Science.gov

Sample records for emulsion chamber experiments

  1. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  2. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  3. Unusual interactions above 100 TeV: A review of cosmic ray experiments with emulsion chambers

    NASA Technical Reports Server (NTRS)

    Yodh, D. B.

    1977-01-01

    A method is given for analyzing the space correlated collection of jets (gamma ray families) with energies greater than 100 TeV in Pb or Fe absorber sampled by photosensitive layers in an emulsion chamber. Events analyzed indicate large multiplicities of particles in the primary hadron-air interaction, and a marked absence of neutral pions.

  4. Search for anomalous C-jets in Chacaltaya emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Kumano, H.

    1985-01-01

    Anomalous C-jets were measured in Chacaltaya emulsion chamber No.17. Measurement of 150 C-jets nuclear interactions occured in the target layer in the chamber itself with total visible energy greater than 5 TeV was completed. they are recorded in area of 11 sq m, corresponding to 17.1 sq m year exposure. Among them, seven events have no pinaught and two events are peculiar in that three showers out of four show abnormal cascade development. Two show remarkable characteristics indicating that they are coming from exotic interactions in the target layer. Illustrations of these events are presented and the thresholds of this type of event are discussed.

  5. Emulsion chamber observations and interpretation (HE 3)

    NASA Technical Reports Server (NTRS)

    Shibata, M.

    1986-01-01

    Experimental results from Emulsion Chamber (EC) experiments at mountain altitudes or at higher levels using flying carriers are examined. The physical interest in this field is concentrated on the strong interaction at the very high energy region exceeding the accelerator energy, also on the primary cosmic ray intensity and its chemical composition. Those experiments which observed cosmic ray secondaries gave information on high energy interaction characteristics through the analyses of secondary spectra, gamma-hadron families and C-jets (direct observation of the particle production occuring at the carbon target). Problems of scaling violation in fragmentation region, interaction cross section, transverse momentum of produced secondaries, and some peculiar features of exotic events are discussed.

  6. On the halo events observed by Mount Fuji and Mount Kanbala Emulsion Chamber Experiments

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    The intensity of big gamma-ray families associated by halo is obtained from Mt. Fuji experiment (650 g/sq.cm. atmospheric depth) and Mt. Kanbala experiment (515 g/sq.cm.). The results are compared with Monte Carlo calculation based on several assumptions on interaction mechanisms and the primary cosmic ray composition. The results suggest more than 3 times lower proton abundance among primaries than that of 10 to the 12th to 10 to the 13th eV region within the framework of quasi-scaling model of multiple production.

  7. Hadrons registration in emulsion chamber with carbon block

    NASA Technical Reports Server (NTRS)

    Tomaszewski, A.; Wlodarczyk, Z.

    1985-01-01

    Nuclear-electro-magnetic cascade (NEC) in X-ray emulsion chambers with carbon block, which are usually used in the Pamir experiment, was Monte-Carlo simulated. Going over from optical density to Summary E sub gamma is discussed. The hole of NEC in the interpretation of energy spectra is analyzed.

  8. Super-family P2 C-96-125 observed by Japan-URSS Joint Emulsion Chamber Experiment

    NASA Astrophysics Data System (ADS)

    Shibuya, E. H.

    1985-08-01

    A detailed description of the event detected in the second chamber of Japan-URSS Collaboration is presented. A preliminary description was already published and from that time a careful microscopic scanning was carried out.

  9. Super-family P2 C-96-125 observed by Japan-URSS Joint Emulsion Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Shibuya, E. H.

    1985-01-01

    A detailed description of the event detected in the second chamber of Japan-URSS Collaboration is presented. A preliminary description was already published and from that time a careful microscopic scanning was carried out.

  10. Multidimensional analysis of data obtained in experiments with X-ray emulsion chambers and extensive air showers

    NASA Technical Reports Server (NTRS)

    Chilingaryan, A. A.; Galfayan, S. K.; Zazyan, M. Z.; Dunaevsky, A. M.

    1985-01-01

    Nonparametric statistical methods are used to carry out the quantitative comparison of the model and the experimental data. The same methods enable one to select the events initiated by the heavy nuclei and to calculate the portion of the corresponding events. For this purpose it is necessary to have the data on artificial events describing the experiment sufficiently well established. At present, the model with the small scaling violation in the fragmentation region is the closest to the experiments. Therefore, the treatment of gamma families obtained in the Pamir' experiment is being carried out at present with the application of these models.

  11. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  12. On the characteristics of emulsion chamber family events produced in low heights

    NASA Technical Reports Server (NTRS)

    Jing, G.; Jing, C.; Zhu, Q.; Ding, L.

    1985-01-01

    The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height.

  13. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  14. Performance of automatic scanning microscope for nuclear emulsion experiments

    NASA Astrophysics Data System (ADS)

    Güler, A. Murat; Altınok, Özgür

    2015-12-01

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  15. Performance of automatic scanning microscope for nuclear emulsion experiments

    SciTech Connect

    Güler, A. Murat; Altınok, Özgür

    2015-12-31

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  16. Search for ντ Interactions with the Nuclear Emulsion Films of the Opera Experiment

    NASA Astrophysics Data System (ADS)

    Pupilli, Fabio

    2013-11-01

    The OPERA experiment aims at measuring the νμ → ντ oscillation through the ντ appearance in an almost pure νμ beam (CNGS). For the direct identification of the short-lived τ lepton, produced in ντ CC interactions, a micrometric detection resolution is needed. Therefore the OPERA detector makes use of nuclear emulsion films, the highest spatial resolution tracking device, combined with lead plates in an emulsion cloud chamber (ECC) structure called `brick'. In this paper the nuclear emulsion analysis chain is reported; the strategy and the algorithms set up will be described together with their performances.

  17. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  18. Observation of super high energy big family with large scale Fe emulsion chambers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In order to get higher efficiencies for detecting hadrons and to make technical improvements in the chamber structure, the Mt. Kambala Emulsion Chamber Collaboration constructed 57 sq. m. of Fe chamber, with thickness 29 c.u.(1c.u.=17.6 mm Fe), using 300 tons of Fe plates and made the first exposure from Sept., 1982 to May, 1984. The photosensitive layers consist of X-ray films of Sakura N type, Fuji No. 100 type and Tianjin III type, some of them contain also emulsion plates of Fuji ET7B type. They are inserted between the Fe plates at 2 c.u., beginning at 5 c.u. from the chamber top. In a number of blocks, 3 mm spacings are provided at every 2 c.u. of Fe plates to facilitate the replacement of photosensitive layers, without disassembling the chamber. On the bottom of the chamber Fe plates of thickness 9 mm are placed in order to shield the chamber from the radioactivities of the ground. An event, numbered K2 58 of visible energy sigma E sub gamma = 7345 TeV was found in this exposure. No obvious halo is seen in the event and all the showers are clearly separated and easy to measure. A brief report of the preliminary results is presented.

  19. JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment

    NASA Technical Reports Server (NTRS)

    Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.

  20. Development of Large Area Emulsion Chamber Methods with a Super Conducting Magnet for Observation of Cosmic Ray Nuclei from 1 GeV to 1,000 TeV (Emulsion Techniques)

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei

    1997-01-01

    The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.

  1. A halo event created at 200 m above the Chacaltaya emulsion chamber

    NASA Technical Reports Server (NTRS)

    Amato, N. M.; Arata, N.; Maldonado, R. H. C.

    1985-01-01

    The results of analysis on a cosmic-ray induced nuclear event with the total visible energy approx. = 1300 TeV which is characterized by the central (halo) part of a strong energy concentration and the outer part of a large lateral spread are presented. The event (named as P06) was detected in the 18th two-storied emulsion chamber exposed at Chacaltaya by Brasil-Japan Collaboration. As the nuclear emulsion plates were inserted at every layer of the concerned blocks in the upper and the lower chambers together with RR- and N-type X-ray films, it is possible to study the details of the event. Some results on P06 have already been reported 1 based on the general measurement of opacity on N-type X-ray films: (1) the total energy of halo is approx. = 1000 TeV; (2) the shower transition reaches its maximum at approx. 16 cu; and (3) the radius of halo is 6.5 mm (at the level of 10 to the 6th power electrons/sq.cm.). The results in more details will be described.

  2. Rheology and microstructure of magmatic emulsions - Theory and experiments

    NASA Technical Reports Server (NTRS)

    Stein, Daniel J.; Spera, Frank J.

    1992-01-01

    The rheological properties of a dilute mixture of melt plus vapor bubbles, referred to as emulsion, are investigated theoretically and in rheometric experiments on dilute viscous germanium dioxide emulsions at temperatures between 1100 and 1175 C and at 100 kPa pressure in a rotating rod rheometer at shear rates between 0.05/s and 7/s. The results indicate that the emulsions may be described by a power-law constitutive relation when observations cover a sufficient range of shear rates to resolve nonlinear flow.

  3. Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.

    1985-01-01

    The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.

  4. Study of particle correlations in high energy S + Pb and Pb + Pb interactions with a magnetic-interferometric-emulsion-chamber

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshiyuki

    1991-04-01

    Exploratory investigations were made in 1986 with 200 GeV/AMU O-16, followed by the second phase experiments with S-32 ions in 1987, and again in 1990, by using the SPS accelerator of the European Center for Nuclear Research (CERN), Geneve, Switzerland. The UAH experimental nuclear group of the present project carries out studies on collisions of these heavy nuclei with target lead nucleus, using a newly invented instrument. This instrument, composed of emulsion films with spacer materials in a high magnetic field, provides spectroscopic details of particles produced in a collision. The instrument is called the Magnetic-Interferometric-Emulsion-Chamber, and has evolved further as a hybrid detector coupled with microstrip silicone ring counters. Within the past year a new, improved run with a 200 GeV/n sulfur beam was successfully carried out at the H3 beam line in the West Hall at CERN. The SPS Supercycle, being installed after July 1989, had caused some timing conflicts of heavy-ion run with LEP operation. Due to the very limited kicker timing allowed, kicking out the unwanted beam particles after irradiating specified number of ions at each pulse was not perfectly achieved. Consequently, kicker failures frequently occurred for about 40 percent of the run. Nevertheless, the EMU05 provided a sufficiently large number of chambers to save the experiments from overdose damage. The EMU05 run used improved MAGIC detector, which gives a momentum resolution to 5.2 percent, while previous detectors were limited to 14 percent accuracy.

  5. Experience with the jet chamber of the JADE-experiment

    SciTech Connect

    Heuer, R.D.

    1984-01-01

    The jet chamber, a pictorial drift chamber used as the central track detector of the JADE experiment at PETRA, is briefly described. The present status of the spatial and dE/dx resolutions and the experience during 4 years of operation is reported. Improvement plans for the readout electronics are described and a short review of the jet chamber designed for the proposed LEP experiment OPAL is given.

  6. Development of new-type nuclear emulsion for a balloon-borne emulsion gamma-ray telescope experiment

    NASA Astrophysics Data System (ADS)

    Ozaki, K.; Aoki, S.; Kamada, K.; Kosaka, T.; Mizutani, F.; Shibayama, E.; Takahashi, S.; Tateishi, Y.; Tawa, S.; Yamada, K.; Kawahara, H.; Otsuka, N.; Rokujo, H.

    2015-12-01

    This study reports a new-type of nuclear emulsion that improves the track-finding efficiency of charged particle detection. The emulsion is applied to the GRAINE project, a balloon-borne experiment that observes cosmic γ-rays through an emulsion γ-ray telescope. The new emulsion film dramatically improves the detection efficiency for γ-rays. The nuclear emulsion gel and films for the second GRAINE balloon-borne experiment (GRAINE-2015) were fully self-produced by ourselves. New handling methods for the novel emulsion film have also been developed. Over time, the stored films gradually become desensitized to minimum ionizing particles, but the original sensitivity can be restored by a resetting process. Moreover, the fading of latent images can be arrested by a drying process. To sensitize the new-type films and avoid their fading, emulsion preprocessing was applied immediately prior to GRAINE-2015. A balloon flight with the emulsion γ-ray telescope was successfully completed in Australia on 12th May 2015. By scanning with automated optical microscopes and analyzing the penetrated tracks, we confirmed the high track-finding efficiency (97%) of the mounted films. The analysis of γ-ray event detection, aims at detecting Vela pulsar, is in progress.

  7. Remarkable events from X ray emulsion chambers and multiple production at LHC energy

    NASA Astrophysics Data System (ADS)

    Capdevielle, J. N.; Talai, M. C.; Attallah, R.

    The CORSIKA programme and specific Monte Carlo collision generators are employed in the interpretation of X-ray emulsion chambers data on super gamma ray families at mountain altitude (Chacaltaya, Kanbala, Pamir...) and in the stratosphere (Concorde, balloons). The consequences of measurement conditions(energy thresholds levels...) are detailed to extract common features for the neutral and charged secondaries. The vertex is approached by invariant mass method, geometry, pseudo rapidity distributions , and factors. Sorting the gamma's coupled in the maximum of invariant histograms, we evaluate the multiplicity , , inelasticity behavior up to LHC energy. Attention is given to the penetration power of EAS which levels off one energy decade around the knee and observations related with the fragmentation region (high energy hadron and gamma spectra in EAS, intensity of families with halo's). Hints of new physics are considered around the intriguing alignments registrated in the energy band between colliders and LHC. Several events (stratosphere and mountain) exhibit coplanar emission at similar visible energy, suggesting the valence diquark breaking. Such violent breaking suppressing the leading cluster recombination might come from the rupture of the string under very high tension between the two partners of the diquark.

  8. OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS

    SciTech Connect

    Kobayashi, T.; Komori, Y.; Yoshida, K.; Yanagisawa, K.; Nishimura, J.; Yamagami, T.; Saito, Y.; Tateyama, N.; Yuda, T.; Wilkes, R. J. E-mail: komori-y@kuhs.ac.jp E-mail: nisimura@icrr.u-tokyo.ac.jp E-mail: yuda@icrr.u-tokyo.ac.jp

    2012-12-01

    We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energy range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.

  9. On mini-cluster observed by Chacaltaya emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Tati, T.

    1985-01-01

    Bundles of electromagnetic showers with very small tranverse momenta (approx. 10 MeV) accompanied by decay products of Chiron-type fireballs, have been observed. These bundles are called Miniclusters. This phenomenon supports the picture of fireballs made up of hadronic matter and based on the theory of the finite degree of freedom.

  10. Skylab experiment performance evaluation manual. Appendix K: Experiment S009 nuclear emulsion (MSFC)

    NASA Technical Reports Server (NTRS)

    Meyers, J. E.

    1972-01-01

    A series of analyses are presented for Experiment S009, nuclear emulsion (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and postflight conditions. Experiment contingency plan workaround procedure and malfunction analyses are included in order to assist in making the experiment operationally successful.

  11. Particle production in very-high-energy cosmic-ray emulsion chamber events: Usual and unusual events

    NASA Astrophysics Data System (ADS)

    Costa, C. G. S.; Halzen, F.; Salles, C.

    1995-10-01

    We show that a simple scaling model of very forward particle production, consistent with accelerator and air shower data, can describe the overall features of the very-high-energy interactions recorded with emulsion chambers. The rapidity and transverse momentum distribution of the secondaries are quantitatively reproduced. This is somewhat surprising after numerous claims that the same data implied large scaling violations or new dynamics. Interestingly, we cannot describe some of the Centauro events, suggesting that these events are anomalous independently of their well-advertised unusual features such as the absence of neutral secondaries.

  12. Bubble chambers for experiments in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Raut, R.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Rusev, G.; Tonchev, A. P.; Ugalde, C.

    2015-05-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with γ-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross-sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross-sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the γ-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.

  13. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  14. Experiments and network model of flow of oil-water emulsion in porous media

    NASA Astrophysics Data System (ADS)

    Romero, Mao Illich; Carvalho, Marcio S.; Alvarado, Vladimir

    2011-10-01

    Transport of emulsions in porous media is relevant to several subsurface applications. Many enhanced oil recovery (EOR) processes lead to emulsion formation and as a result conformance originating in the flow of a dispersed phase may arise. In some EOR processes, emulsion is injected directly as a mobility control agent. Modeling the flow of emulsion in porous media is extremely challenging due to the complex nature of the associated flows and numerous interfaces. The descriptions based on effective viscosity are not valid when the drop size is of the same order of magnitude as the pore-throat characteristic length scale. An accurate model of emulsion flow through porous media should describe this local change in mobility. The available filtration models do not take into account the variation of the straining and capturing rates with the local capillary number. In this work, we present experiments of emulsion flow through sandstone cores of different permeability and a first step on a capillary network model that uses experimentally determined pore-level constitutive relationships between flow rate and pressure drop in constricted capillaries to obtain representative macroscopic flow behavior emerging from microscopic emulsion flow at the pore level. A parametric analysis is conducted to study the effect of the permeability and dispersed phase droplet size on the flow response to emulsion flooding in porous media. The network model predictions qualitatively describe the oil-water emulsion flow behavior observed in the experiments.

  15. Fat emulsion for intravenous administration: clinical experience with intralipid 10%.

    PubMed Central

    Hansen, L M; Hardie, B S; Hidalgo, J

    1976-01-01

    A 10% soybean oil emulsion (Intralipid 10%), used extensively in Europe for intravenous alimentation, has now been clinically evaluated in the United States. Controlled studies have shown that the soybean oil emulsion can be substituted for glucose to supply one-third to two-thirds of the total calories, and can be administered peripherally without significant vein irritation. Essential fatty acid deficiencies, frequently encountered in patients dependent on parenteral alimentation with fat-free solutions, are prevented and corrected by use of this preparation. Data on long-term tolerance to Intralipid 10% infusions are presented for 292 patients treated for more than 6,000 patient days. The soybean oil emulsion was usually well tolerated. Side effects were reported in two of 133 adults and 12 of 159 pediatric patients. PMID:820291

  16. Photographic Emulsions in the OPERA Long Baseline Experiment Status and First Results

    NASA Astrophysics Data System (ADS)

    Meisel, Frank W.

    2010-04-01

    The OPERA experiment (Oscillation Project with Emulsion tRacking Apparatus) has been designed to confirm the neutrino oscillation hypothesis by direct observation of the tau neutrino appearance coming out of a (almost) pure muon neutrino beam. The beam is extracted from the SPS at CERN towards the Gran Sasso Underground Laboratory, the location of OPERA, 730km afar. In order to detect the leptonic tau decays, the vertex detector needs a spatial resolution of the order of micrometers. Nuclear emulsion films are the only detector materials capable of fulfilling this tight condition. In addition, emulsion scanning techniques have been significantly improved during the last recent neutrino experiments. This article is going to review the status of the detector, the neutrino beam properties, the first results from the 2008 run and the neutrino event analyses putting special emphasis on the emulsion detection technique.

  17. Double hypernuclei experiment with hybrid emulsion method (J-PARC E07)

    NASA Astrophysics Data System (ADS)

    Ekawa, Hiroyuki; J-APRC E07 Collaboration

    2014-09-01

    Double hypernuclei are important probes to study the system with strangeness -2. In order to search for double hypernuclei, an upgrade experiment is planned at J-PARC K1.8 beam line. In the experiment, the KURAMA spectrometer system will detect Ξ- production in the (K- ,K+) reaction on a diamond target. SSDs located the upstream and the downstream of emulsion plates will record Ξ- tracks which flight toward emulsion plates precisely. Tracks in SSDs and emulsion will be automatically connected by a hybrid method. Discoveries of more than 10 new double hypernuclear species are expected, which enable us to discuss binding energy in terms of mass number dependence. On the other hand, we will also observe X rays from Ξ- atoms with a Germanium detector array installed close to the emulsion by tagging Ξ-stopped events. This will be the first measurement in the world and give information on the Ξ-potential shape at the nuclear surface region. Emulsion production has been completely done and a test experiment for some detectors of KURAMA spectrometer was carried out. In this talk, physics motivation and current status of the J-PARC E07 experiment will be reported.

  18. Dedicated contamination experiments in the Orion laser target chamber

    NASA Astrophysics Data System (ADS)

    Andrew, J.; Chevalier, J.-M.; Egan, D.; Geille, A.; Jadaud, J.-P.; Quessada, J.-H.; Raffestin, D.; Rubery, M.; Treadwell, P.; Videau, L.

    2015-11-01

    The use of solid targets irradiated in a vacuum target chamber by focussed high energy, high power laser beams to study the properties of matter at high densities, pressures and temperatures are well known. An undesirable side effect of these interactions is the generation of plumes of solid, liquid and gaseous matter which move away from the target and coat or physically damage surfaces within the target chamber. The largest aperture surfaces in these chambers are usually the large, high specification optical components used to produce the extreme conditions being studied [e.g. large aperture off axis parabolas, aspheric lenses, X ray optics and planar debris shields]. In order to study these plumes and the effects that they produce a set of dedicated experiments were performed to evaluate target by product coating distributions and particle velocities by a combined diagnostic instrument that utilised metal witness plates, polymer witness plates, fibre velocimetry and low density foam particle catchers.

  19. Japanese-American Cooperative Emulsion Experiment /JACEE/. [high energy cosmic ray studies

    NASA Technical Reports Server (NTRS)

    Huggett, R. W.; Hunter, S. D.; Jones, W. V.; Takahashi, Y.; Ogata, T.; Saito, T.; Holynski, R.; Jurak, A.; Wolter, W.; Parnell, T. A.

    1981-01-01

    The instrumentation and results of long duration balloon flights carried out jointly by U.S. and Japan researchers to examine high energy cosmic rays are reported. Basic detector geometries are 2.5 sq m sr with operation at altitudes with 3-4 g/sq cm pressure, with observations thus far of over 100 hr. Energies from 2-100 TeV are recorded for nucleus-nucleus and hadron-nucleus interactions, and searches are made for new particle or interactions. The detector is an emulsion chamber which comprises doubly-coated nuclear emulsions on 800 micron thick methacryl substrates, X-ray films, etchable detectors, low density spacers, and lead sheets. Segmentation of the instrument into a primary charge module, a target section, a spacer section, and a lead-emulsion calorimeter allows accurate charge measurement for primary nuclei, reliable energy resolution, and a large geometrical factor for collecting high energy events. A primary Ca nucleus of 300 TeV has been observed.

  20. Outdoor smog-chamber experiments: reactivity of methanol exhaust

    SciTech Connect

    Jeffries, H.E.; Sexton, K.G.; Holleman, M.S.

    1985-09-01

    The purpose of the report was to provide an experimental smog-chamber database especially designed to test photochemical kinetics mechanisms that would be used to assess the effects of methanol fuel use in automobiles. The mechanisms would be used in urban air-quality control models to investigate the advantages of large-scale use of methanol fuel in automobiles. The smog-chamber experiments were performed during three summer months. They have been added to the existing UNC database for photochemical mechanism validation and testing, bringing the total number of dual experiments in the database to over 400. Three different hydrocarbon mixtures were used: a 13-component mixture representing synthetic automobile exhaust; an 18-component mixture representing synthetic urban ambient hydrocarbons; and a 14-component mixture derived from the synthetic automobile exhaust by the addition of n-butane. Three different synthetic methanol-exhaust mixtures were used: 80% methanol/10% formaldehyde; and 100% methanol.

  1. GRAINE project: The first balloon-borne, emulsion gamma-ray telescope experiment

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Aoki, Shigeki; Kamada, Keiki; Mizutani, Saki; Nakagawa, Ryo; Ozaki, Keita; Rokujo, Hiroki

    2015-04-01

    The GRAINE project (Gamma-Ray Astro-Imager with Nuclear Emulsion) has been developed for the observation of cosmic γ-rays in the energy range 10 MeV-100 GeV with a precise (0.08°} at 1-2 GeV), polarization-sensitive, large-aperture-area (˜10 m^2) emulsion telescope by repeated long-duration balloon flights. In 2011, the first balloon-borne experiment was successfully performed with a 12.5 × 10cm^2 aperture area and 4.6 hour flight duration for a feasibility and performance test. Systematic detection, energy reconstruction, and timestamping of γ-ray events were performed across the whole area of the emulsion film, up to 45° incident zenith angle, down to 50 MeV γ-ray energy, with 97% detection reliability, 0.2 sec timestamp accuracy, and 98% timestamp reliability. A γ-ray data checking and calibration method was created using the γ-rays produced in the converter. We measured the atmospheric γ-ray flux in the energy range 50-300 MeV and obtained a first understanding of the cosmic γ-ray background. By combining the attitude data, we established a procedure for determining the γ-ray arrival direction in celestial coordinates. The first flight of the balloon-borne emulsion telescope confirmed its potential as a high-performance cosmic γ-ray detector.

  2. Overview of the n3He Experiment and Target Chamber

    NASA Astrophysics Data System (ADS)

    McCrea, Mark; n3He Collaboration

    2017-01-01

    The n3He Experiment aims to measure the parity-violating asymmetry in the direction of proton emission relative to the initial neutron polarization direction in the reaction n-> +3 He -> T + p + 765 keV to a high precision. The size of the asymmetry is estimated to be in the range - 9 . 5 - 2 . 5 ×10-8 , and our goal statistical accuracy is 2 ×10-8 . The experiment ran at the Spallation Neutron Source with data taking completing at the end of 2015. The experiment used a Helium-3 ionization chamber as the combined target and detector. Data analysis is underway and is currently in an advanced stage

  3. The full stereo drift chamber for the MEG II experiment

    NASA Astrophysics Data System (ADS)

    Chiarello, G.

    2017-03-01

    The MEG experiment, at the Paul Scherrer Institute (PSI) near Zurich in Switzerland, aims at searching for the charged-lepton-flavor-violating decay μ+arrow e+γ, prohibited in the Standard Model but allowed, at a measurable level, in many of its extensions. MEG has already determined the world best upper limit on the branching ratio: BR(μ+arrow e+γ)<4.2×10‑13 at 90% CL with the full data set collected in the years 2009–2013. A further improvement of the MEG single event sensitivity requires a substantial upgrade of the detector performances and, in particular, the complete replacement of the positron tracker. The MEG upgrade experiment (MEG II) is currently under construction and it is conceived in order to further improve the sensitivity by one order of magnitude in three years of data taking. The new positron tracker is a high transparency single volume, full stereo cylindrical Drift Chamber, immersed in a non uniform longitudinal B-field, co-axial to the muon beam line. Due to the high wire density (12 wires/cm2), the use of the traditional feed-through technique as wire anchoring system could hardly be implemented and therefore it was necessary to develop new wiring strategies. The number of wires and the stringent requirements on the precision of their position and on the uniformity of the wire mechanical tension impose the use of an automatic system to operate the wiring procedures. The drift chamber is currently under construction at INFN Lecce and Pisa, and should be completed by the summer 2017 to be then delivered to PSI for commissioning. The upgraded detector, the new drift chamber and its construction technique, will be described.

  4. The INAF/IAPS Plasma Chamber for ionospheric simulation experiment

    NASA Astrophysics Data System (ADS)

    Diego, Piero

    2016-04-01

    The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field

  5. [Characterization of photochemical smog chamber and initial experiments].

    PubMed

    Jia, Long; Xu, Yong-Fu; Shi, Yu-Zhen

    2011-02-01

    A self-made new indoor environmental chamber facility for the study of atmospheric processes leading to the formation of ozone and secondary organic aerosols has been introduced and characterized. The characterization experiments include the measurements of wall effects for reactive species and the determination of chamber dependent * OH radical sources by CO-NO(x) irradiation experiments. Preliminary ethene-NO(x) and benzene-NO(x) experiments were conducted as well. The results of characterization experiments show that the wall effects for O3 and NO2 in a new reactor are not obvious. Relative humidity has a great effect on the wall losses in the old reactor, especially for O3. In the old reactor, the rate constant for O3 wall losses is obtained to be 1.0 x 10(-5) s(-1) (RH = 5%) and 4.0 x10(-5) s(-1) (RH = 91%), whereas for NO2, it is 1.0 x 10(-6) s(-1) (RH = 5%) and 0.6 x 10(-6) s(-1) (RH = 75%). The value for k(NO2 --> HONO) determined by CO-NO(x) irradiation experiments is (4.2-5.2) x 10(-5) s(-1) and (2.3-2.5) x 10(-5) s(-1) at RH = 5% and RH 75% -77%, respectively. The average *OH concentration is estimated to be (2.1 +/- 0.4) x 10(6) molecules/cm3 by using a reaction rate coefficient of CO and * OH. The sensitivity of chamber dependent auxiliary reactions to the O3 formation is discussed. Results show that NO2 --> HONO has the greatest impact on the O3 formation during the initial stage, N2O5 + H2O --> 2HNO3 has a minus effect to maximum O3 concentration, and that the wall losses of both O3 and NO2 have little impact on the O3 formation. The results from the ethene-NO(x) and benzene-NO(x) experiments are in good agreement with those from the MCM simulation, which reflects that the facility for the study of the formation of secondary pollution of ozone and secondary organic aerosols is reliable. This demonstrates that our facility can be further used in the deep-going study of chemical processes in the atmosphere.

  6. Forward Drift Chambers for the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Pentchev, Lubomir; GlueX Collaboration

    2014-09-01

    The GlueX experiment will search for exotic mesons produced by 9 GeV linearly polarized photon beam from the 12 GeV CEBAF machine. A hermetic solenoid-based detector system that includes tracking and calorimetry has been constructed. The Forward Drift Chamber (FDC) system consists of 24 circular planar drift chambers of 1 m diameter. Additional information from cathode strips, placed at both sides of the wire planes, is required to achieve efficient pattern recognition in the presence of high background rates in forward direction, resulting in 12,500 readout channels in total. The detection of relatively low energy photons by the electro-magnetic calorimeters imposes severe constraints on the amount of the material used in the FDC. Challenges in the production of this low-mass detector will be discussed. The FDC has been completed and recently installed in the bore of the solenoid magnet. Results from the tests of the whole detector system will be presented.

  7. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  8. Two-dimensional plastic flow of foams and emulsions in a channel: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Sbragaglia, Mauro; Andrea Scagliarini Collaboration; Benjamin Dollet Collaboration

    2015-11-01

    In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified by looking at the relationship between the localisation length of the velocity profiles and the localisation length of the spatial distribution of plastic events. To complement the cooperativity mechanisms studied in foam with those of other soft glassy systems, we compare the experiments with simulations of dense emulsions based on the lattice Boltzmann method, which are performed both with and without wall friction. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correlation with the underlying local shear strain. These features, not previously reported for a confined foam, lend further support to the idea that cooperativity mechanisms, originally invoked for concentrated emulsions (Goyon et al., Nature, vol. 454, 2008, pp. 84-87), have parallels in the behaviour of other soft glassy ma ERC Grant n.279004-DROEMU

  9. New analysis of nuclear interaction observed by Mt. Kanbara emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Nanjo, H.

    1985-01-01

    To date the analysis of the air cascade family has been performed using a full Monte Carlo simulation. It is difficult to draw a definite conclusion about the interaction mechanism by using only this kind of simulation. On the other hand, attempts to reproduce the original gamma ray at the interaction point, for example decascading, have also been made. This method makes it possible to observe the interaction directly and to analyze the data from various angles. All of these methods, however, assume a constant ER in the cascade shower, where E is energy and R is the distance from the center of the cascade shower. It is impossible to reproduce the exact interaction height and energy by these methods. A relative method in separating one cascade shower from others is adopted. This method makes it possible to estimate the interaction height and energy by using information about the lateral spread of the cascade shower.

  10. Designing an oscillating CO2 concentration experiment for fild chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  11. Designing an oscillating CO2 concentration experiment for field chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  12. Fish oil–based lipid emulsions in the treatment of parenteral nutrition-associated liver disease: An ongoing positive experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported the beneficial effect of fish oil-based lipid emulsions (FOLEs) as monotherapy in the treatment of parenteral nutrition-associated liver disease (PNALD). In this report, we share our ongoing experience at Texas Children's Hospital, Houston, in the use of FOLE in treatment of P...

  13. Drop impact experiment as a model experiment to investigate the role of oil-in-water emulsions in controlling the drop size distribution of an agricultural spray

    NASA Astrophysics Data System (ADS)

    Vernay, Clara; Ramos, Laurence; Ligoure, Christian; Douzals, Jean-Paul; Goyal, Rajesh; Castaing, Jean-Christophe

    2014-11-01

    Agricultural spraying involves atomizing a liquid stream through a hydraulic nozzle forming a liquid sheet, which is then destabilized into droplets. Solution adjuvants as dilute oil-in-water emulsions are known to influence the spray drop size distribution. To elucidate the mechanisms causing the changes on the drop size distribution, we investigate the influence of emulsions on the destabilization mechanisms of liquid sheets. Model laboratory experiments based on the collision of a liquid drop on a small target are used to produce and visualize liquid sheets. With emulsion, the sheet is destabilized by the nucleation of holes in the sheet that perforate it during its expansion. The physico-chemical parameters of the emulsion, such as the concentration and the emulsion drop size distribution, are varied to rationalize their influence on the destabilization mechanisms. The results obtained with the drop impact experiments are compared to the measurement of the spray drop size distribution. The very good correlation between the number of nucleation events and the volume fraction of small drops in the spray suggests that experiments on liquid sheet are appropriate model experiments to gain an understanding of the physical mechanisms governing the spray drop size distribution.

  14. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.

    2017-01-01

    The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.

  15. Experiments on heat transfer in a cryogenic engine thrust chamber

    NASA Astrophysics Data System (ADS)

    Sugathan, N.; Srinivasan, K.; Srinivasa Murthy, S.

    1993-04-01

    Tests are conducted on a cryogenic engine using liquid oxygen as oxidizer and gaseous hydrogen as fuel with water as a coolant. The coolant flow passage of the thrust chamber is of milled channel configuration. Measured heat transfer results compare well with those predicted by a thermal analysis using the standard Bartz correlation and the Hess and Kunz correlation for hot gas side and coolant side heat transfer coefficients, respectively. This confirms the conclusions of a recent theoretical study by the authors in which a comparison of various heat transfer correlations was made.

  16. Optics laboratory experiments with laser-heated samples of crude oils and oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Da Costa, Germán.

    2007-06-01

    The aim of the present paper is to describe incorporation of basic industrial research results into current University study programs in Physics and Optoelectronic Engineering. The Laboratory of Optics and Fluids (LOF) of University Simon Bolivar (USB) leads a research program on applications of Photonics technology in the Petroleum Industry. More precisely, the main research subject at the (LOF) is development of optical procedures allowing determination of conditions of stability of oil-in-water emulsions. In several countries (for example, Canada and Venezuela) there exist important reservoirs of heavy crude oils, whose high viscosity impede their transportation through pipelines. Therefore, emulsions of heavy oils in water were developed in order to allow their commercialization. Though those emulsions are stable in current environmental conditions, high temperature or velocity gradients frequently provoke their coalescence. In typical experiments conducted at the (LOF) temperature gradients are induced in oil-water emulsions and in crude oil samples by irradiation with a CW laser beam. In crude oil samples the strong dependence of the liquid surface tension and refractive index on the local liquid temperature gives rise to long-range deformation of the liquid free surface. The latter cited thus behaves as an interferometrically smooth liquid mirror, which gives rise in turn to phase and intensity variations in the reflected light beam. In emulsion samples the inhomogeneous heating gives rise to thermoconvective flow, which is clearly observed as a moving speckle pattern in the reflected light beam. These are typical phenomena of self-interaction of a laser beam incident upon a material medium. In the present paper we discuss these optical phenomena, first studied in a basic research context, from an educational viewpoint.

  17. Intravenous lipid emulsion as antidote: a summary of published human experience.

    PubMed

    Cave, Grant; Harvey, Martyn; Graudins, Andis

    2011-04-01

    Intravenous lipid emulsion (ILE) has been demonstrated to be effective in amelioration of cardiovascular and central nervous system sequelae of local-anaesthetic and non-local-anaesthetic drug toxicity in animal models. Sequestration of lipophilic toxins to an expanded plasma lipid phase is credited as the predominant beneficial mechanism of action of ILE. Systematic review of published human experience is however lacking. We determined to report a comprehensive literature search of all human reports of ILE application in drug poisoning. Forty-two cases of ILE use (19 local-anaesthetic, 23 non-local-anaesthetic) were identified, with anecdotal reports of successful resuscitation from cardiovascular collapse and central nervous system depression associated with ILE administration in lipophilic toxin overdose. Although significant heterogeneity was observed in both agents of intoxication, and reported outcomes; case report data suggest a possible benefit of ILE in potentially life-threatening cardio-toxicity from bupivacaine, mepivacaine, ropivacaine, haloperidol, tricyclic antidepressants, lipophilic beta blockers and calcium channel blockers. Further controlled study and systematic evaluation of human cases is required to define the clinical role of ILE in acute poisonings.

  18. Plasma Chamber and First Wall of the Ignitor Experiment^*

    NASA Astrophysics Data System (ADS)

    Cucchiaro, A.; Coppi, B.; Bianchi, A.; Lucca, F.

    2005-10-01

    The new designs of the Plasma Chamber (PC) and of the First Wall (FW) system are based on updated scenarios for vertical plasma disruption (VDE) as well as estimates for the maximum thermal wall loadings at ignition. The PC wall thickness has been optimized to reduce the deformation during the worst disruption event without sacrificing the dimensions of the plasma column. A non linear dynamic analysis of the PC has been performed on a 360^o model of it, taking into account possible toroidal asymmetries of the halo current. Radial EM loads obtained by scaling JET measurements have been also considered. The low-cycle fatigue analysis confirms that the PC is able to meet a lifetime of few thousand cycles for the most extreme combinations of magnetic fields and plasma currents. The FW, made of Molybdenum (TZM) tiles covering the entire inner surface of the PC, has been designed to withstand thermal and EM loads, both under normal operating conditions and in case of disruption. Detailed elasto-plastic structural analyses of the most (EM) loaded tile-carriers show that these are compatible with the adopted fabrication requirements. ^*Sponsored in part by ENEA of Italy and by the U.S. DOE.

  19. Spectra, composition, and interactions of nuclei with magnet interaction chambers

    NASA Technical Reports Server (NTRS)

    Parneil, T. A.; Derrickson, J. H.; Fountain, W. F.; Roberts, F. E.; Tabuki, T.; Watts, J. W.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Fuki, M.

    1990-01-01

    Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.

  20. Calibration of cathode strip gains in multiwire drift chambers of the GlueX experiment

    SciTech Connect

    Berdnikov, V. V.; Somov, S. V.; Pentchev, L.; Somov, A.

    2016-07-01

    A technique for calibrating cathode strip gains in multiwire drift chambers of the GlueX experiment is described. The accuracy of the technique is estimated based on Monte Carlo generated data with known gain coefficients in the strip signal channels. One of the four detector sections has been calibrated using cosmic rays. Results of drift chamber calibration on the accelerator beam upon inclusion in the GlueX experimental setup are presented.

  1. Smog chamber experiments to test oxidant related control strategy issues. Final report 1978-81

    SciTech Connect

    Kamens, R.M.; Jeffries, H.E.; Sexton, K.G.; Gerhardt, A.A.

    1982-03-01

    Outdoor smog chamber experiments were performed to address various issues relating to ozone (O3) production and oxidant control strategies. Temperature effects on single hydrocarbon-NOx systems were studied. Propylene-NOx systems were modeled with particular attention to peroxynitric acid chemistry. Mechanisms were developed to model the O3 reactions with the two major isoprene daughter products, methylvinylketone and methacrolein. Chamber systems with isoprene and O3 were also modeled.

  2. Experience With the Resistive Plate Chamber in the BaBar Experiment

    SciTech Connect

    Bellini, F.; /Rome U. /INFN, Rome

    2006-11-15

    The BABAR detector has operated nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap muon detector, for the past two years. The RPCs experience widely different background and luminosity-driven singles rates (0.01-10 Hz/cm{sup 2}) depending on position within the endcap. Some regions have integrated over 0.3 C/cm{sup 2}. RPC efficiency measured with cosmic rays and beam is high and stable. However, a few of the highest rate RPCs have suffered efficiency losses of 5-15%. Although constructed with improved techniques many of the RPCs, which are operated in streamer mode, have shown increased dark currents and noise rates that are correlated with the direction of the gas flow and the integrated current.

  3. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  4. Event Analysis in Nuclear Emulsion for the E07 Experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Soe, Myint K.; Endo, Yoko; Hoshino, Kaoru; Ito, Hiroki; Itonaga, Kazunori; Kobayashi, Hidetaka; Tint, Khin T.; Kinbara, Shinji; Mishina, Akihiro; Yoshida, Junya; Nakazawa, Kazuma

    Hammer track events in nuclear emulsion were analyzed to measure the excitation energy of 8Be* (2+) nucleus. The kinetic energies of two alpha particles of hammer track events were obtained from their ranges with use of range-energy relation. The range-energy relation was calibrated by measuring the alpha particle tracks emitted from 212Po of Thorium decay series in the emulsion. From this calibration, we obtained density and shrinkage factor of the emulsion. The excitation energy and width of 8Be* (2+) nucleus were measured to be 3.39 ± 0.24 MeV and Γ = 1.22 ± 0.60 MeV respectively.

  5. Experiment 8: Environmental Conditions in the ASTROCULTURE(trademark) Plant Chamber During the USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Zhou, Weijia; Yetka, R. A.; Draeger, N. A.

    1998-01-01

    Conducting plant research to assess the impact of microgravity on plant growth and development requires a plant chamber that has the capability to control other environmental parameters involved in plant growth and development. The environmental control in a space-based plant chamber must be equivalent to that available in such facilities used for terrestrial plant research. Additionally, plants are very sensitive to a number of atmospheric gaseous materials. Thus, the atmosphere of a plant chamber must be isolated from the space vehicle atmosphere, and the plant growth unit should have the capability to remove any such deleterious materials that may impact plant growth and development. The Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, has developed a totally enclosed controlled environment plant growth unit. The flight unit was used to support the ASTROCULTURE(TM) experiment conducted during the USML-2 mission. The experiment had two major objectives: 1) Provide further validation of the flight unit to control the experiment-defined environmental parameters in the plant chamber, and 2) support a plant experiment to assess the capability of potato plant material to produce tubers in microgravity. This paper describes the temperature, humidity, and carbon dioxide conditions of the plant chamber during the mission, from launch to landing. Another paper will present the plant response data.

  6. Muon radiography in Russia with emulsion technique. First experiments future perspectives

    SciTech Connect

    Aleksandrov, A. B.; Bagulya, A. V.; Chernyavsky, M. M.; Konovalova, N. S.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymyrov, M. S.; Managadze, A. K.; Roganova, T. M.; Orurk, O. I.; Zemskova, S. G.

    2015-12-31

    Cosmic ray muon radiography is a novel technique for imaging the internal structures of massive objects. It exploits the capability of high energy muons from cosmic-rays in order to obtain a density map of investigated object and trying to guess information on the variation in the density distribution. Nuclear emulsions are tracking detectors well suited to be employed in this context since they have an excellent angular resolution (few mrad), they are cheap, compact and robust, easily transportable, able to work in harsh environments, and do not require power supply. This work presents the first successful results in the field of muon radiography in Russia with nuclear emulsions.

  7. Intravenous Lipid Emulsion Therapy for Acute Synthetic Cannabinoid Intoxication: Clinical Experience in Four Cases

    PubMed Central

    Aksel, Gökhan; Güneysel, Özlem; Taşyürek, Tanju; Kozan, Ergül; Çevik, Şebnem Eren

    2015-01-01

    There is no specific antidote for intoxication with synthetic cannabinoids. In this case series, we considered the efficiency of intravenous lipid emulsion therapy in four cases, who presented to emergency department with synthetic cannabinoid (bonzai) intoxication. The first patient had a GCS of 3 and a left bundle branch block on electrocardiography. The electrocardiography revealed sinus rhythm with normal QRS width after the treatment. The second patient had bradycardia, hypotension, and a GCS of 14. After intravenous lipid emulsion therapy, the bradycardia resolved, and the patient's GCS improved to 15. The third patient presented with a GCS of 8, and had hypotension and bradycardia. After the treatment, not only did the bradycardia resolve, but also the GCS improved to 15. The fourth patient, whose electrocardiography revealed accelerated junctional rhythm, had a GCS of 13. The patient's rhythm was sinus after the treatment. Cardiovascular recovery was seen in all four cases, and neurological recovery was also seen in three of them. Based on the fact that intravenous lipid emulsion is beneficial in patients intoxicated with lipophilic drugs, unstable patients presenting to the emergency department with acute synthetic cannabinoid intoxication may be candidates for intravenous lipid emulsion treatment. PMID:26078891

  8. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  9. Outdoor smog chamber experiments to test photochemical models. Final report May 78-May 81

    SciTech Connect

    Feffries, H.E.; Kamens, R.M.; Sexron, K.G.; Gerhardt, A.A.

    1982-04-01

    The smog chamber facility of the University of North Carolina was used in a study to provide experimental data for developing and testing kinetic mechanisms of photochemical smog formation. The smog chamber, located outdoors in rural North Carolina, is an A-frame structure covered with Teflon film. Because the chamber is partitioned into two sections, each with a volume of 156 cu m, two experiments can be conducted simultaneously. The dual chamber is operated under natural conditions of solar radiation, temperature, and relative humidity. In this study, 115 dual all-day experiments were conducted using NOx and a variety of organic species. The organic compounds investigated included various paraffins, olefins, aromatics and oxygenates, both singly and in mixtures of two or more components. In this report the data collected over the three-year period of the study are described. The experimental procedures and analytical methods used in this study and the limitations and uncertainties of the data are discussed. Guidance for modeling of the data is also given, including a detailed discussion of how to estimate photolytic rate constants from the available UV and total solar radiation data and how to treat such chamber artifacts as dilution, wall sources and losses of pollutants, and reactivity of the background air.

  10. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  11. Ceramic torodail vacuum chamber and wall conditioning for the ETL-TPE-2 experiment

    SciTech Connect

    Kiyama, H.; Kiyama, S.; Hakoda, K.

    1981-01-01

    TPE-2 is a torodial high /beta/screw pinch experiment with an ellitical cross section. This paper presents the design and the fabrication of the torodial ceramic vacuum chamber, the outline of the vacuum system and of major radius of 40 cm and an elliptical cross section of 28 cm.

  12. Early steps towards quarks and their interactions using neutrino beams in CERN bubble chamber experiments

    NASA Astrophysics Data System (ADS)

    Perkins, Don H.

    2016-06-01

    Results from neutrino experiments at CERN in the1970's, using bubble chamber detectors filled with heavy liquids, gave early evidence for the existence of quarks and gluons as real dynamical objects. In detail, the measured moments of the non-singlet structure functions provided crucial support for the validity of the present theory of the strong inter-quark interactions, quantum chromodynamics.

  13. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  14. Resistive Plate Chambers performance with Cosmic Rays in the CMS experiment

    NASA Astrophysics Data System (ADS)

    Piccolo, D.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Marinov, A.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Zaganidis, N.; Akimenko, S.; Ball, A.; Crotty, I.; Guida, R.; Sharma, A.; Van Doninck, W.; Abbrescia, M.; Iaselli, G.; Marangelli, B.; Nuzzo, S.; Pugliese, G.; Romano, F.; Roselli, G.; Trentadue, R.; Tupputi, S.; Colaleo, A.; Loddo, F.; Ranieri, A.; Cimmino, A.; Sciacca, C.; Buontempo, S.; Cavallo, N.; Fabozzi, F.; Lomidtze, D.; Paolucci, P.; Benussi, L.; Bertani, M.; Bianco, S.; Colafranceschi, S.; Fabbri, F. L.; Baesso, P.; Pagano, D.; Ratti, S. P.; Vitulo, P.; Viviani, C.; Avila, C.; Carrillo, C.; Gomez, B.; Ocampo, A.; Osorio, A.; Sanabria, J. C.; Polese, G.; Tuuva, T.; Bunkowski, K.; Cwiok, M.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Kierzkowski, K.; Kudla, I. M.; Oklins, W.; Pietrusinski, M.; Bluj, M.; Fruboes, T.; Gorski, M.; Kazana, M.; Szleper, M.; Wrochna, G.; Zalewski, P.; Poznik, K. T.; Zabolotny, W.; Ban, Y.; Qian, S. J.; Ye, Y. L.; Ahmad, M.; Ahmed, I.; Ahmed, W.; Asghar, M. I.; Butt, J. B.; Hoorani, H. R.; Hussain, I.; Khan, W. A.; Khurshid, T.; Malik, I. A.; Muhammad, S.; Qazi, S. F.; Shahzad, H.; Cho, S. W.; Jo, M.; Hong, B.; Kim, C.; kim, H. C.; Kim, J. H.; Lee, H. S.; Lee, K. S.; Moon, D. H.; Park, S.; Rhee, H. B.; Seo, E. S.; Shin, S. S.; Sim, K. S.; Lee, J. S.; Lee, S. E.

    2010-05-01

    The Resistive Plate Chambers [M. Abbrescia, et al., Nucl. Instr. and Meth. A 550 (2005) 116] are used in the CMS experiment [CMS Collaboration, The CMS experiment at the CERN LHC 2008, J. Inst. 3 (2008) S08004] as a dedicated muon trigger both in barrel and endcap system. About 4000 m2 of double gap RPCs have been produced and have been installed in the experiment since more than one and half Years. The full barrel system and a fraction of the endcaps have been monitored to study dark current behaviour and system stability, and have been extensively commissioned with Cosmic Rays collected by the full CMS experiment.

  15. Performance of the Time Expansion Chamber / Transition Radiation Detector in PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Luiz Silva, Cesar

    2004-10-01

    The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c

  16. Modular deposition chamber for in situ X-ray experiments during RF and DC magnetron sputtering.

    PubMed

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Gräfe, Hans Hellmuth; Ulrich, Sven; Mantilla, Miguel; Weigel, Ralf; Rembold, Steffen; Baumbach, Tilo

    2012-03-01

    A new sputtering system for in situ X-ray experiments during DC and RF magnetron sputtering is described. The outstanding features of the system are the modular design of the vacuum chamber, the adjustable deposition angle, the option for plasma diagnostics, and the UHV sample transfer in order to access complementary surface analysis methods. First in situ diffraction and reflectivity measurements during RF and DC deposition of vanadium carbide demonstrate the performance of the set-up.

  17. Experimental feature in the primary-proton flux at energies above 10 TeV according to the results of searches for primary particles in nuclear emulsions exposed in the stratosphere (RUNJOB Experiment)

    SciTech Connect

    Zayarnaya, I. S.

    2008-02-15

    In the RUNJOB experiment, a long-term exposure of x-ray emulsion chambers in the stratosphere from 1995 to 1999 with the aim of studying the composition and spectra of primary cosmic particles in the energy range 10-1000 TeV per nucleon revealed about 50% proton tracks. The remaining events of the proton group did not feature any candidate for a track of a singly charged particle within the search region determined from measurements of the coordinates of background nuclei going close to the sought track. Methodological factors that could explain this experimental observation are considered. A possible physical reason associated with the presence of a neutral component in the flux of primary protons in the energy region above 10 TeV is also analyzed.

  18. Are magma chamber boundaries brittle or ductile? Rheological insights from thermal stressing experiments

    NASA Astrophysics Data System (ADS)

    Browning, John; Meredith, Philip G.; Gudmundsson, Agust; Lavallée, Yan; Drymoni, Kyriaki

    2015-04-01

    Rheological conditions at magma chamber boundaries remain poorly understood. Many field observations of deeply-eroded and well-exposed plutons, for example Slaufrudalur and Geitafell in SE Iceland, exhibit a sharp transition between what may have been a partially or fully molten magma chamber and its surrounding brittle host rock. Some studies have suggested a more gradual change in the rheological properties of chamber boundaries, marked by a ductile halo, which is likely to exert a significant impact on their rheological response. Understanding the state and rheological conditions of magma-rock interface and interaction is essential for constraining chamber-boundary failure conditions leading to dyke propagation, onset of volcanic eruption as well as caldera fault formation. We present results from a series of thermal stressing experiments in which we attempt to recreate the likely conditions at magma-chamber boundaries. Cores of volcanic material (25 mm diameter x 65 mm long) were heated to magmatic temperatures under controlled conditions in a horizontal tube furnace (at atmospheric pressure) and then held at those temperatures over variable dwell times. At the maximum temperatures reached, the inner part of the samples undergoes partial melting whilst the outer part remains solid. After cooling the brittle shells commonly exhibit axial, fissure-like fractures with protruded blobs of solidified melt. This phenomenon is interpreted as being the result of volume expansion during partial melting. The internal melt overpressure generates fluid-driven fractures analogous to filter-pressing textures or on a large scale, dykes. We complement our observations with acoustic emission and seismic velocity data obtained from measurements throughout the experiments. These complementary data are used to infer the style and timescale of fracture formation. Our results pinpoint the temperature ranges over which brittle fractures form as a result of internal melt overpressure

  19. A new system of STRAW chambers operating in vacuum for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Potrebenikov, Yu

    2017-01-01

    Large 2.15 × 2.15 m2 area straw tube chambers have been developed to meet the specific requirements of the NA62 experiment. The main goal of the NA62 experiment at the CERN SPS is to measure the branching ratio of the ultra-rare decay with 10% accuracy. This can be achieved by detecting about 100 Standard Model events with 10% background in 2 - 3 years of data taking. A low mass tracking system is necessary to achieve a high resolution on kinematic quantities while timing resolution is mandatory to match the outgoing pion with the incoming kaon. Design, construction and first performance are reported.

  20. A Current Mode Ion Chamber for the n+p->D+gamma Parity Violation Experiment

    NASA Astrophysics Data System (ADS)

    Snow, William

    2001-04-01

    We have developed and tested a current-mode 3He-based ion chamber for the measurement of the neutron time-of-flight spectrum from a pulsed cold neutron source on a pulse-by-pulse basis. Such a device is required in the n+p->D+gamma experiment for general diagnostic purposes and for monitoring the ortho-para ratio in the liquid hydrogen target by neutron transmission. This detector was tested in the fall of 2000 at the LANSCE pulsed cold neutron source. The chamber operates with a mixture gas of 0.5 atm 3He and 3 atm H2 and possesses segmentation along the neutron beam. The design is similar to that of Penn et al [1] which was used for a neutron-4He parity violation experiment, but with modifications to the time response and the dynamic range in neutron energy required for operation at a pulsed neutron source. The relevant technical characteristics of the ion chamber (time response, sensitivity to Mev gammas, noise, efficiency, neutron energy dynamic range, linearity) will be described. [1] S. Penn et.al., submitted to NIM (2000)

  1. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    DOE PAGES

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir; ...

    2015-01-01

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC‘s are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ~200mkm accuracy with angles from 20° up to 1°. One of the detector features ismore » 1.64% X0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.« less

  2. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    SciTech Connect

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir; Zihlmann, Benedikt

    2015-01-01

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC‘s are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ~200mkm accuracy with angles from 20° up to 1°. One of the detector features is 1.64% X0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.

  3. A Freon-Filled Bubble Chamber for Neutron Detection in Inertial Confinement Fusion Experiments

    SciTech Connect

    Ghilea, M.C.; Meyerhofer, D.D.; Sangster, T.C.

    2011-03-24

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron–Freon interactions were observed at neutron yields of 1013 emitted from deuterium–tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  4. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    SciTech Connect

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-15

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10{sup 13} emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  5. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments.

    PubMed

    Ghilea, M C; Meyerhofer, D D; Sangster, T C

    2011-03-01

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10(13) emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  6. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    NASA Astrophysics Data System (ADS)

    Berdnikov, V. V.; Somov, S. V.; Pentchev, L.; Zihlmann, B.

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC's are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ∼200mkm accuracy with angles from 20 ̊up to 1 ̊. One of the detector features is 1.64% X0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.

  7. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  8. Report of the Next Generation TRIUMF-MTV Experiment Run-IV Using Cylindrical Drift Chamber

    NASA Astrophysics Data System (ADS)

    Tanuma, R.; Seitaibashi, E.; Baba, H.; Kawamura, H.; Behr, J. A.; Onishi, J.; Ninomiya, K.; Pearson, M.; Ikeda, M.; Levy, P.; Narikawa, R.; Openshaw, R.; Tanaka, S.; Saiba, S.; Iguri, T.; Totsuka, Y.; Nakaya, Y.; Murata, J.

    The MTV (Mott polarimetry for T-Violation) experiment is running from 2009 at TRIUMF, which aims to search a large non-standard T-Violation in polarized nuclear beta decay. Existence of a large transverse polarization of electrons emitted from polarized Li-8 nuclei, which are produced at TRIUMF-ISAC and stopped inside an aluminum stopper, is investigated. We utilize a Mott polarimeter consists of a CDC (Cylindrical Drift Chamber), measuring backward scattering left-right asymmetry from a thin lead analyzer foil. In this paper, results from the final performance test run using CDC performed in 2012 are described.

  9. Simulation of ion chamber signals in the n+3 He -> p + t experiment

    NASA Astrophysics Data System (ADS)

    Coppola, Christopher; n3He Collaboration

    2017-01-01

    The parity violating proton directional asymmetry from the capture of polarized neutrons on 3He was measured with a pulsed neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The target is an ion chamber with 3He at 0.476 atmosphere. Signal wires in the chamber have different sensitivities to the physics asymmetry, depdendent on their location and the configuration of the experiment. These geometry factors must be determined by simulation. In addition, simulation estimates the statistical precision of the experiment, optimizes configuration variables, and assists with systematic analysis. To achieve the most accurate simulation of the detector signals, a custom simulation was written in C++ using weighted variables and taking advantage of parallel execution. The phsyics inputs to the simulation came from measurements of the neutron phase space, ENDF cross sections, and PSTAR ionization data. A cell model was applied to combine this physics to produce an accurate simulation of the experimental data. This simulation can be used to calculate accurate and tunable geometry factors, and to produce desired quanities for use in optimization and analysis.

  10. The Charged Pion Polarizability Experiment at the Thomas Jefferson National Accelerator Facility: Developing Muon Chambers and Experiment Simulation

    NASA Astrophysics Data System (ADS)

    Johnston, Bobby; Miskimen, Rory; Downing, Matthew; Haughwout, Christian; Schick, Andrew; Jefferson Lab Hall D Collaboration

    2016-09-01

    The Thomas Jefferson National Accelerator Facility has proposed to make a precision measurement of the charged pion polarizability through measurements of γγ ->π+π- cross sections using the new GlueX detector. This experiment will have a large muon background which must be filtered out of the pion signal. For this issue we are developing an array of Multi-Wire Proportional Chambers (MWPCs) that will allow the pions to be identified from the muons, permitting a precise measurement of the polarizability. Small (1:8 scale) and medium (1:5 scale) sized prototypes have been constructed and tested, and a full scale prototype is currently being assembled. MWPC electronics were developed and tested to amplify the signal from the detection chamber, and were designed to interface with Jefferson Lab's existing data acquisition system. In order to construct the detectors, a class 10,000 clean room was assembled specifically for this purpose. Lastly, Geant4 software is being used to run Monte Carlo simulations of the experiment. This allows us to determine the optimal orientation and number of MWPCs needed for proper filtering which will indicate how many more MWPCs must be built before the experiment can be run. Department of Energy.

  11. Clinical experience with intravenous lipid emulsion for drug-induced cardiovascular collapse.

    PubMed

    Geib, Ann-Jeannette; Liebelt, Erica; Manini, Alex F

    2012-03-01

    Intravenous lipid emulsion (ILE) is an emerging therapy for refractory cardiotoxicity due to lipid-soluble drugs. The purpose of this study was to assess survival to hospital discharge, effects on hemodynamic parameters, and adverse event occurrence for patients who were treated with ILE as part of the resuscitative effort for drug-induced cardiotoxicity. This is a multicenter retrospective chart review of inpatients at three tertiary referral medical centers receiving ILE for drug-induced cardiotoxicity between November 2007 and March 2009. Nine cases with drug-induced cardiovascular collapse, defined as cardiac arrest or refractory shock, were selected for review if patients received either bolus or infusion of ILE in any combination. No interventions were done. The main outcome measures were survival to hospital discharge, effect on hemodynamic parameters, and adverse event. Hemodynamic vital signs (heart rate, systolic blood pressure, diastolic blood pressure, calculated mean arterial pressure [MAP]) were measured before administration of ILE and up to five measurements (if available) were recorded after administration of ILE. Attribution of adverse events was determined by assignment of Naranjo adverse drug reaction (ADR) likelihood score (3) with adjudication of three medical toxicologists; disagreements were settled by majority consensus. Of nine cases identified based on inclusion criteria (three cardiac arrest, six refractory shock), five (55%) survived to hospital discharge. ILE regimens were bolus alone in five patients and bolus plus infusion in four patients. Hemodynamic trends in response to ILE demonstrated no difference in MAP immediately pre- and post-administration of ILE (p = NS). Administration of infusion (versus boluses alone) did not demonstrate a statistically significant improvement in MAP. Adverse events due to ILE therapy that were categorized as "possible" or "probable" based on Naranjo scores included lipemia, digit amputation, lung

  12. Studies of particle interactions in bubble chamber, spark chambers and counter experiments: Task P. Annual progress report

    SciTech Connect

    Jones, L.M.; Holloway, L.; O'Halloran, T.A. Jr.; Simmons, R.O.

    1983-07-01

    Our current work reflects the general aim of this task, which is to calculate phenomenological theories of interest to present experiments. Recently, this has emphasized the jet calculus approach to properties of quark and gluon jets. Progress is reviewed.

  13. ASD IC for the thin gap chambers in the LHC Atlas experiment

    SciTech Connect

    Sasaki, Osamu; Yoshida, Mitsuhiro

    1999-12-01

    An amplifier-shaper-discriminator (ASD) chip was designed and built for Thin Gap Chambers in the forward muon trigger system of the LHC Atlas experiment. The ASD IC uses SONY Analog Master Slice bipolar technology. The IC contains 4 channels in a QFP48 package. The gain of its first stage (preamplifier) is approximately 0.8V/pC and output from the preamplifier is received by a shaper (main-amplifier) with a gain of 7. The baseline restoration circuit is incorporated in the main-amplifier. The threshold voltage for discriminator section is common to the 4 channels and their digital output level is LVDS-compatible. The IC also has analog output of the preamplifier. The equivalent noise charge at input capacitance of 150 pF is around 7,500 electrons. The power dissipation with LDVS outputs (100 {Omega} load) is 59mW/ch.

  14. Parallel readout multiwire proportional chambers for time resolved X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; Bond, C. C.

    1980-10-01

    Linear position sensitive detectors have been used for a number of years in X-ray diffraction studies from various types of muscle under different physiological conditions. Such detectors are mainly based on either an internal (RC) delay line or an external (LC) delay line for decoding positional information; the counting speed of the detectors is optimally matched to the available photon flux from laboratory based X-ray cameras. However, X-ray cameras based on synchrotron radiation provide photon fluxes which are greater by about three orders of magnitude. We describe in this paper an X-ray detection system based on parallel readout from a multiwire proportional chamber which offers high counting speeds and is designed to perform time slicing experiments with time resolutions down to 1 ms.

  15. Experiences from nonevaporable getter-coated vacuum chambers at the MAX II synchrotron light source

    SciTech Connect

    Hansson, A.; Wallen, E.; Berglund, M.; Kersevan, R.; Hahn, M.

    2010-03-15

    Vacuum chambers coated with nonevaporable getter (NEG) materials have been used in straight sections of synchrotron light sources for the past 10 years. The MAX II storage ring, where four NEG-coated insertion device vacuum chambers and three NEG-coated dipole vacuum chambers have been installed, is the first synchrotron light source to also use NEG-coated dipole vacuum chambers. In connection with the installation of the latest two NEG-coated dipole chambers in April 2009, the evolution of the pressure and lifetime-limiting effects in MAX II has been determined from measurements with movable scrapers. The results have been compared with results from scraper measurements done in 2003, before any NEG-coated vacuum chambers were installed in the storage ring. Less than three months after the installation of the latest dipole chambers the vacuum system in MAX II was performing well with a pressure already lower than the pressure measured in 2003.

  16. Chamber experiments to investigate the release of fungal IN into the atmosphere

    NASA Astrophysics Data System (ADS)

    Kunert, Anna Theresa; Krüger, Mira; Scheel, Jan Frederik; Helleis, Frank; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Biological aerosol particles are ubiquitous in the atmosphere. Several types of microorganisms like bacteria, fungi and lichen have been identified as sources of biological ice nuclei (IN). They are a potentially strong source of atmospheric IN, as some of them are able to catalyze ice formation at relatively warm subfreezing temperatures. Common plant-associated bacteria are the best-known biological IN but recently ice nucleation activity in a variety of fungal species such as Mortierella alpina, Isaria farinosa, Acremonium implicatum was found. These fungal species are widely spread throughout the world and are present in soil and air. Their IN seem to be proteins, which are not anchored in the fungal cell wall. To which extent these small, cell-free IN are emitted directly into the atmosphere remains unexplored just as other processes, which probably indirectly release fungal IN e.g. absorbed onto soil dust particles. To analyze the release of fungal IN into the air, we designed a chamber, whose main principle is based on the emission of particles into a closed gas compartment and the subsequent collection of these particles in water. The concentration of the collected IN in the water is determined by droplet freezing assays. For a proof of principles, fungal washing water containing cell-free IN was atomized by an aerosol generator and the produced gas stream was lead through a water trap filled with pure water. Preliminary results show a successful proof of principles. The chamber design is capable of collecting aerosolic IN produced by an aerosol generator with fungal washing water. In ongoing experiments, alive or dead fungal cultures are placed into the chamber and a gentle, particle free air stream is directed over the fungi surface. This gas stream is also lead through water to collect particles, which might be emitted either actively or passively by the fungi. Further experiments will be e.g. conducted under different relative humidities. Results

  17. Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments

    NASA Astrophysics Data System (ADS)

    Nah, Theodora; McVay, Renee C.; Pierce, Jeffrey R.; Seinfeld, John H.; Ng, Nga L.

    2017-02-01

    The effect of vapor-wall deposition on secondary organic aerosol (SOA) formation has gained significant attention; however, uncertainties in experimentally derived SOA mass yields due to uncertainties in particle-wall deposition remain. Different approaches have been used to correct for particle-wall deposition in SOA formation studies, each having its own set of assumptions in determining the particle-wall loss rate. In volatile and intermediate-volatility organic compound (VOC and IVOC) systems in which SOA formation is governed by kinetically limited growth, the effect of vapor-wall deposition on SOA mass yields can be constrained by using high surface area concentrations of seed aerosol to promote the condensation of SOA-forming vapors onto seed aerosol instead of the chamber walls. However, under such high seed aerosol levels, the presence of significant coagulation may complicate the particle-wall deposition correction. Here, we present a model framework that accounts for coagulation in chamber studies in which high seed aerosol surface area concentrations are used. For the α-pinene ozonolysis system, we find that after accounting for coagulation, SOA mass yields remain approximately constant when high seed aerosol surface area concentrations ( ≥ 8000 µm2 cm-3) are used, consistent with our prior study (Nah et al., 2016) showing that α-pinene ozonolysis SOA formation is governed by quasi-equilibrium growth. In addition, we systematically assess the uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments. At low seed aerosol surface area concentrations (< 3000 µm2 cm-3), the SOA mass yields at peak SOA growth obtained from the particle-wall loss correction methods agree within 14 %. However, at high seed aerosol surface area concentrations ( ≥ 8000 µm2 cm-3), the SOA mass yields at peak SOA growth obtained from different particle

  18. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants

    NASA Astrophysics Data System (ADS)

    Rauert, Cassandra; Lazarov, Borislav; Harrad, Stuart; Covaci, Adrian; Stranger, Marianne

    2014-01-01

    The widespread use of flame retardants (FRs) in indoor products has led to their ubiquitous distribution within indoor microenvironments with many studies reporting concentrations in indoor air and dust. Little information is available however on emission of these compounds to air, particularly the measurement of specific emission rates (SERs), or the migration pathways leading to dust contamination. Such knowledge gaps hamper efforts to develop understanding of human exposure. This review summarizes published data on SERs of the following FRs released from treated products: polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), tetrabromobisphenol-A (TBBPA), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (PFRs), including a brief discussion of the methods used to derive these SERs. Also reviewed are published studies that utilize emission chambers for investigations/measurements of mass transfer of FRs to dust, discussing the chamber configurations and methods used for these experiments. A brief review of studies investigating correlations between concentrations detected in indoor air/dust and possible sources in the microenvironment is included along with efforts to model contamination of indoor environments. Critical analysis of the literature reveals that the major limitations with utilizing chambers to derive SERs for FRs arise due to the physicochemical properties of FRs. In particular, increased partitioning to chamber surfaces, airborne particles and dust, causes loss through “sink” effects and results in long times to reach steady state conditions inside the chamber. The limitations of chamber experiments are discussed as well as their potential for filling gaps in knowledge in this area.

  19. Assessment of SAPRC07 with updated isoprene chemistry against outdoor chamber experiments

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhi; Sexton, Kenneth G.; Jerry, Roger E.; Surratt, Jason D.; Vizuete, William

    2015-03-01

    Isoprene, the most emitted non-methane hydrocarbon, is known to influence ozone (O3) formation in urban areas rich with biogenic emissions. To keep up with the recent advance on isoprene oxidation chemistry including the identification of isoprene epoxydiols (IEPOX) as a precursor to secondary organic aerosol (SOA), Xie et al. (2013) updated the SAPRC (Statewide Air Pollution Research Center)-07 chemical mechanism. It is currently unknown how the Xie modification of SAPRC07 impacts the ability of the model to predict O3. In this study we will evaluate the Xie mechanism with simulations of 24 isoprene experiments from the UNC Dual Gas-phase Chamber. Our results suggest that the new mechanism increases NOx (nitrogen oxides) inter-conversion and produces more O3 than SAPRC07 for all experiments. In lower-NOx experiments, the new mechanism worsens O3 performance in the wrong direction, increasing bias from 4.92% to 9.44%. We found increased NOx recycling from PANs accounts for that. This could be explained by more PANs made due to increased first generation volatile organic compound (VOC) products and hydroxyl radical (OH) production.

  20. Performance of the Cylindrical Drift Chamber and the Inner Plastic Scintillator in the BGOegg experiment

    NASA Astrophysics Data System (ADS)

    Shibukawa, Takuya; Masumoto, Shinichi; Ozawa, Kyoichiro; Ohnishi, Hiroaki; Muramatsu, Norihito; Ishikawa, Takatsugu; Miyabe, Manabu; Tsuchikawa, Yusuke; Yamazaki, Ryuji; Matsumura, Yuji; Mizutani, Keigo; Hashimoto, Toshikazu; Hamano, Hirotomo; LEPS2/BGOegg Collaboration

    2014-09-01

    Properties of vector mesons, such as ω mesons, in nucleus are intensively measured to study interactions between mesons and nuclear medium. To study ω meson properties in nuclei, we search for the nuclear ω bound states in the LEPS2/BGOegg experiment at SPring-8. If a strongly bounded ω state exists and binding energy is measured, it gives a phenomenological information about interactions between ω meson and nuclei. ω meson is produced using the GeV γ rays at SPring-8/LEPS2 beamline. The ω bound state is searched from the missing mass measurements of forward going protons. ω meson production is identified by detecting γ and proton from ωN --> N* --> γp or ωN --> γΔ --> γπ p reaction. In the BGOegg experiment, charged particles are detected by Cylindrical Drift Chamber(CDC) and Inner Plastic Scintillators (IPS) around the target. CDC has 4 layers of stereo wires and each layer has 72 sense wires. IPS consists of 30 plastic scintillators. In this talk, the performance of CDC and IPS are described in detail. Properties of vector mesons, such as ω mesons, in nucleus are intensively measured to study interactions between mesons and nuclear medium. To study ω meson properties in nuclei, we search for the nuclear ω bound states in the LEPS2/BGOegg experiment at SPring-8. If a strongly bounded ω state exists and binding energy is measured, it gives a phenomenological information about interactions between ω meson and nuclei. ω meson is produced using the GeV γ rays at SPring-8/LEPS2 beamline. The ω bound state is searched from the missing mass measurements of forward going protons. ω meson production is identified by detecting γ and proton from ωN --> N* --> γp or ωN --> γΔ --> γπ p reaction. In the BGOegg experiment, charged particles are detected by Cylindrical Drift Chamber(CDC) and Inner Plastic Scintillators (IPS) around the target. CDC has 4 layers of stereo wires and each layer has 72 sense wires. IPS consists of 30 plastic

  1. The central drift chamber for the D0 experiment: Design, construction and test

    SciTech Connect

    Behnke, T.

    1989-08-01

    A cylindrical drift chamber has been designed and built at the State University of New York at Stony Brook. This chamber is to be installed in the D0 detector which is being completed at the Fermi National Accelerator. In this dissertation the design, construction and testing of this chamber are described. The characteristic features of this chamber are cells formed by solid walls and a modular structure. Much discussion is given to the performance of and results from a chamber made from three final modules which was installed in the D0 interaction region during the 1988/1989 collider run. Using this chamber proton anti-proton interactions were measured at the D0 interaction point.

  2. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

    NASA Astrophysics Data System (ADS)

    Nehr, S.; Bohn, B.; Dorn, H.-P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2014-07-01

    Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1-0.2 ppb) and high-NO conditions (typically 7-8 ppb), and starting concentrations of 6-250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied in which OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH/POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH/POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1-1.6 under low-NO conditions and 0.9-1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.

  3. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

    NASA Astrophysics Data System (ADS)

    Nehr, S.; Bohn, B.; Dorn, H.-P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2014-03-01

    Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene, and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1-0.2 ppb) and high-NO conditions (typically 7-8 ppb), and starting concentrations of 6-250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied where OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH / POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH / POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1-1.6 under low-NO conditions and 0.9-1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.

  4. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    SciTech Connect

    Rickards, J.; Golzarri, J. I.; Espinosa, G.; Vázquez-López, C.

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  5. The Resistive Plate Chambers of the ATLAS experiment:. performance studies on Calibration Stream

    NASA Astrophysics Data System (ADS)

    Mazzaferro, Luca

    2012-08-01

    ATLAS (A Toroidal LHC ApparatuS) is one of the four experiments installed on the hadron-hadron collider LHC at CERN. It is a general purpose experiment, with a physics program which spans from the search for the Higgs Boson to the search of physics Beyond the Standard Model (BSM). An integrated luminosity of about 5 fb-1 is expected to be reached by the end of 2011. The Resistive Plate Chambers, installed in the barrel region, are used to provide the first muon level trigger, and cover an area of 16000 m2, readout by about 350000 electronic channels. To ensure optimal trigger performance, the RPC operational parameters like cluster size, efficiency and spatial resolution are constantly monitored. In order to achieve the desired precision, the data used for the analysis are extracted directly from the second level of the trigger, hence assuring very high statistics. This dedicated event stream, called Calibration Stream, is sent automatically to the RPC Calibration Center in Naples. Here the analysis is performed using an automatic tool tightly integrated in the ATLAS GRID environment, the Local Calibration Data Splitter (LCDS), which configures and manages all the operations required by the analysis (e.g. software environment initialization, grid jobs configuration and submission, data saving and retrieval, etc). The monitored RPC operational parameters, the performance analysis and the LCDS will be presented.

  6. Study of isospin correlation in high energy S + Pb and Pb + Pb interactions with a magnetic-interferometric-emulsion-chamber. Final report

    SciTech Connect

    Takahashi, Yoshiyuki

    1997-12-12

    This report describes the research results of the study of high energy heavy-ion interactions and multi-cluster correlations at the University of Alabama in Huntsville (UAH). This study has been performed as the CERN experiments, EMU05, EMU09 and EMU16, and a part of the RHIC PHENIX and its MVD Collaboration work. Physics objectives and methods are described in chapters 1, 2, 3 and Appendices A1 and A2. The experimental set-up, measurements, an the data analyses at UAH are described in chapters 4 through 10 and Appendices. The UAH research was a quest for high density state of nuclear matter, in terms of finding analysis methods of multi-isospin correlations. The present work emphasized a study of the fluctuation of the particle density, discriminating the isospin for exploring the Disoriented Chiral Condensate (DCC). The analysis methods developed are: (1) Chi-square density test; (2) Run-test; (3) G-test; (4) Fourier analysis; and (5) Lomb`s Periodogram. The application of these methods for central collision events in 2,000 GeV/n S + Pb and 167 GeV/n Pb + Pb produced interesting DCC correlations for a few events. However, further investigation of fluctuations with Monte Carlo method guided them to understand various hidden degree of freedoms in such analyses. The results of the analysis of the experimental data in comparison with the Monte Carlo data did not support the DCC process as compelling. The developed methods evolved for a plan to investigate the DCC in the PHENIX. The study has obtained several mathematical analysis methods from the CERN EMU05/16 experiments for a possible use in RHIC experiments.

  7. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  8. Utilizing ARC EMCS Seedling Cassettes as Highly Versatile Miniature Growth Chambers for Model Organism Experiments

    NASA Technical Reports Server (NTRS)

    Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David; Reinsch, S.; DeSimone, Julia C.; Myers, Zachary A.

    2014-01-01

    The aim of our ground testing was to demonstrate the capability of safely putting specific model organisms into dehydrated stasis, and to later rehydrate and successfully grow them inside flight proven ARC EMCS seedling cassettes. The ARC EMCS seedling cassettes were originally developed to support seedling growth during space flight. The seeds are attached to a solid substrate, launched dry, and then rehydrated in a small volume of media on orbit to initiate the experiment. We hypothesized that the same seedling cassettes should be capable of acting as culture chambers for a wide range of organisms with minimal or no modification. The ability to safely preserve live organisms in a dehydrated state allows for on orbit experiments to be conducted at the best time for crew operations and more importantly provides a tightly controlled physiologically relevant growth experiment with specific environmental parameters. Thus, we performed a series of ground tests that involved growing the organisms, preparing them for dehydration on gridded Polyether Sulfone (PES) membranes, dry storage at ambient temperatures for varying periods of time, followed by rehydration. Inside the culture cassettes, the PES membranes were mounted above blotters containing dehydrated growth media. These were mounted on stainless steel bases and sealed with plastic covers that have permeable membrane covered ports for gas exchange. The results showed we were able to demonstrate acceptable normal growth of C.elegans (nematodes), E.coli (bacteria), S.cerevisiae (yeast), Polytrichum (moss) spores and protonemata, C.thalictroides (fern), D.discoideum (amoeba), and H.dujardini (tardigrades). All organisms showed acceptable growth and rehydration in both petri dishes and culture cassettes initially, and after various time lengths of dehydration. At the end of on orbit ISS European Modular Cultivation System experiments the cassettes could be frozen at ultra-low temperatures, refrigerated, or chemically

  9. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    SciTech Connect

    Soulé, B.; Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  10. Design of Drift Chamber 5 for the COMPASS II polarized Drell-Yan experiment

    NASA Astrophysics Data System (ADS)

    Mallon, James; Compass Dc5 Team

    2014-09-01

    The COMPASS project is a fixed-target nuclear physics experiment at CERN which explores the internal structure of the proton, and COMPASS ll's polarized Drell-Yan experiments will be exploring the quark angular momentum contribution to the spin of the proton through Semi-Inclusive Deep Inelastic Scattering. As a part of this process, Drift Chamber 5 (DC5), based on DC4 built by CEA-Saclay, must be constructed to replace a faulty straw chamber. The 23 total frames of DC5 have an outside measurement of 2.94 m by 2.54 m, with the 8 anode frames having a total of 4616 >2 m-long wires, giving a detection region of 4.19 m2 with a resolution of 200 microns. These wire planes are orientated with the x- and x'-frames in the vertical x-direction, the y- & y'-frames in the horizontal y-direction, the u- & u'- frames offset +10 deg from the vertical x-direction, and the v- &v'-frames offset -10 deg from the vertical x-direction, and are strung with Ø100 micron field wires and Ø20 micron sense wires. In order to solve left-right ambiguity, x', y', u', and v' are shifted by 4mm, or one drift cell. The x- and y-frames have 513 wires strung across them, with the field wires at 400 g of tension, the sense wires at 55 g on the x-frames, and 70 g on the y-frames. The u- and v-frames will have 641 wires, with the field wires at 400 g, and the sense wires at 55 g. DC5 will also have an updated front end electronics setup, using a new pre-amplifier-discriminator chip, in order to allow the recording of more events per second. The COMPASS project is a fixed-target nuclear physics experiment at CERN which explores the internal structure of the proton, and COMPASS ll's polarized Drell-Yan experiments will be exploring the quark angular momentum contribution to the spin of the proton through Semi-Inclusive Deep Inelastic Scattering. As a part of this process, Drift Chamber 5 (DC5), based on DC4 built by CEA-Saclay, must be constructed to replace a faulty straw chamber. The 23 total frames

  11. Supervised Self-Organizing Classification of Superresolution ISAR Images: An Anechoic Chamber Experiment

    NASA Astrophysics Data System (ADS)

    Radoi, Emanuel; Quinquis, André; Totir, Felix

    2006-12-01

    The problem of the automatic classification of superresolution ISAR images is addressed in the paper. We describe an anechoic chamber experiment involving ten-scale-reduced aircraft models. The radar images of these targets are reconstructed using MUSIC-2D (multiple signal classification) method coupled with two additional processing steps: phase unwrapping and symmetry enhancement. A feature vector is then proposed including Fourier descriptors and moment invariants, which are calculated from the target shape and the scattering center distribution extracted from each reconstructed image. The classification is finally performed by a new self-organizing neural network called SART (supervised ART), which is compared to two standard classifiers, MLP (multilayer perceptron) and fuzzy KNN ([InlineEquation not available: see fulltext.] nearest neighbors). While the classification accuracy is similar, SART is shown to outperform the two other classifiers in terms of training speed and classification speed, especially for large databases. It is also easier to use since it does not require any input parameter related to its structure.

  12. Plasma chamber testing of APSA coupons for the SAMPIE flight experiment

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1993-01-01

    Among the solar cell technologies to be tested in space as part of the Solar Array Module Plasma Interactions Experiment (SAMPIE) will be the Advanced Photovoltaic Solar Array (APSA). Several prototype twelve cell coupons were built for NASA using different blanket materials and mounting techniques. The first conforms to the baseline design for APSA which calls for the cells to be mounted on a carbon loaded Kapton blanket to control charging in GEO. When deployed, this design has a flexible blanket supported around the edges. A second coupon was built with the cells mounted on Kapton-H, which was in turn cemented to a solid aluminum substrate. A final coupon was identical to the latter but used germanium coated Kapton to control atomic oxygen attack in LEO. Ground testing of these coupons in a plasma chamber showed considerable differences in plasma current collection. The Kapton-H coupon demonstrated current collection consistent with exposed interconnects and some degree of cell snapover. The other two coupons experienced anomalously large collection currents. This behavior is believed to a consequence of enhanced plasma sheaths supported by the weakly conducting carbon and germanium used in these coupons. The results reported here are the first experimental evidence that the use of such materials can result in power losses to high voltage space power systems.

  13. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  14. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Järvinen, E.; Vochezer, P.; Abdelmonem, A.; Wagner, R.; Jourdan, O.; Mioche, G.; Shcherbakov, V. N.; Schmitt, C. G.; Tricoli, U.; Ulanowski, Z.; Heymsfield, A. J.

    2015-11-01

    This study reports on the origin of ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high ice crystal complexity is dominating the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapour during the crystal growth. Indications were found that the crystal complexity is influenced by unfrozen H2SO4/H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers; the Polar Nephelometer (PN) probe of LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side- and backward scattering directions resulting in low asymmetry parameters g around 0.78. It was found that these functions have a rather low sensitivity to the crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  15. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; Butler, D.; Furletov, S.; Robison, L.; Zihlmann, B.

    2017-02-01

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche ;center-of-gravity; position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the total charge for an Ar/CO2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.

  16. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    DOE PAGES

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; ...

    2017-04-22

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche “center-of-gravity” position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the totalmore » charge for an Ar/CO2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.« less

  17. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-06-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand

  18. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-10-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand

  19. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Van Auwegem, P.; Benussi, L.; Bianco, S.; Cauwenbergh, S.; Ferrini, M.; Muhammad, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Saviano, G.; Tytgat, M.

    2016-09-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  20. The FLAME Deluge: organic aerosol emission ratios from combustion chamber experiments

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin; Lee, Taehyoung; Sullivan, Amy; Kreidenweis, Sonia; Collett, Jeff

    2014-05-01

    A high level of variability has been identified amongst organic aerosol (OA) emission ratios (ER) from biomass burning (BB) under ambient conditions. However, it is difficult to assess the influences of potential drivers for this variability, given the wide range of conditions associated with wildfire measurements. Chamber experiments performed under controlled conditions provide a means of examining the effects of different fuel types and combustion conditions on OA emissions from biomass fuels. ERs have been characterised for 67 burns during the second Fire Laboratory at Missoula Experiment (FLAME II), involving 19 different species from 6 fuel types widely consumed in BB events in the US each year. Average normalised dOA/dCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding variability between separate plumes in ambient measurements. Relationships with source conditions were found to be complex, with little consistent influence from fuel properties and combustion conditions for the entire range of experiments. No strong correlation across all fires was observed between dOA/dCO and modified combustion efficiency (MCE), which is used as an indicator of the proportional contributions of flaming and smouldering combustion phases throughout each burn. However, a negative correlation exists between dOA/dCO and MCE for some coniferous species, most notably Douglas fir, for which there is also an apparent influence from fuel moisture content. Significant contrasts were also identified between combustion emissions from different fuel components of additional coniferous species. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as

  1. Scintillation counter and wire chamber front end modules for high energy physics experiments

    SciTech Connect

    Baldin, Boris; DalMonte, Lou; /Fermilab

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of {approx}20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with {approx}100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of {approx}4 {micro}s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of {approx}0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  2. Cooling Properties of the Shuttle Advanced Crew Escape Spacesuit: Results of an Environmental Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Gillis, David; Bue, Grant; Son, Chan; Norcross, Jason; Kuznetz, Larry; Chapman, Kirt; Chhipwadia, Ketan; McBride, Tim

    2008-01-01

    The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.

  3. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    NASA Astrophysics Data System (ADS)

    Tonks, James P.; Galloway, Ewan C.; King, Martin O.; Kerherve, Gwilherm; Watts, John F.

    2016-08-01

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  4. Flow chamber

    SciTech Connect

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  5. Atmospheric photochemistry of aromatic hydrocarbons: Analysis of OH budgets during SAPHIR chamber experiments and evaluation of MCMv3.2

    NASA Astrophysics Data System (ADS)

    Nehr, S.; Bohn, B.; Brauers, T.; Dorn, H.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Lu, K.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2012-12-01

    Aromatic hydrocarbons, almost exclusively originating from anthropogenic sources, comprise a significant fraction of volatile organic compounds observed in urban air. The photo-oxidation of aromatics results in the formation of secondary pollutants and impacts air quality in cities, industrialized areas, and districts of dense traffic. Up-to-date photochemical oxidation schemes of the Master Chemical Mechanism (MCMv3.2) exhibit moderate performance in simulating aromatic compound degradation observed during previous environmental chamber studies. To obtain a better understanding of aromatic photo-oxidation mechanisms, we performed experiments with a number of aromatic hydrocarbons in the outdoor atmosphere simulation chamber SAPHIR located in Jülich, Germany. These chamber studies were designed to derive OH turnover rates exclusively based on experimental data. Simultaneous measurements of NOx (= NO + NO2), HOx (= OH + HO2), and the total OH loss rate constant k(OH) facilitate a detailed analysis of the OH budgets during photo-oxidation experiments. The OH budget analysis was complemented by numerical model simulations using MCMv3.2. Despite MCM's tendency to overestimate k(OH) and to underpredict radical concentrations, the OH budgets are reasonably balanced for all investigated aromatics. However, the results leave some scope for OH producing pathways that are not considered in the current MCMv3.2. An improved reaction mechanism, derived from MCMv3.2 sensitivity studies, is presented. The model performance is basically improved by changes of the mechanistic representation of ring fragmentation channels.

  6. IFE Final Optics and Chamber Dynamics Modeling and Experiments Final Technical Report

    SciTech Connect

    F. Najmabadi; M. S. Tillack

    2006-01-11

    Our OFES-sponsored research on IFE technology originally focused on studies of grazing-incidence metal mirrors (GIMM's). After the addition of GIMM research to the High Average Power Laser (HAPL) program, our OFES-sponsored research evolved to include laser propagation studies, surface material evolution in IFE wetted-wall chambers, and magnetic intervention. In 2003, the OFES IFE Technology program was terminated. We continued to expend resources on a no-cost extension in order to complete student research projects in an orderly way and to help us explore new research directions. Those explorations led to funding in the field of extreme ultraviolet lithography, which shares many issues in common with inertial fusion chambers, and the field of radiative properties of laser-produced plasma.

  7. Development of a proportional scintillation x-ray imaging chamber for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayo; Takahashi, Tan; Awaya, Yohko; Oura, Masaki; Yamamoto, Masaki; Uruga, Tomoya; Mizogawa, Tatsumi; Masuda, Kimiaki

    1995-02-01

    Proportional scintillation x-ray imaging chamber (PSXIC) is a new type of two-dimensional position-sensitive x-ray detector composed of a spherical drift chamber, a parallel plate avalanche counter, and an image-intensifier-associated charge coupled device camera. A prototype of PSXIC filled with xenon (97%)+triethylamine (3%) gaseous mixture has been stably operated under a high flux of x-ray irradiation. The spatial resolution the prototype can attain has been found better than 800 μm. The time-resolved imaging capability has also been examined by taking time-varying x-ray images of a test pattern with a time resolution of 1/30 s.

  8. Modeling SOA formation from alkanes and alkenes in chamber experiments: effect of gas/wall partitioning of organic vapors.

    NASA Astrophysics Data System (ADS)

    Stéphanie La, Yuyi; Camredon, Marie; Ziemann, Paul; Ouzebidour, Farida; Valorso, Richard; Madronich, Sasha; Lee-Taylor, Julia; Hodzic, Alma; Aumont, Bernard

    2014-05-01

    Oxidation products of Intermediate Volatility Organic Compounds (IVOC) are expected to be the major precursors of secondary organic aerosols (SOA). Laboratory experiments were conducted this last decade in the Riverside APRC chamber to study IVOC oxidative mechanisms and SOA formation processes for a large set of linear, branched and cyclic aliphatic hydrocarbons (Ziemann, 2011). This dataset are used here to assess the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) (Aumont et al., 2005). The simulated SOA yields agree with the general trends observed in the chamber experiments. They are (i) increasing with the increasing carbon number; (ii) decreasing with increasing methyl branch number; and (iii) increasing for cyclic compounds compared to their corresponding linear analogues. However, simulated SOA yields are systematically overestimated regardless of the precursors, suggesting missing processes in the model. In this study, we assess whether gas-to-wall partitioning of organic vapors can explain these model/observation mismatches (Matsunaga and Ziemann, 2010). First results show that GECKO-A outputs better match the observations when wall uptake of organic vapors is taken into account. Effects of gas/wall partitioning on SOA yields and composition will be presented. Preliminary results suggest that wall uptake is a major process influencing SOA production in the Teflon chambers. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos.Chem.Phys., 5, 2497-2517 (2005). P. J. Ziemann: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes, Int. Rev.Phys.Chem., 30:2, 161-195 (2011). Matsunaga, A., Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film

  9. Determination of longevities, chamber building rates and growth functions for Operculina complanata from long term cultivation experiments

    NASA Astrophysics Data System (ADS)

    Woeger, Julia; Kinoshita, Shunichi; Wolfgang, Eder; Briguglio, Antonino; Hohenegger, Johann

    2016-04-01

    Operculina complanata was collected in 20 and 50 m depth around the Island of Sesoko belonging to Japans southernmost prefecture Okinawa in a series of monthly sampling over a period of 16 months (Apr.2014-July2015). A minimum of 8 specimens (4 among the smallest and 4 among the largest) per sampling were cultured in a long term experiment that was set up to approximate conditions in the field as closely as possible. A set up allowing recognition of individual specimens enabled consistent documentation of chamber formation, which in combination with μ-CT-scanning after the investigation period permitted the assignment of growth steps to specific time periods. These data were used to fit various mathematical models to describe growth (exponential-, logistic-, generalized logistic-, Gompertz-function) and chamber building rate (Michaelis-Menten-, Bertalanffy- function) of Operculina complanata. The mathematically retrieved maximum lifespan and mean chamber building rate found in cultured Operculina complanata were further compared to first results obtained by the simultaneously conducted "natural laboratory approach". Even though these comparisons hint at a somewhat stunted growth and truncated life spans of Operculina complanata in culture, they represent a possibility to assess and improve the quality of further cultivation set ups, opening new prospects to a better understanding of the their theoretical niches.

  10. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    NASA Astrophysics Data System (ADS)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  11. A cylindrical drift chamber for radiative muon capture experiments at TRIUMF

    SciTech Connect

    Henderson, R.S.; Dawson, R.J.; Azuelos, G.; Robertson, B.C. ); Hasinoff, M.D.; Ahamad, S.; Gorringe, T.P. ); Serna-Angel, A.; Blecher, M.; Wright, D.H. )

    1990-06-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. Radiative muon capture (RMC), {mu}{sup {minus}}{ital Z} {r arrow} {nu}({ital Z}{minus}1){gamma}, is a process which is particularly sensitive to the induced pseudoscalar coupling constant, {ital g{sub p}}, which is still very poorly determined experimentally. Due to the extremely small branching ratio ({approximately} 6 {times} 10{sup {minus}8}), the elementary reaction {mu}{sup {minus}}{ital p} {r arrow} {nu}{ital n}{gamma} has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of {ital g{sub p}} with an error of 10%. The detection system is based on a large volume cylindrical drift chamber, in an axial magnetic field, acting as an e{sup +}e{sup {minus}} pair spectrometer with a solid angle of {approx equal} 2 {pi}. The design, construction and performance of the cylindrical drift chamber are discussed.

  12. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  13. Development of a Novel Contamination Resistant Ion Chamber for Process Tritium Measurement and Use in the JET First Trace Tritium Experiment

    SciTech Connect

    Worth, L.B.C.; Pearce, R.J.H.; Bruce, J.; Banks, J.; Scales, S.

    2005-07-15

    The accuracy of process measurements of tritium with conventional ion chambers is often affected by surface tritium contamination. The measurement of tritium in the exhaust of the JET torus is particularly difficult due to surface contamination with highly tritiated hydrocarbons. JET's first unsuccessful attempt to overcome the contamination problem was to use an ion chamber, with a heating element as the chamber wall so that it could be periodically decontaminated by baking. The newly developed ion chamber works on the principle of minimising the surface area within the boundary of the anode and cathode.This paper details the design of the ion chamber, which utilises a grid of 50-micron tungsten wire to define the ion chamber wall and the collector electrode. The effective surface area which, by contamination, is able to effect the measurement of tritium within the process gas has been reduced by a factor of {approx}200 over a conventional ion chamber. It is concluded that the new process ion chamber enables sensitive accurate tritium measurements free from contamination issues. It will be a powerful new tool for future tritium experiments both to improve tritium tracking and to help in the understanding of tritium retention issues.

  14. Study of the diffusion of an emulsion in the human skin by pulsed photoacoustic spectroscopy: experiment and numerical simulation

    NASA Astrophysics Data System (ADS)

    Benamar, N.; Lahjomri, F.; Chatri, E.; Leblanc, R. M.

    2004-12-01

    We previously used the Pulsed Photoacoustic Spectroscopy to quantify sunscreen chromophore diffusion into human skin, and suggested a methodology to evaluate the time and the depth diffusion profile into human skin. In the present study we present the results obtained for the diffusion of an emulsion in human skin, which is used in the sunscreen compositions. This study shows, for the first time, a particular behaviour due to a chemical reaction inside the skin during the diffusion process. This result brings a particularly interesting technique through the PPAS spectroscopy, to evaluate in situ, the eventual chemical reactions that can occur during drug diffusion into human skin. Numerical simulation allows us to understand the impact of thermal, optical and geometrical parameters on the photoacoustic signal and thus the physics of the diffusion phenomenon. The present simulation shows clearly that the tmax values corresponding to the maximum of the photoacoustic signal magnitude, Δ P max, decrease when the thickness, ell , of the sample decrease. Conclusions about possibilities and limitations of the considered model are discussed.

  15. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2014-05-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest α-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols such as ammonium sulfate, sodium chloride and sodium nitrate. The aim of this campaign was to investigate Henry's law constants for different seed aerosols. During the campaign filter samples were taken to investigate the amount of glyoxal in the particle phase. After filter extraction, the analyte was derivatized and measured using UHPLC

  16. Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Fuchs, Claudia; Järvinen, Emma; Ignatius, Karoliina; Florian Höppel, Niko; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Bjerring Kristensen, Thomas; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-03-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid-viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to tropical troposphere layer analysis.

  17. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  18. Investigation, comparison and design of chambers used in centrifugal partition chromatography on the basis of flow pattern and separation experiments.

    PubMed

    Schwienheer, C; Merz, J; Schembecker, G

    2015-04-17

    In centrifugal partition chromatography (CPC) the separation efficiency is mainly influenced by the hydrodynamic of mobile and stationary phase in the chambers. Thus, the hydrodynamic has to be investigated and understood in order to enhance a CPC separation run. Different chamber geometries have been developed in the past and the influence of several phase systems and CPC operating conditions were investigated for these chambers. However, a direct comparison between the different chamber types has not been performed yet. In order to investigate the direct influence of the chamber design on the hydrodynamic, several chamber designs - partially similar in geometry to commercial available designs - are investigated under standardized conditions in the present study. The results show the influence of geometrical aspects of the chamber design on the hydrodynamic and therewith, on the separation efficiency. As a conclusion of the present study, some ideas for an optimal chamber design for laboratory and industrial purpose are proposed.

  19. Comment to "The pharmacopeial evolution of Intralipid injectable emulsion in plastic containers: from a coarse to a fine emulsion".

    PubMed

    Ellborg, Anders; Ferreira, Denise; Mohammadnejad, Javad; Wärnheim, Torbjörn

    2010-06-15

    The droplet size distribution of 50 batches of multi-chamber bags containing the parenteral nutrition emulsions Intralipid (Kabiven and Kabiven Peripheral) or Structolipid (StructoKabiven and StructoKabiven Peripheral), respectively, has been investigated. The results show that the non-compounded lipid emulsions analysed are in compliance with the United States Pharmacopeia (USP) chapter 729, Method II limit for the droplet size distribution, PFAT(5)<0.05%.

  20. Stabilization/solidification of munition destruction waste by asphalt emulsion.

    PubMed

    Cervinkova, Marketa; Vondruska, Milan; Bednarik, Vratislav; Pazdera, Antonin

    2007-04-02

    Destruction of discarded military munitions in an explosion chamber produces two fractions of hazardous solid waste. The first one is scrap waste that remains in the chamber after explosion; the second one is fine dust waste, which is trapped on filters of gas products that are exhausted from the chamber after explosion. The technique of stabilization/solidification of the scrap waste by asphalt emulsion is described in this paper. The technique consists of simple mixing of the waste with anionic asphalt emulsion, or two-step mixing of the waste with cationic asphalt emulsion. These techniques are easy to use and the stabilized scrap waste proves low leachability of contained heavy metals assessed by TCLP test. Hence, it is possible to landfill the scrap waste stabilized by asphalt emulsion. If the dust waste, which has large specific surface, is stabilized by asphalt emulsion, it is not fully encapsulated; the results of the leaching tests do not meet the regulatory levels. However, the dust waste solidified by asphalt emulsion can be deposited into an asphalted disposal site of the landfill. The asphalt walls of the disposal site represent an efficient secondary barrier against pollutant release.

  1. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  2. Latest Developments in Nuclear Emulsion Technology

    NASA Astrophysics Data System (ADS)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  3. Oil emulsions of fluorosilicone fluids

    SciTech Connect

    Keil, J. W.

    1985-08-27

    Emulsions of fluorosilicone fluids in mineral oil are disclosed. These emulsions are stabilized by a polydimethylsiloxane-polybutadiene copolymer or a polydimethylsiloxane-hydrogenated polybutadiene copplymer. The emulsions are an effective foam suppressant for organic liquids, especially crude petroleum.

  4. C{sub 5}{sup A} axial form factor from bubble chamber experiments

    SciTech Connect

    Graczyk, K. M.; Sobczyk, J. T.; Kielczewska, D.; Przewlocki, P.

    2009-11-01

    A careful reanalysis of both Argonne National Laboratory and Brookhaven National Laboratory data for weak single pion production is done. We consider deuteron nuclear effects and normalization (flux) uncertainties in both experiments. We demonstrate that these two sets of data are in good agreement. For the dipole parametrization of C{sub 5}{sup A}(Q{sup 2}), we obtain C{sub 5}{sup A}(0)=1.19{+-}0.08, M{sub A}=0.94{+-}0.03 GeV. As an application we present the discussion of the uncertainty of the neutral current 1{pi}{sup 0} production cross section, important for the T2K neutrino oscillation experiment.

  5. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  6. The Accommodation Coefficient of Water Molecules on Ice: Results from Cirrus Cloud Experiments at the Aerosol Chamber AIDA

    NASA Astrophysics Data System (ADS)

    Skrotzki, J.; Connolly, P.; Niemand, M.; Saathoff, H.; Moehler, O.; Ebert, V.; Leisner, T.

    2010-12-01

    Cirrus clouds are pure ice clouds in the upper troposphere or lower stratosphere. One of the parameters governing the growth of ice crystals in these clouds is the accommodation coefficient of water molecules on ice. However, its magnitude is still uncertain to a large degree, since experimental results vary from below 0.01 up to unity depending on the design of the experiment and the examined ice growth process [1]. For the specific case of ice crystal growth in cirrus clouds, no previous experimental studies regarding the accommodation coefficient exist. Therefore, dedicated experiments were carried out at the cloud simulation chamber AIDA [2], examining the ice crystal growth for deposition nucleation in the temperature range from -75 °C to -40 °C. These experiments were evaluated with two different models, a simple one, which just incorporates kinetic and diffusive theory of ice crystal growth, and the more advanced and extended aerosol-cloud-precipitation interaction model (ACPIM) [3]. The outcome of these two models is compared to absolute in-situ humidity data measured within AIDA using extractive as well as open path diode laser hygrometers (TDLAS) [4]. For every experiment, this is done by varying the value of the accommodation coefficient within each model, in order to get best agreement with experimental data. The values obtained for the accommodation coefficient at different temperatures are presented and the overall uncertainties as well as the consistency between the two different models are discussed. [1] D. R. Heynes, N. J. Tro, and S. M. George, J. Phys. Chem. 1992, 96, 8502-8509 (1992) [2] O. Möhler et al., Atmos. Chem. Phys. 3, 211-223 (2003) [3] P. J. Connolly et al., Atmos. Chem. Phys. 9, 2805-2824 (2009) [4] D. W. Fahey et al., AquaVIT White Paper, avail. at https://aquavit.icg.kfa-juelich.de/AquaVit/AquaVitWiki

  7. Comparison of batch, stirred flow chamber, and column experiments to study adsorption, desorption and transport of carbofuran within two acidic soils.

    PubMed

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2012-06-01

    Different methods (batch, column and stirred flow chamber experiments) used for adsorption and desorption of carbofuran studies were compared. All tested methods showed that the carbofuran adsorption was higher in the soil with the higher organic matter content, whereas the opposite behaviour was observed for the percentage of carbofuran desorbed. However, different methods have revealed some discrepancies in carbofuran adsorption/desorption kinetics. Although batch method showed interesting data on equilibrium experiments, such as a low heterogeneity for the carbofuran adsorption sites independent of soil organic matter content, it had some disadvantages for carbofuran adsorption/desorption kinetic studies. The disadvantages were related with the excessive limitations of this method on kinetics, i.e., no difference could be detected between different soils. However, with column and stirred flow chamber methods the carbofuran adsorption/desorption kinetics of different soils could be compared. Moreover, the absolute values of carbofuran adsorption/desorption and its rate were higher in the stirred flow chamber than in the batch and column experiments. Using stirred flow chamber experiments the carbofuran desorption was significantly faster than its adsorption, whereas carbofuran using column experiments they were similar. These discrepancies should be considered when the results obtained only with one method is discussed.

  8. Study of timing response and charge spectra of glass based Resistive Plate Chamber detectors for INO-ICAL experiment

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Kumar, A.; Naimuddin, Md.

    2017-03-01

    Resistive Plate chambers (RPCs) are robust and affordable gaseous detectors that combine low cost with excellent timing, good spatial resolution and fast response to the incoming particles. The India Based Neutrino Observatory is an approved project aimed at building a magnetised Iron Calorimeter (ICAL) detector to study Neutrino physics and related issues. The ICAL experiment will utilize about 29000 RPC's as active detector elements, sandwiched between alternate plates of thick iron. The RPC detectors will be used to detect muons produced from the atmospheric neutrinos interaction with an iron target. The spatial information of the muons will be extracted from the two dimensional readout and the hit position in the respective layers. The up going and down going directionality will be obtained using the time stamp of hits in the active detectors. The charge induced by the particle and its behaviour with respect to the applied voltage play a significant role in designing the readout electronics for the detector. In this paper, we present the timing and charge measurement of single gap glass based RPC detectors. We will also report about studies on the dependence of the timing and charge response of these RPC detectors as a function of the gas composition.

  9. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  10. WIMP tracking with cryogenic nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Naka, T.; Furuya, S.; Asada, T.; Katsuragawa, T.; Yoshimoto, M.; Umemoto, A.; Machii, S.; Ichiki, H.; Sato, O.; Hoshino, Y.

    2017-02-01

    Directional dark matter search experiments enable us to reveal the presence of Weakly Interacting Massive Particles. A promising detector for a directional measurement is a fine-grained nuclear emulsion consisting of fine crystals of silver bromide with 20 nm or 40 nm size. A critical task for the success of the experiment is to remove background tracks of electrons coming from stopping beta rays of 14C decays in the nuclear emulsion. An electron rejection power of at least 10-10 is needed in order to start a 10 kg experiment. We present a novel cryogenic approach to reject the electron background that makes use of the phonon effect in nuclear emulsion. For the proof of principle, we have been investigating the sensitivity of fine-grained nuclear emulsions as a function of temperature by exposing to gamma rays and ion beams with an ion implant system in the range of 77-300 K. Results of gamma ray exposure indicate that the electron rejection power is estimated to be better than 3 ×10-9 at 77 K. Results of ion exposure imply that fine-grained nuclear emulsion is sensitive to ions which are light and heavy and ion tracks' angle can be measured.

  11. Emulsion/Surface Interactions from Quiescent Quartz Crystal Microbalance Measurements with an Inverted Sensor.

    PubMed

    Mafi, Roozbeh; Pelton, Robert H

    2015-07-07

    Interactions of three oil-in-water emulsion types with polystyrene-coated quartz crystal microbalance (QCM) sensor surfaces were probed with the QCM cell in both the conventional orientation (i.e., polystyrene surface on the bottom, "looking up") and the inverted orientation (polystyrene on top interior surface of sensor chamber, "looking down"). With the conventionally oriented QCM sensors, the adsorption of soluble and/or dispersed species quickly gave steady-state frequency and dissipation outputs. By contrast, the inverted sensors gave changing responses at long times because of the gravity driven buildup of a viscous consolidation layer next to but not necessarily bound to the sensor surface. Three emulsion types (a simple hexadecane/phosphatidylcholine emulsion, 2% homogenized milk, and a diluted commercial ophthalmic emulsion) displayed a wide range of behaviors. We propose that quiescent QCM measurement made with an inverted sample chamber is a new approach to probing emulsion behaviors near solid surfaces.

  12. Detonation Characteristics of Mixtures of HMX and Emulsion Explosives

    DTIC Science & Technology

    1989-04-01

    approximately 20 percent HM to an emulsion explosive results in a substantial increase in initiation sensitivity . This observation is based on the premise of an...inverse relationship between failure diameter and initiation sensitivity for the HYX’ emulsion explosive system. I ii UNCLASSIFIED IIUWAOTV...for height-of-burst experiments. The issues of safety, thermal stability, initiation sensitivity , detonation performance, mechanical properties

  13. [Proposal of a cloud chamber experiment using diagnostic X-ray apparatus and an analysis assisted by a simulation code].

    PubMed

    Hayashi, Hiroaki; Hanamitsu, Hiroki; Nishihara, Sadamitsu; Ueno, Junji; Miyoshi, Hirokazu

    2013-04-01

    A cloud chamber is a radiation detector that can visualize the tracks of charged particles. In this study, we developed a middle-type cloud chamber for use in practical training using a diagnostic X-ray apparatus. Because our cloud chamber has a heater to vaporize ethanol and features antifogging glass, it is possible to observe the vapor trails for a long time without the need for fine adjustments. X-rays with a tube voltage of 40 kV or of 120 kV (with a 21-mm aluminum filter) were irradiated at the chamber and the various phenomena were observed. We explain these phenomena in terms of the range of electrons and/or interactions between X-rays and matter and conclude that our analysis is consistent with analysis using the Monte Carlo simulation code EGS5.

  14. Bromine Explosions In Smog Chamber Experiments: A comparison of Cavity-Enhanced (CE) and White-cell DOAS

    NASA Astrophysics Data System (ADS)

    Buxmann, J.; Hoch, D. J.; Sihler, H.; Pöhler, D.; Platt, U.; Bleicher, S.; Balzer, N.; Zetzsch, C.

    2011-12-01

    Reactive halogen species (RHS), such as Cl, Br or BrO, can significantly influence chemical processes in the troposphere, including the destruction of ozone, change in the chemical balance of hydrogen radicals (OH, HO2), increased deposition of toxic compounds (like mercury) with potential consequences for the global climate. Previous studies have shown that salt lakes can be significant sources for gaseous RHS. Environmental conditions such as salt composition, relative humidity (RH), pH, and temperature (T) can strongly influence reactive bromine levels, but are difficult to quantify in the field. Therefore, we conducted laboratory experiments by exposing NaCl salt containing 0.33% (by weight) NaBr to simulated sunlight in a Teflon smog-chamber under various conditions of RH and ozone concentrations. BrO levels were observed by a Differential-Optical-Absorption-Spectrometer (DOAS) in combination with a multi-reflection cell (White-cell). The concentrations of OH- and Cl- radicals were quantified by the radical clock method. We present the first direct observation of BrO from the "Bromine Explosion" (auto catalytic release of reactive bromine from salt surfaces - key to ozone destruction) in the laboratory above a simulated salt pan. The maximum BrO mixing ratio of 6419±71 ppt at 60% RH was observed to be one order of magnitude higher than at 37% RH and 2% RH. The release of RHS from the salt pan is possibly controlled by the thickness of the quasi liquid layer, covering the reactive surface of the halide crystals, as the layer thickness strongly depends on RH. Furthermore, a new cavity enhanced DOAS (CE-DOAS) instrument was designed and successfully used in chamber experiments. For the first time, such an instrument uses a spectral interval in the UV - wavelength range (325-365 nm) to identify BrO. We show a comparison of the CE-DOAS and White-cell DOAS instrument in a series of experiments, where e.g. a peak BrO mixing ratio up to 380 ppt within the first

  15. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  16. SAFETY AND UTILITY OF I.V. FAT EMULSION FOR HUMAN INTRAVENOUS ADMINISTRATION.

    DTIC Science & Technology

    The initial clinical experiences of our group with a European fat emulsion called Intralipid is reported. This emulsion is composed of soy bean oil...failed to show correlation between febrile response and rapidity with which clearing of the emulsion occurred. It is concluded that Intralipid is not a safe or suitable product for routine clinical use. (Author)

  17. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  18. Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Chuang, Wayne; Hildebrandt Ruiz, Lea; Ng, Nga L; Wang, Yangjun; Hao, Jiming

    2015-02-17

    We evaluate the one-dimensional volatility basis set (1D-VBS) and two-dimensional volatility basis set (2D-VBS) in simulating the aging of SOA derived from toluene and α-pinene against smog-chamber experiments. If we simulate the first-generation products with empirical chamber fits and the subsequent aging chemistry with a 1D-VBS or a 2D-VBS, the models mostly overestimate the SOA concentrations in the toluene oxidation experiments. This is because the empirical chamber fits include both first-generation oxidation and aging; simulating aging in addition to this results in double counting of the initial aging effects. If the first-generation oxidation is treated explicitly, the base-case 2D-VBS underestimates the SOA concentrations and O:C increase of the toluene oxidation experiments; it generally underestimates the SOA concentrations and overestimates the O:C increase of the α-pinene experiments. With the first-generation oxidation treated explicitly, we could modify the 2D-VBS configuration individually for toluene and α-pinene to achieve good model-measurement agreement. However, we are unable to simulate the oxidation of both toluene and α-pinene with the same 2D-VBS configuration. We suggest that future models should implement parallel layers for anthropogenic (aromatic) and biogenic precursors, and that more modeling studies and laboratory research be done to optimize the "best-guess" parameters for each layer.

  19. An ultra-high vacuum chamber for scattering experiments featuring in-vacuum continuous in-plane variation of the angle between entrance and exit vacuum ports

    NASA Astrophysics Data System (ADS)

    Englund, Carl-Johan; Agâker, Marcus; Fredriksson, Pierre; Olsson, Anders; Johansson, Niklas; Rubensson, Jan-Erik; Nordgren, Joseph

    2015-09-01

    A concept that enables in-vacuum continuous variation of the angle between two ports in one plane has been developed and implemented. The vacuum chamber allows for measuring scattering cross sections as a function of scattering angle and is intended for resonant inelastic X-ray scattering experiments. The angle between the ports can be varied in the range of 30°-150°, while the pressure change is less than 2 × 10-10 mbars.

  20. An ultra-high vacuum chamber for scattering experiments featuring in-vacuum continuous in-plane variation of the angle between entrance and exit vacuum ports

    SciTech Connect

    Englund, Carl-Johan; Agåker, Marcus Fredriksson, Pierre; Olsson, Anders; Johansson, Niklas; Rubensson, Jan-Erik; Nordgren, Joseph

    2015-09-15

    A concept that enables in-vacuum continuous variation of the angle between two ports in one plane has been developed and implemented. The vacuum chamber allows for measuring scattering cross sections as a function of scattering angle and is intended for resonant inelastic X-ray scattering experiments. The angle between the ports can be varied in the range of 30°-150°, while the pressure change is less than 2 × 10{sup −10} mbars.

  1. How does oil type determine emulsion characteristics in concentrated Na-caseinate emulsions?

    PubMed

    Tan, Hui Lin; McGrath, Kathryn M

    2013-08-01

    Macroscopic properties and ensemble average diffusion of concentrated (dispersed phase 50-60 wt%) Na-caseinate-stabilised emulsions for three different oils (soybean oil, palm olein and tetradecane) were explored. On a volume fraction basis, pulsed gradient stimulated echo (PGSTE)-NMR data show that droplet dynamics for all three systems are similar within a region of the emulsion morphology diagram. The exact limits of the emulsion space depend however on which oil is considered. The reduced solubility of tetradecane in water, and Na-caseinate in tetradecane, result in the stabilisation of flocs during formulation. Floc formation is not observed when soybean oil or palm olein is used under identical emulsion formulation conditions. Linear rheology experiments provide indirect evidence that the local structure and the properties of the thin film interfacial domain of tetradecane emulsions vary from those of soybean oil and palm olein emulsions. Collectively these data indicate that protein/oil interactions within a system dominate over specific oil droplet structure and size distribution, which are similar in the three systems.

  2. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  3. Linear oil displacement by the emulsion entrapment process. [Dissertation

    SciTech Connect

    Schmidt, D.P.

    1982-01-01

    Lack of mobility control is one of the major impediments to successful enhanced oil recovery, especially for high viscosity oils. This work presents experimental and theoretical results for linear secondary oil displacements using dilute, stable suspensions of oil drops. The major hypothesis is that emulsions provide mobility control through entrapment or local permeability reduction, not through viscosity ratio improvement. In order to describe the displacement process, previous emulsion filtration theory is extended to longer cores and to two-phase flow. Quantitative agreement between theory and experiment is satisfactory for continuous secondary oil displacement with various drop-size emulsions in unconsolidated sand packs of permeabilities ranging from 0.7 ..mu..m/sup 2/ to 3.3 ..mu..m/sup 2/. Linear emulsion floods are shown to be most effective when the mean drop-size to pore-size ratio is in the region between straining and interception at the emulsion shock. Floods are more effective when the emulsion concentration is high which minimizes retention lag. Additionally, a parallel flooding apparatus is utilized to determine qualitatively the macroscopic benefits of emulsion mobility control. Direct analogies are established between augmented oil recovery with dilute emulsions and with entrapping polymers.

  4. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  5. Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds

    DOE PAGES

    Nguyen, T. B.; Crounse, J. D.; Schwantes, R. H.; ...

    2014-12-19

    The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT is the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech.more » During the 4 week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly controlled and atmospherically relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. This work provides context for forthcoming publications affiliated with the FIXCIT campaign. Insights from FIXCIT are anticipated to aid significantly in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models.« less

  6. Increased bioavailability of a transdermal application of a nano-sized emulsion preparation.

    PubMed

    Kotyla, T; Kuo, F; Moolchandani, V; Wilson, T; Nicolosi, R

    2008-01-22

    The aim of this study was to compare the transdermal application of a nano-sized emulsion versus a micron-sized emulsion preparation of delta tocopherol as it relates to particle size and bioavailability. Two separate experiments were performed using seven F1B Syrian Golden hamsters, 1 week apart. Each emulsion preparation consisted of canola oil, polysorbate 80, deionized water and delta tocopherol; the only difference between the two preparations was processing the nano-sized emulsion with the Microfluidizer Processor. Both were formulated into a cream and applied to the shaven dorsal area. The particle size of the micron-sized emulsion preparation was 2788 nm compared to 65 nm for the nano-sized emulsion formulation. Two hours post-application, hamsters that were applied the nano-sized emulsion had a 36-fold significant increase of plasma delta tocopherol, where as hamsters that were applied the micron-sized emulsion only had a 9-fold significant increase, compared to baseline, respectively. At 3h post-application, plasma delta tocopherol had significantly increased 68-fold for hamsters applied the nano-sized emulsion, whereas only an 11-fold significant increase was observed in hamsters applied the micron-sized emulsion, compared to baseline, respectively. Significant differences were also observed between the nano-sized and micron-sized emulsion at 2 and 3h post-application. This study suggests that nano-sized emulsions significantly increase the bioavailability of transdermally applied delta tocopherol.

  7. Automated microbial metabolism laboratory. [design of advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into test chambers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and rationale of an advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into each of four test chambers are outlined. The feasibility for multiple addition tests was established and various details of the methodology were studied. The four chamber battery of tests include: (1) determination of the effect of various atmospheric gases and selection of that gas which produces an optimum response; (2) determination of the effect of incubation temperature and selection of the optimum temperature for performing Martian biochemical tests; (3) sterile soil is dosed with a battery of C-14 labeled substrates and subjected to experimental temperature range; and (4) determination of the possible inhibitory effects of water on Martian organisms is performed initially by dosing with 0.01 ml and 0.5 ml of medium, respectively. A series of specifically labeled substrates are then added to obtain patterns in metabolic 14CO2 (C-14)O2 evolution.

  8. Outdoor smog chamber experiments: reactivity of methanol exhaust. Part 2. Quality assurance and data processing system description

    SciTech Connect

    Jeffries, H.E.; Sexton, K.G.; Kamens, R.M.; Holleman, M.S.

    1985-09-01

    The report describes the Quality Assurance and Data Processing procedures and systems used at the UNC Outdoor Smog Chamber Facility. The primary product of research conducted at this facility is information in the form of measurements of reactants and products in photochemical systems and measurements of the critical parameters that influence the chemical transformations system. Generating useful data begins with understanding the goals of the project and the special needs and concerns of conducting a successful smog-chamber operation. The system components are designed to collect, transfer, process, and report accurate, high-resolution data without loss or distortion. The system components in the Quality Assurance and Data Processing system are: people, hardware, software, checklists, and data bases. Quality-assurance checks are made at every level of the program. Pressurized gas-tank and liquid mixtures were used to establish experimental conditions of HC assuring consistency throughout the program. Several NBS traceable standards and liquid injections into the chamber used for calibration have been intercompared and show good agreement.

  9. Effects of silicone emulsifiers on in vitro skin permeation of sunscreens from cosmetic emulsions.

    PubMed

    Montenegro, Lucia; Paolino, Donatella; Puglisi, Giovanni

    2004-01-01

    The effects of different silicone emulsifiers on the in vitro permeation through human skin of two sunscreens (octylmethoxycinnamate, OMC, and butylmethoxydibenzoylmethane, BMBM) were investigated from cosmetic emulsions. The formulations being tested were prepared using the same oil and aqueous phase ingredients and the following silicone emulsifiers: dimethicone copolyol and cyclomethicone (emulsion 1), cetyldimethicone copolyol (emulsion 2), polyglyceryl-4-isostearate and cetyldimethicone copolyol and hexyllaurate (emulsion 3), lauryldimethicone copolyol (emulsion 4), and cyclomethicone and dimethicone copolyol (emulsion 5). The cumulative amount of OMC that permeated in vitro through human skin after 22 h from emulsions 1-5 decreased in the order 2 approximate, equals 1 > 5 > 4 approximate, equals 3 and was about twofold higher from emulsion 2 compared to emulsion 4. As for BMBM, no significant difference was observed in regard to its skin permeation from the emulsions being tested. In vitro release experiments of OMC and BMBM from emulsions 1-5 were performed through cellulose acetate membranes using Franz diffusion cells. Emulsions 1-3 showed an initial slow release of BMBM followed by a fast release phase, while the release of OMC showed a different pattern since the sunscreen was released very rapidly at the beginning of the experiment and then a plateau was observed followed by a second step of fast release. A pseudo-first-order release rate was observed only for BMBM from emulsion 4, while emulsion 5 released very small amounts of both sunscreens during 22 h. These findings could be attributed both to changes in sunscreen thermodynamic activity in the vehicle and to modified interactions between the active ingredient and the formulation components. The results of this study suggest that the type of silicone emulsifier used to prepare sunscreen emulsions should be carefully chosen in order to prevent the percutaneous absorption of sunscreens from these

  10. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  11. Automated Track Recognition and Event Reconstruction in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Deines-Jones, P.; Cherry, M. L.; Dabrowska, A.; Holynski, R.; Jones, W. V.; Kolganova, E. D.; Kudzia, D.; Nilsen, B. S.; Olszewski, A.; Pozharova, E. A.; Sengupta, K.; Szarska, M.; Trzupek, A.; Waddington, C, J.; Wefel, J. P.; Wilczynska, B.; Wilczynski, H.; Wolter, W.; Wosiek, B.; Wozniak, K.

    1998-01-01

    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject back- ground and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities approx. 1100) produced by the 158 GeV/c per nucleon Pb-208 beam at CERN. Automatically reconstructed track lists agree with our best manual measurements to 3%. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties.

  12. Transport and Retention of Emulsion Droplets in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Esahani, S. G.; Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Emulsions are commonly used as amendments during remediation; yet, the processes controlling the distribution of droplets within the subsurface are not well understood. Given that inadequate spatial and/or temporal delivery of amendments often leads to ineffective treatment, there is a need to better understand emulsion transport. Experiments were conducted to evaluate the transport and retention of emulsion droplets in columns containing Ottawa sands. Breakthrough curves and deposition profiles from these experiments were interrogated using a mathematical model capable of describing attachment, detachment, and straining to begin to elucidate the physical processes controlling delivery. Emulsions were constructed by stabilizing soybean oil droplets within a continuous aqueous phase. Physical properties of the resulting oil-in-water emulsions were favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet d50). Emulsions were introduced to the columns for approximately two pore volumes and followed by an extended flush of background solution. Effluent droplet size distributions did not vary significantly over the course of the experiment and remained similar to those measured for the influent emulsion. Emulsion breakthrough curves exhibited tailing, and deposition profiles were found to be hyper-exponential and unaffected by extended periods of background flow. Depending on emulsion composition and flow characteristics, 10-30% of the injected emulsion was retained on the sand suggesting a non-negligible influence on accessible porosity over the course of the experiment. Experimental results were further interpreted using a droplet transport model that accounts for temporal and spatial variation in porosity due to the retention of the emulsion droplets. At present the model assumes a uniform size distribution of inelastic emulsion droplets which are transported by advection and dispersion, and exchanged with the solid

  13. On a possibility of inelasticity partial coefficient K sub gamma determination in pi C and pi Pb interactions at 10 to the 14th power eV (experiment PAMIR 1)

    NASA Technical Reports Server (NTRS)

    Borisov, A. S.; Cherdyntseva, K. V.; Guseva, Z. M.; Denisova, V. G.; Dunaevsky, A. M.; Kanevskaya, E. A.; Maximenko, V. M.; Nam, R. A.; Pashkov, S. V.; Puchkov, V. S.

    1985-01-01

    The investigation of hadron-nuclear interactions in Pamir experiment is carried out by means of X-ray emulsion chambers of two types: carbon (C) and lead (Pb). While comparing the results from the chambers of both types it was found a discrepancy in n sub h and E sub h(1)R values. The observed discrepancy in C and Pb chambers is connected with the difference in values of effective coefficients of energy transfer to the soft component K sub eff for C and Pb chambers.

  14. Preparation and stabilization of D-limonene Pickering emulsions by cellulose nanocrystals.

    PubMed

    Wen, Chunxia; Yuan, Qipeng; Liang, Hao; Vriesekoop, Frank

    2014-11-04

    The aim of this study was to investigate D-limonene Pickering emulsion stabilized by cellulose nanocrystals (CNCs) and factors that may affect its properties. CNCs were prepared by ammonium persulfate hydrolysis of corncob cellulose, and D-limonene Pickering emulsions were generated by ultrasonic homogenizing method. The morphology and size of the prepared emulsions with different CNCs concentrations were studied by optical microscopy and laser light diffraction. In addition, factors that may affect the stability of emulsions such as ionic concentration, pH and temperature were also studied. As indicated by the experiment data, when temperature rose, the stability to of emulsions would be increased, and the stability of emulsions was reduced with low pH or high salt concentration due to electrostatic screening of the negatively charged CNC particles. In conclusion, high stability of D-limonene Pickering emulsions could be obtained by CNCs.

  15. Holographic DESA emulsions

    NASA Astrophysics Data System (ADS)

    Duenkel, Lothar; Eichler, Juergen; Schneeweiss, Claudia; Ackermann, Gerhard

    2005-04-01

    The DESA material is an ultra-fine grained silver bromide emulsion referring to the name of its four inventors (D)uenkel, (E)ichler, (S)chneeweiss, (A)ckermann of the University of Applied Sciences in Berlin, Germany. The thickness of the dried layer is between 5 and 7.5 μm, and the mean grain size is by about 15 nm, as determined by TEM. During manufacturing, emulsion precipitation and coating are separated strictly from spectral and chemical sensitization. Thus, a high performance could be obtained. Resolution is estimated higher than 8000 lp/mm. Sensitivity amounts to 80 up to 120 μJoules/cm2 for maximum diffraction efficiency by recording Denisyuk white-light reflection holograms at 632,8 nm (HeNe laser). The paper provides an insight into fundamentals of the ultra-fine grained silver halide technology together with new challenges for further developments under theoretical and practical aspects.

  16. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  17. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  18. Target Chamber Manipulator

    NASA Astrophysics Data System (ADS)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  19. Showing Emulsion Properties with Common Dairy Foods

    NASA Astrophysics Data System (ADS)

    Bravo-Diaz, Carlos; Gonzalez-Romero, Elisa

    1996-09-01

    Foods are mixtures of different chemical compounds, and the quality we sense (taste, texture, color, etc.) are all manifestations of its chemical properties. Some of them can be visualized with the aid of simple, safe and inexpensive experiments using dairy products that can be found in any kitchen and using almost exclusively kitchen utensils. In this paper we propose some of them related with food emulsions. Food emulsions cover an extremely wide area of daily-life applications such as milk, sauces, dressings and beverages. Experimentation with some culinary recipes to prepare them and the analyisis of the observed results is close to ideal subject for the introduction of chemical principles, allowing to discuss about the nature and composition of foods, the effects of additives, etc. At the same time it allows to get insights into the scientific reasons that underlie on the recipes (something that it is not usually found in most cookbooks). For example, when making an emulsion like mayonnaise, why the egg yolks and water are the first materials in the bowl , and the oil is added to them rather than in the other way around? How you can "rescue" separate emulsions (mayonnaise)? Which parameters affect emulsion stability? Since safety, in its broad sense, is the first requisite for any food, concerns about food exist throughout the world and the more we are aware of our everyday life, the more likely we will be to deal productively with the consequences. On the other hand, understanding what foods are and how cooking works destroys no delightful mystery of the art of cuisine, instead the mystery expands.

  20. Development of Hyperon Time-Projection-Chamber (HypTPC) for the H-Dibaryon Search Experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Hwang, Sanghoon; Imai, Kenichi; Ahn, Jung Keun

    We the E42 collaboration proposed to search for the H-dibaryon in ΛΛ production from (K-, K-) reaction off nuclei by using a high-intensity K- beam at J-PARC with 100 times better statistics than KEK-E224 and E552 experiments. Our proposed experiment will be designed to confirm if the enhancement is due to the H-dibaryon as a ΛΛ resonance or a virtual bound state or ΛΛ final state interaction. We plan to construct a large-acceptance hyperon spectrometer with a Time-Projection-Chamber (HypTPC) to detector ΛΛ particles, simultaneously K+ particle is measured by the KURAMA spectrometer. We expect to collect 11000 ΛΛ events with a mass resolution of 1.0 MeV/c2 near the ΛΛ threshold. The sensitivity of the detector shows two orders of magitude improvement from the present limit.

  1. Release of Reactive Halogen Species from Sea-Salt Aerosols under Tropospheric Conditions with/without the Influence of Organic Matter in Smog-Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Balzer, N.; Behnke, W.; Bleicher, S.; Krueger, H.; Ofner, J.; Siekmann, F.; Zetzsch, C.

    2008-12-01

    Experiments to investigate the release of reactive halogen species from sea-salt aerosol and the influence of organic matter were performed in an aerosol smog-chamber (3500 l), made of Teflon film (FEP 200A, Dupont). Smog chamber facilities at lowered temperature (coolable down to -25°C) enable us to simulate these reactions under polar, tropospheric conditions. First experiments were performed to investigate the production of atomic Br and Cl without the impact of organic aerosol. Br and Cl play an important role in atmospheric ozone depletion, particularly regarding ozone depletion events (bromine explosion) during polar spring. In these studies, the aerosol was generated by atomizing salt solutions containing the typical Br/Cl ratio of 1/660 in seawater by an ultrasonic nebulizer and increasing the Br content up to sixfold. To ensure the aqueous surface of the aerosol, the experiments were performed at relative humidities above 76%. We determined the atomic Cl and OH-radical concentrations from the simultaneous consumption of four reference hydrocarbons. The Br-radical concentration was calculated on the basis of ozone depletion. Organic aerosol may take part in these reaction cycles by halogenation and production of volatile organic halogens. Further experiments are planned to add organic aerosol for mechanistic and kinetic studies on the influence of secondary organic aerosols (SOA) and humic-like substances (HULIS) on bromine explosion. The formation of the secondary organic aerosol and the determination of possible halogenated gaseous and solid organic products will be studied using longpath-FTIR, DRIFTS, ATR-FTIR, GC-FID, GC-ECD, GC-MS, TPD-MS and DMA-CNC.

  2. Cyclodextrin stabilised emulsions and cyclodextrinosomes.

    PubMed

    Mathapa, Baghali G; Paunov, Vesselin N

    2013-11-07

    We report the preparation of o/w emulsions stabilised by microcrystals of cyclodextrin-oil inclusion complexes. The inclusion complexes are formed by threading cyclodextrins from the aqueous phase on n-tetradecane or silicone oil molecules from the emulsion drop surface which grow further into microrods and microplatelets depending on the type of cyclodextrin (CD) used. These microcrystals remain attached on the surface of the emulsion drops and form densely packed layers which resemble Pickering emulsions. The novelty of this emulsion stabilisation mechanism is that molecularly dissolved cyclodextrin from the continuous aqueous phase is assembled into colloid particles directly onto the emulsion drop surface, i.e. molecular adsorption leads to effective Pickering stabilisation. The β-CD stabilised tetradecane-in-water emulsions were so stable that we used this system as a template for preparation of cyclodextrinosomes. These structures were produced solely through formation of cyclodextrin-oil inclusion complexes and their assembly into a crystalline phase on the drop surface retained its stability after the removal of the core oil. The structures of CD-stabilised tetradecane-in-water emulsions were characterised using optical microscopy, fluorescence microscopy, cross-polarised light microscopy and WETSEM while the cyclodextrinosomes were characterised by SEM. We also report the preparation of CD-stabilised emulsions with a range of other oils, including tricaprylin, silicone oil, isopropyl myristate and sunflower oil. We studied the effect of the salt concentration in the aqueous phase, the type of CD and the oil volume fraction on the type of emulsion formed. The CD-stabilised emulsions can be applied in a range of surfactant-free formulations with possible applications in cosmetics, home and personal care. Cyclodextrinosomes could find applications in pharmaceutical formulations as microencapsulation and drug delivery vehicles.

  3. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.

    PubMed

    Hänninen, Heikki; Slaney, Michelle; Linder, Sune

    2007-02-01

    Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.

  4. Genesis of emulsion texture due to magma mixing: a case study from Chotanagpur Granite Gneiss Complex of Eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2016-04-01

    The emulsion texture is a rare magma mixing feature in which rounded bodies of one magmatic phase remain dispersed in the other coherent phase (Freundt and Schmincke, 1992). This type of special texture in hybrid rocks can significantly contribute toward understanding the mechanisms facilitating magma mixing and magma chamber dynamics involving two disparate magmas as the exact processes by which mixing occurs still remain unclear. Recent developments in microfluidics have greatly helped us to understand the complex processes governing magma mixing occurring at micro-level. Presented work uses some of the results obtained from microfluidic experiments with a view to understand the formation mechanism of emulsions preserved in the hybrid rocks of the Ghansura Rhyolite Dome (GRD) of Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), Eastern India. The GRD has preserved hybrid rocks displaying emulsion texture that formed due to the interaction of a phenocryst-rich basaltic magma and host rhyolite magma. The emulsions are more or less spherical in shape and dominantly composed of amphibole having biotite rinds set in a matrix of biotite, plagioclase, K-feldspar and quartz. Amphibole compositions were determined from the core of the emulsions to the rim with a view to check for cationic substitutions. The amphibole constituting the emulsions is actinolite in composition, and commonly shows tschermakite (Ts) and pargasite (Prg) substitutions. From petrographical and mineral-chemical analyses we infer that when mafic magma, containing phenocrysts of augite, came in contact with felsic magma, diffusion of cations like H+, Al3+and others occurred from the felsic to the mafic system. These cations reacted with the clinopyroxene phenocrysts in the mafic magma to form amphibole (actinolite) crystals. The formation of amphibole crystals in the mafic system greatly increased the viscosity of the system allowing the amphibole crystals to venture into the adjacent felsic

  5. Improving the detection efficiency in nuclear emulsion trackers

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Bozza, C.; Buonaura, A.; Consiglio, L.; D`Ambrosio, N.; Lellis, G. De; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Fini, R. A.; Galati, G.; Giacomelli, G.; Grella, G.; Hosseini, B.; Kose, U.; Lauria, A.; Longhin, A.; Mandrioli, G.; Mauri, N.; Medinaceli, E.; Montesi, M. C.; Paoloni, A.; Pastore, A.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Rescigno, R.; Roda, M.; Rosa, G.; Schembri, A.; Shchedrina, T.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stellacci, S. M.; Tenti, M.; Tioukov, V.

    2015-03-01

    Nuclear emulsion films are a tracking device with unique space resolution. Their use in nowadays large-scale experiments relies on the availability of automated microscope operating at very high speed. In this paper we describe the features and the latest improvements of the European Scanning System, a last-generation automated microscope for emulsion scanning. In particular, we present a new method for the recovery of tracking inefficiencies. Stacks of double coated emulsion films have been exposed to a 10 GeV/c pion beam. Efficiencies as high as 98% have been achieved for minimum ionising particle tracks perpendicular to the emulsion films and of 93% for tracks with tan(θ) ≃ 0.8.

  6. Cardiac chambers perforation by pacemaker and cardioverter-defibrillator leads. Own experience in diagnosis, treatment and preventive methods.

    PubMed

    Maziarz, Andrzej; Ząbek, Andrzej; Małecka, Barbara; Kutarski, Andrzej; Lelakowski, Jacek

    2012-01-01

    Cardiac chamber perforation is an uncommon, but potentially dangerous, complication of implantation of a pacemaker (PM) or a cardioverter-defibrillator (ICD). Different clinical presentations are related to the time between implantation and perforation, localisation of the perforation and concomitant lesions in neighbouring organs. Diagnosis is based on concomitant analysis of the clinical picture, ECG tracings, PM or ICD function check-up with a programmer, and review of echocardiographic, X-ray and computed tomography pictures. We analysed seven cases of perforation. Perforating leads were removed in all cases and a new pacing system was implanted in five cases. Choice of operative technique (unscrewing and direct traction from device pocket, Cook system or surgical procedure with pericardial drainage) depended on the time elapsing between implantation and perforation, the presence of lesions of other organs, and the amount of fluid in the pericardial sac. Avoiding unsafe localisation of a pacing electrode in the apex and free wall of the right ventricle and in the free anterolateral wall of the right atrium, and avoiding leaving an extra length of pacing lead under tension and overscrewing of the lead helix seem to be the best ways of prevention.

  7. Performance of Current-Mode Ion Chambers as Beam Monitors in a Pulsed Cold Neutron Beam for the NPDGamma experiment

    NASA Astrophysics Data System (ADS)

    Gillis, R. Chad

    2006-10-01

    The NPDGamma collaboration has built and commissioned an apparatus to measure the parity-violating gamma asymmetry A in the low energy np capture process n+p->d+ γ. The asymmetry in question is a 10-8 correlation between the spin of the incident (polarized) neutron and the outgoing 2.2 MeV gamma ray. A set of purpose-built, 3He-filled ionization chambers read out in current mode is used to monitor the incident neutron flux, the beam polarization, and the transmission of the liquid para-hydrogen target during the NPDGamma measurements. As will be described in the talk, these beam monitors are simple, reliable, low-noise detectors that have performed excellently for NPDGamma. We have verified that the beam monitor signals can be interpreted to reproduce the known time-of-flight dependence of beam flux from the LANSCE pulsed cold neutron source, and that the neutron beam polarization can be measured at the 2% level from direct measurements of the transmission of the beam through the beam polarizer.

  8. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  9. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  10. SU-E-T-150: Brachytherapy QA Employing a High Resolution Liquid Filled Ionisation Chamber Array: Initial Experience and Limitations

    SciTech Connect

    Gainey, M; Kollefrath, M; Bruggmoser, G

    2015-06-15

    Purpose: Verifying a complex 3D brachytherapy dose distribution by measurement is non-trivial. Ideally a photon detector array should be independent of energy and angle, have high spatial resolution and be robust for routine clinical use. Methods: An iridium-192 source was used. A PMMA jig was constructed comprising an outer slab and a central insert with eight milled channels for 1.33mm (outer diameter) steel needles, see figure. All calculations were performed using an empty CT study reconstructing eight virtual needles (QA-CT), using the v2 source model (Elekta AG, Sweden). A high resolution liquid filled ionisation chamber array SRS1000, together with Verisoft software v6.0 (PTW Freiburg, Germany), was used to perform measurements of plans of increasing complexity to evaluate its suitability for device- and patient-specific QA. The dimension of backscatter material was investigated. The patient plan dwell time distribution was entered manually into the QA-CT and the dose distribution was calculated. Results: Our measurements indicate that the array is independent of energy and angle. The resulting measured dose values are linearly interpolated to 2025 values. Shifts of 1mm of the entire needle are readily detectable. Individual dwell position shifts (2.5mm) are also readily measurable. Moreover a dwell time increase of 1 second both in the edge and central region are detectable. Conclusion: The high resolution SRS1000 array is a powerful instrument for brachytherapy QA enabling 977 simultaneous measurements to be performed. Our measurements suggest 60mm of RW3 backscatter material upstream and downstream are sufficient. Local percentage difference analysis is useful for device based QA, normalized relative percentage difference is arguably better for patient specific QA. Automated transfer of patient plan dwell time distribution to the QA plan is required to enable a comprehensive patient QA study to be performed. Moreover the described measurement technique

  11. Sub-micron alignment for nuclear emulsion plates using low energy electrons caused by radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Miyamoto, S.; Ariga, A.; Fukuda, T.; Kazuyama, M.; Komatsu, M.; Nakano, T.; Niwa, K.; Sato, O.; Takahashi, S.

    2007-06-01

    Nuclear emulsion plates are employed in three-dimensional charged particle detectors that have sub-micron position resolution over 1 m2 with no dead space and no dead time. These detectors are suitable for the study of short-lived particle decays, and direct detection of neutrino interactions of all flavors. Typically emulsion plates are used in a stacked structure. Precise alignment between plates is required for physics analysis. The most accurate alignment method is to use tracks passing through the emulsion plates. The accuracy is about 0.2 μm. However, in an experiment with low track density alignment accuracy decreases to 20 μm because of plate distortion and it becomes more difficult to perform the analysis. This paper describes a new alignment method between emulsion plates by using trajectories of low energy electrons originating from environmental radioactive isotopes. As a trial emulsion plates were exposed to β-rays and γ-rays from K40. The trajectories which passed through emulsion layers were detected by a fully automated emulsion readout system. Using this method, the alignment between emulsion plates is demonstrated to be sub-micron. This method can be applied to many nuclear emulsion experiments. For example, the location of neutrino interaction vertices in the OPERA experiment can benefit from this new technique.

  12. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  13. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  14. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  15. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs.

    PubMed

    Badawi, Mariam A; El-Khordagui, Labiba K

    2014-07-16

    Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (p<0.05) on emulsion CQAs, the emulsifier blend composition exerting prominent main and interaction effects. Scanning electron microscopy (SEM) of emulsion-electrospun NFs and desirability functions allowed modeling of emulsion CQAs to predict electrospinnable formulations. A QbD approach successfully built quality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics.

  16. Programmed emulsions for sodium reduction in emulsion based foods.

    PubMed

    Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina

    2015-05-01

    In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.

  17. Commissioning of the ArDM experiment at the Canfranc underground laboratory: first steps towards a tonne-scale liquid argon time projection chamber for Dark Matter searches

    NASA Astrophysics Data System (ADS)

    Calvo, J.; Cantini, C.; Crivelli, P.; Daniel, M.; Di Luise, S.; Gendotti, A.; Horikawa, S.; Montes, B.; Mu, W.; Murphy, S.; Natterer, G.; Nguyen, K.; Periale, L.; Quan, Y.; Radics, B.; Regenfus, C.; Romero, L.; Rubbia, A.; Santorelli, R.; Sergiampietri, F.; Viant, T.; Wu, S.

    2017-03-01

    The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils, resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an active target mass of 850 kg ArDM represents an important milestone towards developments for large LAr Dark Matter detectors. Here we present the experimental apparatus currently installed underground at the Laboratorio Subterráneo de Canfranc (LSC), Spain. We show data on gaseous or liquid argon targets recorded in 2015 during the commissioning of ArDM in single phase at zero E-field (ArDM Run I). The data confirms the overall good and stable performance of the ArDM tonne-scale LAr detector.

  18. Direct Current Electrorheological Stability Determination of Water-in-Crude Oil Emulsions

    NASA Astrophysics Data System (ADS)

    Alvarado, Vladimir; Wang, Xiuyu

    2009-11-01

    Emulsion stability is a fundamental determination for separation technologies. We use the critical electric field (CEF) and viscosity changes in DC eletrorheological (ER) experiments in dynamic mode to determine the stability of water-in-crude oil emulsions, previously studied through bottle tests. The CEF value corresponds to the value of electric field at which the current reaches 95% or larger of the plateau value. The results show that CEF can be consistently obtained through current measurements, resulting from emulsion structure breakdown. Viscosity changes are not good proxies of stability unless a robust emulsion structure is found. Emulsion structure breakdown is explored through rheological characterization before and after voltage sweeps have been performed. When the electric field applied is below the CEF value, the storage and loss moduli responses as well as viscosity as functions of frequency are recovered. However, when the electric field is greater than the CEF value, the emulsion structure breaks down irreversibly.

  19. Preparation of Pickering Double Emulsions Using Block Copolymer Worms

    PubMed Central

    2015-01-01

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923

  20. Formation and stability of polychlorinated biphenyl Pickering emulsions.

    PubMed

    Roy-Perreault, Andréanne; Kueper, Bernard H; Rawson, Jim

    2005-03-01

    An emulsion stabilized by colloidal suspensions of finely divided solids is known as a Pickering emulsion. The potential for polychlorinated biphenyls (PCBs) to form Pickering emulsions ex situ when in contact with powdered solids, such as clays and metal oxides, is investigated here. Bentonite, iron oxide and magnesium oxide dispersions proved to be robust Pickering emulsion stabilizers, whereas manganese oxide dispersions were not. Batch experiments revealed that emulsions can be formed using a moderately low energy input and can be stabilized with solid concentrations as low as 0.5 wt.%. For the base conditions (volumetric oil fraction (phi(oil))=30 vol.%; solid concentration (chi)=2 wt.%), the formed emulsions were indefinitely stable and the initial average droplet diameters varied from 80 to 258 mum, depending on the solid used in the colloidal dispersion. The average droplet size varied at early time, but for most conditions stabilized to a steady-state value 1 week after preparation. The effect of Ostwald ripening was limited. At greater than 0.5 wt.% concentration, the efficiency of the solid dispersion as a stabilizer was dependant on the volumetric oil fraction but not on the solid concentration. Generally, systems with volumetric oil fractions outside of the 20-70 vol.% range were unstable. The emulsions' droplet stability, average droplet size and size distribution were observed to vary as a function of the amount of energy provided to the system, the volumetric oil fraction, and the concentration of the solid in the aqueous dispersion. It is hypothesized that drilling through fractured rock in the immediate vicinity of dense, non-aqueous phase liquid (DNAPL) PCBs may provide both the energy and solid material necessary to form Pickering emulsions.

  1. Chamber QoE: a multi-instrumental approach to explore affective aspects in relation to quality of experience

    NASA Astrophysics Data System (ADS)

    De Moor, Katrien; Mazza, Filippo; Hupont, Isabelle; Ríos Quintero, Miguel; Mäki, Toni; Varela, Martín.

    2014-02-01

    Evaluating (audio)visual quality and Quality of Experience (QoE) from the user's perspective, has become a key element in optimizing users' experiences and their quality. Traditionally, the focus lies on how multi-level quality features are perceived by a human user. The interest has however gradually expanded towards human cognitive, affective and behavioral processes that may impact on, be an element of, or be influenced by QoE, and which have been underinvestigated so far. In addition, there is a major discrepancy between the new, broadly supported and more holistic conceptualization of QoE proposed by Le Callet et al. (2012) and traditional, standardized QoE assessment. This paper explores ways to tackle this discrepancy by means of a multi-instrumental approach. More concretely, it presents results from a lab study on video quality (N=27), aimed at going beyond the dominant QoE assessment paradigm and at exploring affective aspects in relation to QoE and in relation to perceived overall quality. Four types of data were collected: `traditional' QoE self-report measures were complemented with `alternative', emotional state- and user engagement-related self-report measures to evaluate QoE. In addition, we collected EEG (physiological) data, gazetracking data and facial expressions (behavioral) data. The video samples used in test were longer in duration than is common in standard tests allowing us to study e.g. more realistic experience and deeper user engagement. Our findings support the claim that the traditional QoE measures need to be reconsidered and extended with additional, affective staterelated measures.

  2. Aerosol and gas phase organic acids during aging of secondary organic aerosol from α-pinene in smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Praplan, Arnaud P.; Tritscher, Torsten; Barmet, Peter; Mertes, Peter; Decarlo, Peter F.; Dommen, Josef; Prevot, Andre S. H.; Donahue, Neil M.; Baltensperger, Urs

    2010-05-01

    Organic acids represent an important class of organic compounds in the atmosphere for both the gas and aerosol phase. They are either emitted directly from both biogenic and anthropogenic sources or formed as oxidation products from volatile organic compounds (VOCs) and precursors in the aqueous, gaseous and particle phase (Chebbi & Carlier, 1996) Monoterpenes are a prominent class of VOCs with annual emissions of 127 Tg per year (Guenther et al., 1995). Because of their high formation potential of secondary organic aerosols, several compounds of this class, particularly a-pinene, have been investigated extensively in many laboratory studies. Among other acids, cis-pinic and cis-pinonic acid have been found as products of a-pinene ozonolysis. Ma et al. (2007) published evidence that these organic acids are formed in the gas phase via Criegee Intermediates (CIs). Recently, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) was identified by Szmigielski et al. (2007) as a product from a-pinene photooxidation, as well as diaterpenylic acid acetate (Iinuma et al., 2009) and terpenylic acid (Claeys et al., 2009). These compounds could serve as tracers for a-pinene in ambient samples. The present work sets its focus on the fate of a-pinene SOA organic acids under different aging conditions. (1) low NOx concentration (2) high NOx concentration (3) exposure to OH radicals in both dark and lighted environments. a-pinene SOA is produced by ozonolysis without OH scavenger in the PSI smog chamber. It consists of a 27m3 Teflon® bag that can be irradiated by four Xe arc lamps to simulate sunlight (Paulsen et al., 2004). The organic acids are sampled with a wet effluent diffusion denuder (WEDD) and an aerosol collector (AC) for the gas phase and the aerosol particles, respectively. WEDD and AC samples are alternatively concentrated for 30 minutes on a trace anion concentrator (TAC) column (Dionex, Switzerland) and subsequently analyzed by ion chromatography coupled to mass

  3. Readout channel with majority logic timestamp and digital peak detector for Muon Chambers of the CBM experiment

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Bulbakov, I.; Ivanov, P.; Ivanov, V.; Malankin, E.; Normanov, D.; Sagdiev, I.; Samsonov, V.; Shumikhin, V.; Shumkin, O.; Vinogradov, S.; Voronin, A.

    2016-12-01

    A prototype readout channel was manufactured in UMC CMOS 180 nm for the purpose of the CBM experiment at the FAIR accelerator. The channel includes a preamplifier with fast and slow CR-RC shapers, discriminator with a differential threshold setup circuit, a 6-bit SAR ADC (DNL = 0.70, INL = 0.45), digital peak detector and block of the time stamp registration. The control data, clock and output data are supplied through SLVS transmitter and receiver. The slow and fast channels have 1000 el and 1500 el ENC accordingly at a 50 pF detector capacitance. Power consumption is 10 mW/channel.

  4. The Preparation and Testing of a Common Emulsion and Personal Care Product: Lotion

    ERIC Educational Resources Information Center

    Mabrouk, Suzanne T.

    2004-01-01

    A chemical analysis of lotions, which comprises of categorizations of moisturizers and emulsions, with the preparation and testing of three lotions, is done. The experiment piques students' interest in preparing lotions and emulsions, and proves the value of chemistry in satisfying the needs of everyday life.

  5. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  6. Atmospheric interactions detected in both the upper and the lower chambers at Chacaltaya

    NASA Technical Reports Server (NTRS)

    Amato, N. M.; Arata, N.; Maldonado, R. H. C.

    1985-01-01

    The cosmic ray interactions in the energy region 10 to the 13th power to 10 to the 17th power eV were studied by emulsion chambers exposed at Chacaltaya, 5220 m above sea-level. The chambers have a two-storied structure, and the events observed in both chambers give important informations on these phenomena. The first Centauro event was detected as a small shower at the bottom of the upper chamber and as a big fraction of energy deposit in the lower chamber, which indicates a high contribution of hadronic showers. Results of the events with continuation in the rather low energy region are described.

  7. Transport and Retention of Concentrated Oil-in-Water Emulsions in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Muller, K.; Esahani, S. G.; Steven, C. C.; Ramsburg, A.

    2015-12-01

    Oil-in-water emulsions are widely employed to promote biotic reduction of contaminants; however, emulsions can also be used to encapsulate and deliver active ingredients required for long-term subsurface treatment. Our research focuses on encapsulating alkalinity-releasing particles in oil-in-water emulsions for sustained control of subsurface pH. Typical characteristics of these emulsions include kinetically stable for >20 hr; 20% soybean oil; 1 g/mL density; 8-10 cP viscosity; and 1.5 μm droplet d50, with emulsions developed for favorable subsurface delivery. The viscosity of the oil-in-water emulsions was found to be a function of oil content. Ultimately we aim to model both emulsion delivery and alkalinity release (from retained emulsion droplets) to provide a description of pH treatment. Emulsion transport and retention was investigated via a series of 1-d column experiments using varying particle size fractions of Ottawa sand. Emulsions were introduced for approximately two pore volumes followed by a flush of background solution (approx. ρ=1 g/mL; μ=1cP). Emulsion breakthrough curves exhibit an early fall on the backside of the breakthrough curve along with tailing. Deposition profiles are found to be hyper-exponential and unaffected by extended periods of background flow. Particle transport models established for dilute suspensions are unable to describe the transport of the concentrated emulsions considered here. Thus, we explore the relative importance of additional processes driving concentrated droplet transport and retention. Focus is placed on evaluating the role of attachment-detachment-straining processes, as well as the influence of mixing from both viscous instabilities and variable water saturation due to deposited mass.

  8. In vitro skin permeation of sunscreen agents from O/W emulsions.

    PubMed

    Montenegro, L; Carbone, C; Paolino, D; Drago, R; Stancampiano, A H; Puglisi, G

    2008-02-01

    The effects of different emulsifiers on the in vitro permeation through human skin of two sunscreen agents [octylmethoxycinnamate (OMC) and butylmethoxydibenzoylmethane (BMBM)] were investigated from O/W emulsions. The test formulations were prepared using the same oil and aqueous phase ingredients and the following emulsifier and coemulsifier systems: Emulgade SE((R)) (ceteareth-12 and ceteareth-20 and cetearyl alcohol and cetyl palmitate) and glycerylmonostearate (emulsion 1); Brij 72((R)) (steareth-2), Brij 721((R)) (steareth-21) and cetearyl alcohol (emulsion 2); Phytocream((R)) (potassium palmitoyl-hydrolysed wheat protein and glyceryl stearate and cetearyl alcohol) and glycerylmonostearate (emulsion 3); Montanov 68((R)) (cetearyl glucoside and cetearyl alcohol) (emulsion 4); Xalifin-15((R)) (C(15-20) acid PEG-8 ester) and cetearyl alcohol (emulsion 5). The cumulative amount of OMC that permeated in vitro through human skin after 22 h from the formulations being tested decreased in the order 3 > 1 congruent with 4 > 5 > 2 and was about nine-fold higher from emulsion 3 compared with that from emulsion 2. As regards BMBM, no significant difference was observed as regards its skin permeation from emulsions 1, 3, 4 and 5, whereas formulation 2 allowed significantly lower amounts of BMBM to permeate the skin. In vitro release experiments of OMC and BMBM from emulsions 1-6 through cellulose acetate membranes showed that only emulsions 4 and 5 provided pseudo-first-order release rates only for OMC. The results of this study suggest that the type of emulsifying systems used to prepare an O/W emulsion may strongly affect sunscreen skin permeation from these formulations. Therefore, the vehicle effects should be carefully considered in the formulation of sunscreen products.

  9. Gas-particle partitioning and hydrolysis of organic nitrates formed from the oxidation of α-pinene in environmental chamber experiments

    NASA Astrophysics Data System (ADS)

    Bean, Jeffrey K.; Hildebrandt Ruiz, Lea

    2016-02-01

    Gas-particle partitioning and hydrolysis of organic nitrates (ON) influences their role as sinks and sources of NOx and their effects on the formation of tropospheric ozone and organic aerosol (OA). In this work, organic nitrates were formed from the photo-oxidation of α-pinene in environmental chamber experiments under different conditions. Particle-phase ON hydrolysis rates, consistent with observed ON decay, exhibited a nonlinear dependence on relative humidity (RH): an ON decay rate of 2 day-1 was observed when the RH ranged between 20 and 60 %, and no significant ON decay was observed at RH lower than 20 %. In experiments when the highest observed RH exceeded the deliquescence RH of the ammonium sulfate seed aerosol, the particle-phase ON decay rate was as high as 7 day-1 and more variable. The ON gas-particle partitioning was dependent on total OA concentration and temperature, consistent with absorptive partitioning theory. In a volatility basis set, the ON partitioning was consistent with mass fractions of [0 0.11 0.03 0.86] at saturation mass concentrations (C*) of [1 10 100 1000] µg m-3.

  10. Electromagnetic Scale Models Using Emulsions

    DTIC Science & Technology

    1989-04-01

    microwave range; the solutions have a nearly constant permittivity and a conductivity that is adjustable by varying the salt concentration. Mixtures of...emulsion. At this point, complete demulsification has occurred. The emulsion can then be reformed only by subjecting it to the process (homogenization...130-137, June 1986. [17] A. Stogryn, "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microwave Theory and Tech

  11. The olive oil-based lipid clinoleic blocks leukocyte recruitment and improves survival during systemic inflammation: a comparative in vivo study of different parenteral lipid emulsions.

    PubMed

    Buschmann, Kirsten; Poeschl, Johannes; Braach, Natascha; Hudalla, Hannes; Kuss, Navina; Frommhold, David

    2015-01-01

    Although fish oil-based and olive oil-based lipid emulsions have been shown to exert anti-inflammatory functions, the immunomodulating properties of lipids are still controversial. Therefore, we investigated the anti-inflammatory effect of three different parenterally administered lipid emulsions in vivo: olive oil-based Clinoleic, fish oil-based Smoflipid, and soybean oil-based Lipofundin. We observed leukocyte recruitment in inflamed murine cremaster muscle using intravital microscopy and survival in a murine model of LPS-induced systemic inflammation and analyzed expression of leukocyte and endothelial adhesion molecules. Olive oil-based Clinoleic and fish oil-based Smoflipid profoundly inhibited leukocyte adhesion compared to Lipofundin during LPS-induced inflammation of the murine cremaster muscle. In the trauma model of cremaster muscle inflammation, Lipofundin was the only lipid emulsion that even augmented leukocyte adhesion. In contrast to Smoflipid and Lipofundin, Clinoleic effectively blocked leukocyte recruitment and increased survival during lethal endotoxemia. Flow chamber experiments and analysis of adhesion molecule expression suggest that both endothelial and leukocyte driven mechanisms might contribute to anti-inflammatory effects of Clinoleic. We conclude that the anti-inflammatory properties of Clinoleic are superior to those of Smoflipid and Lipofundin even during systemic inflammation. Thus, these results should stimulate further studies investigating parenteral lipids as an anti-inflammatory strategy in critically ill patients.

  12. SU-E-T-448: On the Perturbation Factor P-cav of the Markus Parallel Plate Ion Chambers in Clinical Electron Beams, Monte Carlo Based Reintegration of An Historical Experiment

    SciTech Connect

    Voigts-Rhetz, P von; Zink, K

    2014-06-01

    Purpose: All present dosimetry protocols recommend well-guarded parallel-plate ion chambers for electron dosimetry. For the guard-less Markus chamber an energy dependent fluence perturbation correction pcav is given. This perturbation correction was experimentally determined by van der Plaetsen by comparison of the read-out of a Markus and a NACP chamber, which was assumed to be “perturbation-free”. Aim of the present study is a Monte Carlo based reiteration of this experiment. Methods: Detailed models of four parallel-plate chambers (Roos, Markus, NACP and Advanced Markus) were designed using the Monte Carlo code EGSnrc and placed in a water phantom. For all chambers the dose to the active volume filled with low density water was calculated for 13 clinical electron spectra (E{sub 0}=6-21 MeV) at the depth of maximum and at the reference depth under reference conditions. In all cases the chamber's reference point was positioned at the depth of measurement. Moreover, the dose to water DW was calculated in a small water voxel positioned at the same depth. Results: The calculated dose ratio D{sub NACP}/D{sub Markus}, which according to van der Plaetsen reflects the fluence perturbation correction of the Markus chamber, deviates less from unity than the values given by van der Plaetsen's but exhibits a similar energy dependence. The same holds for the dose ratios of the other well guarded chambers. But, in comparison to water, the Markus chamber reveals the smallest overall perturbation correction which is nearly energy independent at both investigated depths. Conclusion: The simulations principally confirm the energy dependence of the dose ratio D{sub NACP}/D{sub Markus} as published by van der Plaetsen. But, as shown by our simulations of the ratio D{sub W}/D{sub Markus}, the conclusion drawn in all dosimetry protocols is questionable: in contrast to all well-guarded chambers the guard-less Markus chamber reveals the smallest overall perturbation correction and

  13. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  14. Innovative Applications Of Food Related Emulsions.

    PubMed

    S, Kiokias; T, Varzakas

    2016-02-06

    Research on oxidative stability of multiple emulsions is very scarce. Given that this is a relevant topic that must be ascertained before the successful application of multiple emulsions in foods (especially when a combination of highly unsaturated oils is used as a lipid phase), this review mainly focus on various aspects of the multiple emulsions. Fat replacement in meat products using emulsions is critically discussed along with innovative applications of natural antioxidants in food based emulsions and multiple emulsions based on bioactive compounds/encapsulation as well as confectionery products.

  15. The APS ceramic chambers

    SciTech Connect

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  16. Optimizing organoclay stabilized Pickering emulsions.

    PubMed

    Cui, Yannan; Threlfall, Mhairi; van Duijneveldt, Jeroen S

    2011-04-15

    Oil-in-water emulsions were prepared using montmorillonite clay platelets, pre-treated with quaternary amine surfactants. In previous work, cetyl trimethylammonium bromide (CTAB) has been used. In this study, two more hydrophilic quaternary amine surfactants, Berol R648 and Ethoquad C/12, were used and formed Pickering emulsions, which were more stable than the emulsions prepared using CTAB coated clay. The droplets were also more mono-disperse. The most hydrophilic surfactant Berol R648 stabilizes the emulsions best. Salt also plays an important role in forming a stable emulsion. The droplet size decreases with surfactant concentration and relatively mono-disperse droplets can be obtained at moderate surfactant concentrations. The time evolution of the droplet size indicates a good stability to coalescence in the presence of Berol R648. Using polarizing microscopy, the clay platelets were found to be lying flat at the water oil interface. However, a significant fraction (about 90%) of clay stayed in the water phase and the clay particles at the water-oil interface formed stacks, each consisting of four clay platelets on average.

  17. High speed automated microtomography of nuclear emulsions and recent application

    NASA Astrophysics Data System (ADS)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-01

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  18. Arrested of coalescence of emulsion droplets of arbitrary size

    NASA Astrophysics Data System (ADS)

    Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.

    2013-03-01

    With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.

  19. Real time study of development process in holographic emulsions

    NASA Astrophysics Data System (ADS)

    Fimia, A.; Blaya, S.; Carretero, L.; Madrigal, R. F.; Mallavia, R.

    2000-01-01

    In this paper we present the theoretical and experimental study using a real time technique for the measurement of the optical density when the emulsion is developing. Good agreement was observed between theory and experiment. We exposed an Agfa Gevaert 8E56HD emulsion with an Argon laser tuned at 514 nm and we measured the variation in optical density when the emulsion was put into the developer bath at 20°C. This method allows us to study the dynamics of different developers at different energy of storage. It also provides a way to optimize the composition of developers as a function of the chemical composition, temperature and other secondary factors as superadditivity and non-linear processes.

  20. High speed automated microtomography of nuclear emulsions and recent application

    SciTech Connect

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  1. Dynamics of Polydisperse Coarsening Emulsion

    NASA Astrophysics Data System (ADS)

    Mirenda, Nic; Hicock, Harry; Feitosa, Klebert; Crocker, John

    2014-03-01

    Soft glassy materials display complex fluid behavior characterized by a yield stress and distinctive elastic and viscous moduli. The complexity emerges from the disordered structure and interactions between the athermal particles. Here we study the dynamics of an optically clear and neutrally buoyantly emulsion whose droplets coarsen driven by Laplace pressure induced diffusion. The emulsion displays an anomalous loss modulus typical of coarsening foam systems. We use confocal microscopy to image the droplets, measure their size and centroid location, and track their evolution in time. The relaxation process of the coarsening emulsion is found to be marked by a continuous, slow structural evolution interspersed by sudden droplet swaps. We characterize the time scales of each process and the statistics of droplet rearrangements. We acknowledge support from Research Corporation and NSF-DMR-1229383.

  2. Tests of anechoic chamber for aeroacoustics investigations

    NASA Astrophysics Data System (ADS)

    Palchikovskiy, V. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Belyaev, I. V.; Korin, I. A.; Sorokin, E. V.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    The paper presents the results of qualification tests in the new anechoic chamber of Perm National Research Polytechnic University (PNRPU) built in 2014-2015 and evaluation of the chamber quality in aeroacoustic experiments. It describes design features of the chamber and its sound-absorption lining. The qualification tests were carried out with tonal and broadband noise sources in the frequency range 100 Hz - 20 kHz for two different cases of the source arrangement. In every case, measurements were performed in three directions by traverse microphones. Qualification tests have determined that in the chamber there is a free acoustic field within radius of 2 m for tonal noise and 3 m for broadband noise. There was also evaluated acoustic quality of the chamber by measurements of the jet noise and vortex ring noise. The results of the experiments demonstrate that PNRPU anechoic chamber allows the aeroacoustic measurements to be performed to obtain quantitative results.

  3. Can Pickering emulsion formation aid the removal of creosote DNAPL from porous media?

    PubMed

    Torres, Luis; Iturbe, Rosario; Snowden, M J; Chowdhry, Babur; Leharne, Stephen

    2008-03-01

    The purpose of this investigation was to examine the proposition that creosote, emplaced in an initially water saturated porous system, can be removed from the system through Pickering emulsion formation. Pickering emulsions are dispersions of two immiscible fluids in which coalescence of the dispersed phase droplets is hindered by the presence of colloidal particles adsorbed at the interface between the two immiscible fluid phases. Particle trapping is strongly favoured when the wetting properties of the particles are intermediate between strong water wetting and strong oil wetting. In this investigation the necessary chemical conditions for the formation of physically stable creosote-in-water emulsions protected against coalescence by bentonite particles were examined. It was established that physically stable emulsions could be formed through the judicious addition of small amounts of sodium chloride and the surfactant cetyl-trimethylammonium bromide. The stability of the emulsions was initially established by visual inspection. However, experimental determinations of emulsion stability were also undertaken by use of oscillatory rheology. Measurements of the elastic and viscous responses to shear indicated that physically stable emulsions were obtained when the viscoelastic systems showed a predominantly elastic response to shearing. Once the conditions were established for the formation of physically stable emulsions a "proof-of-concept" chromatographic experiment was carried out which showed that creosote could be successfully removed from a saturated model porous system.

  4. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Dorn, H.-P.; Bachner, M.; Bohn, B.; Brauers, T.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Nehr, S.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2012-07-01

    During recent field campaigns, hydroxyl radical (OH) concentrations that were measured by laser-induced fluorescence (LIF) were up to a factor of ten larger than predicted by current chemical models for conditions of high OH reactivity and low NO concentration. These discrepancies, which were observed in forests and urban-influenced rural environments, are so far not entirely understood. In summer 2011, a series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, in order to investigate the photochemical degradation of isoprene, methyl-vinyl ketone (MVK), methacrolein (MACR) and aromatic compounds by OH. Conditions were similar to those experienced during the PRIDE-PRD2006 campaign in the Pearl River Delta (PRD), China, in 2006, where a large difference between OH measurements and model predictions was found. During experiments in SAPHIR, OH was simultaneously detected by two independent instruments: LIF and differential optical absorption spectroscopy (DOAS). Because DOAS is an inherently calibration-free technique, DOAS measurements are regarded as a reference standard. The comparison of the two techniques was used to investigate potential artifacts in the LIF measurements for PRD-like conditions of OH reactivities of 10 to 30 s-1 and NO mixing ratios of 0.1 to 0.3 ppbv. The analysis of twenty experiment days shows good agreement. The linear regression of the combined data set (averaged to the DOAS time resolution, 2495 data points) yields a slope of 1.02 ± 0.01 with an intercept of (0.10 ± 0.03) × 106 cm-3 and a linear correlation coefficient of R2 = 0.86. This indicates that the sensitivity of the LIF instrument is well-defined by its calibration procedure. No hints for artifacts are observed for isoprene, MACR, and different aromatic compounds. LIF measurements were approximately 30-40% (median) larger than those by DOAS after MVK (20 ppbv) and toluene (90 ppbv) had been added. However, this discrepancy has a

  5. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  6. Controlling molecular transport in minimal emulsions

    PubMed Central

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  7. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  8. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  9. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  10. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    NASA Astrophysics Data System (ADS)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  11. Detecting plastic events in emulsions simulations

    NASA Astrophysics Data System (ADS)

    Lulli, Matteo; Matteo Lulli, Massimo Bernaschi, Mauro Sbragaglia Team

    2016-11-01

    Emulsions are complex systems which are formed by a number of non-coalescing droplets dispersed in a solvent leading to non-trivial effects in the overall flowing dynamics. Such systems possess a yield stress below which an elastic response to an external forcing occurs, while above the yield stress the system flows as a non-Newtonian fluid, i.e. the stress is not proportional to the shear. In the solid-like regime the network of the droplets interfaces stores the energy coming from the work exerted by an external forcing, which can be used to move the droplets in a non-reversible way, i.e. causing plastic events. The Kinetic-Elasto-Plastic (KEP) theory is an effective theory describing some features of the flowing regime relating the rate of plastic events to a scalar field called fluidity f =γ˙/σ , i.e. the inverse of an effective viscosity. Boundary conditions have a non-trivial role not captured by the KEP description. In this contribution we will compare numerical results against experiments concerning the Poiseuille flow of emulsions in microchannels with complex boundary geometries. Using an efficient computational tool we can show non-trivial results on plastic events for different realizations of the rough boundaries. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007- 2013)/ERC Grant Agreement no. [279004].

  12. Random close packing of polydisperse jammed emulsions

    NASA Astrophysics Data System (ADS)

    Brujic, Jasna

    2010-03-01

    Packing problems are everywhere, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state. Theoretical frameworks have proposed a connection between this jammed state and the glass transition, a thermodynamics of jamming, as well as geometric modeling of random packings. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use 3D measurements of polydisperse packings of emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle the packing problem is reduced to the random formation of nearest neighbors, followed by a choice of contacts among them. The two key parameters in the model, the available space around a particle and the ratio of contacts to neighbors, are directly obtained from experiments. Remarkably, we demonstrate that this ``granocentric'' view captures the properties of the polydisperse emulsion packing, ranging from the microscopic distributions of nearest neighbors and contacts to local density fluctuations and all the way to the global packing density. Further applications to monodisperse and bidisperse systems quantitatively agree with previously measured trends in global density. This model therefore reveals a general principle of organization for random packing and lays the foundations for a theory of jammed matter.

  13. NEWS: Nuclear Emulsions for WIMP Search

    NASA Astrophysics Data System (ADS)

    Di Marco, Natalia; NEWS Collaboration

    2016-05-01

    In the field of direct Dark Matter search a different and promising approach is the directionality: the observation of the incoming apparent direction of WIMPs would in fact provide a new and unambiguous signature. The NEWS project is a very innovative approach for a high sensitivity experiment aiming at the directional detection of WIMPs: the detector is based on a novel emulsion technology called NIT (Nano Imaging Trackers) acting both as target and tracking device. In this paper we illustrate the features of a NIT-based detector and the newly developed read-out systems allowing to reach a spatial resolution of the order of 10 nm. We present the background studies and the experimental design. Finally we report about the time schedule of the experiment and the expected sensitivity for DM searches.

  14. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  15. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prevot, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-06-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the final vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC<0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, primary particles with a mobility diameter above 5 nm were 300±19 cm-3, and only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.097 to 0

  16. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prévôt, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-12-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0

  17. Adelphi-Goddard emulsified fuel project. [using water/oil emulsions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.

  18. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  19. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III.

    1991-01-01

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  20. Removal of pesticides from aqueous solutions using liquid membrane emulsions

    SciTech Connect

    Norwood, V.M. III

    1991-12-31

    Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

  1. Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions.

    PubMed

    Margulis, Katherine; Magdassi, Shlomo; Lee, Han Seung; Macosko, Christopher W

    2014-11-15

    Nanometric particles of a model hydrophobic substance curcumin were prepared by a novel method, namely, flash nanoprecipitation from a coarse oil-in-water emulsion. The method employs turbulent co-mixing of water with curcumin-loaded emulsion using manually-operated confined impingement jets mixer. A clear and stable dispersion of nanoparticles was formed in this process, and could be converted to dry, easily water-dispersible powder by spray drying. The mean size of the particles was about 40 nm by DLS, confirmed by Cryo-TEM. The obtained particles contained 20.4 wt% curcumin, X-ray analysis showed it was amorphous. The significant advantages of the studied process are its feasibility, speed and low cost. It does not require any special high-energy input equipment to reduce the droplet size of the initial emulsion as required by the vast majority of other methods, and relies on rapid turbulent mixing and on flow-induced shear stress formed in the simple, manually-operated mixer. Control experiments clearly indicate that employing emulsion, instead of a plain solution and flash nanoprecipitation instead of a simple antisolvent precipitation are advantageous in terms of particle size and stability.

  2. Intravenous Lipid Emulsions in Parenteral Nutrition123

    PubMed Central

    Fell, Gillian L; Nandivada, Prathima; Gura, Kathleen M; Puder, Mark

    2015-01-01

    Fat is an important macronutrient in the human diet. For patients with intestinal failure who are unable to absorb nutrients via the enteral route, intravenous lipid emulsions play a critical role in providing an energy-dense source of calories and supplying the essential fatty acids that cannot be endogenously synthesized. Over the last 50 y, lipid emulsions have been an important component of parenteral nutrition (PN), and over the last 10–15 y many new lipid emulsions have been manufactured with the goal of improving safety and efficacy profiles and achieving physiologically optimal formulations. The purpose of this review is to provide a background on the components of lipid emulsions, their role in PN, and to discuss the lipid emulsions available for intravenous use. Finally, the role of parenteral fat emulsions in the pathogenesis and management of PN-associated liver disease in PN-dependent pediatric patients is reviewed. PMID:26374182

  3. Transport of Oil-in-Water Emulsions Designed to Deliver Reactive Iron Particles in Porous Media

    NASA Astrophysics Data System (ADS)

    Crocker, J. J.; Berge, N. D.; Ramsburg, C. A.

    2007-05-01

    Treatment of subsurface regions contaminated with DNAPL is a significant challenge to environmental restoration. The focus of remediation has recently shifted from technologies that recover the contamination to technologies that destroy the contamination in situ. One method of in situ contaminant destruction employs nano- or submicron-size particles of reactive iron metal. Application of iron-based destruction technologies is currently limited by poor delivery of the reactive particles (i.e., lack of contact between the iron particles and the DNAPL). Encapsulation of the reactive particles within an oil-in-water emulsion is a novel approach that may facilitate delivery. The goal of this project was to investigate the transport behavior of emulsions (Tallow oil, Tween 80, and Span 80) within porous media. One-dimensional column experiments were conducted to evaluate pore-clogging when emulsions containing encapsulated reactive particles were passed through two homogeneous sands with an order of magnitude difference in intrinsic permeability. In these experiments, passing an emulsion through the sand column (4.8 cm i.d.) at a constant flow rate (0.86 mL/min) increased the hydraulic gradient by a factor of approximately three. The hydraulic gradient in each experiment was observed to stabilize after one pore volume of emulsion. Subsequent flushing with water recovered the initial hydraulic gradient. Together, these observations indicate that conductivity reductions during emulsion flushing were the result of viscosity and not the result of extensive pore-clogging. Analysis of effluent samples confirmed that there was minimal retention of the emulsion within the sand column. Results from these experiments suggest that emulsion encapsulation may be an effective means for transporting reactive iron particles within the subsurface environment.

  4. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  5. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE.

  6. Impact of acoustic cavitation on food emulsions.

    PubMed

    Krasulya, Olga; Bogush, Vladimir; Trishina, Victoria; Potoroko, Irina; Khmelev, Sergey; Sivashanmugam, Palani; Anandan, Sambandam

    2016-05-01

    The work explores the experimental and theoretical aspects of emulsification capability of ultrasound to deliver stable emulsions of sunflower oil in water and meat sausages. In order to determine optimal parameters for direct ultrasonic emulsification of food emulsions, a model was developed based on the stability of emulsion droplets in acoustic cavitation field. The study is further extended to investigate the ultrasound induced changes to the inherent properties of raw materials under the experimental conditions of sono-emulsification.

  7. Recent Studies of Pickering Emulsions: Particles Make the Difference.

    PubMed

    Wu, Jie; Ma, Guang-Hui

    2016-09-01

    In recent years, emulsions stabilized by micro- or nanoparticles (known as Pickering emulsions) have attracted much attention. Micro- or nanoparticles, as the main components of the emulsion, play a key role in the preparation and application of Pickering emulsions. The existence of particles at the interface between the oil and aqueous phases affects not only the preparation, but also the properties of Pickering emulsions, affording superior stability, low toxicity, and stimuli-responsiveness compared to classical emulsions stabilized by surfactants. These advantages of Pickering emulsions make them attractive, especially in biomedicine. In this review, the effects of the characteristics of micro- and nanoparticles on the preparation and properties of Pickering emulsions are introduced. In particular, the preparation methods of Pickering emulsions, especially uniform-sized emulsions, are listed. Uniform Pickering emulsions are convenient for both mechanistic research and applications. Furthermore, some biomedical applications of Pickering emulsions are discussed and the problems hindering their clinical application are identified.

  8. Oil-in-water emulsions for encapsulated delivery of reactive iron particles.

    PubMed

    Berge, Nicole D; Ramsburg, C Andrew

    2009-07-01

    Treatment of dense nonaqueous phase liquid (DNAPL) source zones using suspensions of reactive iron particles relies upon effective transport of the nano- to submicrometer scale iron particles within the subsurface. Recognition that poor subsurface transport of iron particles results from particle-particle and particle-soil interactions permits development of strategies which increase transport. In this work, experiments were conducted to assess a novel approach for encapsulated delivery of iron particles within porous media using oil-in-water emulsions. Objectives of this study included feasibility demonstration of producing kinetically stable, iron-containing, oil-in-water emulsions and evaluating the transport of these iron-containing, oil-in-water emulsions within water-saturated porous media. Emulsions developed in this study have mean droplet diameters between 1 and 2 microm, remain kinetically stable for > 1.5 h, and possess densities (0.996-1.00 g/mL at 22 degrees C) and dynamic viscosities (2.4-9.3 mPa x s at 22 degrees C and 20 s(-1)) that are favorable to transport within DNAPL source zones. Breakthrough curves and post-experiment extractions from column experiments conducted with medium and fine sands suggest little emulsion retention (< 0.20% wt) at a Darcy velocity of 0.4 m/day. These findings demonstrate that emulsion encapsulation is a promising method for delivery of iron particles and warrants further investigation.

  9. New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the deposition nucleation and immersion freezing modes

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Wagner, R.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-12-01

    Dicarboxylic acids are ubiquitous components of the water-soluble organic fraction of the tropospheric aerosol. Their contribution to the total particulate organic carbon typically ranges from 1 - 3 wt% in urban and semi-urban areas to up to 10 wt% in remote marine atmospheres [1,2]. Oxalic acid, malonic acid, and succinic acid are usually the most abundant species, partly comprising more than 80% of the total diacid mass concentrations [3]. Several recent studies have addressed the ice nucleation potential of solid low-molecular weight dicarboxylic acids. On the one hand, the dicarboxylic acids can act as deposition mode ice nuclei provided that they are directly exposed to an ice supersaturated environment, e.g. in form of a coating layer that was formed by physical and chemical processing on prevalent particulates such as mineral dust and soot. At typical tropospheric relative humidities, diacids of low water solubility like oxalic and succinic acid may, on the other hand, also be present as solids that are immersed in aqueous inorganic and/or organic solution droplets [4,5]. These embedded crystals can act as ice nuclei in the immersion mode. Here we present new results from recent experiments at the aerosol and cloud chamber facility of the Karlsruhe Institute of Technology. The ice nucleation ability of aqueous and crystalline oxalic acid aerosol particles was investigated at expansion cooling conditions in the temperature range between 244 and 228 K [6]. Oxalic acid dihydrate particles with diameters between 0.03 to 0.8 μm, that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets, showed a high deposition mode ice activity at temperatures around 244 K. The ice onset humidity was below 110 % with respect to ice, and the ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles

  10. A three-dimensional tomographic velocity model above Mid Atlantic magma chamber from simulated seafloor multi-channel seismic refraction experiment

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.; Singh, S. C.

    2009-12-01

    With multi-channel seismic (MCS) data recorded on the sea surface, refraction arrivals from the upper crust typically arrive as secondary arrivals after the seafloor reflection, and therefore they do not contain any information on near seafloor velocity. Here we use a Synthetic On Bottom Experiment (SOBE) method to downward continue both shots and receivers to a depth close to the seafloor, which causes refraction arrivals from the upper crust to become first arrivals that can be followed to close to zero source receiver offsets, providing information about near surface velocity. Moreover, the high density of shots and receivers in MCS-based travel-time tomography produces a multiplicity of ray paths never reached by classical travel time tomography methods based on OBS datasets, and hence providing a high-resolution velocity of the sub-surface. We have applied this new technique to the MCS data from the SISMOMAR 3D seismic reflection survey carried out in 2005 over the Lucky Strike Segment of the Mid-Atlantic Ridge. The survey area was 18.55 km by 3.8 km, with a shot spacing of 37.5 m, receiver spacing of 12.5 m and the line spacing of 100 m. It has been the first segment of the MAR to be shown to have a quasi-steady state magma chamber, and we are creating now a high resolution velocity model to investigate in detail the links between magmatism, hydrothermal circulation and faulting in this segment. First, the data was downward continued to 1.0-1.7 km below the sea surface. Then a highly efficient algorithm was used to pick ~800,000 travel times. Because of the the high density of ray paths (up to 7 million), the first arrivals of every fifth shots was picked. To control the picking consistency along a line, picks from the preceding shot was used to guide the current one. Travel time residuals, ~10 ms, and chi-squared of the final 2D model testify to excellent picking accuracy. A 3D velocity cube was then interpolated using ten equi-spaced 2D velocity models

  11. Spectra, composition and interactions of nuclei above 10 TeV using magnet-interferometric chambers (SCIN/MAGIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1991-01-01

    Initial definition studies were performed for the SCIN/MAGIC experiment selected as an Astromag investigation on Space Station Freedom. The study focused on Science Objectives and Science Requirement, Accommodation on both the STS and the Astromag facility, Data extraction techniques and Background Studies. The detectors are emulsion chambers which will be exposed for approximately 90 days and then recovered from orbit for subsequent processing and analysis in the laboratory. Such a technique is the only means to obtain information on the ultrahigh energy cosmic rays and their nuclear interactions. The SCIN/MAGIC investigation can supply unique data in relatively unexplored energy region and address many of the fundamental questions in particle astrophysics.

  12. GRAINE 2011 balloon-borne experiment: flight data analysis and detector performance

    NASA Astrophysics Data System (ADS)

    Rokujo, Hiroki

    2012-07-01

    Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) is the balloon-born experiment project to observe gamma-ray sources precisely in the 10MeV-100GeV region. A new generation detector "emulsion gamma-ray telescope" has one order higher angular resolution compared with the Fermi Large Area Telescope. As the first step in GRAINE, a technical flight was performed by employing a small-scale prototype (125 cm ^{2} aperture). On June 8, 2011, the balloon was launched from Taiki Aerospace Research Field and realized the level flight at the altitude of 34.8 km for 1.5 hours. Tracks recorded in emulsion chambers were read by the fully automated scanning system and gamma-ray events in field of view in 2.2 sr were reconstructed. Event time stamps were done by "multi-stage shifter" mechanism, which gives sub-second time resolution to tracks using their position displacements caused by shifting multiple chambers during the flight. As an initial result, we succeeded in pointing gamma-ray directions on celestial coordinates, and demonstrated feasibility of each component of the detector for future experiments with larger apertures.

  13. Note: Small anaerobic chamber for optical spectroscopy

    PubMed Central

    Chauvet, Adrien A. P.; Agarwal, Rachna; Cramer, William A.; Chergui, Majed

    2015-01-01

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment. PMID:26520998

  14. Note: Small anaerobic chamber for optical spectroscopy

    SciTech Connect

    Chauvet, Adrien A. P. Chergui, Majed; Agarwal, Rachna; Cramer, William A.

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  15. Note: Small anaerobic chamber for optical spectroscopy.

    PubMed

    Chauvet, Adrien A P; Agarwal, Rachna; Cramer, William A; Chergui, Majed

    2015-10-01

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  16. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Mayr, Christoph; Tuthorn, Mario; Leiber-Sauheitl, Katharina; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of cellulose is a valuable proxy in paleoclimate research. However, its application to sedimentary archives is challenging due to extraction and purification of cellulose. Here we present compound-specific δ18O results of hemicellulose-derived sugar biomarkers determined using gas chromatography-pyrolysis-isotope ratio mass spectrometry, which is a method that overcomes the above-mentioned analytical challenges. The biomarkers were extracted from stem material of different plants (Eucalyptus globulus, Vicia faba and Brassica oleracea) grown in climate chamber experiments under different climatic conditions. The δ18O values of arabinose and xylose range from 31.4‰ to 45.9‰ and from 28.7‰ to 40.8‰, respectively, and correlate highly significantly with each other (R = 0.91, p < 0.001). Furthermore, δ18Ohemicellulose (mean of arabinose and xylose) correlate highly significantly with δ18Oleaf water (R = 0.66, p < 0.001) and significantly with modeled δ18Ocellulose (R = 0.42, p < 0.038), as well as with relative air humidity (R = -0.79, p < 0.001) and temperature (R = -0.66, p < 0.001). These findings confirm that the hemicellulose-derived sugar biomarkers, like cellulose, reflect the oxygen isotopic composition of plant source water altered by climatically controlled evapotranspirative 18O enrichment of leaf water. While relative air humidity controls most rigorously the evapotranspirative 18O enrichment, the direct temperature effect is less important. However, temperature can indirectly exert influence via plant physiological reactions, namely by influencing the transpiration rate which affects δ18Oleaf water due to the Péclet effect. In a companion paper (Tuthorn et al., this issue) we demonstrate the applicability of the hemicellulose-derived sugar biomarker δ18O method to soils and provide evidence from a climate transect study confirming that relative air humidity exerts the dominant control on evapotranspirative 18O

  17. Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment.

    PubMed

    Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza

    2017-02-20

    Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m(3) air/d per 1 m(3)/d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required.

  18. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  19. Unifying the relative hindered velocity in suspensions and emulsions of nondeformable particles

    NASA Astrophysics Data System (ADS)

    Faroughi, Salah Aldin; Huber, Christian

    2015-01-01

    Although the relative velocity of a single crystal or bubble in a quiescent fluid (melt) is well characterized, the interplay of crystals/bubbles in multiparticle systems and its effect on their settling/rising velocity is poorly quantified. We propose a theoretical model for the hindered velocity of non-Brownian emulsions and suspensions of nondeformable fluid and solid particles in the creeping flow regime. The model is based on three sets of correction: two on the drag coefficient experienced by each particle to account for both return flow and Smoluchowski effects and a correction on the rheology to account for nonlocal interactions introduced as a mean-field effective viscosity. Our model is tested against new and published experimental data over a wide range of particle volume fraction and viscosity ratio between the fluids. We find an excellent agreement between our model and experiments. The model is then applied to show that hindered settling can increase mineral residence time by up to an order of magnitude in convecting magma chambers.

  20. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  1. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  2. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  3. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  4. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  5. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  6. Suppression of Ostwald ripening in active emulsions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  7. Metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J

    2013-10-29

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  8. Kinetics of crosslinking in emulsion polymerization

    SciTech Connect

    Ghielmi, A.; Fiorentino, S.; Morbidelli, M.

    1996-12-31

    A mathematical model for evaluating the chain length distribution of nonlinear polymers produced in emulsions is presented. The heterogeneous emulsion polymerization process is described. The aim of the analysis is the distribution of active polymer chains and pairs of chains with a given growth time in latex particles in state.

  9. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  10. Altering Emulsion Stability with Heterogeneous Surface Wettability

    PubMed Central

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-01-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703

  11. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  12. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  13. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  14. Non-aqueous Isorefractive Pickering Emulsions

    PubMed Central

    2015-01-01

    Non-aqueous Pickering emulsions of 16–240 μm diameter have been prepared using diblock copolymer worms with ethylene glycol as the droplet phase and an n-alkane as the continuous phase. Initial studies using n-dodecane resulted in stable emulsions that were significantly less turbid than conventional water-in-oil emulsions. This is attributed to the rather similar refractive indices of the latter two phases. By utilizing n-tetradecane as an alternative oil that almost precisely matches the refractive index of ethylene glycol, almost isorefractive ethylene glycol-in-n-tetradecane Pickering emulsions can be prepared. The droplet diameter and transparency of such emulsions can be systematically varied by adjusting the worm copolymer concentration. PMID:25844544

  15. Aging mechanism in model Pickering emulsion

    NASA Astrophysics Data System (ADS)

    Fouilloux, Sarah; Malloggi, Florent; Daillant, Jean; Thill, Antoine

    We study the stability of a model Pickering emulsion system. A special counter-flow microfluidics set-up was used to prepare monodisperse Pickering emulsions, with oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidics setup. A surface coverage as low as 23$\\%$ is enough to stabilize the emulsions and we evidence a new regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases in time, in coexistence with a large amount of dispersed phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective.

  16. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature.

  17. Emulsion based cast booster - a priming system

    SciTech Connect

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

  18. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  19. Evaluating factors affecting the permeability of emulsions used to stabilize radioactive contamination from a radiological dispersal device.

    PubMed

    Fox, Garey A; Medina, Victor F

    2005-05-15

    Present strategies for alleviating radioactive contamination from a radiological dispersal device (RDD) or dirty bomb involve either demolishing and removing radioactive surfaces or abandoning portions of the area near the release point. In both cases, it is imperative to eliminate or reduce migration of the radioisotopes until the cleanup is complete or until the radiation has decayed back to acceptable levels. This research investigated an alternative strategy of using emulsions to stabilize radioactive particulate contamination. Emergency response personnel would coat surfaces with emulsions consisting of asphalt or tall oil pitch to prevent migration of contamination. The site can then be evaluated and cleaned up as needed. In order for this approach to be effective, the treatment must eliminate migration of the radioactive agents in the terror device. Water application is an environmental condition that could promote migration into the external environment. This research investigated the potential for water, and correspondingly contaminant, migration through two emulsions consisting of Topein, a resinous byproduct during paper manufacture. Topein C is an asphaltic-based emulsion and Topein S is a tall oil pitch, nonionic emulsion. Experiments included water adsorption/ mobilization studies, filtration tests, and image analysis of photomicrographs from an environmental scanning electron microscope (ESEM) and a stereomicroscope. Both emulsions were effective at reducing water migration. Conductivity estimates were on the order of 10(-80) cm s(-1) for Topein C and 10(-7) cm s(-1) for Topein S. Water mobility depended on emulsion flocculation and coalescence time. Photomicrographs indicate that Topein S consisted of greater and more interconnected porosity. Dilute foams of isolated spherical gas cells formed when emulsions were applied to basic surfaces. Gas cells rose to the surface and ruptured, leaving void spaces that penetrated throughout the emulsion. These

  20. The LIFE Dynamic Chamber System

    NASA Astrophysics Data System (ADS)

    Rhodes, Mark; Kane, Jave; Latkowski, Jeffery; Cook, Andrew; Divol, Laurent; Loosmore, Gwendolen; Scott, Howard; Scullard, Christian; Tabak, Max; Wilks, Scott; Moses, Gregory; Heltemes, Thad; Sacks, Ryan; Pantano, Carlos; Kramer, Richard

    2011-10-01

    Dry-wall IFE designs such as LIFE utilize Xe fill gas to protect the target chamber first wall from x-ray heating and ionic debris. A key question is how cool, settled and clean the Xe must be to permit beam propagation and target transport, and how to reach this state at a 10+ Hz shot repetition rate. Xe is at low density in the target chamber, and purified Xe is reinjected at higher density and lower temperature into the larger outer chamber. Maintenance of this density difference due to blast waves generated by implosion of the target capsules is being assessed with HYDRA and 3D VTF, and possible validation experiments are being investigated. Detailed gas response near the wall is being studied using 3D Miranda. A laboratory-scale theta pinch experiment will study cooling and beam propagation in Xe. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Dynamical and structural signatures of the glass transition in emulsions

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Gnan, Nicoletta; Mason, Thomas G.; Zaccarelli, Emanuela; Scheffold, Frank

    2016-09-01

    We investigate structural and dynamical properties of moderately polydisperse emulsions across an extended range of droplet volume fractions ϕ, encompassing fluid and glassy states up to jamming. Combining experiments and simulations, we show that when ϕ approaches the glass transition volume fraction {φg} , dynamical heterogeneities and amorphous order arise within the emulsion. In particular, we find an increasing number of clusters of particles having five-fold symmetry (i.e. the so-called locally favoured structures, LFS) as ϕ approaches {φg} , saturating to a roughly constant value in the glassy regime. However, contrary to previous studies, we do not observe a corresponding growth of medium-range crystalline order; instead, the emergence of LFS is decoupled from the appearance of more ordered regions in our system. We also find that the static correlation lengths associated with the LFS and with the fastest particles can be successfully related to the relaxation time of the system. By contrast, this does not hold for the length associated with the orientational order. Our study reveals the existence of a link between dynamics and structure close to the glass transition even in the absence of crystalline precursors or crystallization. Furthermore, the quantitative agreement between our confocal microscopy experiments and Brownian dynamics simulations indicates that emulsions are and will continue to be important model systems for the investigation of the glass transition and beyond.

  2. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  3. [On bitumen emulsions in water].

    PubMed

    Rivas, Hercilio; Gutierrez, Xiomara; Silva, Felix; Chirinos, Manuel

    2003-01-01

    The most important factors, controlling the process of emulsification of highly viscous hydrocarbons in water, which are responsible for keeping the stability and other properties of these systems, are discused in this article. The effect of non-ionic surfactants, such as nonil phenol ethoxilated compounds on the interfacial behavior of bitumen/water systems is analyzed. The effect of the natural surfactants in presence or in absence of electrolytes is also analyzed. The procedures followed in order to obtain the optimal conditions of formulation and formation of bitumen in water emulsions, are discussed and the effect of some parameters on the mean droplet diameter and distribution are also considered. It was found that keeping constant mixing speed and time of mixing, the mean droplet diameter decreases as the bitumen concentration increases. Emulsion stability, which can be monitored by following the changes in mean droplet diameters and viscosity as a function of the storage time, is deeply affected by the type and concentration of surfactant.

  4. Optimization of cell-wall skeleton derived from Mycobacterium bovis BCG Tokyo 172 (SMP-105) emulsion in delayed-type hypersensitivity and antitumor models.

    PubMed

    Miyauchi, M; Murata, M; Fukushima, A; Sato, T; Nakagawa, M; Fujii, T; Koseki, N; Chiba, N; Kashiwazaki, Y

    2012-08-01

    Cell-wall skeleton prepared from Mycobacterium bovis BCG (BCG-CWS) is known as a potent adjuvant and has been shown to possess antitumor activity in many non-clinical and clinical studies. As there are no approved BCG-CWS formulations for cancer therapy, we investigated the potential for cancer immunotherapy of SMP-105, our originally produced BCG-CWS. For optimizing SMP-105 emulsion, we compared the effects of drakeoland squalane-based SMP-105 emulsions on IFN-γ production in rats and evaluated their ability to induce skin reaction in guinea pigs. Both emulsions had the same activity in both experiments. We selected squalane as base material and produced two types of squalane-based formulations (vialed emulsion and pumped emulsion) that can easily be prepared as oil-in-water emulsions. Although the vialed emulsion showed the same pattern of distribution as a usual homogenized emulsion, the pumped emulsion showed more uniform distribution than the other two emulsions. Whereas both emulsions enhanced strong delayed type hypersensitivity (DTH) reaction in a mouse model, the pumped emulsion induced slightly smaller edema. Data on oil droplet size distribution suggest that few micrometer oil droplet size might be appropriate for oil-in-water microemulsion of SMP-105. The antitumor potency of SMP-105 emulsion was stronger than that of some of the launched toll-like receptor (TLR) agonists (Aldara cream, Picibanil, and Immunobladder). Aldara and Picibanil showed limited antitumor effectiveness, while Immunobladder had almost the same effect as SMP-105 at the highest dose, but needed about 10 times the amount of SMP-105. These findings first indicate that SMP-105 has great potential in cancer immunotherapy.

  5. Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer.

    PubMed

    Yanaga, Akira; Hozumi, Naruto; Ohira, Shin-Ichi; Hasegawa, Asako; Toda, Kei

    2016-02-01

    Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (μGAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000 ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3.

  6. Effect of ultrasonic frequency on separation of water from heavy crude oil emulsion using ultrasonic baths.

    PubMed

    Antes, Fabiane G; Diehl, Liange O; Pereira, Juliana S F; Guimarães, Regina C L; Guarnieri, Ricardo A; Ferreira, Bianca M S; Flores, Erico M M

    2017-03-01

    In this work, a comprehensive study was performed for the evaluation of ultrasound (US) frequency for demulsification of crude oil emulsions. Experiments were performed using ultrasonic baths operating at the following frequencies: 25, 35, 45, 130, 582, 862 and 1146kHz. Synthetic water-in-oil emulsions with 12%, 35% and 50% of water and medians of droplet size distribution (DSD, D(0.5)) of 5, 10 and 25μm were prepared using a heavy crude oil (API density of 19). Crude oil demulsification was achieved at frequencies in the range of 25-45kHz for all tested emulsions. When frequencies higher than 45kHz were applied, no changes in the characteristics of the crude oil emulsions were observed. Demulsification efficiencies of about 65% were achieved at a frequency of 45kHz after 15min of US application (emulsions with original water content of 50% and D(0.5)=10μm). An important aspect is that no addition of chemical demulsifiers was performed, and the demulsification efficiency was considered high, taking into account that the results were obtained using a non-conventional crude oil. Contrary to the normal application of low-frequency US that has been used for emulsification, the proposed approach seems to be a promising technology for water removal from crude oil emulsions.

  7. Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes.

    PubMed

    Shi, Chen; Zhang, Ling; Xie, Lei; Lu, Xi; Liu, Qingxia; He, Jiajun; Mantilla, Cesar A; Van den Berg, Frans G A; Zeng, Hongbo

    2017-02-07

    Adsorption of interfacially active components at the water/oil interface plays critical roles in determining the properties and behaviors of emulsion droplets. In this study, the droplet probe atomic force microscopy (AFM) technique was applied, for the first time, to quantitatively study the interaction mechanism between water-in-oil (W/O) emulsion droplets with interfacially adsorbed asphaltenes. The behaviors and stability of W/O emulsion droplets were demonstrated to be significantly influenced by the asphaltene concentration of organic solution where the emulsions were aged, aging time, force load, contact time, and solvent type. Bare water droplets could readily coalesce with each other in oil (i.e., toluene), while interfacially adsorbed asphaltenes could sterically inhibit droplet coalescence and induce interfacial adhesion during separation of the water droplets. For low asphaltene concentration cases, the adhesion increased with increasing asphaltene concentration (≤100 mg/L), but it significantly decreased at relatively high asphaltene concentration (e.g., 500 mg/L). Experiments in Heptol (i.e., mixture of toluene and heptane) showed that the addition of a poor solvent for asphaltenes (e.g., heptane) could enhance the interfacial adhesion between emulsion droplets at relatively low asphaltene concentration but could weaken the adhesion at relatively high asphaltene concentration. This work has quantified the interactions between W/O emulsion droplets with interfacially adsorbed asphaltenes, and the results provide useful implications into the stabilization mechanisms of W/O emulsions in oil production. The methodology in this work can be readily extended to other W/O emulsion systems with interfacially active components.

  8. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  9. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  10. Emulsion package and method of mixing the emulsion

    SciTech Connect

    Snyder, R.G.; Brenneman, S.; Clancy, J.J.

    1984-08-28

    A coal tar emulsion driveway sealer is packaged in a sealed bag. The volume of sealer is less than half the capacity of the bag and the bag is substantially completely evacuated but for the sealer. The separated sealer is mixed by compressing the sides of the bag to induce turbulent flow of the paste and liquid for hydraulic mixing thereof. The sealer may be dispensed at a controlled rate without spattering by cutting a corner from the bag to provide a pour spout. The bag with the sealer may be contained in a carton. The bag membrane comprises an aluminum layer vapor deposited on polyester. Those two layers are sandwiched between layers of EVA copolymer.

  11. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  12. Ethylcellulose: a new type of emulsion stabilizer.

    PubMed

    Melzer, Eva; Kreuter, Jörg; Daniels, Rolf

    2003-07-01

    Cellulose ethers, in particular hypromellose, represent an interesting alternative when emulsions have to be stabilized avoiding conventional low molecular weight surfactants. So far this option has been only described for the formulation of oil-in-water (o/w) emulsions. Since surfactant-free water-in-oil (w/o) emulsions seem to be also attractive as drug carriers, ethyl cellulose, an oil-soluble cellulose derivative, was studied for its ability to stabilize w/o emulsions. Measurements of the interfacial tension confirmed that ethylcellulose was positively adsorbed at the water/oil interface with diverse lipids. Appearance of model emulsions was dependent on the processing temperature. At low temperatures (15 degrees C) cream-like o/w emulsions were obtained. Processing at 30 degrees C yielded fluid w/o-lotions. Investigation of the microstructure showed that the surface of the emulsion droplets was covered with particles which formed a mechanical barrier. These colloidal particles were shown to be a precipitate of ethylcellulose which forms when the polymer which was dissolved in the lipid phase comes into contact with water. Thus, ethylcellulose was demonstrated to represent a new type of particulate polymeric emulsifier.

  13. High acyl gellan as an emulsion stabilizer.

    PubMed

    Vilela, Joice Aline Pires; da Cunha, Rosiane Lopes

    2016-03-30

    High acyl gellan (0.01-0.2% w/w) was used as stabilizer in oil in water emulsions containing 30% (w/w) of sunflower oil and prepared under different process conditions. Stable emulsions to phase separation could be obtained using high acyl gellan (HA) content above 0.05% (w/w), while low acyl gellan (LA) prepared at the same conditions could not stabilize emulsions. Emulsions properties depended on the process used to mix the oil and gellan dispersion since high pressure homogenization favored stabilization while very high energy density applied by ultrasound led to systems destabilization. Emulsions prepared using high pressure homogenization showed zeta potential values ranging from -50 up to -59 mV, suggesting that electrostatic repulsion could be contributing to the systems stability. Rheological properties of continuous phase were also responsible for emulsions stabilization, since HA gellan dispersions showed high viscosity and gel-like behavior. The high viscosity of the continuous phase could be associated to the presence of high acyl gellan microgels/aggregates. Disentanglement of these aggregates performed by ultrasound strongly decreased the viscosity and consequently affected the emulsions behavior, reducing the stability to phase separation.

  14. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  15. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies.

  16. Pump safety tests regarding emulsion explosives

    SciTech Connect

    Perlid, H.

    1996-12-31

    In the handling of emulsion explosives pumping is a key operation. A number of serious accidents has shown that pumping can be a risky operation and should be carefully considered and investigated. This is the background behind a series of pump tests carried out by Nitro Nobel. This paper refers to pump safety tests with an eccentric screw pump (progressive cavity) and emulsion explosives. A selection of emulsions unsensitized as well as sensitized were tested. The tests were performed in a circulation system against dead head and as dry pumping.

  17. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  18. The morphology of emulsion polymerized latex particles

    SciTech Connect

    Wignall, G.D.; Ramakrishnan, V.R.; Linne, M.A.; Klein, A.; Sperling, L.H.; Wai, M.P.; Gelman, R.A.; Fatica, M.G.; Hoerl, R.H.; Fisher, L.W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structre as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10/sup 4/ < M < 6 x 10/sup 6/ g/mol. For M > 10/sup 6/ the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10/sup 6/ g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights. 25 refs., 6 figs., 3 tabs.

  19. Decompressing Emulsion Droplets Favors Coalescence

    NASA Astrophysics Data System (ADS)

    Bremond, Nicolas; Thiam, Abdou R.; Bibette, Jérôme

    2008-01-01

    The destabilization process of an emulsion under flow is investigated in a microfluidic device. The experimental approach enables us to generate a periodic train of droplet pairs, and thus to isolate and analyze the basic step of the destabilization, namely, the coalescence of two droplets which collide. We demonstrate a counterintuitive phenomenon: coalescence occurs during the separation phase and not during the impact. Separation induces the formation of two facing nipples in the contact area that hastens the connection of the interfaces prior to fusion. Moreover, droplet pairs initially stabilized by surfactants can be destabilized by forcing the separation. Finally, we note that the fusion mechanism is responsible for a cascade of coalescence events in a compact system of droplets where the separation is driven by surface tension.

  20. Dielectrophoresis of reverse phase emulsions.

    PubMed

    Flores-Rodriguez, N; Bryning, Z; Markx, G H

    2005-08-01

    Reverse miniemulsions, emulsions of droplets of size 200 nm-1 microm of a polar liquid dispersed in an apolar continuous liquid phase, exhibit strong electrokinetic responses in low-frequency electric fields. The electrokinetic behaviour of a reverse miniemulsion, previously developed for use as electronic paper, has been investigated under static and flow conditions, in uniform and non-uniform electric fields. Results reveal that when using frequencies lower than 10 Hz strong aggregation of the droplets occurs. In uniform electric fields, under static conditions, droplets reversibly aggregate into honeycomb-like or irregular aggregates. Under flow conditions, droplets aggregate into approximately equidistant streams. In non-uniform electric fields the droplets reversibly aggregate in high-field regions, and can be guided along regions of high field strength in a flow. The potential of the technique for the formation of structured materials is discussed.

  1. Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Guillermo Andres

    The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion

  2. Thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.

    1985-01-01

    The reusable life of the Space Shuttle main engine (SSME) is influenced by the cyclic life of the regeneratively liquid cooled main combustion chamber (MCC). During an operational duty cycle the MCC liner is subjected to a large transient thermal gradient that imparts a high thermal cyclic strain to the liner hot gas wall. Life predictions of such chambers have usually been based on low cycle fatigue (LCF) evaluations. Hot-fire testing, however, has shown significant mid-channel wall deformation and thinning during accrued cyclic testing. This phenomenon is termed cyclic creep and appears to be significantly accelerated at elevated temperatures. An analytical method that models the cyclic creep phenomenon and its application to thrust chamber life prediction is presented. The chamber finite element geometry is updated periodically to account for accrued wall thinning and distortion. Failure is based on the tensile instability failure criterion. Cyclic life results for several chamber life enhancing coolant channel designs are compared to the typically used LCF analysis that neglects cyclic creep. The results show that the usable cyclic creep life is approximately 30 to 50% of the commonly used LCF life.

  3. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  4. The DELPHI time projection chamber

    SciTech Connect

    Brand, C.; Cairanti, G.; Charpentier, P.; Clara, M.P.; Delikaris, D.; Foeth, H.; Heck, B.W.; Hilke, H.J.; Sulkowski, K.; Aubret, C.

    1989-02-01

    The central tracking device of the DELPHI Experiment at LEP is a Time Projection Chamber (TPC) with an active volume of 2 x 1.34m in length and 2.22m in diameter. Since spring 1988 the TPC has undergone extensive tests in a cosmic ray set-up. It will be installed in the LEP tunnel by early 1989. This report covers the construction, the read-out electronics and the contribution of the TPC to the DELPHI trigger. Emphasis is given to novelties which are not used in similar detectors.

  5. Aging properties of Kodak type 101 emulsions

    NASA Technical Reports Server (NTRS)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  6. Multi-body coalescence in Pickering emulsions.

    PubMed

    Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C; Na, Chongzheng

    2015-01-12

    Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions-the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

  7. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets.

    PubMed

    Arima, S; Ueno, S; Ogawa, A; Sato, K

    2009-09-01

    We performed scanning microbeam small-angle X-ray diffraction (micro-SAXD) experiments, differential scanning calorimetry (DSC) analysis, and optical microscopic observation of palm mid fraction (PMF) crystals in oil-in-water emulsion droplets. The scanning micro-SAXD experiment was performed by irradiating a synchrotron radiation X-ray microbeam having an area of 5 x 5 microm(2) onto different positions on a 50 microm diameter emulsion droplet after the crystallization of PMF by chilling the emulsion at 5 degrees C. The micro-SAXD patterns were recorded with a two-dimensional (2D) detector, which enabled spatial analysis of polymorphic structures and the orientation of lamella planes of PMF crystals at different positions inside the emulsion droplet. Particular attention was paid to compare the crystallization of PMF in two types of emulsion droplets, hydrophilic polyoxyethylene sorbitan mono-oleate (Tween 80) alone (Tween 80 emulsion) and Tween 80 and hydrophobic sucrose palmitic acid oligoester (P-170) (Tween 80+P-170 emulsion). The DSC study revealed that the PMF crystallization temperature in the Tween 80+P-170 emulsion droplets increased by 3 degrees C compared to that of the Tween 80 emulsion because of the effects of the P-170 additive in promoting PMF crystallization. The micro-SAXD studies revealed the following results. (1) The lamella planes of PMF crystals near the outer edges of the droplet in the Tween 80+P-170 emulsion were mostly parallel to an oil-water interface, whereas the lamella planes of PMF crystals were not always aligned with the oil-water interface in the Tween 80 emulsion droplet. (2) The degree of orientation of the lamellar planes of PMF crystals, which was evaluated from the values of full width at half-maximum of 2D micro-SAXD patterns with respect to azimuthal angle extension, was remarkably higher in the Tween 80+P-170 emulsion than in the Tween 80 emulsion. (3) Polymorphic transformation of PMF from alpha to beta' in the Tween 80

  8. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols as well as imidazole formation in the presence of ammonia

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2015-04-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest α-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected[3]. Besides this particulate glyoxal is able to undergo heterogeneous chemistry with gaseous ammonia to form imidazoles. This plays an important role for regions with aerosols exhibiting alkaline pH values for example from lifestock or soil dust because imidazoles as nitrogen containing compounds change the optical properties of aerosols[4]. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols

  9. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    PubMed

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  10. Shear-stabilized emulsion flooding process

    SciTech Connect

    Carpenter, C.W.; Reed, R.L.

    1982-06-29

    Additional amounts of crude oil are recovered from a subterranean formation by flooding with a translucent emulsion comprising an upper- or middle-phase microemulsion as an external phase and a polymer-containing brine solution as an internal phase. The translucent emulsion tends to coalesce into its component phases under conditions of no shear, but is stabilized by low shears such as those imposed on fluids flowing through a subterranean formation.

  11. Antipollution combustion chamber

    SciTech Connect

    Caruel, J.E.; Gastebois, P.M.

    1981-01-27

    The invention concerns a combustion chamber for turbojet engines. The combustion chamber is of the annular type and consists of two coaxial flame tubes opening into a common dilution and mixing zone. The inner tube is designed for low operating ratings of the engine, the outer tube for high ratings. Air is injected as far upstream as possible into the dilution zone, to enhance the homogenization of the gaseous flow issuing from the two tubes prior to their passage into the turbine and to assure the optimum radial distribution of temperatures. The combustion chamber according to the invention finds application in a particularly advantageous manner in turbojet engines used in aircraft propulsion because of the reduced emission of pollutants it affords.

  12. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    PubMed

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-04

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature.

  13. Pickering emulsions stabilized by charged nanoparticles.

    PubMed

    Ridel, Laure; Bolzinger, Marie-Alexandrine; Gilon-Delepine, Nicole; Dugas, Pierre-Yves; Chevalier, Yves

    2016-09-28

    The stabilization of o/w Pickering emulsions in cases of weak adsorption of solid particles at the surface of oil droplets is addressed. Though the adsorption is usually very strong and irreversible when partial wetting conditions are fulfilled, electrostatic repulsions between charged solid particles act against the adsorption. The regime of weak adsorption was reached using charged silica nanoparticles at high pH and low ionic strength. O/w Pickering emulsions of the diisopropyl adipate oil were stabilized by colloidal nanoparticles of Ludox® AS40 consisting of non-aggregated particles of bare silica (hydrophilic). The combination of stability assessment, droplet size and electrokinetic potential measurements at various pH values, adsorption isotherms and cryo-SEM observations of the adsorbed layers disclosed the specificities of the stabilization of Pickering emulsions by adsorption of solid nanoparticles against strong electrostatic repulsions. Not only the long-term stability of emulsions was poor under strong electrostatic repulsions at high pH, but emulsification failed since full dispersion of oil could not be achieved. Emulsion stability was ensured by decreasing electrostatic repulsions by lowering the pH from 9 to 3. Stable emulsions were stabilized by a monolayer of silica particles at 54% coverage of the oil droplet surface at low silica content and an adsorption regime as multilayers was reached at higher concentrations of silica although there was no aggregation of silica in the bulk aqueous phase.

  14. Conditions for equilibrium solid-stabilized emulsions.

    PubMed

    Kraft, Daniela J; de Folter, Julius W J; Luigjes, Bob; Castillo, Sonja I R; Sacanna, Stefano; Philipse, Albert P; Kegel, Willem K

    2010-08-19

    Particular types of solid-stabilized emulsions can be thermodynamically stable as evidenced by their spontaneous formation and monodisperse droplet size, which only depends on system parameters. Here, we investigate the generality of these equilibrium solid-stabilized emulsions with respect to the basic constituents: aqueous phase with ions, oil, and stabilizing particles. From systematic variations of these constituents, we identify general conditions for the spontaneous formation of monodisperse solid-stabilized emulsions droplets. We conclude that emulsion stability is achieved by a combination of solid particles as well as amphiphilic ions adsorbed at the droplet surface, and low interfacial tensions of the bare oil-water interface of order 10 mN/m or below. Furthermore, preferential wetting of the colloidal particles by the oil phase is necessary for thermodynamic stability. We demonstrate the sufficiency of these basic requirements by extending the observed thermodynamic stability to emulsions of different compositions. Our findings point to a new class of colloid-stabilized meso-emulsions with a potentially high impact on industrial emulsification processes due to the associated large energy savings.

  15. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  16. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  17. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests

    PubMed Central

    Li, Yilei; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428

  19. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  20. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  1. Metabolic simulation chamber

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.

    1972-01-01

    Metabolic simulation combustion chamber was developed as subsystem for breathing metabolic simulator. Entire system is used for evaluation of life support and resuscitation equipment. Metabolism subsystem simulates a human by consuming oxygen and producing carbon dioxide. Basic function is to simulate human metabolic range from rest to hard work.

  2. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  3. Impact of model fat emulsions on sensory perception using repeated spoon to spoon ingestion.

    PubMed

    Appelqvist, I A M; Poelman, A A M; Cochet-Broch, M; Delahunty, C M

    2016-06-01

    Eating is a dynamic behaviour, in which food interacts with the mechanical and physiological environment of the mouth. This dynamic interaction changes the oral surfaces leaving particles of food and building up a film on the oral surfaces, which may impact on the temporal perception during the eating experience. The effect of repeated spoon to spoon ingestion of oil in water emulsion products (2%-50% w/w oil) was evaluated using descriptive in-mouth and after swallowing sensory attributes. Descriptive sensory analysis indicated that fatty mouthfeel and afterfeel perception (measured post swallowing) increased with the number of spoonfuls for emulsions containing 50% fat. This effect is likely due to the build-up of oil droplet layers deposited on the mouth surfaces. There was an enhancement of fatty afterfeel intensity for 50% fat emulsions containing the more lipophilic aroma ethylhexanoate compared to ethyl butanoate, indicating a cross-modal interaction. No increase in these attributes from spoon to spoon was observed for the low oil emulsions; since most of the oil in the emulsion was swallowed and very little oil was likely to be left in the mouth. Sweetness perception increased as fat level increased in the emulsion due to an increase in the effective concentration of sugar in the aqueous phase. However, the sweetness perceived did not change from spoon to spoon, suggesting that any oil-droplets deposited on the oral surfaces did not form a complete barrier, restricting access of the sucrose to the taste buds. This study highlights the importance of measuring the dynamic nature of eating and demonstrated change in sensory perception occurring with repeated ingestion of model emulsions, which was likely due to a change in mouth environment.

  4. A model for the prediction of droplet size in Pickering emulsions stabilized by oppositely charged particles.

    PubMed

    Nallamilli, Trivikram; Mani, Ethayaraja; Basavaraj, Madivala G

    2014-08-12

    Colloidal particles irreversibly adsorb at fluid-fluid interfaces stabilizing what are commonly called "Pickering" emulsions and foams. A simple geometrical model, the limited coalescence model, was earlier proposed to estimate droplet sizes in emulsions. This model assumes that all of the particles are effective in stabilization. The model predicts that the average emulsion drop size scales inversely with the total number of particles, confirmed qualitatively with experimental data on Pickering emulsions. In recent years, there has been an increasing interest in synthesizing emulsions with oppositely charged particles (OCPs). In our experimental study, we observed that the drop size varies nonmonotonically with the number ratio of oppositely charged colloids, even when a fixed total number concentration of colloids is used, showing a minimum. We develop a mathematical model to predict this dependence of drop size on number ratio in such a mixed particle system. The proposed model is based on the hypothesis that oppositely charged colloids form stable clusters due to the strong electrostatic attraction between them and that these clusters are the effective stabilizing agents. The proposed model is a two-parameter model, parameters being the ratio of effective charge of OCPs (denoted as k) and the size of the aggregate containing X particles formed due to aggregation of OCPs. Because the size of aggregates formed during emulsification is not directly measurable, we use suitable values of parameters k and X to best match the experimental observations. The model predictions are in qualitative agreement with experimentally observed nonmonotonic variation of droplet sizes. Using experiments and theory, we present a physical insight into the formation of OCP stabilized Pickering emulsions. Our model upgrades the existing Wiley's limited coalescence model as applied to emulsions containing a binary mixture of oppositely charged particles.

  5. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions.

    PubMed

    Rymaruk, Matthew J; Thompson, Kate L; Derry, Matthew J; Warren, Nicholas J; Ratcliffe, Liam P D; Williams, Clive N; Brown, Steven L; Armes, Steven P

    2016-08-14

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  6. Emulsion Mapping in Pork Meat Emulsion Systems with Various Lipid Types and Brown Rice Fiber

    PubMed Central

    Choi, Yun-Sang; Kim, Young-Boong; Park, Jinhee

    2015-01-01

    This study was conducted to evaluate emulsion mapping between emulsion stability and cooking yields, apparent viscosity, and hardness of reduced-fat pork emulsion systems. The reduced-fat emulsion systems were supplemented with different lipid types and brown rice bran fiber (BRF) concentrations. Compared to the control with 30% back fat, lower emulsion stability and higher cooking yield of meat emulsion systems were observed in T1 (30% back fat+1% BRF), T2 (30% back fat+2% BRF), T3 (30% back fat+3% BRF), T4 (30% back fat+6% BRF), and T15 (10% back fat+10% canola oil+2% BRF). Lower emulsion stability and higher apparent viscosity were observed in T1, T2, T3, T4, and T8 (20% back fat+3% BRF) compared to the control. Lower emulsion stability and higher hardness was detected in all treatments compared with the control, except T5 (20% back fat), T10 (10% back fat+10% canola oil+2% BRF), T11 (10% back fat+10% olive oil+2% BRF), T12 (10% back fat+10% grape seed oil+2% BRF), and T13 (10% back fat+10% soybean oil+2% BRF). This approach has been found particularly useful for highlighting differences among the emulsified properties in emulsion meat products. Thus, the results obtained with emulsion mapping are useful in making emulsified meat products of desired quality characteristics, partially replacing pork back fat with a mix of 10% back fat, 10% canola oil and 2% BRF was most similar to the control with 30% pork back fat. PMID:26761836

  7. The atomization of water-oil emulsions

    SciTech Connect

    Broniarz-Press, L.; Ochowiak, M.; Rozanski, J.; Woziwodzki, S.

    2009-09-15

    The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20-90, 20-70, 20-50 and 20-30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm{sup 3}/s) and gas phase changed from 0.28 to 1.4 (dm{sup 3}/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 {mu}m. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air-water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity. (author)

  8. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated

  9. Emulsions stability, from dilute to dense emulsions -- role of drops deformation.

    PubMed

    Sanfeld, Albert; Steinchen, Annie

    2008-07-01

    The present paper starts with a review of fundamental descriptions based on physico-chemical laws derived for emulsions with a special interest for eventual evidences of drops deformation. A critical analysis of theories and experiments is given that leads the authors to propose new static and dynamic models for the approach to flocculation and coalescence of two deformable drops in dense and dilute environments of other neighboring drops. The model developed is based on an old paper by Albers and Overbeek for W/O dense emulsions with non-deformable particles, that has been improved recently first by Sengupta and Papadopoulos and then by Mishchuk et al. to account for all the interaction forces (electrostatic, van der Waals and steric). The basic idea here rests in the assumption that the flat surface area of the two coalescing drops, interacting in the field of other particles, increases when the distance between the particles decreases according to an exponential law with a characteristic length related to the disjoining force in the inter-particle film and to the capillary pressure that opposes flattening. The difficulty lies, indeed, in manifold interpretations on experimental observations so that no clear conclusion can be derived on mechanisms responsible for the deformation of droplets. This is why, from a pure theoretical and physical point of view, according to rather complicated models, we propose a much more simple approach that permits to define a capillary length as part of virtual operations. In a static approach, this length is based on analogy with electricity, namely repulsion leads to flatness while attraction to hump. Therefore this brings us to a definition of a length depending on the maximum value of the disjoining pressure in competition with the capillary pressure. Gravity also promotes flocculation, therefore we compare the maximum values of the surface forces acting between the surfaces of two floculating particles to gravity. Finally

  10. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  11. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  12. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  13. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  14. Measurement of emulsion flow in porous media: Improvements in heavy oil recovery

    NASA Astrophysics Data System (ADS)

    Bryan, J.; Wang, J.; Kantzas, A.

    2009-02-01

    Many heavy oil and bitumen reservoirs in the world are too small or thin for thermal enhanced oil recovery methods to be economic. In these fields, novel methods of less energy intensive, non-thermal technologies are required. Previous experience has shown that the injection of low concentrations of aqueous alkali-surfactant solutions into the reservoir can significantly improve the oil recovery, beyond that of waterflooding. This is due to the in-situ formation of emulsions, which plug off the water channels and lead to improved sweep efficiency in the reservoir. The proper control of these floods requires methods for monitoring the formation and effect of these emulsions. In this paper, the results of laboratory core floods are interpreted to demonstrate how the pressure and flow response can be related to the formation of these emulsions. A new technique (low field NMR) is also used to directly measure W/O emulsions in porous media. Finally, a numerical study is performed in order to demonstrate how the in-situ formation of emulsions can be simply represented in simulation software.

  15. Direct current electrorheological stability determination of water-in-crude oil emulsions.

    PubMed

    Wang, Xiuyu; Alvarado, Vladimir

    2009-10-22

    Emulsion stability is a fundamental determination for separation technologies. We use the critical electric field (CEF) and viscosity changes in DC electrorheological (ER) experiments in dynamic mode to establish the level of stability of water-in-crude oil emulsions previously studied through bottle tests. The CEF value corresponds to the value of electric field at which the current reaches 95% or larger of the plateau value. Our results show that CEF can be obtained through current measurements and viscosity drops resulting from emulsion structure breakdown, although viscosity changes are not always a good proxy of stability. This implies that electrorheology cannot be uncritically used for static stability determination of the CEF value. Emulsion structure breakdown is explored through rheological characterization before and after voltage sweeps have been performed. When the electric field applied is below the CEF value, the storage and loss moduli response, as well as viscosity, as functions of frequency are recovered. However, when the electric field is greater than the CEF value, the emulsion structure breaks down irreversibly.

  16. A disposable emulsion droplet generation lab chips driven by vacuum module for manipulation of blood cells.

    PubMed

    Chia-Hung Lee; Chien-Chong Hong

    2015-08-01

    This paper presents a novel disposable emulsion droplet generation lab chip driven by vacuum module for monodisperse emulsions generation and blood cell encapsulation. Emulsion droplet is a powerful tool in miniaturized analysis systems for high throughput processing. It shows great potential in chemical and biological reactions like speeding up the reaction and reducing the cost of reagents. Most research groups use syringe pumps providing positive pressure to drive the fluids. However, the long tubing connection and high cost make the microfluidic systems complicate and unsuitable for lab-on-a-chip (LOC) device. In this paper, our emulsion droplet generation lab chip with disposable vacuum module, made of shape memory polymer, provides a negative pressure to drive the fluids. This lab chip could achieve creating monodisperse emulsion droplets by manipulating two-phase microfluidic within 1 set of vacuum module and mini-heater. In the meantime, the waste is gathered into the cavity of vacuum module. This makes this lab chip safe while using biological samples. The vacuum module shows the advantages of compact, simple structure, and east-to-attach with the microfluidic device and great performance in the experiments.

  17. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  18. Dynamic film and interfacial tensions in emulsion and foam systems

    SciTech Connect

    Kim, Y.H.; Koczo, K.; Wasan, D.T.

    1997-03-01

    In concentrated fluid dispersions the liquid films are under dynamic conditions during film rupture or drainage. Aqueous foam films stabilized with sodium decylsulfonate and aqueous emulsion films stabilized with the nonionic Brij 58 surfactant were formed at the tip of a capillary and the film tension was measured under static and dynamic conditions. In the stress relaxation experiments the response of the film tension to a sudden film area expansion was studied. These experiments also allowed the direct measurement of the Gibbs film elasticity. In the dynamic film tension experiments, the film area was continuously increased by a constant rate and the dynamic film tension was monitored. The measured film tensions were compared with the interfacial tensions of the respective single air/water and oil/water interfaces, which were measured using the same radius of curvature, relative expansion, and expansion rate as in the film studies. It was found that under dynamic conditions the film tension is higher than twice the single interfacial tension (IFT) and a mechanism was suggested to explain the difference. When the film, initially at equilibrium, is expanded and the interfacial area increases, a substantial surfactant depletion occurs inside the film. As a result, the surfactant can be supplied only from the adjoining meniscus (Plateau border) by surface diffusion, and the film tension is controlled by the diffusion and adsorption of surfactant in the meniscus. The results have important implications for the stability and rheology of foams and emulsions with high dispersed phase ratios (polyhedral structure).

  19. Shock Compression and Recovery of Microorganism-Loaded Broths and AN Emulsion

    NASA Astrophysics Data System (ADS)

    Hazell, P. J.; Beveridge, C.; Groves, K.; Stennett, C.

    2009-12-01

    The microorganisms Escherichia coli, Enterococcus faecalis and Zygosaccharomyces bailii and an oil-based emulsion, have been subjected to shock compression using the flyer-plate technique to initial pressures of 0.8 GPa (in the suspension). In each experiment, a stainless steel capsule was used to contain the broths and allow for recovery without contamination. Where cavitation was mostly suppressed by virtue of simultaneous shock and dynamic compression, no kill was observed. By introducing an air gap behind the suspension, limited kill was measured in the yeast. Results also suggest that stable emulsification occurs in coarse oil-based emulsions that are subjected to shock.

  20. Shock compression and recovery of microorganism-loaded broths and an emulsion

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Beveridge, Cliff; Groves, Kathy

    2009-06-01

    The microorganisms Escherichia coli, Enterococcus feacalis and Zygosaccharomyces bailii and an oil-based emulsion, have been subjected to shock compression using the flyer-plate technique to initial pressures of 0.8 GPa (in the suspension). In each experiment, a stainless steel capsule was used to contain the broths and allow for recovery without contamination. Where cavitation was suppressed by virtue of simultaneous shock and quasi-static compression, no kill was observed. By introducing an air gap behind the suspension, limited kill was measured in the yeast. Results also suggest that emulsification occurs in oil-based emulsions that are subjected to shock.

  1. Tuneable Rheological Properties of Fluorinated Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Chacon Orellana, Laura Andreina; Riechers, Birte; Caen, Ouriel; Baret, Jean-Christophe

    Pickering emulsions are an appealing approach to stabilize liquid-liquid dispersions without surfactants. Recently, amphiphilic silica nanoparticles have been proposed as an alternative to surfactants for droplet microfluidics applications, where aqueous drops are stabilized in fluorinated oils. This system, proved to be effective in preventing the leakage of resorufin, a model dye that was known to leak in surfactant-stabilized drops. The overall capabilities of droplet-based microfluidics technology is highly dependent on the dynamic properties of droplets, interfaces and emulsions. Therefore, fluorinated pickering emulsions dynamic properties need to be characterized, understood and controlled to be used as a substitute of already broadly studied emulsions for droplet microfluidics applications. In this study, fluorinated pickering emulsions have been found to behave as a Herschel Bulkley fluid, representing a challenge for common microfluidic operations as re-injection and sorting of droplets. We found that this behavior is controlled by the interaction between the interfacial properties of the particle-laden interface and the bulk properties of the two phases

  2. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  3. Optical transmission measurements for in-line monitoring of turbid oil-water emulsions

    NASA Astrophysics Data System (ADS)

    Metz, Philipp; Dopf, Katja; Aichholz, Markus; Riedel, Boris; Lemmer, Uli; Freudig, Barbara; Zimmermann, Clifton; Gerken, Martina

    2014-05-01

    For absorbing media the concentration may be calculated directly from the optical transmission following the logarithmic dependence given in the Lambert-Beer law. Due to multiple scattering events in oil-water emulsions (e.g. milk, cream, etc.), these exhibit a nonlinear relationship between the attenuation and the oil concentration. We demonstrate that for increasing oil content in oil-water emulsions the attenuation first increases, then levels out, and finally even decreases for a fat content of 60%. Single-wavelength optical transmission measurements are found to be well suited for the in-line monitoring of oil-water emulsions of fat contents below 20%, e.g., for the in-line fat content monitoring of milk. Using experiments and ray-tracing simulations we evaluate system optimization.

  4. Crystals in magma chambers

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2011-12-01

    Differentiation processes in igneous systems are one way in which the diversity of igneous rocks is produced. Traditionally, magmatic diversity is considered as variations in the overall chemical composition, such as basalt and rhyolite, but I want to extend this definition to include textural diversity. Such textural variations can be manifested as differences in the amount of crystalline (and immiscible liquid) phases and in the origin and identity of such phases. One important differentiation process is crystal-liquid separation by floatation or decantation, which clearly necessitates crystals in the magma. Hence, it is important to determine if magmas in chambers (sensu lato) have crystals. The following discussion is framed in generalities - many exceptions occur. Diabase (dolerite) dykes are a common, widespread result of regional mafic magmatism. The rims of most diabase dykes have few or no phenocrysts and crystals in the cores are commonly thought to have crystallized in place. Hence, this major mafic magmatic source did not have crystals, although compositional diversity of these dykes is commonly explained by crystal-liquid separation. This can be resolved if crystallisation was on the walls on the magma chamber. Similarly, most flood basalts are low in crystals and separation of those that are present cannot always explain the observed compositional diversity. Crystal-rich flows do occur, for example the 'Giant Plagioclase Basalts' of the Deccan series, but the crystals are thought to form or accumulate in a crystal-rich zone beneath the roof of the chamber - the rest of the chamber probably has few crystals. Some magmas from Hawaii contain significant amounts of olivine crystals, but most of these are deformed and cannot have crystallised in the chamber. In this case the crystals are thought to grow as the magma passes through a decollement zone. They may have grown on the walls or been trapped by filters. Basaltic andesite ignimbrites generally have

  5. Stimuli-responsive Pickering emulsions: recent advances and potential applications.

    PubMed

    Tang, Juntao; Quinlan, Patrick James; Tam, Kam Chiu

    2015-05-14

    Pickering emulsions possess many advantages over traditional surfactant stabilized emulsions. For example, Pickering emulsions impart better stability against coalescence and, in many cases, are biologically compatible and environmentally friendly. These characteristics open the door for their use in a variety of industries spanning petroleum, food, biomedicine, pharmaceuticals, and cosmetics. Depending on the application, rapid, but controlled stabilization and destabilization of an emulsion may be necessary. As a result, Pickering emulsions with stimuli-responsive properties have, in recent years, received a considerable amounts of attention. This paper provides a concise and comprehensive review of Pickering emulsion systems that possess the ability to respond to an array of external triggers, including pH, temperature, CO2 concentration, light intensity, ionic strength, and magnetic field. Potential applications for which stimuli-responsive Pickering emulsion systems would be of particular value, such as emulsion polymerization, enhanced oil recovery, catalyst recovery, and cosmetics, are discussed.

  6. Mobility of heavy metals from polluted sediments of a semi-enclosed basin: in situ benthic chamber experiments in Taranto's Mar Piccolo (Ionian Sea, Southern Italy).

    PubMed

    Emili, Andrea; Acquavita, Alessandro; Covelli, Stefano; Spada, Lucia; Di Leo, Antonella; Giandomenico, Santina; Cardellicchio, Nicola

    2016-07-01

    In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment-water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m(-2) day(-1)) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in

  7. Annatto Polymeric Microparticles: Natural Product Encapsulation by the Emulsion-Solvent Evaporation Method

    ERIC Educational Resources Information Center

    Teixeira, Zaine; Duran, Nelson; Guterres, Silvia S.

    2008-01-01

    In this experiment, the extract from annatto seeds was encapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles by the emulsion-solvent evaporation method. The particles were washed and centrifuged to remove excess stabilizer and then freeze-dried. The main compound of annatto seeds, bixin, has antioxidant properties as well…

  8. Combustion chamber noise suppressor

    SciTech Connect

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  9. Clinical applications of intravenous lipid emulsion therapy.

    PubMed

    Muller, Sam H; Diaz, James H; Kaye, Alan David

    2015-12-01

    Intravenous lipid emulsion (ILE; Intralipid) therapy, a standard treatment in local anesthetic toxicity, has demonstrated therapeutic efficacies for a number of different drug class-mediated toxicities. Some of these varied drug groups include antipsychotics, antidepressants, antiarrhythmics, and calcium channel blockers. To meet the objective of describing the growing number of indications for Intralipid therapy and any diverse effects and/or failures of Intralipid therapy in reversing multiple drug toxicities, we queried several Internet search engines with the key words "intravenous lipid emulsion therapy," "Intralipid," "lipid emulsion," and "local anesthetic systemic toxicity," resulting in the identification of 31 case reports for descriptive analysis. These case reports included 49 separate drug overdose cases involving ten separate drug classes which were successfully reversed with Intralipid. The education of clinicians regarding the beneficial and varied roles of Intralipid therapy in different clinical settings is warranted, particularly in terms of the potential for Intralipid therapy to reverse the toxicities of non-local anesthetic drugs.

  10. Multi-body coalescence in Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C.; Na, Chongzheng

    2015-01-01

    Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions—the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

  11. Forces acting in quasi 2d emulsions

    NASA Astrophysics Data System (ADS)

    Orellana, Carlos; Lowensohn, Janna; Weeks, Eric

    We study the forces in a quasi two dimensional emulsion system. Our samples are oil-in-water emulsions confined between two close-spaced parallel plates, so that the oil droplets are deformed into pancake shapes. By means of microscopy, we measure the droplet positions and their deformation, which we can relate to the contact forces due to surface tension. We improve over prior work in our lab, achieving a better force resolution. We use this result to measure and calibrate the viscous forces acting in our system, which fully determine all the forces on the droplets. Our results can be applied to study static configurations of emulsion, as well as faster flows.

  12. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  13. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. PICO Bubble Chambers for Dark Matter Searches: Future Prospects

    NASA Astrophysics Data System (ADS)

    Neilson, Russell; PICO Collaboration

    2017-01-01

    The PICO collaboration uses bubble chambers to search for WIMP dark matter particles. The bubble chambers are operated in a moderately superheated state, providing superb rejection of the dominant gamma background, and are filled with fluorinated target fluids ideally suited for investigating spin-dependent WIMP-proton interactions. PICO currently operates a 2-liter (PICO-2L) and a 32-liter (PICO-60) bubble chamber at the SNOLAB deep underground laboratory. I will discuss recent activities by the PICO collaboration to understand and mitigate an anomalous background that has impacted previous dark matter searches, plans for the operating experiments, and prospects for a future ton-scale PICO bubble chamber.

  15. Shear dynamics of an inverted nematic emulsion.

    PubMed

    Tiribocchi, A; Da Re, M; Marenduzzo, D; Orlandini, E

    2016-10-04

    Here we study theoretically the dynamics of a 2D and a 3D isotropic droplet in a nematic liquid crystal under a shear flow. We find a large repertoire of possible nonequilibrium steady states as a function of the shear rate and of the anchoring of the nematic director field at the droplet surface. We first discuss homeotropic anchoring. For weak anchoring, we recover the typical behaviour of a sheared isotropic droplet in a binary fluid, which rotates, stretches and can be broken by the applied flow. For intermediate anchoring, new possibilities arise due to elastic effects in the nematic fluid. We find that in this regime the 2D droplet can tilt and move in the flow, or tumble incessantly at the centre of the channel. For sufficiently strong anchoring, finally, one or both of the topological defects which form close to the surface of the isotropic droplet in equilibrium detach from it and get dragged deep into the nematic state by the flow. In 3D, instead, the Saturn ring associated with the normal anchoring disclination line can be deformed and shifted downstream by the flow, but remains always localized in the proximity of the droplet, at least for the parameter range we explored. Tangential anchoring in 2D leads to a different dynamic response, as the boojum defects characteristic of this situation can unbind from the droplet under a weaker shear with respect to the normal anchoring case. Our results should stimulate further experiments with inverted liquid crystal emulsions under shear, as most of the predictions can be testable in principle by monitoring the evolution of liquid crystalline orientation patterns or by tracking the position and shape of the droplet over time.

  16. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  17. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  18. Chamber transport for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  19. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  20. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs).

    PubMed

    Zhang, Tao; Xu, Zhiguang; Cai, Zengxiao; Guo, Qipeng

    2015-06-28

    Herein, we report the phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs) induced by salt concentration and pH changes. The ionomers are sulfonated polystyrenes (SPSs) with different sulfonation degrees. The emulsion types were determined by conductivity measurements, confocal microscopy and optical microscopy, and the formation of HIPE organogels was verified by the tube-inversion method and rheological measurements. SPSs with high sulfonation degrees (water-soluble) and low sulfonation degrees (water-insoluble) can stabilize oil-in-water emulsions; these emulsions were transformed into water-in-oil HIPEs by varying salt concentrations and/or changing the pH. SPS, with a sulfonation degree of 11.6%, is the most efficient, and as low as 0.2 (w/v)% of the organic phase is enough to stabilize the HIPEs. Phase inversion of the oil-in-water emulsions occurred to form water-in-oil HIPEs by increasing the salt concentration in the aqueous phase. Two phase inversion points from oil-in-water emulsions to water-in-oil HIPEs were observed at pH 1 and 13. Moreover, synergetic effects between the salt concentration and pH changes occurred upon the inversion of the emulsion type. The organic phase can be a variety of organic solvents, including toluene, xylene, chloroform, dichloroethane, dichloromethane and anisole, as well as monomers such as styrene, butyl acrylate, methyl methacrylate and ethylene glycol dimethacrylate. Poly(HIPEs) were successfully prepared by the polymerization of monomers as the continuous phase in the ionomer-stabilized HIPEs.

  1. [Use of perfluorocarbon emulsions for administration of photosensitizing preparations into bone marrow stem cells].

    PubMed

    Temnov, A A; Sklifas, A N; Tereshchenko, A V; Belyĭ, Iu A; Lyskov, N B; Kukushkin, N I

    2010-01-01

    It has been shown that, upon incubation of mouse bone marrow stem cells (BMSC) in vitro with the nanoparticles of perfluorocarbon (PFC) emulsion stabilized by proxanol 268, these nanoparticles penetrate into cells and stay there for a long time (up to 20 days of observation). It has been found that, under in vitro conditions, mouse BMSC loaded with the nanoparticles of both the original emulsion and the emulsion preliminarily incubated with radachlorine do not differ from control stem cells in the rate of division, stretching on a plastic support, and the formation of a monolayer. It has been shown that the exposure to laser radiation of BMSC incubated with the nanoparticles of a PFC emulsion preliminarily incubated with radachlorine under in vitro conditions leads to the death of these cells due to the destruction of the cell membrane. The treatment with laser radiation of BMSC incubated with the nanoparticles of the starting PFC emulsion (without preliminarily incubation with radachlorine) causes no death of these cells. It has been shown in in vivo experiments that, when transplanted to the organism of a recipient mouse, BMSC of a donor mouse incubated with the nanoparticles of a PFC emulsion preliminarily incubated with radachlorine retain their functional activity, in particular the ability to migrate in the animal body. In this case, radachlorine contained in these stem cells retains its major function, to induce the death of stem cells by the action of laser radiation due to the destruction of the cell membrane. The observation period after the transplantation was 5-7 days.

  2. A combination drift chamber/pad chamber for very high readout rates

    SciTech Connect

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W.; Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J.; Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. |; Arenton, M.; Conetti, S.; Cox, B.; Dukes, E.; Golovatyuk, V.; Hanlet, P.; McManus, A.; Nelson, K.; Recagni, M.; Segal, J.; Sun, J.; Ballagh, C.; Bingham, H.; Kaeding, T.; Lys, J.; Misawa, S.; Blankman, A.; Borodin, S.; Kononenko, W.; Newcomer, M.; Selove, W.; Trojak, T.; VanBerg, R.; Zhang, S.N.; Block, M.; Corti, G.; LeCompte, T.; Rosen, J.; Yao, T.; Boden, A.; Cline, D.; Ramachandran, S.; Rhoades, J.; Tokar, S.; Budagov, J.; Tsyganov, E.; Cao, Z.L.; He, M.; Wang, C.; Wei, C.; Zhang, N.; Chen, T.Y.; Yao, N.; Clark, K.; Jenkins, M.; Cooper, M.; Creti, P.; Gorini, E.; Grancagnolo, F.; Panareo, M. |; Fortney, L.; Kowald, W.; Haire, M.; Judd, D.; Turnbull, L.; Wagoner, D.; Lau, K.; Mo, G.; Trischuk, J.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  3. Ordered macroporous materials by emulsion templating

    NASA Astrophysics Data System (ADS)

    Imhof, A.; Pine, D. J.

    1997-10-01

    Ordered macroporous materials with pore diameters comparable to optical wavelengths are predicted to have unique and highly useful optical properties such as photonic bandgaps and optical stop-bands. Tight control over the pore size distribution might also lead to improved macroporous materials (those with pores greater than approximately 50nm) for application as catalytic surfaces and supports, adsorbents, chromatographic materials, filters, light-weight structural materials, and thermal, acoustic and electrical insulators. Although methods exist for producing ordered porous materials with pore diameters less than 10nm (refs 10, 11), there is no general method for producing such materials with uniform pore sizes at larger length scales. Here we report a new method for producing highly monodisperse macroporous materials with pore sizes ranging from 50nm to several micrometres. Starting with an emulsion of equally sized droplets (produced through a repeated fractionation procedure), we form macroporous materials of titania, silica and zirconia by using the emulsion droplets as templates around which material is deposited through a sol-gel process. Subsequent drying and heat treatment yields solid materials with spherical pores left behind by the emulsion droplets. These pores are highly ordered, reflecting the self-assembly of the original monodisperse emulsion droplets into a nearly crystalline array. We show that the pore size can be accurately controlled, and that the technique should be applicable to a wide variety of metal oxides and even organic polymer gels.

  4. Pickering w/o emulsions: drug release and topical delivery.

    PubMed

    Frelichowska, Justyna; Bolzinger, Marie-Alexandrine; Valour, Jean-Pierre; Mouaziz, Hanna; Pelletier, Jocelyne; Chevalier, Yves

    2009-02-23

    The skin absorption from Pickering emulsions as a new dosage form was investigated for the first time. Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. They are promising dosage forms that significantly differ from classical emulsions within several features. The skin permeation of a hydrophilic model penetrant (caffeine) was investigated from a w/o Pickering emulsion and compared to a w/o classical emulsion stabilized with an emulsifier. Both emulsions had the same composition and physicochemical properties in order to focus on the effect of the interfacial layer on the drug release and skin absorption processes. The highest permeation rates were obtained from the Pickering emulsion with a pseudo-steady state flux of 25 microg cm(-2)h(-1), threefold higher than from a classical emulsion (9.7 microg cm(-2)h(-1)). After 24h exposure, caffeine was mostly in the receptor fluid and in the dermis; cumulated amounts of caffeine were higher for the Pickering emulsion. Several physicochemical phenomena were investigated for clearing up the mechanisms of enhanced permeation from the Pickering emulsion. Among them, higher adhesion of Pickering emulsion droplets to skin surface was disclosed. The transport of caffeine adsorbed on silica particles was also considered relevant since skin stripping showed that aggregates of silica particles entered deeply the stratum corneum.

  5. Particle-Stabilized Powdered Water-in-Oil Emulsions.

    PubMed

    Binks, Bernard P; Tyowua, Andrew T

    2016-04-05

    The preparation of powdered water-in-oil (w/o) emulsions by gentle aeration of w/o emulsions stabilized by hydrophobic fumed silica particles in the presence of oleophobic fluorinated clay particles is reported for an alkane and a triglyceride oil. The resultant powders consist of water drops dispersed in oil globules themselves dispersed in air (w/o/a). They contain ∼80 wt % of the precursor w/o emulsion and were stable to phase separation for over 1 year but release oil and water when sheared on a substrate. Above a certain ratio of w/o emulsion:fluorinated clay particles, the powdered emulsions partially invert to an emulsion paste, composed of air bubbles and water droplets dispersed in oil. The tap density and angle of repose of the powdered emulsions were measured and compared with those of the corresponding powdered oils making up the continuous phase of the precursor emulsions. The contact angles of water droplets under oil on glass slides spin coated with silica particles and oil drops and w/o emulsion droplets in air on compressed disks of fluorinated clay particles are consistent with the stabilization of w/o emulsions and powdered emulsions, respectively.

  6. Na-caseinate/oil/water systems: emulsion morphology diagrams.

    PubMed

    Tan, Hui Lin; McGrath, Kathryn M

    2012-09-01

    The concentrated (dispersed phase 50-70 wt%) composition space of Na-caseinate, a family of milk proteins, stabilised emulsions was investigated for three different oils: soybean oil, palm olein and tetradecane with pH 6.8 phosphate buffer continuous phase. The variation of emulsion stability and microstructure were explored using static light scattering, diffusion nuclear magnetic resonance, cryo-scanning electron microscopy, rheology and the time varying macroscopic phase separation of the emulsions. For soybean oil and palm olein a rich diversity of emulsion microstructures and stabilities are realised. Five emulsion domains, each having a different microstructure and macroscopic stability have been identified within the composition space probed. For the lowest concentrations of emulsifier bridging flocculation is evident and emulsions are of low stability. Increasing Na-caseinate concentration leads to an increased stability and the existence of distinct individual oil droplets, visualised using cryo-scanning electron microscopy. Further increases in Na-caseinate concentration reduce emulsion stability due to depletion flocculation. Na-caseinate self-assembly is then initiated. At sufficiently high Na-caseinate and/or oil concentrations the continuous phase of the emulsion is a three-dimensional protein network and emulsion stability is again enhanced. At the limits of the emulsion composition space a gel-like paste is formed. The diversity of emulsion microstructure is reduced when tetradecane is the discrete phase. Na-caseinate self-assembly is limited and there is no evidence for formation of a protein network.

  7. The Hybrid Emulsion Detector for MINOS R&D Proposal

    SciTech Connect

    Adamson, P.; Alexandrov, K. V.; Allison, W. W.M.; Alner, G. J.; Ambats, I.; Anderson, B.; Anderson, D. F.; Andreopoulos, C.; Antipov, Yu.; Arroyo, C.; Ayres, D. S.

    1999-04-01

    The MINOS (Main Injector Neutrino Oscillation Search) experiment is designed to search for neutrino oscillations with a sensitivity significantly greater than has been achieved to date. The phenomenon of neutrino oscillations, whose existence has not been proven convincingly so far, allows neutrinos of one "flavor" (type) to slowly transform themselves into another flavor, and then back again to the original flavor, as they propagate through space or matter. The MINOS experiment is optimized to explore the region of neutrino oscillation "parameter space" suggested by previous investigations of atmospheric neutrinos: the Kamiokande, IMB, Super-Kamiokande and Soudan 2 experiments. The study of oscillations in this region with a neutrino beam from the Main Injector requires measurements of the beam after a very long flight path. This in turn requires an intense neutrino beam and a massive detector in order to have an adequate event rate at a great distance from the source. We propose to enhance significantly the physics capabilities of the MINOS experiment by the addition of a Hybrid Emulsion Detector at Soudan, capable of unambigous identification of the neutrino flavor. Recent developments in emulsion experiments make such a detector possible, although significant technological challenges must be overcome. We propose to initiate an R&D effort to identify major potential problems and to develop practical solutions to them. This proposal is meant to be a summary of the work we feel is needed before a credible conceptual design report can be produced. It summarizes both the tasks that need to be done and new incremental resources that are required to perform them. It is our expectation that various individual institutions (those currently in MINOS and others anticipating joining) will submit separate individual funding requests, to funding agencies in both US and abroad, to provide most of the resources listed in Chapter 5. We intend that the present proposal should

  8. Convection and mixing in magma chambers

    NASA Astrophysics Data System (ADS)

    Turner, J. S.; Campbell, I. H.

    1986-08-01

    released continuously during crystallization and rises to the top of the chamber with little mixing. Overturning of a gas-rich mafic lower layer into a cooler silicic layer can cause a sudden quenching, with the rapid release of gas which could trigger an explosive eruption. Mixing can also occur during eruption, as two layers are drawn up simultaneously from a stratified chamber when a critical flow velocity is exceeded, and they then mix in the outlet vent. Laboratory experiments suggest, however, that magma mixing is inhibited by large viscosity differences, both during the filling and emptying of a magma chamber. Scaling these results to magmas indicates that a basaltic magma can flow into the bottom of a chamber containing rhyolite with little or no mixing between them, and that these two magma types can also flow out through the same exit vent with limited mixing. Each of the phenomena discussed in this review has been studied, at least in a qualitative way, using laboratory experiments to identify and understand a significant physical process occurring in magma chambers. The field of geological fluid mechanics and its application to these problems is still very new, and further advances seem assured as new phenomena are identified and more detailed and quantitative analogue experiments are developed to study them.

  9. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers.

    PubMed

    Kaltsa, O; Michon, C; Yanniotis, S; Mandala, I

    2013-05-01

    Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20wt%) were formulated (pH∼7) using whey protein (3wt%), three kinds of hydrocolloids (0.1-0.5wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5°C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool-heat cyclic method (40 to -40°C) was performed to examine stability via crystallization phenomena of the dispersed phase. Ultrasonication energy input duplication from 11kJ to 25kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS∼1% after 10days of storage) at 0.5wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D(50)=0.615μm compared to D(50)=1.3μm using method A) with narrower particle size distribution and in viscosity reduction. DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions.

  10. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  11. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  12. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  13. Study of hadron bundles observed in Chacaltaya two-story emulsion chamber

    NASA Technical Reports Server (NTRS)

    Aoki, H.

    1985-01-01

    The existence of hadron-rich families associated with few gamma-ray emission named Centauro and Mini-Centauro phemonena was reported. It was investigated whether these are produced by the special type of interaction different from the ordinary pion multiple production or not. The experimental results are compared with simulation calculation based on ordinary multiple pion production model. Both hadron multiplicity distribution, obtained from the present observation and the simulation calculation, show almost the same distribution which means that hadron bundles of such smaller multiplicities are considered to originate from successive interactions of surviving nucleon with the nature of multiple production during passage through the atmosphere.

  14. Costs and Benefits of Underground Pupal Chambers Constructed by Insects: A Test Using Manduca sexta.

    PubMed

    Sprague, Jonathan C; Woods, H Arthur

    2015-01-01

    Many holometabolous insects metamorphose in belowground pupal chambers. Although the chambers may be elaborate and their construction costly, their functions are unknown. Using laboratory and field experiments, we examined the costs and functions of chambers made by the hawk moth Manduca sexta (Sphingidae). Costs were large in some circumstances; prepupal larvae lost up to 60% of their body mass when constructing chambers in dry soils. We tested three alternative hypotheses about what, if anything, chambers do for the individuals that make them: (1) chambers provide critical open space underground, allowing room for ecdysis and preventing soil from deforming the metamorphosing individual; (2) chambers raise the local relative humidity, so that cuticular and respiratory water losses are minimized; and (3) chamber walls prevent predators and pathogens from attacking. The data support the first hypothesis (about open space) and largely exclude the other two. These results provide a simple and potentially broad explanation for the evolution of chamber building in metamorphosing insects.

  15. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported.

  16. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  17. Characteristics of a large system of pad readout wire proportional chambers for the HPC calorimeter

    SciTech Connect

    Camporesi, T.; Cavallo, F.R.; Giordano, V.; Laurenti, G.; Molinari, G.; Navarria, F.L.; Privitera, P.; Rovelli, T.; Valenti, G.; Zucchini, A.

    1989-02-01

    A large system of wire proportional chambers is being constructed for the readout of the High-Density Projection Chamber (HPC) of the DELPHI experiment at the Large Electron-Positron storage ring. The system consists of 144 chambers, each 0.3 m/sup 2/ wide and read out via cathode pads, located at the end of the HPC drift volume.

  18. On-Orbit Daytime Solar Heating Effects: A Comparison of Ground Chamber Arcing Results

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2004-01-01

    The purpose of the current experiment is to make direct comparisons between the arcing results obtained from the diffusion pumped vertical chamber and our newly renovated Teney vacuum chamber which is equipped with a cryogenic pump. Recall that the prior reported results obtained for the Vertical chamber were nominal at best, showing only a slight reduction in the arc rate after five heating cycles at the lower bias potentials and virtually no changes at high potential biases. It was concluded that the vertical chamber was unable to remove enough water vapor from the chamber to adequately test the arcing criterion. Because the cryo-pumped Teney chamber has a ten times better pumping speed, (40,000 liters per sec compared to 4,000 liters per sec for the diffusion pumped vertical chamber), a decision was made to retest that experiment in both the Teney and Vertical vacuum chambers. A comparison of the various data is presented with encouraging results.

  19. On Orbit Daytime Solar Heating Effects: A Comparison of Ground Chamber Arcing Results

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2004-01-01

    The purpose of the current experiment is to make direct comparisons between the arcing results obtained from the diffusion pumped vertical chamber and our newly renovated Teney vacuum chamber which is equipped with a cryogenic pump. Recall that the prior reported results obtained for the Vertical chamber were nominal at best, showing only a slight reduction in the arc rate after 5 heating cycles at the lower bias potentials and virtually no changes at high potential biases. It was concluded that the vertical chamber was unable to remove enough water vapor from the chamber to adequately test the arcing criterion. Because the cryo-pumped Teney chamber has a ten times better pumping speed, (40,000 liters per sec compared to 4,000 liters per sec for the diffusion pumped vertical chamber), a decision was made to retest that experiment in both the Teney and Vertical vacuum chambers. A comparison of the various data is presented with encouraging results.

  20. A novel approach for fast scanning of nuclear emulsions with continuous motion of the microscope stage

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Tioukov, V.

    2013-08-01

    Nuclear emulsions have been used in particle physics experiments for many decades because of their unique spatial resolution. The use of nuclear emulsions as precise tracking detectors in large experiments has recently been made possible due to advances in the production of emulsion films and to the development of very fast automatic scanning devices. The present scanning speed of the European Scanning System (ESS), which has been developed within the OPERA Collaboration, is about 20 cm2/h. In addition to the scanning of OPERA films, the ESS is used for other applications with ever-growing demands for scanning speed, such as the muon radiography of volcanoes. In order to further increase the scanning speed of the ESS, we are testing a novel approach different from the standard stop-and-go motion of the microscope stage in the horizontal plane. Indeed we perform data acquisition with the stage moving at constant speed, using an objective lens with wide field of view. Unlike the implementation realized in Japan where the movement of objective lens and stage are synchronized to pile up images of the same view in a vertical stack, in this approach only the stage is moving horizontally. Thus images at different depths are not fully overlapped and special care is needed in the reconstruction. This approach can give a substantial increase in the scanning speed, especially for thin emulsion layers and wide field of view. In this paper we demonstrate that, after applying special corrections, the emulsion data quality can be as good as with the standard stop-and-go approach. This technique allows to double the scanning speed of the ESS, bringing it to 40 cm2/h without any hardware modification.

  1. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  2. Crosstalk Studies of a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Ryer, Jonathan

    2008-10-01

    The crosstalk between various pads of a Time Projection Chamber (TPC) developed for the experiment MuSun was studied. Crosstalk between TPC pads must be studied and understood in order for proper muon path reconstruction to be obtained. A printed circuit board was developed to use capacitive coupling to transmit a signal pulse onto the TPC, where the crosstalk of the transmitted signal was studied.

  3. Double emulsions based on silicone-fluorocarbon-water and their skin penetration.

    PubMed

    Mahrhauser, Denise-Silvia; Fischer, Claudia; Valenta, Claudia

    2016-02-10

    Double emulsions have significant potential in pharmacy and cosmetics due to the feasibility of combining incompatible substances in one product and the protection of sensitive compounds by incorporating them into their innermost phase. However, a major drawback of double emulsions is their thermodynamic instability and their strong tendency to coalesce. In the present study, the physicochemical stability, the skin permeation and the skin penetration potential of modified semi-solid double emulsions was investigated. The double emulsions were prepared of the cosmetically applied perfluoropolyethers Fomblin HC/04 or Fomblin HC-OH, silicone, carbomer and water. Measurement of the droplet size and examination of the microscopic images confirmed their physicochemical stability over the observation period of eight weeks. Franz-type diffusion cell experiments revealed no increase in curcumin permeation due to the employed perfluoropolyethers compared to the respective control formulations. The formulations used as control were O/W macroemulsions with or without a Polysorbate 80/Sorbitane monooleate 80 surfactant combination. Likewise, tape stripping studies showed no penetration enhancing effect of the employed perfluoropolyethers which is desirable as both perfluoropolyethers are commonly applied components in human personal-care products.

  4. Effect of fibrous filter properties on the oil-in-water-emulsion separation and filtration performance.

    PubMed

    Bansal, Swarna; von Arnim, Volkmar; Stegmaier, Thomas; Planck, Heinrich

    2011-06-15

    Separation of secondary emulsions of dispersed droplet size less than 10 μm, by means of fibrous medium is a very complex but important process. The study investigates the influence of thin fibrous filter properties, i.e. surface energy, pore size and porosity on the separation performance of an isooctane in water emulsion (0.2%, mean drop size 2 μm). Experiments were carried out on five different filter media with a wide variation in their pore size (2-51 μm), surface energy (14-46 mN/m) and porosity (0.46-0.87) at similar process conditions. Filter media with different wettability are obtained by applying various hydrophobic and hydrophilic coatings. All the used coatings contain nanoparticles (25 nm) to impart nanoscale surface roughness at the single fiber surface. Besides emulsion properties and operating conditions, the phase separation mechanism and performance highly depends on pore size, surface energy and porosity of the filter media. More complete coalescence takes place at reduced pore size and at a surface preferentially wetted by the dispersed phase. Whereas when the pore size equals to the influent droplet size, then the surface wettability of filter is less effective and the separation mechanism is governed by inflow velocity. The emulsion inflow velocity and pressure drop are significantly affected by the filter media air permeability but do not depend on filter surface energy.

  5. Feasibility of low frequency ultrasound for water removal from crude oil emulsions.

    PubMed

    Antes, Fabiane G; Diehl, Liange O; Pereira, Juliana S F; Guimarães, Regina C L; Guarnieri, Ricardo A; Ferreira, Bianca M S; Dressler, Valderi L; Flores, Erico M M

    2015-07-01

    The feasibility of indirect application of low frequency ultrasound for demulsification of crude oil was investigated without using chemical demulsifiers. Experiments were performed in an ultrasonic bath with frequency of 35 kHz. Synthetic emulsions with water content of 12%, 35% and 50% and median of droplet size distribution (DSD), median D(0.5), of 5, 10 and 25 μm were prepared from crude oil with API density of 19 (heavy crude oil) and submitted to the proposed ultrasound-assisted demulsification procedure. Experimental conditions as temperature, time of exposition to ultrasound and ultrasonic power were evaluated. Separation of water from crude oil emulsion was observed for all emulsions investigated. Demulsification efficiency up to 65% was obtained for emulsion with 50% of water content and DSD of 10 μm. Higher efficiency of demulsification was achieved using US temperature of 45 °C and ultrasound power of 160 W by 15 min. Results obtained in this study showed that ultrasound could be considered a promising technology for industrial crude oil treatment and respective water removal.

  6. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.

    PubMed

    Ma, Shaohua; Huck, Wilhelm T S; Balabani, Stavroula

    2015-11-21

    Water-in-oil-in-water (w/o/w) microfluidics double emulsions offer a new route to compartmentalise reagents into isolated aqueous microenvironments while maintaining an aqueous carrier fluid phase; this enables compatibility with commercial flow cytometry systems such as fluorescence-activated cell sorting (FACS). Double emulsion (inner core) deformation under hydrodynamic focusing conditions that mimic the environment double emulsions experience in flow cytometry applications is of particular importance for droplet stability and cell viability. This paper reports on an experimental study of the dynamic deformation of aqueous cores of w/o/w double emulsions under hydrodynamic focusing, with the sheath flow directed at 45° to the sample flow. A number of factors affecting the inner core deformation and recovery were examined. Deformation was found to depend significantly on the core or shell viscosity, the droplet-to-sheath flow velocity ratio, and core and shell sizes. Core deformation was found to depend more on the type of surfactant rather concentration with high molecular weight surfactant exhibiting a negligible effect on deformation whereas low molecular weight surfactant enhancing deformation at low concentrations due to their lateral mobility at the interface.

  7. DEP actuation of emulsion jets and dispensing of sub-nanoliter emulsion droplets.

    PubMed

    Prakash, Ravi; Kaler, Karan V I S

    2009-10-07

    Liquid Dielectrophoresis (L-DEP) has been successfully leveraged at microscopic scales and shown to provide a controllable means of on-chip precision dispensing and manipulation of sub-nanoliter single emulsion droplets. In this paper, we report on the dynamics of a DEP actuated emulsion jet prior to break-up and compare its characteristic behavior based on the lumped parameter model of Jones et al. (R. Ahmed and T. B. Jones, J. Micromech. Microeng., 2007, 17, 1052). Furthermore, features and aspects of these emulsion jets, their break-up and formation of sub-nanoliter emulsion droplets is studied in further detail. Applications of the proposed scheme in dispensing encapsulated sub-nanoliter droplets is envisioned in various fields including microTAS, on-chip handling and storage of cells and other biological samples for longer duration in controlled environments as well as solving the more general encapsulation issues in surface microfluidic devices. Scalability of the proposed scheme is shown by producing controlled sample-oil single emulsion droplets (aqueous samples in oil) in the range of 50-400 picoliters.

  8. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  9. Calibration of PICO Bubble Chamber Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Jin, Miaotianzi; PICO Collaboration

    2016-03-01

    The PICO Collaboration builds bubble chambers for the direct detection of WIMP dark matter. I will present the suite of calibration experiments performed to measure the sensitivity of these chambers to nuclear recoils (the expected WIMP signal) and to gamma rays (a common background to the WIMP signal). These calibrations include measurements with a 10-ml C3F8 bubble chamber at Northwestern University and with a 30-ml C3F8 bubble chamber deployed in the University of Montreal's tandem Van de Graaf facility, giving the bubble chamber response to a variety of gamma rays, broad-spectrum neutron sources, and mono-energetic low energy neutrons. I will compare our measured sensitivities to those predicted by a simple thermodynamic model and will show how the results impact our ability to detect dark matter, with a focus on light WIMP searches. Supported by DOE Grant: DE-SC0012161.

  10. A comparative study of the physicochemical properties of a virgin coconut oil emulsion and commercial food supplement emulsions.

    PubMed

    Khor, Yih Phing; Koh, Soo Peng; Long, Kamariah; Long, Shariah; Ahmad, Sharifah Zarah Syed; Tan, Chin Ping

    2014-07-01

    Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.

  11. Rational use of intravenous fat emulsions.

    PubMed

    Pelham, L D

    1981-02-01

    The composition, effect on blood components, relative value compared with intravenous dextrose, clinical applications as a caloric and fatty acid source, adverse reactions, limitations, and administration of intravenous fat emulsions are reviewed. Fat emulsions provide essential fatty acids and calories and are primarily used to supplement of parenteral nutrition regimens. Their use as a major source of calories remains limited because of cost. However, the trend toward aligning intravenous nutrition to that of the normal diet and the increased demand for peripherally administered parenteral nutrition have increased demand for use. The advantages and disadvantages presented may be used by clinicians to assist in establishing the role of intravenous fat therapy in nutritional support services.

  12. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  13. Characterization of a Reverberation Chamber

    DTIC Science & Technology

    2015-10-01

    electromagnetic susceptibility and immunity of a device under test because of its repeatability and measurement speed. A reverberation chamber is...devices or unmanned aircraft systems has led to a baseline characterization of the reverberation chamber at the US Army Research Laboratory (ARL). A...

  14. Small rocket flowfield diagnostic chambers

    NASA Technical Reports Server (NTRS)

    Morren, Sybil; Reed, Brian

    1993-01-01

    Instrumented and optically-accessible rocket chambers are being developed to be used for diagnostics of small rocket (less than 440 N thrust level) flowfields. These chambers are being tested to gather local fluid dynamic and thermodynamic flowfield data over a range of test conditions. This flowfield database is being used to better understand mixing and heat transfer phenomena in small rockets, influence the numerical modeling of small rocket flowfields, and characterize small rocket components. The diagnostic chamber designs include: a chamber design for gathering wall temperature profiles to be used as boundary conditions in a finite element heat flux model; a chamber design for gathering inner wall temperature and static pressure profiles; and optically-accessible chamber designs, to be used with a suite of laser-based diagnostics for gathering local species concentration, temperature, density, and velocity profiles. These chambers were run with gaseous hydrogen/gaseous oxygen (GH2/GO2) propellants, while subsequent versions will be run on liquid oxygen/hydrocarbon (LOX/HC) propellants. The purpose, design, and initial test results of these small rocket flowfield diagnostic chambers are summarized.

  15. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  16. Design and performance of a dynaniic gas flux chamber.

    PubMed

    Reichman, Rivka; Rolston, Dennis E

    2002-01-01

    Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.

  17. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  18. Refractive index matching and clear emulsions.

    PubMed

    Sun, James Ziming; Erickson, Michael C E; Parr, James W

    2005-01-01

    Refractive index (RI) matching is a unique way of making clear emulsions to meet market trends. However, RI matching has not been sufficiently investigated in terms of physical principles and methodologies. Snell's law (n2 sin r2= n1 sin r1) is applicable to cosmetic emulsions. When oil phase and water phase have equal RI (n2 = n1) values, light will not bend as it strikes obliquely at the emulsion interface. Instead, light is transmitted through the emulsion without refraction, which produces clarity. Theoretical RI values in solution can be calculated with summation of the product of the weight percentage and refractive index of each ingredient (RI(mix) = [W1 x n1 + W2 x n2 + W3 x n3 + + Wn x nn]Wtau). Oil-phase RI values are normally at 1.4 or higher. Glycols are used to adjust the water phase RI, since they typically have larger RI values than water. Noticeable deviations from calculated RI values are seen in experimentally prepared solutions. Three basic deviation types are observed: negative, positive, and slightly negative or positive, which can occur in glycol aqueous solutions at different concentrations. The deviations are attributed to changes in molecular interaction between molecules in solution, which can lead to changes in specific gravity. Negative RI deviation corresponds to a decrease in specific gravity, and positive RI deviation corresponds to an increase in specific gravity. RI values will deviate from calculated values since an increase or decrease in specific gravity leads to a change in optical density.

  19. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  20. Imaging techniques applied to characterize bitumen and bituminous emulsions.

    PubMed

    Rodríguez-Valverde, M A; Ramón-Torregrosa, P; Páez-Dueñas, A; Cabrerizo-Vílchez, M A; Hidalgo-Alvarez, R

    2008-01-15

    The purpose of this article is to present some important advances in the imaging techniques currently used in the characterization of bitumen and bituminous emulsions. Bitumen exhibits some properties, such as a black colour and a reflecting surface at rest, which permit the use of optical techniques to study the macroscopic behaviour of asphalt mixes in the cold mix technology based on emulsion use. Imaging techniques allow monitoring in situ the bitumen thermal sensitivity as well as the complex phenomenon of emulsion breaking. Evaporation-driven breaking was evaluated from the shape of evaporating emulsion drops deposited onto non-porous and hydrophobic substrates. To describe the breaking kinetics, top-view images of a drying emulsion drop placed on an aggregate sheet were acquired and processed properly. We can conclude that computer-aided image analysis in road pavement engineering can elucidate the mechanism of breaking and curing of bituminous emulsion.

  1. Evaluation on oxidative stability of walnut beverage emulsions.

    PubMed

    Liu, Shuang; Liu, Fuguo; Xue, Yanhui; Gao, Yanxiang

    2016-07-15

    Walnut beverage emulsions were prepared with walnut kernels, mixed nonionic emulsifiers and xanthan gum. The effects of food antioxidants on the physical stability and lipid oxidation of walnut beverage emulsions were investigated. The results showed that tea polyphenols could not only increase the droplet size of the emulsions, but also enhance physical stability during the thermal storage at 62 ± 1 °C. However, water-dispersed oil-soluble vitamin E and enzymatically modified isoquercitrin obviously decreased the physical stability of the emulsion system during the thermal storage. BHT and natural antioxidant extract had scarcely influenced on the physical stability of walnut beverage emulsions. Tea polyphenols and BHT could significantly retard lipid oxidation in walnut beverage emulsions against thermal and UV light exposure during the storage. Vitamin E exhibited the prooxidant effect during the thermal storage and the antioxidant attribute during UV light exposure. Other food antioxidants had no significant effect on retarding lipid oxidation during thermal or light storage.

  2. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  3. Automatic readout for nuclear emulsions in muon radiography of volcanoes

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.

    2012-04-01

    Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has

  4. [Multiple emulsions; bioactive compounds and functional foods].

    PubMed

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods.

  5. Lipid Emulsion for Local Anesthetic Systemic Toxicity

    PubMed Central

    Ciechanowicz, Sarah; Patil, Vinod

    2012-01-01

    The accidental overdose of local anesthetics may prove fatal. The commonly used amide local anesthetics have varying adverse effects on the myocardium, and beyond a certain dose all are capable of causing death. Local anesthetics are the most frequently used drugs amongst anesthetists and although uncommon, local anaesthetic systemic toxicity accounts for a high proportion of mortality, with local anaesthetic-induced cardiac arrest particularly resistant to standard resuscitation methods. Over the last decade, there has been convincing evidence of intravenous lipid emulsions as a rescue in local anesthetic-cardiotoxicity, and anesthetic organisations, over the globe have developed guidelines on the use of this drug. Despite this, awareness amongst practitioners appears to be lacking. All who use local anesthetics in their practice should have an appreciation of patients at high risk of toxicity, early symptoms and signs of toxicity, preventative measures when using local anesthetics, and the initial management of systemic toxicity with intravenous lipid emulsion. In this paper we intend to discuss the pharmacology and pathophysiology of local anesthetics and toxicity, and the rationale for lipid emulsion therapy. PMID:21969824

  6. Semiphysical development of holograms recorded in silver halide emulsions

    NASA Astrophysics Data System (ADS)

    Banyasz, Istvan; Belendez, Augusto; Pascual, Inmaculada V.; Fimia, Antonio

    2000-10-01

    In the course of experiments on measurement of the effects of processing on nonlinear characteristics of silver halide holograms recorded in Agfa-gevaert 8E75HD emulsions we found that, under certain circumstances, the AAC developer acted as a semi-physical developer instead of the normal chemical developing action. The developed and fixed holograms were of low optical density (<0.5) and of high diffraction efficiency (up to 15%). Phase contrast microscopy revealed that very clean phase gratings were obtained. This effect of the AAC developer was due to the replacement of one of its components, sodium carbonate of purest grade with that of for analysis grade of the same company.

  7. High-energy Physics with Hydrogen Bubble Chambers

    DOE R&D Accomplishments Database

    Alvarez, L. W.

    1958-03-07

    Recent experience with liquid hydrogen bubble chambers of 25 and 40 cm dia. in high-energy physics experiments is discussed. Experiments described are: interactions of K{sup -} mesons with protons, interactions of antiprotons with protons, catalysis of nuclear fusion reactions by muons, and production and decay of hyperons from negative pions. (W.D.M.)

  8. Anti-Inflammatory and Anti-Fibrotic Profile of Fish Oil Emulsions Used in Parenteral Nutrition-Associated Liver Disease

    PubMed Central

    Pastor-Clerigues, Alfonso; Marti-Bonmati, Ezequiel; Milara, Javier; Almudever, Patricia; Cortijo, Julio

    2014-01-01

    Home parenteral nutrition (PN) is associated with many complications including severe hepatobiliary dysfunction. Commercial ω-6 fatty acid-soybean based-lipid emulsions in PN may mediate long term PN associate liver disease (PNALD) whereas ω-3-fish oil parenteral emulsions have shown to reverse PNALD in children. However, its clinical effectiveness in adults has been scarcely reported. In this work, we study the role of soybean and fish oil lipid commercial emulsions on inflammatory and profibrotic liver markers in adults with long term PNALD and in in vitro cellular models. Inflammatory and profibrotic markers were measured in serum of ten adults with long term PNALD and in culture supernatants of monocytes. Liver epithelial to mesenchymal transition (EMT) was induced by transforming growth factor beta 1 (TGFβ1) to evaluate in vitro liver fibrosis. Omegaven®, a 100% fish oil commercial emulsion, was infused during four months in two patients with severe long term PNALD reversing, at the first month, the inflammatory, profibrotic and clinical parameters of PNALD. The effect was maintained during the treatment course but impaired when conventional lipid emulsions were reintroduced. The other patients under chronic soybean oil-based PN showed elevated inflammatory and profibrotic parameters. In vitro human monocytes stimulated with lipopolysaccharide induced a strong inflammatory response that was suppressed by Omegaven®, but increased by soybean emulsions. In other experiments, TGFβ1 induced EMT that was suppressed by Omegaven® and enhanced by soybean oil lipid emulsions. Omegaven® improves clinical, anti-inflammatory and anti-fibrotic parameters in adults with long-term home PNALD. PMID:25502575

  9. Field testing of asphalt-emulsion radon-barrier system

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10/sup -6/ cm/sup 2//s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables.

  10. Development of Nuclear Emulsion for Fast Neutron Measurement

    NASA Astrophysics Data System (ADS)

    Machii, Shogo; Kuwabara, Kenichi; Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. Energy resolution of nuclear emulsion is 21% (12%) FWHM against neutron energy of 2.8 MeV (4.9 MeV). Nuclear emulsion has high gamma ray rejection power. For now, at least 2×104 gamma rays/cm2, no increase of as a background for neutron measurement when scan using automatic nuclear emulsion read out system HTS. This value suggests that it is applicable even under high gamma ray environment, such as nuclear fusion reactor.

  11. Interaction between a perfluorocarbon emulsion and radiographic contrast media.

    PubMed

    Franke, Ralf-Peter; Reuter, Peter; Röhlke, Wolfgang; Matschke, Klaus; Keller, Steffi; Klosterhalfen, Bernd; Mittermayer, Christian; Mrowietz, Christoph; Jung, Friedrich

    2004-03-01

    This study evaluated specially designed perfluorocarbon (PFC) emulsions as blood substitutes in case of induced ischemia of the left heart ventricle in healthy farm pigs. Two hundred ml of perfluorocarbon emulsion were infused while 200 ml of blood were simultaneously drawn. Radiographic contrast media were given to aid placement of balloon catheters in the left coronary artery. Histopathological analysis showed that right heart failure caused the deaths of both pigs. Particles (up to>3 micro) of foreign body materials obstructed capillaries of all organs analyzed (heart, lung, liver, kidneys and spleen). Laboratory investigation showed severe interference between the PFC emulsion and radiographic contrast media, resulting in the deterioration of the PFC emulsion. The strongest interference occurred when PFC emulsion and Accupaque interacted; particle size started at an initial 311 nm and went up to >3 micro within seconds. Great care must be taken when PFC emulsions are used in combination with x-ray contrast media. None of the described radiographic contrast media should be used within 48 hours prior to the use of this PFC emulsion. Also, the use of these contrast media should be avoided for a certain period of time after using PFC emulsion. The mechanisms of elimination of PFC emulsions from the circulation are not completely understood and has yet to be evaluated.

  12. The high momentum spectrometer drift chambers

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  13. Health effects of subchronic exposure to diesel-water emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; Naas, D J; O'callaghan, J P; Seilkop, S K; Ronsko, N L; Wagner, V O; Kraska, R C

    2005-12-15

    The U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards for ozone and particulate matter are requiring urban nonattainment areas to implement pollution-reduction strategies for anthropogenic source emissions. A type of fuel shown to decrease combustion emissions components versus traditional diesel fuels is the diesel-water emulsion. The Lubrizol Corporation in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories recently conducted a rodent health assessment of inhaled combustion emissions of PuriNO(x) diesel fuel emulsion. Combustion emissions from either of two 2001 model Cummins 5.9-L ISB engines were diluted with charcoal-filtered air to exposure concentrations of 100, 200, and 400 microg total particulate matter/m(3). The engines were operated on a continuously repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide and particulate matter were reduced when engines were operated on PuriNO(x) versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, 5 days/wk for the first 11 wk and 7 days/wk threafter. Exposures ranged from 58 to 70 days, depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology, and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol and small increases in platelet values in some groups of exposed animals were observed. Particulate matter accumulation within

  14. The SAMURAI Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Dye, Steven

    2011-10-01

    The SAMURAI Time Projection Chamber (TPC) will be used to study particle collisions by colliding a beam of particles with a stationary gas which will be contained in a field cage inside the TPC. When the beam collides with the gas, charged particles are accelerated into the pad plane by an electric field. The paths of these particles will be curved by a magnetic field created by the SAMURAI magnet at the RIKEN facility in Japan. The charged particles will then collide with the pad plane which will be located on the bottom of the TPC. The pad plane will take these collisions and create electrical signals and send them to supporting electronics where the data can be interpreted. The TPC will be used to help determine the Equation of State for asymmetric nuclear matter. Measurements of neutron, proton, 3H and 3He flow will be taken with the NEBULA array which consists of nebula scintillators. The poster will contain information on the laser calibration system and the electronics that will be used for the TPC. The electronics used are the same electronics used in the STAR TPC experiment.

  15. Gas and aerosol wall losses in Teflon film smog chambers

    SciTech Connect

    McMurry, P.H.; Grosjean, D.

    1985-12-01

    Large smog chambers (approx.60 m/sup 3/) constructed of FEP Teflon film are frequently used to study photochemistry and aerosol formation in model chemical systems. In a previous paper a theory for aerosol wall loss rates in Teflon film smog chambers was developed; predicted particle loss rates were in good agreement with measured rates. In the present paper, measurements of wall deposition rates and the effects of wall losses on measurements of gas-to-particle conversion in smog chambers are discussed. Calculations indicate that a large fraction of the aerosol formed in several smog chamber experiments was on the chamber walls at the end of the experiment. Estimated values for particulate organic carbon yield for several precursor hydrocarbons increased by factors of 1.3-6.0 when wall deposition was taken into account. The theory is also extended to loss rates of gaseous species. Such loss rates are either limited by diffusion through a concentration boundary layer near the surface or by uptake at the surface. It is shown that for a typical 60-m/sup 3/ Teflon film smog chamber, gas loss rates are limited by surface reaction rates if mass accommodation coefficients are less than 6 x 10/sup -6/. It follows that previously reported loss rates of several gases in a chamber of this type were limited by surface reactions.

  16. Dark matter searches with PICO bubble chambers: An overview

    NASA Astrophysics Data System (ADS)

    Harris, Orin; PICO Collaboration

    2017-01-01

    The PICO collaboration uses bubble chambers to search for dark matter, with world-leading sensitivity to the direct-detection of WIMPs with spin-dependent couplings to protons. PICO currently operates a 2 liter (PICO-2L) and a 32 liter (PICO 60) bubble chamber at the SNOLAB deep underground laboratory, and is currently constructing a 40 liter demonstration device that is expected to eliminate an anomalous background that has previously proven significant for the scaling of the bubble chamber technique to a future ton-scale experiment (PICO-500). A discussion of the technology, recent progress, and future plans will be presented.

  17. Energy deposition in discharge chamber of lightning protection multichamber system

    NASA Astrophysics Data System (ADS)

    Pinchuk, M. E.; Budin, A. V.; Kumkova, I. I.; Bogomaz, A. A.; Sivaev, A. D.; Chusov, A. N.; Zaynalov, R. I.

    2016-11-01

    The experimental data of energy deposition distribution along discharge chamber of lightning protection multichamber system in initial stage of discharge process aimed to model lightning current impulse up to 10 kA is presented. A multichamber system is a series connection of discharge chambers. According to our experiments the shock wave formation occurs during the breakdown phase between electrodes located at the bottom of discharge chamber. The consequent energy deposition during discharge development goes in the whole volume bounded by shock wave front.

  18. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  19. Radiated Susceptibility Tests in Thermal Vacuum Chambers for Space Systems

    NASA Astrophysics Data System (ADS)

    Anon Cancela, Manuel; Hernandez-Gomez, Daniel; Vazquez-Pascual, Mercedes; Lopez-Sanz, Daniel

    2016-05-01

    INTA EMC Area has a wide experience in performing Radiated Susceptibility (RS) tests according to civilian, military and aeronautical standards in Mode Tuned Chambers (MTC) for national and international projects; besides, INTA has two Thermal Vacuum Chamber (TVC) facilities in service for Space Systems tests. In order to perform RS tests to Space Systems in a more realistic environment, INTA EMC Area has stablished an internal research program to develop a procedure to perform this kind of tests inside a TVC as a Mode Tuned Chamber (MTC). In this paper the results of the TVC-04 validation measurements as a MTC are presented.

  20. Environmental chamber studies of atmospheric reactivities of volatile organic compounds: Effects of varying chamber and light source

    SciTech Connect

    Carter, W.; Luo, D.; Malkina, I.; Pierce, J.

    1995-05-01

    Photochemical oxidant models are essential tools for assessing effects of emissions changes on ground-level ozone formation. Such models are needed for predicting the ozone impacts of increased alternative fuel use. The gas-phase photochemical mechanism is an important component of these models because ozone is not emitted directly, but is formed from the gas-phase photochemical reactions of the emitted volatile organic compounds (VOCs) and oxides of nitrogen (NO{sub x}) in air. The chemistry of ground level ozone formation is complex; hundreds of types of VOCs being emitted into the atmosphere, and most of their atmospheric reactions are not completely understood. Because of this, no chemical model can be relied upon to give even approximately accurate predictions unless it has been evaluated by comparing its predictions with experimental data. Therefore an experimental and modeling study was conducted to assess how chemical mechanism evaluations using environmental chamber data are affected by the light source and other chamber characteristics. Xenon arc lights appear to give the best artificial representation of sunlight currently available, and experiments were conducted in a new Teflon chamber constructed using such a light source. Experiments were also conducted in an outdoor Teflon Chamber using new procedures to improve the light characterization, and in Teflon chambers using blacklights. These results, and results of previous runs other chambers, were compared with model predictions using an updated detailed chemical mechanism. The magnitude of the chamber radical source assumed when modeling the previous runs were found to be too high; this has implications in previous mechanism evaluations. Temperature dependencies of chamber effects can explain temperature dependencies in chamber experiments when Ta-300{degree}K, but not at temperatures below that.

  1. A high rate proportional chamber

    SciTech Connect

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  2. Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion.

    PubMed

    Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C T; Sheng, Ping; Cheah, Kok Wai

    2005-10-01

    We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful "rainbow" pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.

  3. Experimental Study of Sound Attenuation in Quasi-Monodisperse Emulsions

    NASA Astrophysics Data System (ADS)

    Herrmann, N.; Boltenhagen, P.; Lemaréchal, P.

    1996-10-01

    Very narrow size distribution oil-in-water emulsions have been prepared by using a recently proposed selective creaming method. The emulsions have been characterized by static and dynamic light scattering measurements. The ultrasonic absorption of the emulsions has been measured with an acoustic interferometer at frequencies between 0.5 and 10 MHz for a wide range of concentrations and droplets sizes. The comparison of the experimental results with existing theories shows an excellent agreement at oil volume fractions up to 0.15. The discrepancy between theory and experiments observed at higher volume fractions is attributed to thermal interactions between droplets for which a semi-quantitative model is proposed. Des émulsions d'huiles dans l'eau présentant une distribution en taille très étroite ont été préparées grâce à une méthode récemment proposée, fondée sur le crémage sélectif des goutelettes. Ces émulsions ont été caractérisées par diffusion statique et dynamique de la lumière. L'absorption ultrasonore des émulsions a été mesurée à l'aide d'un interféromètre acoustique à des fréquences comprises entre 0,5 et 10 MHz pour une large gamme de concentrations et de dimensions des gouttelettes. L'accord des résultats expérimentaux avec les théories existantes est excellent pour les fractions volumiques en huile inférieures à 15 %. L'écart entre théorie et expérience qui apparaît aux fractions volumiques plus élvées est attribué aux interactions thermiques entre gouttelettes, pour lesquelles un modèle semi-quantitatif est proposé.

  4. Performance studies of Micro Pixel Chamber for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Komai, H.; Ochi, A.; Homma, Y.; Edo, Y.; Yamaguchi, T.

    2013-03-01

    The Micro Pixel Chamber (μ-PIC) is being developed as a muon chamber of the ATLAS experiment in an HL-LHC environment. In the ATLAS muon system, a high flux of fast neutron background causes instability operation of the detectors. We performed neutron irradiation tests with μ-PIC to optimize the operation gas and detector structure. In addition, we studied neutron interactions with the detector, in order to understand the effect of fast neutrons.

  5. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid.

    PubMed

    Liu, Hongzhu; Bian, Jiming; Wang, Zhonggang; Hou, Chuan-Jin

    2017-01-22

    Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), n-butyl acrylate (BA), Veova 10, and acrylic acid (AA). The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV) accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  6. The Gibbs-Thomson effect and intergranular melting in ice emulsions: Interpreting the anomalous heat capacity and volume of supercooled water

    NASA Astrophysics Data System (ADS)

    Johari, G. P.

    1997-12-01

    Calculations for the Gibbs-Thomson effect and the intergranular melting of the ice droplets in (water) emulsions at temperatures below 273.16 K show that water and ice coexist at thermodynamic equilibrium in an apparently frozen emulsion. The fraction of water at this equilibrium increases on heating, which alters further the thermodynamic properties of the emulsion. As some of the ice in the emulsion has already melted, the increase in the enthalpy, H, and heat capacity, Cp, and the decrease in the volume measured on the normal melting at 273.16 K, are less than the values anticipated. The ratio of this increase in H, or Cp, on melting of the emulsion to the corresponding value for pure ice, underestimates the emulsion's water content which, when used for scaling the difference between the Cp of the unfrozen and frozen emulsion at lower temperatures, as in earlier studies, leads to a larger Cp of supercooled water than the actual value. Similar scaling of the corresponding difference between the volume leads to higher volume, or lower density, than the actual value. A formalism for this premelting effect is given for both the adiabatic and differential scanning calorimetry (DSC), and its magnitude is calculated. New experiments show that the rise in the DSC signal, or equivalently in the apparent Cp observed on heating the frozen emulsion, occurs over a temperature range much wider than the Gibbs-Thomson effect and intergranular melting predict, for which reasons are given. It is shown that Cp of the dispersant phase is also affected by the melting of ice droplets. There are four consequences of the premelting effects for all finely dispersed materials, for frozen water emulsions below 273.16 K: (i) water and ice coexist in the emulsion, (ii) its apparent Cp will increase with increase in the heat input used to measure it, (iii) the apparent Cp will increase with decrease in the average size of the droplets, and (iv) the apparent Cp will decrease on annealing the

  7. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  8. Vaporization chambers and associated methods

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  9. The multigap resistive plate chamber

    SciTech Connect

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  10. Cyclically controlled welding purge chamber

    NASA Technical Reports Server (NTRS)

    Gallagher, Robert L. (Inventor)

    1996-01-01

    An arrangement for butt-welding cylindrical sections of large, thin-wall tanks includes a rotatable mandrel with side-by-side sets of radial position adjusters. Each set of adjusters bears on one of the tank sections adjacent the seam, to prevent the sections from sagging out-of-round. The mandrel rotates relative to the welder, so that a continuous seam is formed. A purge chamber is fixed in position behind the seam at the weld head, and is flushed with inert gas. The purge chamber includes a two-sided structure which is contiguous with the cylindrical sections and a circumferential vane to form an open-ended tube-like structure, through which the radial position adjusters pass as the mandrel and cylindrical workpiece sections rotate. The tube-like structure is formed into a chamber by a plurality of movable gates which are controlled to maintain a seal while allowing adjusters to progress through the purge chamber.

  11. Induction of Infection in Sesbania exaltata by Colletotrichum gloeosporioides f. sp. aeschynomene Formulated in an Invert Emulsion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In greenhouse experiments, an experimental invert emulsion (MSG 8.25) was tested as an adjuvant with spores of the mycoherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene, a highly virulent pathogen of the leguminous weed Aeschynomene virginica (northern jointvetch), but non-pathoge...

  12. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  13. Perfluorochemical emulsions decrease Kupffer cell phagocytosis

    SciTech Connect

    Bottalico, L.A.; Betensky, H.T.; Min, Y.B.; Weinstock, S.B. )

    1991-07-01

    One drawback to using perfluorochemical emulsions as blood substitutes is that perfluorochemical particles are cleared from the blood by the reticuloendothelial system, primarily liver and spleen. The authors measured the impact of two perfluorochemical emulsions on clearance of colloidal carbon (less than 1 microns) and 51Cr-sheep red blood cells (about 8 microns) by the reticuloendothelial system in vivo and in the isolated perfused liver. Male rats were injected with 2 ml/100 gm body wt of Fluosol-DA or Oxypherol-ET for 4 consecutive days. Carbon (1 ml/100 gm body wt) or sheep red blood cells (0.05 ml of 5% vol/vol/100 gm body wt) were then injected intravenously (in vivo) or added to perfusate. Samples were taken at several time points for 1 hr. In the isolated perfused liver, carbon clearance was depressed by 25% 1 day after treatment. Rates returned to control levels by 12 days in Fluosol-DA-treated rats but remained depressed by 67% in Oxypherol-ET-treated rats. Sheep red blood cell (8 microns) clearance was two to five times slower than carbon clearance and depressed by 40% in livers from Fluosol-DA rats 1 day and 12 days after treatment. Added serum did not improve phagocytosis. In vivo carbon clearance remained normal in Fluosol-DA-treated rats but decreased by 74% in Oxypherol-ET-treated rats 1 day after treatment, returning to normal by 12 days. Clearance rates were similar in control rats in vivo and in the perfused liver. They conclude that the isolated perfused liver is a good model to measure liver clearance function. Although low doses of perfluorochemical emulsions may depress Kupffer cell phagocytosis, general reticuloendothelial system function is not significantly compromised.

  14. Water-in-silicone oil emulsion stabilizing surfactants formed from native albumin and alpha,omega-triethoxysilylpropyl-polydimethylsiloxane.

    PubMed

    Zelisko, Paul M; Flora, Kulwinder K; Brennan, John D; Brook, Michael A

    2008-08-01

    Contact with hydrophobic silicones frequently leads to protein denaturation. However, it is demonstrated that albumin in water-in-silicone oil emulsions retains its native structure in the presence of a functional, triethoxysilyl-terminated silicone polymer, TES-PDMS. Both HSA and TES-PDMS were essential for the formation of stable water-in-silicone oil emulsions: attempts to generate stable emulsions using independently either the protein or the functionalized silicone as a surfactant failed. Confocal microscopy indicated that the human serum albumin (HSA) preferentially adsorbed at the oil/water interface, even in the presence of another protein (glucose oxidase). A variety of experiments demonstrated that the hydrolysis of the Si-OEt groups on the functional silicone occurred only to a limited extent, consistent with the absence of a covalent linkage between the silicone and protein, or of cross-linked silicones at the interface. The fluorescence spectra of HSA extracted from the emulsions, front-faced fluorescence experiments on the HSA/silicone emulsion itself, and HSA/salicylate binding studies all demonstrated that the stability of the water/oil interface decreased as the protein began to unfold: unfolding of the protein in the emulsion was slower than in aqueous solution. The experimental evidence indicated that the interaction between HSA and TES-PDMS is not associated with either homomolecular (HSA/HSA; TES-PDMS/TES-PDMS) interactions or with covalent linkage between two the polymers. Rather, the data is consistent with the direct binding of unhydrolyzed Si(OEt) 3 groups to native HSA. The nature of these interactions is discussed.

  15. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  16. Rheological properties of heavy oils and heavy oil emulsions

    SciTech Connect

    Khan, M.R.

    1996-06-01

    In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

  17. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  18. Mannans as stabilizers of oil-in-water beverage emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant polysaccharides and gums such as gum arabic (GA) are commonly used as stabilizers of oil-in-water emulsions. O-acetyl-galactoglucomannan (GGM), a by-product from mechanical pulping of spruce wood, is able to stabilize colloidal wood resin emulsions (Hannuksela and Holmbom, 2004), but its use a...

  19. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  20. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter contains 5 milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor. See No. 000859 in §...

  1. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter contains 5 milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor. See No. 000859 in §...

  2. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter contains 5 milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor. See No. 000859 in §...

  3. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter contains 5 milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor. See No. 000859 in §...

  4. Emulsion design to improve the delivery of functional lipophilic components.

    PubMed

    McClements, David Julian

    2010-01-01

    The food industry has used emulsion science and technology for many years to create a diverse range of food products, such as milk, cream, soft drinks, nutritional beverages, dressings, mayonnaise, sauces, dips, deserts, ice cream, margarine, and butter. The majority of these food products are conventional oil-in-water (O/W) or water-in-oil (W/O) type emulsions. Recently, there has been increasing interest within the food industry in either improving or extending the functional performance of foods using novel structured emulsions. This article reviews recent developments in the creation of structured emulsions that could be used by the food and other industries, including nanoemulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. These structured emulsions can be produced from food-grade [generally recognized as safe (GRAS)] ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals), using simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, production, performance, and potential applications of each type of structured emulsion system are discussed.

  5. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A.; Medforth, Craig J.

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  6. Formulation of indomethacin emulsion using biopolymer of Prunus avium.

    PubMed

    Verma, Shivangi; Dabral, Prashant; Rana, Vinod; Upadhaya, Kumud; Bhardwaj

    2012-03-01

    The aim of the investigation was to formulate Indomethacin Emulsion using Bio-polymer as Emulsifier. Different batches of emulsions were prepared by varying concentration of biopolymer prunus avium. Based evaluation of the prepared polymers, a conclusion can be drawn that in the Prunus avium bio-material can serve as a promising film forming agent for formulating various drug.

  7. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  8. Review of Intravenous Lipid Emulsion Therapy

    PubMed Central

    2016-01-01

    Intravenous fat emulsion (IVFE) is an important source of calories and essential fatty acids for patients receiving parenteral nutrition (PN). Administered as an individual infusion or combined with PN, the fats provided by IVFE are vital for cellular structural function and metabolism. The affinity of some medications to lipids has led to the use of IVFE as a treatment for any lipophilic drug overdose. This article will explain the available formulations of IVFE, administration, and maintenance issues, as well as the risks and benefits for various applications. PMID:27828934

  9. Detoxifying emulsion for overdosed aspirin intoxication.

    PubMed

    Zhang, Wenjun; Stambouli, Moncef; Pareau, Dominique

    2013-01-30

    Aspirin overdose could lead to intoxication, with the clinical manifestations of vomit, pulmonary edema and severe dyspnea. Stomach washing, emetics and activated charcoal are the common treatments with a limited efficiency for the intoxication. In this study, an active emulsion for aspirin intoxication was prepared with the detoxifying efficiency of 100% in less than 15 min, with the conditions of dodecane used as the oil phase, 8% Abil EM90 as the surfactant and 0.1 mol/L sodium hydroxide as the inner aqueous phase in a volume ratio of 2 between internal aqueous phase and the oil phase.

  10. An exclusively based parenteral fish-oil emulsion reverses cholestasis.

    PubMed

    Triana Junco, Miryam; García Vázquez, Natalia; Zozaya, Carlos; Ybarra Zabala, Marta; Abrams, Steven; García de Lorenzo, Abelardo; Sáenz de Pipaón Marcos, Miguel

    2014-10-25

    Prolonged parenteral nutrition (PN) leads to liver damage. Recent interest has focused on the lipid component of PN. A lipid emulsion based on w-3 fatty acids decrease conjugated bilirubin. A mixed lipid emulsion derived from soybean, coconut, olive, and fish oils reverses jaundice. Here we report the reversal of cholestasis and the improvement of enteral feeding tolerance in 1 infant with intestinal failure-associated liver disease. Treatment involved the substitution of a mixed lipid emulsion with one containing primarily omega-3 fatty acids during 37 days. Growth and biochemical tests of liver function improved significantly. This suggests that fat emulsions made from fish oils may be more effective means of treating this condition compared with an intravenous lipid emulsion containing soybean oil, medium -chain triglycerides, olive oil, and fish oil.

  11. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project was to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, was used to remove inhibitory byproducts during fermentation; thus, improve the yield while reducing the need for fresh water. The key objectives of this study were: (1) Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems. (2) Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system. (3) Investigate the effect of gravity on emulsion coalescence within the membrane unit. (4) Access the effect of water re-use on fermentation yields in a model microbial system. and (5) Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts (not completed due to lack of funds)

  12. Domain and droplet sizes in emulsions stabilized by colloidal particles

    NASA Astrophysics Data System (ADS)

    Frijters, Stefan; Günther, Florian; Harting, Jens

    2014-10-01

    Particle-stabilized emulsions are commonly used in various industrial applications. These emulsions can present in different forms, such as Pickering emulsions or bijels, which can be distinguished by their different topologies and rheology. We numerically investigate the effect of the volume fraction and the uniform wettability of the stabilizing spherical particles in mixtures of two fluids. For this, we use the well-established three-dimensional lattice Boltzmann method, extended to allow for the added colloidal particles with non-neutral wetting properties. We obtain data on the domain sizes in the emulsions by using both structure functions and the Hoshen-Kopelman (HK) algorithm, and we demonstrate that both methods have their own (dis)advantages. We confirm an inverse dependence between the concentration of particles and the average radius of the stabilized droplets. Furthermore, we demonstrate the effect of particles detaching from interfaces on the emulsion properties and domain-size measurements.

  13. Development of an Acoustic Droplet Vaporization, Ultrasound Drug Delivery Emulsion

    NASA Astrophysics Data System (ADS)

    Fabiilli, Mario L.; Sebastian, Ian E.; Fowlkes, J. Brian

    2010-03-01

    Many therapeutic applications of ultrasound (US) include the use of pefluorocarbon (PFC) microbubbles or emulsions. These colloidal systems can be activated in the presence of US, which in the case of emulsions, results in the production of bubbles—a process known as acoustic droplet vaporization (ADV). ADV can be used as a drug delivery mechanism, thereby yielding the localized release of toxic agents such a chemotherapeutics. In this work, emulsions that contain PFC and chlorambucil, a chemotherapy drug, are formulated using albumin or lipid shells. For albumin droplets, the oil phase—which contained CHL—clearly enveloped the PFC phase. The albumin emulsion also displayed better retention of CHL in the absence of US, which was evaluated by incubating Chinese hamster ovary cells with the various formulations. Thus, the developed emulsions are suitable for further testing in ADV-induced release of CHL.

  14. Pickering emulsions for food applications: background, trends, and challenges.

    PubMed

    Berton-Carabin, Claire C; Schroën, Karin

    2015-01-01

    Particle-stabilized emulsions, also referred to as Pickering emulsions, have garnered exponentially increasing interest in recent years. This has also led to the first food applications, although the number of related publications is still rather low. The involved stabilization mechanisms are fundamentally different as compared to conventional emulsifiers, which can be an asset in terms of emulsion stability. Even though most of the research on Pickering emulsions has been conducted on model systems, with inorganic solid particles, recent progress has been made on the utilization of food-grade or food-compatible organic particles for this purpose. This review reports the latest advances in that respect, including technical challenges, and discusses the potential benefits and drawbacks of using Pickering emulsions for food applications, as an alternative to conventional emulsifier-based systems.

  15. Formulation, stability, and administration of parenteral nutrition with new lipid emulsions.

    PubMed

    Hardy, Gil; Puzovic, Marko

    2009-01-01

    Intravenous lipid emulsions (IVLE) are an important source of energy and essential fatty acids and their incorporation into pediatric and adult parenteral nutrition (PN) regimens has revolutionized nutrition therapy. However, their clinical use has not been without risk, and will continue to remain so because of the intravenous route of administration. Pharmaceutical and microbiological concerns are centered around the methods of compounding all-in-one (AIO) admixtures, but these can be largely minimized with today's technologies and advanced understanding of aseptic principles. Modern lipid products, based on olive, coconut, and/or fish oils, have demonstrable formulation and clinical benefits over traditional soybean and safflower IVLE and, when combined in the new multi-chamber bags, can also offer improvements in stability and safety. This review outlines the rationale for different lipid formulations in PN admixtures, reviews the factors influencing stability and efficacy of lipid-based AIO regimens and evaluates some technologies for minimizing peroxidation and maximizing stability of AIO admixtures.

  16. Efficacy of a new topical cationic emulsion of cyclosporine A on dry eye clinical signs in an experimental mouse model of dry eye.

    PubMed

    Daull, Philippe; Feraille, Laurence; Barabino, Stefano; Cimbolini, Nicolas; Antonelli, Sophie; Mauro, Virgine; Garrigue, Jean-Sébastien

    2016-12-01

    Dry eye disease (DED) is a complex, multifactorial pathology characterized by corneal epithelium lesions and inflammation. The aim of the present study was to evaluate the efficacy of a cationic emulsion of cyclosporine A (CsA) in a mouse model that mimics severe dry eye. Eight to 12-week-old female C57BL/6N mice with tail patches of scopolamine were housed in controlled environment chambers to induce dry eye. At day three, following dry eye confirmation by corneal fluorescein staining (CFS, score 0-15) and phenol red thread (PRT) lacrimation test, the mice (n = 10/gp) were either treated 3 times a day in both eyes with drug-free cationic emulsion, a 0.1% CsA cationic emulsion, or 1% methylprednisolone (positive control), or non-treated. Aqueous tear production and CFS scores were evaluated at baseline and throughout the treatment period. The lacrimation test confirmed the scopolamine-induced decrease in aqueous production by the lacrimal gland. A reduction of 59% in induced-CFS was observed following topical treatment with 0.1% CsA. The beneficial effect of the cationic emulsion vehicle itself on keratitis was also clearly evidenced by its better performance over 1% methylprednisolone, -36%, vs. -28% on the CFS scores, respectively. This study indicates that the cationic emulsion of CsA (0.1%) was a very effective formulation for the management of corneal epithelium lesions in a severe DED mouse model. In addition, it performed better than a potent glucocorticosteroid (1% methylprednisolone). This cationic emulsion of CsA (0.1%), combining CsA and a tear film oriented therapy (TFOT), i.e. with vehicle properties that mechanically stabilize the tear film, represents a promising new treatment strategy for the management of the signs of dry eye.

  17. Synthesis of mesoporous poly(melamine-formaldehyde) particles by inverse emulsion polymerization.

    PubMed

    Schwarz, Dana; Weber, Jens

    2017-07-15

    Mesoporous poly(melamine-formaldehyde) (MF) particles with surface areas of up to 200m(2)g(-1) were synthesized by an inverse emulsion polymerization using dodecane and Span80® as continuous phase. The finer details of the shape control (using emulsion techniques) and the porosity control (using silica nanoparticles as hard-template) are discussed. The impact of phase-separation processes on the observable porosity of the 20-200µm sized spherical particles is analysed by gas sorption methods and electron microscopy. The high density of amine and triazine functional groups in the porous MF particles make the material a promising adsorber for heavy metal ions and methylene blue. In a preliminary column experiment, the synthesized material exhibited a total capacity of 2.54mmol/g (≙ 812.4mg/g) for the adsorption of methylene blue.

  18. Evidence for Marginal Stability in Emulsions

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Jorjadze, Ivane; Pontani, Lea-Laetitia; Wyart, Matthieu; Brujic, Jasna

    2016-11-01

    We report the first measurements of the effect of pressure on vibrational modes in emulsions, which serve as a model for soft frictionless spheres at zero temperature. As a function of the applied pressure, we find that the density of states D (ω ) exhibits a low-frequency cutoff ω*, which scales linearly with the number of extra contacts per particle δ z . Moreover, for ω <ω*, our results are consistent with D (ω )˜ω2/ω*2, a quadratic behavior whose prefactor is larger than what is expected from Debye theory. This surprising result agrees with recent theoretical findings [E. DeGiuli, A. Laversanne-Finot, G. A. Düring, E. Lerner, and M. Wyart, Soft Matter 10, 5628 (2014); S. Franz, G. Parisi, P. Urbani, and F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 112, 14539 (2015)]. Finally, the degree of localization of the softest low frequency modes increases with compression, as shown by the participation ratio as well as their spatial configurations. Overall, our observations show that emulsions are marginally stable and display non-plane-wave modes up to vanishing frequencies.

  19. ESR studies of semicontinuous emulsion polymerization

    SciTech Connect

    Lau, W.; Westmoreland, D.G.

    1993-12-31

    Electron spin resonance (ESR) is used in the detection and quantification of propagating radicals during a semicontinuous emulsion polymerization. The propagating radical concentration is crucial for the determination of kinetic parameters of the emulsion polymerization process. A flow reactor was built which involves a closed-loop flow system that circulates latex from the polymerization reactor through the ESR cavity for free-radical measurements and back to the reactor. With the continuous measurement of the radical concentrations during a polymerization of methyl methacrylate (MMA), {bar n} (average number of radicals per particle) and k{sub p} (propagating rate constant), are measured throughout the entire polymerization. For the polymerization of the MMA system studied, the authors observed a gradual increased in n and decrease in k{sub p} during the run, suggesting a diffusionally controlled process and that the polymerization is not occurring homogeneously throughout the polymer particles. In the glassy pMMA matrix, radicals can be {open_quotes}trapped{close_quotes} within a minimum volume and remain unterminated.

  20. 63. Interior view, kitchen chamber, north elevation. The kitchen chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Interior view, kitchen chamber, north elevation. The kitchen chamber was completed in the first stages of phase III construction. The paneled wall to the fireplace's right displays a phase III molding profile. The mark between the cabinet doors and on the large lower panel indicates the former position of a partition wall. The chimney-breast paneling bears a phase I profile and might have been moved to the room when the fireplace mass in the hall was reduced. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  1. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  2. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  3. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  4. Stability of drug-carrier emulsions containing phosphatidylcholine mixtures.

    PubMed

    Trotta, Michele; Pattarino, Franco; Ignoni, Terenzio

    2002-03-01

    Lipid emulsion particles containing 10% of medium chain triglycerides were prepared using 2% w/w of a mixture 1:1 w/w of purified soya phosphatidylcholine and 2-hexanoyl phosphatidylcholine as emulsifier mixture, for use as drug carriers. The mean droplet sizes of emulsions, prepared using an Ultra Turrax or a high-pressure homogenizer, were about 288 and 158 nm, respectively, compared with 380 and 268 nm for emulsions containing lecithin, or 325 and 240 nm for those containing 6-phosphatidylcholine. The stability of the emulsions, determined by monitoring the decrease of a lipophilic marker at a specified level within the emulsion, and observing coalescence over time, was also greatly increased using the emulsifier mixture. The emulsion stability did not notably change in the presence of a model destabilizing drug, indomethacin. The use of a second hydrophilic surfactant to adjust the packing properties of the lecithin at the oil-water interface provided an increase in the stability of lipid emulsions, and this may be of importance in the formulation of drug delivery systems.

  5. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  6. CHAMBERS FERRY ROADLESS AREA, TEXAS.

    USGS Publications Warehouse

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Chambers Ferry Roadless Area, Texas was conducted. The area has probable mineral-resource potential for oil and gas and for lignite. No metallic or additional energy resources were identified in the investigation. Detailed analyses of well logs from the vicinity of the Chambers Ferry Roadless Area, in conjunction with seismic data, are necessary to determine if the subsurface stratigraphy and structure are favorable for the accumulation of oil and gas. A shallow drilling program involving coring on a close-space grid is necessary for determination of the rank and continuity of seams of lignitic sediments in the area.

  7. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  8. Health effects of subchronic exposure to diesel-water-methanol emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; O'Callaghan, J P; Seilkop, S K; Ronskoh, N L; Wagner, V O; Kraska, R C

    2006-03-01

    The U.S. Environmental Protection Agency's National Ambient Air Quality Standards for ozone and particulate matter (PM) require urban non-attainment areas to implement pollution-reduction strategies for anthropogenic source emissions. The type of fuel shown to decrease combustion emissions components versus traditional diesel fuel, is the diesel emulsion. The Lubrizol Corporation, in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories, recently conducted a health assessment of the combustion emissions of PuriNOx diesel fuel emulsion (diesel-water-methanol) in rodents. Combustion emissions from either of two, 2002 model Cummins 5.9L ISB engines, were diluted with charcoal-filtered air to exposure concentrations of 125, 250 and 500 microg total PM/m3. The engines were operated on a continuous, repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide (NO) and PM were reduced when engines were operated on PuriNOx versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, five days/week for the first 11 weeks and seven days/week thereafter. Exposures ranged from 61 to 73 days depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol in the 500-microg/m3 exposure group were observed. PM accumulation within alveolar macrophages was evident in all exposure groups

  9. Lightweight Chambers for Thrust Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Lee, Jonathan; Holmes, Richard; Zimmerman, Frank; Effinger, Mike; Turner, James E. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot

  10. Characterization and testing of a new environmental chamber

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2015-06-01

    A 29 m3 Teflon chamber, designed for studies on the aging of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber is part of a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, and cell and animal exposure devices are located side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from 0 to 0.62 min-1. The irradiance spectrum is centered at either 350 or 365 nm, and the maximum irradiance, produced by up to 160 blacklight lamps, is 29.7 W m-2, which corresponds to the ultraviolet (UV) irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25±1 °C. The chamber is kept in an overpressure with a moving top frame, which reduces sample dilution and entrance of contamination during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 12-42%, depending on the initial conditions, such as NOx concentration and UV irradiation. The highest gaseous oxidation product yields of 12.4-19.5% and 5.8-19.5% were detected with ions corresponding to methyl glyoxal (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044), respectively. Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  11. Data on the physical characterization of oil in water emulsions.

    PubMed

    Zalazar, Aldana L; Gliemmo, María F; Campos, Carmen A

    2016-12-01

    This article contains experimental data and images for the physical characterization of oil in water emulsions. Mentioned data are related to the research article "Effect of stabilizers, oil level and structure on the growth of Zygosaccharomyces bailii and on physical stability of model systems simulating acid sauces" (A.L. Zalazar, M.F. Gliemmo, C.A. Campos, 2016) [1]. Physical characterization of emulsions was performed through the evaluation of Span and Specific Surface Area (SSA) determined by light scattering using a Mastersizer. Furthermore, microscopy images were recorded by confocal scanning laser microscopy (CSLM). The latter are presented to collaborate in the analysis of emulsion microstructure.

  12. Polyacrylamide-Polydivinylbenzene Decorated Membrane for Sundry Ionic Stabilized Emulsions Separation via a Facile Solvothermal Method.

    PubMed

    Zhang, Weifeng; Liu, Na; Cao, Yingze; Chen, Yuning; Zhang, Qingdong; Lin, Xin; Qu, Ruixiang; Li, Haifang; Feng, Lin

    2016-08-24

    Aiming to solve the worldwide challenge of stabilized oil-in-water emulsion separation, a PAM-PDVB decorated nylon membrane is fabricated via a facile solvothermal route in our group. The main composition is PAM, while the PDVB plays a role as cross-linker in order to improve the interaction between the polymer and the substrate. By the combination of the superhydrophilic and underwater superoleophobic wettability of the PAM polymer with the micropore size of the substrate, the as-prepared material is able to achieve the separation of various stabilized oil-in-water emulsions including cationic type, nonionic type, and anionic type. Compared with previous works, the emulsions used in this case are more stable and can stay for several days. Besides, the solvothermal method is facile, cost saving, and relatively environmentally friendly in this experiment. Moreover, the PAM-PDVB modified membrane exhibits excellent pH stability, recyclability, and high separation efficiency (above 99%), which can be scaled up and used in the practical industrial field.

  13. A new generation scanning system for the high-speed analysis of nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Lauria, A.; Montesi, M. C.; Tioukov, V.; Vladymyrov, M.

    2016-06-01

    The development of automatic scanning systems was a fundamental issue for large scale neutrino detectors exploiting nuclear emulsions as particle trackers. Such systems speed up significantly the event analysis in emulsion, allowing the feasibility of experiments with unprecedented statistics. In the early 1990s, R&D programs were carried out by Japanese and European laboratories leading to automatic scanning systems more and more efficient. The recent progress in the technology of digital signal processing and of image acquisition allows the fulfillment of new systems with higher performances. In this paper we report the description and the performance of a new generation scanning system able to operate at the record speed of 84 cm2/hour and based on the Large Angle Scanning System for OPERA (LASSO) software infrastructure developed by the Naples scanning group. Such improvement, reduces the scanning time by a factor 4 with respect to the available systems, allowing the readout of huge amount of nuclear emulsions in reasonable time. This opens new perspectives for the employment of such detectors in a wider variety of applications.

  14. Highly unsaturated fatty acid might act as an antioxidant in emulsion system oxidized by azo compound.

    PubMed

    Gotoh, Naohiro; Noguchi, Yosuke; Ishihara, Akiko; Yamaguchi, Kaita; Mizobe, Hoyo; Nagai, Toshiharu; Otake, Ikuko; Ichioka, Kenji; Wada, Shun

    2010-01-01

    Now it is recognized that DHA is oxidatively stable fatty acid compared with linoleic acid (LA) in emulsified system, although DHA is oxidatively unstable in a bulk system. In fact, an emulsified mixture of DHA and LA behaves as in a bulk system, namely the oxidative stability of DHA becomes lower than that of LA. Therefore, in this study, tridocosahexaenoate (DDD) and glycerol trilinoleate (LLL) were separately emulsified using TritonX-100 as an emulsifier and DDD emulsion was mixed with the oxidizing LLL emulsion using a water-soluble radical initiator, 2,2'-azobis(2-aminopropane) dihydrochloride. As a result, DHA suppressed the oxidation of LA, while DHA was not significantly oxidized. This suppression ability was examined using glycerol trieicosapentaenoate, glycerol trilinolenate, or glycerol trioleate instead of DDD and it was found that this activity was increased with the increasing number of double bonds in the structure. Furthermore, the same type of experiment was carried out using a lipid-soluble radical initiator, 2,2'-azobisisobutyronitrile and the similar result was obtained. These results indicated that a highly polyunsaturated fatty acid might act as an antioxidant in an emulsion system oxidized by an azo compound.

  15. Oxytocin gene deletion mice overconsume palatable sucrose solution but not palatable lipid emulsions.

    PubMed

    Miedlar, J A; Rinaman, L; Vollmer, R R; Amico, J A

    2007-09-01

    We previously reported that oxytocin knockout (OT KO) mice display markedly enhanced intake of sweet and nonsweet carbohydrate solutions compared with intake by wild-type (WT) mice of the same background strain. The present study was conducted to determine whether OT KO mice demonstrate enhanced intake of Intralipid, a palatable lipid emulsion. Male or female mice of both genotypes that were naive to the test solution were given continuous two-bottle access to Intralipid and water with food available ad libitum for 3 days. Throughout the experiment, mice of both genotypes showed a marked preference for Intralipid over water. On the 1st day, OT KO mice displayed twofold greater preference and consumed nearly twice as much Intralipid compared with WT cohorts. However, on subsequent days of exposure, Intralipid preference and intake did not differ between genotypes over a range of lipid concentrations presented in descending or ascending order. Daily and hourly measures of lipid vs. sucrose intake confirmed that OT KO mice consumed more sucrose solution, but not lipid emulsion, than WT mice. During ad libitum access to Intralipid, both genotypes consumed significantly more calories from the emulsion as concentration increased. Both genotypes maintained consistent total daily caloric intake (lipid plus chow) and compensated by decreasing chow intake over the course of the study. These findings, coupled with prior reports from our laboratory, support the view that OT signaling pathways participate in limiting intake of palatable carbohydrate-containing solutions, but do not appear to play a role in limiting intake of Intralipid.

  16. Anti-fouling effect of bentonite suspension in ultrafiltration of oil/water emulsion.

    PubMed

    Panpanit, S; Visvanathan, C; Muttamara, S

    2002-03-01

    The effect on membrane fouling resistance during ultrafilration of oil/water emulsion with the presence of bentonite suspension is experimentally evaluated. The fouling resistance was analyzed as a function of different membrane types and bentonite concentration. The total membrane fouling was categorized into reversible and irreversible, by adopting an appropriate chemical cleaning technique. The results revealed a 40% flux augmentation with the increase of bentonite concentration up to an optimum value of 300 mg l(-1) for cellulose acetate membrane. Further increase of bentonite concentration led to particle deposition on the membrane surface and reduced the flux. The polysulfone membrane did not show a similar flux improvement. This could be due to its high hydrophobicity. The absorption of oil/water emulsion on bentonite increased TOC removal rate from 65% to 80%, and this effect was the major cause of reduction in gel layer formation on the membrane surface. The extent of irreversible fouling of the hydrophilic cellulose acetate membrane was much smaller than that of the polysulfone membrane. These experiments demonstrated that, presence of bentonite could induce transformation of irreversible fouling caused by oil emulsion to reversible fouling, which could be periodically chemically cleaned.

  17. Cationic acrylamide emulsion polymer brine thickeners

    SciTech Connect

    Gleason, P.A.; Piccoline, M.A.

    1986-12-02

    This patent describes a thickened, solids free, aqueous drilling and servicing brine having a density of at least 14.4 ppg. comprising (a) an aqueous solution of at least one water-soluble salt of a multivalent metal, and (b) a cationic water-in-oil emulsion polymer of acrylamide or methacrylamide and a cationic monomer selected from the group consisting of a dialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylate or methacrylate, and a dialkyldialkyl ammonium halide. The acrylamide or methacrylamide to cationic monomer molar ratio of the polymer is about 70:30 to 95:5, the polymer having an I.V. in 1.0N KCl of about 1.0 to 7.0 dl/g and being present in a compatible and viscosifying amount; the thickened brine characterized by being substantially non-dilatent.

  18. Biofilm Formation in Microscopic Double Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Weitz, David

    2012-02-01

    In natural, medical, and industrial settings, there exist surface-associated communities of bacteria known as biofilms. These highly structured films are composed of bacterial cells embedded within self-produced extracellular matrix, usually composed of exopolysaccharides, proteins, and nucleic acids; this matrix serves to protect the bacterial community from antibiotics and environmental stressors. Here, we form biofilms encapsulated within monodisperse, microscopically-sized double emulsion droplets using microfluidics. The bacteria self-organize at the inner liquid-liquid droplet interfaces, multiply, and differentiate into extracellular matrix-producing cells, forming manifold three-dimensional shell-within-a-shell structures of biofilms, templated upon the inner core of spherical liquid droplets. By using microfluidics to encapsulate bacterial cells, we have the ability to view individual cells multiplying in microscopically-sized droplets, which allows for high-throughput analysis in studying the genetic program leading to biofilm development, or cell signaling that induces differentiation.

  19. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…

  20. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  1. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  2. Quantification of static magnetic field effects on radiotherapy ionization chambers

    NASA Astrophysics Data System (ADS)

    Agnew, J.; O’Grady, F.; Young, R.; Duane, S.; Budgell, G. J.

    2017-03-01

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  3. Quantification of static magnetic field effects on radiotherapy ionization chambers.

    PubMed

    Agnew, J; O'Grady, F; Young, R; Duane, S; Budgell, G J

    2017-03-07

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  4. Plasma chamber testing of advanced photovoltaic solar array coupons

    NASA Astrophysics Data System (ADS)

    Hillard, G. Barry

    1994-05-01

    The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.

  5. Theoretical study of energy deposition in ionization chambers for tritium measurements

    SciTech Connect

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-15

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  6. Theoretical study of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-01

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  7. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  8. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1991-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5 sec. duration that corresponded to the experiments, and an extended loading cycle of 485.1 sec. duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  9. Stabilizing oil-in-water emulsions with regenerated chitin nanofibers.

    PubMed

    Zhang, Ying; Chen, Zhigang; Bian, Wenyang; Feng, Li; Wu, Zongwei; Wang, Peng; Zeng, Xiaoxiong; Wu, Tao

    2015-09-15

    Natural chitin is a highly crystalline biopolymer with poor aqueous solubility. Thus direct application of chitin is rather limited unless chemical modifications are made to improve its solubility in aqueous media. Through a simple dissolution and regeneration process, we have successfully prepared chitin nanofibers with diameters around 50nm, which form a stable suspension at concentrations higher than 0.50% and a self-supporting gel at concentrations higher than 1.00%. Additionally, these nanofibers can stabilize oil-in-water emulsions with oil fraction more than 0.50 at chitin usage level of 0.01g/g oil. The droplet sizes of the resulting emulsions decrease with increasing chitin concentrations and decreasing oil fraction. Confocal laser scanning micrographs demonstrate the adsorption of chitin nanofibers on the emulsion droplet surface, which indicates the emulsion stabilization is through a Pickering mechanism. Our findings allow the direct application of chitin in the food industry without chemical modifications.

  10. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    NASA Technical Reports Server (NTRS)

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  11. Dehydration of oil waste emulsions by means of flocculants

    SciTech Connect

    Gandurina, L.V.; Butseva, L.N.; Shtondina, V.S.

    1995-05-01

    Oil waste emulsions are formed in the course of pumping petroleum crudes and products and are collected from the surfaces of equipment in recirculating water systems and wastewater disposal facilities (oil separators, sand traps, oil traps, holding pits for accidental spills, settlers, ponds, sludge accumulators, and so on). Emulsions are also obtained in the course of cleaning equipment in crude oil desalting and dehydration units. Such emulsions are stable, structurized systems that are very resistant to dewatering by heating and settling in separator tanks. In order to break stabilized emulsions, i.e., in order to ensure complete coalescence of drops when they collide, it is not sufficient to increase the forces of mutual attraction of drops at the moment of collision; in addition, the protective shell must be either destroyed or weakened. Demulsifying agents, or surfactants, will displace the stabilizers. This report is concerned with demulsifier efficiency.

  12. Image Charge Effects on the Formation of Pickering Emulsions.

    PubMed

    Wang, Hongzhi; Singh, Virendra; Behrens, Sven Holger

    2012-10-18

    Vigorous mixing of an aqueous particle dispersion with oil usually produces a particle-stabilized emulsion (a "Pickering emulsion"), the longevity of which depends on the particles' wetting properties. A known exception occurs when particles fail to adsorb to the oil-water interface created during mixing because of a strong repulsion between charges on the particle surface and similar charges on the oil-water interface; in this case, no Pickering emulsion is formed. Here, we present experimental evidence that the rarely considered electrostatic image force can cause a much bigger hindrance to particle adsorption and prevent the formation of Pickering emulsions even when the particle interaction with the interface charge is attractive. A simple theoretical estimate confirms the observed magnitude of this effect and points at an important limitation of Pickering emulsification, a technology with widespread industrial applications and increasing popularity in materials research and development.

  13. Stability and demulsification of emulsions stabilized by asphaltenes or resins.

    PubMed

    Xia, Lixin; Lu, Shiwei; Cao, Guoying

    2004-03-15

    Experimental data are presented to show the influence of asphaltenes and resins on the stability and demulsification of emulsions. It was found that emulsion stability was related to the concentrations of the asphaltene and resin in the crude oil, and the state of dispersion of the asphaltenes and resins (molecular vs colloidal) was critical to the strength or rigidity of interfacial films and hence to the stability of the emulsions. Based on this research, a possible emulsion minimization approach in refineries, which can be implemented utilizing microwave radiation, is also suggested. Comparing with conventional heating, microwave radiation can enhance the demulsification rate by an order of magnitude. The demulsification efficiency reaches 100% in a very short time under microwave radiation.

  14. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    PubMed

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed.

  15. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects.

    PubMed

    Chung, Cheryl; Smith, Gordon; Degner, Brian; McClements, David Julian

    2016-01-01

    Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.

  16. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  17. Dark matter limits froma 15 kg windowless bubble chamber

    SciTech Connect

    Szydagis, Matthew Mark

    2011-03-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  18. Dark matter limits from a 15 kg windowless bubble chamber

    NASA Astrophysics Data System (ADS)

    Szydagis, Matthew Mark

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiment, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  19. Design considerations of a thermally stabilized continuous flow electrophoresis chamber 2

    NASA Technical Reports Server (NTRS)

    Jandebeur, T. S.

    1982-01-01

    The basic adjustable parameters of a Beckman Continouous Particle Electrophoresis (CPE) Apparatus are investigated to determine the optimum conditions for ground based operation for comparison with space experiments. The possible application of electrically insulated copper/aluminum chamber walls is evaluated as a means to thermally stabilize or equilibrate lateral temperature gradients which exist on the walls of conventional plastic chambers and which distort the rectilinear base flow of buffer through the chamber, significantly affecting sample resolution.

  20. Generation of colloidal granules and capsules from double emulsion drops

    NASA Astrophysics Data System (ADS)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals