compression, as shown by the participation ratio as well as their spatial configurations. Overall, our observations show that emulsions are marginally stable and display non-plane-wave modes up to vanishing frequencies.

  9. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  10. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  11. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  12. Solid-state nanoparticle coated emulsions for encapsulation and improving the chemical stability of all-trans-retinol.

    PubMed

    Ghouchi-Eskandar, Nasrin; Simovic, Spomenka; Prestidge, Clive A

    2012-02-28

    Submicron oil-in-water (o/w) emulsions stabilised with conventional surfactants and silica nanoparticles were prepared and freeze-dried to obtain free-flowing powders with good redispersibility and a three-dimensional porous matrix structure. Solid-state emulsions were characterised for visual appearance, particle size distribution, zeta potential and reconstitution properties after freeze-drying with various sugars and at a range of sugar to oil ratios. Comparative degradation kinetics of all-trans-retinol from freeze-dried and liquid emulsions was investigated as a function of storage temperatures. Optimum stability was observed for silica-coated oleylamine emulsions at 4 °C in their wet state. The half-life of all-trans-retinol was 25.66 and 22.08 weeks for silica incorporation from the oil and water phases respectively. This was ∼4 times higher compared to the equivalent solid-state emulsions with drug half-life of 6.18 and 6.06 weeks at 4 °C. Exceptionally, at a storage temperature of 40 °C, the chemical stability of the drug was 3 times higher in the solid-state compared to the wet emulsions which confirmed that freeze-drying is a promising approach to improve the chemical stability of water-labile compounds provided that the storage conditions are optimised.

  13. Controlling molecular transport in minimal emulsions

    PubMed Central

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  14. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  15. Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp fibre

    NASA Astrophysics Data System (ADS)

    Ramly, N. H.; Zakaria, R.; Naim, M. N.

    2016-06-01

    Surfactant-assisted aqueous extraction has been proposed as a “green” alternative to hexane extraction for the recovery of oil from plant matters. An efficient aqueous surfactant extraction system usually use an extended type of ionic surfactant with the ability to produce Winsor type III microemulsion, reducing the interfacial tension (IFT) between plant oil and surfactant solution to an ultralow level (10-3 mN/m). However, the safe used of this surfactant in food processing is uncertain leading to non-food application of the recovered oil. In the present study, the potential of Tween 80, a commercial food-grade non-ionic surfactant, was evaluated in the recovery of residual oil from palm-pressed mesocarp. The emulsion produced between Tween 80 and crude palm oil (CPO) was characterised in terms of IFT, droplet size, viscosity and phase inversion temperature (PIT). The effect of surfactant concentration, electrolyte (NaCl) and temperature were studied to determine whether a Winsor Type III microemulsion can be produced. Results shows that although these parameters were able to reduce the IFT to very low values, Winsor type III microemulsion was not produced with this single surfactant. Emulsion of CPO and Tween 80 solution did not produce a PIT even after heating to 100°C indicating that middle phase emulsion was not able to be formed with increasing temperature. The highest percentage of oil extraction (38.84%) was obtained at the concentration above the critical micelle concentration (CMC) of Tween 80 and CPO, which was at 0.5 wt% Tween 80 with 6% NaCl, and temperature of 60°C. At this concentration, the IFT value is 0.253 mN/m with a droplet size of 4183.8 nm, and a viscosity of 7.38 cp.

  16. Enrichment of surfactant from its aqueous solution using ultrasonic atomization.

    PubMed

    Takaya, Haruko; Nii, Susumu; Kawaizumi, Fumio; Takahashi, Katsuroku

    2005-08-01

    Dilute aqueous solutions of dodecyl-benzenesulfonic acid sodium salt (DBS-Na) and polyoxyethylenenonylphenyl ethers (PONPEs) were ultrasonically atomized. The surfactants were concentrated in collected mist droplets. The enrichment ratio increased with decreasing surfactant concentration. Depending on the surfactant's molecular weight and affinity to water, different enrichment ratio was observed in the range of low feed concentrations. For anionic surfactant, DBS-Na, the enrichment ratio was significantly improved by KCl addition and a peak appeared on the plot of the ratio against KCl concentration. Addition of NaCl or CaCl2 . 2H2O to the surfactant solution also enhanced the enrichment ratio; however, the effect was relatively small. Such behaviors of the ratio were interpreted as enhanced interfacial adsorption of the surfactant and a lack of supply of surfactant monomers from liquid bulk because of slow breaking of surfactant micelles. Time required for collecting an amount of mist was also observed. Among the three salt systems, the time for KCl system was twice as long as others. This fact suggested that the formation of smaller droplets in KCl system.

  17. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  18. Morphological transformations of native petroleum emulsions. I. Viscosity studies.

    PubMed

    Evdokimov, Igor N; Efimov, Yaroslav O; Losev, Aleksandr P; Novikov, Mikhail A

    2008-07-15

    Emulsions of water in as-recovered native crude oils of diverse geographical origin evidently possess some common morphological features. At low volume fractions varphi of water, the viscosity behavior of emulsions is governed by the presence of flocculated clusters of water droplets, whereas characteristic tight gels, composed of visually monodisperse small droplets, are responsible for the viscosity anomaly at varphi approximately 0.4-0.5. Once formed, small-droplet gel domains apparently retain their structural integrity at higher varphi, incorporating/stabilizing new portions of water as larger-sized droplets. The maximum hold-up of disperse water evidently is the close-packing limit of varphi approximately 0.74. At higher water contents (up to varphi approximately 0.83), no inversion to O/W morphology takes place, but additional water emerges as a separate phase. The onset of stratified flow (W/O emulsion gel + free water) is the cause of the observed viscosity decrease, contrary to the conventional interpretation of the viscosity maximum as a reliable indicator of the emulsion inversion point.

  19. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    SciTech Connect

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; Dobrynin, Andrey V.; Adamson, Douglas H.

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boiling solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.

  20. Drug nanoparticles by emulsion-freeze-drying via the employment of branched block copolymer nanoparticles.

    PubMed

    Wais, Ulrike; Jackson, Alexander W; Zuo, Yanming; Xiang, Yu; He, Tao; Zhang, Haifei

    2016-01-28

    A large percentage of drug compounds exhibit low water solubility and hence low bioavailability and therapeutic efficacy. This may be addressed by preparation of drug nanoparticles, leading to enhanced dissolution rate and direct use for treatment. Various methods have been developed to produce drug nanocrystals, including wet milling, homogenization, solution precipitation, emulsion diffusion, and the recently developed emulsion freeze-drying. The drawback for these methods may include difficult control in particles size, use of surfactants & polymer, and low ratio of drug to stabilizer. Here, biocompatible branched block copolymer nanoparticles with lightly-crosslinked hydrophobic core and hydrophilic surface groups are synthesized by the direct monomer-to-particle methodology, characterized, and then used as scaffold polymer/surfactant to produce drug nanoparticles via the emulsion-freeze-drying approach. This method can be used for model organic dye and different poorly water-soluble drugs. Aqueous drug nanoparticle dispersions can be obtained with high ratio of drug to stabilizer and relatively uniform nanoparticle sizes.

  1. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    DOE PAGES

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; ...

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  2. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    PubMed

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously.

  3. Self-Propelled Oil Droplets and Their Morphological Change to Giant Vesicles Induced by a Surfactant Solution at Low pH.

    PubMed

    Banno, Taisuke; Tanaka, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-09-20

    Unique dynamics using inanimate molecular assemblies based on soft matter have drawn much attention for demonstrating far-from-equilibrium chemical systems. However, there are no soft matter systems that exhibit a possible pathway linking the self-propelled oil droplets to formation of giant vesicles stimulated by low pH. In this study, we conceived an experimental oil-in-water emulsion system in which flocculated particles composed of a imine-containing oil transformed to spherical oil droplets that self-propelled and, after coming to rest, formed membranous figures. Finally, these figures became giant vesicles. From NMR, pH curves, and surface tension measurements, we determined that this far-from-equilibrium phenomenon was due to the acidic hydrolysis of the oil, which produced a benzaldehyde derivative as an oil component and a primary amine as a surfactant precursor, and the dynamic behavior of the hydrolytic products in the emulsion system. These findings afforded us a potential linkage between mobile droplet-based protocells and vesicle-based protocells stimulated by low pH.

  4. Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters.

    PubMed

    Pintado, T; Herrero, A M; Ruiz-Capillas, C; Triki, M; Carmona, P; Jiménez-Colmenero, F

    2016-03-01

    Emulsion gels prepared with olive oil, chia, and cold gelling agents (transglutaminase, alginate, or gelatin) were used as fat replacers in reduced-fat frankfurter formulation. Nutritional advantages, sensory analysis, technological properties, and microbiological populations of frankfurters were evaluated along with their lipid structural characteristics over chilled storage. Frankfurters with emulsion gels showed significant improvements in fat content (lower saturated fatty acid, higher mono- and polyunsaturated fatty acid contents) and had good fat and water-binding properties. The presence of an emulsion gel reduced lightness and redness, but increased yellowness. Textural behavior of samples was significantly affected by the presence of emulsion gels and by storage. Sensory properties were not affected by the incorporation of emulsion gels, and all frankfurters were judged acceptable. Attenuated total reflectance-Fourier transform infrared spectroscopy results showed that samples with emulsion gels involve more lipid-protein interactions. Frankfurters with emulsion gels showed good stability to oxidation during storage and contained lower levels of microorganism than reduced-fat control at 85 days.

  5. Rheology and stability of acidified food emulsions treated with high pressure.

    PubMed

    Arora, Akshay; Chism, Grady W; Shellhammer, Thomas H

    2003-04-23

    The stability and rheology of acidified model oil-in-water emulsions (pH 3.6 +/- 0.1) were evaluated before and after high-pressure treatments. Varying concentrations of canola oil (0-50% w/w), whey protein isolate, polysorbate 60, soy lecithin (0.1-1.5% w/w each), and xanthan (0.0-0.2% w/w) were chosen. Exposure to high pressures (up to 800 MPa for 5 min at 30 degrees C) did not significantly affect the equivalent surface mean diameter D[3,2], flow behavior, and viscoelasticity of the whey protein isolate and polysorbate 60-stabilized emulsions. Pressure treatments had negligible effects on emulsion stability in these systems, except when xanthan (0.2% w/w) was present in which pressure improved the stability of polysorbate 60-stabilized emulsions. Soy lecithin-stabilized emulsions had larger mean particles sizes and lower emulsion volume indices than the others, indicating potential instability, and application of pressure further destabilized these emulsions.

  6. The Influence of Maltodextrin on the Physicochemical Properties and Stabilization of Beta-carotene Emulsions.

    PubMed

    Zhang, Jianpan; Zhang, Xiaoxu; Wang, Xinyi; Huang, Ying; Yang, Beibei; Pan, Xin; Wu, Chuanbin

    2016-06-27

    Beta-carotene is important for fortification of nutritional products while its application is limited by instability. The influence of maltodextrin (MDX) on physicochemical properties and stability of beta-carotene emulsions stabilized by sodium caseinate (SC) was investigated. The emulsions were characterized by dynamic light scattering (DLS), laser diffraction (LD), transmission electron microscopy (TEM), rheometer, and turbiscan lab expert. The effects of pH, ionic strength, and freeze-thaw on stability of emulsions were observed. The emulsions could tolerate up to 2 mol/L NaCl or 10 mmol/L CaCl2 and showed Newtonian behavior. The droplet diameter, polydispersity index, and zeta-potential did not change obviously after 3 months storage at 4°C in dark conditions. The emulsions with MDX showed excellent freeze-thaw stability and gave favorite protection for beta-carotene. The retention ratio of beta-carotene in the emulsions with MDX was above 92.1% after 3 months storage while that in the one without MDX was only 62.7%. The study may provide a promising strategy to improve stability of sensitive nutraceuticals without adding synthetic antioxidants. The findings obtained could provide fundamental basis for rational design of emulsion delivery systems when freeze-thawing is required during manufacturing process or storage period.

  7. Introducing diffusing wave spectroscopy as a process analytical tool for pharmaceutical emulsion manufacturing.

    PubMed

    Reufer, Mathias; Machado, Alexandra H E; Niederquell, Andreas; Bohnenblust, Katharina; Müller, Beat; Völker, Andreas Charles; Kuentz, Martin

    2014-12-01

    Emulsions are widely used for pharmaceutical, food, and cosmetic applications. To guarantee that their critical quality attributes meet specifications, it is desirable to monitor the emulsion manufacturing process. However, finding of a suitable process analyzer has so far remained challenging. This article introduces diffusing wave spectroscopy (DWS) as an at-line technique to follow the manufacturing process of a model oil-in-water pharmaceutical emulsion containing xanthan gum. The DWS results were complemented with mechanical rheology, microscopy analysis, and stability tests. DWS is an advanced light scattering technique that assesses the microrheology and in general provides information on the dynamics and statics of dispersions. The obtained microrheology results showed good agreement with those obtained with bulk rheology. Although no notable changes in the rheological behavior of the model emulsions were observed during homogenization, the intensity correlation function provided qualitative information on the evolution of the emulsion dynamics. These data together with static measurements of the transport mean free path (l*) correlated very well with the changes in droplet size distribution occurring during the emulsion homogenization. This study shows that DWS is a promising process analytical technology tool for development and manufacturing of pharmaceutical emulsions.

  8. Impact of Protein Gel Porosity on the Digestion of Lipid Emulsions.

    PubMed

    Sarkar, Anwesha; Juan, Jean-Marc; Kolodziejczyk, Eric; Acquistapace, Simone; Donato-Capel, Laurence; Wooster, Tim J

    2015-10-14

    The present study sought to understand how the microstructure of protein gels impacts lipolysis of gelled emulsions. The selected system consisted of an oil-in-water (o/w) emulsion embedded within gelatin gels. The gelatin-gelled emulsions consisted of a discontinuous network of aggregated emulsion droplets (mesoscale), dispersed within a continuous network of gelatin (microscale). The viscoelastic properties of the gelled emulsions were dominated by the rheological behavior of the gelatin, suggesting a gelatin continuous microstructure rather than a bicontinuous gel. A direct relationship between the speed of fat digestion and gel average mesh size was found, indicating that the digestion of fat within gelatin-gelled emulsions is controlled by the ability of the gel's microstructure to slow lipase diffusion to the interface of fat droplets. Digestion of fat was facilitated by gradual breakdown of the gelatin network, which mainly occurred via surface erosion catalyzed by proteases. Overall, this work has demonstrated that the lipolysis kinetics of gelled emulsions is driven by the microstructure of protein gels; this knowledge is key for the future development of microstructures to control fat digestion and/or the delivery of nutrients to different parts of the gastrointestinal tract.

  9. Relationships between the properties of self-emulsifying pellets and of the emulsions used as massing liquids for their preparation.

    PubMed

    Nikolakakis, Ioannis; Panagopoulou, Athanasia; Salis, Andrea; Malamataris, Stavros

    2015-02-01

    Self-emulsifying pellets were prepared using microcrystalline cellulose, emulsions of caprylic/capric triglyceride, and three Cremophors (ELP, RH40, and RH60) at 1.5 and 2.3 weight ratios, and two drugs (furosemide and propranolol) of different lipophilicity. Droplet size, zeta potential (ζ) and viscosity of emulsions, and pellet size, shape, friability, tensile strength, disintegration, and drug migration in pellets were determined. Evaluation of reconstituted emulsions was based on droplet size and ζ. Factorial design and 3-way ANOVA was applied to estimate the significance of the effects of the drug, surfactant and oil/surfactant ratio. It was found that droplet size, viscosity and ζ of emulsions, and size, shape, and friability of pellets were affected by the studied factors and were significant interactions between their effects on pellet size and friability. Migration of drug towards the pellet surface was higher for the less lipophilic furosemide and higher oil content. Linear relationships were found between the emulsion viscosity and the shape parameters of the pellets (for the aspect ratio R (2) = 0.796 for furosemide and R (2) = 0.885 for propranolol and for the shape factor, e R R (2) = 0.740 and R (2) = 0.960, respectively). For all the formulations examined, an exponential relationship was found between migration (M%) and the product of viscosity (η) and solubility of drug in oil/surfactant mixture (S) (M% = 98.1e-0.016 [η•S], R (2) = 0.856), which may be useful in formulation work.

  10. A Solvothermal Route Decorated on Different Substrates: Controllable Separation of an Oil/Water Mixture to a Stabilized Nanoscale Emulsion.

    PubMed

    Zhang, Weifeng; Liu, Na; Cao, Yingze; Chen, Yuning; Xu, Liangxin; Lin, Xin; Feng, Lin

    2015-12-02

    A facile solvothermal route is developed to fabricate polydivinylbenzene (PDVB) and decorate the polymer onto porous substrates. "Controllable" separation can be realized by selecting substrates with different pore sizes. The PDVB-modified mesh shows superhydrophobicity/superoleophilicity, and can be used for oil/seawater mixture separation, while the PDVB-modified membrane exhibits high hydrophobicity/superoleophilicity, and is able to separate surfactant stabilized nanoscale water-in-oil emulsions.

  11. Theory of surfactant-mediated growth on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios; Kandel, Daniel

    1996-08-01

    The surfactant effect, first demonstrated by Copel et al. [Phys. Rev. Lett. 63 (1989) 632] by using As to promote epitaxial growth of Ge on Si(100), has now been studied in a wide variety of systems, thus making systematic studies possible. We present theoretical models that account for the observed behavior of various surfactants on semiconductor surfaces, including homo-epitaxial and hetero-epitaxial growth. The theoretical models include first-principles calculations of the relative energy of different structures associated with surfactant layers and the activation energies for diffusion and exchange mechanisms, as well as solid-on-solid Monte Carlo simulations.

  12. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions

    PubMed Central

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples (p<0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics. PMID:28115885

  13. Determination of zinc in edible oils by flow injection FAAS after extraction induced by emulsion breaking procedure.

    PubMed

    Bakircioglu, Dilek; Topraksever, Nukte; Kurtulus, Yasemin Bakircioglu

    2014-05-15

    A new procedure using extraction induced by emulsion breaking (EIEB) procedure has been developed for extraction/preconcentration of zinc in various edible oils (canola oil, corn oil, hazelnut oil, olive oil, and sunflower oil) prior to its determination by the single line flow injection (FI) flame atomic absorption spectrometry (FAAS). Several parameters affecting the extraction efficiency of the procedure were investigated including the type and concentrations of surfactant, the concentration of HNO3, and the other operational conditions (emulsion breaking time and temperature). The limits of detection of 1.1 and 1.0 μg L(-1) were observed for zinc when aqueous standard and oil-based standards were added to the emulsions for calibration, respectively. The proposed procedure of combining EIEB and single line FI-FAAS can be regarded as a new procedure for the determination of zinc in edible oil samples.

  14. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II).

    PubMed

    Zhan, Yanhui; Lin, Jianwei; Li, Jia

    2013-04-01

    A novel composite material, i.e., surfactant-modified hydroxyapatite/zeolite composite, was used as an adsorbent to remove humic acid (HA) and copper(II) from aqueous solution. Hydroxyapatite/zeolite composite (HZC) and surfactant-modified HZC (SMHZC) were prepared and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscope. The adsorption of HA and copper(II) on SMHZC was investigated. For comparison purposes, HA adsorption onto HZC was also investigated. SMHZC exhibited much higher HA adsorption capacity than HZC. The HA adsorption capacity for SMHZC decreased slightly with increasing pH from 3 to 8 but decreased significantly with increasing pH from 8 to 12. The copper(II) adsorption capacity for SMHZC increased with increasing pH from 3 to 6.5. The adsorption kinetic data of HA and copper(II) on SMHZC obeyed a pseudo-second-order kinetic model. The adsorption of HA and copper(II) on SMHZC took place in three different stages: fast external surface adsorption, gradual adsorption controlled by both film and intra-particle diffusions, and final equilibrium stage. The equilibrium adsorption data of HA on SMHZC better fitted to the Langmuir isotherm model than the Freundlich isotherm model. The equilibrium adsorption data of copper(II) on SMHZC could be described by the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The presence of copper(II) in solution enhanced HA adsorption onto SMHZC. The presence of HA in solution enhanced copper(II) adsorption onto SMHZC. The mechanisms for the adsorption of HA on SMHZC at pH 7 may include electrostatic attraction, organic partitioning, hydrogen bonding, and Lewis acid-base interaction. The mechanisms for the adsorption of copper(II) on SMHZC at pH 6 may include surface complexation, ion exchange, and dissolution-precipitation. The obtained results indicate that SMHZC can be used as an effective adsorbent to simultaneously remove HA and

  15. Solution properties and emulsification properties of amino acid-based gemini surfactants derived from cysteine.

    PubMed

    Yoshimura, Tomokazu; Sakato, Ayako; Esumi, Kunio

    2013-01-01

    Amino acid-based anionic gemini surfactants (2C(n)diCys, where n represents an alkyl chain with a length of 10, 12, or 14 carbons and "di" and "Cys" indicate adipoyl and cysteine, respectively) were synthesized using the amino acid cysteine. Biodegradability, equilibrium surface tension, and dynamic light scattering were used to characterize the properties of gemini surfactants. Additionally, the effects of alkyl chain length, number of chains, and structure on these properties were evaluated by comparing previously reported gemini surfactants derived from cystine (2C(n)Cys) and monomeric surfactants (C(n)Cys). 2C(n)diCys shows relatively higher biodegradability than does C(n)Cys and previously reported sugar-based gemini surfactants. Both critical micelle concentration (CMC) and surface tension decrease when alkyl chain length is increased from 10 to 12, while a further increase in chain length to 14 results in increased CMC and surface tension. This indicates that long-chain gemini surfactants have a decreased aggregation tendency due to the steric hindrance of the bulky spacer as well as premicelle formation at concentrations below the CMC and are poorly packed at the air/water interface. Formation of micelles (measuring 2 to 5 nm in solution) from 2C(n)diCys shows no dependence on alkyl chain length. Further, shaking the mixtures of aqueous 2C(n)diCys surfactant solutions and squalane results in the formation of oil-in-water type emulsions. The highly stable emulsions are formed using 2C₁₂diCys or 2C₁₄diCys solution and squalane in a 1:1 or 2:1 volume ratio.

  16. New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture.

    PubMed

    Sun, Minwei; Firoozabadi, Abbas

    2013-07-15

    Anti-agglomeration is a promising solution for gas hydrate risks in deepsea hydrocarbon flowlines and oil leak captures. Currently ineffectiveness at high water to oil ratios limits such applications. We present experimental results of a new surfactant in rocking cell tests, which show high efficiency at a full range of water to oil ratios; there is no need for presence of the oil phase. We find that our surfactant at a very low concentration (0.2 wt.% of water) keeps the hydrate particles in anti-agglomeration state. We propose a mechanism different from the established water-in-oil emulsion theory in the literature that the process is effective without the oil phase. There is no need to emulsify the water phase in the oil phase for hydrate anti-agglomeration; with oil-in-water emulsion and without emulsion hydrate anti-agglomeration is presented in our research. We expect our work to pave the way for broad applications in offshore natural gas production and seabed oil capture with very small quantities of an eco-friendly surfactant.

  17. Tribology of steel/steel interaction in oil-in-water emulsion; a rationale for lubricity.

    PubMed

    Kumar, Deepak; Daniel, Jency; Biswas, S K

    2010-05-15

    Oil droplets are dispersed in water by an anionic surfactant to form an emulsion. The lubricity of this emulsion in steel/steel interaction is explored in a ball on flat nanotribometer. The droplet size and charge are measured using dynamic light scattering, while the substrate charge density is estimated using the pH titration method. These data are combined to calculate the DLVO forces for the droplets generated for a range of surfactant concentration and two oil to water volume ratios. The droplets have a clear bi-modal size distribution. The study shows that the smaller droplets which experience weak repulsion are situated (at the highest DLVO barrier) much closer to the substrate than the bigger droplets, which experience the same DLVO force, are. We suggest that the smaller droplets thus play a more important role in lubricity than what the bigger droplets do. The largest volume of such small droplets occurs in the 0.5 mM-1 mM range of surfactant concentration and 1% oil to water volume ratio, where the coefficient of friction is also observed to be the least.

  18. Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets.

    PubMed

    Surh, Jeonghee; Vladisavljevi Cacute, Goran T; Mun, Saehun; McClements, D Julian

    2007-01-10

    The purpose of this study was to create water-in-oil (W/O) and water-in-oil-in-water (W/O/W) emulsions containing gelled internal water droplets. Twenty weight percent W/O emulsions stabilized by a nonionic surfactant (6.4 wt % polyglycerol polyricinoleate, PGPR) were prepared that contained either 0 or 15 wt % whey protein isolate (WPI) in the aqueous phase, with the WPI-containing emulsions being either unheated or heated (80 degrees C for 20 min) to gel the protein. Optical microscopy and sedimentation tests did not indicate any significant changes in droplet characteristics of the W/O emulsions depending on WPI content (0 or 15%), shearing (0-7 min at constant shear), thermal processing (30-90 degrees C for 30 min), or storage at room temperature (up to 3 weeks). W/O/W emulsions were produced by homogenizing the W/O emulsions with an aqueous Tween 20 solution using either a membrane homogenizer (MH) or a high-pressure valve homogenizer (HPVH). For the MH the mean oil droplet size decreased with increasing number of passes, whereas for the HPVH it decreased with increasing number of passes and increasing homogenization pressure. The HPVH produced smaller droplets than the MH, but the MH produced a narrower particle size distribution. All W/O/W emulsions had a high retention of water droplets (>95%) within the larger oil droplets after homogenization. This study shows that W/O/W emulsions containing oil droplets with gelled water droplets inside can be produced by using MH or HPVH.

  19. Dynamic surface tension of polyelectrolyte/surfactant systems with opposite charges: two states for the surfactant at the interface.

    PubMed

    Ritacco, Hernán A; Busch, Jorge

    2004-04-27

    The molecular reorientation model of Fainerman et al. is conceptually adapted to explain the dynamic surface tension behavior in polyelectrolyte/surfactant systems with opposite charges. The equilibrium surface tension curves and the adsorption dynamics may be explained by assuming that there are two different states for surfactant molecules at the interface. One of these states corresponds to the adsorption of the surfactant as monomers, and the other to the formation of a mixed complex at the surface. The model also explains the plateaus that appear in the dynamic surface tension curves and gives a picture of the adsorption process.

  20. Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines.

    PubMed

    Zanatta, C F; Mitjans, M; Urgatondo, V; Rocha-Filho, P A; Vinardell, M P

    2010-01-01

    Considering the belief that natural lipids are safer for topical applications and that carotenoids are able to protect cells against photooxidative damage, we have investigated whether topical creams and lotions, produced with Buriti oil and commercial surfactants, can exert photoprotective effect against UVA and UVB irradiation on keratinocytes and fibroblasts. Cell treatment was divided into two steps, prior and after exposition to 30 min of UVA plus UVB radiation or to 60 min of UVA radiation. Emulsions prepared with ethoxylated fatty alcohols as surfactants and containing alpha-tocopherol caused phototoxic damage to the cells, especially when applied prior to UV exposure. Damage reported was due to prooxidant activity and phototoxic effect of the surfactant. Emulsions prepared with Sorbitan Monooleate and PEG-40 castor oil and containing panthenol as active ingredient, were able to reduce the damages caused by radiation when compared to non-treated cells. When the two cell lines used in the study were compared, keratinocytes showed an increase in cell viability higher than fibroblasts. The Buriti oil emulsions could be considered potential vehicles to transport antioxidants precursors and also be used as adjuvant in sun protection, especially in after sun formulations.

  1. Magnetization reversal behavior of SmCo6.6Nb0.4 nanoflakes prepared by surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Yue, M.; Wu, Q.; Liu, W. Q.; Zhang, D. T.; Lu, Q. M.

    2016-05-01

    In this paper, the recoil loops of SmCo6.6Nb0.4 nanoflakes prepared by the surfactant-assisted high energy ball milling (SA-HEBM) were systematically studied. The recoil loop openness was observed in both the aligned and non-aligned samples. Reversible and irreversible portions of the demagnetization process derived from the recoil loop were also investigated. For both the aligned and non-aligned samples, reversible portion (▵mrev) is too small to determine the coercivity. Irreversible portion (▵mirrev) shows similar tendency, i.e. increasing slowly at low reverse field and then growing up rapidly after a critical field (nucleation field Hno). The demagnetization process can be described as following: the reversible demagnetization is dominant when the applied reverse field is lower than 8 kOe, under which the irreversible nucleation also occurs. The reverse domain walls are pinned by the grain boundaries until the reverse field is larger than 8 kOe. With increasing field, the pinning effects are weakened and the rapid reversible demagnetization starts. Finally, the demagnetization process is accomplished. The values of ΔM in the Henkel plots are totally opposite for the aligned and non-aligned SmCo6.6Nb0.4 nanoflakes.

  2. [Effect of nonionic surfactant Tween80 and DOM on the behaviors of desorption of phenanthrene and pyrene in soil-water systems].

    PubMed

    Wang, Gen-Mei; Sun, Cheng; Xie, Xue-Qun

    2007-04-01

    Batch experiments were conducted to study the effects of dissolved organic matter (DOM) and nonionic surfactant (Tween80) on the desorption of phenanthrene and pyrene in soil-water systems. The results showed that DOM derived from pig manure and pig manure compost increased the desorption of phenanthrene and pyrene in soil-water systems, and the effect of pig manure compost DOM was better than that of pig manure DOM; with the increase of Tween80, the desorption rate of phenanthrene and pyrene also increased compared with the control, especially at high concentration of Tween80 (150 mg x L(-)). And at this concentration, the desorption rates were increased by 1.7 times for phenanthrene and 6.2 times for pyrene than that of the control. The combined effects of Tween80 and DOM on the desorption of phenanthrene and pyrene were influenced by the concentration of Tween80. When Tween80 at low concentration, the combined effects were not significant. Howerver, with 150 mg x L(-1) Tween80 in soil-water systems, the desorption rates of phenanthrene and pyrene were drastically higher than the sum of DOM and Tween80. The results also indicated that DOMs with high molecular-size fraction ( > 25 000 could attain a higher desorption of both phenanthrene and pyrene in soil-water systems than their lowmolecular-size counterpart (< 1000) under the same experiments conditions.

  3. Surfactant-enhanced bioremediation

    SciTech Connect

    Churchill, P.F.; Dudley, R.J.; Churchill, S.A.

    1995-12-31

    This study was undertaken to examine the effect of three structurally related, non-ionic surfactants, Triton X-45, Triton X-100 and Triton X-165, as well as the oleophilic fertilizer, Inipol EAP 22, on the rate of biodegradation of phenanthrene by pure bacterial cultures. Each surfactant dramatically increased the apparent aqueous solubility of phenanthrene. Model studies were conducted to investigate the ability of these surfactants to enhance the rate of transport and uptake of polycyclic aromatic hydrocarbons into bacterial cells, and to assess the impact that increasing the aqueous solubility of hydrocarbons has on their rate of biodegradation. The results indicate that increasing the apparent aqueous solubility of hydrocarbons can lead to enhanced biodegradation rates by two Pseudomonas saccharophila strains. However, the experiments also suggest that some surfactants can inhibit aromatic hydrocarbon biodegradation by certain bacteria. The data also support the hypothesis that surface-active components present in the oleophilic fertilizer formulation, Inipol EAP 22, may have significantly contributed to the positive results reported in tests of remedial agent impact on bioremediation, which was used as a supplemental clean-up technology on Exxon Valdez crude oil-contaminated Alaskan beaches.

  4. Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions.

    PubMed

    Gilbert, Laura; Loisel, Vincent; Savary, Géraldine; Grisel, Michel; Picard, Céline

    2013-04-02

    The filament stretching properties of various polysaccharides (including xanthan, carob, hydroxypropyl guar, hydroxypropylmethyl and hydroxyethyl celluloses) were investigated and compared to synthetic polymers generally used as texturing agents in cosmetic emulsions. The stretchability was examined by sensory evaluation as "the amount of sample that strings rather than breaks when fingers are separated". Different behaviors were evidenced: the xanthan emulsion showed the highest stretchability, followed by the hydroxypropyl guar and hydroxyethyl cellulose emulsions while the synthetic polymers presented stretching properties to a much lesser extent. The instrumental characterization of the stretchability was conducted at a controlled speed and recorded with a camera using a texture analyzer. The maximum stretchable length at 40mm/s was highly significantly correlated to the sensory Stringiness, thus allowing a good predictability of this attribute. Finally, this method was applied to aqueous solutions to better understand the role of the polymers in emulsion and to validate the measurement on a wider range of products.

  5. Preparation and characterization of narrow sized (o/w) magnetic emulsion

    NASA Astrophysics Data System (ADS)

    Montagne, F.; Mondain-Monval, O.; Pichot, C.; Mozzanega, H.; Elaı̈ssari, A.

    2002-09-01

    The preparation of well-defined (o/w) magnetic emulsions from an organic ferrofluid is reported. The ferrofluid synthesis is first described and a complete characterization is achieved by using numerous techniques. The ferrofluid is found to be composed of superparamagnetic maghemite nanoparticles, with a diameter below 10 nm, stabilized in octane by a surrounding oleic acid layer. This magnetic fluid is then emulsified in aqueous media in order to obtain stable ferrofluid droplets. The use of a couette mixer and a size sorting step under magnetic field allowed to produce magnetic emulsion with a narrow size distribution. Morphology and chemical composition of the magnetic emulsion are investigated. Magnetic properties of both ferrofluid and magnetic emulsion are also compared and discussed. In particular, it is showed that the superparamagnetic behavior is still observed after the emulsification process.

  6. Magnetic surfactants as molecular based-magnets with spin glass-like properties.

    PubMed

    Brown, Paul; Smith, Gregory N; Hernández, Eduardo Padrón; James, Craig; Eastoe, Julian; Nunes, Wallace C; Settens, Charles M; Hatton, T Alan; Baker, Peter J

    2016-05-05

    This paper reports the use of muon spin relaxation spectroscopy to study how the aggregation behavior of magnetic surfactants containing lanthanide counterions may be exploited to create spin glass-like materials. Surfactants provide a unique approach to building in randomness, frustration and competing interactions into magnetic materials without requiring a lattice of ordered magnetic species or intervening ligands and elements. We demonstrate that this magnetic behavior may also be manipulated via formation of micelles rather than simple dilution, as well as via design of surfactant molecular architecture. This somewhat unexpected result indicates the potential of using novel magnetic surfactants for the generation and tuning of molecular magnets.

  7. Development and evaluation of emulsion-liposome blends for resveratrol delivery.

    PubMed

    Hung, Chi-Feng; Chen, Jan-Kan; Liao, Mei-Hui; Lo, Huey-Ming; Fang, Jia-You

    2006-01-01

    Nano- and submicron-sized vesicles are beneficial for the controlled delivery of drugs. Resveratrol, the main active polyphenol in red wine, was incorporated into various combinations of emulsions and liposomes to examine its physicochemical characteristics and cardiovascular protection. The blends of emulsion-liposome were composed of coconut oil, soybean lecithin, glycerol formal, and non-ionic surfactants. Multiple systems were assessed by evaluating the droplet size, surface charge, drug encapsulation, release rate, and stability. The vesicle diameter of the systems ranged from 114 to 195 nm. The liposomal vesicles in the systems had smaller diameters (of 43 approximately 56 nm) (F6 and F7). Drug encapsulation of approximately 70% were achieved by the vesicles. The inclusion of resveratrol in these systems retarded the drug release in both the presence and absence of plasma in vitro. The emulsion-liposome blends which incorporated Brij 98 (F5) exhibited the slowest release at zero-order for resveratrol delivery. Treatment using resveratrol in the blended formulations dramatically inhibited vascular intimal thickening, which was tested in an experimental model in which endothelial injury was produced in normal rat carotid arteries. Intraperitoneal injection of the multiple systems was associated with no or negligible liver and kidney toxicity. We concluded that encapsulation by the emulsion-liposome blends is a potent way to enhance the preventative and therapeutic benefits of resveratrol.

  8. Double emulsions based on silicone-fluorocarbon-water and their skin penetration.

    PubMed

    Mahrhauser, Denise-Silvia; Fischer, Claudia; Valenta, Claudia

    2016-02-10

    Double emulsions have significant potential in pharmacy and cosmetics due to the feasibility of combining incompatible substances in one product and the protection of sensitive compounds by incorporating them into their innermost phase. However, a major drawback of double emulsions is their thermodynamic instability and their strong tendency to coalesce. In the present study, the physicochemical stability, the skin permeation and the skin penetration potential of modified semi-solid double emulsions was investigated. The double emulsions were prepared of the cosmetically applied perfluoropolyethers Fomblin HC/04 or Fomblin HC-OH, silicone, carbomer and water. Measurement of the droplet size and examination of the microscopic images confirmed their physicochemical stability over the observation period of eight weeks. Franz-type diffusion cell experiments revealed no increase in curcumin permeation due to the employed perfluoropolyethers compared to the respective control formulations. The formulations used as control were O/W macroemulsions with or without a Polysorbate 80/Sorbitane monooleate 80 surfactant combination. Likewise, tape stripping studies showed no penetration enhancing effect of the employed perfluoropolyethers which is desirable as both perfluoropolyethers are commonly applied components in human personal-care products.

  9. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    PubMed

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  10. Some general features of limited coalescence in solid-stabilized emulsions

    NASA Astrophysics Data System (ADS)

    Arditty, S.; Whitby, C. P.; Binks, B. P.; Schmitt, V.; Leal-Calderon, F.

    2003-07-01

    We produce direct and inverse emulsions stabilized by solid mineral particles. If the total amount of particles is initially insufficient to fully cover the oil-water interfaces, the emulsion droplets coalesce such that the total interfacial area between oil and water is progressively reduced. Since it is likely that the particles are irreversibly adsorbed, the degree of surface coverage by them increases until coalescence is halted. We follow the rate of droplet coalescence from the initial fragmented state to the saturated situation. Unlike surfactant-stabilized emulsions, the coalescence frequency depends on time and particle concentration. Both the transient and final droplet size distributions are relatively narrow and we obtain a linear relation between the inverse average droplet diameter and the total amount of solid particles, with a slope that depends on the mixing intensity. The phenomenology is independent of the mixing type and of the droplet volume fraction allowing the fabrication of both direct and inverse emulsion with average droplet sizes ranging from micron to millimetre.

  11. Intravenous Lipid Emulsions in Parenteral Nutrition123

    PubMed Central

    Fell, Gillian L; Nandivada, Prathima; Gura, Kathleen M; Puder, Mark

    2015-01-01

    Fat is an important macronutrient in the human diet. For patients with intestinal failure who are unable to absorb nutrients via the enteral route, intravenous lipid emulsions play a critical role in providing an energy-dense source of calories and supplying the essential fatty acids that cannot be endogenously synthesized. Over the last 50 y, lipid emulsions have been an important component of parenteral nutrition (PN), and over the last 10–15 y many new lipid emulsions have been manufactured with the goal of improving safety and efficacy profiles and achieving physiologically optimal formulations. The purpose of this review is to provide a background on the components of lipid emulsions, their role in PN, and to discuss the lipid emulsions available for intravenous use. Finally, the role of parenteral fat emulsions in the pathogenesis and management of PN-associated liver disease in PN-dependent pediatric patients is reviewed. PMID:26374182

  12. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE.

  13. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have acquired field oil and core samples and field brine compositions from Marathon. We have conducted preliminary adsorption and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Receding contact angles increase with surfactant adsorption. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  14. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  15. Saponins: a renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices.

    PubMed

    Schmitt, C; Grassl, B; Lespes, G; Desbrières, J; Pellerin, V; Reynaud, S; Gigault, J; Hackley, V A

    2014-03-10

    Synthetic surfactants are widely used in emulsion polymerization, but it is increasingly desirable to replace them with naturally derived molecules with a reduced environmental burden. This study demonstrates the use of saponins as biodegradable and renewable surfactants for emulsion polymerization. This chemical has been extracted from soapnuts by microwave assisted extraction and characterized in terms of surfactant properties prior to emulsion polymerization. The results in terms of particle size distribution and morphology control have been compared to those obtained with classical nonionic (NP40) or anionic (SDS) industrial surfactants. Microwave-extracted saponins were able to lead to latexes as stable as standard PS latex, as shown by the CMC and CCC measurements. The saponin-stabilized PS particles have been characterized in terms of particle size and distribution by Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation. Monomodal and monodispersed particles ranging from 250 to 480 nm in terms of diameter with a particle size distribution below 1.03 have been synthesized.

  16. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems.

    PubMed

    Komaiko, Jennifer; McClements, David Julian

    2014-07-01

    Nanoemulsions can be fabricated using either high-energy or low-energy methods, with the latter being advantageous because of ease of implementation, lower equipment and operation costs, and higher energy efficiency. In this study, isothermal low-energy methods were used to spontaneously produce nanoemulsions using a model system consisting of oil (hexadecane), non-ionic surfactant (Brij 30) and water. Rate and order of addition of surfactant, oil and water into the final mixture were investigated to identify optimal conditions for producing small droplets. The emulsion phase inversion (EPI) and spontaneous emulsion (SE) methods were found to be the most successful, which both require the surfactant to be mixed with the oil phase prior to production. Order of addition and surfactant-to-oil ratio (SOR) influenced the particle size distribution, while addition rate and stirring speed had a minimal effect. Emulsion stability was strongly influenced by storage temperature, with droplet size increasing rapidly at higher temperatures, which was attributed to coalescence near the phase inversion temperature. Nanoemulsions with a mean particle diameter of approximately 60 nm could be produced using both EPI and SE methods at a final composition of 5% hexadecane and 1.9% Brij 30, and were relatively stable to droplet growth at temperatures <25 °C.

  17. Stable emulsions prepared by self-assembly of hyaluronic acid and chitosan for papain loading.

    PubMed

    Zhao, Donghua; Wei, Wei; Zhu, Ye; Sun, Jianhua; Hu, Qiong; Liu, Xiaoya

    2015-04-01

    A simple, green and effective process is developed to fabricate hyaluronic acid (HA)/chitosan (CS) complex colloidal particles through electrostatic interactions. The obtained complexes can be used as biocompatible emulsifiers and novel potential carriers for papain loading. An HA/CS mass ratio of 2 is the optimal condition leading to the smallest Dh (420.9 nm). The complexes with eight different mass ratios are used to stabilize white oil/water emulsions. The structure of the complexes at the oil-water interface varies in response to the mass ratio and can be classified into two typical structures, similar to typical polymeric surfactants and solid particulate emulsifiers. Furthermore, papain is introduced into the complex systems. Formation of the papain/HA/CS complexes in a compact form can protect the enzyme. Here, a novel strategy is introduced to fabricate a biocompatible emulsion from the HA/CS complexes and demonstrate that the stable complex is a suitable enzyme delivery system.

  18. Janus emulsions formed with a polymerizable monomer, silicone oil, and Tween 80 aqueous solution.

    PubMed

    Ge, Lingling; Lu, Shuhui; Guo, Rong

    2014-06-01

    Janus emulsions of a polymerizable monomer tripropyleneglycol diacrylate (TP) combined with silicone oil (SO) as inner oil phases and Tween 80 aqueous solution as continuous phase are prepared in a one-step high energy mixing process. The dependence of droplet topology on the concentration of surfactant, TP/SO ratio, and the stirring speed during emulsification is investigated. The result shows that the volume ratio of two oils within an individual droplet changes correspondingly to the total composition of emulsion. Increasing the speed of stirring results in a significant reduction in the droplet size, i.e. a five times increase in the stirring speed produces a droplet size reduction from hundreds to a few microns. What is more important, the topology of Janus drops remains similar for the different preparations. These fundamental investigations illustrate the potential for future Janus particle synthesis in batch scale with a controllable particle topology.

  19. Impact of acoustic cavitation on food emulsions.

    PubMed

    Krasulya, Olga; Bogush, Vladimir; Trishina, Victoria; Potoroko, Irina; Khmelev, Sergey; Sivashanmugam, Palani; Anandan, Sambandam

    2016-05-01

    The work explores the experimental and theoretical aspects of emulsification capability of ultrasound to deliver stable emulsions of sunflower oil in water and meat sausages. In order to determine optimal parameters for direct ultrasonic emulsification of food emulsions, a model was developed based on the stability of emulsion droplets in acoustic cavitation field. The study is further extended to investigate the ultrasound induced changes to the inherent properties of raw materials under the experimental conditions of sono-emulsification.

  20. Determination of optimal dead sea salt content in a cosmetic emulsion using rheology and stability measurements.

    PubMed

    Abu-Jdayil, Basim; Mohameed, Hazim A; Bsoul, Abeer

    2008-01-01

    Dead Sea mud and salts are known for their therapeutic and cosmetic properties. The presence of Dead Sea (DS) salts in different types of cosmetics has affected the stability and the flow properties of the finished products. In this study, an attempt was made to find the optimum Dead Sea salt content in a cosmetic emulsion (model of body cream) using both rheology and stability measurements. The rheological properties were tested during a four-month storage period at three different storage temperatures: 8 degrees C, room temperature, and 45 degrees C. In addition to rheological measurements and centrifuge tests, the conductivities of the emulsion samples were also determined. The centrifuge tests showed that the cream samples containing more than 0.25 wt% of DS salt showed phase separation. The addition of DS salt to the cosmetic emulsion led to two maxima in the emulsion viscosity at salt contents of 0.07 wt% and 0.15 wt%. However, the emulsion samples containing 0.15% of DS salt was considered the optimum sample since it contained the maximum amount of salt and exhibited the maximum viscosity at all tested conditions. It was found that the viscosity of the emulsion is increased with storage time and storage temperature. This behavior was accompanied by a decrease in conductivity. This behavior was explained by water evaporation from the emulsion. However, it has been shown that the presence of DS salt in the cosmetic emulsion significantly reduces the rate of water evaporation. The conductivity measurements reflect the rate of water evaporation, and the presence of DS salt reduces the rate of conductivity. Conductivity is observed to decrease with storage time and temperature.

  1. Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes.

    PubMed

    Shi, Chen; Zhang, Ling; Xie, Lei; Lu, Xi; Liu, Qingxia; He, Jiajun; Mantilla, Cesar A; Van den Berg, Frans G A; Zeng, Hongbo

    2017-02-07

    Adsorption of interfacially active components at the water/oil interface plays critical roles in determining the properties and behaviors of emulsion droplets. In this study, the droplet probe atomic force microscopy (AFM) technique was applied, for the first time, to quantitatively study the interaction mechanism between water-in-oil (W/O) emulsion droplets with interfacially adsorbed asphaltenes. The behaviors and stability of W/O emulsion droplets were demonstrated to be significantly influenced by the asphaltene concentration of organic solution where the emulsions were aged, aging time, force load, contact time, and solvent type. Bare water droplets could readily coalesce with each other in oil (i.e., toluene), while interfacially adsorbed asphaltenes could sterically inhibit droplet coalescence and induce interfacial adhesion during separation of the water droplets. For low asphaltene concentration cases, the adhesion increased with increasing asphaltene concentration (≤100 mg/L), but it significantly decreased at relatively high asphaltene concentration (e.g., 500 mg/L). Experiments in Heptol (i.e., mixture of toluene and heptane) showed that the addition of a poor solvent for asphaltenes (e.g., heptane) could enhance the interfacial adhesion between emulsion droplets at relatively low asphaltene concentration but could weaken the adhesion at relatively high asphaltene concentration. This work has quantified the interactions between W/O emulsion droplets with interfacially adsorbed asphaltenes, and the results provide useful implications into the stabilization mechanisms of W/O emulsions in oil production. The methodology in this work can be readily extended to other W/O emulsion systems with interfacially active components.

  2. Oil-in-Water Emulsions Stabilized by Carboxymethylated Lignins: Properties and Energy Prospects.

    PubMed

    Li, Shuai; Willoughby, Julie A; Rojas, Orlando J

    2016-09-08

    We take advantage of the amphiphilic properties of technical lignin macromolecules and their inherent high calorific values to formulate oil-in-water (O/W) fuel emulsions with high internal-phase ratios. For the oil phase, we used a combustible hydrocarbon (kerosene) with a measured equivalent alkane carbon number of 12. To adjust the balance of affinity with the oil and water phases and their surface activity, pine kraft lignins were carboxymethylated to different degrees, as quantified by (13) C NMR spectroscopy, potentiometric titrations, and zeta potential measurements. Carboxymethylated lignins (CMLs) with a degree of substitution of 30 % displayed a critical aggregation concentration of 3 %. The salinity and pH of the aqueous phase were chosen as formulation variables and adjusted within the Winsor framework. The O/W emulsions were produced by following standard protocols. The drop-size distributions of emulsions with varying pH, degree of substitution, and composition (water-to-oil ratio, WOR) were determined, and the long-term stabilities and rheological behavior of these emulsions were analyzed. Most of the obtained O/W fuel emulsions showed shear-thinning behavior with a drop size of approximately 2.5 μm and were stable for over 30 days. The combustion of the lignins and their respective emulsions was performed, and their higher heating values (HHVs) were quantified. The HHVs of CML and a high-internal-phase (WOR=30:70) O/W emulsion were 20 and 30 MJ kg(-1) , respectively. Overall, we propose the stabilization of O/W fuel emulsions by lignin as an important avenue in the utilization of this abundant biomacromolecule.

  3. The effect of butter grains on physical properties of butter-like emulsions.

    PubMed

    Rønholt, Stine; Buldo, Patrizia; Mortensen, Kell; Andersen, Ulf; Knudsen, Jes C; Wiking, Lars

    2014-01-01

    Milk fat exists as globules in its natural state in milk. The potential of using globular fat to modulate the rheological properties and crystallization behavior in butter-like emulsions was studied in the present work. We conducted a comparative study of butter-like emulsions, with a fat phase consisting of 0, 10, 25, 50, or 100% anhydrous milk fat (AMF), the remaining fat being butter grains, and all samples containing 20% water, to obtain systematic variation in the ratio of globular fat. All emulsions were studied over 4wk of storage at 5°C. By combining small and large deformation rheology, we conducted a detailed characterization of the rheological behavior of butter-like emulsions. We applied differential scanning calorimetry to monitor thermal behavior, confocal laser scanning microscopy for microstructural analysis, and low-field pulsed nuclear magnetic resonance spectrometry to measure solid fat content. By combining these techniques, we determined that increasing the fraction of globular fat (by mixing with butter grains) decreases the hardness of butter-like emulsions up to an order of magnitude at d 1. However, no difference was observed in thermal behavior as a function of butter grain content, as all emulsions containing butter grains revealed 2 endothermal peaks corresponding to the high (32.7°C ± 0.6) and medium (14.6°C ± 0.1) melting fractions of fatty acids. In terms of microstructure, decreasing the amount of butter grains in the emulsions resulted in formation of a denser fat crystal network, corresponding to increased hardness. Moreover, microstructural analysis revealed that the presence of butter grains resulted in faster formation of a continuous fat crystal network compared with the 100% AMF sample, which was dominated by crystal clusters surrounded by liquid oil. During storage, hardness remained stable and no changes in thermal behavior were observed, despite an increase in solid fat content of up to 5%. After 28d of storage, we

  4. Surfactant treatments alter endogenous surfactant metabolism in rabbit lungs

    SciTech Connect

    Oetomo, S.B.; Lewis, J.; Ikegami, M.; Jobe, A.H. )

    1990-04-01

    The effect of exogenous surfactant on endogenous surfactant metabolism was evaluated using a single-lobe treatment strategy to compare effects of treated with untreated lung within the same rabbit. Natural rabbit surfactant, Survanta, or 0.45% NaCl was injected into the left main stem bronchus by use of a Swan-Ganz catheter. Radiolabeled palmitic acid was then given by intravascular injection at two times after surfactant treatment, and the ratios of label incorporation and secretion in the left lower lobe to label incorporation and secretion in the right lung were compared. The treatment procedure resulted in a reasonably uniform surfactant distribution and did not disrupt lobar pulmonary blood flow. Natural rabbit surfactant increased incorporation of palmitate into saturated phosphatidylcholine (Sat PC) approximately 2-fold (P less than 0.01), and secretion of labeled Sat PC increased approximately 2.5-fold in the surfactant-treated left lower lobe relative to the right lung (P less than 0.01). Although Survanta did not alter incorporation, it did increase secretion but not to the same extent as rabbit surfactant (P less than 0.01). Alteration of endogenous surfactant Sat PC metabolism in vivo by surfactant treatments was different from that which would have been predicted by previous in vitro studies.

  5. Molecular dynamics for surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Wu, Jianzhong

    2007-02-01

    Surfactants are widely used to refold recombinant proteins that are produced as inclusion bodies in E. Coli. However, the microscopic details of the surfactant-assisted protein refolding processes are yet to be uncovered. In the present work, the authors aim to provide insights into the effect of hydrophobic interactions of a denatured protein with surfactant molecules on the refolding kinetics and equilibrium by using the Langevin dynamics for coarse-grained models. The authors have investigated the folding behavior of a β-barrel protein in the presence of surfactants of different hydrophobicities and concentrations. It is shown that the protein folding process follows a "collapse-rearrangement" mechanism, i.e., the denatured protein first falls into a collapsed state before acquiring the native conformation. In comparison with the protein folding without surfactants, the protein-surfactant hydrophobic interactions promote the collapse of a denatured protein and, consequently, the formation of a hydrophobic core. However, the surfactants must be released from the hydrophobic core during the rearrangement step, in which the native conformation is formed. The simulation results can be qualitatively reproduced by experiments.

  6. Surfactant remediation field demonstration using a vertical circulation well

    SciTech Connect

    Knox, R.C.; Sabatini, D.A.; Harwell, J.H.; Brown, R.E.; West, C.C.; Blaha, F.; Griffin, C.

    1997-11-01

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system for controlling chemical extractants added to the subsurface; and (2) to assess the behavior of the surfactant solution in the subsurface, with a goal of maximum surfactant recovery. A secondary objective was to demonstrate enhanced removal of PCE and recalcitrant components of a jet fuel. The analytical results showed that the surfactant increased the contaminant mass extracted by 40-fold and 90-fold for the PCE and jet fuel constituents, respectively. The surfactant solution demonstrated minimal sorption (retardation) and did not precipitate in the subsurface formation. In addition, the VCW system was able to capture in excess of 95% of the injected surfactant solution. Additional field testing and full-scale implementation of surfactant-enhanced subsurface remediation should be performed.

  7. Sublethal effect of agronomical surfactants on the spider Pardosa agrestis.

    PubMed

    Niedobová, Jana; Hula, Vladimír; Michalko, Radek

    2016-06-01

    In addition to their active ingredients, pesticides contain also additives - surfactants. Use of surfactants has been increasing over the past decade, but their effects on non-target organisms, especially natural enemies of pests, have been studied only very rarely. The effect of three common agrochemical surfactants on the foraging behavior of the wolf spider Pardosa agrestis was studied in the laboratory. Differences in short-term, long-term, and overall cumulative predatory activities were investigated. We found that surfactant treatment significantly affected short-term predatory activity but had no effect on long-term predatory activity. The surfactants also significantly influenced the cumulative number of killed prey. We also found the sex-specific increase in cumulative kills after surfactants treatment. This is the first study showing that pesticide additives have a sublethal effect that can weaken the predatory activity of a potential biological control agent. More studies on the effects of surfactants are needed to understand how they affect beneficial organisms in agroecosystems.

  8. Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure.

    PubMed

    Zhang, Yaxin; Zhao, Yan; Zhu, Yong; Wu, Huayong; Wang, Hongtao; Lu, Wenjing

    2012-01-01

    The adsorption of cationic-nonionic mixed surfactant onto bentonite and its effect on bentonite structure were investigated. The objective was to improve the understanding of surfactant behavior on clay mineral for its possible use in remediation technologies of soil and groundwater contaminated by toxic organic compounds. The cationic surfactant used was hexadecylpyridinium bromide (HDPB), and the nonionic surfactant was Triton X-100 (TX100). Adsorption of TX100 was enhanced significantly by the addition of HDPB, but this enhancement decreased with an increase in the fraction of the cationic surfactant. Part of HDPB was replaced by TX100 which decreased the adsorption of HDPB. However, the total adsorbed amount of the mixed surfactant was still increased substantially, indicating the synergistic effect between the cationic and nonionic surfactants. The surfactant-modified bentonite was characterized by Brunauer-Emmett-Teller specific surface area measurement, Fourier transform infrared spectroscopy, and thermogravimetric-derivative thermogravimetric/differential thermal analyses. Surfactant intercalation was found to decrease the bentonite specific surface area, pore volume, and surface roughness and irregularities, as calculated by nitrogen adsorption-desorption isotherms. The co-adsorption of the cationic and nonionic surfactants increased the ordering conformation of the adsorbed surfactants on bentonite, but decreased the thermal stability of the organobentonite system.

  9. Technological Evaluation of Emulsions Containing The Volatile Oil from Leaves of Plectranthus Amboinicus Lour

    PubMed Central

    Lopes, Pablo Queiroz; Carneiro, Fabíola Bernardo; de Sousa, Ana Letícia Braz; Santos, Sócrates Golziodo; Oliveira, Elquio Eleamen; Soares, Luiz Alberto Lira

    2017-01-01

    Background: Plectranthus amboinicus Lour is a species which is widespread throughout tropical countries where it is widely used against respiratory tract disorders such as bronchodilator, antitussive, and expectorant conditions. Objective: This study aims to characterize the essential oil of P. amboinicus (PaEO) and produce and evaluate emulsions containing PaEO. Materials and Methods: The essential oil was characterized by physical-chemical analyses for density, refractive index, 90% ethanol solubility, color, appearance, and identification by gas chromatography coupled to mass spectrometry detection. The emulsions were prepared following a hydrophile-lipophile balance [HLB] spreadsheet design from two nonionic surfactants (Span 80® and Tween 20®) producing HLB values ranging from 4.3 to 16.7. The products were stored at room temperature at 5°C. The emulsion stabilities were tested both in the long and short-term. Results: The PaEO was obtained by steam distillation and the total extraction was reached after 3 hours yielding of 0.2% (w/w). This essential oil was characterized by physicochemical analyses for density [1.5 g.ml-1], refraction index [0.9167], ethanol 90% solubility [1:2], color, and appearance (yellow/clear). Nineteen components were identified in the oil, among them the sesquiterpenes: carvacrol [33.50%], p-cymene [28.20%] and γ-terpinene [14.77%]. The emulsions obtained successfully showed, for the first time, HLB values for essential oils from Plectranthus amboinicus [15.7]. Conclusion: The experimental data shows a relationship between HLB values of the surfactant mixtures contributing to the emulsified systems production containing phytopharmaceuticals. Such an approach is of great importance to the development of lipid carriers for therapeutic drugs. SUMMARY The essential oil from leaves of Plectranthus amboinicus was extracted by steam distillation and characterized.The emulsions containing essential oil were produced and the stability was

  10. Field-induced structure of confined ferrofluid emulsion

    SciTech Connect

    Lawrence, E.M.; Ivey, M.L.; Flores, G.A.; Liu, J. . Dept. of Physics and Astronomy); Bibette, J. ); Richard, J. )

    1994-09-01

    Field-induced phase behavior of a confined monodisperse ferrofluid emulsion was studied using optical microscopy, light transmission, and static light scattering techniques. Upon application of magnetic field, randomly-dispersed magnetic emulsion droplets form solid structures at [lambda] = 1.5, where [lambda] is defines as the ratio of the dipole-dipole interaction energy to the thermal energy at room temperature. The new solid phase consists of either single droplet chains, columns, or worm-like clusters, depending on the volume fraction, cell thickness and rate of field application. For the column phase, an equilibrium structure of equally-sized and spaced columns was observed. The measurements taken for cell thickness 5[mu]m [<=] L [<=] 500 [mu]m and volume fraction 0.04 show the column spacing to be reasonably described by d = 1.49 L[sup 0.34].

  11. Macroporous Polymers with Aligned Microporous Walls from Pickering High Internal Phase Emulsions.

    PubMed

    Zhu, Yun; Zhang, Ranran; Zhang, Shengmiao; Chu, Yeqian; Chen, Jianding

    2016-06-21

    A novel class of macroporous polymers, open macroporous polymers with aligned microporous void walls, were prepared by combining particle-stabilized high internal phase emulsion (Pickering HIPE) and unidirectional freezing technique. These Pickering HIPEs were prepared by utilizing poly(urethane urea)/(vinyl ester resin) nanoparticles as the sole stabilizer, and this nanoparticles also acted as building blocks for the resulting macroporous polymers. Moreover, the morphology and compression modulus of the resulting porous materials could be tuned easily. This means now Pickering-HIPE templated open-cell foams can be prepared, and this route was normally achieved with surfactant and/or chemical reaction involved.

  12. Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability.

    PubMed

    Dickinson, Eric

    2015-07-01

    We consider the influence of spherical colloidal particles on the structure and stabilization of dispersions, emulsions and foams. Emphasis is placed on developments in the use of the methods of liquid state theory and computer simulation to understand short-range structuring of concentrated colloidal dispersions and ordering of particle layers near surfaces and within liquid films. Experimental information on the structuring of surfactant micelles and caseinate particles in thin liquid films is described, including an assessment of the effect of particle polydispersity on depletion interactions and kinetic structural stabilization. We specifically discuss the relevance of some of these structural concepts to the stability of food colloids.

  13. A Computational Study of the Rheology and Structure of Surfactant Covered Droplets

    NASA Astrophysics Data System (ADS)

    Maia, Joao; Boromand, Arman

    Using different types of surface-active agents are ubiquitous in different industrial applications ranging from cosmetic and food industries to polymeric nano-composite and blends. This allows to produce stable multiphasic systems like foams and emulsions whose stability and shelf-life are directly determined by the efficiency and the type of the surfactant molecules. Moreover, presence and self-assembly of these species on an interface will display complex dynamics and structural evolution under different processing conditions. Analogous to bulk rheology of complex systems, surfactant covered interfaces will response to an external mechanical forces or deformation differently depends on the molecular configuration and topology of the system constituents. Although the effect of molecular configuration of the surface-active molecules on the planar interfaces has been studied both experimentally and computationally, it remains challenging from both experimental and computational aspects to track efficiency and effectiveness of different surfactant molecules with different molecular geometries on curved interfaces. Using Dissipative Particle Dynamics, we have studies effectiveness and efficiency of different surfactant molecules on a curved interface in equilibrium and far from equilibrium. Interfacial tension is calculated for linear and branched surfactant with different hydrophobic and hydrophilic tail and head groups with different branching densities. Deformation parameter and Taylor plots are obtained for individual surfactant molecules under shear flow.

  14. Enhanced photodegradation of pentachlorophenol by single and mixed nonionic and anionic surfactants using graphene-TiO₂ as catalyst.

    PubMed

    Zhang, Yaxin; He, Xin; Zeng, Guangming; Chen, Tan; Zhou, Zeyu; Wang, Hongtao; Lu, Wenjing

    2015-11-01

    The photodegradation of pentachlorophenol (PCP) in a surfactant-containing (single and mixed) complex system using graphene-TiO2 (GT) as catalyst was investigated. The objective was to better understand the behavior of surfactants in a GT catalysis system for its possible use in remediation technology of soil contaminated by hydrophobic organic compounds (HOCs). In a single-surfactant system, surfactant molecules aggregated on GT via hydrogen bonding and electrostatic force; nonideal mixing between nonionic and anionic surfactants rendered GT surface with mixed admicelles in a mixed surfactant system. Both effects helped incorporating PCP molecules into surfactant aggregates on catalyst surface. Hence, the targeted pollutants were rendered easily available to photo-yielded oxidative radicals, and photodegradation efficiency was significantly enhanced. Finally, real soil washing-photocatalysis trials proved that anionic-nonionic mixed surfactant soil washing coupled with graphene-TiO2 photocatalysis can be one promising technology for HOC-polluted soil remediation.

  15. Nature of the Adsorption of Zwitterionic Surfactants at Hydrophilic Surfaces

    PubMed

    Harwigsson; Tiberg; Chevalier

    1996-11-10

    This paper describes the adsorption of zwitterionic dodecyl-N,N-dimethylammonio alkanoates with polymethylene intercharge arms of different lengths on silica. The data presented were obtained by in situ ellipsometry, allowing time-resolved studies of the surface excess, the mean thickness, and the refractive index of thin interfacial films. It is shown that the mode of adsorption of zwitterionic surfactants is similar to that observed for ethylene-oxide-based nonionic surfactants. The interaction energy between single zwitterionic surfactants and silica is relatively weak and the adsorption process is best described in terms of surfactant self-assembly, promoted by the presence of the solid surface. The mode of adsorption is only weakly affected by increasing the number of intercharge methylene units. The surface aggregation behavior observed at the silica surface displays many parallels with the corresponding solution phase behavior. Finally, the adsorption of zwitterionic surfactants is relatively independent of the pH. However, as the pH is lowered to the pKa values of the terminal carboxyl group (i.e., as the surfactants become increasingly positively charged) desorption is observed.

  16. Adsorption of anionic and non-ionic surfactants on carbon nanotubes in water with dissipative particle dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vo, Minh D.; Shiau, Benjamin; Harwell, Jeffrey H.; Papavassiliou, Dimitrios V.

    2016-05-01

    The morphology of surfactants physically adsorbed on the surface of carbon nanotubes (CNTs) has a significant impact on the dispersion of CNTs in the solution. The adsorption of the surfactants alfoterra 123-8s (AF) and tergitol 15-s-40 (TG) on CNTs was investigated with dissipative particle dynamics (DPD) simulations, as well as the behavior of the binary surfactant system with CNTs. Properties of surfactants (i.e., critical micelle concentration, aggregation number, shape and size of micelle, and diffusivity) in water were determined to validate the simulation model. Results indicated that the assembly of surfactants (AF and TG) on CNTs depends on the interaction of the surfactant tail and the CNT surface, where surfactants formed mainly hemimicellar structures. For surfactants in solution, most micelles had spherical shape. The particles formed by the CNT and the adsorbed surfactant became hydrophilic, due to the outward orientation of the head groups of the surfactants that formed monolayer adsorption. In the binary surfactant system, the presence of TG on the CNT surface provided a considerable hydrophilic steric effect, due to the EO groups of TG molecules. It was also seen that the adsorption of AF was more favorable than TG on the CNT surface. Diffusion coefficients for the surfactants in the bulk and surface diffusion on the CNT were calculated. These results are applicable, in a qualitative sense, to the more general case of adsorption of surfactants on the hydrophobic surface of cylindrically shaped nanoscale objects.

  17. Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation

    NASA Astrophysics Data System (ADS)

    Giraud, Isabelle; Franceschi-Messant, Sophie; Perez, Emile; Lacabanne, Colette; Dantras, Eric

    2013-02-01

    In this work, different sizing agent aqueous dispersions based on polyetherimide (PEI) were elaborated in order to improve the interface between carbon fibers and a thermoplastic matrix (PEEK). The dispersions were obtained by the emulsion/solvent evaporation technique. To optimize the stability and the film formation on the fibers, two surfactants were tested at different concentrations, with different concentrations of PEI. The dispersions obtained were characterized by dynamic light scattering (DLS) and the stability evaluated by analytical centrifugation (LUMiFuge). The selected dispersions were tested for film formation ability by scanning electron microscopy (SEM), and the sizing performance was assessed by observation of the fiber/matrix interface by SEM. The results revealed that an aqueous dispersion of PEI, stabilized by sodium dodecyl sulfate as the surfactant, led to very stable sizing agent aqueous dispersion with ideal film formation and better interface adhesion.

  18. A modified emulsion gelation technique to improve buoyancy of hydrogel tablets for floating drug delivery systems.

    PubMed

    Yom-Tov, Ortal; Seliktar, Dror; Bianco-Peled, Havazelet

    2015-10-01

    The use of buoyant or floating hydrogel tablets is of particular interest in the sustained release of drugs to the stomach. They have an ability to slow the release rates of drugs by prolonging their absorption window in the upper part of the gastrointestinal (GI) tract. In this study we synthesized bioactive hydrogels that have sustainable release rates for drugs in the stomach based on a hydrogel preparation technique that employs emulsifying surfactants. The emulsion gelation technique, which encapsulates oil droplets within the hydrogels during crosslinking, was used to decrease their specific gravity in aqueous environments, resulting in floating drug release depots. Properties such as swelling, buoyancy, density and drug release were manipulated by changing the polymer concentrations, surfactant percentages and the oil:polymer ratios. The relationship between these properties and the hydrogel's floating lag time was documented. The potential for this material to be used as a floating drug delivery system was demonstrated.

  19. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    SciTech Connect

    Miranda, Paulo B.

    1998-12-14

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayer are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayer at Iiquidhapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the confirmational order of surfactant monolayers.

  20. Water Sorption Isotherms of Surfactants: A Tool To Evaluate Humectancy.

    PubMed

    Asmus, Elisabeth; Popp, Christian; Friedmann, Adrian A; Arand, Katja; Riederer, Markus

    2016-07-06

    Fundamental experimental data for moisture absorption of non-ionic polydisperse surfactants with differing ethylene oxide (EO) content and variable aliphatic portions were measured at relative humidities between 0 and 95% at 25 °C. Remarkable differences in moisture absorption were observed between surfactant classes but also within one series of surfactants differing in either EO content or the long-chain aliphatic fraction. Both the EO units as well as the entire molecular structure, including also the lipophilic domain, were discussed to account for the humectant activity of surfactants. Water sorption isotherms showed an exponential shape, which was argued to be associated with the formation of a "free" water domain. These humectant properties might be relevant to the behavior of a foliar-applied spray droplet of agrochemical formulation products because the uptake of active ingredients will be enhanced as a result of deferred crystal precipitation.

  1. Atomistic Simulations of Poly(N-isopropylacrylamide) Surfactants in Water

    NASA Astrophysics Data System (ADS)

    Abbott, Lauren J.; Stevens, Mark J.

    2015-03-01

    The amphiphilic polymer poly(N-isopropylacrylamide) (PNIPAM) displays a sharp phase transition at its LCST around 32 °C, which results from competing interactions of the hydrophobic and hydrophilic groups with water. This thermoresponsive behavior can be exploited in more complex architectures, such as block copolymers or surfactants, to provide responsive PNIPAM head groups. In these systems, however, changes to the hydrophobic/hydrophilic balance can alter the transition behavior. In this work, we perform atomistic simulations of PNIPAM-alkyl surfactants to study the temperature dependence of their structures. A single chain of the surfactant does not show temperature-responsive behavior. Instead, below and above the LCST of PNIPAM, the surfactant folds to bring the hydrophobic alkyl tail in contact with the PNIPAM backbone, shielding it from water. In addition to single chains, we explore the self-assembly of multiple surfactants into micelles and how the temperature-dependent behavior is changed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions.

    PubMed

    Li, Yan; McClements, David Julian

    2011-10-01

    The effect of low-molecular weight surfactants on the digestibility of lipids in protein-stabilized corn oil-in-water emulsions was studied using an in vitro digestion model. The impact of non-ionic (Tween 20, Tween 80, Brij35), anionic (SDS), and cationic (DTAB) surfactants on the rate and extent of lipid digestion was studied. All surfactants were found to inhibit lipid digestion at sufficiently high concentrations, with half-maximal inhibitory concentrations (IC50) of 1.2% for Tween 20, 0.7% for Tween 80, 2.8% for Brij35, 1.1% for SDS, and 1.4% for DTAB. The effectiveness of the surfactants at inhibiting lipid digestion was therefore not strongly correlated to the electrical characteristics of the surfactant head group, since the IC50 increased in the following order: Tween 80>SDS>Tween 20>DTAB>Brij35. The ability of these low-molecular weight surfactants to inhibit lipid digestion was attributed to a number of potential mechanisms: (i) prevention of lipase/co-lipase adsorption to the oil-water interface; (ii) formation of interfacial complexes; (iii) direct interaction and inactivation of lipase/co-lipase. Interestingly, DTAB increased the rate and extent of lipid digestion when present at relatively low concentrations. This may have been because this cationic surfactant facilitated the adsorption of lipase to the droplet surfaces through electrostatic attraction, or it bound directly to the lipase molecule thereby changing its structure and activity. A number of the surfactants themselves were found to be susceptible to enzyme digestion by pancreatic enzymes in the absence of lipids: Tween 20, Tween 80, Brij35, and DTAB. This work has important implications for the development of emulsion-based delivery systems for food and pharmaceutical applications.

  3. Emulsion Liquid Membrane Removal of Arsenic and Strontium from Wastewater: AN Experimental and Theoretical Study.

    NASA Astrophysics Data System (ADS)

    Zhou, Ding-Wei

    The emulsion liquid membrane (ELM) technique has been successfully applied on the removal of arsenic (As) from metallurgical wastewater and the removal of strontium (Sr) from radioactive wastewater. This study consisted of experimental work and mathematical modeling. Extraction of arsenic by an emulsion liquid membrane was firstly investigated. The liquid membrane used was composed of 2-ethylhexyl alcohol (2EHA) as the extractant, ECA4360J as the surfactant, and Exxsol D-80 solvent (or heptane) as the diluent. The sulfuric acid and sodium hydroxide solutions were used as the external and internal phases, respectively. The arsenic removal efficiency reached 92% within 15 minutes in one stage. Extraction and stripping chemistries were postulated and investigated. It was observed that extraction efficiency and rate increase with the increase of acidic strength and alkali strength in the external and internal phases, respectively. It was also observed that the removal selectivity of arsenic over copper is extremely high. Strontium-90 is one of the major radioactive metals appearing in nuclear wastewater. The emulsion liquid membrane process was investigated as a separation method by using the non-radioactive ^{87}Sr as its substitute. In our study, the membrane phase was composed of di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant, ECA4360J as the surfactant and Exxsol D-80 as the diluent. A sulfuric acid solution was used in the internal phase as the stripping agent. The pH range in the external phase was determined by the extraction isotherm. Under the most favorable operating condition, the strontium removal efficiency can reach 98% in two minutes. Mass transfer of the emulsion liquid membrane (ELM) system was modeled mathematically. Our model took into account the following: mass transfer of solute across the film between the external phase and the membrane phase, chemical equilibrium of the extraction reaction at the external phase-membrane interface

  4. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions.

    PubMed

    Björkegren, Sanna; Nordstierna, Lars; Törncrona, Anders; Palmqvist, Anders

    2017-02-01

    Colloidal silica particles, functionalized with hydrophilic and hydrophobic groups, have been studied for utilization in particle-stabilized emulsions, so called Pickering emulsions. The amounts of attached groups have been characterized using NMR spectroscopy and elemental analysis. A range of particles were prepared, with sizes from around 13 to 70nm in diameter. Hydrophilic functionalization of the silica sols was achieved by attaching methyl poly(ethylene glycol) (mPEG) silane to the silica particle surface. This provides a reduction of surface charge density, a pH dependent and controllable flocculation behavior and surface activity. The hydrophobic functionalization of the silica sols was accomplished by attaching organosilanes containing mainly propyl and methyl groups. The emulsification abilities were evaluated by preparing Pickering emulsions using particles, with varying degrees and combinations of surface functionalization, as stabilizers and comparing the obtained emulsion droplet size distributions. It was found that colloidal silica functionalized with hydrophobic groups produced emulsions with smaller droplets compared to using unmodified silica. The emulsification performance was further improved by the combination of both hydrophilic and hydrophobic groups. All particles having this heterogeneous modification were found to generate emulsions with high stability towards coalescence (from five weeks to 1.5 years).

  5. Surfactants at the Design Limit.

    PubMed

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  6. Suppression of Ostwald ripening in active emulsions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  7. Metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J

    2013-10-29

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  8. Kinetics of crosslinking in emulsion polymerization

    SciTech Connect

    Ghielmi, A.; Fiorentino, S.; Morbidelli, M.

    1996-12-31

    A mathematical model for evaluating the chain length distribution of nonlinear polymers produced in emulsions is presented. The heterogeneous emulsion polymerization process is described. The aim of the analysis is the distribution of active polymer chains and pairs of chains with a given growth time in latex particles in state.

  9. Altering Emulsion Stability with Heterogeneous Surface Wettability

    PubMed Central

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-01-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703

  10. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  11. Transport of Oil-in-Water Emulsions Designed to Deliver Reactive Iron Particles in Porous Media

    NASA Astrophysics Data System (ADS)

    Crocker, J. J.; Berge, N. D.; Ramsburg, C. A.

    2007-05-01

    Treatment of subsurface regions contaminated with DNAPL is a significant challenge to environmental restoration. The focus of remediation has recently shifted from technologies that recover the contamination to technologies that destroy the contamination in situ. One method of in situ contaminant destruction employs nano- or submicron-size particles of reactive iron metal. Application of iron-based destruction technologies is currently limited by poor delivery of the reactive particles (i.e., lack of contact between the iron particles and the DNAPL). Encapsulation of the reactive particles within an oil-in-water emulsion is a novel approach that may facilitate delivery. The goal of this project was to investigate the transport behavior of emulsions (Tallow oil, Tween 80, and Span 80) within porous media. One-dimensional column experiments were conducted to evaluate pore-clogging when emulsions containing encapsulated reactive particles were passed through two homogeneous sands with an order of magnitude difference in intrinsic permeability. In these experiments, passing an emulsion through the sand column (4.8 cm i.d.) at a constant flow rate (0.86 mL/min) increased the hydraulic gradient by a factor of approximately three. The hydraulic gradient in each experiment was observed to stabilize after one pore volume of emulsion. Subsequent flushing with water recovered the initial hydraulic gradient. Together, these observations indicate that conductivity reductions during emulsion flushing were the result of viscosity and not the result of extensive pore-clogging. Analysis of effluent samples confirmed that there was minimal retention of the emulsion within the sand column. Results from these experiments suggest that emulsion encapsulation may be an effective means for transporting reactive iron particles within the subsurface environment.

  12. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets.

    PubMed

    Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan

    2016-05-01

    Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released.

  13. Non-aqueous Isorefractive Pickering Emulsions

    PubMed Central

    2015-01-01

    Non-aqueous Pickering emulsions of 16–240 μm diameter have been prepared using diblock copolymer worms with ethylene glycol as the droplet phase and an n-alkane as the continuous phase. Initial studies using n-dodecane resulted in stable emulsions that were significantly less turbid than conventional water-in-oil emulsions. This is attributed to the rather similar refractive indices of the latter two phases. By utilizing n-tetradecane as an alternative oil that almost precisely matches the refractive index of ethylene glycol, almost isorefractive ethylene glycol-in-n-tetradecane Pickering emulsions can be prepared. The droplet diameter and transparency of such emulsions can be systematically varied by adjusting the worm copolymer concentration. PMID:25844544

  14. Aging mechanism in model Pickering emulsion

    NASA Astrophysics Data System (ADS)

    Fouilloux, Sarah; Malloggi, Florent; Daillant, Jean; Thill, Antoine

    We study the stability of a model Pickering emulsion system. A special counter-flow microfluidics set-up was used to prepare monodisperse Pickering emulsions, with oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidics setup. A surface coverage as low as 23$\\%$ is enough to stabilize the emulsions and we evidence a new regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases in time, in coexistence with a large amount of dispersed phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective.

  15. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature.

  16. Emulsion based cast booster - a priming system

    SciTech Connect

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

  17. Invited review: spray-dried dairy and dairy-like emulsions--compositional considerations.

    PubMed

    Vega, C; Roos, Y H

    2006-02-01

    Milk constituents [caseins, whey proteins (WP), lactose, and anhydrous milk fat] are used widely in the manufacture of dehydrated dairy and dairy-like emulsions. When sodium caseinate- (NaCas) and WP-stabilized emulsions with an oil-to-protein ratio ranging from 0.25 to 5 are dehydrated, NaCas is a more effective encapsulant than WP because of its superior emulsifying properties and resistance to heat denaturation. Denaturation degree of WP during drying has been associated with increased powder surface fat and larger droplet size after reconstitution. Encapsulation of NaCas-stabilized emulsions improves in the presence of lactose; powder surface fat was reduced from 30 to <5% when lactose was added at a 1:1 ratio to NaCas in an emulsion containing 30% (wt/wt) oil. This has been related to the ability of lactose to form solid-like (or glassy) capsules during sudden dehydration. Encapsulation of WP-stabilized emulsions is not improved by addition of lactose, although there are conflicting reports in the literature. Storage stability of dehydrated dairy-like emulsions is strongly linked to lactose crystallization as release of encapsulated material occurs during storage at high relative humidities (e.g., 75%). The use of alternative carbohydrates as "matrix-forming" materials (such as maltodextrins or gum arabic) improves storage stability but compromises the emulsion droplet size after reconstitution. The composition of the powder surface has been recognized as a key parameter in dehydrated emulsion quality. It is the chemical composition of the powder surface that dictates the behavior of the bulk in terms of wettability, flowability, and stability. Analyses, using electron spectroscopy for chemical analysis of the surface of industrial milk powders and dehydrated emulsions that mimicked the composition of milk, showed that powder surface is covered mainly by fat, even when the fat content is very low (18 and 99% surface fat coverage for skim milk and whole milk

  18. Synergetic effect based gel-emulsions and their utilization for the template preparation of porous polymeric monoliths.

    PubMed

    Miao, Qing; Chen, Xiangli; Liu, Lingling; Peng, Junxia; Fang, Yu

    2014-11-18

    A polymerizable cholesteryl derivative (COA) was synthesized and used as a stabilizer for creating gel-emulsions with water in polymerizable monomers, of which they are styrene (ST), tert-butyl methacrylate (t-BMA), ethylene glycol dimethyl acrylate (EGDMA), and methyl methacrylate (MMA), etc. Interestingly, in addition to COA, the presence of a small amount of Span-80 is a necessity for the formation of the monomers containing gel-emulsions. Unlike conventional ones, the volume fraction of the dispersed phase in the gel-emulsions as created could be much lower than 74%, a critical value for routine gel-emulsions. Stabilization of these gel-emulsions as created has been attributed to the synergetic effect between COA, a typical low-molecular-mass gelator (LMMG), and Span-80, a surfactant, of which the former gels the continuous phase and the latter minimizes the interfacial energy of the continuous phase and the dispersed phase. SEM observation confirmed the network structures of COA in the gel-emulsions. Rheological tests demonstrated that the storage modulus, G', and the yield stress of the gel-emulsions decrease along with increasing the volume fraction of the dispersed phase, water, provided it is not greater than 74%-a result inconsistent with the theory explaining formation of routine gel-emulsions and in support of the conclusion that the systems under study follow a different mechanism. Furthermore, unlike LMMG-based stabilizers reported earlier, the gelator, COA, created in the present study has been functioning not only as a stabilizer but also a monomer. To illustrate the conceptual advantages, the gel-emulsions of water in ST/DVB/AIBN were polymerized. As expected, the densities and internal structures of the monoliths as prepared are highly adjustable, functionalization of the materials with cholesterol has been realized, and at the same time the problem of stabilizer leaking has been avoided. A preliminary test for gas adsorption demonstrated that the

  19. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  20. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  1. Structural and electrical study of ZrO{sub 2} nanoparticles modified with surfactants

    SciTech Connect

    Sidhu, Gaganpreet Kaur; Kumar, Rajesh Tripathi, S. K.

    2015-06-24

    Zirconia ceramic is one of the most investigated materials for its outstanding mechanical properties and ionic conduction properties, due to its high oxygen ion conduction. In order to achieve novel properties of zirconia nanoparticles, nanoparticles of zirconia are modified by using two different surfactants (SDS and CTAB) were prepared by in-situ method using zirconia/surfactant dispersions. Zirconia nanoparticles with surfactant (SDS or CTAB) were synthesized by hydrothermal method. The structural and optical properties of Zirconia/surfactant nanoparticles were investigated comprehensively by X-Ray diffraction (XRD), and electrical measurements. XRD highlights the crystalline behavior of nanoparticles.

  2. Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles.

    PubMed

    Li, Zifu; Harbottle, David; Pensini, Erica; Ngai, To; Richtering, Walter; Xu, Zhenghe

    2015-06-16

    Two distinct uniform hybrid particles, with similar hydrodynamic diameters and comparable zeta potentials, were prepared by copolymerizing N-isopropylacrylamide (NIPAM) and styrene. These particles differed in their styrene to NIPAM (S/N) mass ratios of 1 and 8 and are referred to as S/N 1 and S/N 8, respectively. Particle S/N 1 exhibited a typical behavior of soft particles; that is, the particles shrank in bulk aqueous solutions when the temperature was increased. As a result, S/N 1 particles were interfacially active. In contrast, particle S/N 8 appeared to be rigid in response to temperature changes. In this case, the particles showed a negligible interfacial activity. Interfacial shear rheology tests revealed the increased rigidity of the particle-stabilized film formed at the heptane-water interface by S/N 1 than S/N 8 particles. As a result, S/N 1 particles were shown to be better emulsion stabilizers and emulsify a larger amount of heptane, as compared with S/N 8 particles. The current investigation confirmed a better performance of emulsion stabilization by soft particles (S/N 1) than by rigid particles (S/N 8), reinforcing the importance of controlling softness or deformability of particles for the purpose of stabilizing emulsions.

  3. Boiling of an emulsion in a yield stress fluid.

    PubMed

    Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-11-01

    We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.

  4. Enhanced fluorescence emitted by microdroplets containing organic dye emulsions

    PubMed Central

    Nastasa, V.; Andrei, I. R.; Staicu, Angela; Pascu, M. L.

    2015-01-01

    In this paper, laser beam resonant interaction with pendant microdroplets that are seeded with a laser dye (Rhodamine 6G (Rh6G)) water solution or oily Vitamin A emulsion with Rhodamine 6G solution in water is investigated through fluorescence spectra analysis. The excitation is made with the second harmonic generated beam emitted by a pulsed Nd:YAG laser system at 532 nm. The pendant microdroplets containing emulsion exhibit an enhanced fluorescence signal. This effect can be explained as being due to the scattering of light by the sub-micrometric drops of oily Vitamin A in emulsion and by the spherical geometry of the pendant droplet. The droplet acts as an optical resonator amplifying the fluorescence signal with the possibility of producing lasing effect. Here, we also investigate how Rhodamine 6G concentration, pumping laser beam energies and number of pumping laser pulses influence the fluorescence behavior. The results can be useful in optical imaging, since they can lead to the use of smaller quantities of fluorescent dyes to obtain results with the same quality. PMID:25784965

  5. Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants

    PubMed Central

    Guan, Qian; Noblitt, Scott D.; Henry, Charles S.

    2013-01-01

    The use of surfactant mixtures to affect both electroosmotic flow (EOF) and separation selectivity in electrophoresis with poly(dimethylsiloxane) (PDMS) substrates is reported, and capacitively coupled contactless conductivity detection (C4D) is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K+ was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples. PMID:23019105

  6. Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants.

    PubMed

    Guan, Qian; Noblitt, Scott D; Henry, Charles S

    2012-01-01

    The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on electroosmotic flow (EOF) was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration-dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems.

  7. Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants.

    PubMed

    Guan, Qian; Noblitt, Scott D; Henry, Charles S

    2012-09-01

    The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K(+) was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.

  8. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.

    PubMed

    Majumdar, Arnab; Arold, Stephen P; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan; Suki, Béla

    2012-03-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.

  9. Formation of wrinkled silica mesostructures based on the phase behavior of pseudoternary systems.

    PubMed

    Moon, Doo-Sik; Lee, Jin-Kyu

    2014-12-30

    Water-surfactant-oil ternary systems have various phase behaviors and substructures that depend on their chemical composition and component ratio. These substructures can be used as templates for the synthesis of a variety of nanostructures. In this study, the phase behavior of a pseudoternary system consisting of aqueous urea-cetyltrimethylammonium bromide (and n-butanol)-cyclohexane is analyzed. Additionally, wrinkled silica mesostructures (WSMs) with various morphologies are synthesized using the microemulsion layer in the multiphase areas of the pseudoternary system with restricted degrees of freedom as a template. The particle size of the wrinkled silica nanoparticles (WSNs) and the connective morphology of the WSMs can be controlled via the catalytic conditions. In addition, some materials that are difficult to produce, such as radially branched WSNs and shuttlecock-shaped Janus nanoparticles, are prepared using a gradual seed-growth mechanism of silica in the emulsion system.

  10. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2005-04-30

    solutions and at mineral/solution interfaces were investigated by monitoring micropolarity of the aggregates using fluorescence technique. Compositional changes of the aggregates in solution were observed with the increase in surfactant concentration. The importance of this lies in that the resulting polarity/hydrophobicity change of the mixed micelles will affect the adsorption of surfactant mixtures on reservoir minerals, surfactant/oil emulsion formation and wettability, as a result, the oil release efficiency of the chemical flooding processes in EOR.

  11. Emulsion package and method of mixing the emulsion

    SciTech Connect

    Snyder, R.G.; Brenneman, S.; Clancy, J.J.

    1984-08-28

    A coal tar emulsion driveway sealer is packaged in a sealed bag. The volume of sealer is less than half the capacity of the bag and the bag is substantially completely evacuated but for the sealer. The separated sealer is mixed by compressing the sides of the bag to induce turbulent flow of the paste and liquid for hydraulic mixing thereof. The sealer may be dispensed at a controlled rate without spattering by cutting a corner from the bag to provide a pour spout. The bag with the sealer may be contained in a carton. The bag membrane comprises an aluminum layer vapor deposited on polyester. Those two layers are sandwiched between layers of EVA copolymer.

  12. Influence of the ratio of amphiphilic copolymers used as emulsifiers on the microstructure, physical stability and rheology of α-pinene emulsions stabilized with gellan gum.

    PubMed

    García, Maria Carmen; Alfaro, Maria Carmen; Muñoz, José

    2015-11-01

    α-Pinene is a terpenic solvent whose use in the formulation of emulsions entails a double benefit from the environmental point of view since it is a green solvent, easily biodegradable, which also has certain antimicrobial properties. In this work a combination of Atlas™ G-5000 and Atlox™ 4913 amphiphilic copolymers was used to obtain O/W emulsions formulated with α-pinene and gellan gum. These emulsions may find applications related to the design of complex biotechnological systems with different uses. In order to investigate the microstructure and the physical stability of these emulsions, a combination of different techniques such as rheology, microscopy, laser diffraction and multiple light scattering turn out to be a useful methodology. The results demonstrated the need to include a minimum amount of Atlas™ G-5000 copolymer in the formulation of these emulsions to improve their stability. These results were supported by the information revealed by optical micrographs, according to which Atlas™ G-5000 is directed to the continuous medium to structure water (this surfactant is particularly effective at forming hydrogen bonds with water). On the other hand Atlox™ 4913 is preferentially adsorbed at the α-pinene-water interface, such that a high Atlox™ 4913/Atlas™ G-5000 mass ratio slows down the kinetics of coalescence as shown by multiple light scattering. However, a very low relative concentration of Atlas™ G-5000 causes creaming to become the dominant destabilization mechanism. Increasing the Atlas™ G-5000/Atlox™ 4913 mass ratio yields emulsions with enhanced viscosity and viscoelasticity.

  13. Highly stable surfactant assisted polyaniline nanostructures with enhanced electroactivity

    NASA Astrophysics Data System (ADS)

    Jamdegni, Monika; Kaur, Amarjeet

    2016-05-01

    Different nanostructures of Polyaniline(PANI) i.e. nanospheres, nanorods, nanofibers and layered structures have been successfully synthesized using varied concentration of anionic sodium dodecyl sulphate(SDS) and cationic Hexamethyltriammonium bromide (HTAB) by electrochemical method. Surfactant assisted morphology has been studied using FESEM. Incorporation of surfactants to the polymer matrix has been confirmed using FTIR spectroscopy. Electro activity and stability towards reversible redox activity was studied using cyclic voltammatry and chronoamperometry.The anionic surfactant severely enhances electroactivity and areal capacitance (3 Fcm-2) which was found to be two order higher than PANI film prepared without surfactant (0.039 Fcm-2), attributable to its additional doping effect. Immobilization of large surfactant molecule to polymer matrix inhibits its degradation due to nuleophilic attack ascribed to hydrophobic effect of surfactant. For PANI-SDS redox behavior remained almost same after 1000 reverse redox cycles while for PANI-HTAB we got only marginal changes.Our PANI-SDS samples are promising candidates for electro chromic applications.

  14. Influence of emulsification process on the properties of Pickering emulsions stabilized by layered double hydroxide particles.

    PubMed

    Zhang, Nana; Zhang, Li; Sun, Dejun

    2015-04-28

    This paper reports the influence of emulsification process on the packing of layered double hydroxide (LDH) particles at the aqueous/oil phase interface and the properties of the resulting Pickering emulsions. Emulsions prepared by ultrasonication display superior long-term stability and gel-like characteristics at the dispersed phase volume fraction well below the random close packing limit, whereas emulsions with same compositions prepared by vortex mixing show some extent of sedimentation and liquid-like behaviors. Rheological measurements demonstrate that the zero-shear elastic modulus and yield stress of gel-like emulsions exhibit power-law dependences on particle concentration and independence on aqueous/oil phase ratio. The microstructural origin of this behavior is investigated by optical microscopy, revealing the droplets become strongly adhesive and a heterogeneous percolating network is formed among neighboring droplets. Fluorescent confocal microscopy measurements further confirm that the droplet adhesion is due to particle layers bridging opposite interfaces. In contrast, homogeneous, isolated, and densely packed droplets are present in emulsions prepared by vortex mixing, which results in these systems being dominantly viscous like the suspending fluid. This study shows that the emulsification process can be used as a trigger to modify long-term stability and rheology of solid-stabilized multiphase mixtures, which greatly expands their potential technological applications.

  15. Latest Developments in Nuclear Emulsion Technology

    NASA Astrophysics Data System (ADS)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  16. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  17. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  18. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  19. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  20. Calf Lung Surfactant Recovers Surface Functionality After Exposure to Aerosols Containing Polymeric Particles

    PubMed Central

    Farnoud, Amir M.

    2016-01-01

    Abstract Background: Recent studies have shown that colloidal particles can disrupt the interfacial properties of lung surfactant and thus key functional abilities of lung surfactant. However, the mechanisms underlying the interactions between aerosols and surfactant films remain poorly understood, as our ability to expose films to particles via the aerosol route has been limited. The aim of this study was to develop a method to reproducibly apply aerosols with a quantifiable particle dose on lung surfactant films and investigate particle-induced changes to the interfacial properties of the surfactant under conditions that more closely mimic those in vivo. Methods: Films of DPPC and Infasurf® were exposed to aerosols containing polystyrene particles generated using a Dry Powder Insufflator™. The dose of particles deposited on surfactant films was determined via light absorbance. The interfacial properties of the surfactant were studied using a Langmuir-Wilhelmy balance during surfactant compression to film collapse and cycles of surface compression and expansion at a fast cycling rate within a small surface area range. Results: Exposure of surfactant films to aerosols led to reproducible dosing of particles on the films. In film collapse experiments, particle deposition led to slight changes in collapse surface pressure and surface area of both surfactants. However, longer interaction times between particles and Infasurf® films resulted in time-dependent inhibition of surfactant function. When limited to lung relevant surface pressures, particles reduced the maximum surface pressure that could be achieved. This inhibitory effect persisted for all compression-expansion cycles in DPPC, but normal surfactant behavior was restored in Infasurf® films after five cycles. Conclusions: The observation that Infasurf® was able to quickly restore its function after exposure to aerosols under conditions that better mimicked those in vivo suggests that particle

  1. Polyaniline coated membranes for effective separation of oil-in-water emulsions.

    PubMed

    Liu, Mingming; Li, Jing; Guo, Zhiguang

    2016-04-01

    Polyaniline (PANI) decorated commercial filtration membranes, such as stainless steel meshes (SSMs) with 5μm pore size and polyvinylidene fluoride (PVDF) membranes with 2-0.22μm pore sizes, were fabricated by a simple one-step dilute polymerization at low temperature. Lots of short PANI nanofibers were firmly and uniformly coated onto the membrane surfaces, forming rough micro- and nanoscale structures and leading to underwater superoleophobicity with low oil-adhesion characteristic. Furthermore, we systematically studied the effect of pore size and pressure difference on oil-water separation ability of the obtained membranes. It was found that the PANI-modified SSMs with 5μm pore size were suitable for the separation of non-surfactant emulsions with water fluxes of more than 1000Lm(-2)h(-1) under gravity only. The PANI-modified PVDF membranes were used for the effective separation of surfactant-stabilized emulsions with water fluxes up to 3000Lm(-2)h(-1) for 2μm pore size under 0.1bar or 0.22μm pore size under 0.6bar. In addition, the superhydrophilic membranes with PANI coatings were demonstrated for high oil rejection, stable underwater superoleophobic properties after ultrasonic treatment and immersing in oils and various harsh conditions, and high and steady water permeation flux after several cycles.

  2. On-line surfactant monitoring

    SciTech Connect

    Mullen, K.I.; Neal, E.E.; Soran, P.D.; Smith, B.

    1995-04-01

    This group has developed a process to extract metal ions from dilute aqueous solutions. The process uses water soluble polymers to complex metal ions. The metal/polymer complex is concentrated by ultrafiltration and the metals are recovered by a pH adjustment that frees the metal ions. The metal ions pass through the ultrafiltration membrane and are recovered in a concentrated form suitable for reuse. Surfactants are present in one of the target waste streams. Surfactants foul the costly ultrafiltration membranes. It was necessary to remove the surfactants before processing the waste stream. This paper discusses an on-line device the authors fabricated to monitor the process stream to assure that all the surfactant had been removed. The device is inexpensive and sensitive to very low levels of surfactants.

  3. Pump safety tests regarding emulsion explosives

    SciTech Connect

    Perlid, H.

    1996-12-31

    In the handling of emulsion explosives pumping is a key operation. A number of serious accidents has shown that pumping can be a risky operation and should be carefully considered and investigated. This is the background behind a series of pump tests carried out by Nitro Nobel. This paper refers to pump safety tests with an eccentric screw pump (progressive cavity) and emulsion explosives. A selection of emulsions unsensitized as well as sensitized were tested. The tests were performed in a circulation system against dead head and as dry pumping.

  4. Behavior of cationic surfactants and short chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability. I. Adsorption at water-air interface.

    PubMed

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-09-01

    Measurements of the surface tension of aqueous solutions were carried out at 293K for mixtures of cetyltrimethylammonium bromide (CTAB) with short chain alcohols such as methanol and ethanol, as well as for 1-hexadecylpyridinium bromide (CPyB) with the same alcohols. The concentration of CTAB and CPyB in aqueous solutions was in the range from 10(-5) to 10(-3) M, and methanol and ethanol was in the range from 0 to 21.1M and from 0 to 11.97M, respectively. Moreover, the surface tension of aqueous solution mixtures of cationic surfactants with propanol in the concentration range from 0 to 6.67M was also taken into consideration. The obtained isotherms of the surface tension were compared to those calculated from the Szyszkowski and Connors equations. The constants in these equations were determined by the least squares method. It appeared that they depended on the type of surfactant and alcohol. From comparison of the experimental and theoretical isotherms of the surface tension it is possible, at first approximation, to describe the relationship between the surface tension of aqueous solutions of cationic surfactants with short chain alcohol mixtures as a function of alcohol molar fraction in the bulk phase by the Szyszkowski and Connors equations. Furthermore, changes of the surface tension of aqueous solutions of CTAB and CPyB with alcohol mixtures at each constant concentration of cationic surfactant can be predicted by the Fainerman and Miller equation, if it is possible to determine the molar area of cationic surfactant and alcohol in the mixed monolayer. Based on the surface tension isotherms the Gibbs surface excess concentration of cationic surfactants and alcohols at water-air interface was determined, and in the case of alcohol, this concentration excess was recalculated for that of Guggenheim-Adam. The Guggenheim-Adam surface excess concentration was applied for determination of the real concentration of alcohol in the mixed surface monolayer. The real

  5. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Alfoterra-38 (0.05 wt%), Alfoterra-35 (0.05 wt%), SS-6656 (0.05 wt%), and DTAB (1 wt%) altered the wettability of the initially oil-wet calcite plate to an intermediate/water-wet state. Low IFT ({approx}10{sup -3} dynes/cm) is obtained with surfactants 5-166, Alfoterra-33 and Alfoterra-38. Plans for the next quarter include conducting wettability and mobilization studies.

  6. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc

  7. Dielectrophoresis of reverse phase emulsions.

    PubMed

    Flores-Rodriguez, N; Bryning, Z; Markx, G H

    2005-08-01

    Reverse miniemulsions, emulsions of droplets of size 200 nm-1 microm of a polar liquid dispersed in an apolar continuous liquid phase, exhibit strong electrokinetic responses in low-frequency electric fields. The electrokinetic behaviour of a reverse miniemulsion, previously developed for use as electronic paper, has been investigated under static and flow conditions, in uniform and non-uniform electric fields. Results reveal that when using frequencies lower than 10 Hz strong aggregation of the droplets occurs. In uniform electric fields, under static conditions, droplets reversibly aggregate into honeycomb-like or irregular aggregates. Under flow conditions, droplets aggregate into approximately equidistant streams. In non-uniform electric fields the droplets reversibly aggregate in high-field regions, and can be guided along regions of high field strength in a flow. The potential of the technique for the formation of structured materials is discussed.

  8. Vorticity alignment and negative normal stresses in sheared attractive emulsions.

    PubMed

    Montesi, Alberto; Peña, Alejandro A; Pasquali, Matteo

    2004-02-06

    Attractive emulsions near the colloidal glass transition are investigated by rheometry and optical microscopy under shear. We find that (i) the apparent viscosity eta drops with increasing shear rate, then remains approximately constant in a range of shear rates, then continues to decay; (ii) the first normal stress difference N1 transitions sharply from nearly zero to negative in the region of constant shear viscosity; and (iii) correspondingly, cylindrical flocs form, align along the vorticity, and undergo a log-rolling movement. An analysis of the interplay between steric constraints, attractive forces, and composition explains this behavior, which seems universal to several other complex systems.

  9. Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Seko, N.; Bang, L. T.; Tamada, M.

    2007-12-01

    Glycidyl methacrylate (GMA) which was precursor monomer for the synthesis of metal ion adsorbent was emulsified by surfactant of Tween 20 (Tw-20). The emulsion of 5% GMA in the water was stable for 48 h at Tw-20 concentration of 0.5%. Graft polymerization of GMA on polyethylene fiber was carried out in the emulsion state at various pre-irradiation doses. Degree of grafting (Dg) reached 103%, 301% and 348% for 1 h grafting at 40 °C with pre-irradiation of 10, 30 and 40 kGy, respectively. But the Dg was depressed when the pre-irradiation dose was over 50 kGy since cross-linking occurred simultaneously in the trunk polymer. Dg decreased with increment of Tw-20 concentration in emulsion of 5% GMA at pre-irradiation of 40 kGy. The three kinds of amine-type adsorbents were synthesized by reacting diethylenetriamine (DETA), triethylenetetramine (TETA) and ethylenediamine (EDA) with GMA-grafted polyethylene fiber. The synthesized EDA-type adsorbent had the highest selectivity against U ion and the distribution coefficient was 2.0 × 10 6.

  10. Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics

    NASA Astrophysics Data System (ADS)

    Aydın, Derya; Kızılel, Seda

    2016-06-01

    Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.

  11. Design of novel starch-based Pickering emulsions as platforms for skin photoprotection.

    PubMed

    Marto, J; Gouveia, L F; Gonçalves, L; Chiari-Andréo, B G; Isaac, V; Pinto, P; Oliveira, E; Almeida, A J; Ribeiro, H M

    2016-09-01

    Green coffee oil and modified starch were recently found to have an enhanced protection effect against UV radiation. Therefore, this work aimed to develop an innovative sunscreen formulation based on Pickering emulsions concept, i.e., surfactant-free emulsions stabilized by physical UV filters associated natural oils as a key strategy for prevention against UV-induced skin damage. The Pickering emulsions of different compositions were characterized in terms of pH, mechanical, physical and microbiological stability by a thorough pharmaceutical control. In addition, the sun protection factor (SPF) as well as the in vitro and in vivo biological properties of the final formulations, including Episkin®, HRIPT and sunscreen water resistance. Formulation studies demonstrated the addition of physical UV filters was beneficial, leading to the inclusion of ZnO and TiO2 to ensure a high SPF against UVA and UVB, respectively. Although starch particles presented no intrinsic photoprotection properties, they proved to be a SPF promoter by a synergistic effect. Green coffee oil was the selected natural oil due to the highest SPF, when compared to other natural oils tested. Besides the excellent sunscreen activity confirmed by in vitro and in vivo results, the final formulations proved to be also suitable for topical use according to the rheological assessment and stability throughout the study period (3months). In conclusion, the combination of three multifunctional solid particles and green coffee oil, contributed to achieve a stable and effective innovative sunscreen with a wide range of UV radiation protection.

  12. Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams

    NASA Astrophysics Data System (ADS)

    Woltornist, Steven; Carrillo, Jan-Michael; Xu, Thomas; Dobrynin, Andrey; Adamson, Douglas

    2015-03-01

    The unique electrical, thermal and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water, common organic solvents, and polymer solutions and melts have limited its practical utilization. Here we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by a graphitic skin consisting of overlapping pristine graphene sheets that enables the synthesis of open cell foams containing a continuous graphitic skin network. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. These emulsions are used as templates for the synthesis of the open cell foams with densities below 0.35 g/cm3 and exhibiting remarkable mechanical and electrical properties including compressive moduli up to ~ 100 MPa, compressive strengths of over 8.3 MPa, and bulk conductivities approaching 7 S/m.

  13. Nozzleless Fabrication of Oil-Core Biopolymeric Microcapsules by the Interfacial Gelation of Pickering Emulsion Templates.

    PubMed

    Leong, Jun-Yee; Tey, Beng-Ti; Tan, Chin-Ping; Chan, Eng-Seng

    2015-08-05

    Ionotropic gelation has been an attractive method for the fabrication of biopolymeric oil-core microcapsules due to its safe and mild processing conditions. However, the mandatory use of a nozzle system to form the microcapsules restricts the process scalability and the production of small microcapsules (<100 μm). We report, for the first time, a nozzleless and surfactant-free approach to fabricate oil-core biopolymeric microcapsules through ionotropic gelation at the interface of an O/W Pickering emulsion. This approach involves the self-assembly of calcium carbonate (CaCO3) nanoparticles at the interface of O/W emulsion droplets followed by the addition of a polyanionic biopolymer into the aqueous phase. Subsequently, CaCO3 nanoparticles are dissolved by pH reduction, thus liberating Ca(2+) ions to cross-link the surrounding polyanionic biopolymer to form a shell that encapsulates the oil droplet. We demonstrate the versatility of this method by fabricating microcapsules from different types of polyanionic biopolymers (i.e., alginate, pectin, and gellan gum) and water-immiscible liquid cores (i.e., palm olein, cyclohexane, dichloromethane, and toluene). In addition, small microcapsules with a mean size smaller than 100 μm can be produced by selecting the appropriate conventional emulsification methods available to prepare the Pickering emulsion. The simplicity and versatility of this method allows biopolymeric microcapsules to be fabricated with ease by ionotropic gelation for numerous applications.

  14. Seeded emulsion polymerization as a powerful tool for the biofunctionalization of quantum dots

    NASA Astrophysics Data System (ADS)

    Habercorn, Lasse; Merkl, Jan-Philip; Kloust, Hauke Christian; Feld, Artur; Ostermann, Johannes; Schmidtke, Christian; Wolter, Christopher; Janschel, Marcus; Weller, Horst

    2016-05-01

    With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenched in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to prepare multifunctional hybrid systems, combining different nanoparticles within one construct without any adverse effect of the properties of the starting materials.1,2

  15. 4-nitrophenol removal from aqueous solutions by emulsion liquid membranes using type I facilitation.

    PubMed

    León, G; Guzmán, M A; Miguel, B

    2013-01-01

    Nitrophenols are common organic pollutants that enter the environment during the manufacture and processing of a variety of industrial products. The removal of 4-nitrophenol (4NP) from aqueous solutions by emulsion liquid membranes using the type I facilitated transport mechanism is investigated in this paper. The liquid membrane consisted of kerosene as the organic diluent, sorbitan monooleate as the emulsifying agent and sodium hydroxide as the stripping agent. The most important operational variables governing the emulsion stability and the 4NP removal process--such as the stripper agent and surfactant concentrations, the volume ratios of membrane phase/internal phase and emulsion phase/feed phase and stirring speed - were studied and the optimal conditions of the removal process were experimentally determined. Apparent initial permeabilities of the transport process in the different operational conditions were also obtained. Ninety-eight per cent of4NP was removed in 10 minutes and an apparent initial permeability of 1.2986 min(-1) was obtained in those optimal conditions.

  16. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.

    PubMed

    Morral-Ruíz, Genoveva; Melgar-Lesmes, Pedro; García, María Luísa; Solans, Conxita; García-Celma, María José

    2014-01-30

    The design of new, safe and effective nanotherapeutic systems is an important challenge for the researchers in the nanotechnology area. This study describes the formation of biocompatible polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant formed from O/W nano-emulsions by polymerization at the droplet interfaces in systems composed by aqueous solution/Kolliphor(®) ELP/medium chain triglyceride suitable for intravenous administration. Initial nano-emulsions incorporating highly hydrophilic materials were prepared by the phase inversion composition (PIC) method. After polymerization, nanoparticles with a small particle diameter (25-55 nm) and low polydispersity index were obtained. Parameters such as concentration of monomer, O/S weight ratio as well as the polymerization temperature were crucial to achieve a correct formation of these nanoparticles. Moreover, FT-IR studies showed the full conversion of the monomer to polyurethane and polyurea polymers. Likewise the involvement of the surfactant in the polymerization process through their nucleophilic groups to form the polymeric matrix was demonstrated. This could mean a first step in the development of biocompatible systems formulated with polyoxyethylene castor oil derivative surfactants. In addition, haemolysis and cell viability assays evidenced the good biocompatibility of KELP polyurethane and polyurea nanoparticles thus indicating the potential of these nanosystems as promising drug carriers.

  17. Aging properties of Kodak type 101 emulsions

    NASA Technical Reports Server (NTRS)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  18. Multi-body coalescence in Pickering emulsions.

    PubMed

    Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C; Na, Chongzheng

    2015-01-12

    Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions-the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

  19. Evaluation of the Stability of Concentrated Emulsions for Lemon Beverages Using Sequential Experimental Designs

    PubMed Central

    Almeida, Teresa Cristina Abreu; Larentis, Ariane Leites; Ferraz, Helen Conceição

    2015-01-01

    The study of the stability of concentrated oil-in-water emulsions is imperative to provide a scientific approach for an important problem in the beverage industry, contributing to abolish the empiricism still present nowadays. The use of these emulsions would directly imply a reduction of transportation costs between production and the sales points, where dilution takes place. The goal of this research was to evaluate the influence of the main components of a lemon emulsion on its stability, aiming to maximize the concentration of oil in the beverage and to correlate its physicochemical characteristics to product stability, allowing an increase of shelf life of the final product. For this purpose, analyses of surface and interface tension, electrokinetic potential, particle size and rheological properties of the emulsions were conducted. A 24-1 fractional factorial design was performed with the following variables: lemon oil/water ratio (30% to 50%), starch and Arabic gum concentrations (0% to 30%) and dioctyl sodium sulfosuccinate (0 mg/L to 100 mg/L), including an evaluation of the responses at the central conditions of each variable. Sequentially, a full design was prepared to evaluate the two most influential variables obtained in the first plan, in which concentration of starch and gum ranged from 0% to 20%, while concentration of lemon oil/water ratio was fixed at 50%, without dioctyl sodium sulfosuccinate. Concentrated emulsions with stability superior to 15 days were obtained with either starch or Arabic gum and 50% lemon oil. The most stable formulations presented viscosity over 100 cP and ratio between the surface tension of the emulsion and the mucilage of over 1. These two answers were selected, since they better represent the behavior of emulsions in terms of stability and could be used as tools for an initial selection of the most promising formulations. PMID:25793301

  20. Evaluation of the stability of concentrated emulsions for lemon beverages using sequential experimental designs.

    PubMed

    Almeida, Teresa Cristina Abreu; Larentis, Ariane Leites; Ferraz, Helen Conceição

    2015-01-01

    The study of the stability of concentrated oil-in-water emulsions is imperative to provide a scientific approach for an important problem in the beverage industry, contributing to abolish the empiricism still present nowadays. The use of these emulsions would directly imply a reduction of transportation costs between production and the sales points, where dilution takes place. The goal of this research was to evaluate the influence of the main components of a lemon emulsion on its stability, aiming to maximize the concentration of oil in the beverage and to correlate its physicochemical characteristics to product stability, allowing an increase of shelf life of the final product. For this purpose, analyses of surface and interface tension, electrokinetic potential, particle size and rheological properties of the emulsions were conducted. A 2(4-1) fractional factorial design was performed with the following variables: lemon oil/water ratio (30% to 50%), starch and Arabic gum concentrations (0% to 30%) and dioctyl sodium sulfosuccinate (0 mg/L to 100 mg/L), including an evaluation of the responses at the central conditions of each variable. Sequentially, a full design was prepared to evaluate the two most influential variables obtained in the first plan, in which concentration of starch and gum ranged from 0% to 20%, while concentration of lemon oil/water ratio was fixed at 50%, without dioctyl sodium sulfosuccinate. Concentrated emulsions with stability superior to 15 days were obtained with either starch or Arabic gum and 50% lemon oil. The most stable formulations presented viscosity over 100 cP and ratio between the surface tension of the emulsion and the mucilage of over 1. These two answers were selected, since they better r